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Abstract

Three-dimensional and spatial variability effects on slope failure processes are investigated for an idealised slope stability
problem with the random material point method (RMPM). A 45 degree slope is brought to failure by either its own weight
or by a combination of its own weight and an additional surface load applied at the crest. The ultimate failure load and
potential failure processes are studied for various (heterogeneous) material strength profiles. In 3D, failures tend to spread
sideways and backwards. For the slope geometry considered, the resistance to initial and secondary failures in 3D
simulations tends to be higher than in 2D simulations, probably due to the additional resistance from the ends of the failure
surfaces. The failure behaviour changes when a depth trend in the material strength is introduced. A depth trend in the
material strength triggers a flow-like failure process, instead of distinct (approximately) circular failure surfaces which are
encountered in a material without a depth trend. The flow-like behaviour causes an expansion in the failure zone in all
directions while avoiding (where possible) local strong zones.

Keywords Large deformations - Random material point method (RMPM) - Sensitive clays - Three-dimensional (3D) slope

failure

1 Introduction

Landslides and slope failures can have drastic conse-
quences. Large landslides, as seen for example in sensitive
clays, pose a serious risk to human life [25]. Moreover, the
(financial and environmental) damage caused by these
landslides can affect many more people. Similar to land-
slides, dyke slope failures pose a large risk to human life,
as they may be a trigger for flooding of the hinterland
[3, 22].

Landslides are complex physical systems often com-
prising several stages [14]. The large variety of landslides
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have been categorised; see, for example, the (modified)
Varnes classification [2, 14, 32] to assist in identifying
other landslides exhibiting similar phenomena and char-
acteristics. Cruden and Varnes [2] acknowledged the dif-
ficulty in categorising landslides due to the different stages
in their evolution and proposed to classify each stage
during a detailed investigation. Hungr et al. [14] proposed
to categorise a landslide based on the stage the researcher
focuses on. In (sensitive) clay landslides, four main types
of failure have been observed: rotational slides, multiple
retrogressive rotational slides, translational (progressive)
slides, and spreads [18].

Recently, efforts have been made to reduce the risk of
landslides and slope failures to an acceptable level. To
assess the risk, both the likelihood and consequence of
these hazards must be known. Advances in large defor-
mation modelling, such as the material point method
(MPM) [24], enable the assessment of the probability and
consequence of landslides and slope failures within a single
tool [5, 23, 27, 33, 35-37].

In MPM, the continuum is discretised into material
points, while a background mesh is used as a computational
grid. The material points can move through the background
mesh [24], thereby allowing the modelling of the entire
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dynamic process, and for slope failure this means from
failure initiation until the failure process is complete. MPM
has been shown to be a useful tool in modelling the like-
lihood and consequence of slope failures and landslides.
However, these analyses are usually performed in 2D, as
indicated by Tran et al. [26], and they usually ignore the
effect of spatial variability of soil properties on the failure
process [21].

It is widely accepted that 2D analyses under-predict
slope safety, due to the resistance at the ends of the failure
surface, the so-called 3D-effect, being ignored [19, 29].
Hence, the result of a 3-dimensional assessment of initial
slope instability with, for example, the 3D finite element
method (FEM), may significantly differ from a 2-dimen-
sional assessment. However, 3D models are often too
computationally intensive for general practice. Therefore,
various analytical procedures which adjust the results of
2D assessments and require little additional computational
cost have been proposed. These methods involve an
assumed failure surface geometry in the out-of-plane
direction to account for the 3D-effect [1, 19, 29, 30].

For the stability of slopes in spatially variable soils, the
method proposed by Vanmarcke [29] has recently been
compared against the random finite element method
(RFEM) [10, 12, 17, 31]. RFEM accounts for the impact of
spatial variability of material properties by combining
FEM with random fields for the modelling of spatial
variability [4, 7, 10]. Slope failures in RFEM avoid (where
possible) local strong zones, thereby reducing the mean
factor of safety (FOS) of the slope compared to analyses
based only on the point statistics [9]. However, due to a
reduced variability of the FOS arising from the spatial
averaging of soil properties, the probability of failure
computed by RFEM is often lower than the probability of
failure from using only the point statistics. Meanwhile, the
use of RFEM increases the range of potential failure
mechanisms. Compared to RFEM, Vanmarcke’s method
overestimates the end resistance and does not account for
the effect of weak zones. Varkey et al. [31] highlighted the
effect of spatial variability on 3D slope failures and mod-
ified Vanmarcke’s method to improve its performance
relative to RFEM.

Similar to the differences between 2D and 3D RFEM
solutions for initial slope instability, the results of an
assessment of the complete failure process would be
expected to change if a 3D MPM model were used. 3D
RFEM has shown that spatial variability has a significant
influence on the likelihood and shape of an initial failure
[10, 12, 17, 31], and a large effect of spatial variability on
3D failure processes is therefore to be expected. However,
3D slope failure processes under the influence of spatial
variability have not yet been studied in detail, and it is
therefore unknown if the analytical procedures to account
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for the 3D-effect in the initial failure process are valid for
the complete failure process. Hence, 3D failure processes,
including the effect of spatial variability, are herein studied
using the 3D random material point method (RMPM) [20].
In a similar manner to RFEM, RMPM combines random
fields with MPM and adjusts the material point properties
based on the spatial variability modelled with random
fields. Further details on RMPM can be found in Wang
et al. [34] and Remmerswaal et al. [21].

