
Dead Links and Lost Code: Investigating the State of Source Code Repositories in
Maven Central Repository Packages

An Empirical Study

Tudor-Gabriel Velican1

Supervisor(s): Sebastian Proksch1, Mehdi Keshani1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 29, 2023

Name of the student: Tudor-Gabriel Velican
Final project course: CSE3000 Research Project
Thesis committee: Sebastian Proksch, Mehdi Keshani, Soham Chakraborty

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract

Maven Central serves as the de-facto repository
for distributing free and open-source Java li-
braries and components. Evaluating its present
state and overall robustness is pivotal for en-
abling the community to make well-informed
decisions concerning its future progression.
Such informed decisions would undoubtedly
benefit the collective community of develop-
ers. This study aims to empirically evaluate
developer practices surrounding version control
and package reproducibility on Maven Central
by investigating (i) the reliability of repository
links, (ii) preferences regarding repository host-
ing services, (iii) the utilization of tags/releases,
and (iv) the reproducibility of packages. Our
study revealed that 20.85% of packages had
unreliable repository links, attributable to in-
consistencies in field usage and missing data,
highlighting lax submission guidelines. GitHub
emerged as the dominant host, with a market
share exceeding 90% most years, though re-
gional alternatives, like Gitee, are gaining trac-
tion. 74.35% of packages used tags/releases;
however, naming convention discrepancies be-
tween Maven Central and source code reposi-
tories were identified, hindering version tracing
and reproducibility. Strikingly, only a 3.06%
of packages were configured to attempt repro-
ducibility. An even smaller subset was found to
be fully reproducible.

1 Introduction
Open-Source Software repositories play a critical role in the
software development ecosystem. They are treasure troves
of libraries and tools that facilitate the development of new
software. One such repository that has gained popularity,
particularly in the Java community, is the Maven Central
Repository. Maven is a widely used project management
and build automation tool for Java and other JVM-compatible
projects, and the Maven Central Repository is a compre-
hensive database of libraries and plugins for these projects.
While Maven centralizes and manages the binaries of these
libraries, their source code often resides in different source
code repositories like Github, Gitlab, and Bitbucket. As soft-
ware development is an ever-evolving field, the state and re-
liability of these libraries are always in flux.

One crucial aspect of software repositories is the reliabil-
ity of source code repository links. A broken repository link
can hamper the development process, making it difficult for
client developers to access needed resources, receive support,
or contribute to the libraries. This has the potential to cause
developers to abandon projects, which hurts the ecosystem
as a whole [1]. When the pool of developers stagnates or
shrinks, the ecosystem suffers from a lack of new perspec-
tives and innovations. Furthermore, for developers and orga-
nizations to commit to integrating a library into their projects,
there must be a level of trust in its stability and longevity.
Having the guarantee that a library is in active development,
with an engaged community and reliable access to its source
code, bolsters confidence in its future sustainability and the
feasibility of incorporating it into long-term projects [2] .

The location where the source code is hosted can have im-
plications on its availability and reliability. With the dynamic

nature of the web, hosting services may go in and out of oper-
ation, and repositories may move, raising the question of how
this dynamism affects the Maven ecosystem.

Moreover, when a developer uses a library, they expect the
the code to be stable. However, with constant commits and re-
leases, bugs and breaking changes are inevitable. Pinpointing
the commit associated with a release can help in recreating
issues or understanding the state of the code at that release.

Another aspect to consider is the reproducibility of the
packages. Reproducibility refers to the ability to reconstruct
a package to the same specifications as the original. In other
words, given the same source code, build environment, and
configuration, the build process should yield the same arti-
facts bit-for-bit. This is an attribute of paramount importance
from a security standpoint. It allows the integrity of packages
uploaded to Maven Central to be verified. By ensuring that
the build process always produces the same binary, develop-
ers can ensure that no unauthorized modifications were made
to the source code [3]. This is especially relevant in enterprise
environments, which often have strict acceptance criteria for
third-party libraries and/or are subject to regulatory compli-
ance.

It is worth noting that while some packages upload source
JARs alongside the compiled binaries, not all do. Source
JARs contain the raw source code from which the binaries are
built. When they are made available, developers and security
analysts can check the code for any vulnerabilities or mali-
cious content and then compare it to the compiled binaries.
However, in cases where source JARs are not provided, it be-
comes significantly more challenging to conduct a thorough
security analysis. Moreover, there are no strict mechanisms
in place to ensure that the source JARs directly correspond to
the compiled JARs on Maven Central 1.

This underscores the importance of reproducibility. If a
package is reproducible, its binaries can be built from the
source code and directly compared to the binaries obtained
from Maven Central, ensuring they are identical and have not
been altered.

Progress towards ensuring the reproducibility of packages
on Maven Central has been made thanks to the Reproducible
Builds effort2 and its contributions to the Maven build tool
and its plugins. As part of this effort, the Reproducible Cen-
tral project3 exists to list all package releases that have been
independently verified to be reproducible. To streamline the
verification process, they offer scripts that facilitate the build-
ing and comparison of artifacts against their corresponding
versions published on Maven Central. We leverage these
scripts in our experiments. Although these advancements
have enabled developers to create reproducible packages, it
remains an optional feature.

