
Printing reinforcement steel

A study towards optimised, additive manufactured steel for

reinforced concrete

In partial fulfilment of the requirements for the degree of

master of science in civil engineering

M.P. Drillenburg ook genaamd Lelijveld

to be defended publicly on Friday August 14, 2020 at 14:30

graduation committee
Delft University of Technology :
prof. dr. ir. J.G. Rots (chair)

dr. ir. M.A.N. Hendriks
ir. L.P.L van der Linden

van Rossum Raadgevende Ingenieurs B.V.:
ir. N.A.J. Bartels

Faculty of Civil Engineering and Geosciences - Delft University of Technology



Abstract

In light of the global attempts to reduce material use by the construction industry, this re-
search focuses on combining topology optimisation with additive manufacturing of steel. It
is investigated whether an automated procedure can be developed to generate reliable strut
and tie models for reinforced concrete elements, while satisfying the constraints that apply to
3D-printing using the Wire and Arc Additive Manufacturing(waam) technique.

Additive manufacturing offers a fully automated production process where a large freedom in
form can be achieved. Topology optimisation concerns with finding a good material distribu-
tion within a prescribed domain. A literature review was performed on current developments
regarding both subjects. It was found that the waam-technique is very suitable for printing
reinforcement designs. Sufficiently large models can be printed, and material properties can be
achieved that match the properties of traditional reinforcement steel. This manufacturing pro-
cess is expected to produce functional structures that can readily be used as reinforcement steel
in buildings. Two main manufacturing constraints should be accounted for during design of the
model. A minimum member inclination and a minimum member diameter are both expected
to be necessary to ensure a smooth printing process.

Several different topology optimisation algorithms are discussed in the second part of the liter-
ature review, and it is determined which algorithm is most suitable to continue with in the rest
of this research. Examples are presented that explain the functionality of three important op-
timisation schemes: Bi-directional Evolutionary Structural Optimisation(beso, Solid Isotropic
Material with Penalisation(simp) and Ground Structure Optimisation(gso). It was found that
all three can be used to analyse reinforced concrete. Each algorithm has advantages and disad-
vantages, so there is no obvious best choice. However, motivated by the easy access to member
forces and availability of a very good Python implementation, it is chosen to use gso for the
remainder of this research.

This Python script was modified to include the constraints that come with an additive manu-
facturing process. It was found that the minimum member inclination can straightforwardly be
included. The new function that was proposed allows the user to specify a minimum inclination,
and ensures that no members are generated within the design domain that violate this mini-
mum angle. Experimenting with this new function revealed cases where material use increased
significantly when this function was used. This lead to development of an alternative procedure
to ensure a printable design. In this alternative procedure, an optimisation without any angle
constraint is performed first. Then, in the form of a post-processing script, The complete model
is rotated around two separate axes in an attempt to find a suitable printing orientation.

The third and final proposition that was done in this part, consists of a post-processing script for
the minimum member diameter. Including this minimum diameter in the optimisation would
require rigorous changes to the optimisation script. Therefore it was chosen to investigate the
performance of this post-processing script first.

The case study that was performed in the third part of this research, proved that this post-
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processing script for member diameter is sufficiently efficient for practical implementation. To-
gether with the ability to slightly suppress the amount of members that are generated in the
design domain, the printing constraint for minimum diameter could relatively easily be enforced.
A bigger challenge lies within ensuring the minimum member inclination. The 60◦ minimum
that was set, proved to be very harsh on the solution space. In the example from the case
study, no printable model could be generated without significantly reducing the material effi-
ciency. However, it is argued that this minimum inclination constraint can possibly be relieved
by recent developments in additive manufacturing techniques. An example of this could be a
rotating printing surface, that has the potential to remove this angle constraint completely.

Overall, the experience of combining topology optimisation, additive manufacturing and strut
and tie modelling has been predominantly positive throughout this research. The combination
of a state of the art manufacturing technique and a more performance driven design process
with a labour intensive traditional calculation procedure has shown promising first results. In
the example in this research, 30% less material was required to accommodate the tensile forces
in the concrete.
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Chapter 1

Introduction

Motivated by the large environmental impact [1] and relatively high cost, the construction in-
dustry is being forced to limit the use of structural steel. Therefore, clever designs are required
that minimise the amount of steel in a structure. However, a higher material efficiency should
never go at the expense of structural safety. Traditionally, load bearing or stability elements are
designed to be bigger than necessary. Driven by the advance of computation power, the ability
to accurately estimate the safety and stability of structures has greatly increased since the turn
of the century. Precise knowledge on the internal force distribution allows engineers to design
structures with high material efficiency, while maintaining the level of structural safety that is
required by the building codes.

Structural components that remain relatively difficult to analyse to date, are reinforced concrete
elements. Non-linear stress distributions are observed in the so-called disturbed regions, where
Bernoulli’s hypothesis is not valid. Precise calculation of these stresses can be time-consuming
and therefore expensive, so often simplifications are used. The strut-and-tie model [2], prescribed
by the Eurocode1 as a valid method to analyse these regions, is often used as such a simplification.
Although this method allows engineers to design reinforcement in a fairly straightforward way,
the efficiency of the final design relies heavily on the chosen layout of the struts and ties. It is for
this reason that researchers have shown interest in finding automated procedures for compiling
strut-and-tie models. It was proven that topology optimisation methods show great potential
for this purpose [3;4].

Topology optimisation methods attempt to find the most optimal layout of material in a pre-
scribed domain, subjected to a specific set of boundary conditions [5;6]. Producing fluent, ir-
regular shaped geometries, designs from optimisation methods often pose challenges for tra-
ditional manufacturing processes. With the advances in additive manufacturing processes, or
3D-printing, a solution to this issue may be within reach. For instance, the optimised glass
swing by Snijder, van der Linden, Goulas et al. [7], seen in Figure 1.1, showcases the promising
potential of combining topology optimisation with 3D-printing.

Although additive manufacturing techniques allow larger form freedom than most traditional
manufacturing processes, the printing process poses new design challenges. In the example of
topology optimisation results, often manual geometry changes have to be made to successfully
print the object. This generally has to do with the orientation of the object, and the angle at
which the printer can function. This raises questions regarding the efficiency, or optimality, of
the final product. It is obvious that adjusting geometry from an optimised result is counter-
productive and should therefore be avoided. Therefore it is justifiable to address these concerns
through research, to get a better understanding of the possibilities.

1NEN-EN 1992-1-1 Section 6.5
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Figure 1.1: Optimised glass swing with 3D-printed steel nodal connections, taken from Snijder,
van der Linden, Goulas et al. [7]

1.1 Additive Manufacturing of Steel

Additive manufacturing, also called 3D-printing, is a manufacturing technique that started
gaining popularity around 1980 [8]. The idea for this technique had been around for much longer,
the first patent dating back to 1926 [9]. Over the years different techniques emerged, but fused
deposition modeling, or fdm, appeared to be the most feasible for polymer-based commercial
3D-printers. fdm is a relatively simple process, in which printing material is fed through a
heated coil. This coil melts the material, and can be moved above a printing surface. By adding
material from the top, a 3D-shape can be extruded. Additive manufacturing of metal uses a
slightly different approach, labelled Directed Energy Deposition or ded [10]. This technique is
very similar to ordinary welding. The object is heated by an electric arc, and new material
is added in the form of a wire. Together with the material that is already present, this wire
forms a pool of molten metal, which solidifies upon cooling down. 3D-printing of metal with
this method is commonly referred to as Wire and Arc Additive Manufacturing or waam. A
schematic representation of the process can be seen in Figure 1.2.

Figure 1.2: Schematic overview of Wire Arc Additive Manufacturing process, taken from Ro-
drigues [11]

1.2 Structural Optimisation

The quest for structural optimality has already occupied researchers for a long time. Although
difficult to define explicitly, an optimal structure is generally seen as a structure with just the
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right amount of material while retaining a sufficient level of stiffness and safety. Already in 1904,
Michell [12] introduced his problem formulation of exact analytical solutions for truss structures.
An example of such a truss can be seen in Figure 1.3. Michell’s solutions generate structures
with an infinite amount of bars, to transfer a load to a rigid foundation. His research proved that
the optimal form of such trusses tends towards a grid in which all members are at a 90◦angle
to each other. Prager [14] continued with Michell’s truss theory, and looked into possibilities to

Figure 1.3: A Michell Truss, taken from Hegemier and Prager [13]

.

generate more practical structures. Opposed to the infinite formulation of Michell, he formulated
methods to limit the amount of nodes that are generated in a design.

1.3 Problem Description

Extensive research is available on topology optimisation, and several different solution algorithms
have been developed throughout the years. Multiple fea-packages have implemented some type
of optimisation functionality. In the automotive and aerospace engineering branches, this type
of software is used on a regular basis. In design of buildings and other civil structures however,
topology optimisation is rarely used. There are some examples where research is conducted
on specific subjects, like the study by Fairclough and Gilbert to optimal forms of long-span
bridges [15] and the glass swing of Snijder, van der Linden, Goulas et al. [7]. A field where
topology optimisation is considered very promising, is automatic generation of strut-and-tie
models for reinforced concrete. It has been proven in previous research that using topology
optimisation for automatic strut-and-tie modelling shows great potential [3;4].

Recent years has also seen a large increase in additive manufacturing possibilities. 3D-printing
is now available for an abundance of materials, including polymers, concrete and steel. Due
to the large freedom of form, this manufacturing technique has gained a lot of support in
the past decade. Combining this form freedom with the, usually complicated, geometry that
results from topology optimisation methods is of significant interest. In general, the design
of reinforcement steel is a time consuming process. Not only is the calculation extensive, but
the further processing of the design poses various challenges. For instance, due to the often
complicated layout of steel bars, the 3D modelling of reinforcement steel takes a lot of time. So
even before the technical difficulties of the realisation on the construction site are considered, it is
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clear that designing reinforcement steel for concrete is very tedious. In light of the developments
in additive manufacturing and optimisation techniques, it would therefore be interesting to
investigate the technical feasibility of optimised, additive manufactured, steel reinforcement.

Before, obtaining a valid strut and tie model from a topology optimisation result was seen
as a big hurdle that prevented practical implementation. Recently however, Xia, Langelaar
and Hendriks [16] were successful in deploying image recognition techniques for this purpose.
Now, with additive manufacturing as intended production process, researchers are faced with
additional challenges. Processing the specific manufacturing constraints after the optimisation
is undesired. Therefore, research is required on how to account for the manufacturing process
during the optimisation. It is expected that this order will produce a higher final material
efficiency.

1.4 Research Goals

The broader goal of this research is to contribute to a method for automatic generation and
production of an optimised reinforcement layout for reinforced concrete, considering additive
manufacturing constraints.

Figure 1.4: Flowchart of intended method

The idea for this intended method as follows. First, the structural engineer defines the input for
the concrete element in computer software. Depending on the geometry and material input by
the designer, the program determines an efficient layout of reinforcement steel. The output of
this program is a digital model, consisting of the steel elements necessary to accommodate the
tensile forces in the concrete. This model is then sent to a factory that is able to 3D-print it.
The model can also be imported in bim-software so it can be included in the final design. After
the steel structure is printed in the factory, it can be transported to the construction site. It is
placed at the correct position in the formwork before the concrete is poured.

Minimising material use plays an important role in the global efforts to limit the environmental
impact of the construction sector. The ability to automatically produce highly efficient rein-
forcement layouts will contribute to these efforts. Next to this environmental argument, the
stand-alone nature of the method is also expected to yield a reduction of design time needed.
The calculation, modelling and production process will all be largely automated. This in turn
contributes to the digitisation of the structural engineering sector as a whole, and allow more
modern and performance-driven structures.

Now that the general goal of this research is established, it is filtered to a specific main research
goal. This goal is to extend a topology optimisation scheme in such a way, that it is able to
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generate a strut-and-tie model that is ready to be printed. The research questions that are
proposed in the next section are aimed at providing a guideline to achieving this goal.

1.5 Research Questions

The following main research question is proposed.

To which extend can reliable strut-and-tie models be generated by a topology optimisation
scheme, which includes additive manufacturing constraints?

Formulating an answer to this main question will be done in three parts. The first part consists
of a literature review. This review is divided into two parts. The second part of this research
proposes extensions and modifications to an existing topology optimisation scheme. The third
part attempts to validate these modifications, by presenting a case study. Each part answers
one or more sub-questions, which are explained below.

1.5.1 Part 1a: Additive Manufacturing

First, an in-depth review of additive manufacturing of metallic components is presented. To
determine whether this production process fits the requirements of reinforcement steel, the
available techniques are discussed. Details about the production process are highlighted, such
as material properties of the printed material. Although 3D-printing offers a very large freedom
in structural shape, there will still be limitations. The relevant limitations will need to be
accounted for in the process of defining a suitable strut and tie model. It is also important to
consider the format in which the digital model should be delivered to the printer. The following
questions will be answered in this part:

· Which techniques are available to print steel, and which is most suitable for reinforcement?

· How are material parameters influenced by the different manufacturing processes?

· Which manufacturing constraints should be accounted for?

· How should the geometry be prepared?

1.5.2 Part 1b: Topology Optimisation

The second part of this research will focus on automatic generation of a strut and tie model for
reinforced concrete. Ongoing and past research in this field will be discussed. Special attention
will be given to topology optimisation methods. Several different optimisation techniques are
available, which will be compared to each other in the context of additive manufacturing. It
will be determined which optimisation algorithm is used in the rest of this research.

· Which optimisation algorithm is suitable for analysing reinforced concrete, and can easily
be modified to include manufacturing constraints?
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1.5.3 Part 2: Extension of Optimisation Method

The second part of this research focuses on improving the optimisation result for additive man-
ufacturing. The goal is to obtain a printable model, that can be sent to a 3D-printer without
any further steps. Although 3D-printing will allow complex shapes, there will still be some
practical limitations. Implementing these constraints in the optimisation will most likely lead
to a more efficient final structure. The constraints that follow from the first part of the research
are therefore implemented in the optimisation algorithm that follows from the second part. The
results that are produced by this extended method are then compared to results from literature.

· How can the selected optimisation algorithm be extended for additive manufacturing?

1.5.4 Part 3: Validation

The third and final part of this research consists of a case study. This case study is analysed
twice. The first analysis will cover the traditional calculation procedure. This traditional method
is explained, and the significant steps are shown on the basis of an example. The second analysis
is done by a proposed method. This proposed method follows from the improved optimisation
algorithm that is discussed in the previous chapter. This part of the research presents a validation
of the proposed method. This method is compared to the traditional analysis as a whole, in
the form of a discussion. Specific shortcomings are highlighted, and possible solutions these are
presented. This part of the research also includes a show case of the newly developed method.
In this section,

· How efficient are the results of the extended optimisation method compared to the tradi-
tional calculation methods?

1.6 Scope Limitations

Topology optimisation, strut and tie modelling and additive manufacturing processes are all
very complex and extensive concepts. An abundance of research is available on each of these
topics, and a lot of information can be extracted from various sources. To keep this research
feasible as a graduation assignment, it is subjected to the following scope limitations.

• When design regulations are discussed in this research, the focus is on Dutch building
regulations and the Eurocode.

• When this research mentions strut and tie modelling, the procedure from Eurocode NEN-
EN 1992-1-1 section 6.5 is meant.

• This research will not go into detail about the mathematical proof of structural optimality,
specifically the degree to which a certain algorithm is heuristic.

• The waam technique can be used in combination with multiple materials. A lot of research
is available on the influence of material properties, but for the case study of this research,
a strength of 435 N/mm2 is assumed. Previous research proves that this strength is
achievable.

• Material distortion and warping during printing are not discussed.

• Problems with multiple load cases are beyond the scope of this research.
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Chapter 2

Additive manufacturing in
structural design

2.1 Introduction

This chapter discusses developments regarding additive manufacturing of steel. The following
research questions are answered at the end of this chapter:

· Which techniques are available to print steel, and which is most suitable for reinforcement?

· How are material parameters influenced by this manufacturing process?

· Which manufacturing constraints should be accounted for?

· How should the geometry be prepared?

Several different aspects of this upcoming production process are explained, and it is discussed
how it suits the requirements for reinforcement designs. Two different processes are commonly
used for additive manufacturing of metallic components [17]. Powder Bed Fusion(pbf) and Wire
and Arc Additive Manufacturing(waam). The first section of this chapter explains the pbf
technique in terms of printing setup and functionality. It is also discussed how the material
parameters are influenced by this production method. The second section is about waam, and
is constructed in a similar manner. Finally, in the third section, knowledge that was obtained
is put into perspective of the purpose of additive manufacturing of steel reinforcement. The
research questions will be answered in the fourth and final section.

2.2 Powder Bed Fusion

The first process that is discussed is Powder Bed Fusion or pbf. The setup is shown in Fig-
ure 2.1. This technique is similar to most additive manufacturing processes, as it builds the
specimen layer by layer. A powder feed is present, that uses a device to spread powder over a
fabrication surface. This powder is melted by a heat source, usually a laser, at specific locations.
This process is repeated, and an object forms inside the powder bed. A big advantage of this
production process is that the specimen is always supported by the powder that surrounds it.
In some instances this eliminates the need for a support structure in the design.
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Figure 2.1: Powder bed fusion, taken from Wiberg [10]

The influence of this production process on the material parameters of the final structure is of
course very important to consider. Because of the growing demand for additive manufacturing,
researchers have shown increased interest in investigating the uncertainty in these material
parameters. For instance, Hu and Mahadevan [18] have attempted to estimate the yield strength
of printed material. This was done with advanced uncertainty quantification techniques, that
also use experience from uncertainty data from traditional manufacturing processes. Opposed
to this probabilistic approach, Kelly [19] performed various lab tests on a specific nickel alloy. It
was found that the material produced with pbf shows increased strength, ductility and fatigue
indicators when compared to traditionally wrought material. However, it was proven that the
pbf process introduced some anisotropic effects.

Another two aspects of additive manufacturing processes that require attention are the build
volume and build speed. Several manufacturers offer pbf machines, the larger versions reaching
a build volume of around 500mm x 500mm x 500mm [20]. The build speed ranges between 5-
80 cm3/hr, but it has been suggested that using multiple lasers can significantly speed up the
process [21].

In light of our goal to print reinforcement designs for concrete, it is expected that the pbf tech-
nique is not very suitable. The maximum build volume is too small for complete reinforcement
designs, especially when elements for larger buildings are required. pbf is very suitable for
specialised components with a complex geometry, but not for reinforcement steel.

2.3 Wire and Arc Additive Manufacturing

In this section the Wire and Arc Additive Manufacturing process(waam) technique is discussed.
The basic printing setup for Wire Arc Additive Manufacturing is pictured in Figure 2.2.

2.3.1 Printing Process

This setup consists of a welding torch, mounted on a robotic arm. A separate wire feeder and
power source are necessary to supply the welding arc and the welding material. The welding
material is supplied from a coil. The positioning table is the basis on which the specimen is
printed. In some applications, it is also possible to rotate this positioning table. This can be done
to print under steeper angles, or to reach otherwise inaccessible places. The printing process is
very similar to an industrial welding process. These welding processes are very common in, for
instance, the automotive industry. The large scale industrial application of these welding robots
makes them widely available, and control mechanisms already highly developed.
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Figure 2.2: WAAM-setup, taken from Köhler et al. [22]

The printing process is very similar to ordinary arc welding. Arc welding is a technique widely
used in the industry to join metal elements. This technique uses an electric arc to heat up the
base material. The heat from the arc melts the metal, and creates a weld pool. In this weld pool,
molten material from both elements mixes. To fill the joint, feed material is used. To protect
the weld from being influenced by oxygen in the air, a shielding gas is sometimes necessary. This
gas is different for each type of material and welding technique, but often contains a mixture of
argon and carbon dioxide.

Three main arc welding techniques can be identified; Electrode, MIG/MAG and TIG. waam
generally uses the Gas Metal Arc Welding(gmaw) technique [11]. This technique is more com-
monly known as Metal Inert Gas(mig) or Metal Active Gas(mag) welding. In this technique,
the electric arc is generated between the substrate and a consumable wire. This wire is fed from
the welding machine to the torch. The shielding gas is supplied to the torch through the same
hose. This hose is flexible, which allows the torch to be moved easily. The welding torch is
attached to a robotic arm. This robotic arm is the reason this manufacturing technique offers
such high freedom in form, especially when combined with a movable printing surface. In Figure
2.3 it can be seen how a propeller for a large ship is fabricated using the waam technique.

Printing Strategies

Two printing strategies can be applied when using the waam technique; Continuous or dot-
by-dot printing. As the name suggest, continuous printing is done when material is deposited
without interruptions. This results in the forming of so-called welding beads. For larger objects,
this technique is most popular because it has the highest deposition rate. Another printing
strategy is dot-by-dot printing. This technique deposits drops of welding material with pauses
in between. This leads to a different finish of the product, with a much more uneven surface
pattern. A comparison of the two strategies can be see in figure 2.4.
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Figure 2.3: Fabrication of a ship’s propeller using the waam technique

Figure 2.4: Surface finish for continuous(left) compared to dot-by-dot(right) strategy

2.3.2 Material Properties

Due to the significant difference from traditional manufacturing techniques, additive manufac-
tured material shows some differences in material properties. These differences can be observed
on both macro and micro scale. Wu, Pan, Ding et al. [23] published an in-depth review of the
effect of these differences on engineering parameters such as yield strength and ductility. This
review is based on lab tests for a wide variety of materials. For steel and aluminium, it was found
that overall performance of the material was slightly lower when compared to traditional manu-
facturing techniques. Several solutions are discussed, which include post-process heat treatment
and interpass cold rolling. Some of these measures proved to increase the performance of the
material significantly.

