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Breast cancer subtype predictors
revisited: from consensus to concordance?
Herman MJ. Sontrop1,2, Marcel JT. Reinders3 and Perry D. Moerland4*

Abstract

Background: At the molecular level breast cancer comprises a heterogeneous set of subtypes associated with clear
differences in gene expression and clinical outcomes. Single sample predictors (SSPs) are built via a two-stage
approach consisting of clustering and subtype predictor construction based on the cluster labels of individual cases.
SSPs have been criticized because their subtype assignments for the same samples were only moderately concordant
(Cohen’s κ<0.6).

Methods: We propose a semi-supervised approach where for five datasets, consensus sets were constructed
consisting of those samples that were concordantly subtyped by a number of different predictors. Next, nine subtype
predictors - three SSPs, three subtype classification models (SCMs) and three novel rule-based predictors based on the
St. Gallen surrogate intrinsic subtype definitions (STGs) - were constructed on the five consensus sets and their
associated consensus subtype labels. The predictors were validated on a compendium of over 4,000 uniformly
preprocessed Affymetrix microarrays. Concordance between subtype predictors was assessed using Cohen’s kappa
statistic.

Results: In this standardized setup, subtype predictors of the same type (either SCM, SSP, or STG) but with a different
gene list and/or consensus training set were associated with almost perfect levels of agreement (median κ>0.8).
Interestingly, for a given predictor type a change in consensus set led to higher concordance than a change to
another gene list. The more challenging scenario where the predictor type, gene list and training set were all different
resulted in predictors with only substantial levels of concordance (median κ=0.74) on independent validation data.

Conclusions: Our results demonstrate that for a given subtype predictor type stringent standardization of the
preprocessing stage, combined with carefully devised consensus training sets, leads to predictors that show almost
perfect levels of concordance. However, predictors of a different type are only substantially concordant, despite
reaching almost perfect levels of concordance on training data.
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Background
In the last decade substantial advancements have been
made in our ability to probe the human transcrip-
tome, especially by high-throughput techniques such
as microarrays and more recently by next generation
sequencing, i.e. RNA-seq. These techniques have deep-
ened our understanding of complex diseases such as
breast cancer [1]. Genome-wide studies have also firmly
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established the notion that breast cancer does not con-
stitute a single disease at the molecular level, but com-
prises a heterogeneous set of subtypes, associated with
striking differences in gene expression patterns, clinical
outcome and response to therapy [2]. One of the most
widely adopted subtyping schemes in this regard is the one
introduced by Perou et al. [3], which distinguishes the sub-
types luminal (subsequently divided in the subgroups A,
B, and/or C), basal, HER2 and normal-like.
Subtype predictors have mainly been constructed via

a two-stage approach [4]. In the first stage an initial
grouping of samples of the same subtype is identified
by hierarchical clustering, i.e. by unsupervised learning.
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Important ingredients of such schemes are the linkage cri-
terion, distance measure and feature list. In the context
of subtyping, the latter is often referred to as the intrin-
sic gene list (IGL) [3]. In the second stage a predictor is
constructed based on supervised learning: cluster labels of
individual cases from the first stage are used as class labels
in order to train a predictor, often of the nearest centroid
type. In breast cancer literature these predictors are fre-
quently referred to as single sample predictors (SSPs) [5].
Note that once an SSP has been fitted, new cases can be
subtyped without a clustering stage (Fig. 1a). The most
well-known breast cancer SSPs are those by Sørlie et al.
[6], Hu et al.[7] and PAM50, developed by Parker et al. [8].
In the remainder we will refer to these three predictors as
the classic SSPs.
The two-stage approach towards subtype identification

is, however, not without its pitfalls.Weigelt and colleagues
[5] reported a low concordance between subtype assign-
ments by the classic SSPs on four single-channel and
dual-channel microarray datasets. They conclude that the
classic SSPs do not reliably assign subtypes to individ-
ual patients and that therefore such identifications are
not ready yet for routine clinical practice. The study was
criticized by Perou et al. [9] and Sørlie et al. [10] based

on bioinformatics-based technical limitations, claiming
that the findings were flawed due to the use of uncen-
tered data. In a subsequent rebuttal Weigelt et al. [11],
however, showed that properly centering the data did
not lead to substantial improvement of the levels of con-
cordance. The findings by Weigelt et al. [5, 11] were
corroborated by a meta-analysis of a substantially larger
number of datasets from a variety of microarray plat-
forms [12]. Herein, Haibe-Kains and colleagues reported
low robustness and concordance for SSPs and proposed
SCMGENE [12], a robust three-gene model based on the
subtype classification model (SCM) methodology using a
Gaussian mixture model on a set of module scores [13]
(Fig. 1b).
From the findings of Weigelt et al. [5, 11] and Haibe-

Kains et al. [12], an unsettling notion on the reliability of
SSPs emerges. However, these studies have several limita-
tions which may have negatively influenced the observed
concordance. First, concordance assessments were made
on data from multiple platforms, often different from
the one(s) on which the SSPs had originally been con-
structed. Second, they used publicly available expression
data that had been normalized by a variety of normal-
ization schemes, even for data from the same platform.