This research aims to address the aforementioned critical
aspects and answer the following research questions:

RQ1: How reliable are the repository links?
RQ2: Where are the repositories hosted and how does this

change over time in the ecosystem?
RQ3: Can the commit pertaining to a specific release be pin-

pointed?
RQ4: How reproducible are the packages? Can one rebuild

the packages with the same checksum?

1https://central.sonatype.org/publish/requirements/
#supply-javadoc-and-sources

2https://reproducible-builds.org/docs/jvm/
3https://github.com/jvm-repo-rebuild/reproducible-central

https://central.sonatype.org/publish/requirements/#supply-javadoc-and-sources
https://central.sonatype.org/publish/requirements/#supply-javadoc-and-sources
https://reproducible-builds.org/docs/jvm/
https://github.com/jvm-repo-rebuild/reproducible-central

First, for RQ1, we test the dependability of repository links
in Maven’s POM files using Git’s ls-remote tool to check
the validity and accessibility of repository URLs. Approx-
imately 20.85% of packages lack valid Git repository links,
and there is inconsistency in the use of fields to provide
project URLs. This raises questions about the strictness of
submission guidelines on Maven Central, as a small percent-
age of packages have missing mandatory fields.

Then we conduct a historical analysis for RQ2 by extract-
ing hostnames from URL fields, aggregating this data to an-
alyze the market share of various repository hosting services
over time. Github is the most popular repository host, with
over 90% market share for most years, though smaller hosts
like Gitee and Apache’s Gitbox still exist.

In RQ3, we examine tags and releases within Github
source code repositories to determine the exact commit as-
sociated with a specific release. To match package versions
with tags and releases, we query the Github API. The analysis
also revealed naming convention discrepancies between the
published Maven Central version and the source code repos-
itory, which can create difficulties for developers in finding
the correct versions and ensuring reproducibility.

Lastly, for RQ4, we assess the reproducibility of pack-
ages in Maven Central. This involves verifying the pres-
ence of the project.build.outputTimestamp property, exclud-
ing packages without it, and employing scripts from the Re-
producible Central project to build packages and compare
their checksums. Reproducibility is a major concern, as only
3.06% of packages have the necessary configuration for re-
producibility. This indicates a lack of knowledge or consid-
eration among developers. Out of the packages we were able
to automatically build, only 16% achieved full reproducibil-
ity, which is alarming in contexts where security and trans-
parency are crucial.

The rest of the paper is structured as follows: Section 2
discusses related work in this field, highlighting important
contributions made by previous studies and establishing the
need for this research. Section 3 details the high-level ap-
proach and implementation used to conduct this research as
well as the sampling strategy used. Finally, our findings and
implications are discussed in Sections 4 & 5, respectively.

2 Related Work
The Maven repository has been the object of scientific inquiry
for numerous researchers in the field of software engineering
research. In this section, we discuss key relevant literature
and how it pertains to our research goals.

Raemaekers et al. [4] have analysed the Maven Repository
in detail, producing the Maven Dependency Dataset. Per-
formed on a dataset of 148,253 jar files, code metrics, depen-
dencies and breaking changes between library versions were
gathered. Moreover, a call graph of the entire Maven reposi-
tory was generated. The ultimate purpose of the research was
to create a foundational dataset to allow other researchers to
answer software evolution-related research questions on the
Maven Repository.

In contrast, part of our research focuses on determining the
reliability of source code repository links, providing insights
into how well Maven packages are maintained. Furthermore,
our research on whether individual releases can be consis-
tently rebuilt from the remote source history could improve
the accuracy of future research. For example, since the study
was dependent on source code analysis, projects without a
source jar directly available had to be discarded. If it were
possible to rebuild source jars directly from source, it would
certainly increase the reliability of such research.

Karakoidas et al. [5] performed a similar analysis (albeit on
a smaller dataset of 22730 jars) which focused on collecting
in-depth code metrics related to object-oriented design, pack-
age design and program size. They analysed packages us-
ing 3 popular static analysis tools, making available a dataset
with the results. Using this dataset, they measured the us-
age of domain-specific languages such as Regex and XML.
However, the number of other research questions that can be
answered with the dataset is large. Yet again, the research
was limited by the fact that packages that did not also contain
the source jar were discarded, highlighting the importance of
our research.

Tufano et al. [6] investigated uncompilable snapshots in
the commit history of 100 Apache ecosystem projects written
in Java and relying on Maven. They found that uncompil-
able snapshots occurred in 96% of the projects, with the main
culprit being dependency resolution problems.

Similarly, He et al. [7] sought uncompilable commits in 68
open-source Java repositories to find a link between commit
purpose and compilation errors. They also investigated their
impact on subsequent commits and code quality thereafter.

Whilst our research also investigates compilability, we do
this only at release level granularity, as our aim is to deter-
mine whether distinct artifacts can be rebuilt from the source
code provided in the source code repository. Moreover, we
try to associate artifacts with their respective commit by ana-
lyzing their checksum.

Whereas to the best of our knowledge there is no research
on dead/non-existent repository links in the Maven Reposi-
tory, there is research such as [8] by Liu et al. which investi-
gated the prevalence of dead external links on Stack Overflow.
At the time of writing, they found that 14.2% of external links
in posts were broken.

