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Frequency and Vehicle Capacity
Determination using a Dynamic
Transit Assignment Model

Oded Cats1 and Stefan Glück1

Abstract
We integrate for the first time, to our knowledge, a dynamic transit assignment model into the tactical planning phase. The
settings of service frequencies and vehicle capacities determine line capacity and have significant consequences for level-of-
service and operational costs. The objective of this study is to determine frequency and vehicle capacity at the network level
while accounting for the impact of service variations on users and operator costs. To this end, we propose a simulation-based
optimization approach. The proposed model allows accounting for variations in service headways and crowding as well as
their consequences for passenger flows distribution, all of which have not been accounted for in the tactical planning so far.
Practical benefits of the model are demonstrated by an application to a bus network in the Amsterdam metropolitan area.
This study contributes to the development of a new generation of methods that integrate reliability into the tactical planning
phase to improve service quality.

Line capacity – that is, the number of passengers that
can be transported within a certain time interval – is
largely determined by the product of line frequency and
the capacity of the vehicles assigned for operating it. The
determination of frequencies and vehicle capacities is
thus a crucial service design decision when planning
public transport services. These decisions are considered
both at the strategic and tactical levels. At the strategic
level, frequency setting interacts with passengers’ route
choices and the designated line capacity has
consequences for the choice of public transport
technology (e.g., metro, light rail, train, or bus). At the
tactical level, both service frequencies and vehicle
capacity (e.g., number of train cars, ordinary or
articulated bus) can be altered on a seasonal basis and
vary by time of day and day of the week. Service
unreliability can severely affect line capacity by reducing
the effective frequency. However, deviations from
planning are only handled at the operational level by
deploying real-time management strategies. In this study,
we propose to integrate the impact of service reliability
on both service provider and service users into the
service dimensioning decisions.

Service providers can amend service frequency or vehi-
cle capacity in response to service utilization levels, for
example if passenger loads exceed the desired on-board
occupancy. While both increased frequency and

deploying larger vehicles inflict additional costs, the for-
mer requires the reallocation of drivers and rolling stock,
whereas the latter requires changes in rolling stock com-
position. From the passengers’ perspective, higher fre-
quency is preferred over larger vehicles. While they both
solve the on-board crowding problem, higher frequency
also yields shorter waiting times, leading to a lower gen-
eralized travel cost.

The consideration of consequences of service uncer-
tainty for resource allocation requirements has so far
been confined to vehicle and crew schedule, that is
the operational planning phase, in the public transport
planning literature. Desaulniers and Hickman (1) and
Ibarra-Rojas et al. (2) provide exhaustive reviews of the
considerable scientific efforts that have been devoted to
solving the large range of public transport planning opti-
mization problems. Frequency and vehicle size were typi-
cally either solved separately or jointly for a single line,
neglecting their interplay when distributing a limited
amount of resources under uncertainty across the service
network. Service variability is inherent to (urban) public
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transport services and stems from the stochasticity of
traffic conditions, operations and passenger demand and
their interactions. Recently, Gkiotsalitis and Cats (3)
integrated travel time, headway, and demand variability
into an exact optimization of service headways where the
expected passenger flows are assumed exogenous. In
practice, authorities or operators typically use predefined
service standards such as maximum vehicle occupancy
rates along with local experience and expert judgment as
the basis for setting frequencies and vehicle capacities.

Early studies formulated rule-based decision criteria
for determining the service frequency on a line given pas-
senger arrival rates, potential fleet size constraints and a
desired maximum vehicle load factor (e.g., 4, 5). Starting
from the 1990s, the problem was often solved in combi-
nation with assignment models that can forecast passen-
gers’ behavior in response to a potential supply setting
(6, 7). Public transport supply optimization is then
solved using bi-level optimization models: a supply opti-
mization model at the upper level and an assignment
model at the lower level which computes passenger flows
under equilibrium conditions which result from a certain
supply given by the upper level model. More recent
developments involve the consideration of additional
decision variables and the use of metaheuristics (8–10).
Several studies develop approaches for determining
both frequencies and vehicle capacities simultaneously
(11–13). These methods enable a more anticipatory plan-
ning and dimensioning of supply than if service was
merely adjusted to prevailing demand distribution
conditions.