Another issue that was observed in various studies, concerns the anisotropy of the material. It
was found that significant difference of properties occur in the direction of printing [11]. It is
expected that this is caused by the amount of heat cycles that are experienced by the material.
The welding torch gradually builds up the structure from the base plate, which means the first
deposited material experiences more heat cycles than the material at the top. This causes
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differences in micro structure, leading to varying material properties.

2.3.3 Process Constraints

Although the waam technique offers far greater form freedom than any other traditional man-
ufacturing technique, there are still limitations. Two of these limitations are worth mentioning
here. The first concerns the minimum printing angle. If we assume that material is added from
the top, it was found that a 60◦angle from the horizontal1 is still printable. Any angle smaller
than this can become unstable during printing, especially with slender elements. This constraint
is sketched in Figure 2.5.

Figure 2.5: Angle constraint for waam technique

The other constraint that needs to be considered is a minimum member diameter. Due to the
size of the welding wire and the way the torch is set up, only relatively large ’drops’ of metal can
be deposited at once. This means that only elements with a certain diameter can be produced.
This diameter can be reduced by using the dot-by-dot method, but in practice this is rarely done.
The dot-by-dot technique is more sensitive to printing errors. Combined with the much smaller
deposition rate, often the continuous process is considered superior. Reinforcement designs are
large structures. A large deposition rate is therefore expected to be essential for the feasibility
of this method. Therefore, the minimum member diameter for the continuous process is used
in the remainder of this research. This minimum diameter is found to be 1cm1.

2.3.4 Printing Software

Preparing a design for a 3D-printer is often called slicing. As the name suggests, this process
slices the model and generates a path for the print nozzle. This process is similar for all
additive manufacturing processes based on the Directed Energy Deposition method. Stand-alone
software is available for this purpose, for instance Ultimaker Cura. However, in most industrial
applications this software is not often used. Most companies that offer waam technique have
either developed their own software, or modified existing software to their specific needs. An
example of this is the software by MX3D, designed specifically for the waam process.

0This constrained is advised by Vincent Wegener, founder of Rotterdam Additive Manufacturing Lab(ramlab)
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This path finding for additive manufacturing is still under development, and has created a
whole field of research on its own. For our purpose, it is sufficient to know that most printing
software offers functionality to import stereolithography files(.stl). This type is widely available
for 3D-models, which means large 3D-software like Rhinoceros can export to this format.

2.3.5 Viability for reinforcement printing

Print Size

Opposed to the Powder Bed Fusion technique shown in the previous section, waam is much
more suitable for printing larger structures. All material is deposited in-situ, so no powder beds
or other containers are required. In theory, this means that there is no direct limit to the size
of the structure other than the reach of the robotic arm. If the robot itself is able to change
position, like in the case of the bridge built by MX3D(Figure 2.6), the size limit disappears
altogether.

Figure 2.6: Additive manufactured bridge by MX3D

Print Speed

Printing speed or deposition rate of waam processes are generally higher than other additive
manufacturing techniques. The deposition rate depends heavily on the geometry and material
of the object that is printed. The settings of the welding torch, for example voltage and weld-
ing current, determine the rate at which material can be added. To avoid overheating of the
substrate, it is common practice to alternate printing location. When all of this is considered,
deposition rates of waam vary between 4-9 kg/h [17].

Surface properties

The surface finish of printed material is generally seen as a challenge of the waam technique.
For most applications, a smooth surface is required. This means that usually post-processing
is necessary to obtain the desired result. However, for reinforcement bars, the rough surface is
an advantage. Bonding strength between concrete and steel is very important to activate the
hybrid system. In traditional rebar, the surface is purposely profiled for this specific reason.

19



Additive manufactured material automatically provides this. It was proven by Mechtcherine,
Grafe, Nerella et al. [24] that as-built printed material exhibits similar bonding behaviour to
traditional steel. If higher bonding is required, additional profiling can be included in the design
without much effort(Figure 2.7).

Figure 2.7: Normal(left), improved (middle) and extra profiled (right) additive manufactured
steel bars for concrete reinforcement. Taken from Metchcherine, Grafe, Nerella et al. [24].

Costs

In general, waam is more expensive than traditional manufacturing [17]. Again this aspect of the
process is difficult to quantify. Traditional manufacturing techniques have become very devel-
oped over time, and are therefore optimised to a high level. Additive manufacturing techniques
are not yet firmly established production methods, which ultimately leads to higher production
costs. These costs may reduce over time, but it is expected that additive manufacturing will
never replace traditional processes in a structural engineering context. It should be seen as an
addition to the possibilities, filling a gap for a very specific type of structures. This manufac-
turing technique is expected to be feasible only for objects that present big challenges during
design and execution phase. In these instances, the higher production costs may be justified by
the time savings for engineers and construction workers.

2.4 Answering the research questions

This section presents answers to the four research questions that are stated at the beginning of
this chapter. The first research questions is:

Which techniques are available to print steel, and which is most suitable for reinforcement?

Two main types of additive manufacturing are suitable for metallic components. Powder Bed
Fusion relies on a laser that melts a metallic powder at specific locations. Wire and Arc Additive
Manufacturing uses conventional arc welding combined with a robotic arm. In light of additive
manufacturing of reinforcement steel for concrete, only waam is relevant. This is the only
technique that is able to print large enough structures.
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How are material parameters influenced by this manufacturing process?

Several studies have been done to establish the strength and ductility of additive manufactured
steel. Wu, Pan, Ding et al. [23] have published extensive information on this subject. From
their work it was concluded that a slight reduction in material performance can be observed in
3d-printing of steel and aluminium.

More elaborate research on a specific material was done by Metcherine [24]. Here, a S235JR
base plate was used combined with a solid welding wire complying with ISO 14341 - A - G
46 5 M G3Si1. The following conclusions were found when compared to conventional steel
reinforcement:

• 28% lower yield stress

• 16% lower tensile strength

• 250% higher strain capacity

This indicates that a reinforcement design that is prepared for the waam technique will require
other material parameters than if it was made from conventional reinforcement steel. It is
therefore of importance to ensure that these parameters can be adapted accordingly.

Which manufacturing constraints should be accounted for?

Two main constraints can be recognised. A minimum printing angle of 60◦from the horizontal
is required to ensure enough stability during printing. Also, a minimum bar diameter of 1cm
should be ensured. Smaller diameters can not be printed.

Another important challenge of the waam technique is limiting the distortion of printed material.
The printing strategy should be chosen such that no excessive amount of heat is added to the
already printed structure. This is especially harmful when printing at the same location for an
extended period of time. This is a big challenge currently faced in this field, but it is beyond
the scope of this research.

How should the geometry be prepared?

Any 3D-model can be printed, as long as it can be exported to a stereolithography file(.stl).
Most software packages, including Rhinoceros and Grasshopper, are able to export to this file
format. It is worth mentioning here that the .stl file can only be sliced if it is a closed solid.
This can be described by water tightness. If the shape would be filled with water and it stays
in, the model is valid. If any holes or openings are present in the design, the slicing software
will generate an error. This is also beyond the scope of this research.
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Chapter 3

Structural Optimisation

This chapter focuses on structural optimisation. Several different types of optimisation strategies
exist in literature. To establish an insight in current developments in this field of research, three
algorithms are explained here. An introduction to the mathematical basis is given, as well as
some examples that clarify their application. The research question that is answered in the final
section of this chapter is:

· Which optimisation algorithm is best suitable for analysing reinforced concrete?

This chapter consists of four parts. The first section gives a brief historic overview of topol-
ogy optimisation. The research efforts of the past century resulted in three main branches of
topology optimisation. In the next three sections, these three main branches are discussed. For
each method, the theory is explained first. An example is then presented that showcases the
functionality of the method. The suitability for additive manufacturing process is an important
factor in this research. Therefore, a section is presented that compares the optimisation algo-
rithms in this context. The applicability of each method to automated strut and tie modelling
is discussed, as well as possible challenges and shortcomings. In the final section, an answer is
formulated to the research question.

3.1 Historical Perspective

The nature of the structural design process has always been, and to some degree still is to this
date, size oriented. Layout of structural elements is chosen from practical considerations such as
interior space or architectural forms. When this layout is established, each individual member is
analysed and validated for strength and deflections. Structural optimisation attempts to use a
different approach. Here, the layout of structural elements is not known beforehand. The design
space in which material may be placed is defined, and an algorithm searches for the optimal
configuration of this material. According to Sigmund and Maute [6], topology optimisation aims
to answer the question: How to place material within a prescribed design domain in order to
obtain the best structural performance?.

Generally seen by fellow researchers as the founder of modern optimisation techniques, Michell [12]

published his work on layout optimisation of trusses in 1904. He formulated analytical methods
to find the optimal layout of bars, given a set of boundary conditions. His formulation was not
bounded, which meant an infinite amount of bars could be generated to transfer the loads to a
rigid foundation. This was deemed impractical, so several researchers attempted to improve his
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methods. An example of this is the work done by Prager [14], who tried to reduce the complexity
by limiting the amount of nodes that were generated.

Probably due to the relatively tedious calculations that were involved, the layout optimisation
techniques of Michell were not widely used up until the 1980’s. It was around this time that
computers became available, that could perform large amounts of calculations in succession.
The tedious calculations could now be automated, which opened doors to new possibilities.
Bendsøe and Kikuchi [25] where among the first researchers to start exploring the concept of
computational optimisation. Their proposed method assumes a material model with tiny voids.
An optimisation loop searched for the optimal configuration of these voids within the design
space. In Figure 3.1, some intermediate results of their work can be seen.

Figure 3.1: Optimisation of a rectangular modelling space. Black areas indicate material, white
areas are voids. Taken from Bendsøe and Kikuchi [25]

A year later, Bendsoe [26] presented his research that included a penalisation factor for intermediate-
density elements. This forced the result to be more black-and-white, meaning a more pronounced
division between material and voids. Xie and Steven [27] continued with this concept, extending
it to a so-called evolutionary procedure. A finite element analysis is performed on a given shape,
and the elements with the lowest stress are discarded. It was proven that this method produces
results similar to the analytical solutions presented by Michell [12].

3.2 ESO

eso, or Evolutionary Structural Optimisation, was proposed by Xie and Steven in 1993 [28].
The method is inspired by natural processes. Bone erosion around metal implants is given as
an example. It is found, that when metal implants are used to reinforce fractured bone, local
bone erosion occurs in areas that are minimally loaded. This example is pictured in Figure
3.2. If only the material that is loaded remains, this process can be seen as very structurally

Figure 3.2: Bone erosion around metal implant. Taken from Xie and Steven [28]

efficient. Xie and Steven therefore developed an algorithm that uses this idea to find efficient load
bearing structures. In this algorithm, the stress distribution is calculated in a Finite Element
Analysis. A rejection criterion is used to eliminate elements. This rejection criterion is defined
as a rejection ratio (RR) times the maximum von Mises stress. A loop is initiated, repeatedly
eliminating elements and re-evaluating the stress distribution. A steady state is found when no
more elements satisfy the rejection criterion. When this steady state is reached, an evolution
rate (ER) is added to the rejection ratio and the elimination loop is re-initiated. This process is
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repeated until the predetermined optimality condition is met. This condition is usually expressed
as a performance index. The performance index is defined as the non-dimensional number:

PI =

∑
σvMVe
FL

(3.1)

In which σvM is the von Mises stress, Ve is the element volume, F is a representational force
and L is a reference length. This performance index compares the performance of the structure
against a fully stressed design in which all material is loaded to the yield stress.

3.2.1 BESO

With the method that is described above, it is very difficult to mathematically prove that the
result is not just a local optimum. When elements are discarded, there is no functionality to
reuse this material at a later stage. To overcome this problem, the Bi-directional Evolutionary
Structural Optimisation (beso) algorithm is proposed by Xie, Steven and Querin in 1998 [29].
The biggest difference with the previous method is the functionality to add elements. This
adding is done, similar to the elimination scheme, by comparing the stress in an element to the
maximum von Mises stress that occurs. If this occurring stress is larger than a certain inclusion
ration (IR) times the maximum von Mises stress, elements are added to all free edges of this
element. This allows addition of material in highly-stressed areas. The process of this algorithm
is visualised in the flowchart in Figure 3.3.

Figure 3.3: Flowchart of beso-algorithm
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3.2.2 Mathematical Representation

Including the bi-directional ability, the beso method takes the mathematical form1:

min
x

: f(x) = PI =

∑N
e=1 σVMe

Ve

FL

subject to :

N∑
e=1

[[K]e{u}e − F e]− {P} = 0

: xe (xe · σVMe
−RR · σVMMax

) ≥ 0

: ηe (IR · σMax − ηe · σe) ≥ 0

: xe ∈ Xe = {0, 1}, e ∈ E
: ηe ∈ He = {1, t}

(3.2)

where

- σVMe
is the element Von Mises stress;

- Ve is the element volume;

- F is a representational force;

- L is a reference length;

- RR is a rejection ratio, range 0 ≤ RR ≤ 1;

- IR is the inclusion ration, range 0 ≤ IR ≤ 1;

- E is the set of discrete elements within maximum possible design domain;

- e is element e of the set E;

- Xe is a set of allowable discrete values;

- N is the number of elements in the structure;

- ηe is the addition multiplier for element e. Range 0 ≤ ηe ≤ 1;

- t = 1− qa
qp+qa

;

- qp is the sum of discrete values of elements present around and including element e before
checking inequality equation;

- qa is the sum of discrete values of elements added around element e if the inequality
constraint was violated;

3.2.3 Example

To demonstrate the functionality of the beso algorithm, an example is presented here. We
will consider the fixed cantilever in Figure 3.4. The width is chosen to be double the height,
with the complete left edge fixed. A force of magnitude F is applied to the middle of the right
edge. When this design space is optimised with the beso method, an initial rejection rate(RR)
is required as input. The result presented below is taken from Xie and Steven [28]. The three
steps, or evolutions, are the steady state solutions with a rejection rate of 11%, 15% and 18%
respectively.

1Taken from Xie, Steven and Querin [29]
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Figure 3.4: Cantilever example

Figure 3.5: beso result of fixed cantilever, taken from Xie and Steven [28]

3.3 SIMP

The next solution strategy that will be discussed here is Solid Isotropic Material with Penali-
sation. According to Rozvany [5], simp is the most popular topological optimisation algorithm.
This algorithm is also based on a finite element analysis. The main component of the objective
function of a simp algorithm is the compliance of a structure. Compliance is defined as force
times displacement, which is also known as the strain energy. In finite element notation, this
can be represented as:

c = UTKU (3.3)

where U and K are the global displacement and stiffness matrix respectively. Similar to the
beso-method, the simp-scheme redistributes material over the design domain in each iteration.
However, this is not done by discarding elements, but rather by adjusting the density of each
element. This makes it a continuous scheme, in which elements can have an intermediate density.
For simplicity reasons, we will limit our scope to plane stress problems. For this case, it can
be proven that the stiffness of an element is directly proportional to its density. The topology
optimisation problem, with the aim to minimise compliance, therefore takes the form:

min
x

: c(x) = UTKU =
N

Σ
e=1

(xe)
puTe k0ue

subject to :
V (x)

V0
= f

: KU = F

: 0 < xmin ≤ x ≤ 1

(3.4)

where xe is the scaling factor that is applied to the density of each element. p is the penalisation
factor, that is introduced to suppress elements with an intermediate densities. For manufacturing
considerations it is desired to have a discrete domain, in which elements are either present or
not present. The factor p penalises the stiffness of intermediate densities and contributes to a
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discrete domain. The minimal compliance problem is subjected to three constraints. The first
constraint is on the volume. At each iteration, the volume ratio has to be equal to a predefined
volume fraction. The second constraint is the well known constitutional relation that relates
force to displacement. The third and last constraint is on the design variables xi. These variables
are allowed to take values between zero and one, but not equal to zero. Zeros in the stiffness
matrix cause singularities in the solution and are undesired from a numerical point of view.

3.3.1 Penalisation factor

Already in the 1970’s, Rossow and Taylor [30] proposed a method that implemented a density-
adjusting technique for finding optimal structural forms. However, the result of their application
returned a lot of so-called ’grey elements’. Grey elements are finite elements with intermediate
densities. For practical reasons, grey elements are undesirable. Imagine a plate with thickness t
and density ρ that is modelled in two dimensions. This plate is optimised and a certain element
has a final density of 0.5ρ. If this plate was made from a single material, the only way to
manufacture this element would be to have a thickness of 0.5t in this location. This would
lead to an expensive machining process which makes it unpractical for implementation. A more
’black and white’ solution is required. For this reason, Bendsoe [26] proposed a penalisation
factor. As mentioned, the density of an element is directly proportional to the stiffness for plane
stress problems. Rozvany [5] explains this by relating the normalised plate thickness ρ(actual
thickness over maximum thickness) to the normalised stiffness s. The power law then takes the
form:

ρ = s
1
p (3.5)

In words; the stiffness of elements with intermediate densities is penalised. A commonly used
penalisation factor p is 3. The graph in Figure 3.3.1 presents this relation compared to the
situation where no penalisation factor is used.
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Figure 3.6: Relation between density and stiffness

3.3.2 Numerical Implementation

The basis of the simp method has now been established. Several different numerical implemen-
tation methods are available. In-depth explanation of these methods is beyond the scope of
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this research, so instead an example will be presented. The example that will be shown here
is generated with A 99 line topology optimization code written in Matlab by Ole Sigmund [31].
This code is based on a Optimality Criteria method. The flowchart that describes the process
in this script can be found in Figure 3.7. The

Figure 3.7: Flowchart of simp-algorithm

3.3.3 Example

For illustration purposes, we will consider the same structure as in the example from the previous
section. This cantilever structure can be found in Figure 3.4. To demonstrate the workings of
the simp algorithm, we will make use of A 99 line topology optimization code written in Matlab,
by Ole Sigmund [31]. This code implements the simp method. We choose a volume fraction of
0.3, a penalty factor of 3.0 and a relative filter size of 1.2.

Figure 3.8: simp result of fixed cantilever example

As can be seen in the leftmost picture of Figure 3.8, a lot of material has already been adjusted in
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the second iteration. In the fifth iteration, the final outline of the structure can be distinguished.
The third image shows the structure after 65 iterations. The influence of the penalty factor is
clearly visible. Almost all elements are either completely contributing, or not present in the
solution.
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3.4 Ground Structure Method

The third and final type of structural topology optimisation algorithm that will be discussed
in this chapter is the ground structure method. Opposed to the (b)eso and simp method
described previously, this third solution strategy has a discrete nature. In both (b)eso and simp
algorithms, the design space is modelled and analysed as a continuum. The ground structure
method uses an initial truss layout for internal force analysis. When a design space is given as
input, the first step is to generate node locations within this plane. As an initial truss layout,
or Ground Structure, usually all possible connections are made. An example of such a ground
structure is given in Figure 3.9. This image is taken from He, Linwei and Gilbert [32]. These

Figure 3.9: Ground Structure, taken from He, Linwei and Gilbert [32]

researchers developed a python script that implements the ground structure method. This
python script, together with its mathematical basis, will be used here to explain the method. In
this case, the problem is defined as a minimum volume problem. The problem is described by:

min V = ITa

Subject To:

Bq=f

q ≥ −σ−a

q ≤ σ+a

a ≥ 0

(3.6)

Where V denotes the volume of the complete structure. I is a vector containing all the member
lengths, a is a vector with the corresponding areas. B is the stiffness matrix and q are the
internal forces. f are the external forces. This python implementation allows users to specify
different limiting tensile and compression stresses, which are denoted by σ+ and σ− respectively.

3.4.1 Example

Again we consider the fixed cantilever from Figure 3.4. We use the python implementation
by [32] to illustrate the ground structure method. The limiting tensile stress is set equal to the
limiting compression stress to unit value 1. The joint cost is taken as 1.0. Figure 3.10 shows
two intermediate plots and the final result.
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Figure 3.10: GSO result of fixed cantilever example

The first image is a representation of the structure after the first iteration. A lot of small truss
elements are visible. It can already be observed that the top and bottom left corners will be
the important supports. After the third iteration, pictured in the middle, most small elements
have disappeared. The final shape has become more pronounced, and the elements that have
a large contribution to the load bearing have increased in size. In the final iteration, pictured
on the right, the connection in the middle has changed shape. The meeting point of these four
connections has shifted slightly to the left.

3.5 Suitability for additive manufacturing of reinforcement

Now that three optimisation algorithms are explained, the question raises which of these is most
suitable for implementing in an additive manufacturing process for reinforcement steel. Different
aspects of the result can be identified that are important to consider in this context.