3 Methodology
In 3.1, we discuss the sampling method used and provide a
description of the dataset analysed in the study. Then, in 3.2,
we describe the high-level approach employed to answer each
RQ. Lastly, in 3.3 we delve into the implementation details,
explaining the most important experiment design decisions.

3.1 Data Selection
As indexed by mvnrepository.com4, the Maven Repository
ecosystem contains upwards of 34M indexed packages across
1914 repositories. Organizations and individuals may host
their own repositories and popular packages are often mir-
rored across multiple repositories for redundancy and avail-
ability.

We analysed a subset of packages, employing a data selec-
tion strategy formulated based on the sampling process sug-
gested by H. Taderhoost in [9].

Sampling Frame
The largest and most diverse repository is Maven Central,
with 11M packages. It is the default repository used by
Maven and is highly regarded and trusted by the Java commu-
nity. Moreover, it offers well structured and easily accessible
metadata about packages in the form of a weekly-updated in-
dex. As such, we restricted our sampling frame to packages
within Maven Central.

Sampling Technique
We analysed every package present on the Maven Central in-
dex available to date, performing a random sample to select

4https://mvnrepository.com/

https://mvnrepository.com/

a random version from each. The latest version was not se-
lected as the sample would not be representative of each year.
This is because packages from active projects started a long
time ago would skew the dataset, leading to a lower represen-
tation from earlier years. To ensure reproducibility, we use a
configurable seed for the random version selection.

Figure 1 shows the distribution of published packages per
year. As can be seen by the skewness of the distribution, the
popularity of the Maven repository has picked up in the last
few years.

Figure 1: Distribution of packages published per year (population in
blue, sample in yellow)

3.2 Approach
RQ 1 - How reliable are the repository links?
There are multiple fields within which developers could de-
clare the URL of a package’s source code repository inside
the POM, namely:

• package.url - the home page of the project. Projects
that do not have a homepage often include the repository
URL here.

• package.scm.url - the source code repository, which
should be a publicly browsable repository.

• package.scm.connection - used by the Maven SCM
plugin to allow interfacing with the source code repos-
itory directly through the Maven command line. This
URL should provide read access to the repository.

• package.scm.developerConnection - similar to the pre-
ceding item, except this URL should provide write ac-
cess to the repository.

Note: when mentioning these fields in the rest of the paper, we
will omit the package. prefix.
Although developers should declare the URL within the
scm.url and/or url fields, Maven does not enforce these
rules. They can declare the url in some, all, or none of the
fields. Furthermore, according to the Maven documentation5,
scm.connection and scm.developerConnection should be de-
clared in the following format:
{scm:<provider id><delimiter><provider-specific
part>}.
Examples:

• scm:git:https://gitbox.apache.org/repos/asf/maven.git
• scm:git:git@github.com:akka/akka.git

5https://maven.apache.org/scm/scm-url-format.html

However, this is also not enforced and in practice we found
that not all developers complied.
To validate the repository links we proceed as follows:

Considering the widespread usage of Git as the predom-
inant version control system [10], leverage the ls-remote
command provided by Git6. It allows us to view branches
and references in a remote repository without having to clone
or fetch from it. Consequently, if the command execution is
successful, it can be inferred that the repository link in ques-
tion is both valid and publicly accessible. We validate each
field in turn and record whether the URL is a valid reposi-
tory. Any packages that do not pass this validation process
are categorized as either belonging to alternative version con-
trol systems or deemed invalid.

As an alternative, one might consider executing an HTTP
HEAD request as a means of validation. Nonetheless, it is im-
portant to recognize that while an HTTP HEAD request can
confirm the link’s validity, it does not inherently verify that
the link leads to a public Git repository. As an illustration,
a generic link such as https://github.com would be regarded
as valid, even though it does not specifically point to a Git
repository. Therefore this approach was not used.

RQ 2 - Where are the repositories hosted and how does
this change over time in the ecosystem?
In order to analyse the market share of each repository host
over time, we first extract the hostname of each URL field by
parsing it. URLs that have been previously identified as in-
valid are excluded from this analysis as the focus is on repos-
itories that are accessible to the public. Subsequently, the
extracted hostnames are aggregated on an annual basis. For
each year under consideration, we tally the number of repos-
itories using a particular hosting service. To determine the
market share of each hosting service, we calculate the pro-
portion of repositories using each service relative to the total
number of repositories for that year.

Given the diversity of repository hosting services available,
it is practical to set a threshold for market share, such that
hosts with a market share lower than 1% are grouped into an
Others category.

RQ 3 - Can the commit pertaining to a specific release be
pinpointed?
To pinpoint the exact commit pertaining to a certain version,
we can look at the tags and releases in the source code repos-
itory and search for the ones that match the package version.

In Git, tags are specific points in the repository’s history
that are marked with a unique identifier. They provide a way
for developers to label and reference significant points such
as major versions and feature releases in the codebase. On
the other hand, releases are a non-native feature provided by
some source code repository hosts which encapsulate tags, in-
cluding release notes and (optionally) pre-compiled binaries
or installation packages.

We can retrieve them by querying the APIs provided by the
repository hosting services. Since Github is overwhelmingly
the most popular repository host, for this research question,
we investigate only packages hosted there. Using Github’s
API, we search for and record tags/releases that match the
version name of the package.