All the methods developed hitherto have used static
assignment models for distributing passenger demand on
the service network, assuming perfectly reliable supply
conditions. Travelers are thus assumed to make decisions
based on average supply conditions. Performance indica-
tors are, therefore, computed based on the given supply
and passenger flows without taking into account the
dynamic interaction between demand and supply.
However, especially in the context of dense metropolitan
systems, the dynamic and stochastic interaction between
demand and supply may lead to significant reliability
and crowding issues that are not accounted for in static
assignment models.

The objective of this study is to determine frequency
and vehicle capacity at the network level while account-
ing for the impact of service variations on users and oper-
ator costs. To this end, we propose a simulation-based
optimization approach consisting of a metaheuristic tech-
nique which iteratively evaluates the consequences of
selected solutions using an agent-based dynamic transit
assignment model. The latter explicitly models passenger
flow distributions which are dependent on the respective
supply specifications. To the best of the authors’

knowledge, this is the first study to use a dynamic transit
assignment in solving a tactical planning problem, allow-
ing the capture of the impacts of stochastic variations in
system supply and demand on the desired service dimen-
sioning. The practical applicability and implications of
the proposed model are demonstrated using data from a
case study in Amsterdam, the Netherlands.

The paper is structured as follows: the next section
provides a review and synthesis of the literature on head-
way and vehicle size determination. We then present a
modeling framework along with a description of its for-
mulation and implementation. The model is examined
and verified using a test network and is thereafter applied
for a real-world bus network, the set-up and results of
which are detailed in the subsequent section. We con-
clude with the key findings and implications for public
transport planning and point out directions for further
research in the final section.

Methodology

The conceptual modeling framework is presented first
and followed by the details of the three key modules.

Modeling Framework

The modeling framework for setting headways and vehi-
cle size for each of the network services is depicted in
Figure 1, including the sub-models, inputs and outputs
parameters. The model consists of three sub-modules
that are performed in an iterative process. The search
process generates new solutions while enforcing fleet
availability and operational budget limitations as well as
upper and lower frequency bounds. In each iteration of
the optimization algorithm, a potential supply setting in
terms of line frequencies and vehicle capacities is gener-
ated and provided as an input to a dynamic transit
assignment model. External inputs include the underly-
ing network and demand-specific parameters such as the
specification of the route choice model and an OD-
matrix. Outputs produced by the assignment model
related to passenger and vehicle costs are evaluated by
another sub-model which evaluates the performance of
the solution. The performance is measured based on the
objective function specification for the supply condition
under consideration. The search algorithm computes
new solutions which are then provided again to the
assignment model as an input. The algorithm proceeds
by selecting a random neighbor using the relative perfor-
mance of potential solutions and computing the objective
function value using the output of the dynamic assign-
ment model. The procedure is repeated until a user-
specified stopping criterion (e.g., consistently negligible
change in objective function value) that is checked in
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each iteration is fulfilled, obtaining the final solution. In
the following sections we describe the search algorithm,
dynamic assignment model and performance evaluation
modules, respectively.

Search Algorithm

Solution Generation Process. Simulated Annealing (SA), a
probabilistic metaheuristic for searching for the global
optimum in large solution spaces, is employed as the
search algorithm. The name and inspiration of SA per-
tains to the physical annealing of solids, which is the pro-
cess of finding low energy states of a solid by initially
melting the substance, and then lowering the temperature
slowly and in a controlled way. Kirckpatrick et al. (14)
and Cerny (15) showed that a stochastic Monte Carlo
method for simulating the annealing of solids could be
used for solving large combinatorial optimization prob-
lems such as the traveling salesman problem. The algo-
rithm is designed to avoid local optima by occasionally
accepting a solution positioned in another neighborhood
of the solution space even though it is attributed with a
higher cost function value. In the public transport con-
text, it has been demonstrated that SA can efficiently
search through a large solution space and that it outper-
forms genetic algorithms in solving the transit network
design problem (16).