3.5.1 Complexity

First, we compare the complexity of the result. For traditional manufacturing processes like
casting or milling, it is unwanted to have a high complexity. Fabricating voids and oddly
shaped geometry will increase production times and therefore costs. It is for this reason that
most implementations of topology optimisation schemes offer some kind of method to force
simplicity of the solution. In simp for instance, the penalisation factor is introduced to force
a more ’black and white’ solution. This is good for traditional manufacturing, because then it
is difficult to fabricate elements with intermediate densities. In 3D-printing, this may not be a
problem. Let’s consider the example of the plate with varying thickness that is described in the
simp-section above. To cast this element, complex formwork or a mould would be required. If the
same element would be manufactured by 3D-printing, it would be possible to print the varying
thickness. The python implementation of the ground structure method by Xie and Steven [32]

also includes a function that decreases the complexity. This is done by introducing a joint
cost, which suppresses designs that generate more connections and thus more members. These
measures are effective in light of traditional manufacturing, but all have a negative effect on the
overall performance of the structure. This is proven in Appendix A. It is therefore questionable
whether these complexity-suppressing measures should be activated when designing for additive
manufacturing. The effectiveness of these measures is therefore not of large importance when
choosing a suitable algorithm, and should not be decisive for the choice.

3.5.2 Stress Insight

Another aspect to consider is stress in the individual members. A steel reinforcement design is
required, but the optimised topology includes the areas that are under compressive stress. Here
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lies a problem for the (b)eso and simp methods, since it is not immediately clear what the
stress distribution within the structure is. To identify which elements need to be included in
the reinforcement design, it is important to know which areas are under tensile and compressive
stress. The printed reinforcement should only include the members that are under tensile stress,
because the compression will be taken by the concrete. To obtain this stress distribution from the
finite element analysis, an extra step is necessary. The displacement field needs to be assimilated
in a process of back-substitution, where the internal stress is calculated with the element stiffness
matrices. In the ground structure method, this information is already available. The member
forces are calculated and in each iteration to check of the maximum stress is not violated. It
is therefore expected that it is easier to extract details about the stress distribution from the
result of a gso optimisation.

3.5.3 Design Readiness

The third item that will be discussed here is design readiness. 3D-printing relies heavily on
the software that controls the printers. This software is developed to automatically generate
print paths and print nozzle movements. It is important to consider the input these programs
require, because this is the next step in the realisation process. The result of the topology
optimisation eventually needs to be the input for such a program. As we have seen in the
previous chapter, this input is usually a 3D-model. Generating such a model is generally done
in modelling software like Rhinoceros. It is therefore important to discuss the possibility to
import an optimisation result in such modelling software. Both simp and beso methods rely
on a continuum formulation, where the design domain is modelled with plain stress elements.
After removing or adjusting the elements within this domain, the solution consists of some sort
of matrix representation of the design domain. In this matrix, each entry represents an element.
The elements will have either density 0 or 1 in beso, or any value between 0 and 1 in simp.
To obtain a 3D-model from this result, some sort of post processing is required. The result of
the ground structure method is different in this way. The result consists of a list of members or
bars with their corresponding cross sectional area. Importing this result in Rhinoceros can be a
relatively straightforward process if this list is exported as, for instance, a CSV-file.

3.5.4 Software Availability

For the purpose of this research, it is important to find topology optimisation software. Commer-
cial options are available, such as Tosca Structure and Autodesk Nastran. However, these will
not allow changes to the code. Options with open-source code should therefore be considered.

For the beso algorithm, Zuo and Xie [33] developed a Python script that is able to perform
topology optimisation on 3D structures. The script adopts the Abaqus Scripting Interface.
The finite element calculation is preformed in Abaqus, and python is used to determine which
elements need to be discarded or added.

An open-source implementation of the simp algorithm was made by Sigmund [31]. This Matlab
script offers a very elegant and compact method to perform topology optimisation. This script
is widely used in other research, wich may be attributed to its simplicity. This simplicity results
in very high analysis speeds, as proven in Appendix A.

The ground structure method, or layout optimisation technique, is somewhat less pronounced
in recent literature. The exception to this is the Python script by He, Gilbert and Song [32].
This script provides a stand-alone optimisation algorithm for layout of trusses. It is based on
the member adding technique, as explained in Appendix B.

32



3.5.5 Code Flexibility

Since all implementation that were mentioned above are made in either Python or Matlab, it
is expected that all three can be adjusted to the purpose of this research. The object oriented
nature of Python is a big advantage in this light, since external libraries can easily be imported.

The use of the Abaqus Scripting Interface in case of the beso method can be seen as both an
advantage or disadvantage. Abaqus is a robust fea package, which will yield very precise and
fast results. However, performing the calculation in different software may cause issues regarding
availability of certain parameters. Therefore, stand alone software is preferred.

3.5.6 Previous Research on Strut and Tie Modelling

It is also interesting to look at previous research in this field. Several examples exist that
implement topology optimisation schemes for strut and tie modelling. For instance, the same
researchers that worked on developing the (b)eso method published a paper on using the algo-
rithm for this purpose [3]. The simp method was also put forward in other research, and it was
found that a strut and tie model could easily be developed by making use of this algorithm [4].
One issue remained, which was discretising the continuum result to individual struts and ties.
In both before-mentioned papers, this was done manually. Very recently, Xia, Langelaar and
Hendriks [16] published a breakthrough paper, incorporating image recognition techniques to au-
tomate this process. Visualised in Figure 3.11, software was presented that is able to identify
the individual members from the continuum result.

Figure 3.11: Automatic discretisation of topology optimisation result for strut and tie model,
by Xia, Langelaar and Hendriks [16]

The ground structure method was also used to generate strut and tie models by Bolbotowski,
Knauff and Sokol [34;35]. The use of gso meant that post-processing was not necessary to obtain
a valid strut and tie model. It was proven in their papers that this method is very versatile, and
can be used in a multitude of plane stress problems to automatically generate efficient strut and
tie models. Some examples of their work can be seen in Figure 3.12.

3.6 Comparison of methods

To give insight in the differences between the algorithms, Table 3.1 is presented. The entries in
this table are based on the considerations from the previous section, combined with the results
of the parameter study that can be found in Appendix A. Each comparison aspect is assigned a
weight factor η. This weight factor is determined by establishing the importance of that specific
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Figure 3.12: Strut and tie models for a corner (a), cantilever (b) and corbel (c) obtained with
the Ground Structure Method, taken from Bobotowski and Sokol [35].

aspect in the context of this research. The scores are presented in - -/-/+-/+/++ format, and
are assigned score values 1/2/3/4/5 respectively. This allows for calculation of a final score.

η beso simp gso
Speed 1 + ++ -

Complexity 0 + + ++
Stress Insight 2 - - ++

Design Readiness 2 - - +
Software Availability 2 + ++ ++

Code Flexibility 2 ++ + ++
Innovation Potential 1 - - +

Score 32 33 44

Table 3.1: Comparison of to algorithms

3.7 Answering the research question

The research question that is answered here is:

· Which optimisation algorithm is suitable for analysing reinforced concrete, and can easily
be modified to include manufacturing constraints?

All variants of topology optimisation that were discussed in this chapter, have shown promis-
ing results when applied to strut and tie modelling for reinforced concrete. However, Ground
Structure Optimisation proved to be the best choice considering the requirements that are set
for this research. As can be seen in table 3.1, a multi criteria analysis was performed to find the
best alternative. gso obtained the highest score, which justifies the choice to use this algorithm
in the remainder of this research. This choice is strengthened by the availability of a very user-
friendly and robust open-source Python script by He, Gilbert and Son [32] that incorporates this
algorithm.
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In light of previous research on this subject, the choice for gso as a starting point is expected
to be a good addition to this research field as a whole. A lot of examples exist from the past
decades where the continuum formulation of topology optimisation methods are used to find
efficient strut and tie models for concrete. The use of the ground structure method tends to be
less pronounced in literature, with the exception of the work done by Bobotowski, Knauff and
Sokol [34;35]. Putting this method in perspective of additive manufacturing is therefore expected
to be of significant interest.

35



Part 2

adapting the optimisation to the manufacturing
process
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Chapter 4

Printing Constraints

The previous chapter has explained the choice for an optimisation algorithm. The goal of this
research is to extend this optimisation method to suit the additive manufacturing process. It was
shown in Chapter 2 that there are two relevant geometrical constraints related to this production
process.

· Minimum angle of 60◦ from horizontal

· Minimum member diameter of 1.0 cm

It is important to consider these constrains throughout the process of optimising a structure.
Where possible, printing constraints should be accounted for during the optimisation. Adding
or removing members from the result is expected to be counterproductive and will likely have
a negative effect on the material efficiency. This chapter therefore aims to answer the research
question:

How can the printing constraints be included in the optimisation algorithm?

For both constraints it is investigated whether they can be included in the optimisation. As a
starting point, the python implementation of the Ground Structure Method by He, Gilbert and
Song [32] is used. This python script is freely available for the purpose of further development.
The methods described in this section form additions or adjustments to this script. In pursue
of transparency, these changes are described in detail. The code is made available either in the
text or in the appendices.

The first section of this chapter discusses the angular constraint. A solution is proposed to
avoid generation of members at a specified angle during the optimisation. The following section
proposes a second solution for dealing with the angle constraint, by adjusting the orientation
of the complete structure. The third section of this chapter discusses the minimum member
diameter, and proposes a method for adjusting the diameter. In the fourth and final section,
the knowledge gained in this chapter is collected and an answer to the research question is
formulated.
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4.1 Angle Constraints

The first manufacturing constraint that is discussed here is the minimum printing angle. As
pointed out in Chapter 2, members can only be printed that have a minimum inclination of 60◦

from the horizontal plane. A smaller angle will result in instability during the printing process,
or significant reduction of strength parameters1. The first solution that is proposed to this issue,
is reducing the set of possible members.

4.1.1 Generating a reduced ground structure

The original script by He, Gilbert and Song is explained in detail in Appendix B. To retain
a certain level of readability, some processes in the script are explained in a simplified manner
here. When questions arise regarding the functionality, the reader is referred to Appendix B.

Original Approach

In the original code by He, Gilbert and Song [32], a Possible Member List(pml) is assembled
before the optimisation loop. This is done by dividing the design domain in a grid of evenly
spaced nodes. A loop is then initiated, generating all possible members connecting these nodes.
A schematic overview of this process can be found in Figure 4.1. Overlapping and duplicate

Figure 4.1: Forming a pml and an initial structure with two loops

elements are not allowed. During the process of the optimisation, a structure is generated from
this pml. Members that are excluded from this list can never be present in the final structure.
Therefore, it is chosen to implement the desired changes at this stage in the process.

In the original script, a second loop is initiated after assembling the pml. This loop activates an
initial set of members before the first iteration of the optimisation. This is done by specifying
a maximum length of

√
2. This allows only the horizontal, vertical and most simple diagonals.

Such an initial structure for a design space of 20 x 10 nodes is illustrated in Figure 4.2.

Proposed Approach

To exclude members of a certain inclination in the design, the function CreateGroundStructure
is proposed. This function is available in the trussopttools library(see Appendix E.3). This
function is created as a substitute for the process as described in Figure 4.1. The function takes
three inputs; design domain, minimum angle and maximum initial length. It performs the two
operations necessary to obtain a pml and initial set in one loop. A flowchart representing these
operations can be found in Figure 4.3.

Combining the two operations is necessary when a minimum inclination of 45◦ or more is re-
quired. In this case, the diagonals from Figure 4.2 are not in the pml. When a maximum

1As stated by Vincent Wegener, founder of Rotterdam Additive Manufacturing Lab (ramlab)

38



Figure 4.2: Initial set of members for a design space of 20x10 nodes

Figure 4.3: Proposed function for creating a pml and initial structure

length of
√

2 is used, only the vertical connections will remain in the initial set. This leads to
a structure that is not able to transfer any realistic load. In these cases, the maximum initial
length should be adjusted to a value which does allow diagonal elements. The same design space
of 20 x 10 nodes, but now including an angle constraint of 50◦ and a maximum initial length of√

5 can be seen in Figure 4.4.

4.1.2 Example with angle constraint

To highlight the functionality that was added in this section, an example is presented. The model
space that will be analysed is presented in Figure 4.5. The results for two analyses are given
below in Figure 4.6. On the left, the model space is optimised without any angle constraints.
Like before, red elements are under tension and blue elements are under compression. On the
right, members with an inclination lower than 25◦ are not allowed. It is clear that the horizontal
members have now vanished. However, as can be seen on the bottom of the structure between
the loads, the result shows some sort of horizontal connection with triangular elements. It
can also be seen that the resulting volume of both models differs slightly. Including the angle
constraint appears to require more material. This issue is addressed in more detail in Appendix
C.
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Figure 4.4: Initial set for a design space of 20x10, with a minimum angle of 50◦and a maximum
initial length of

√
5

Figure 4.5: Model space example with two loads

4.2 Printing Orientation

As indicated in Appendix C, applying an angle constraint can significantly increase the amount
of required material. In the example from the Appendix, this increase was found to be 36%. A
comparison can be seen in Figure 4.7. Since the aim is to reduce material use, this is undesired.
In the example from the Appendix, a better orientation was relatively easy to identify without
any calculations. However, with increasing complexity of the model, a good orientation may not
always be obvious. Therefore, another possible solution is presented here. This solution consists
of an automated process to find a suitable printing orientation.

Starting point for this method is an undisturbed optimisation process. In other words, the opti-
misation can be performed without any limitations on member inclination. When the structure
is optimised, the result is post-processed by a separate python script. The complete script can
be found in Appendix E.2. The suggested approach is to rotate the entire structure around a
point. This rotation is performed in small increments, using the procedure from Appendix D.
In each increment, a Performance Index (pi) is calculated. This pi is defined as the ratio of
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Figure 4.6: Conventional result(left) compared to an optimisation with an angle constraint of
25◦(right)

Figure 4.7: Two identical structures with an angle constraint to the horizontal of 25◦, only
rotated by 90◦counter clockwise. Respective volumes are 99.98(left) and 73.81(right)

printable material, or:

PI =
Vprintable
Vtotal

· 100% (4.1)

The printable material is determined by evaluating the inclination of every member. In two-
dimensional structures, it is assumed that the printing process is in positive y-direction. For
each member, the angle between the x-axis and the member direction is calculated. If this angle
is larger than the minimum printing angle, the volume of that member is added to Vprintable.
When all members are evaluated, this printable volume is compared to the total volume of the
structure. The pi is then reported as a percentage of the total volume. This process is repeated
for every rotation increment. The functionality of the script will be highlighted by two examples.
The first example is a two-dimensional structure. The second example is a three-dimensional
structure.

4.2.1 Example of a simple truss structure in two dimensions

To illustrate the functionality of the script in 2D, we consider the example from Appendix C.
The result from the undisturbed optimisation process can be found in Figure 4.8. The output
from this optimisation is automatically exported to a csv-file. This csv-file contains information
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Property Value

Width 20
Height 10
σt 1
σc 1

Joint Cost 0
Minimum Angle 0

Minimum Initial Length
√

2
Steel Volume 38.96

Figure 4.8: Optimisation result for simple cantilever

on member location, area and internal force. We are only interested in printing the members
under tension. Therefore, the blue members will be omitted for the next step. As previously
established, the minimum printing angle is 60◦. The incremental rotation for this analysis is
taken as 5◦. In theory, only rotations between 0◦ and 180 ◦ have to be analysed. However, in
some cases it may be useful to have the full spectrum available. Members indicated in blue are
printable. Members with an inclination smaller than the minimum angle are indicated in red.

Figure 4.9: Rotating an optimisation result around the z-axis

Some intermediate results can be seen in Figure 4.9. The title of the plot displays the rotation
angle and the Performance Index. When the analysis is complete, a plot is generated that relates
all angles to their respective pi. The plot for this analysis can be seen in Figure 4.10.

The user is then prompted for a desired rotation. When a rotation is selected, an updated
csv-file updatedstruct.csv is generated. This updated csv-file contains the new locations of the
members, considering the given orientation around the z-axis. It is saved in the same folder as
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Figure 4.10: Analysis of 2D structure at given rotation around z-axis, for a minimum angle of
60◦(left) and 25◦(right)

the original struct.csv

It becomes clear that when a minimum inclination of 60◦ is required, there is no orientation
in which all members satisfy the constraint. The highest pi is 90.17% at 117◦. For illustration
purposes, a report is also generated for a minimum inclination of 25◦. This can be seen on the
right side of Figure 4.10. Several orientations of the model now yield a pi of 100%, which are
indicated in dark blue.

4.2.2 Example of a three dimensional cantilever

The functionality of the orientation finding script is also extended for 3D-applications. There
is a single script for 2D and 3D cases. It is determined automatically whether the model in
question contains 2D or 3D members. If a 3D model is recognised, a similar analysis to the
previous section is performed. A model directory can be passed to the script, along with a
minimum printing angle and a step size. This step size determines the angular increment at
each step. For this example, the optimisation result of Figure 4.11 is used.

Property Value

Width 12
Height 12
Depth 6
σt 1
σc 1

Joint Cost 0
Minimum Angle 0

Minimum Initial Length
√

3

Figure 4.11: Optimisation result for a simple 3D cantilever

To print the model, no members should exceed the previously established inclination of 60◦.
This inclination is with respect to the horizontal plane. We assume the z-direction to be the
printing direction, which makes the xy-plane horizontal. Now, to analyse the best orientation,
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Figure 4.12: 3D model rotated around x- and y-axis, for a minimum printing angle of 60◦

the model is rotated around the x- and y-axis. The process is the same as in 2D, but now needs
to be rotated around two separate axes. This process is significantly more tedious than the
2D-example, since a lot more orientations have to be analysed.

Again, we only consider the members under tension. For the structure described above, some
intermediate plots are given in Figure 4.12. The title of the graphs shows the rotation around the
x- and y-axis, as well as the Performance Index of this orientation. Again, printable members
are assigned a dark blue colour. Red elements have an inclination smaller than the specified
minimum. When the analysis is finished, a report similar to the one in the previous chapter is
generated. For a step size of 1◦, this report is given in Figure 4.13 for two minimum inclinations.
The report shows good performing areas in the rx, ry domain in darker shades. It is clear from
the result that it was not necessary to analyse both rx and ry between 0◦ and 360◦. However,
analysing the complete spectrum is very convenient for the next sept in the process. A final
model orientation has to be chosen. When the analysis is finished, the user is given a list of
rotation pairs that have a high Performance Index. The user is prompted for an x-rotation and
a y-rotation, upon which the structure is plotted in this orientation. This makes it possible to
adjust the orientation, in case there are multiple rotation pairs that have the same pi.

Considering Figure 4.14 for instance, a structure that is flipped around the y-axis by 180◦ can
be seen. This means the pi is identical, which can also be seen in the result of the analysis
in Figure 4.13. Although the pi is unchanged, the structure at y-rotation 250◦ will be much
easier to print. Members that are hanging downward are unprintable, because the printing is
done from the ground up. This highlights a shortcoming of this analysis method, since this
issue is not accounted for in the calculation of the pi. Allowing the user to adjust the printing
orientation after the analysis partially solves this issue.
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Figure 4.13: Analysis of 3D structure at given rotations around x- and y-axes, report for a
minimum angle of 60◦(left) and for a minimum angle of 25◦(right)

Another observation that can be made is about the largest value of the pi. Similar to the previous
section, a minimum inclination of 60◦ proves to be a relatively harsh constraint. When this
constraint is applied, it leads to a structure that is not completely printable in any orientation.
The highest pi in this example is only 78.73%.

Figure 4.14: Comparison of two orientations with the same pi

4.3 Member Diameter

The other printing constraint that requires attention is the minimum member diameter. As
mentioned previously, it was found that a minimum diameter of 1cm is necessary to ensure a
successful printing process. This section discusses the possibility to include this manufacturing
constraint in the optimisation process. To understand how this can be done, some more knowl-
edge on the functionality of the script is required. This is explained in the first part of this
section. The second part of this section uses this knowledge to obtain a method to adjust the
minimum member diameter of the model.
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4.3.1 The Member Adding Scheme

An in-depth explanation of the member adding scheme by He, Gilbert and Song [32] can be
found in Appendix B, but the relevant steps are also explained here. As mentioned previously,
the optimisation script assembles an initial structure before the optimisation loop is started.
This initial structure is the starting point for the optimisation. When the optimisation loop is
initiated, three operations are performed in each iteration. The first operation is to construct an
equilibrium matrix, relating the externally applied load to the internal force distribution. This
is done in matrix-vector form, with the forces in vector notation and the equilibrium relations
in matrix notation. This notation is necessary for the next step, where the cross sectional areas
are adjusted.

The external Python library cvxpy [36;37] is used for this next step. This convex optimisation
tool is developed to solve a broad spectrum of optimisation problems. For the purpose of this
research, it is sufficient to know that this library is able to optimise a list of variables, given
a set of boundary conditions. In the case of the member adding scheme, this list of variables
contains the cross sectional areas of the individual members. The boundary conditions are a
limiting tensile and compressive stress. Together with the equilibrium matrix and the external
force vector, cvxpy optimises the cross sectional areas. This yields a structure that uses the
minimum amount of material to transfer the external load to the supports.

The third and final step of the iteration is evaluating the virtual strain of every member in
the Possible Member List. This means that each member in the domain is evaluated, not only
the ones present in the current structure. A specific strategy is then used to determine which
members are added to the solution, this is explained in more detail in Appendix B. The result
of this step is an augmented structure, where additional members are added to highly stressed
areas. If no members need to be added to the domain, the process is terminated. Otherwise,
the next iteration is started.

4.3.2 Implications for a minimum diameter

Due to the nature of the method that is describe above, demanding a minimum member diameter
is not as straightforward as expected. In the member adding scheme, elements that are activated
will permanently remain in the solution. If a certain member is no longer necessary for the force
transfer, its cross sectional area is reduced to 0 by the cvxpy optimisation. However, it will
remain activated in the solution. This means that if a minimum diameter would be imposed on
every active member, a very inefficient structure can be expected.