RQ 4 - How reproducible are the packages?
Verifying the reproducibility of packages on Maven Central is
met with a multitude of challenges, the most critical of which
being that the output of the Maven build tool is timestamp-
dependent by default. As such, the checksum of the produced

6https://git-scm.com/docs/git-ls-remote.html

https://maven.apache.org/scm/scm-url-format.html
https://git-scm.com/docs/git-ls-remote.html

artifacts is automatically different across builds. This makes
it impossible to compare the majority of published artifacts
with their respective counterparts built from source.

However, reproducibility can be manually enabled in the
POM by setting the project.build.outputTimestamp property
to a desired timestamp. This instructs Maven plugins that
generate files to use this timestamp, which generally is
enough to ensure reproducibility. The Reproducible Builds
project has fixed most sources of variability, however there
still remain sources of variability that can result in a package
not being reproducible, or only partially so:

• Version ranges in POM - dependencies declared with
version ranges lead to unstable version resolution over
time, depending on which versions are available at
compile-time. For example, a version range such as
[1.5,) could resolve to version 1.5 now, but then resolve
to version 2.0 in the future.

• Line endings - Windows uses CRLF for line endings,
whilst Unix uses LF. Build plugins that generate content
will use the line endings of the compiling OS.

• Major JDK version - Bytecode produced by different
major JDK versions is generally different. Even with
source/target JDK version defined in the POM, the JDK
version used to compile makes the difference.

To determine whether packages are repro-
ducible, we first exclude all packages without the
project.build.outputTimestamp property. Furthermore,
we exclude packages that do not have a valid repository
link and corresponding tag, as this information is needed to
retrieve the source code. We then use the scripts provided by
the Reproducible Central project to build the packages. The
scripts rely on a custom .buildspec file to be defined for each
package, which declares the required build environment. If
the project already has this file for a particular package, we
use it, considering it has been verified by the contributors of
the project. Otherwise, we attempt to create the file ourselves
using the extracted data for each package and default build
parameters.

For each package we build 2 iterations, one with LF new-
lines and the other with CRLF newlines. On completion,
we record whether the build was successful, saving the out-
put of the compiler. In case of a successful build, we ad-
ditionally record the filenames of both the reproducible and
non-reproducible artifacts, which are produced by the Repro-
ducible Central scripts. We attempt to build only with the
Maven build tool.

3.3 Implementation
Compiling intermediate data
To analyse the sampled packages, we built a Java project that
runs multiple extractors on them to create an intermediate
dataset. We stored this data in a database to facilitate straight-
forward querying. We extracted the following fields:

• Source code repository urls from the POM;
• Java versions defined in MANIFEST.MF inside the JAR.

Some build tools include the Java version used to com-
pile the bytecode. For example, if building with Maven,
the Maven Archiver Plugin will store this information in
the Build-Jdk-Spec entry7.

From this dataset, we perform additional computations to an-
swer the individual RQs in turn. Initially, we parse and read
the full Maven Central index, storing the list of all packages

7https://maven.apache.org/shared/maven-archiver/

and corresponding indexed metadata in a table. Then, us-
ing the seed 0.5, we perform the data selection, storing the
sampled packages in another table. For each package, we
run each extractor sequentially, extracting data from the POM
file, the executable, and other artifacts included in the pack-
age.

Further analysis
With the intermediate data compiled, we perform additional
analysis within a Python project. We query the database and
perform more computations and requests to external APIs, the
results of which are also stored in the database.

Initially, for each package, we extract the URLs from the
intermediate data into a new table, parsing and storing the
hostname for each URL. Each URL is then fed into the
git ls-remote command, which returns the refs contained
within a repository. Though the refs are not relevant for the
RQ, if the refs are retrieved successfully we can infer that the
repository is accessible and public.

There is no enforced format for these URLs, thus we have
to normalise them into a format that is accepted by Git.
For example, we need to remove the scm:git: prefix from
the URLs in the scm.connection & scm.developerConnection
fields. Other URLs are using the SSH protocol, which some-
times requires the SSH key of the developer. Converting the
URL to the ‘https’ version often fixes this. Lastly, some URLs
include the /tree/{branch name} suffix commonly found in
Github links to specify a certain branch. However the git
ls-remote command does not recognize this path as a valid
repository. As such we remove this suffix. We then make a
request with each transformation of each URL and once it is
verified to be working, we store the transformed version in
the database.

To obtain the tags and releases, we use Github’s GraphQL
API. It is however possible that developers may use a slightly
different versioning scheme in the source code repository. Ta-
ble 1 shows different versioning combinations we encoun-
tered:

Version Tag Release
3.0.0 3.0.0 3.0.0
1.0.0.Final v1.0.0 Release 1.0.0
1.2.1 package-name-1.2.1 Package Name (1.2.1)
2.4.6 Release/2.4.6 Version 2.4.6
1.0.0.Alpha17 1.0.0.Alpha17 n/a

Table 1: Different ways of versioning across package version, tag
names and release names

As such, searching only for exact matches would result in
many tags and releases being missed. To mitigate this, we
perform a string search. For tags, the Github GraphQL API
provides functionality to query for a specific tag .