The SA is incorporated in the proposed headway and
vehicle size determination model. The algorithm is

initialized by a feasible initial solution that is generated
either manually or at random. Subsequently, a
Neighborhood Generator finds all feasible solutions that
can be generated by altering a single decision variable
value of one of the service lines by increasing or decreas-
ing its value to the next possible integer. This is done by
changing either the headway or the vehicle capacity of a
selected line to the next smaller or larger values of the
predefined discrete sets of allowed values, while keeping
all other variables unchanged and satisfying the feasibil-
ity constraints. The algorithm proceeds by selecting at
random a neighbor from the set of all feasible neighbor-
ing solutions. The solution is then specified and tested in
the dynamic assignment model and thereafter evaluated.
If the solution performs better than the current objective
function value, then it is accepted as the new solution.
Otherwise, it is accepted as the new solution using an
acceptance function which computes the probability,
p kð Þ, of selecting a new (worse) solution at iteration k

given a certain cost difference between the two solutions
and the current temperature value t kð Þ:

p kð Þ= e
� f kð Þ�f k�1ð Þ

t kð Þ

h i
ð1Þ

Equation 1 implies that the smaller the difference
between the old (better) solution and the new (worse)
solution is, the greater the likelihood that the new solu-
tion is accepted. The temperature is set at each iteration

Figure 1. Basic framework of the headway and vehicle size determination model.
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following an exponentially decreasing cooling function
as follows:

t k + 1ð Þ=a � t kð Þ ð2Þ

where the decreasing factor a= 0:9 is set based on val-
ues commonly set in practice (17). Equation 1 implies
that when the temperature is high, most moves will be
accepted, but as t ! 0, most uphill moves will be
rejected. The SA algorithm starts with a relatively high
value of t to avoid getting prematurely trapped in a local
optimum followed by a gradual cooling. The algorithm
is terminated once the number of successively rejected
solutions exceeds a predefined threshold criterion. The
best performing solution obtained in the course of run-
ning the algorithm is then considered to be the final
solution.

Feasibility Constraints. The feasibility of any solution gener-
ated by the search process needs to be checked. Each
solution specifies the set of headways and vehicle sizes
assigned to each line l 2 L which is subject to design. Let
H and K denote the sets of service headways and vehicle
capacities permitted or available to the service provider.
The solution is then expressed as matrices, D and G,
where each entry dl, h and gl, k is a dummy variable that
equals 1 if a certain line is assigned with a certain head-
way h 2 H and k 2 K, respectively, and 0 otherwise. By
considering a discrete set of potential headways to be
used in a solution, lower and upper bounds for headways
are introduced. Each line can be served by only one
headway and one vehicle size during the analysis period
for operational reasons, therefore:

X
h2H

dl, h = 1 8l 2 L ð3Þ
X

k2K gl, k = 1 8l 2 L ð4Þ

Furthermore, a solution may not be feasible because it
violates fleet availability or operational budget con-
straints. Upper bounds of fleet size availability per vehi-
cle type are specified as follows:

X
l2L

tlP
h2H dl, h � h

gl, k ł Nk8k 2 K ð5Þ

where Nk is the number of vehicles of size (passenger
capacity) k that are available to the service provider. The
total fleet size is thus expressed as

P
k2K Nk, where K is

the set of all allowable vehicle sizes. Here tl is the cycle
time of a given line and the denominator corresponds to
the selected line headway.

Service providers may also wish to impose a constraint
on the operational budget as follows:

X
l2L

X
k2K dl �

60P
h2H dl, h � h

� bd
k � gl, k ł u ð6Þ

where dl is the distance covered by line l, bd
k is a

parameter corresponding to the operational cost per
vehicle-km for a given vehicle size and u is a user-defined
maximum total vehicle kilometers traveled. Equation 6
can also be expressed for the total fleet by setting bk = 1

and defining u in terms of a total vehicle-kilometers bud-
get. Similarly, it can be adjusted to express the opera-
tional budget as a function of vehicle-hours.

When generating random initial or neighboring solu-
tions, an immediate feasibility check is performed by
applying Equations 3 to 6. Infeasible candidate solutions
are excluded. Depending on the specification of H , K, Nk

and u, and the service attributes (tl, dl and bk), the size
of the solution space may be significantly reduced.