This paper provides a first insight into the modelling of
3D slope failure processes and investigates the effect of
spatial variability on these processes. A range of failure
processes for an idealised problem are presented, together
with distributions of both the resisted failure load and
failure size. The effects on the failure process of spatial
variability in the soil shear strength, as well as a depth
trend in the mean shear strength, are studied.

2 Three-dimensional slope failure
simulation

2.1 Methodology

MPM can be considered a large deformation extension of
the finite element method (FEM), where integration points
are replaced by material points which are able to move
relative to the background mesh, thereby removing mesh
tangling restrictions. MPM can therefore be used to model
entire dynamic processes, such as those that are evident in
retrogressive slope failure. In this paper, MPM is used to
model three-dimensional slope failure. While the standard
MPM formulation has been shown in the literature to be
unstable and inaccurate, enhanced versions have been
developed. Here, an optimised implicit MPM scheme with
double-mapping and the generalised interpolation material
point (GIMP) shape functions (abbreviated as DM-G) has
been used [6]. The effect of volumetric locking is reduced
using the B-bar approach [39], which has also been suc-
cessfully applied in FEM. The analyses use the same linear
elastic, strain softening plastic, Tresca constitutive model
as presented in Remmerswaal et al. [21] to represent the
clay soil in the analysed slopes.

The random material point method (RMPM) accounts
for the spatial variability of soil properties using random
fields [21]. These are numerical predictions of the spatial
variability of a soil property, based on the point and spatial
statistics of the soil property. The point statistics are the
mean (u) and standard deviation (o), which are often
combined to give the coefficient of variation
(COV = g/p). The spatial statistic is the scale of fluctua-
tion (0), which is the distance over which soil property
values are significantly correlated in a given direction. In
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this paper, each random field is generated using local
average subdivision (LAS) [4] to give a field of cubic cells,
such that each cell corresponds to the initial volume
occupied by 1 material point. Hence, the properties of the
random field are mapped onto the material points. The
same random field is here applied for both the peak and
residual undrained shear strengths, i.e. these properties are
fully correlated. All other properties are considered to be
deterministic. Multiple realisations are used to obtain an
overview of the potential failure processes.

For further details of the methodology used in this
paper, the reader is referred to references [6, 20, 21, 39].

2.2 Numerical model

Figure 1 shows the idealised 1 m high, 45 degree slope,
that has been modelled in this investigation. The slope is
8 m wide in the y-direction and has a crest dimension (in
the x-direction) of 2.5 m. Cubic 8-noded finite elements,
with an edge dimension of 0.125 m, are used as the com-
putational (background) grid. The elements are initially
filled with 2 x 2 x 2 material points evenly distributed
within each element. Along the slope face, two material
points have been removed from the x — z corner of each
element to model the sloping surface. The relatively low
number of elements, i.e. 8§ elements in the vertical direc-
tion, has been used to reduce computational costs to enable
Monte Carlo simulations with a reasonable number of
realisations. However, care has been taken to ensure that
the number of elements is sufficient to reasonably model
the spatial variability. Specifically, because random field
cell values are assigned at the material point level, there are
4 material points over a vertical distance of 6,, which
satisfies the recommendation in previous RFEM studies of

the random field cell size being no greater than 0/4 (e.g.
[12]).

The base and ends of the problem domain are fixed in all
directions, while the y — z face at the back of the domain
prevents movement in the x-direction, see Fig. 1. The fixity
at the back of the domain does not provide vertical resis-
tance at the boundary, i.e. the estimated strength is con-
servative. In the x-direction, the computational domain
extends 2.5 m beyond the toe of the slope, and no fixity
is applied to the y — z face at the front of the domain.
Material points are removed from the simulation once they
exit the domain. Moreover, the x — z faces are free
boundaries beyond the toe of the slope. Material points can
therefore also leave the domain through the x — z faces
beyond the toe. The effect of removing material points is
small, since the material loses most of its strength before it
reaches these boundaries.

For the Base Case, referred to as Analysis 1, the random
fields of peak and undrained shear strength are generated
for cubic cells of size 0.0625 m and using a COV of the
undrained shear strength of 0.25, together with vertical and
horizontal scales of fluctuation of 6, = 0.25 m and 0, = 1.25
m, respectively. Moreover, a mean initial (i.e. peak)
cohesion (y.,) of 3.6 kPa and a mean residual cohesion
(1,,) of 0.36 kPa have been adopted, i.e. giving a sensitivity
of S, = u./u. = 10. The (assumed normal) probability
distributions of undrained shear strength have been trun-
cated to prevent negative strengths. This has a negligible
effect on the distributions due to the relatively small value
of COV that is used in the analyses. All other properties are
deterministic: the unit weight of the material is 20 kN/m3;
the elastic behaviour is governed by a Young’s modulus of
1000 kPa and a Poisson’s ratio of 0.45; and the softening
rate is defined by a softening modulus of 2 kPa.