However, there is no counterpart for releases. To perform
the search, we first exclude all releases that do not have the
version as a substring of the release name. Then we use the
Ratcliff/Obershelp string-matching algorithm [11] to find the
closest match. It works by finding the largest common group
of characters between two strings and using it as an anchor. It
then examines substrings on the left and right of the anchor,
calculating a score based on the number of characters found
in common.

This approach allows for long release names such as
package-name-1.0.2 to be matched with version 1.0.2 despite
the small similarity ratio of 0.43, whilst also excluding re-
leases such as 1.0.3 which, although has a large similarity

https://maven.apache.org/shared/maven-archiver/

ratio of 0.8, is a completely different version.
When re-building the projects from source, to automati-

cally create the .buildspec file, we use the information pre-
viously extracted, namely the Git repo, the Git tag, and the
major JDK version used for compilation, which is found in
the MANIFEST.MF file in the Build-Jdk-Spec entry. More-
over, we also define the type of newline used by the library
publishers. There are only 2 types of newlines therefore we
attempt to build with each.

4 Results
This section presents the findings of our empirical study in
a systematic and comprehensive manner. The primary out-
comes include quantifiable measures and observations from
our experiments, which directly align with our research ques-
tions.

RQ 1 - How reliable are the repository links?
Out of the 473,352 packages investigated, 97.45% of pack-
ages defined a repository URL in the designated scm.url field.
Overall, 80.28% had at least one valid repository link. Out of
the rest that did not have any valid repository links, 6.87%
packages had unparseable links and thus could not be vali-
dated. This includes examples such as:

• Placeholders
– PROJECT URL
– scm:git:{git}
– ‘https://github.com/’ + user + ‘/’ + name

• Malformed links
– $https://github.com/kondaurov-scala/json.$git
– >https://github.com/ashr123/exceptional-

functions
• Junk

– hikvision-artemis-sdk
– none

• Empty strings (‘’)
However, not all developers used the scm.url field for its

intended purpose. Instead of including a URL to the source
code repository, they included a URL to the project’s home-
page, which instead should be defined in the url field. Vice-
versa, there were developers who defined the source code
repository URL in both tags or only in the url field, which
is designated for the project’s homepage. Some developers
provided the SSH URL to the repository, which sometimes
would require authentication, although converting the link to
an HTTPS URL would make it accessible. We performed this
conversion automatically.

In Table 2, we provide the percentage of packages con-
taining each field along with the percentage of packages that
contain a valid repository link in each.

RQ 2 - Where are the repositories hosted and how does
this change over time in the ecosystem?
We analyzed the market share of each repository host for ev-
ery year starting from 2011, which is when the oldest pack-
age in the index was published. Only the hosts of packages
with valid and publicly accessible repository links were con-
sidered. The market share for each URL field is presented
separately because the repository host may differ across the
fields.

Figure 2 shows the market share of all source code repos-
itories over time for each URL field. Note that repository
hosts with less than 1% of market share in a certain year were

Metric Percentage
Has ≥ 1 URL field 98.70%
Has ≥ 1 valid URL field 79.15%
Has url 97.45%
Has valid url 40.36%
Has scm.url 97.45%
Has valid scm.url 75.46%
Has scm.connection 94.99%
Has valid scm.connection 69.76%
Has scm.developerConnection 79.41%
Has valid scm.developerConnection 49.52%

Table 2: Percentages of URL field usage and valid URLs for each

merged into the Other category. Our findings show Github
emerging as the dominant source code repository, exhibiting
overwhelming popularity with a market share exceeding 90%
most years. Nonetheless, a noticeable trend reveals a gradual
increase in the popularity of alternative repository hosts in
recent years, with gitee.com, git-wip-us.apache.org and git-
box.apache.org being the most popular.

Interestingly, we were able to observe Apache’s relo-
cation from the git-wip-us.apache.org domain to the git-
box.apache.org in late 20188, with a clear reversion starting
in 2018.

RQ 3 - Can the commit pertaining to a specific release be
pinpointed?

Out of the 360,086 packages with a verified publicly acces-
sible Github repository, 74.35% had a release/tag that was
found to be a probable match according to our heuristic
search algorithm and Github’s API explained in 3.3. Figure 3
shows the proportion of packages with a matching tag and/or
release.

Has Tag Has Release

48.37% 0.16%25.82%

25.65%

Figure 3: Venn diagram with percentages of packages having tags
and/or releases

Taking the inherent imprecision of the search algorithm
out of the equation, we also investigate the prevalence of
tags/releases that exactly match the version name. The cor-
rectness of these tags/releases can be guaranteed with very
high likelihood. Figure 4 shows the proportion of packages
with a tag/release that has the exact same name as the pack-
age version. This time, only 24.45% were found to have a
tag/release.