Therefore, another solution is proposed. A post-processing script is presented here, that adjusts
the member diameters when the optimisation is completed. It was expressed previously that
this order is undesired, since it will most likely reduce the efficiency of the structure. However,
due to the reasons described in the previous paragraph, it is considered to be justified in this
scenario to investigate the possibility. Other solutions would implicate rigorous changes to the
optimisation script.

4.3.3 A post-processing method for minimum member diameter

The method that is chosen here consists of a separate Python script. This script reads the
contents of an optimisation result. This is done in similar fashion as before, by reading the
output csv-file struct.csv. This csv-file contains all the information on member location, cross
sectional area and internal force. The exact code can be found in Appendix E.4.
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The script allows the user to specify a minimum member diameter. The minimum diameter is
converted into a minimum area. A loop is then performed over all elements, and the area is
adjusted where necessary. At the end of the loop, it is reported how much material was added.
The updated model is saved in the same location as the input, with the filename changed to
originalname bdxx, where xx is the chosen minimum bar diameter in millimetres.

No example of the script is given here, but readers interested in the functionality are referred
to section 5.3.1.

4.4 Summary of the Methods

4.4.1 Angular Constraint

Two options were explored in light of the angular constraint of the additive manufacturing
process. The first option presented a new method for forming the Possible Member List. The
optimisation script works with a predefined set of members, assembled from all possible con-
nections within the nodal domain of the model. By including a check that limits the minimum
inclination of each member, a reduced set can be formed. This was done by introducing a
new function for assembling the pml. This function is also able to activate the initial set of
the optimisation in the same loop, by setting a user-specified maximum initial member length.
This is required when the minimum member inclination exceeds 45◦, since then the inter-nodal
diagonals are no longer valid.

It is clear that this method is able to generate geometries where no elements exceed the minimum
printing angle. However, applying this constraint has a significant negative effect on the material
use in the model. As pointed out in Appendix C, up to 36% more material is needed to transfer
the loads to the foundation. Therefore it was investigated whether this issue can be addressed
by changing the orientation of the undisturbed optimisation result.

4.4.2 Printing Orientation

Deviating from the initial strategy to include the manufacturing constraints in the optimisation,
a method was developed to evaluate the performance of the structure after the optimisation
is finished. This was done by rotating the entire model around the origin and calculating a
performance index. This index compared the volume of material that satisfies the angular
printing constraint to the total volume. The proposed script analyses the complete rotational
spectrum at user-specified intervals. This can be done for both 2D and 3D models. When the
analysis is complete, a report is generated that shows the performance of the model at each
interval. The user is able to choose a suitable orientation based on these results. The model is
then rotated to this orientation and saved in a new csv-file.

This rotation analysis method allows for an undisturbed optimisation. Members with any in-
clination can be present in the solution, which enlarges the solution space of the optimisation.
More force paths are allowed, which leads to more direct force flow to the foundation. This re-
quires less material, so more efficient structures can be obtained. As was established above(see
Figure 4.10 and Figure 4.13), this method is able to reliably report suitable printing orientations.

However, when the limiting minimum inclination is set to 60◦, both examples that were discussed
in this chapter were not completely printable in any orientation. The maximum Performance
Indices were 90.2% and 78.7% for the 2D and 3D example respectively. This is expected to be
insufficient for most practical applications. When 10-25% of calculated material is not manufac-
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tured, the structure will likely not be able to carry the loads. Since the structure is optimised
to a high degree, there is no redundancy of material. It is therefore not considered an option to
omit a certain percentage of material from the result. Adjusting the model orientation alone will
therefore not be sufficient for complex models, such as the results from this type of optimisation.

4.4.3 Member Diameter

The nature of the optimisation presents a challenge for including a minimum diameter. Ele-
ments that are not needed for force transfer are never removed from the solution. The cvxpy
optimisation only reduces their area to 0. Imposing a minimum diameter is therefore not pos-
sible, since that would lead to a structure in which every member in the pml is always present
in the solution. Changing this would require rigorous changes to the optimisation script. To
overcome this issue, a different solution is proposed. This solution consists of a post-processing
script, that can be used on any optimisation result. The script adjusts the diameters of every
member that violates the user-specified minimum.

4.5 Answering the research question

This chapter has discussed several options to implement the manufacturing constraints in the
optimisation process. Accounting for these specific constraints during the optimisation was
expected to yield a high material efficiency of the structure. The research question that was
considered is:

How can the printing constraints be included in the optimisation algorithm?

For the angle constraint it was found that it can be included, at the expense of higher material
use. To a large degree this increase in material use depends on model specific parameters. In
the example from Appendix C for instance, only a minimal amount of material had to be added
when a suitable model orientation was chosen.

In some cases, a better alternative may be to use the method to find a good printing orientation.
Using the report that is generated by this method, printing orientations can be found where
a lot of members can be printed. However, the printing constraint of 60◦ was found difficult
to overcome. For both the 2D and the 3D example, a significant amount of material proved
impossible to be printed in any orientation.

The minimum diameter constraint is difficult to include in the member adding script by He,
Gilbert and Song [32]. This optimisation algorithm does not allow for implementation of a
minimum diameter of each element. However, post-processing of the results can be a suitable
solution for designs that already use relatively large members. When a lot of smaller elements
are generated in a model, adjusting the joint cost may offer a solution. This forces the result to
be more simple, and small elements are suppressed.

4.5.1 Comments on the angular constraint

It was found in this chapter that the minimum inclination of 60◦ is a very harsh constraint.
For most models that were investigated in this chapter, this constraint caused a large amount
of members to be unprintable. This issue may raise questions regarding the feasibility of the
proposed method. If this printing constraint causes issues for a lot of models, it can be argued
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that combining the ground structure method with additive manufacturing processes is not very
efficient. However, there are some arguments that can be raised that address this issue.

A lower member inclination

Printing slender, small diameter round elements is not common practice in 3D-printing. There-
fore, it is not clear whether the 60◦ mentioned here should also be applied to this type of
structure. It is expected that this inclination can be further decreased, possibly slightly decreas-
ing the material properties of the printed material. The exact influence of this inclination on the
printed result should be investigated further, considering for instance non-solid cross sections.
Hollow tubes could change the characteristics of the material, possibly improving the strength
when printed at an angle.

Rotating platform

Another solution for the angular constraint could be to print on a movable surface. Several
examples exist where the base for a 3D-printer is non-stationary. Combined with the flexibility
of the welding torch on the robotic arm, this may cause the angular constraint to disappear
completely. When the printed model can be rotated around multiple axes, the member can
always be placed in a suitable orientation. Of course, this would require advanced tool-path
finding software. Advances in this field develop rapidly, and it is expected that methods like
this are within reach.
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Part 3

validation
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Chapter 5

Case Study

This chapter presents a validation for the proposed methods from the previous chapter of this
research. The research question that was proposed is:

• How efficient are the results of the extended optimisation method compared to the tradi-
tional calculation methods?

To answer this question this chapter is divided in five sections. The first section presents an
introduction to the case with some background information. The second section contains an
explanation of the traditional analysis procedure for a pile cap. The third section showcases the
proposed method. In the fourth section, both methods are compared, both quantitatively and
qualitatively. The fifth section presents an answer to the research question.

Figure 5.1: Architectural render (left) and photo (right) of RAI-hotel in Amsterdam, the Nether-
lands2

2Both images taken from https://oma.eu/projects/rai-nhow-hotel
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5.1 Case Introduction

This chapter focuses on one of the pile caps under the recently finished RAI-hotel in Amsterdam.
The RAI-hotel is situated on the southern main access road in Amsterdam, the Netherlands. The
hotel is in close proximity to Amsterdams business district de Zuidas. The building is designed
by architectural firm OMA, and realised by contracting combination of Pleijsier Bouw and
G&S Bouw B.V.. Van Rossum Raadgevende Ingenieurs B.V. was responsible for the structural
design. The structural model uses a concrete core, and steel truss structures for the cantilevering
parts of the triangles. Realising a large building in such a dense location posed challenges for all
parties involved. What made this project especially difficult, was the close proximity to the new
metro line of Amsterdam. This required ground settlements to be kept to an absolute minimum,
and allowed very limited space for construction of the foundation. The foundation is the subject
of this case study. The layout of the foundation is pictured in Figure 5.2. This image shows the
location of the concrete core of the structure, as well as the location of all the foundation piles.
The pile caps used to spread the loads to the piles are also pictured. As an example, we will
analyse one of the outer blocks that use 3 piles.

Figure 5.2: Foundation layout of the RAI-hotel

This pile cap is used to demonstrate the proposed method from previous chapter. The three-pole
variant is chosen because it will contain a non-symmetrical stress distribution. The calculation
method is involved, but not overly complicated, so it is a good guide to show the process. A
third reason is that this type of pile cap is very common. As can be seen in Figure 5.2, the
RAI-hotel also uses less common 16-pole and even a 32-pole block. Since this validation is a
proof of concept, it is chosen to analyse the more commonly applied 3-pole block. However, it
would be very interesting to see the same method applied to the larger, more complex blocks in
the future.

The ability to use topology optimisation methods to obtain a reinforcement design for this 3-
pole block is explained step by step. The result will be a model that is ready to be printed.
This proposed analysis method will be compared to the traditional analysis method. Figure
5.3 shows the dimensions of a three-pole block. The three foundation piles are indicated with
circles, and the column with a rectangle. The column is not placed in the centre of the block,
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but in the centre of gravity of the triangle spanned by the three foundation piles. The outer
dimensions of the block are 2600 mm x 2600 mm x 1600 mm.

Figure 5.3: Top and sideview of pile cap

5.2 Traditional Analysis Method

First, we consider the traditional analysis method of such a pile cap. This traditional method
follows the guidelines from Eurocode NEN-EN 1992-1-1 section 6.5. This section describes
analysis methods for concrete elements with non-linear strain distribution. The calculation
process for the pile cap that is considered in this section can be found in Appendix F. The
analysis is split up in two parts; The strength verification (ULS) and crack width control (SLS).
This case study is meant as a proof of concept. It is therefore beyond the scope of this research
to consider the crack width control, an the focus will be on the strength verification of the
member. The steps that are taken to obtain a valid reinforcement design can be seen in the
flowchart in Figure 5.4. Each of these steps will be highlighted briefly in this section. As can be
seen in the flowchart, the first step is constructing a valid Strut-and-Tie model. According to the
aforementioned Eurocode, development of such a model may be done by ”the adoption of stress
trajectories and distributions from linear-elastic theory or the load path method”. This leaves
considerable freedom for the designer. Any model is valid, as long as equilibrium is ensured.
In practice, often simple layouts are chosen to limit the complexity of the calculations. In this
case, the STM is chosen as in Figure 5.5. In the left image, a side view is drawn. The right
image shows a top view. The internal lever arm is indicated with z. This lever arm should be
chosen such that enough concrete coverage can be ensured. It is also important that there is
enough space around the nodes so that all forces can fully develop. Now the geometry of the
model is know, the force distribution can be determined. This force distribution follows from
equilibrium conditions. The member forces are then used to calculate the forces in nodes. This
nodal check makes sure the assumed lever arm is valid. If more material above or below the
nodes is necessary to transmit the forces, the lever arm should be adjusted. This is an iterative
process, which is also indicated in the flowchart. When a valid internal lever arm is found,
the angles between the struts and the ties are determined. If all angles between struts and
ties are 55◦or larger, the design compressive stress may be increased by 10% according to the
Eurocode. Now all geometry and strength variables are determined, the individual struts and
ties are analysed.
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Figure 5.4: Flowchart traditional analysis method without crack width control

First we consider the struts. The concrete is verified in compression strength in a straightforward
manner. However, The compressive forces in the struts may lead to significant splitting forces.
The Eurocode presents the images in Figure 5.6 to clarify this behaviour. In this case full
discontinuity is assumed. The acting design force is FEd = 7650 kN. The formulas presented by
the Eurocode give us a splitting force, for which reinforcement should be designed. Because the
strut is at an angle, reinforcement needs to be present in horizontal and vertical direction. As
worked out in Appendix F, this needs to be:

horizontal : �16− 120 = 1676 mm2/m =4356 mm2

vertical : �16− 175 = 1149 mm2/m =1494 mm2
(5.1)

The only ties are in the horizontal plane. This will require reinforcement in x- and y-direction.
Following the calculation in the Appendix we can calculate the necessary volume of reinforcement
to accommodate the tensile force in the tie. From the right image in Figure 5.5 it becomes clear
that the force between B and C has an x- and y-component. The tie B-B only has a y-component.

Ax = 2023 mm2

Ay = 2034 + 1032 = 3066 mm2

Vtotal = Ax · ly + Ay · lx = 2023 · 2600 + 3066 · 2600 = 13231400 mm3

(5.2)

In the calculation in Appendix F, this amount is increased due to requirements from the crack
width calculation. As of yet, the proposed method is not yet able to perform this calculation.
There is also no functionality for calculating splitting reinforcement for the struts. As mentioned
before, this case study is meant as a proof of concept. For this reason, any reinforcement present
in the traditional method that is necessary for crack width control or splitting forces is omitted
from the result. This is done to ensure fair comparison. The validity of this comparison is
further discussed at the end of this chapter. For now, the results of the proposed method will
be compared to the values from equation 5.2.

5.3 Proposed Method

The first step in the proposed method is determining the input parameters. It is chosen to
model the area between the piles only. Because no forces will be present outside this area, it is
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Figure 5.5: Strut-and-Tie model for pile cap

Figure 5.6: Splitting forces in struts, taken from Eurocode 1992-1-1 section 6.5.3
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Parameter Value
Width 12
Height 12
Depth 12

Nodal spacing 108.3 mm
FEd 7650 kN

σRd, tension 0.435 kN/mm2

σRd, compression 0.435 kN/mm2

Joint Cost 0

Table 5.1: Input parameters for Optimisation Run 1

unnecessary to model it. This square area enclosed by the piles measures 1300 mm x 1300 mm.
The height of the block is 1600 mm. However, as we have seen in the traditional calculation
from Appendix F, some of this height is needed to ensure sufficient concrete covering. The other
thing that requires attention is the placement of forces and boundary conditions. These can
only be prescribed at the nodes. As described in Appendix B, the optimisation script runs from
a grid of evenly spaced nodes. To limit calculation time, the amount of nodes should be kept to
a minimum. However, a certain level of accuracy has to be maintained. Using 10-20 nodes per
axis will generally be sufficient. In Chapter 3 it can be seen that quite complex structures can
be obtained in this way. If we were to use a design space of 1300 x 1300 x 1300 nodes for this
scenario, the amount of possible members would be enormous(see Appendix A). Therefore we
need some kind of conversion. The grid that we choose should also accommodate the placement
boundary conditions and loads at the correct location. Looking at Figure 5.3, we we observe
that the foundation piles are placed at 1/4 and 3/4 times the size in x-direction. The column is
placed at 5/12 times the size in x-direction. If we choose a grid of 12 x 12 x 12 nodes, all forces
and boundary conditions can be placed at exactly the correct location. The nodal spacing then
becomes 1300/12=108.3 mm. All coordinates are multiplied by this conversion, to obtain the
correct volumes.

The internal lever arm for the Strut-and-Tie model is taken as 1250 mm in the traditional
calculation. This leaves enough room for covering, and also ensures there is enough material
present around the nodes. This material is necessary to accommodate the high stresses in these
areas. To model this in the proposed method, we have to choose between a height of either
11 nodes (11*108.3=1192 mm) or 12 nodes (12*108.3=1300 mm). For now, we use a height of
12 nodes (1300 mm) as a starting point for our calculation. The influence of this decision is
determined later. This choice creates a cubic modelling space. We use the design force of FEd

= 7650 kN because this is a strength calculation. The design strength of the reinforcement steel
is taken as 435 N/mm2.

The force is added as 7650 kN and the strength of the material in tension is set to 0.435 kN/mm2.
A joint cost of 0 is chosen, since all possible solutions are of interest. The input parameters are
summarised in Table 5.3. Some intermediate plots, as well as the final result of the optimisation
can be found in Figure 5.7. The result, on the bottom right in this Figure, is comparable to
the STM that was used in the manual calculation. The main compressive struts, indicated in
blue, are in roughly the same locations. However, three smaller compressive struts can also be
identified. The grid of ties is fairly complex in the middle. This forms some kind of triangle.
We see that the amount of steel that is necessary to accommodate the forces is 8781797.3
mm3. This is without the splitting reinforcement needed for the struts, because this is not yet
calculated. As of yet, the script doesn’t offer any functionality to do this automatically. Also
the manufacturing constraints are not yet accounted for. These constraints should be considered
so a fair comparison can be made. This will be done in the following section.
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Figure 5.7: Result of Optimisation Run 1

5.3.1 Accounting for the manufacturing process

We know the minimum bar diameter needs to be around 10 mm to ensure a successful printing
process. The structure should therefore be analysed so that the smallest bars can be enlarged.
For this, the function AdjustBarDiameters from the trussopttools library is used. This function
reads the output csv-file generated by the optimisation program. Each bar that has a diameter
smaller than the given minimum is enlarged. An updated csv-file is saved in the same directory.
The function also reports the original volumes, the adjusted volumes and the difference between
the two. In Table 5.2 the output for this case is visualised.

Original Volume Adjusted Volume Difference
Tension elements 8.78·106 mm3 11.11·106mm3 26.5%

Compression elements 31.57·106 mm3 31.57·106 mm3 0 mm3

Table 5.2: Volume adjustments due to minimum bar diameter

We observe a significant increase of required material. This indicates that a lot of the elements
that were present in the initial optimisation result had a diameter smaller than 10 mm. The fact
that this diameter constraint increases the necessary material by a significant amount, raises
questions about the input. This is a problem, considering the goal of achieving the best possible
material efficiency. This should therefore be solved, which is attempted in the following section.
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5.3.2 Further increasing material efficiency

We observe that the amount of steel necessary to print the structure greatly increases when the
manufacturing process is taken into account. This is counterproductive, so options should be
explored. As we have seen in the parameter study from Appendix A, almost all optimisation
algorithms offer functionality to enforce simplicity. In the case of the Member Adding Scheme
that is used here, it is possible to include a joint cost. This feature will suppress smaller
members. This joint cost is now slightly increased to 0.1 and the optimisation is repeated. The
result can be seen in Figure 5.8. This result is significantly more simple than the previous.

Parameter Value
Width 12
Height 12
Depth 12

Nodal spacing 108.3 mm
FEd 7650 kN

σRd, tension 0.435 kN/mm2

σRd, compression 0.435 kN/mm2

Joint Cost 0.1

Figure 5.8: Input parameters and result of Optimisation Run 2 with joint cost = 0.1

The net of small tensile members inside the triangle has disappeared, and the diameters of the
bars seem to have increased. The increase in steel volume is negligible, only 9 mm3. When the
AdjustBarDiameters function is run again, we see that all members satisfy the minimum bar
diameter. Therefore no material has to be added to make the model printable.

5.3.3 Adjusting for the correct height

As mentioned earlier in this section, the internal lever arm of the strut and tie model was
incorrectly set to 1300mm. The actual height that was used in the traditional design method is
1250 mm. Due to the setup of the optimisation script, it is not possible to choose this height
for the optimisation. However, the goal is to make a fair comparison. Increasing the height will
lead to lower tensile forces, which in turn will require less steel. It is therefore of interest to see
if the amount of necessary reinforcement steel can be adjusted for this increased height. To this
end, the graph in Figure 5.9 is presented. This is the result of Optimisation Run 3. The input
for this run can be found in Table 5.3. In this graph, the solid circles indicate optimisation

Parameter Value
Width 12
Height [10, 11, 12, 13, 14]
Depth 12

Nodal spacing 108.3 mm
FEd 7650 kN

σRd, tension 0.435 kN/mm2

σRd, compression 0.435 kN/mm2

Joint Cost 0.1

Table 5.3: Input parameters for Optimisation Run 3
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Figure 5.9: Influence of height on case study model with a nodal spacing of 108.3 millimeters

runs. 5 runs are performed, where the label indicates the amount of nodes in z-direction. The
run with 12 nodes, and thus a height of 1300mm, is taken as the middle one. Two runs with
increased height, and two runs with decreased height are performed to visualise the influence
of changing this parameter. A second order polynomial, plotted as a dotted line, appears to fit
very well. This graph now allows us to interpolate the necessary reinforcement in the proposed
method for a height of 1250 mm. Reading the graph, this amounts to 9.2 * 106 mm3.

5.3.4 The Angle Constraint

To investigate the effect of the angular constraint, two methods are used. The first optimises
the domain, now including a minimum member inclination of 60◦. The result of this analysis,
which uses the same input parameters as in Figure 5.8, can be seen in Figure 5.10.

As can be seen in this figure, a very inefficient structure is generated. The amount of material
needed to accommodate the tensile forces is found to be 35.9 * 106 mm3, which is about four
times the material that is needed without the angle constraint.

The second method that will be shown here, is automatic determination of a good printing
orientation. The script from section 4.2 is used for this procedure. Analysing the result from
Figure 5.8, the report is shown in Figure 5.11.