Fig. 1 Geometry of the problem domain, indicating the loaded area (with white material points). The material points are coloured according to
the undrained shear strength and represent a random field with 6, = 0.25 m, 6, = 1.25 m and COV = 0.25
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A typical random field realisation from the Base Case is
illustrated in Fig. 1. The effects of variations in the hori-
zontal scale of fluctuation, studied after the Base Case, are
explained in Sect. 2.3. Each Monte Carlo analysis com-
prises 300 realisations, and failure is triggered in all real-
isations, either due only to the slope’s self-weight (i.e. the
slope is inherently unstable), or due to the application of a
foundation load as described below. Note that although 300
realisations are generally not sufficient for the accurate
computation of small failure probabilities, it is sufficient
for the qualitative investigation of failure mechanisms
carried out in this study. It was also found to be sufficient
in previous 3D RFEM studies by Li [16].

The dynamic MPM is solved implicitly using 0.01 s
time steps. The occurrence of an inherent instability, i.e. a
slope being unstable under its own weight, is first investi-
gated. When the slope is stable, a foundation load is
applied until failure is triggered. This ensures that each
slope is brought to failure, and thereby minimises the
overhead in computing realisations with no failure.
Therefore, at the start of the simulation gravity loading is
applied in an elastic implicit quasi-static MPM step to
generate 99% of the initial (i.e. in situ) stresses, with
movement of the material points and plasticity being pre-
vented. The remaining 1% is applied at the start of the
simulation, whereupon movement and plasticity of the
material points are allowed, which may trigger an inherent
instability. For cases in which the slope is stable under its
own weight, an increasing load is applied to the slope crest
through the foundation, by increasing the weight of the
material points representing the foundation. This load is
analogous to the build-up of material on top of a 1 m by 0.5
m rectangular area, located 0.5 m from the slope crest. This
foundation has been modelled as a linear-elastic material
with the same elastic properties as the slope, i.e. a Young’s
modulus of 1000 kPa and a Poisson’s ratio of 0.45.

In each time step, an additional load equivalent to 0.005
m depth of soil is applied, unless the incremental settle-
ment in the previous time step exceeded a threshold of
0.0005 m (in which case, no increment of load is applied).
The incremental settlement threshold is used to prevent
overloading of the slope beyond its actual failure capacity.
The incremental settlement of material points during a time
step is equivalent to the velocity of the material points;
hence, the load is only increased when the velocity is low.
An incremental settlement threshold is used instead of a
total settlement threshold, since the total settlement to
reach failure can vary significantly between realisations
(see Fig. 2a).

The loading scheme is further explained by the exam-
ples shown in Fig. 2. The slope in Example 1 is inherently
unstable, and the maximum incremental settlement exceeds
the threshold without the application of a foundation load.

@ Springer

During the analysis, the displacement increased far beyond
the 0.1 m limit of Fig. 2a. In Example 2, the load is
increased from point A until the failure capacity is reached
at point B. From point B the maximum incremental set-
tlement continuously exceeds the threshold. In Example 3,
the load is increased from points A to C. Loading is paused
at C because the maximum incremental settlement in the
previous step exceeded the threshold. In other words, the
velocity of the slope was too high. However, the failure
capacity has not yet been reached at point C, i.e. the
incremental settlement decreases with time under the same
load and, without a further load increase, the slope
becomes stable again before large deformations can occur.
Between C and D, the foundation load is increased when-
ever the incremental settlement in the previous step is
below the threshold. So, whenever the material points slow
down enough, additional load is applied until the failure
capacity is reached (point D in Example 3), after which the
material points continuously accelerate up to large
deformations.

A similar behaviour is observed in Example 4, where the
load is increased continuously until point E. At this load,
the incremental settlement increased significantly beyond
the threshold. However, the incremental settlement
decreased again in later time steps, i.e. the failure capacity
was not reached at point E. The load is then increased
whenever the material points slow down to below the
threshold until reaching the failure capacity at point F.

When the sliding mass slows down towards the end of
the failure process, the incremental settlement decreases
again. Figure 2b is terminated once the failure has been
fully developed, and so the eventual decrease in incre-
mental settlement is not shown. To prevent further loading
after the failure has occurred, loading is no longer
increased once the maximum total settlement exceeds 0.1
m. However, secondary failures can still occur after the
initial failure without further loading.

2.3 Overview of analyses

The properties of the Base Case (referred to in the previous
section) are summarised in Table 1 and the first row of
Table 2. The other rows in Table 2 present variations with
respect to the Base Case. Hence, Analysis Sets 2 and 3
investigate the influence of the horizontal scale of fluctu-
ation and the linear depth trend (k) in the mean undrained
shear strength, respectively. The failure processes com-
puted for the Base Case are compared against the results
obtained for these other analysis sets.