8https://infra.apache.org/blog/relocation-of-apache-git-repositories

https://infra.apache.org/blog/relocation-of-apache-git-repositories

Figure 2: Market share of repository hosts per year for each URL field

Has Tag Has Release

17.00% 2.77%4.68%

75.55%

Figure 4: Venn diagram with percentages of packages having tags
and/or releases whose names exactly match the version name

RQ 4 - How reproducible are the packages?
In fact, we found that only 9603 of the packages included the
project.build.outputTimestamp property which is necessary to
ensure reproducibility for projects built with Maven. In our
sample, the first package found to contain the property was
released in 2017, which is the same year in which the issue
of reproducibility was opened in the Maven project’s Jira9.
313,599 packages in the sample were published after the is-
sue was opened on 25/Aug/2017. Out of this subset, 78,358
were released after 18/Apr/2022, which is when the issue of
reproducibility was marked as fully resolved. However, we
found many packages had started adding this property well
before this date, which we attribute to the fact that work on re-
producibility has been progressively rolled out over the years.
Table 3 shows the number of packages containing this prop-
erty since 2017.

9https://issues.apache.org/jira/browse/MNG-6276

Year (20xx) 17 18 19 20 21 22 23
Packages 1 0 2 954 2249 3674 2723

Table 3: Number of packages containing build.outputTimestamp
property each year since 2017

Out of the 9603 packages, we attempted to build a subset
of 481. Out of said packages, 8 had already been identified
by the Reproducible Central project, enabling us to utilize
their .buildspec files to set up the correct build environment.
Surprisingly, we encountered 1 package that proved to be un-
buildable, despite the verification of its .buildspec file by the
project’s contributors.

For packages not already identified, we automatically gen-
erated the .buildspec file using the data extracted previously.
Only 230 could be automatically built successfully. Build
failures often occurred because the builds required extra con-
figuration that was not deducible without manually inspect-
ing the documentation. Moreover, since we only built us-
ing Maven, packages using alternative build tools like Gradle
or ANT failed. 37 packages were completely reproducible,
191 were only partially reproducible and 2 packages were
not reproducible at all. The distribution of file extensions
for the reproducible files is illustrated in Figure 5, while Fig-
ure 6 presents the corresponding distribution for the non-
reproducible files.

Maven projects include a variety of file types, with POM
and JAR files being the most common. Interestingly, while
our results show that POM files are more common among re-
producible files, JAR files have a higher presence among non-

https://issues.apache.org/jira/browse/MNG-6276

Figure 5: Pie chart with file extensions of reproducible files

Figure 6: Pie chart with file extensions of non-reproducible files

reproducible files, hinting at possible challenges in ensuring
reproducibility for Java archives. JSON files also appear to
be common, although there is no significant difference in the
proportion of reproducible and non-reproducible JSON files.

5 Discussion
5.1 Implications
Reliability of Repository Links We found that while the
majority of packages include a URL in at least one of the
designated fields in the POM, indicating that developers are
generally providing some form of repository link, there is a
significant portion of packages (approximately 20.85%) that
do not have a valid URL pointing to a Git repository. Note,
however, that some of the invalid links can be attributed to
the fact that some packages use alternative version control
systems such as Subversion, which were not explored in this
research. This finding raises some concerns about the relia-
bility of repository links on Maven Central, which can have
serious effects on the ecosystem as a whole. Without a valid
source code repository link, it is impossible to check the in-
tegrity of a certain package, as it is not possible to reconstruct
it from source. Moreover, it can deter developers from using
it, as they cannot assess its development practices, commu-
nity support, or ongoing maintenance efforts.

We also uncovered a lack of consistency and understanding
among developers regarding the appropriate usage of the url
and scm.url fields. Developers often use them interchange-
ably despite the fact that url should be used for the project’s

website and scm.url for the project’s source code repository.
However, since specifying both is a hard requirement for sub-
mission10, it is understandable that small projects without a
dedicated website choose to specify their repository URLs in
both.

Though a very small minority, the presence of packages
with missing url and scm.url fields is surprising, despite it
being a hard requirement for submission. This brings into
question how thoroughly packages are reviewed when sub-
mitted to Maven Central. These findings highlight the need
for improved enforcement of submission guidelines. Maven
Central could also consider implementing mechanisms to val-
idate and verify the repository links provided by developers,
further enhancing their reliability.
Repository Host Preferences In our results, Github
emerged as the dominant source code repository, exhibit-
ing overwhelming popularity. It has maintained a consis-
tent majority market share throughout the years, indicating
its widespread adoption and recognition within the developer
community. A notable finding however, is that while Github
retains the lion’s share, an array of smaller repository hosts
continue to exist, catering to niche needs and specific commu-
nities. The Apache Git repositories, for instance, are mainly
dedicated to projects under the Apache Software Foundation.
This suggests that certain organizations may prefer to host
their repositories in-house or on specialized platforms.

In recent years, gitee.com, a China-based repository host
appears to be rising in popularity. This trend could be at-
tributed to local preferences or regulatory policies in some
countries favoring domestic services. The increasing share of
gitee.com suggests the existence of a broader phenomenon of
regional influence on repository hosting preferences.
Tag/Release Usage The fact that a substantial number of
packages have tags indicates that tagging is a common prac-
tice, possibly because it’s a simple and integrated way to mark
specific points directly within the Git repository. We did how-
ever find that 0.16% had a matching release but no matching
tag. Since a release encapsulates a certain tag, this indicates
that whilst extremely rare, some developers use vastly differ-
ent naming conventions only for their tags.

This poses a risk for developers who rely on these pack-
ages, as the discrepancy between version names and tags
might cause confusion or difficulty in tracking the right ver-
sion for their needs. Additionally, the absence of tags/releases
in the repositories makes investigating reproducibility im-
practical, as the exact commit to build from is not known.