The highest Performance Index that was found is only 49.5%. In other words, in the best per-
forming orientation of the model, only half of the elements can be printed. This is unacceptable,
and would lead to a structure that is not valid.
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Figure 5.10: Optimisation result including an angle constraint of 60◦

Figure 5.11: Rotation analysis of case study result

5.4 Comparison and discussion of methods

For both methods, the amount of steel necessary to obtain a valid design is now known. These
are summarised in Table 5.4. Using the proposed method, a material reduction of 30% can

Traditional Method Proposed Method Difference
Amount [mm3] 13.2·106 mm3 9.2 ·106 mm3

Amount [m3] 0.0132 m3 0.0092 m3

Weight3 [kg] 103.9 kg 72.2 kg -30%

Table 5.4: Comparison of necessary reinforcement between methods

be achieved. Of course, several important aspects of a strut-and-tie model calculation are
omitted to obtain this comparison. As mentioned before, the proposed method does not account
for splitting force reinforcement or crack width control. To be able to make a comparison

3With ρsteel = 7850 kg/m3
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between the original and the proposed method, this part of the reinforcement is omitted from
the traditional calculation. Although a separate investigation is necessary for a complete and
inclusive comparison, several notes can be made about this beforehand. Let us consider the
reinforcement necessary for accommodating the splitting forces. When we compare Figure 5.5
and 5.8, we observe that the general shape of the strut and tie model is similar. This similarity
becomes more apparent when we only consider the struts. This indicates that the vertical force
is transmitted to the supports in roughly the same manner. Although no conclusive statements
can be made about this, it is expected that the amount of necessary splitting reinforcement will
be similar. Thought even further, it would be interesting to explore possibilities to include the
splitting reinforcement in the printable design. Printing the splitting reinforcement would allow
for exact placement, without the need to rearrange to an orthogonal grid.

Another note that can be made about this comparison considers the crack width control. Crack
width calculations ensure that the steel reinforcement is not affected by environmental influences
such as corrosion. First and foremost, the concrete covering following from the environmental
class of the concrete is there for this reason. However, when concrete is loaded in tension,
minor cracks develop that may penetrate towards the reinforcement. When this happens, the
concrete covering may not be sufficient anymore to prevent corrosion of the steel. The Eurocode4

prescribes methods to check whether a structure is sensitive to this behaviour. From these
sections it becomes clear that two aspects have a large impact on the crack that occurs; bar
diameter and bar spacing. In general, a larger bar diameter and a larger bar spacing lead to a
larger crack. If we project this on this case study, we observe that both parameters are larger
in the original method. Opposed to the evenly spaced, larger diameter reinforcement bars that
are used in this method, the proposed method shows a finely woven net of reinforcement ties
between the foundation piles initially. In the example in this case study, this changes when
the joint cost is adjusted. The bars are then spaced further apart, and the diameters increase.
However, if we compare this to the traditional Strut-And-Tie model, we still see a higher number
of members and therefore a smaller average bar diameter. Again, no definitive statements can
be made about this difference and further analysis is necessary to calculate the crack width.
However, considering the knowledge about bar diameter and bar spacing, we expect to see a
smaller crack when the proposed method is used.

The third and final subject that is interesting to discuss in this context, is calculation time. As
becomes clear from the calculations in Appendix F, the original method is very tedious. If we
exclude the images and pages about input parameters, nine pages are required to calculate the
necessary reinforcement. In the case of this pile cap, these calculations are performed manually.
Several iterative processes are performed, leading to even longer calculation times. It is difficult
to quantify the exact amount of time that was required to perform these calculations, but it is
estimated that at least three working hours were spend on the manual calculation alone. If we
compare this to the proposed method we see a large difference. Running the optimisation loop
alone takes around 90 seconds5. Of course time is needed to prepare the input and process the
output, but it is clear that large time savings are possible. This is before we have discussed the
time necessary to model the pile cap. In the original method, a modeller converts the technical
drawings from the engineer into 3D-models. At Van Rossum Raadgevende Ingenieurs B.V.,
this is done in Autodesk Revit. These 3D-models are in turn used to generate drawings for the
construction crew. If we extend the proposed method to this step in the design process, we
observe good possibilities to integrate the two. The result of the proposed method is a structure
that is recorded in a csv-file. We have seen in Chapter 4 that this structure can easily be
imported in Rhinoceros. Therefore, no problems are expected for importing the result in Revit
in a similar manner.

4See NEN-EN 1992-1-1 sections 7.3.3 and 7.3.4
5Using an Intel Core i7-8550U @1.8GHz
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5.5 Answering the research question

The research question that was proposed is:

• How efficient are the results of the extended optimisation method compared to the tradi-
tional calculation methods?

It was proven that, using the proposed method, up to 30% less material is needed to obtain
a valid strut-and-tie model. Although several simplifications were used to make this a feasible
case study, it is proven in the previous section that the proposed method is a valid alternative
to the traditional calculation procedure. In terms of material use and calculation time, large
savings can be achieved. A valid strut and tie model can automatically be determined using the
proposed method.

However, the printing constraint regarding the minimum member inclination is reason for con-
cern. Strictly adhering to this requirement, the strut and tie model from this case study proved
to be unprintable. The angles between the members of the strut and tie model are generated in
such a way, that no valid printable orientation can be found. As argued in the previous chapter
however, this is not necessarily a reason to condemn this proposed method. Developments in
the field of additive manufacturing show promise for printing at a wider range of inclinations.
For instance, a rotating printing surface may offer a solution.
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Chapter 6

Showcase

Opposed to the thorough comparison of the proposed method to the traditional analysis pro-
cedure in the previous chapter, this chapter aims to give a more general perspective on the
proposed design strategy. Several examples are presented here, that show the functionality and
possible uses of the method. The level of in-depth discussion is purposely kept to a minimum, to
provide a better understanding of the possibilities that this ground structure approach brings.
The first example will consist of a three dimensional corbel, based on the design of research by
Xia, Langelaar and Hendriks [38]. The second example is a three dimensional cantilever, that is
analysed both with and without an angle constraint on the individual members. The third and
final example is a two dimensional wall with openings.
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6.1 Three dimensional corbel

A frequently occurring design problem where strut-and-tie models are used, is the corbel layout.
Corbel layouts are generally used in concrete construction, where a horizontal beam needs to be
connected to a vertical column. For this example, we make use of the simplified corbel design
as mentioned by Xia, Langelaar and Hendriks [38]. The finite element model from their research
can be seen on the left in Figure 6.1. The table in Figure6.1 shows the input values that are
used in Python for the extended optimisation. No physical meaning is given to the material
strength, length scale and magnitude of the force, but only the aspect ratios and the location of
the force are used.

Property Value

Width 11
Height 27
Depth 3
σt 1
σc 1

Joint Cost 0
Minimum Angle 0

Minimum Initial Length
√

3
Results

Iterations 8
Time 92 seconds

Figure 6.1: Corbel, taken from Xia, Langelaar and Hendriks [38]

Figure 6.3 compares the optimised strut-and-tie model obtained by Xia, Langelaar and Hendriks
to the result obtained by the method developed previously in this research.
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Figure 6.2: Result from Xia, Langelaar and Hendriks [38](left) compared to the results from this
research(right)

6.1.1 More complex loading scenario

Next to this relatively straightforward load case, it is interesting to see how the model performs
under more complex forces. To this end, a lateral load is applied at the same position as the
vertical one. This scenario is similar to the complex load combination, taken from Xia, Langelaar
and Hendriks [38]. The comparison can be seen in Figure 6.3.

65



Figure 6.3: Comparison of result from Xia, Langelaar and Hendriks [38](left) to the newly devel-
oped method(right)

6.2 Cantilever with and without angle constraint

In this example a three dimensional cantilever is analysed. The first analysis is without any
angle constraint. In the second analysis, the minimum angle is set to 25◦. The quantitative
input and results can be seen in Table 6.1. The cantilever has dimensions 12x12x6 and a point
load in negative z-direction is applied to point (12,6,0).

Property Value

Width 12
Height 12
Depth 6
σt 1
σc 1

Joint Cost 2
Minimum Angle 0

Minimum Initial Length
√

3
Results
Volume 682

Iterations 12
Time 42 seconds

Property Value

Width 12
Height 12
Depth 6
σt 1
σc 1

Joint Cost 2
Minimum Angle 25◦

Minimum Initial Length
√

3
Results
Volume 1090

Iterations 18
Time 73 seconds

Table 6.1: Input and results without angle constraint(left) and with an angle constraint of
25◦(right)

Some intermediate plots and the final result for the analysis without angle constraint can be
seen in Figure 6.4. The same can be seen for the analysis with angle constraint in Figure 6.5.
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Figure 6.4: Intermediate plots and result for analysis without angle constraint

Figure 6.5: Intermediate plots and result for analysis with an angle constraint of 25◦

6.3 A wall with openings

Another functionality that will contribute towards practical implementation of the new method,
is the ability to assign passive areas in the design. These passive areas can be seen as voids or
openings. An example of designs in which this is required are walls with openings for windows
or doors. These are commonly analysed with the strut-and-tie method, due to the highly non-
linear distribution of the internal forces. The structure that will be analysed in this example is
pictured in Figure 6.6.

Property Value

Width 20
Height 10
σt 1
σc 1

Joint Cost 3
Minimum Angle 0

Minimum Initial Length
√

2
Results

Iterations 22
Time 76 seconds

Figure 6.6: Input structure and parameters for a Wall with openings

The result of the optimisation can be seen in Figure 6.7 and Figure 6.8. This result shows a high
level of complexity, especially in the small area between the two openings. It is evident that
analysing this strut and tie model manually would be very time consuming. Also, determination
of this bar layout without any computational aid would be virtually impossible. This is a
good example of why the ground structure method could increase design efficiency significantly.
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Automatic generation of complex strut-and-tie models is now possible, and is only minor steps
away from practical implementation.

Figure 6.7: Optimisation result of wall with openings

Figure 6.8 shows a comparison between the analysis without and with the openings.

Figure 6.8: Comparison of optimisation result without openings(left) to result with open-
ings(right)
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Chapter 7

Conclusions

This chapter contains an overview of the findings in this research. All the research questions that
were proposed in the first chapter are discussed here. The aim of this research was to investigate
possibilities to integrate structural optimisation and additive manufacturing processes. Previ-
ously considered to be unfeasible due to the high level of model complexity, structural topology
optimisation was rarely used in practice. Advances in additive manufacturing techniques have
now opened new doors, which may pave the way for optimised, 3D-printed structural compo-
nents. Specifically interesting in this light is automatic generation of strut and tie models for
reinforced concrete. This method uses a substantially tedious calculation procedure to obtain a
reinforcement design. The efficiency of the method is also very dependent on a good initial guess
of force flow within a concrete element. Topology optimisation methods may offer a solution
for these issues. To investigate the possibilities, several research questions were proposed in the
first chapter of this research.

For each question, the investigation that was performed in the main part of this research is
briefly summarised. The process is described that was used to arrive at a suitable answer to
the question. This chapter uses the same layout as the entirety of this report, which consisted
of three parts. The first part, the literature review, was discussed in Chapter 2 and Chapter 3.
These chapters covered the theoretical background of both additive manufacturing and structural
optimisation. A foundation was laid down on which the next part of the research could be
performed.

This next part considered the extension of an optimisation algorithm, to accommodate the man-
ufacturing constraints of an additive manufacturing environment. Several changes and additions
were proposed to an optimisation algorithm that uses the Ground Structure Method. These mod-
ifications included methods to deal with process-specific constraints, limiting the solution space
of the model. This is done in Chapter 4, where the thought processes and considerations needed
to obtain suitable solutions are explained in detail.

The third part of this research consists of a validation of the modified optimisation method,
to investigate the practical feasibility in a structural design context. To do this, a case study
was performed that compared the proposed method to a traditional design process. This gave
insight in the possibilities that the proposed method offers, as well as some issues that still
require attention and further development.

This chapter is divided in four sections, following the layout that is explained above. The first
three sections discuss the research questions related to the specific part of this report. In the
fourth and final section, an answer to the main research question is formulated.
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7.1 Part 1: Literature Review

Two subjects were investigated in the literature review. Both additive manufacturing and
topology optimisation methods were discussed, and relevant previous research was highlighted.

7.1.1 Part 1a: Additive Manufacturing

The first research question that was proposed is:

Which techniques are available to print steel, and which is most suitable for reinforcement?

Two main techniques for industrial-scale printing of metallic components can be identified. Pow-
der Bed Fusion(pbf) and Wire and Arc Additive Manufacturing(waam). pbf is a submerged
method, where a powder bed is continuously fed in which the model is built. The powder is
molten in specific locations by a laser, which creates solid material upon cooling down. The
waam technique uses a robotic arm with a welding torch attachment. Conventional arc welding,
usually mig/mag welding, is used to build a model from base plate. Only waam is considered
suitable for the purpose of printing reinforcement layouts, since the powder bed method is not
capable of producing large enough elements.

How are material parameters influenced by the different manufacturing processes?

Both micro- and macro-scale differences can be observed when 3D-printed material is com-
pared to material from traditional manufacturing techniques. For the powder bed technique,
some increases in yield strength and ductility were observed. However, this came at the cost
of anisotropic effects. For the waam technique, several studies revealed a slight reduction of
yield strength and ultimate strength compared to cast or wrought material. Also in this tech-
nique anisotropic effects were observed. Several solutions have been proposed to increase the
performance of printed material, including post-process heat treatment.

Which manufacturing constraints should be accounted for?

Two constraints should be taken into account. To prevent the printed elements from tipping
over, a minimum angle of 60◦ from the horizontal is advised. This angle can also be chosen to
be slightly smaller, but this is expected to cause a significant reduction of strength. Therefore,
the angle of 60◦ is maintained in the rest of the research. The other printing constraint that
should be kept is a minimum element diameter. When considering circular cross sections, the
diameter should always be 1.0 cm. This ensures a smooth printing process, and retains the
expected material parameters.

How should the geometry be prepared?

In theory, any 3D model can be processed to a format that is suitable for the printing software.
The conventional file formats used by 3D software such as Rhinoceros or Grasshopper can be
used. An example of such a format is a stereo-lithography(.stl) file.

7.1.2 Part 1b: Topology Optimisation

The second subject that was discussed in the literature review is topology optimisation. Topol-
ogy optimisation concerns with finding the most efficient material distribution within a pre-
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scribed design domain. In this research, several algorithms were analysed in light of the auto-
matic generation of strut and tie models for reinforced concrete. The research question was:

Which optimisation algorithm is suitable for analysing reinforced concrete, and can easily be
modified to include manufacturing constraints?

Three different solution schemes were discussed; Bi-directional Evolutionary Structural Optimi-
sation(beso), Solid Isotropic Material with Penalisation(simp) and Ground Structure Optimi-
sation(gso). For all three, the theoretical background was summarised and the functionality
explained on the basis of an example. Their suitability for implementation in strut and tie
modelling was discussed, and previous research on this subject was reviewed. It was found that
for all three algorithms, possibilities exist to utilise the theory for this purpose. In fact, previous
research on this topic can be found for each method. All three show great promise for analysing
reinforced concrete.

For the purpose of this research, it was chosen to continue with the gso-method. An excellent
Python script, developed by He, Gilbert and Song [32], is available that implements this method.
This script is freely available for further development, and good documentation is provided that
explains the theory behind it. This choice was strengthened by the relatively low occurrence of
this algorithm in the field of topology optimisation research.

7.2 Part 2: Adapting the optimisation to the manufactur-
ing process

Now a lot of knowledge is gathered on both additive manufacturing techniques and topology
optimisation, this part of the research aims to combine this knowledge. Several modifications
and extensions to the previously mentioned Python script are proposed, that take into account
the process constraints of the waam technique. The research question for this part is:

How can the optimisation algorithm be extended for additive manufacturing?

Three different suggestions were made to deal with the manufacturing constraints. The first sug-
gestion concerns with forming a reduced set of possible members. The member adding technique
that is used in the Python script is based on a list of all possible members that can be present in
the solution space. The original script allowed all elements that connect two individual nodes in
the domain, given that the member does not overlap with an existing member. A new function
was proposed as a substitute for the original loop that creates the Possible Member List(pml).
This function takes as input the design domain, a minimum printing angle and a maximum
initial length. Due to reasons described in the appropriate section, the generation of the pml
and the forming of an initial structure have to be combined when the minimum angle exceeds
45◦. Therefore, also a maximum initial member length has to be provided to the function. Using
the new function, it was found that an optimisation could be performed on a domain that is
subjected to a minimum angle constraint. A comparison between a conventional analysis and
an analysis subjected to a minimum angle of 25◦ can be seen in Figure 7.1.

As described in Appendix C, including this angle constraint can lead to large volume increases
in specific examples. Especially when the force is perpendicular to the rigid foundation, the
final efficiency of the model can be considered very poor. In simple cases, a manual adjustment
of printing orientation is an evident solution. However, when the complexity of the model is
higher, a good printing orientation may not always be easy to differentiate. Therefore, a method
was proposed to automatically find a good printing orientation. This method works for both 2D
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Figure 7.1: Conventional result(left) compared to an optimisation with an angle constraint of
25◦(right)

and 3D models, and can be seen as a post-processing step. First, an optimisation is performed
without any angle constraints. Then, the model is rotated around the origin in user-specified
angular increments. At each rotation, a Performance Index (pi) is calculated. This pi compares
the volume of printable material to the total volume of material. When the analysis is finished,
a report is generated. An example of such a report for a 3D example is given in Figure 7.2.

Figure 7.2: Rotation analysis for a model in 3D

The third and final aspect that has been investigated, concerns with the minimum member
diameter. Following the findings from the literature review, a minimum diameter of 1.0 cm
should always be ensured. An in-depth review of the functionality of the python script was
performed, to investigate the possibility to include this constraint in the optimisation. However,
it was found that rigorous changes to the script were necessary to achieve this. The member
adding technique that is used never deactivates members, but only reduces their area to 0. This
means a minimum area can not straightforwardly be imposed, because then every member in
the domain would always be present. Therefore, a post-processing method is proposed. This
analyses the result from the optimisation, and adjusts the areas where necessary.
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7.3 Part 3: Validation

The research question that regards the validation of this research is:

• How efficient are the results of the extended optimisation method compared to the tradi-
tional calculation methods?

In this third part of the research, a case study was presented to illustrate the functionality of
the proposed methods. This case study consists of a pile cap that was designed for a hotel in
Amsterdam, which was considered to be a good example to showcase the new methods. It was
found that, using the automated process, a reliable strut and tie model could be generated.
In the example from this study, 30% less material was required to accommodate the forces
compared to the traditional analysis method. It was also argued that the proposed method can
yield large savings in computation time.

A large challenge for the proposed method can be distinguished when the minimum inclination
is considered. It was found that the optimised strut and tie model could not be printed in any
orientation, if a minimum inclination of 60◦ is required. The highest Performance Index of the
analysis was 49.5%, which is regarded unacceptable. This issue raises questions regarding the
feasibility of the method. However, developments in additive manufacturing techniques may
offer a solution, which allows printing at steeper angles. Rotating printing surfaces, that can be
adjusted over multiple axes, could potentially allow designs without any angle constraint.

7.4 Answering the main research question

The main research question that was proposed in the introduction is:

• Can reliable strut and tie models be generated by an extended topology optimisation
scheme, which includes additive manufacturing constraints?

As proven in the case study in Chapter 5, a reliable way to include the manufacturing constraints
of a 3D-printing environment in the calculation process of reinforced concrete elements was
developed. The minimum member inclination can be included, although significantly increasing
material use. For the minimum member diameter, a post-processing script was proposed. The
topology optimisation method proved to be capable of finding an efficient force distribution, and
thus an efficient strut and tie model. The minimum member diameter could straightforwardly
be applied, when the amount of members in the domain was suppressed slightly.

The minimum member inclination proved to be the biggest hurdle in obtaining a printable
design. A minimum inclination of 60◦ was found to be a very harsh constraint, significantly
limiting the form freedom of the model. Even when this constraint was relieved, and the post-
processing method for finding a suitable printing orientation was used, no printable design could
be identified. For the feasibility of this method, it is therefore of importance that this minimum
inclination is reduced. Developments in the field of additive manufacturing show promise for
achieving this, for instance possibilities to print on a rotating surface.
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Chapter 8

Recommendations

This chapter contains the recommendations based on the results that were found in this research.
These consist of suggested future research, as well as more general ideas on how to further develop
the proposed method.

1. This research has explored possibilities to extend a Python implementation of the ground
structure method with additive manufacturing constraints. For the limitation on member
inclination, two separate options were considered; demanding a minimum angle during
the optimisation, and a post-processing tool that suggests a suitable printing orientation.
Although these two methods were explored separately in this research, it would be of
significant interest to look for ways to combine the concepts. An optimisation loop that
is capable of both adjusting model orientation while maintaining a minimum member
inclination from the horizontal is expected to be a very efficient and elegant next step.

2. Although not discussed in this research, it is also necessary to evaluate the concrete struts
to obtain a valid strut-and-tie model. A logical next step in the development of the method
would include a closer look into these compressive forces. An extension to the method is
necessary to automatically validate the stresses in these elements.

3. This research has focused on the possibility to print the steel reinforcement that is nec-
essary to accommodate the tensile forces in concrete elements. Advances in additive
manufacturing techniques, including but not limited to the printing of steel, have made
significant steps forward in the past decade. Several examples exist in literature where
concrete was printed successfully. An inclusive method, that combines optimised, additive
manufactured elements in both steel and concrete is within reach. Constructing a truss-
like structure from both printed steel and concrete could in theory lead to large material
savings.