Dynamic Assignment Model

Solutions are specified as inputs to BusMezzo, a dynamic
public transport operations and assignment model
designed to support the analysis and evaluation of public
transport planning, operation, and control. The reader is
referred to previous studies for details on the supply side
representation (18), model validation in relation to service
reliability (19), within-day demand side phenomena (20)
and day-to-day learning (21). Only a brief presentation of
the most relevant model features is thus given here.

The model considers the interaction between demand
and supply and its implications for service reliability and
bus bunching in particular (18, 19). The mutual interac-
tions of vehicles and passengers in BusMezzo are expli-
citly modeled using an agent-based simulation approach
consisting of within-day and day-to-day dynamics. The
latter is performed iteratively through passengers’ learn-
ing processes and adaptions until the assignment results
converge in terms of the generalized passenger travel
cost. This iterative network loading procedure yields
network-wide steady-state conditions which can be seen
as an equivalent to the congested user equilibrium in
conventional static assignment models.

The model captures the three passenger congestion
effects in public transport networks: (1) deteriorating
comfort on board a crowded vehicle; (2) denied boarding
in case of insufficient vehicle capacity; (3) service head-
way fluctuations resulting from flow-dependent dwell
time variations. The dynamic and stochastic transit
assignment simulation has been used in the past for
simulating the evolution of network reliability and on-
board crowding and quantifying passenger benefits as
part of project investment appraisals (20).

Network supply and demand are given as inputs to the
assignment model. The supply input includes network
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topology including information about the service layer
such as line configuration, timetables, travel time distribu-
tions and dwell time functions. The planned headway and
the vehicle type assigned to each line are specified based
on the D and G solution matrices assessed in a given itera-
tion of the search algorithm. BusMezzo simulates the
movements of each individual vehicle through the net-
work based on mesoscopic traffic simulation principles.

Passenger demand is represented as an Origin-
Destination matrix. The overall demand for public trans-
port is assumed here to be inelastic, neglecting potential
modal shift. However, travel demand levels are time-
dependent and the number of travelers during the time
interval may be stochastic to represent day-to-day varia-
tions. During the simulation, passengers are generated
following a Poisson arrival process, assuming that ser-
vices are frequent enough so that passengers do not coor-
dinate their arrival with scheduled vehicle arrival times.
An initial choice-set generation phase is followed by a
dynamic path choice model consisting of a sequence of
en-route travel decisions determining how passengers
progress in the network (22). A day-to-day learning and
adaption process iteratively updates the accumulated
experience of each individual passenger with respect to
waiting times, in-vehicle times, and on-board crowding
(21). Model running time, critical for iterative evalua-
tions, is for instance approximately 500 times faster than
the simulated period for a network of ;50,000 passen-
gers and ;250 transit vehicles.

Performance Evaluation

Alternative solutions are evaluated in terms of the total
system cost, consisting of transport user costs, cu, and
transport operator costs, co. In this process, the simula-
tion outputs are post-processed by transforming the dis-
aggregate passenger and vehicle trajectories and travel
time components into key performance indicators based
on the objective function specification. The objective is
minimizing the total system costs:

z=Mincu + co ð7Þ

The cost functions of users and operators, cu and co, are
based on value of time coefficients for each passenger
travel time component and the fixed and variable cost
parameters, respectively, as detailed below.

Total costs to be borne by the set of service users, J ,
are calculated based on the total generalized travel cost
per passenger and the value of time, bVOT :

cu =bVOT �
X

jeJ
binitial waittinital wait

j +bextra waittextra wait
j +bivttivt

j +bwalktwalk
j +btransxj

h i
ð8Þ

where the the generalized travel cost per passenger j e J is
the weighted sum of travel attributes with b’s as the cor-
responding parameters that reflect the perceived travel
time which are applied as multipliers of the nominal
travel values (bivt is commonly set to 1). Equation 8
reflects therefore the total passenger welfare which can
be used for economic analysis of user benefits (e.g., 20).
A distinction is made between waiting time for the first
arriving vehicle, tinital wait

j , and additional waiting time in
case the passenger experiences denied boarding, textra wait

j .
Here tivt

j and twalk
j are the total time a passenger spends

in-vehicle and walking, respectively. xj is the number of
transfers the passenger undertakes along the journey. All
these passenger travel experience attributes are deduced
per passenger by BusMezzo based on individual route
choices.