Note that while the initial mean shear strength was
chosen to give a relatively high probability of inherent
slope failure for the slope height analysed, the COV is
within the expected range found in the literature [11] and
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Fig. 2 The loading scheme in four example realisations. The load height as a function of a maximum settlement, and b maximum incremental

settlement. Note that the results are plotted every 10 time steps

Table 1 Model details

Geometry  Discretisation ~Material properties

H=1m Ar=00ls 5=20kN/m’> ¢ =Ny, COV)

W=25m tyu,=15s E =1000 kPa ¢, = ¢;i/S,

L=80m Ax=0.125m v=045 S. =10

Slope 1:1  Ay=0.125m Hgs=-2kPa 0,=025m
Az=0.125m 025m <0,< 10.0 m

Table 2 Summary of analyses

Analysis Comments e, cov 6, k
(kPa) (=)  (m) (kPa/m)
1 Base Case 3.6 025 125 0
2A Influence of horizontal 3.6 025 025 O
7B scale of fluctuation 36 025 25 0
2C 3.6 025 50 O
2D 3.6 025 100 O
3A Influence of depth trend 3.6 025 125 3.0
3B in mean shear strength 3 ¢ 025 125 6.0

the value of S, is within the expected range for medium
sensitive clays (e.g. [15]). Moreover, the value of 0, is
typical for clayey soils [38], while the investigated range of
0y, covers typical ratios that may be encountered for 0,,/0,
[38], i.e. from isotropic spatial variability to 0;, exceeding
the problem geometry.

2.4 Quantifying the failure volume

Hicks et al. [8, 13] computed estimates of failure volume to
quantify the failure consequence in their 3D RFEM

analyses of slope reliability. These were based on cali-
brating a threshold displacement beyond which failure was
deemed to have occurred. Meanwhile, in the post-pro-
cessing of 2D RFEM analyses of slope reliability using
subset simulation, van den Eijnden and Hicks [28] sepa-
rated the stable material from the unstable material using
the K-means clustering method (KMCM) to estimate slide
volumes.

The KMCM approach has here been modified for
RMPM. In RFEM, two clusters are enough to separate the
sliding mass from the stable mass (i.e. the sliding mass is
one cluster and the stable mass is the other cluster).
However, in RMPM, the large differences in deformations
between the initial and secondary failures cause the clus-
tering with two clusters to be unreliable, as secondary
failures may be erroneously clustered with the stable ma-
terial instead of with the sliding mass.

KMCM is, therefore, not used during the post-process-
ing at the end of the simulation, but instead during the
simulation itself, whenever an initial or subsequent failure
occurs. Figure 3 shows a flowchart for this algorithm. At
the start of the simulation one stable cluster exists (Cluster
0). When a failure occurs, KMCM separates the sliding
mass from the stable mass (i.e. the cluster containing the

Stable mass

Sliding mass

Cluster 0
Cluster 0 et
unchanged
Cluster 2
. A

displacement

Stable Cluster
Unstable Cluster

Fig. 3 Flow chart for the sub-clustering KMCM algorithm

@ Springer



Acta Geotechnica

stable mass is split into two new clusters: a new sliding
mass and a new stable mass). When KMCM is used again
later in the analysis, i.e. following another secondary fail-
ure, only the remaining stable mass is split into new
clusters. So, during the analysis the size of the stable clus-
ter reduces as more unstable clusters are detected. Mean-
while, the number of unstable clusters gradually increases.
The unstable clusters, i.e. the clusters with sliding masses,
remain unchanged once formed.

To detect if a failure has occurred, i.e. to detect when
KMCM should be used to register a new sliding mass, the
maximum FEuclidean displacement of the remaining
stable material points (usgpiemax) 1S computed. Failure is
deemed to have occurred whenever uggpiemax €Xceeds a
(user-defined) threshold, here set to be 0.2 m (i.e. one fifth
of the slope height), see Fig. 3. The threshold ugapie max >
0.2 m ensures an accurate division of each failure for this
problem, and has been established based on the visual
inspection of several realisations.

By the end of the simulation, the material may have
been divided into any number of clusters. Each cluster
contains either the remaining stable mass, the sliding mass
of the initial failure, or the sliding mass of a subsequent
failure. The clusters are used to estimate (1) the
stable volume, (2) the total failed volume, (3) the retro-
gression distance (in the x-direction), and (4) the damaged
crest width (in the y-direction). The retrogression distance
is defined as the largest distance from the crest until a
stable material point, whereas the damaged crest width is
defined as the total width (in the y-direction) of all failed
crest material points. Although this modified KMCM pro-
cedure also computes the failed volumes of individual
slides, these results are not discussed here.

3 Analysis 1: Base Case

3.1 Failure processes of inherently
unstable slopes

Some of the slopes are inherently unstable due to a weak
zone within the slope (10.4% of the slopes in Analysis 1).
The probability of initial failure is high on purpose to study
the behaviour after inherent instabilities. An example of
this behaviour is illustrated by the contours of undrained
shear strength shown in Fig. 4. Note that because large
deformations are accompanied by strain softening (i.e. a
reduction in undrained shear strength), the developing
failure process is indicated by the spreading of darker
zones during the analysis. The outline of the undeformed
slope is highlighted in red and the centrally located surface
load at the slope crest, which is not applied in this
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simulation, is highlighted in black. Ridge lines are
indicatively drawn as broken white lines to highlight the
location of each failure surface with respect to the original
slope crest. For each (selected) time step, 3-dimensional
and top views are presented.