4. Traditional strut-and-tie modelling requires designers to add reinforcement to accommo-
date the splitting forces that appear in the concrete struts. In the case study from Chapter
5, the reinforcement that results from this calculation was omitted to allow for a fair com-
parison. However, in theory it is possible to include this calculation in the Python script.
The first method that comes to mind is to evaluate all compression struts after the opti-
misation is finished. However, adding the material required for the reinforcement after the
optimisation will raise questions regarding the optimality of the result. Another, slightly
more elaborate, path could be to calculate the required splitting reinforcement in each
iteration of the optimisation loop.

5. Another aspect that was deliberately omitted from the comparison in the case study, was
the calculation for crack width control. This procedure is part of the serviceability limit
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state(sls) calculation. In the traditional evaluation procedure, this part of the calculation
consumes a large part of the total time required. In light of the more general goal to obtain
an automated and performance driven design procedure, it is therefore of interest to look
into methods to automate this calculation also. Due to the object oriented approach that
is used in the Python programming language, it is possible to create a special library of
functions for this. This library can then easily be included in other Python scripts, for
instance the one used in this research.

6. The Python implementation of the ground structure method, as used extensively through-
out this research, provides a relatively simple way to evaluate small design domains. As
proven in Appendix A, increasing the amount of nodes exponentially increases the calcu-
lation time. The mathematical basis of the script, the so-called member adding scheme,
proved to be capable of generating very complex and effective force paths from load to
supports. However, generating the Possible Member List(pml) is a tedious job that sig-
nificantly slows the process. A method to increase the speed of this procedure is desired.
A possible solution could be to replace the loop structures in the function with matrix-
vector multiplications. Known as vectorisation in programming, this procedure has the
possibility to greatly improve calculation speeds.
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Appendix A

Parameter Study

This Appendix is meant to illustrate the influence of the different input parameters for both
the matlab implementation of the SIMP method, as the python script that uses the Ground
Structure Method. In all tests, a computation time is included. These were run on a laptop
computer with an i7-8550K at 1.8GHz with an overboost to 4.0GHz.

A.1 SIMP

In the first secion, the simp method is discussed. There are three different parameters that can
be used to influence the result of the optimisation. These are the volume fraction, the penalty
factor and the filter size. In the subsections below, for each of these parameters three different
values are used. The outcomes are presented in table form, but also visual representations are
given.

A.1.1 Varying volume fraction

Varying the volume fraction leads to results that can be seen in Table A.1 and Figure A.1.
It can be observed that varying the volume fraction has no influence of the resulting shape of
the structure. In both cases the same truss like structure can be identified, only the elements
have have different thicknesses. Run vf1, with the lowest volume fraction, took significantly
longer than the other runs. During the process, it could be seen that the solution had difficulty
converging. A large part of the run saw flickering of elements.

Parameter Run vf1 Run vf2 Run vf3

Elements X 40 40 40
Elements Y 20 20 20

Volume fraction 0.15 0.3 0.5
Penalty factor 3.0 3.0 3.0

Filter Size 1.2 1.2 1.2
Results

Iterations 603 59 49
Volume fraction 0.15 0.3 0.5

Time 21.0s 2.7s 1.7s

Table A.1: Input parameters and result for three different volume fractions
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Figure A.1: SIMP result of three different volume fractions; 0.15(left), 0.3(middle), 0.5(right)

A.1.2 Varying penalty factor

The consequences of varying the penalty factor can be seen in Table A.2 and Figure A.2. Setting
the penalty factor to 1.0 is equivalent to running the algorithm without any penalty factor. For
explanation refer to section 3.3.1. When the penalty factor is not used, the result shows a lot
of grey elements. These are elements with a density between 0 and 1. Setting the penalty
factor to 2.0 in pf2, the solution is already much more discrete, but some grey areas can still be
distinguished at the joints. Run pf3 shows almost only black or white elements. When setting
the penalty factor higher than 3.0, the script would not converge.

Parameter Run pf1 Run pf2 Run pf3

Elements X 40 40 40
Elements Y 20 20 20

Volume fraction 0.3 0.3 0.3
Penalty factor 1.0 2.0 3.0

Filter Size 1.2 1.2 1.2
Results

Iterations 12 64 59
Penalty factor 1 2 3

Time 0.4s 2.3s 2.7s

Table A.2: Input parameters and result for three different penalty factors

Figure A.2: SIMP result of three different penalty factors; 1.0(left), 2.0(middle), 3.0(right)

A.1.3 Varying filter size

The element filter that is present in the matlab script is made to prevent a phenomenon called
checkerboarding. Explanation is given in section 3.3.2. The filter ’spreads out’ forces over
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neighbouring elements. As can be seen in the result in Table A.3 and Figure A.3, again there
is no influence on the outline of the structure. The basic layout of the elements is the same.
Increasing the filter size appears to smear out the thickness of the members, forcing them to be
grey.

Parameter Run fs1 Run fs2 Run fs3

Elements X 40 40 40
Elements Y 20 20 20

Volume fraction 0.3 0.3 0.3
Penalty factor 3.0 3.0 3.0

Filter Size 0 1.2 1.2
Results

Iterations 42 64 97
Filter size 1.1 1.2 3.0

Time 1.6 2.3s 3.4s

Table A.3: Input parameters and result for three different filter sizes

Figure A.3: SIMP result of three different filter sizes; 1.0(left), 2.0(middle), 3.0(right)

A.1.4 Model size

Now the influence of a bigger structure is investigated. The aspect ratio of 2:1 is preserved, but
more elements are added in x and y direction. The results are in Table A.4 and Figure A.4.
Again, no difference in shape is observed. Adding more elements simply sharpens the image. The
computation time increases significantly with more elements. Run ms1 had difficulty converging,
hence the high number of iterations.

Parameter Run ms1 Run ms2 Run ms3

Elements X 20 40 120
Elements Y 10 20 60

Volume fraction 0.3 0.3 0.3
Penalty factor 3.0 3.0 3.0

Filter Size 1.2 1.2 1.2
Results

Iterations 113 59 141
Time 2.8s 2.3s 720s

Table A.4: Input parameters and result for three different model sizes
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Figure A.4: SIMP result of three different model sizes; 20x10 (left), 40x20 (middle), 80x40
(right)

A.2 GSO

A.2.1 Difference in compression and tensile strength

To see how a difference in tensile and compression strength influences the structure, three runs
are performed. These runs use the same structure, but vary in ratio between the strengths.
Ratios of 1:1, 2:1 and 4:1 are used. The results can be found in Table A.5 and Figure A.5.
The location of the members does not appear to have changed. The only difference is that the
elements with higher strength, in this case the tension elements, have a reduced thickness. The
total volume of the structure reduces with increasing tensile strength.

Parameter Run gso-sd1 Run gso-sd2 Run gso-sd3

Elements X 40 40 40
Elements Y 20 20 20

σc 1.0 1.0 1.0
σt 1.0 2.0 4.0

Joint Cost 0 0 0
Results

Iterations 10 11 11
Volume 140.8 105.1 85.6
Time 36s 73s 70s

Table A.5: Input parameters and result for three different ratios between tension and compres-
sion strength

Figure A.5: GSO result for three different tensile/compressive ratios; 1:1 (left) 2:1 (middle) and
4:1 (right)

A.2.2 Joint Cost

The influence of a higher joint cost is clearly visible in the results in Table A.6 and Figure
A.6. A joint cost of 0.1 already shows a significant reduction of the amount of members. With
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increasing joint cost, we also observe an increase in total volume of the structure. In terms of
material use, a structure with less members is therefore less efficient. The computation time is
increased as well, but because this is a relatively small structure it can still be done in a couple
of seconds.

Parameter Run gso-jc1 Run gso-jc2 Run gso-jc3

Elements X 20 20 20
Elements Y 10 10 10

Results
Iterations 13 15 64
Volume 70.8 72.1 79.3
Time 5.9s 5.9 7.1s

Table A.6: Input parameters and result for different joint cost

Figure A.6: GSO result of different joint cost, respectively 0 (left), 0.1 (middle) and 1.0 (right)

A.2.3 Model Size

The model size is now increased gradually, by setting the number of x- and y-elements. To
illustrate the effect this has on the possible solutions, a row is added to Table A.7 with the
amount of possible members. This number grows exponentially with increasing model size. Due
to this increasing size of the calculation, the computation time shows an enormous increase as
well. For Run gso-ms3 it took as much as three hours to get a result. Looking at this result
in Figure A.7, it shows that it is not a good solution. Large quantities of very small members
can be seen, causing something that looks like a blurred image. The first test run, which is
pictured on the left, already shows a very detailed design. This design only uses a 20x10 grid,
but apparently this is enough to generate a good result. Therefore, it is the question whether it
is ever really necessary to increase the model size as much as was done in gso-ms3. It should also
be noted that this script uses intermediate plotting. The result is shown after each iteration.
This plotting process also requires computation power, and increases the calculation time. Run
gso-ms2 was also performed without this plotting, which caused a reduction in time of about 8
seconds (25%).

Figure A.7: gso result of three different model sizes; 20x10 (left), 40x20 (middle), 120x60 (right)
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Parameter Run gso-ms1 Run gso-ms2 Run gso-ms3

Elements X 20 40 120
Elements Y 10 20 60

σc 1.0 1.0 1.0
σt 1.0 1.0 1.0

Joint Cost 0 0.1 1.0
Possible Members 19900 319600 25916400

Results
Iterations 13 10 12
Volume 70.8 140.8 241.9
Time 4.9s 32s 3h 13min

Table A.7: Input parameters and result for three different model sizes
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Appendix B

the ’Member Adding’ scheme

The python script that is used in various forms throughout this research is made by Matthew
Gilbert and Linwei He. The raw code can be found in section E.1 on Page 95. In this section
the functionality of the script will be explained. This is done in four steps; Input definition,
Solving, Plotting and Termination.

B.1 Input definition

The first step in the trussopt function is defining the inputs. The code in which this is done can
be found on line 71-90. By default, the script is set up to receive a width and height as input
parameters. These parameters are used to construct a polygon. This polygon can be modified
to contain holes and passive areas if desired. At the same time, the numpy meshgrid function
is used to create a grid of evenly spaced nodes inside the design space. The loads and support
conditions are added to lists. The next step is generating a possible member list named PML.
This list contains every possible connection within the design space. To loop over all possible
combinations, the combinations function of the itertools package is used. To avoid overlapping
elements, the greatest common divisor is used. This is illustrated in Figure B.1. PML is the main
data container of the script. Each row in this list represents a separate member. Each member
has four attributes; a startpoint, an endpoint, a length and a Boolean value representing whether
the member is active in the current solution. Before the solving iterations commence, an initial
set of member is activated. As pointed out by He and Gilbert [32], this method shows less memory
consumption and therefore lower computation time than directly solving for the complete set.
As an initial set, only the horizontals, verticals, and element diagonals are activated in the
default configuration. This is done by checking which elements have a length smaller than or
equal to

√
2. This initial set can be seen in Figure B.2.

B.2 Solving

The main optimization loop can be found on lines 97-102. From within this loop, different
functions are called to perform the calculations. At the start of each iteration, a sub list with
all active members is selected and stored in Cn. Together with the input parameters this list is
passed to the SolveLP function(lines 19-34). This function performs two operations. First, it
assembles the equilibrium matrix that is necessary to calculate the internal forces(lines 10-17).
Then, it defines and solves an optimisation problem for Python library CVXPY. The reader
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Figure B.1: Greatest common divisor function is used to eliminate overlapping elements

Figure B.2: Initial set of activated members for a rectangular design space of 20x10 elements

is referred to Diamond [36] and Agrawal [37] for detailed information on this library. CVXPY
is given a set of variables and a list of constraints. In our case, this list of variables are the
cross sectional areas of all members. The constraints are a limiting tensile stress and a limiting
compressive stress. By evaluating the structure with the equilibrium matrix and adjusting the
areas, an optimum material distribution is obtained. A joint cost is also implemented by this
function, which is added to the length of the members in line 20. This penalises short members,
and forces the solution to contain less joints.
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B.3 Plotting

The plot function plotTruss can be found on lines 52-69. This function plots all members in Cn,
which contained the active members in the solution space. There is an additional requirement
on the cross sectional area of the element. If this area is smaller than 0.1% of the maximum
area, the element is not plotted. All other members are plotted as line elements. The thickness
of each element is scaled towards the maximum value of the list of areas. A blue color is assigned
to elements under compression, and red is for elements under tension. Elements that switch
between compression and tension in different load cases are plotted as grey lines.

B.4 Termination

Now the list of areas is optimised for the applied forcing, it needs to be checked whether this
intermediate solution is the final solution. This is done in the stopViolation function on lines
36-50. This function uses Lagrange-functions to evaluate the virtual strain in the complete
structure. In-depth discussion of this subject is beyond the scope of this research, but readers
are referred to Boyd [39] for extensive information on this subject. Checking the virtual strain
is done for all members in PML, which includes members that are not active in the current
structure. A list of all these virtual strains is assembled and sorted by descending magnitude.
To control the ’growth rate’ of the structure, the amount of members that will be added to the
set is determined with:

∆m =

 αmV , mV ≥ βmp

αβmp, βmp > mV > αβmp

mV , αβmp ≥ mV

 (B.1)

In this script both α and β are set to 0.05. In words, this step ensures the smoothness of the
process. If a lot of members violate the maximum virtual strain, only a few will be added to the
solution. If only a few members violate the strain, most will be added. We have now arrived
at the end of one iteration. If there are violations, the members are added to the set and the
next iteration starts at line 98. This process is repeated until no members violate the maximum
virtual strain(0.01%).

B.5 Notes

Considering the process described above, several side notes can be made. First we consider the
input. No physical meaning is specified for the input parameters. No

B.6 Code
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Appendix C

Reduced performance due to
angle constraints

When the angle constraint is added to the optimisation loop, there is a risk of greatly reducing
the overall performance of the structure. In this section, this risk is described by presenting an
example. An obvious solution will be presented and discussed. The structure that will be used
in this section is pictured in Figure C.1. A unit force is applied in the bottom right corner, the
bottom and top left corner are supported in both directions. Width is set to 20 and height to
10. The limiting tensile stress is set equal to the limiting compression stress as 1. No joint cost
is specified. The maximum initial member length is taken as

√
2.

Property Value

Width 20
Height 10
σt 1
σc 1

Joint Cost 0
Minimum Angle [0, 25]

Minimum Initial Length
√

2

Figure C.1: Simple cantilever example

The optimisation is now run twice. Once without any specified minimum angle, one with a
minimum angle of 25◦. The results can be seen in Figure C.2 and Figure C.3. Since we minimise
volume, this is the obvious choice to assess the performance of the structure. An increase in
volume of 36% is observed when the angle constraint is added. This is significant, so a solution
is required.

C.1 Manual Approach

In this relatively simple case, the solution is obvious. If we rotate the structure from Figure C.2
90o counter-clockwise, the performance is expected to be significantly higher. We change the
boundary conditions and loading to the situation pictured in Figure C.1.
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Figure C.2: Result without angle constraint,
total volume: 73.59

Figure C.3: Result with minimum angle of 25o,
total volume: 99.98

Figure C.4: Rotated cantilever example

Property Value

Width 10
Height 20
σt 1
σc 1

Joint Cost 0
Minimum Angle [0, 25]

Minimum Initial Length
√

2

Again we run the optimisation twice. The results without angle constraint and with angle
constraint can be found in Figure C.5 and Figure C.6. The increase in volume is now limited to
0.3%.

This may be an extreme scenario, but the issue is clear. Using the angle constraint function from
trussopttools may not be the best choice in some cases. The python script has no functionality
to determine the best performing orientation for the structure. In the case of this example, the
solution is obvious. However, with increasing complexity of the structure, it may not always be
directly clear what the best orientation will be. Section 4.2 presents an automated procedure
for finding a good printing orientation.
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Figure C.5: Result without angle constraint,
total volume: 73.59

Figure C.6: Result with minimum angle of 25o,
total volume: 73.81
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Appendix D

Rotating an Array

The structure is stored in memory as a collection of lines. These lines are each described by a
start point and end point. To find a suitable printing orientation, we would like to rotate the
entire structure in small increments. At each new increment the Performance Index is evaluated.
For simplicity, it is chosen to rotate the entire structure around the origin. To illustrate this, a
single member is rotated around the origin by angle β in Figure D.1. As input for our rotation

x

y

β

β

Figure D.1: Rotation of a single member around the origin

function, we expect two arrays of points. One describing x- and y-coordinates of the start points,
the other describing the x- and y-coordinates of the end points of each member. For a structure
containing n members, these arrays will be of the form:

pstart =


xs,1 ys,1
xs,2 ys,2

...
...

xs,n ys,n

 , pend =


xe,1 ye,1
xe,2 ye,2

...
...

xe,n ye,n

 (D.1)
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We are interested in rotating the complete structure around a certain point. To describe this
rotation, we would like to express the location of all start points and end points in the same
manner as before. This means we are looking for two new arrays p̄start and p̄end.

p̄start =


x̄s,1 ȳs,1
x̄s,2 ȳs,2

...
...

x̄s,n ȳs,n

 , p̄end =


x̄e,1 ȳe,1
x̄e,2 ȳe,2

...
...

x̄e,n ȳe,n

 (D.2)

Since both arrays are of the same form and the rotation is the same, one rotation matrix will
be sufficient. The coefficients of this rotation matrix are still unknown, so we will attempt to
find these. To this end, we consider the rotation of a single point around the origin. This point
has coordinates (x, y) before the transformation. We need to find the coordinates (x̄, ȳ) after
the rotation. Simple trigonometric relations can be used to find these. For this, refer to Figure
D.2. In the figure, Point I with known coordinates (x,y) is rotated around the origin over β

xcosαcosβ

y

cosβ

α

β

α

sin
β

si
n
α

co
sβ

co
sα

si
n
β

sinαsinβ

I (x,y)

II (x̄, ȳ)

Figure D.2: Trigonometric identities

degrees. The distance between point I and the origin is given a unit value. Point II is the new
location. The still unknown coordinates (x̄, ȳ) need to be expressed in (x,y). By constructing
three right-angled triangles, we find the following expressions for x̄ and ȳ:

x̄ = cosαcosβ − sinαsinβ

ȳ = cosαsinβ + sinαcosβ
(D.3)

We know the distance between Point I and the origin is 1. Therefore, we can express the
coordinates x and y in angle α like so:

x = cosα

y = sinα
(D.4)

Combining equation D.3 and D.4 yields the following relation:

x̄ = x cosβ − y sinβ

ȳ = x sinβ + y cosβ
(D.5)

In matrix notation, this reduces to[
x̄
ȳ

]
=

[
cosβ − sinβ
sinβ cosβ

] [
x
y

]
(D.6)
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This can easily be extended to systems with more coordinate pairs, by lengthening the arrays.
Linear algebra rules allow us to write the following:[

x̄1 x̄2 . . . x̄n

ȳ1 ȳ2 . . . ȳn

]
=

[
cosβ − sinβ
sinβ cosβ

] [
x1 x2 . . . xn

y1 y2 . . . yn

]
(D.7)

Recall the expected input from Equation D.1. Given a certain angle β, the system of members
can be rotated around the origin in the following manner:

p̄T
start = R · pT

start

p̄T
end = R · pT

end

(D.8)

In which

R =

[
cosβ − sinβ
sinβ cosβ

]
(D.9)
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Appendix E

Code
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E.1 Member Adding

1 from math import gcd , ceil

2 import itertools

3 from scipy import sparse

4 import numpy as np

5 import cvxpy as cvx

6 import matplotlib.pyplot as plt

7 from shapely.geometry import Point , LineString , Polygon

8 import time

9 #Calculate equilibrium matrix B

10 def calcB(Nd, Cn, dof):

11 m, n1, n2 = len(Cn), Cn[: ,0]. astype(int), Cn[: ,1]. astype(int)

12 l, X, Y = Cn[:,2], Nd[n2 ,0]-Nd[n1 ,0], Nd[n2 ,1]-Nd[n1 ,1]

13 d0, d1 , d2 , d3 = dof[n1*2], dof[n1*2+1] , dof[n2*2], dof[n2*2+1]

14 s = np.concatenate ((-X/l * d0, -Y/l * d1 , X/l * d2 , Y/l * d3))

15 r = np.concatenate ((n1*2, n1*2+1, n2*2, n2*2+1))

16 c = np.concatenate ((np.arange(m), np.arange(m), np.arange(m), np.arange(m)))

17 return sparse.coo_matrix ((s, (r, c)), shape = (len(Nd)*2, m))

18 #Solve linear programming problem

19 def solveLP(Nd , Cn, f, dof , st, sc, jc):

20 l = [col[2] + jc for col in Cn]

21 B = calcB(Nd, Cn, dof)

22 a = cvx.Variable(len(Cn))

23 obj = cvx.Minimize(np.transpose(l) * a)

24 q, eqn , cons= [], [], [a>=0]

25 for k, fk in enumerate(f):

26 q.append(cvx.Variable(len(Cn)))

27 eqn.append(B * q[k] == fk * dof)

28 cons.extend ([eqn[k], q[k] >= -sc * a, q[k] <= st * a])

29 prob = cvx.Problem(obj , cons)