The operational costs, co, associated with a certain
supply setting consist of four components:

co = cf + cd + ct + cs ð9Þ

First, fixed costs, cf , include insurance fees, vehicle-
related taxes, a supplement for carriage reserves and
depreciation of investment costs. These costs depend on
the fleet size and composition since some of these costs
may depend on the vehicle type. The fleet size per vehicle
type (Equation 5) is then multiplied by the corresponding
fixed cost parameter for vehicle type k, bf

k:

c f =
X

l2L

X
k2K

tlP
h2H dl, h � h

� �
� b f

k � gl, k ð10Þ

Second, distance-dependent costs, cd , refer to costs such
as fuel, lubricating oil, tires and spare parts. Also the cost
parameter per distance unit, bd

k, may vary for different
vehicle sizes. The distance-based costs are, therefore,
obtained by accounting for the distance traversed by each
vehicle type multiplied by the corresponding cost:

cd =
X

l2L

X
k2K dl �

60P
h2H dl, h � h

� bd
k � gl, k ð11Þ

Third, time-dependent costs, ct, include personnel costs
including administration costs:

ct =bt �
X

l2L

tlP
h2H dl, h � h

� �
ð12Þ
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The cost parameter per time unit, bt, is not expected to
vary for different vehicle types.
Fourth, standing still costs, cs, stem from the costs
related to the fuel/energy consumption of vehicles while
they are idle (i.e., dwell and layover times). The total
time lines serving line l is an output of the simulation
model and is denoted by tidle

l :

cs =
X

k2K

X
l2L

tlP
h2H dl, h � h

gl, k � tidle
l � bs

k

� �
ð13Þ

where bs
k is the corresponding cost parameter per time

unit.

Application

The model presented in the previous section is applied to
a real-world case study network to investigate and
demonstrate its practical applicability and performance.
We first present the case study, followed by the scenario
design.

Case Study

The case study bus network is located to the north of
Amsterdam, the Netherlands. Figure 2 shows a geogra-
phical as well as a schematic representation of the case
study network. The network consists of 5 high-frequency

lines connecting central locations in the ‘Zaanstreek’ area
surrounding the city of Zaandam with key locations and
transfer hubs in Amsterdam.

The high-frequency lines – 391, 392, 394, 395 and 398 –
serve 62 stops and are part of the R-net (or
‘Randstadnet’), which is a cooperation of local authorities
and operators in the urban core of the Netherlands aiming
at providing high-quality public transport services.
Multiple travel alternatives are available for the majority
of Origin-Destination pairs, allowing passengers to adjust
their route choice in response to differences in service
intensity, service reliability and passenger congestion.

Passenger demand is analyzed based on passenger
smartcard transaction data from February 2017 consist-
ing of more than 400,000 records. The two busiest hours
during an average working day are 8 to 9 a.m. and 5 to
6 p.m. which are selected for further analysis (;1,300
during each). OD-matrices and link running times are
specified based on an empirical smartcard and vehicle
positioning data.

During the morning peak, service frequencies are cur-
rently set to 4 vehicles per hour on all lines and route
variants except for line 398, which has 3 departures per
hour (only southbound direction). During the afternoon
peak, the same supply setting is provided on most lines,
whereas an asymmetric service frequency is offered on
line 392 (the northbound direction is operated with an
increased frequency of 8 vehicles per hour).

Figure 2. Geographical (left) and schematic representation (right) of the case study network.
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Scenario Design and Model Specification

The performance and implications of the proposed
model are tested for various scenarios that differ in the
degrees of freedom given in terms of vehicle fleet compo-
sition and frequency setting. The experimental design
includes scenarios permitting (or not) for a heteroge-
neous fleet and allowing (or not) asymmetrical frequency
setting. This design allows testing whether using small
vehicles on lines with low demand can, for instance, save
operational costs that can instead be used to increase
capacity on highly-utilized lines. Furthermore, it also
allows investigating whether asymmetric frequency set-
tings can be advantageous given the asymmetric distribu-
tion of demand within the network. Moreover, two
different objective functions are considered:

� The minimization of total costs (TC) as formu-
lated in Equation 7

� The minimization of user costs (UC) costs
(Equation 8) subject to a budget constraint as
defined in Equation 6. This budget limit was set
to 907 vehicle-kilometers which correspond to the
current maximum supply offered during the anal-
ysis period. In this case, the goal is to find what is
the fleet size required and therefore the fleet size
constraint formulated in Equation 5 was relaxed,
that is, on the assumption that a sufficiently large
number of vehicles per type is available.