Fig. 1 Conceptual overview subtype predictors. a Single sample predictor (SSP). For each subtype a centroid is computed (depicted by different
colors) representing a vector of average values for each gene in the intrinsic gene list (IGL), i.e. a predetermined list of relevant genes, taken over a
training set of samples assumed to be of the same subtype. In order to determine the subtype of a new case, one computes the distance to each of
the centroids and assigns the new case to the subtype corresponding to the centroid that is nearest, here assumed to be the luminal A centroid,
leading to the luminal A subtype. b Subtype classificationmodel (SCM). Each sample is represented by three module scores (MS) calculated based on
module gene lists (MGLs), i.e. the list of genes associated with a module. Training set samples are first divided into basal, HER2 and luminal subtypes
by fitting a 3-component Gaussian mixture model to the ER and HER2 related module scores (top panel, colored circles and dotted grey ovals).
Subsequently, cases of the luminal subtype are divided into two subtypes, based on their proliferationmodule score. Samples with a low proliferation
score are assigned to the lumA (luminal A) subtype, whereas samples with a high proliferation score are assigned to the lumB (luminal B) subtype.
The subtype of a new case can be determined by calculating the posterior membership probabilities under the Gaussian mixture model and
selecting the subtype associated with the maximum posterior probability. In the example, the new case (depicted with a cross) has a high ER module
score and low HER2 and proliferation module scores, leading to the luminal A subtype. c STG subtype predictor based on the St. Gallen surrogate
intrinsic subtype definitions [14]. Over(+)/under(-)expression of clinical markers for ER, HER2, KI-67 (proliferation status) and PGR allows for 24 = 16
distinct profiles. Here, the over/underexpression status of each marker was determined based on microarray measurements in a way similar to SCMs,
i.e. via module scores. The subtype of a new case is fully determined by the over/underexpression status of the individual markers. In the example,
the new case is assumed to have a high ER signaling score and low HER2, PGR and proliferation scores, leading to the luminal A subtype (blue arrow)
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Third, the classic SSPs were not specifically designed to
be concordant at the individual sample level [9]. Perou
et al. [9] present PAM50 as a logical evolution over time in
which several deliberate design changes were made com-
pared to previous versions such as the SSPs of Sørlie and
Hu. In that perspective, one could even argue that the dis-
cordance of the classic SSPs does not actually present a
problem.
Here, we attempt to unify the different and sometimes

conflicting views expressed in the articles byWeigelt et al.
[5, 11], Perou et al. [9], Sørlie et al. [10] and Haibe-Kains
et al. [12]. We do so by analyzing subtype predictors in
a setup in which all predictors are specifically designed
to be highly concordant at the individual sample level.
For five training sets, a semi-supervised approach was
used to construct corresponding consensus sets (CSs)
consisting of those samples that were concordantly sub-
typed by a number of different predictors selected from
three classes of subtype predictors: (i) the PAM50 SSP,
(ii) three re-fitted SCMs and (iii) a novel rule-based pre-
dictor (STG) based on the surrogate intrinsic subtype
definitions proposed at the 2011 St Gallen Consensus
Conference [14] (Fig. 1c). For the resulting consensus sam-
ples, we argue that there is reasonable certainty regarding
their subtypes. This enabled us to construct novel sub-
type predictors on consensus sets via supervised learning.
For SSPs this may be especially advantageous as in this
way a potentially unstable hierarchical clustering stage
[12, 15, 16] in the predictor construction phase can be
completely avoided.
We start with a comprehensive reassessment of the con-

cordance of the classic SSPs on subtype assignments taken
from the literature. We proceed with the construction
of five consensus sets and construct a variety of CS-
based models, which for a given subtype predictor type
(SCM, SSP, or STG) mainly differ in the associated con-
sensus training set and/or the gene list on which they
were based. The CS-based predictors were subsequently
applied to a large collection of validation sets. In total,
we collected 22 uniformly preprocessed datasets con-
taining over 4,000 unique hybridizations. We used this
microarray compendium to assess the concordance of
the classic SSPs and SCMs, and of nine novel CS-based
subtype predictors: three SSPs, three SCMs, and three
STGs.