30 vol = prob.solve(max_iter =100000 , verbose=False , eps_abs =1e-3)

31 q = [np.array(qi.value).flatten () for qi in q]

32 a = np.array(a.value).flatten ()

33 u = [-np.array(eqnk.dual_value).flatten () for eqnk in eqn]

34 return vol , a, q, u

35 #Check dual violation

36 def stopViolation(Nd, PML , dof , st, sc, u, jc):

37 lst = np.where(PML [: ,3]== False)[0]

38 Cn = PML[lst]

39 l = Cn[:,2] + jc

40 B = calcB(Nd, Cn, dof).tocsc()

41 y = np.zeros(len(Cn))

42 for uk in u:

43 yk = np.multiply(B.transpose ().dot(uk) / l, np.array ([[st], [-sc]]))

44 y += np.amax(yk , axis =0)

45 vioCn = np.where(y >1.0001) [0]

46 vioSort = np.flipud(np.argsort(y[vioCn ]))

47 num = ceil(min(len(vioSort), 0.05* max( [len(Cn)*0.05, len(vioSort)])))

48 for i in range(num):

49 PML[lst[vioCn[vioSort[i]]]][3] = True

50 return num == 0

51 #Visualize truss

52 def plotTruss(Nd, Cn, a, q, threshold , str , update = True):

53 plt.ion() if update else plt.ioff()

54 plt.clf(); plt.axis(’off’); plt.axis(’equal’); plt.draw()

55 plt.title(str)

56 tk = 5 / max(a)

57 for i in [i for i in range(len(a)) if a[i] >= threshold ]:

58 if all([q[lc][i]>=0 for lc in range(len(q))]): c = ’r’

59 elif all([q[lc][i]<=0 for lc in range(len(q))]): c = ’b’

60 else: c = ’tab:gray’

61 pos = Nd[Cn[i, [0, 1]]. astype(int), :]

62 #Preparing the output

63 thickness = a[i] * tk

64 color = 0

65 if c==’r’: color = 1;

66 if c==’b’: color = 2;

67 #Plotting the truss
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68 plt.plot(pos[:, 0], pos[:, 1], c, linewidth = a[i] * tk)

69 plt.pause (0.01) if update else plt.show()

70 #Main function

71 def trussopt(width , height , st , sc, jc):

72 starttime=time.time()

73 poly = Polygon ([(0, 0), (width , 0), (width , height), (0, height)])

74 convex = True if poly.convex_hull.area == poly.area else False

75 xv, yv = np.meshgrid(range(width +1), range(height +1))

76 pts = [Point(xv.flat[i], yv.flat[i]) for i in range(xv.size)]

77 Nd = np.array ([[pt.x, pt.y] for pt in pts if poly.intersects(pt)])

78 dof , f, PML = np.ones((len(Nd) ,2)), [], []

79 #Load and support conditions

80 for i, nd in enumerate(Nd):

81 if nd[0] == 0 and nd[1]<= height: dof[i] = [0, 0]

82 f+=[0,-1] if nd[0]== width and nd[1]== height /2 else [0,0]

83 #Create the ’ground structure ’

84 for i, j in itertools.combinations(range(len(Nd)), 2):

85 dx, dy = abs(Nd[i][0] - Nd[j][0]), abs(Nd[i][1] - Nd[j][1])

86 if gcd(int(dx), int(dy)) == 1 or jc != 0:

87 seg = [] if convex else LineString ([Nd[i], Nd[j]])

88 if convex or poly.contains(seg) or poly.boundary.contains(seg):

89 PML.append( [i, j, np.sqrt(dx**2 + dy**2), False] )

90 PML= np.array(PML)

91 dof=np.array(dof).flatten ()

92 f = [f[i:i+len(Nd)*2] for i in range(0, len(f), len(Nd)*2)]

93 print(’Nodes: %d Members: %d’ % (len(Nd), len(PML)))

94 for pm in [p for p in PML if p[2] <= 1.42]:

95 pm[3] = True

96 #Start the ’member adding ’ loop

97 for itr in range(1, 100):

98 Cn = PML[PML[:,3] == True]

99 vol , a, q, u = solveLP(Nd, Cn, f, dof , st, sc, jc)

100 print("Itr: %d, vol: %f, mems: %d" % (itr , vol , len(Cn)))

101 plotTruss(Nd, Cn, a, q, max(a) * 1e-3, "Itr:" + str(itr), True)

102 if stopViolation(Nd , PML , dof , st , sc , u, jc): break

103 print("Volume: %f" % (vol))

104 print(f"Process completed in {time.time()-starttime} seconds")

105 plotTruss(Nd, Cn, a, q, max(a) * 1e-3, "Finished", False)

106 #Execution function when called directly by Python

107 if __name__ ==’__main__ ’:

108 trussopt(width = 20, height = 10, st = 1, sc =1, jc = 0)

109 ##########################################################################

110 # This Python script was written by L. He, M. Gilbert , X. Song #

111 # University of Sheffield , United Kingdom #

112 # Please send comments to: linwei.he@sheffield.ac.uk #

113 # The script is intended for educational purposes - theoretical details #

114 # are discussed in the following paper , which should be cited in any #

115 # derivative works or technical papers which use the script: #

116 # #

117 # "A Python script for adaptive layout optimization of trusses", #

118 # L. He, M. Gilbert , X. Song , Struct. Multidisc. Optim., 2019 #

119 # #

120 # Disclaimer: #

121 # The authors reserve all rights but do not guarantee that the script is #

122 # free from errors. Furthermore , the authors are not liable for any #

123 # issues caused by the use of the program. #

124 ##########################################################################
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E.2 findorientation

1 import numpy as np

2 import matplotlib.pyplot as plt

3 from mpl_toolkits import mplot3d

4 import sys

5 import trussopttools as trto

6 import os

7 from pathlib import Path

8 import cvxpy as cvx

9 from tqdm import tqdm

10 from math import ceil

11 import warnings

12 warnings.filterwarnings(’ignore ’)

13

14 ’’’

15 General Functions

16 ’’’

17 def ReportPerformance(filepath , minimumangle , showplots = True , stepsize = 5):

18 modelpath = os.path.dirname(filepath)

19 Result , is3D = GetResult(filepath)

20 sp, ep , a, l, vol = GetModelParameters(Result , is3D , steelonly = True)

21 if is3D:

22 print(f"3D structure loaded")

23 pi, best_rx , best_ry = Analyse3DPerformance(sp, ep, a, l, vol , minimumangle ,

showplots , stepsize)

24 SaveUpdatedResult3D(sp, ep, a, best_rx , best_ry , modelpath)

25 PlotRotatedTruss3D(sp, ep, a, best_rx , best_ry , pi , minimumangle , False)

26 else:

27 print(f"2D structure loaded")

28 pi, best_rz = Analyse2DPerformance(sp, ep, a, l, vol , minimumangle , showplots

, stepsize)

29 SaveUpdatedResult2D(sp, ep, a, best_rz , modelpath)

30 PlotRotatedTruss2D(sp, ep, a, best_rz , pi, minimumangle , False)

31

32 def GetResult(Result_location):

33 Result = np.array(trto.readcsv(Result_location , astype=’float ’))

34 is3D = True if len(Result [0]) == 8 else False

35 return Result , is3D

36

37 def GetModelParameters(Result , is3D , steelonly = True):

38 if steelonly:

39 Result = [row for row in Result if row [ -1]==1]

40 Result = np.array(Result)

41 if is3D:

42 Startpoints = Result [:,[0,1,2]]

43 Endpoints = Result [:,[3,4,5]]

44 a = Result [:,6]

45 else:

46 Startpoints = Result [:,[0 ,1]]

47 Endpoints = Result [: ,[2,3]]

48 a = Result [:,4]

49 l = GetLengths(Startpoints , Endpoints)

50 vol = sum(a*l)

51 return Startpoints , Endpoints , a, l, vol

52

53 def RotateArray(array , alpha , axis):

54 array = np.transpose(array)

55 alpha = (np.pi /180)*alpha

56 if axis == ’z’:

57 R = np.array ([[np.cos(alpha), -np.sin(alpha)], [np.sin(alpha), np.cos(alpha)

]])

58 if axis == ’x’:

59 R = np.array ([[1, 0, 0],[0, np.cos(alpha), -np.sin(alpha)], [0, np.sin(alpha)

, np.cos(alpha)]])

60 if axis == ’y’:

61 R = np.array ([[np.cos(alpha), 0, np.sin(alpha)], [0,1,0], [-np.sin(alpha), 0,

np.cos(alpha)]])

62 res = np.transpose(R.dot(array))
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63 return res

64

65 def CalculateAngles(startpoints , endpoints , plane):

66 sp = startpoints

67 ep = endpoints

68 if plane == ’xy’ or plane == ’yx’:

69 dxdy = np.transpose ([abs(ep[:,0]-sp[:,0]), abs(ep[:,1] - sp[:,1])])

70 deltas = dxdy

71 if plane == ’xz’ or plane == ’zx’:

72 dxdz = np.transpose ([abs(ep[:,0]-sp[:,0]), abs(ep[:,2] - sp[:,2])])

73 deltas = dxdz

74 if plane == ’yz’ or plane == ’zy’:

75 dydz = np.transpose ([abs(ep[:,1]-sp[:,1]), abs(ep[:,2] - sp[:,2])])

76 deltas = dydz

77 angles = []

78 for row in deltas:

79 angles.append(np.arctan(row [1]/ row [0]) *180/np.pi)

80 return angles

81

82 def GetLengths(startpoints , endpoints):

83 lengths = []

84 for i, sp in enumerate(startpoints):

85 deltas = []

86 for j, c in enumerate(sp):

87 deltas.append (( endpoints[i,j]-c)**2)

88 lengths.append(np.sqrt(sum(deltas)))

89 return lengths

90

91 def ReportUnprintableVolume(angles , a, l, minimumangle , is3D):

92 UnprintableVolume = 0

93 if is3D:

94 for i, angle in enumerate(angles):

95 for plane_angle in angle:

96 if plane_angle < minimumangle:

97 UnprintableVolume += a[i]*l[i]

98 break

99 else:

100 for i in [i for i in range(len(angles)) if angles[i] < minimumangle ]:

101 UnprintableVolume += a[i]*l[i]

102 return UnprintableVolume

103

104 ’’’

105 2D Functions

106 ’’’

107 def Analyse2DPerformance(sp, ep , a, l, vol , minimumangle , showplots , stepsize):

108 rotations = range (0,360, stepsize)

109 PI=[]

110 for rotation in rotations:

111 pi=PerformanceIndex2D(RotateArray(sp, rotation , ’z’), RotateArray(ep ,

rotation , ’z’), a, l, vol , minimumangle)

112 PI.append(pi)

113 # print(f"--- Angle: {rotation }"+u"\u00b0"+f" Performance Index: {pi:.2f} %

---")

114 if showplots:

115 PlotRotatedTruss2D(sp, ep, a, rotation , pi , minimumangle , True)

116 if rotation in [80 ,110 ,130 ,160]:

117 input("wait")

118 PlotResult(rotations , PI, 80)

119 res = np.transpose ([rotations , PI])

120 print(f’Best Performance Index found was {max(PI):.1f}%’)

121 best_indices = np.where(res [: ,1]== max(PI))

122 print("The following rotations have this Performance Index:")

123 for i in range(len(best_indices [0])):

124 index = best_indices [0][i]

125 angle = res[index ][0]

126 print(f"{angle}"+u"\u00b0"+" Around the z-axis")

127 rz = float(input("Type the rotation around the z-axis you would like to use: ")

)

128 return max(PI), rz
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129

130 def PerformanceIndex2D(sp, ep, a, l, vol , minimumangle):

131 angles = CalculateAngles(sp, ep , ’xy’)

132 uv = ReportUnprintableVolume(angles , a, l, minimumangle , False)

133 return ((vol -uv)/vol)*100

134

135 def PlotRotatedTruss2D(sp, ep, a, rotation , PI , minimumangle , update):

136 sp = RotateArray(sp, rotation , ’z’)

137 ep = RotateArray(ep, rotation , ’z’)

138 angles = CalculateAngles(sp, ep , ’xy’)

139 plt.clf();

140 plt.axis(’equal’)

141 plt.tick_params(

142 axis=’both’, # changes apply to the x-axis

143 labelbottom = False ,

144 labelright = False ,

145 labelleft = False ,

146 labeltop = False ,

147 tick1On = False ,

148 tick2On = False)

149 plt.ion() if update else plt.ioff()

150 title = "Model rotation: {0} degrees , PI: {1:.2f}%".format(rotation , PI)

151 plt.title(title)

152 tk = 5/max(a)

153 for i in range(len(sp)):

154 linewidth = a[i]*tk

155 c = ’#1 D3557’ if angles[i] >= minimumangle else ’grey’

156 plt.plot([sp[i,0],ep[i,0]],[sp[i,1],ep[i,1]], linewidth=linewidth , color=c)

157 plt.pause (0.01) if update else plt.show()

158

159 def PlotResult(rotations , PI, mediumlimit):

160 bestresult = max(PI)

161 bestrotation = rotations[PI.index(bestresult)]

162 perfect = []

163 medium = []

164 for i, rotation in enumerate(rotations):

165 if PI[i]>mediumlimit:

166 if PI[i] == 100:

167 perfect.append ([rotation , PI[i]])

168 else:

169 medium.append ([rotation ,PI[i]])

170 plt.close()

171 plt.ion()

172 plt.title(f"Highest Performance Index: {bestresult :.2f}% at {bestrotation}"+u"\

u00b0")

173 plt.xlabel("Rotation around the z-axis(degrees)")

174 plt.ylabel("Performance Index (%)")

175 plt.plot(rotations , PI, color=’grey’, linewidth = 2)

176 perfect = np.array(perfect)

177 medium = np.array(medium)

178 if len(perfect) >0:

179 plt.scatter(perfect [:,0], perfect [:,1], color=’#1D3557’, label= ’Good Result

(100%) ’)

180 if len(medium) >0:

181 plt.scatter(medium [:,0], medium [:,1], color=’#457 B9D’, label= ’Adequate

Result ( >80%)’)

182 plt.legend ()

183 plt.show()

184

185 def SaveUpdatedResult2D(sp, ep, a, best_rz , location):

186 sp = RotateArray(sp, best_rz , ’z’)

187 ep = RotateArray(sp, best_rz , ’z’)

188 output = np.ones((len(sp) ,6))

189 output [: ,[0 ,1]]=sp

190 output [: ,[2 ,3]]=ep

191 output [:,4]=a

192 trto.savecsv(output , location , f’updatedstruct.csv’)

193

194 ’’’
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195 3D Functions

196 ’’’

197 def Analyse3DPerformance(startpoints , endpoints , a, l, vol , minimumangle ,

showplots , stepsize):

198 rotationsx = range(0, 360, stepsize)

199 rotationsy = range(0, 360, stepsize)

200 pbar = tqdm(total=len(rotationsx)*len(rotationsy))

201 PI = np.zeros((len(rotationsy), len(rotationsx)))

202 for i, ry in enumerate(rotationsy):

203 for j, rx in enumerate(rotationsx):

204 pbar.update ()

205 pi = PerformanceIndex3D(startpoints , endpoints , rx, ry, a, l, vol ,

minimumangle)

206 PI[i,j] = pi

207 if showplots:

208 if (rx == 40 and ry == 40) or (rx == 40 and ry ==80) or (rx==120 and ry

==40) or (rx==120 and ry==80):

209 PlotRotatedTruss3D(startpoints , endpoints , a, rx , ry , pi, minimumangle ,

True)

210 input("hold")

211 pbar.close()

212 print(f"Highest performance index found was {np.amax(PI):.1f}%")

213 best_indices = np.where(PI == np.amax(PI))

214 best_orientations = []

215 print("The following combinations have this performance index:")

216 for i in range(len(best_indices [0])):

217 rx = rotationsx[best_indices [1][i]]

218 ry = rotationsy[best_indices [0][i]]

219 print(f"({i}) rx: {rx} ry: {ry}")

220 best_orientations.append ([rx , ry])

221 Visualise3DPerformance(PI , rotationsx , rotationsy , minimumangle)

222 outcome = None

223 while outcome != ’y’:

224 rx = int(input("Enter the desired value for rx: "))

225 ry = int(input("Enter the desired value for ry: "))

226 pi = PerformanceIndex3D(startpoints , endpoints , rx, ry, a, l, vol ,

minimumangle)

227 PlotRotatedTruss3D(startpoints , endpoints , a, rx , ry , pi, minimumangle ,

update=False)

228 Visualise3DPerformance(PI , rotationsx , rotationsy , minimumangle)

229 outcome = input("Is this the model you would like to continue with? (y/n): ")

230 print(f"Chosen orientation rx: {rx}, ry: {ry} with pi: {pi}")

231 return pi, rx, ry

232

233 def PerformanceIndex3D(sp, ep, rx, ry , a, l, vol , minumangle):

234 sp = RotateArray(sp, rx, ’x’)

235 ep = RotateArray(ep, rx, ’x’)

236 sp = RotateArray(sp, ry, ’y’)

237 ep = RotateArray(ep, ry, ’y’)

238 angles_xz = CalculateAngles(sp , ep , ’xz’)

239 angles_yz = CalculateAngles(sp , ep , ’yz’)

240 angles = np.transpose ([angles_xz , angles_yz ])

241 uv = ReportUnprintableVolume(angles , a, l, minimumangle , True)

242 return ((vol -uv)/vol)*100

243

244 def PlotRotatedTruss3D(sp, ep, a, rotationx , rotationy , pi , minimumangle , update)

:

245 ax = plt.axes(projection=’3d’)

246 ax.set_xlabel("x")

247 ax.set_ylabel("y")

248 ax.set_zlabel("z")

249 # ax.set_xlim (-10, 10)

250 # ax.set_ylim (-10,10)

251 # ax.set_zlim (-10,10)

252 plt.tick_params(

253 axis=’both’, # changes apply to the x-axis

254 labelbottom = False ,

255 labelright = False ,

256 labelleft = False ,
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257 labeltop = False ,

258 tick1On = False ,

259 tick2On = False)

260 ax.view_init(azim=25, elev =10)

261 title = f"rx: {rotationx}, ry: {rotationy} PI: {pi:.2f}%"

262 plt.title(title)

263 plt.ion() if update else plt.ioff()

264 sp = RotateArray(sp, rotationx , ’x’)

265 ep = RotateArray(ep, rotationx , ’x’)

266 sp = RotateArray(sp, rotationy , ’y’)

267 ep = RotateArray(ep, rotationy , ’y’)

268 tk = 5/max(a)

269 angles_yz = CalculateAngles(sp , ep , ’yz’)

270 angles_xz = CalculateAngles(sp , ep , ’xz’)

271 for i in range(len(sp)):

272 linewidth = a[i]*tk

273 c = ’#1 D3557’ if angles_yz[i] >= minimumangle and angles_xz[i] >=

minimumangle else ’grey’

274 ax.plot([sp[i,0],ep[i,0]] ,[sp[i,1],ep[i,1]] ,[sp[i,2], ep[i,2]], linewidth=

linewidth , color=c)

275 plt.pause (0.01) if update else plt.show()

276 pt = Path(f’C:\\ Users\\ Marijn \\ Google Drive\\ Civiel \\ Afstuderen \\ Python \\

RotatedPlots \\3 DRotated_{rotationx }{ rotationy }.png’)

277 if rotationx == 40:

278 if rotationy == 40 or rotationy == 80:

279 plt.savefig(pt)

280 if rotationx == 120:

281 if rotationy == 40 or rotationy == 80:

282 plt.savefig(pt)

283

284 def Visualise3DPerformance(PI, rotationsx , rotationsy , minimumangle):

285 plt.ion()

286 fig , ax = plt.subplots (1,1, frameon=False)

287 plt.title(f’Members that can be manufactured if minimumangle = {minimumangle}’)

288 ticklocations = list(range(0, len(rotationsx)+1, int(len(rotationsx)/12)))

289 ticks = list(range(0, 361, int (360/12)))

290 ax.set_xticks(ticklocations)

291 ax.set_yticks(ticklocations)

292 ax.set_xticklabels(ticks , rotation =90)

293 ax.set_yticklabels(ticks)

294 ax.set_xlabel("Rotation around x-axis")

295 ax.set_ylabel("Rotation around y-axis")

296 # c = ax.pcolor(PI , cmap=’YlOrBr ’)

297 c = ax.pcolor(PI, cmap=’Greys’)

298 cbar = fig.colorbar(c, ticks =[0,20,40,60,80,np.amax(PI)])

299 cbar.ax.set_yticklabels ([0, ’20%’, ’40%’, ’60%’, ’80%’, f’{ceil(np.amax(PI))}%’

])

300 plt.show()

301

302

303 def SaveUpdatedResult3D(sp, ep, a, best_rx , best_ry , location):

304 print(’A csv named updatedstruct.csv with members rotated to the best

orientation will now be saved in the modelpath ’)

305 sp = RotateArray(sp, best_rx , ’x’)

306 ep = RotateArray(ep, best_rx , ’x’)

307 sp = RotateArray(sp, best_ry , ’y’)

308 ep = RotateArray(ep, best_ry , ’y’)

309 output = np.ones((len(sp), 8))

310 output [:,[0,1,2]]=sp

311 output [:,[3,4,5]]=ep

312 output [:,6]=a

313 trto.savecsv(output , location , f’updatedstruct.csv’)

314

315 if __name__ == ’__main__ ’:

316 if len(sys.argv) > 1:

317 modelpath = sys.argv [1]

318 minimumangle = sys.argv [2]

319 else:

320 pass
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321 # print (" Where is the csv file of the model ?")