Figure 4a, b shows the same small initial failure of
approximately 2 m in width near the far end of the slope,
i.e. the centre line of the failure is located around 6.5 m
from the left-hand boundary. The initial failure triggers a
large instability along the remainder of the slope, as shown
in Fig. 4c, d. This second instability is constrained by the
presence of a strong zone at the toe of the slope between
1.0 m and 2.0 m from the left-hand boundary. The initial
failure also triggers a retrogressive mechanism towards the
back of the slope. First, a third slide of similar size to the
initial failure occurs, as shown in Fig. 4e, f. Then, a smaller
fourth slide can be observed in Fig. 4g, h. The fixed end
point of the simulation after 15 s is reached in Fig. 4g, h.
By this end point, the deformations have slowed down and
it is therefore unlikely that additional failures would occur
if the simulation were continued beyond 15 s.

Figure 4 highlights the importance of modelling the
failure process in 3D, in that the failure process is clearly
3-dimensional. Moreover, the importance of modelling the
entire failure process becomes clear. Based on the size of
the initial failure, a relatively small consequence could be
attributed to the slope failure; however, the retrogressive
and 3D nature of the full failure indicates a more severe
consequence in this instance.

3.2 Failure processes triggered by a foundation
load

Most of the slope simulations are stable under their own
weight (89.6% of the slopes in Analysis 1). The surface
load is then applied to trigger slope failure, with an
example illustrated in Fig. 5. The fixed location of the
surface load at the centre of the slope dictates the location
of the failure initiation along the slope, i.e. failure initiates
near the load. However, the size of failure can vary. Fig-
ure 5a, b shows that, in this example, a 6-m-wide initial
failure occurred, which has a bowl-shape similar to the
inherently unstable failures shown in Fig. 4.

The initial slide is followed by a slightly smaller sec-
ondary slide, see Fig. 5c, d. The first slide initiated below
the surface load and triggered an asymmetric failure (i.e. a
larger failure to the right of the load than to the left). The
second slide initiates 1 m to the right of the location of the
load, i.e. it follows the asymmetric geometry of the first
failure. By the end of the simulation (Fig. Se, f), the second
failure has spread to become approximately the same width
as the initial failure, and a small third failure has initiated
in the remainder of the slope towards the fixed boundary,
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Undrained shear strength (kPa)
00 10 20 3.0 40 50 6|.0 7|.0 8.0

Fig. 4 An inherently unstable slope failure: a and b small initial failure; ¢ and d sidewards spreading of the failure; e and f large retrogression
backwards; g and h end of the simulation
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Undrained shear strength (kPa)

0.0 1.0 2.0 3.0 4.0

5.0 6.0 7.0 8.0
| | |

Fig. 5 A slope failure due to the applied foundation load: a and b large slightly asymmetric initial failure; ¢ and d backwards retrogressive
failure; e and f retrogressive failure fully developed and a third deformation zone initiates at the back of the slope before the end of the simulation

i.e. the slope height at the fixed boundary has fallen, as
evident in Fig. 5Se.

Although the use of a surface load as the trigger reduces
the variation in the location of failure initiation, more
variation in the subsequent failure process can be observed.
Moreover, a large variation in the failure width is possible
even when a surface load is applied, as illustrated in Fig. 6.

@ Springer

The surface load can trigger failure along the entire width
of the slope when the slope is barely stable under its own
weight and the strength of the material is approximately
constant along the entire slope (Fig. 6a, b). However,
stronger zones usually occur along the slope width. Local
deformations around the load, similar to a bearing capacity
failure, may then occur, and a further increase in load
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(2) (h)

Undrained shear strength (kPa)

00 10 20 30 40 50 60 70 80
| | |

Fig. 6 Various possible initial failures due to a foundation load: a and b failure width extends over whole domain; ¢ and d failure width roughly
half the slope width; e and f failure width roughly equal to surface load width; g and h asymmetric failure surfaces bounded by a strong zone on
one side of the surface load
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triggers slope failure, see Fig. 6¢, d. The strong zones may
even reduce the failure surface extent to the width of the
surface load (Fig. 6e, f). When strong zones are only pre-
sent on one side of the surface load, an asymmetric failure,
as shown in Fig. 6g, h, can be triggered.

Although Fig. 5 shows retrogressive behaviour mainly
towards the back of the domain, retrogressive behaviour
can move in multiple directions in 3D. For example, Fig. 7
shows the final configuration after two different failure
processes. During the initial failure shown in Fig. 6c¢, d, the
sides of the initial failure are pulled with the moving
material, thereby widening the failure, see Fig. 7a, b. After
the sidewards extension, a smaller block at the back wall of
the failed area becomes unstable, also shown in Fig. 7a, b.
In this specific case, the momentum of the block is not
large enough for it to flow out of the domain, and it instead
comes to rest in the failure zone.

After an initial failure with a smaller width, such as the
asymmetric failure shown in Fig. 6g, a third and less likely
failure process may occur: that is, retrogressive failures

may form a small tunnel away from the slope face from the
gap created by the initial failure. The tunnel shown in
Fig. 7c, d tends to get smaller with each subsequent failure.
Not all the material can flow out of the tunnel, as the
material still has some undrained shear strength and rests
on a horizontal fixed boundary. This remaining material
has a stabilising effect, which causes the tunnel to narrow.
One may expect instabilities at the sides of the tunnel when
(1) the material is capable of flowing out, or (2) when the
sides of the tunnel have a weak zone. The chance of
encountering a weak zone at the sides of the tunnel would
increase were the tunnel able to progress further beyond the
back boundary included in this model.