In addition, scenarios with either morning or afternoon
peak demand is included, as summarized in Table 1. The
corresponding current supply settings (denoted by
a.m._base and p.m._base) were also simulated for bench-
marking purposes.

Table 2 reports the vehicle type-specific input para-
meter values used in the case study for three different
vehicle types: mini, normal (currently the only bus
deployed) and articulated buses. The operational unit
cost values for the normal and the articulated bus are
based on Swedish recommendations for cost-benefit
analyses (23) and the values for minibuses are based on a
German study into the determination of operational
costs for bus services (24). Based on the existing head-
ways, cyclic timetable considerations and the observed
passenger loads, seven possible headways were
specified for each line: H= 5, 6, 7:5, 10, 12, 15, 20f g, in
minutes.

The weights in the generalized travel cost function
(Equation 8) are specified as follows: binitial wait = 2;
bextra wait = 7; bwalk = 2 and btrans = 5 [min/trans] and
bivt varies between 0.95 and 2.69 to reflect on-board
crowding as a function of whether the passenger sits or
stands and the load factors (i.e., ratio between on-board
volume and number of seats), see Cats et al. (20) for fur-
ther details on the specification of the travel cost weights.
The in-vehicle crowding multipliers are based on meta-
study of stated preference estimations. Those have been

Table 1. Scenario Design by Formulation of the Objective Function, Passenger Demand Input and Assumptions on the Decision Variables
Frequency and Vehicle Capacity

Vehicle fleet Homogeneous Heterogeneous

Frequency setting Symmetrical Asymmetrical Symmetrical

Objective Min UC Min TC Min UC Min TC Min UC Min TC

a.m. peak demand AM_UC_SYM AM_TC_SYM AM_UC_ASYM AM_TC_ASYM AM_UC_VEHCAP AM_TC_VEHCAP
p.m. peak demand PM_UC_SYM PM_TC_SYM PM_UC_ASYM PM_TC_ASYM PM_UC_VEHCAP PM_TC_VEHCAP

Table 2. Vehicle-Specific Characteristics and Operational Cost Components for the Three Different Vehicle Types Considered

Variable Minibus Normal bus Articulated bus

Seats capacity [passengers] 20 42 53
Total capacity [passengers] 35 83 158
Length [meters] 8 12 18
Number of front/rear doors 1/1 1/1 1/2
Boarding time per passenger [seconds] 2.5 2 2
Alighting time per passenger [seconds] 1.5 1 0.5
Time-dependent cost, bt[e/vehicle-hour] 48 48 48
Additional time-dependent cost when vehicle stands idle, bs

k [e/vehicle-hour] 2 2 2
Fixed costs, bf

k [e/vehicle-hour] 4.46 4.91 6.62
Distance-dependent cost, bd

k [e/vehicle-km] 0.37 0.58 0.93

Cats and Glück 7



found to be higher than the values recently found in a
revealed preference study performed based on observed
smartcard data in the Netherlands (25), while the trans-
fer penalty is in agreement with the value specified in this
study. The coefficient values are specified as input to the
simulation model and are used in calculating utility func-
tions of the route choice model in BusMezzo as well as
in the performance evaluation. The value of time is set to
bVOT = 6:75 [e/pass-hour] based on the value for urban
public transport in the Netherlands.

The total running time of the search algorithm
depends on the number of day-to-day iterations to reach
convergence, the number of assignment replications
needed to obtain statistically robust results, the number
of iterations of the SA algorithm and the runtime of one
simulation instance in BusMezzo (\10 seconds). The
number of replications for evaluating each solution was
set to 10 (each of which including day-to-day learning),
yielding a maximum allowable error of 1% of the aver-
age objective function value. Model running time
amounted to a total of 40–240minutes on a standard
PC, depending on the scenario.