322 # filepath = input (" Model Location: ")

323 # print (" Minimum angle from horizontal: ")

324 # minimumangle = int(input("Angle: "))

325 #2D example:

326 # modelpath=Path("C:\\ Users \\ Marijn \\ Google Drive \\ Civiel \\ Afstuderen \\ Python \\

DefaultModelName ")

327 #3D example:

328 modelpath = Path("C:\\ Users \\ Marijn \\ Google Drive \\ Civiel \\ Afstuderen \\ Python \\

Default_233_1320")

329 # print ("What is the minimum printing angle ?")

330 # minimumangle = 25

331 # filepath = ’C:\\ Users \\ Marijn \\ Google Drive \\ Civiel \\ Afstuderen \\ Python \\

CaseStudy1 \\ struct_bd10.csv’

332 filepath = modelpath.joinpath("struct.csv")

333 minimumangle = 60

334 ReportPerformance(filepath , minimumangle , stepsize=1, showplots=False)

102



E.3 trussopttools

1 from tqdm import tqdm

2 import numpy as np

3 import itertools

4 from math import gcd , ceil

5 from shapely.geometry import Point , LineString , Polygon

6 import matplotlib.pyplot as plt

7 from mpl_toolkits import mplot3d

8 import csv

9 import os

10 from pathlib import Path

11 import time

12 import threading

13

14 #Process boundary conditions

15 def readcsv(path , astype=’int’):

16 print("Looking for csv at {}".format(path),flush=True)

17 if os.path.exists(path):

18 csv_file = open(path)

19 csv_reader = csv.reader(csv_file)

20 out = []

21 newline = []

22 #Iterate over data and add to output

23 for line in csv_reader:

24 for value in line:

25 if astype == ’int’:

26 newline.append(int(value))

27 if astype == ’float’:

28 newline.append(float(value))

29 out.append(newline)

30 newline =[]

31 print(f"csv file read with dimensions {len(out)} x {len(out [0])}")

32 return out

33 else:

34 raise Exception("No csv file found on this location")

35 def bcs(Nd, dof , directory):

36 bcspath = os.path.join(directory , "bcs.csv")

37 bcs = readcsv(bcspath , astype=’int’)

38 for bc in bcs:

39 node_nr = bc[0]

40 bc_type = bc[1] # 0: free node , 1: x fixed , 2: y fixed , 3: both x and y

fixed

41 if bc_type == 1:

42 dof[node_nr] = [0,1]

43 elif bc_type == 2:

44 dof[node_nr] = [1,0]

45 elif bc_type == 3:

46 dof[node_nr] = [0,0]

47 return dof

48 def loads(Nd, f, width , directory):

49 ldspath = os.path.join(directory , "loads.csv")

50 lds = readcsv(ldspath , astype=’float ’)

51 for i,nd in enumerate(Nd):

52 loadadded=False

53 for ld in lds:

54 nodenumber=int(ld[0])

55 xcomponent=ld[1]

56 ycomponent=ld[2]

57 if nodenumber ==i:

58 f+=[ xcomponent ,ycomponent]

59 print("Load added at node {0} with components {1} ,{2}".format(

nodenumber ,xcomponent ,ycomponent), flush=True)

60 loadadded=True

61 continue

62 if loadadded:

63 continue

64 else:

65 f+=[0 ,0]
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66 return f

67 def ReadPassiveAreas(path , initialpolygon):

68 passivepath = os.path.join(path , "passives.csv")

69 passiveareas = readcsv(passivepath , astype=’int’)

70 polygonlist = []

71 for pa in passiveareas:

72 points = int(len(pa)/2)

73 print("points: ", points)

74 xcoordinates = pa[: points]

75 ycoordinates = pa[points :]

76 print(xcoordinates , ycoordinates)

77 polygonlist.append(MakePolygon(xcoordinates ,ycoordinates))

78 return SubtractPassiveAreasFromInitialPolygon(initialpolygon , polygonlist)

79 def MakePolygon(xcoordinates , ycoordinates):

80 if len(xcoordinates) != len(ycoordinates):

81 raise Exception("Passive area can not be created , x and y coordinates are

not compliant ({0}, {1})".format(len(xcoordinates), len(ycoordinates)))

82 pointlist = []

83 for i in range(len(xcoordinates)):

84 pointlist.append(Point(xcoordinates[i], ycoordinates[i]))

85 poly = Polygon ([[p.x, p.y] for p in pointlist ])

86 return poly

87 def SubtractPassiveAreasFromInitialPolygon(initialpolygon , passiveareas):

88 poly = initialpolygon

89 fig , (p1,p2,p3) = plt.subplots(nrows=3, ncols =1)

90 plotpolygon(poly)

91 for pa in passiveareas:

92 plotpolygon(pa)

93 poly = Polygon.difference(poly , pa)

94 plotpolygon(poly)

95 plt.savefig("{0}/ testplot.png".format(os.path.dirname(os.path.abspath(

__file__))))

96 print(poly.exterior , flush=True)

97 print(poly.interiors , flush=True)

98 input("wait")

99 return poly

100 def plotpolygon(polygon):

101 p = polygon

102 x,y = p.exterior.xy

103 plt.plot(x,y)

104 for interior in polygon.interiors:

105 x,y = interior.xy

106 plt.plot(x,y)

107 plt.pause (0.01)

108 def savecsv(array , directory , filename):

109 filepath = directory+"\\"+filename

110 #Check whether file is present:

111 if (os.path.exists(filepath)):

112 print("Removing file at {0}".format(filepath))

113 os.remove(filepath)

114 try:

115 np.savetxt(filepath , array , delimiter=",", fmt=’%s’)

116 print(f"CSV with size {len(array)} x {len(array [0])} created in {filepath

}")

117 except Exception:

118 print("Failed to save file")

119 print(Exception)

120 #Save plot to file

121 def SaveToFile(modelpath , iteration):

122 #Check if modelfolder is present:

123 if os.path.exists(modelpath)== False:

124 os.mkdir(modelpath)

125 image_filename = Path("{0}\\ Plots\\ plot_ {1}. png".format(modelpath , iteration)

)

126 if os.path.exists(os.path.dirname(image_filename)) == False:

127 os.mkdir(os.path.dirname(image_filename))

128 print("Directory Created in {0}".format(os.path.dirname(image_filename)))

129 try:

130 if os.path.isfile(image_filename):
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131 print("Removing file that is already present ..")

132 os.remove(image_filename)

133 plt.savefig(image_filename , transparent=True)

134 print("Plot of iteration {0} saved at {1}".format(iteration ,

image_filename), flush=True)

135 except:

136 print("Failed to save plot of iteration {0} to {1}".format(iteration ,

image_filename), flush=True)

137

138 def CreateGroundStructure(Nd , jc, PML , convex , poly , minimum_angle ,

maximum_initial_length):

139 print("Now creating ground structure ...")

140 pbar = tqdm(total=binomial(len(Nd), 2))

141 for i, j in itertools.combinations(range(len(Nd)), 2):

142 pbar.update ()

143 dx, dy = abs(Nd[i][0] - Nd[j][0]), abs(Nd[i][1] - Nd[j][1])

144 angleok , lengthok = CheckAngleAndLength(minimum_angle ,

maximum_initial_length , dx , dy)

145 if angleok:

146 if gcd(int(dx), int(dy)) == 1 or jc != 0:

147 seg = [] if convex else LineString ([Nd[i], Nd[j]])

148 if convex or poly.contains(seg) or poly.boundary.contains(seg):

149 PML.append( [i, j, np.sqrt(dx**2 + dy**2), lengthok] )

150 pbar.close()

151 return PML

152

153 def CheckAngleAndLength(minimum_angle , maximum_initial_length , *argv):

154 deltas = [arg for arg in argv]

155 length = np.sqrt(sum([ delta **2 for delta in deltas ]))

156 lengthok = length <maximum_initial_length

157 angles =[]

158 for i in range(len(deltas) -1):

159 angles.append(np.arctan(deltas [-1]/ deltas[i]) *(180/ np.pi))

160 if min(angles)<minimum_angle:

161 return False , lengthok

162 if minimum_angle > 0 and len(deltas) == 3 and deltas [2]==0:

163 return False , lengthok

164 return True , lengthok

165

166 def CreateGroundStructure3D(Nd, jc, PML , convex , poly , minimum_angle ,

maximum_initial_length):

167 print("Now creating ground structure ...")

168 pbar = tqdm(total=binomial(len(Nd), 2))

169 PML = np.zeros (( binomial(len(Nd) ,2) ,4))

170 ’’’

171 # Greatest Common Divisor: to eliminate overlapping elements

172 ’’’

173 counter =0

174 for i, j in itertools.combinations(range(len(Nd)), 2):

175 pbar.update ()

176 dx = abs(Nd[i][0] - Nd[j][0])

177 dy = abs(Nd[i][1] - Nd[j][1])

178 dz = abs(Nd[i][2] - Nd[j][2])

179 angleok , lengthok = CheckAngleAndLength(minimum_angle ,

maximum_initial_length , dx , dy , dz)

180 if angleok:

181 if (gcd(gcd(int(dx), int(dy)), int(dz)))==1 or jc != 0:

182 seg = [] if convex else LineString ([Nd[i], Nd[j]])

183 if convex or poly.contains(seg) or poly.boundary.contains(seg):

184 # PML.append( [i, j, np.sqrt(dx**2 + dy**2 + dz**2), lengthok

] )

185 PML[counter] = [i, j, np.sqrt(dx**2 + dy**2 + dz**2),

lengthok]

186 counter +=1

187 pbar.close()

188 return PML

189

190 def binomial(n, r):

191 ’’’ Binomial coefficient , nCr , aka the "choose" function
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192 n! / (r! * (n - r)!)

193 ’’’

194 p = 1

195 for i in range(1, min(r, n - r) + 1):

196 p *= n

197 p //= i

198 n -= 1

199 return p

200 def TempPrintCn3D(Cn, Nd):

201 startindices = Cn[: ,0]. astype(int)

202 endindices = Cn[:,1]. astype(int)

203 startpoints = Nd[startindices]

204 endpoints = Nd[endindices]

205 ax = plt.axes(projection=’3d’)

206 ax.set_xlabel("x")

207 ax.set_ylabel("y")

208 ax.set_zlabel("z")

209 plt.ion()

210 for i in range(len(startpoints)):

211 startx , starty , startz = startpoints[i][0], startpoints[i][1],

startpoints[i][2]

212 endx , endy , endz = endpoints[i][0], endpoints[i][1], endpoints[i][2]

213 ax.plot([startx , endx], [starty , endy], [startz , endz])

214 plt.pause (0.01)

215 def AnalysePML(PML , Nd , number_of_intervals):

216 active_members = [member for member in PML if member [3]== True]

217 print("{0} active members counted".format(len(active_members)))

218 angles = []

219 for member in active_members:

220 Node1 = Nd[int(member [0])]

221 Node2 = Nd[int(member [1])]

222 dx = abs(Node1 [0]-Node2 [0])

223 dy = abs(Node1 [1]-Node2 [1])

224 if dx==0:

225 angles.append (90)

226 continue

227 angle = np.arctan(dy/dx)*(180/ np.pi)

228 angles.append(angle)

229 intervals = np.linspace (0,90, number_of_intervals +1)

230 intensities = ReportAngleIntensities(angles , intervals)

231 print(intensities)

232 PlotIntensities(intensities , intervals)

233

234 def ReportAngleIntensities(angles , intervals):

235 intensities = np.zeros(len(intervals) -1)

236 for angle in angles:

237 for i in range(len(intervals) -1):

238 lower_limit = intervals[i]

239 upper_limit = intervals[i+1]

240 if angle >lower_limit and angle <= upper_limit:

241 intensities[i]+=1

242 return intensities

243

244 def PlotIntensities(intensities , intervals):

245 plt.close()

246 labels = []

247 degree_sign= u’\N{DEGREE SIGN}’

248 for i in range(len(intervals) -1):

249 label = "{0}{2} - {1}{2}".format(intervals[i], intervals[i+1], degree_sign

)

250 labels.append(label)

251 print(labels)

252 fig1 , ax1 = plt.subplots ()

253

254 theme = plt.get_cmap(’copper ’)

255 ax1.set_prop_cycle("color", [theme (1. * i / len(intensities))

256 for i in range(len(intensities))])

257

258 _, _ = ax1.pie(intensities , labels = labels)
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259

260 ax1.axis(’equal’)

261

262 # total = sum(intensities)

263 # plt.legend(

264 # loc=’upper left ’,

265 # labels=labels ,

266 # prop={’size ’: 11},

267 # bbox_to_anchor =(0.0, 1),

268 # bbox_transform=fig1.transFigure

269 # )

270

271 plt.show()

272

273 def plotTruss3D(Nd , Cn , a, q, threshold , str , modelpath , update = True):

274 output =[]

275 ax = plt.axes(projection=’3d’)

276 ax.set_xlabel("x")

277 ax.set_ylabel("y")

278 ax.set_zlabel("z")

279 # plt.ion()

280 plt.ion() #if update else plt.ioff()

281 # plt.clf(); plt.axis(’off ’); plt.axis(’equal ’); plt.draw()

282 plt.title(str)

283 tk = 5 / max(a)

284 for i in [i for i in range(len(a)) if a[i] >= threshold ]:

285 # print(" plotiteration {0}". format(i))

286 if all([q[lc][i]>=0 for lc in range(len(q))]): c = ’r’

287 elif all([q[lc][i]<=0 for lc in range(len(q))]): c = ’b’

288 else: c = ’tab:gray’

289 pos = Nd[Cn[i, [0, 1]]. astype(int), :]

290 #Preparing the output

291 thickness = a[i] *tk

292 color = 0

293 if c==’r’: color = 1;

294 if c==’b’: color = 2;

295 if update == False:

296 outputline = []

297 outputline.extend(pos.flatten ())

298 outputline.extend ([a[i], color])

299 output.append(outputline)

300

301 #Plotting the truss

302 xs = pos[:,0]

303 ys = pos[:,1]

304 zs = pos[:,2]

305 ax.plot(

306 [xs[0],xs[1]], [ys[0],ys[1]], [zs[0],zs[1]], color=c, linewidth =

thickness)

307 SaveToFile(modelpath , str)

308 if update:

309 plt.pause (0.01)

310 else:

311 savecsv(output ,modelpath , "struct.csv")

312 plt.show()

313

314 def plotinput(poly , Nd , f, dof , final=False ):

315 if final == False:

316 ax = plt.axes(projection=’3d’)

317 ax.set_xlabel("x")

318 ax.set_ylabel("y")

319 ax.set_zlabel("z")

320 plt.title(’Input ’)

321 plt.ion()

322 else:

323 plt.ioff()

324 plotpolygon(poly)

325 constrained_nodes = []

326 f = np.array(f)
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327 fmax = max(abs(f))

328 f = np.split(f,len(f)/3)

329 for i, node in enumerate(Nd):

330 d = dof[i]

331 if any(np.where(d==0, True , False)):

332 constrained_nodes.append(node)

333 if any(np.where(f[i]!=0, True , False)):

334 for i, force in enumerate(f[i]):

335 if force != 0:

336 plotdirectionline(node , i, (force *4/ fmax))

337

338 constrained_nodes = np.array(constrained_nodes)

339 plt.plot(constrained_nodes [:,0], constrained_nodes [:,1], constrained_nodes

[:,2], ’k1’)

340 plt.pause (0.01)

341 plt.show()

342

343 def plotdirectionline(point , direction , length):

344 # This function creates a line in a certain direction. It can be used to

visualise an applied force or boundary conditions , including its direction.

345 if direction == 0:

346 plt.quiver(point [0], point[1], point[2], length , 0, 0)

347 if direction == 1:

348 plt.quiver(point [0], point[1], point[2], 0, length , 0)

349 if direction ==2:

350 plt.quiver(point [0], point[1], point[2], 0, 0, length)

351 plt.pause (0.01)

352

353 def CreateCorbel(Nd , width , height , depth , difference):

354 overhang = width/4

355 corbel_height = width

356 x = [overhang , overhang , 0,0, overhang , overhang , width -overhang , width -

overhang , width , width , width -overhang , width -overhang]

357 y = [height , height *3/4- difference , height *3/4- difference , height *3/4-

difference -corbel_height /2,height *3/4- difference -corbel_height ,0,0,height

*3/4- corbel_height ,height *3/4- corbel_height /2, height *3/4, height *3/4, height

]

358 # x = [overhang , overhang , 0,0,overhang ,overhang ,overhang+width ,overhang+

width ,2* overhang+width ,2* overhang+width ,overhang+width , overhang+width]

359 # y = [height , height *3/4- difference , height *3/4- difference , height *3/4-

difference -corbel_height /2,height *3/4- difference -corbel_height ,0,0,height

*3/4- corbel_height ,height *3/4- corbel_height /2, height *3/4, height *3/4, height

]

360 pts = [(x[i],y[i]) for i in range(len(x))]

361 dof , f = np.ones((len(Nd) ,3)), []

362 for i, nd in enumerate(Nd):

363 # if (nd[0] == width/4 or nd [0]==3* width /4):

364 # if (nd[1] == height /4 or nd [1]==3* width /4):

365 # if (depth == 0 or depth == depth):

366 # dof[i]==[0 ,0 ,0]

367 if nd[1] == 0 or nd[1] == height:

368 if nd[0] >= overhang +1 and nd[0] <= width -overhang -1:

369 if nd[2] >=1 and nd[2] <=depth -1:

370 dof[i] = [1,0,1]

371 if nd[1] == height *3/4- difference:

372 if nd[0] == 1:

373 f += [0, -1, 0]

374 else:

375 f+=[0,0,0]

376 elif nd[1] == height *3/4:

377 if nd[0] == width -1:

378 f += [0, -2, 0]

379 else:

380 f+=[0,0,0]

381 else:

382 f+=[0,0,0]

383

384 return Polygon(pts), f, dof

385
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386 def CountVolumes(Cn , a, q, threshold):

387 steelvol = 0

388 concvol = 0

389 l = Cn[:,2]

390 for i in [i for i in range(len(a)) if a[i] >= threshold ]:

391 # print(" plotiteration {0}". format(i))

392 if all([q[lc][i]>=0 for lc in range(len(q))]):

393 c = ’r’

394 elif all([q[lc][i]<=0 for lc in range(len(q))]):

395 c = ’b’

396 else:

397 c = ’tab:gray’

398 if c == ’r’ or c == ’tab:gray’:

399 steelvol +=a[i]*l[i]

400 if c == ’b’:

401 concvol +=a[i]*l[i]

402 return steelvol , concvol
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E.4 Adjust Member Diameter

1 import csv

2 import path

3 import numpy as np

4 import os

5 def ReadStructCSV(model_path , filename = ’struct.csv’):

6 file_path = os.path.join(model_path , filename)

7 struct = []

8 with open(file_path) as csvfile:

9 data = csv.reader(csvfile)

10 for line in data:

11 for i, cell in enumerate(line):

12 if i == 6:

13 line[i] = float(line[i])

14 else:

15 line[i] = int(float(line[i]))

16 struct.append(line)

17 return struct

18

19 def CountVolumesCSV(struct):

20 Volume_Tension = 0

21 Volume_Compression = 0

22 for mem in struct:

23 length = np.sqrt((mem[3]-mem [0]) **2+( mem[4]-mem [1]) **2+( mem[5]-mem [2])

**2)

24 area = mem[6]

25 volume = area*length

26 if mem[-1] == 1:

27 Volume_Tension += volume

28 elif mem[-1] == 2:

29 Volume_Compression += volume

30 return Volume_Tension , Volume_Compression

31

32 def AdjustBarDiameters(model_path , minimum_diameter , filename = "struct.csv"):

33 print("Adjusting bar diameters ...")

34 file_path = os.path.join(model_path , filename)

35 a_min = 0.25* np.pi*minimum_diameter **2

36 struct = ReadStructCSV(model_path , filename = filename)

37 Vol_T , Vol_C = CountVolumesCSV(struct)

38 print(f’Original volumes tension/compression = {Vol_T :.2f}/{ Vol_C :.2f}’)

39 for i, member in enumerate(struct):

40 if member [-1] == 1 and member [6] < a_min:

41 struct[i][6] = a_min

42 Vol_T_new , Vol_C_new = CountVolumesCSV(struct)

43 print(f’Adjusted volumes tension/compression = {Vol_T_new :.2f}/{ Vol_C_new :.2f

}’)

44 difference_T = Vol_T_new - Vol_T

45 difference_C = Vol_C_new - Vol_C

46 print(f’{Vol_T_new -Vol_T} added’)

47 filename = f"struct_bd{minimum_diameter }.csv"

48 filepath = os.path.join(model_path , filename)

49 np.savetxt(filepath , struct , delimiter=’,’, fmt= ’%s’)

50 print(f’Updated CSV saved at {filepath}’)

51

52 if __name__ == "__main__":

53 model_location = path.Path("C:\\ Users\\ Marijn \\ Google Drive\\ Civiel \\

Afstuderen \\ Python \\ CaseStudy1")

54 AdjustBarDiameters(model_location , 10)
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Appendix F

Calculation of pile cap
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