3.3 Failure initiation and process

Figure 8a shows the distribution of ultimate foundation
loads for all the realisations in the Base Case. The ultimate
load heights are placed into bins of 0.2 m intervals, where
the label in the figure indicates the average value of a bin.

Undrained shear strength (kPa)

0.0 1.0 2.0 3.0 4.0

5.0 6.0 7.0 8.0

Fig. 7 Final slide configurations in 2 realisations: a and b failure process predominantly parallel to the slope after the initial failure shown in
Fig. 6c, d; ¢ and d mostly backwards failure process after the initial failure shown in Fig. 6g, h
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the retrogression distance, the largest distance from the initial slope crest to the failure surface (measured along the crest) for Analysis 1;
¢ damaged crest width for Analysis 1; and d relative failure volume for Analysis 1. Comparative 2D simulations using the same statistics are also

presented

The first bin contains load heights from 0.0 to 0.1 m, but is
centred on 0.0 as it mainly contains the realisations with
zero load height, i.e. 10.4% of the 3D slopes are inherently
unstable. A wide spread around the 2D and 3D determin-
istic results (i.e. based on the mean property value) is
observed, where some slopes are unable to resist their own
self-weight (foundation load of 0 m), while others can
resist a foundation load equivalent to more than the slope
height.

For comparison, 2D simulations were performed for the
cross section through the middle of the slope. The 2D
simulations use the same random fields, i.e. from each 3D
random field the centre cross section was selected and used
to perform the 2D analysis. In 2D, more slopes are inher-
ently unstable (20.1%) compared to 3D and the resisted
foundation load on inherently stable 2D slopes is

significantly lower on average. Hence, the fact that a failure
in 3D can potentially occur at more weak locations is more
than compensated for by the stabilising effect of the sides
of a failure surface in 3D for the slope geometry and
material properties considered in this investigation.

Figure 8b shows the distribution of the final retrogres-
sive distance, measured from the slope crest in the x-di-
rection, as well as the location of the foundation in the x-
direction. It shows a large peak at 1.25 m, i.e. the most
likely size of the initial failure mechanism, indicating that
retrogressive behaviour in the x-direction, i.e. away from
the crest, is unlikely. The local peak at around 0.8 m is
caused by inherently unstable slopes, and is especially
visible in the 2D simulations, where more slopes are
inherently unstable (see Fig. 8a). Even though retrogres-
sive behaviour is unlikely, when it does occur it can
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significantly increase the damage to the slope, potentially
even reaching the end of the domain at 2.5 m. When ret-
rogressive behaviour occurs in 2D, it is more severe
compared to 3D, indicating a stabilising 3-dimensional
effect on the retrogressive behaviour. The stabilising effect
also compensates for more potential failure paths in 3D.
Even though a 2D simulation may miss 3-dimensional
processes, it is likely to be a conservative estimate of the
retrogression distance.

Figure 8c shows that much more variation is present in
the failure process in the y-direction (parallel to the slope).
A deterministic analysis computes a failure width of
around 4.2 m, i.e. approximately 4 times both the slope
height and width of the foundation load. Moreover, the
deterministic analysis often under predicts the failure
width. Figure 8d shows that a 3D deterministic analysis
can underestimate the failure volume by a factor of 2 to 3.
The failure volume of the 2D simulations has also been
computed, where failure is assumed to occur along the
entire width of the 3D domain. This is a conservative
assumption, given that failures would (in reality) have a
limited width in the third dimension. The 2D analysis
significantly over predicts the failure volume under this
assumption, with a higher peak at around the deterministic
solution. For improved visibility, the figure is limited to a
relative failure volume of 50% (of the domain volume),
although 20% of the 2D simulations have a relative failure
volume above 50%, with a fairly uniform distribution from
50% to 100% relative failure volume. This again indicates
that retrogressive behaviour is more extensive in 2D
analyses.

4 Analysis Set 2: influence of horizontal
scale of fluctuation

Analysis Set 2 describes the failure process for a full range
of values of the horizontal scale of fluctuation. Figure 9a, b
shows a realisation with a degree of anisotropy of the
heterogeneity (¢ = 6,/60,) equal to 1 (with 0, = 6, = 0.25
m), i.e. a realisation from Analysis 2A. The failure initia-
tion is similar to Fig. 7c, d, where the width of failure at the
load is approximately equal to the 1 m width of the loaded
area and expands to 2 to 3 m wide at the base of the slope.
These failures with a small width occur with a high fre-
quency for low degrees of anisotropy (coupled with a rel-
atively small value of 0,), as the outcomes approach the
deterministic solution. After the initial failure, and due to
the high variation within the soil, the material breaks into
smaller blocks compared to realisations in the Base Case.
This results in a more chaotic remaining profile, see
Fig. 9a, b, while smoother profiles are observed in the Base
Case.
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A realisation with a degree of anisotropy of 40 (from
Analysis 2D) can trigger failure above the base of the
slope. Due to a large weak layer, this kind of failure often
triggers the almost complete collapse of the slope once
failure occurs (as shown in Fig. 9c, d). Figure 9c, d shows
that the initial failure causes settlement in a large area
surrounding the foundation, which is quickly followed by
large retrogressive failures where both the sides and back
of the failed area are pulled in with the initial failure. Large
intact blocks remain in the failure zone as failure blocks
slide down. These blocks are usually larger in the y-di-
rection than in the x-direction, as the failure surface per-
pendicular to the slope still tends to be circular in the x-
direction, limiting the failure size.