Results and Analysis

Figure 3 shows the utilization of each link in the network
given the current service provision based on the

BusMezzo assignment results. Average occupancy levels
are visibly higher in the morning than in the afternoon
peak with the southbound direction of line 392 reaching
an average load factor of 1. While the load factor of indi-
vidual vehicle trips varies and occasionally exceeds 1,
vehicle capacity limitations (including standees) are never
binding in the base case scenarios. A clear directionality
in passenger volumes and supply utilization can be
observed in Figure 3 with substantial discrepancies
between the two directions of service segments within a
given time period.

Table 3 reports the decision variable values and the
corresponding user and operator costs for each of the
scenarios. Operator costs are shown also for scenarios
that seek to minimize only user costs while fulfilling the
fleet kilometers driven constraint. As expected, this value
approaches the budget limit in all of the UC scenarios as
the model attempts to minimize the user costs with the
available resources, confining the problem to a resource
allocation problem.

The solutions in terms of frequency settings exhibit
considerable differences between the two peak periods.
Especially in the ASYM scenarios, resulting from the
directionality in passenger flows. The results of the UC
scenarios suggest that a redistribution of the existing ser-
vice intensity can yield passenger travel time savings by
attaining a more balanced allocation of resources in the

Figure 3. Passenger volumes and service utilization in the case study network.
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morning peak. In addition, service frequency on the
trunk lines 391, 392, and 394 should be increased in the
afternoon peak.

When different vehicle types can be deployed, the
final solution of the UC scenario is to allocate minibuses
and articulated buses on certain lines, sometimes accom-
panied by a higher frequency (392 and 394). The passen-
ger volume over capacity ratio can be either addressed
by changing the service frequency or the vehicle capacity.
Which of these tactical design decisions will yield lower
costs depends on the dynamic interplay between supply
and demand and its consequences for service reliability
and crowding. Moreover, the passenger volume may
change as well in response to changes in travel
experience.

Interestingly, the results of the UC scenarios exhibit
overall fewer discrepancies from the base case scenario
than the TC scenarios. This suggests that the current
supply provision is steered toward minimizing user costs,
presumably due to the set-up of the procurement process
and concession contracting conditions. The final solu-
tions of the TC scenarios tend to deploy smaller vehicles
than the corresponding UC scenarios. No systematic
trend is observed for service headways.

To systematically analyze the performance of all the
scenarios in terms of user and operator costs, their results
are plotted in Figure 4. All points lying on the dashed line
traversing one of the points marking the base scenarios
(a.m._base and p.m._base) yield equal total costs (i.e.,
total system costs are currently higher in the morning than
in the afternoon peak, mainly due to higher user costs).

Overall, the performance of solutions obtained by the
TC scenarios indicates that current supply level and

allocation is close to system optimum conditions in the
afternoon peak. Conversely, user as well as total costs
can be reduced in the morning peak by increasing the
supply offered. In both morning and afternoon peak
periods, user cost savings can be attained in the UC sce-
narios by increasing the operational cost by about 20%
and 9% in the morning and afternoon, respectively, uti-
lizing the allowable budget limit (horizontal dashed line
in Figure 4). As mentioned, the budget limit was set to
u= 907 vehicle kilometers (about 2,540 e/hour) which
corresponds to the current maximum supply offered dur-
ing the peak hour analysis periods. User cost savings
stem from shorter waiting times (18.5% and 10.6% in
the morning and afternoon peaks, respectively), while
weighted in-vehicle times (1.8% in the morning peak),
the number of transfers and walking times remain largely
unaffected.

In both morning and afternoon peak periods, the
VEHCAP solutions perform significantly better than all
other corresponding scenarios with respect to user bene-
fits based on t-tests with a confidence level of 95%. Since
the deployment of smaller types of vehicles can decrease
the average operational costs per bus compared with the
current situation, a larger number of buses can be
deployed while maintaining the same operational
expenses and while reducing passenger waiting times.