The data also suggests different levels of package mainte-
nance rigor. Those with both tags and releases or with exact
matches might be following a more structured release pro-
cess, while others might be less formal. The relationship with
other project maintenance metrics could be investigated in fu-
ture work.
Reproducibility We found that a very small frac-
tion of packages (9603/313,599) contained the
project.build.outputTimestamp property, which is neces-
sary for a Maven-built package to be reproducible. It is to
be noted that all features enabling reproducibility have only
been fully completed on April 18th 2022. In our sample,
78,358 packages were released after this date, with only
5489 having the property. This low adoption rate suggests
that many developers are not giving enough consideration
to reproducibility or might not be aware of the correct
configuration options. It remains to be seen whether adoption

10https://central.sonatype.org/publish/requirements/
#project-name-description-and-url

https://central.sonatype.org/publish/requirements/#project-name-description-and-url
https://central.sonatype.org/publish/requirements/#project-name-description-and-url

increases in the next few years. Nonetheless, this is a
concern for the safety and transparency of the ecosystem. As
such, it is important to bolster awareness among developers
and increase the accessibility of documentation regarding
reproducibility.

The fact that 230/481 packages were buildable raises con-
cerns regarding the buildability of packages. This suggests
that there may be other factors affecting the buildability
which warrants further investigation. However, this may be
the result of attempting to automatically build the packages.
Large complicated projects are often split up into smaller
packages contained within the same repository. As such, they
require special build parameters, such as defining the sub-
directory within said package is located. Such requirements
can only be inferred from a project’s documentation (if it ex-
ists). A potential fix for this issue would be to for the main-
tainers of Maven Central to follow in the steps of Debian, by
creating a standardised .buildinfo file11 which would have to
be included as a hard requirement for submission on Maven
Central. This file, which would contain the build environ-
ment and other relevant parameters could ensure that projects
are always buildable from source, with information directly
available on Maven Central.

Of the built packages, only 37 were fully reproducible.
With such a low rate of reproducibility, it is clear that even
when packages are buildable and have the required property,
there remain challenges in ensuring that they are fully repro-
ducible. This is significant, since partial reproducibility may
simply not be enough in contexts where security and trans-
parency is paramount. Further research is required to identify
the specific barriers and challenges to achieving full repro-
ducibility, although the Reproducibility Central project has
laid the foundations and continues to make contributions to-
wards this issue.

Lastly, the distribution of file extensions shows that Maven
projects are composed mainly of POM and JAR files. The
large amount of non-reproducible JAR files found is concern-
ing, as they are executable and are thus a risk to run without
access to the source code [3].

5.2 Threats to Validity
External validity concerns the generalisability of our results.
In this study, the main threat to external validity is that the
Maven Repository ecosystem is larger than just Maven Cen-
tral. As such, the conclusions drawn from our study may not
be generalised to other repositories, which may have differ-
ent rules and conventions for submission, though this can be
investigated in future work. Moreover, there are also many
private repositories used within companies which are not ac-
cessible.
Internal validity refers to the factors that could potentially
impact the outcomes of our study. For example, although the
sample contains every package in Maven Central, the version
chosen for each package is random. Over time, although un-
likely, the source code repository may be migrated or become
deprecated. This means that older version of packages may
not have valid URLs. In future research, it could be interest-
ing to investigate the extent to which repository hosts change
over a project’s lifetime.

Another such factor is that the reliability of packages using
other Version Control Systems such as Subversion and Mer-
curial is not verified.

Lastly, the prevalence of corner cases may have an impact
on the number of packages marked as valid. For example,
due to strange formatting of URLs or small mistakes, the host

11https://wiki.debian.org/ReproducibleBuilds/BuildinfoFiles

of the URL cannot be parsed and verified, although a human
would easily be able to fix such broken links.

6 Responsible Research
When performing this study, we had to access and download
information about a large number packages and source code
repositories that is provided publicly and without charge. As
such, we made sure to follow the terms of use of the online
services we used to the best of our abilities.

To lower the amount of data downloaded from Maven Cen-
tral, we configured the application to use the already cached
local repository of our research group12, thus only download-
ing missing packages. Moreover, the application works on
a need-to-know basis, only downloading the files it actually
analyses as opposed to all files listed under each package. To
analyse the Github repositories of the packages, we used the
Github API, which imposes rate limits. We followed these
limits strictly, using a single API key and waiting for the time-
out to reset before performing additional requests.

We made sure to make our results reproducible by prepar-
ing a replication package, publishing the codebase publicly
on Github13. Within the replication package14, we also pro-
vide the weekly Maven Central index used in the study.

7 Conclusion
Our research investigated the reliability of repository links,
repository host preferences, tag/release usage in said reposi-
tories and the reproducibility of packages in Maven Central.

The dependability of repository links was discovered to
be compromised, with around 20.85% of packages lacking
a valid Git repository link. Furthermore, there was a lack of
consistency in the use of fields to provide project URLs. Al-
though the lack of valid links may be attributable to the usage
of alternate version control systems or small projects without
dedicated websites, the fact that a small percentage of pack-
ages had missing mandatory fields questions the strictness
of submission guidelines on Maven Central. This highlights
the necessity for stricter enforcement of submission guide-
lines and implementation of mechanisms to validate and ver-
ify repository links.