4.1 Failure initiation and process

Figure 10a shows the effect of the horizontal scale of
fluctuation on the distribution of the ultimate limit load.
For a degree of anisotropy of & = 1, i.e. no layering of the
soil heterogeneity, there is limited variation around the
deterministic solution based on the mean strength proper-
ties. This is because of the significant averaging of material
properties along the failure surface, as can be expected for
this degree of anisotropy and adopted value of 6,. More-
over, inherent failures cannot be triggered, because the
weak zones in the material are too small to promote
development of failure mechanisms that avoid the stronger
zones. At the other end of the spectrum, a degree of ani-
sotropy of & = 40 shows a large variability in the failure
load. In some cases, strong zones are present at the base of
the slope where the loads due to gravity loading are at their
highest, thereby providing the ability to resist a larger
failure load. A strong zone can even force failure initiation
through a weak layer above the base of the slope. Con-
versely, a weak zone along the base often triggers an
inherent instability. Intermediate degrees of anisotropy
confirm that the influence of strong and weak zones
increases with an increase in the degree of anisotropy. In
other words, larger strong zones can more often lead to an
increase in the resisted load than smaller strong zones,
while larger weak zones are more likely to trigger inherent
instabilities than smaller weak zones.

The variation in the retrogression distance increases
with an increase in the degree of anisotropy, as shown in
Fig. 10b. In many cases, no retrogressive behaviour in the
direction away from the slope is observed and a large peak
is present between 1 and 1.5 m retrogression distance. A
high degree of anisotropy causes more inherent instabilities
compared to a low degree of anisotropy. Moreover, retro-
gressive failures tend to be more likely for higher degrees
of anisotropy, and retrogressive behaviour combined with
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Undrained shear strength (kPa)
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Fig. 9 Example failures showing influence of degree of anisotropy of the soil heterogeneity: a and b £ = 1, i.e. no layering; ¢ and d ¢ = 40, i.e.

layers more extensive than the length of the slope

significant layering is likely to cause the complete slope to
collapse.

Figure 10c shows the variation in the damaged crest
width for the various degrees of anisotropy. Figure 10c
indicates that strong zones in a layered material can have a
limiting effect on the width of the initial failure surface,
while retrogressive behaviour through weak zones can
trigger full collapse of the slope. The responses for a small
amount of layering (¢ = 5) and a large amount of layering
(¢ = 40) are similar, while no layering clearly shows less
variation. In the case of no layering (£ = 1), failures tend to
have a size that is closer to the deterministic solution.

Figure 10d shows the influence of & on failure volume.
The figure highlights that, for larger values of &, there is an
increased likelihood of retrogressive failure leading to very
large failure volumes, as seen from the tails of the his-
tograms. Note that although the figure indicates relatively
few large failures of this type, around 6% and 10% of the
simulations for, respectively, & =20 and & =40, have
relative failure volumes of 50-100%. However, these

results are not included in the figure for reasons of clarity.
For £ smaller than or equal to 10, fewer than 1% of the
simulations have relative failure volumes exceeding 50%.

5 Analysis Set 3: depth trend in the mean
shear strength

In Analysis Set 3, a linear depth trend (k) in the mean
undrained shear strength is introduced, i.e. in this case the
mean undrained shear strength increases linearly with
depth. The results of the Base Case without a depth trend,
i.e. k = 0 kPa/m, are compared against k = 3.0 kPa/m
(Analysis 3A) and k = 6.0 kPa/m (Analysis 3B). The depth
average of the undrained shear strength is the same in all
analyses as shown in Fig. 11.

One example of a failure process with a large depth
trend (k = 6.0 kPa/m) is shown in Fig. 12. Figure 12a, b
shows that the initial failure due to the foundation load
occurs through a weaker zone approximately halfway up
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Fig. 11 Mean undrained shear strength at a given depth as a function
of the depth trend k

the slope. Due to the fact that the failure is shallow, the size
of the failure is relatively small (Fig. 12c, d). Compared to
a material without a depth trend, retrogressive behaviour
does not occur along clearly defined slip planes. Instead, as
shown in Fig. 12e-h, the material appears to flow steadily
along a gentle slope into the failure zone. Instabilities at the
sides of the initial failure, which tend to occur frequently in
materials without a depth trend, are much less frequent in a
material with a depth trend, i.e. retrogressive failure occurs
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more in the direction away from the slope and less along
the slope.