The solutions obtained for the TC scenarios exhibit a
significantly different trend for the two periods regarding
their performances relative to the respective base cases.
In the morning peak, service can better cater for the pre-
vailing demand with user costs reductions of about 12%
whereas in the afternoon peak no significant improve-
ment is yielded. As in the UC scenarios, most of the

Figure 4. Overview of the performance of all solutions found for the different scenarios in terms of associated passenger-related and
operational costs.
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savings in user costs can be attributed to reductions in
waiting times, yet in-vehicle times can also be slightly
reduced by up to 2.5% (morning peak). Note that the
best performing solutions with respect to user costs are
always obtained in the VEHCAP scenarios. A heteroge-
neous fleet composition yields a reduction in overall sys-
tem costs, concurring with the results reported by
Dell’Olio et al. (11). A statistically significant reduction
in total costs is only attained in the morning peak for the
VEHCAP scenario (1.1%). In contrast, in the afternoon,
none of the solutions found can significantly reduce the
total costs. Therefore, during this period, a change in
supply provision cannot yield significant benefits in
terms of total costs, yet, significant passenger cost sav-
ings can be attained by increasing supply up to the avail-
able budget limit.

Conclusion

The dimensioning of line capacity across the network is
one of the most important decisions made by public
transport planners. While the effective capacity, passen-
ger waiting times and on-board crowding and fleet size
requirements depend on service reliability, models for
setting line frequencies and vehicle capacities were either
confined to single-line operations or neglected the uncer-
tainty inherent to service operations. We propose a
method for addressing this gap in the literature by con-
tributing to a new generation of models that integrate
reliability into the tactical planning phase. The proposed
method allows for the simultaneous determination of line
frequencies and vehicle capacities based on the iterative
assessment of candidate solutions using a dynamic and
stochastic transit assignment model. This enables the
consideration of the dynamic interaction between
demand and a potential supply setting and the resulting
consequences on overall system performance at the net-
work level.

The application of the model demonstrates its practi-
cal applicability and yielded solutions that can improve
upon the current situation. The results suggest a consid-
erable improvement potential in the morning peak hour,
where significant travel cost savings can be made, sug-
gesting that overall supply provision should be increased.
In contrast, in the afternoon peak, changing the current
situation is not necessary from a total system cost point
of view. This result confirms the adequacy of the current
situation given the prevailing demand conditions.
Furthermore, our findings clearly highlight the advan-
tages of an asymmetric service provision during periods
of directed passenger demand. Moreover, a simultaneous
determination of vehicle capacities and line frequencies
attests to the benefits of deploying a mixed vehicle fleet
in the case study network.

The proposed model has several limitations which
suggest avenues for future research. The consequences of
line capacity decisions on subsequent planning decisions
– namely, timetable design, vehicle and crew scheduling –
can be assessed by accounting for drivers and rolling
stock circulation constraints. The estimated fleet size
required and the respective operational costs may need
to be adjusted based on the exact vehicle scheduling.
Future research may thus seek to integrate vehicle sche-
duling constraints into the frequency and vehicle capacity
determination problem. Another potential development
is demand elasticity to line capacity and in particular to
service frequency. The societal value of ridership growth
needs then to be incorporated in the objective function.

The supply setting problem is formulated in this study
as a system cost minimization problem consisting of ser-
vice users (generalized travel) costs and service providers
(fixed and variable) costs. The objective function can
also consider only user costs or only operator costs. The
former was investigated in this study and requires the
specification of operational constraints in terms of an
available vehicle fleet or budget constraint so that the
maximum quantity of supply provided is bounded. This
exemplifies the potential value of adjustments in service
frequencies and vehicle allocation for transit quality and
level of service, even when assuring that no additional
resources are required. In the latter case, where only
operator costs are minimized, a constraint ensuring that
demand is served satisfactorily needs to be introduced.
This could for instance be the condition that a certain
minimum level of service is provisioned and that the
maximum vehicle occupancy rate should not be exceeded
on any line segment. In other words, the capacity offered
is always sufficient.

Potential applications of the proposed model extend
beyond the tactical level and include strategic network
design and supply setting during special events. The
model can be used for network design by specifying all
candidate lines (i.e., line pool) and those lines resulting in
zero or very low frequencies could then be removed from
the set of attractive lines. Running the model on a modi-
fied network or special demand configurations in case of
special circumstances such as construction works or
large-scale events can create valuable outputs which can
be used as a tactical basis for predefined service plans.
Finally, we intend to extend the model to investigate the
breakeven point for deploying automated public trans-
port services by testing it for a range of fixed and vari-
able costs.
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