Although smaller repository hosts such as Gitee and
Apache’s Gitbox continue to exist, Github was shown to be
the most popular platform in terms of repository host prefer-
ences with an overwhelming majority, exceeding 90% market
share for most years.

While 74.35% of packages used tags or releases, our anal-
ysis also found that naming conventions varied between the
published Maven central version and source code repository,
which is concerning. Developers may encounter difficulties
finding the correct versions and determining reproducibility
as a result of this mismatch. We also found that certain devel-
opers may adhere to more structured release processes than
others in terms of package maintenance rigor.

Most importantly, reproducibility emerged as a key con-
cern. Only 3.06% of packages were found to have the config-
uration required to ensure reproducibility. The current situa-
tion shows a lack of knowledge or consideration on the part
of developers. Further, even when packages were buildable,
only 16% achieved full reproducibility. This is alarming, es-
pecially in contexts where security and transparency are crit-
ical.

12https://www.fasten-project.eu/
13https://github.com/ashkboos/MavenSecrets
14https://zenodo.org/record/8077125

https://wiki.debian.org/ReproducibleBuilds/BuildinfoFiles
https://www.fasten-project.eu/
https://github.com/ashkboos/MavenSecrets
https://zenodo.org/record/8077125

References
[1] E. Constantinou and T. Mens, “Socio-technical evolu-

tion of the ruby ecosystem in github,” in 2017 IEEE 24th
International Conference on Software Analysis, Evolu-
tion and Reengineering (SANER), 2017, pp. 34–44.

[2] N. Haenni, M. Lungu, N. Schwarz, and O. Nierstrasz,
“Categorizing developer information needs in software
ecosystems,” in Proceedings of the 2013 international
workshop on ecosystem architectures, 2013, pp. 1–5.

[3] C. Lamb and S. Zacchiroli, “Reproducible builds: In-
creasing the integrity of software supply chains,” IEEE
Software, vol. 39, no. 2, pp. 62–70, 2022.

[4] S. Raemaekers, A. Van Deursen, and J. Visser, “The
maven repository dataset of metrics, changes, and de-
pendencies,” in 2013 10th Working Conference on Min-
ing Software Repositories (MSR). IEEE, 2013, pp.
221–224.

[5] V. Karakoidas, D. Mitropoulos, P. Louridas, G. Gousios,
and D. Spinellis, “Generating the blueprints of the java
ecosystem,” vol. 2015-August. IEEE Computer Soci-
ety, 8 2015, pp. 510–513.

[6] M. Tufano, F. Palomba, G. Bavota, M. Di Penta,
R. Oliveto, A. De Lucia, and D. Poshyvanyk, “There
and back again: Can you compile that snapshot?” Jour-
nal of Software: Evolution and Process, vol. 29, 4 2017.

[7] J. He, S. Min, K. Ogudu, M. Shoga, A. Polak, I. Fos-
tiropoulos, B. Boehm, and P. Behnamghader, “The char-
acteristics and impact of uncompilable code changes on
software quality evolution.” Institute of Electrical and
Electronics Engineers Inc., 12 2020, pp. 418–429.

[8] J. Liu, X. Xia, D. Lo, H. Zhang, Y. Zou, A. E. Hassan,
and S. Li, “Broken external links on stack overflow,”
IEEE Transactions on Software Engineering, vol. 48,
pp. 3242–3267, 9 2022.

[9] H. Taherdoost, “Sampling methods in research
methodology; how to choose a sampling tech-
nique for research,” p. 5, 2016. [Online]. Available:
https://hal.science/hal-02546796

[10] J. C. Casquina and L. Montecchi, “A proposal for
organizing source code variability in the git version
control system,” in Proceedings of the 25th ACM
International Systems and Software Product Line
Conference - Volume A, ser. SPLC ’21. New York,
NY, USA: Association for Computing Machinery,
2021, p. 82–88. [Online]. Available: https://doi-org.
tudelft.idm.oclc.org/10.1145/3461001.3471141

[11] J. W. Ratcliff and D. E. Metzener, “Pattern-matching-
the gestalt approach,” Dr Dobbs Journal, vol. 13, no. 7,
p. 46, 1988.

https://hal.science/hal-02546796
https://doi-org.tudelft.idm.oclc.org/10.1145/3461001.3471141
https://doi-org.tudelft.idm.oclc.org/10.1145/3461001.3471141

	Introduction
	Related Work
	Methodology
	Data Selection
	Sampling Frame
	Sampling Technique

	Approach
	RQ 1 - How reliable are the repository links?
	RQ 2 - Where are the repositories hosted and how does this change over time in the ecosystem?
	RQ 3 - Can the commit pertaining to a specific release be pinpointed?
	RQ 4 - How reproducible are the packages?

	Implementation
	Compiling intermediate data
	Further analysis

	Results
	RQ 1 - How reliable are the repository links?
	RQ 2 - Where are the repositories hosted and how does this change over time in the ecosystem?
	RQ 3 - Can the commit pertaining to a specific release be pinpointed?
	RQ 4 - How reproducible are the packages?

	Discussion
	Implications
	Threats to Validity

	Responsible Research
	Conclusion