Figure 13a shows the effect of a depth trend in the mean
undrained shear strength on the range of resisted loads. As
the strength at the base of the slope, where the gravity loads
are highest, increases with an increase in k to 3.0 kPa/m,
the resistance of the slope against inherent instabilities and
foundation load increases. This is because deep failures are
critical, so that the safety against failure increases when the
resistance increases with depth near the slope toe. How-
ever, as k increases further, the influence of the slope height
reduces, until, at k = 6.0 kPa/m, the tendency to fail
becomes independent of slope height for a homogeneous
soil. This means that, for a soil that is spatially variable
about the mean strength, there is an increased likelihood of
shallow failures, and this increased likelihood of shallow
failures counteracts the increased resistance at the base of
the slope. The overall resistance of the slope (including
heterogeneity) for a high value of k is, for this specific case,
lower than for a smaller value of k. Hence, a limited depth
trend can raise the resistance, since the higher strengths at
greater depths can resist the critical deep failures, while a
larger depth trend increases the possibility of failures along
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Undrained shear strength (kPa)

0.0 2.0 4.0 6.0 8]0 10|.0

Fig. 12 Example of a failure with a depth trend k = 6.0 kPa/m in the mean undrained shear strength: a and b initial failure after loading through a
weak zone halfway up the slope; ¢ and d small fully developed initial failure, where the base of the slope remains stable; e and f flow-like
retrogressive behaviour of the weak material at the top of the slope; g and h end of the simulation after more flow-like retrogressive behaviour
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Fig. 13 a Load height, b retrogression distance, ¢ damaged crest width, and d relative failure volume for Analysis Set 3 with and without a depth

trend in the mean undrained shear strength

planes at different depths, thereby reducing the overall
resistance.

A similar effect can be observed in the extent of the
failure process, as shown in Fig. 13b: a small depth trend
reduces retrogressive behaviour, whereas a large depth
trend increases retrogressive behaviour due to the increased
possibility of failure at multiple depths.

Figure 13c, d confirms that slides with a depth trend are
smaller on average, as the slides can occur through layers
above the base and tend to spread less in the direction along
the slope. Although, in the analyses discussed previously,
foundation failure only occurred at the same time as the
slope failure, with a significant depth trend a foundation
failure can sometimes occur even though the slope remains
stable (see Fig. 14). This can occur due to significantly
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weaker material near the crest of the slope. The crest can
remain almost intact with this failure mechanism, with the
failure volume then tending to be small in comparison with
volumes involved in a slope failure mechanism.

6 Discussion

This study has considered an idealised slope stability
problem to explore possible failure processes, and to
highlight the potential of 3D RMPM as an effective anal-
ysis tool. The slope geometry is similar to previous slopes
analysed using RFEM, so that comparisons between stud-
ies are possible. In addition, slides in sensitive clay have
been known to initiate in relatively small (e.g. lake-side)
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Fig. 14 Final geometry of a foundation failure on a slope with a depth trend k = 6.0 kPa/m in the mean undrained shear strength

slopes. The study has provided valuable insight into how
3D failure mechanisms evolve. An obvious next step is to
consider real case histories and slope geometries, as well as
more realistic constitutive models of soil behaviour.

The simulations were performed in parallel on the grid
computing system Spider at SURFsara, and the model size
was chosen so that each realisation could be analysed on a
single computer processor of this system. Each realisation
took 12-24 h of computer run time. Hence, when using 150
computer processors, simulations involving 300 realisa-
tions could be completed within a couple of days.

It was found that 300 realisations were sufficient for
quantifying the trends in failure processes, as is evidenced
by the consistency in the histogram results. However, for
the accurate computation of failure probability (especially
at the weak tails of the distributions) more realisations
would be needed, requiring code optimisation or special
strategies such as subset simulation. In addition, to model
real slopes, more complex geometries must be created, for
which an increase in the required number of elements and
material points is expected. The current 3D RMPM code
uses a standard implicit time integration scheme, although
this can be optimized to reduce the memory and compu-
tation time footprint.

Note that the use of 3D RMPM in engineering practice
is, for now, not suggested by the authors (i.e. using current
computational machines). However, the methodology,
especially after numerical optimisation, is useful for better
understanding failure processes within a scientific frame-
work, where grid computing is often available. It can, for
example, also be used to derive analytical/numerical
frameworks for including 3D-effects within 2D (R)MPM
simulations.

7 Conclusion

3D RMPM has been shown to be capable of producing an
overview of many potential failure processes, and quanti-
fying the failure consequences of these processes. It can
provide insight into the effect of spatially varying shear
strength properties on the failure onset and consequence.
The so-called 3D-effect increases the safety against the
onset of failure (as is also well recognised from FEM
analyses) and reduces the likelihood and size of secondary
failures compared to 2D RMPM analyses. This indicates
that 2D plane strain investigations of the failure process are
conservative with respect to the probability of initial and
retrogressive failures.

For the example problem considered, secondary failures
on the sides of the original failure were more likely than
retrogressive failure away from the crest. This failure
pattern is beneficial for dyke slope failures, since lateral
spreading of the failure will not (directly) trigger flooding.
An increase in the degree of anisotropy increases the
likelihood of retrogressive failures and tends to increase the
width of the failures, while a smaller degree of anisotropy
results in a more chaotic failure process where many small
zones can become unstable. For isotropic spatial variability
(and small values of the scale of fluctuation) the results
approximate to the deterministic outcome due to the
averaging of properties over potential failure planes. The
results for degrees of anisotropy larger than 5 are similar. A
small depth trend increases the resistance against initial and
retrogressive failure as the strength at the bottom of the
slope increases. However, a larger depth trend causes a
decrease in the ultimate foundation load and a greater
tendency for retrogressive behaviour, due to the increased
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likelihood of failures at multiple depths. For a large depth
trend, secondary failures along (approximately) circular
failure surfaces become less likely; instead, weak material
tends to flow into an expanding failure zone.
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