Methods
Gene expression data
A breast cancer microrray compendium consisting of 22
datasets was constructed. The compendium comprises
4,227 breast cancer tumor samples (Table 1) and includes
a set of 93 replicate array pairs. All datasets were obtained
using a single measurement platform, i.e. Affymetrix.
Each of the hybridizations was uniformly processed by

a three-step procedure consisting of (i) re-normalization
by frozen RMA (fRMA) [17], (ii) quality control and (iii)
a robust scaling step, as described below. All the data
analyzed in this study were previously published. Ethical
approval was not required because no human breast tissue
was acquired for this study.

fRMA normalization
The Affymetrix compendium was normalized by fRMA
using a pre-computed reference distribution for all 22,215
non-control probesets present on the hgu133a platform.
Expression estimates were based on the robust weighted
average mode [17] of fRMA. An extended description of
the normalization procedure is provided in Additional
file 1: Section 1.1.

Quality control
An extensive quality control (QC) analysis was per-
formed aimed at identifying hybridizations that consis-
tently showed indications of poor quality, either before or
after normalization. The complete QC protocol, includ-
ing related results, is described in Additional file 1:
Section 1.2. In total 319 samples (7.5%) were rejected
based on consistent indications of poor quality. In the
remaining analyses only hybridizations that passed QC
were used.

Subtype predictors
Subtype assignments to the four main subtypes on which
broad agreement exists [18], i.e. basal, HER2, luminal A
and luminal B, were based on three types of predictors: (i)
SSPs, (ii) SCMs and (iii) STG subtype predictors derived
from the gene expression-based quantification of estrogen
receptor (ER), epidermal growth factor receptor 2 (HER2),
progesterone receptor (PGR) and proliferation activity
following the St. Gallen surrogate intrinsic subtype defini-
tions (Fig. 1). A more comprehensive description of each
subtype predictor type is provided in Additional file 1:
Section 2.

Robust scaling
Normalization by fRMA does not completely remove sys-
tematic differences between datasets in the Affymetrix
compendium, which were compiled over a large num-
ber of years and involve a substantial number of distinct
processing sites. Therefore, for SSP-related experiments
after normalization by fRMA the expression values of each
dataset D1-D22 (Table 1) were robustly scaled [12], using
the genefu package. In the scaling step, for each dataset
and probeset separately, the 2.5 and 97.5 percentiles were
scaled to -1 and +1, respectively. For a given SCM or
STG and dataset, instead of scaling the expression data
directly, we first computed the module scores on unscaled
data and subsequently robustly scaled the module
scores.
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Table 1 Overview Affymetrix compendium

ID Dataset Nr. of samples Nr. of samples (QC) Chip Source Reference

Rejected Passed

D1 Richardson (I) 47 5 42 hgu133plus2 GSE3744 [39]

D2 Li 115 6 109 hgu133plus2 GSE19615 [40]

D3 Lu 127 3 124 hgu133plus2 GSE5460 [41]

D4 Bos 204 16 188 hgu133plus2 GSE12276 [42]

D5 Dedeurwaerder 90 7 83 hgu133plus2 GSE20711 [43]

D6 expO 353 20 333 hgu133plus2 GSE2109 [12]

D7 Kao 327 33 294 hgu133plus2 GSE20685 [44]

D8 Richardson (II) 84 9 75 hgu133plus2 GSE18864 [40]

D9 Sabatier 266 24 242 hgu133plus2 GSE21653 [45]

D10 Guedj 537 36 501 hgu133plus2 E-MTAB-365 [21]

D11 Symmans (III) 32 4 28 hgu133plus2 GSE17700 [46]

D12 Symmans (I) 298 23 275 hgu133a GSE17705 [46]

D13 Symmans (II) 32 3 29 hgu133a GSE17700 [46]

D14 Desmedt 198 13 185 hgu133a GSE7390 [47]

D15 Farmer 49 3 46 hgu133a GSE1561 [48]

D16 Schmidt 200 18 182 hgu133a GSE11121 [49]

D17 VDX 344 29 315 hgu133a GSE2034,GSE5327 [36, 37]

D18 Miller 251 18 233 hgu133a GSE3494 [50]

D19 Pawitan 159 16 143 hgu133a GSE1456 [51]

D20 Shi 278 19 259 hgu133a GSE20194 [52, 53]

D21 MSK 99 8 91 hgu133a GSE2603 [54, 55]

D22 UNT 137 6 131 hgu133a GSE2990 [56, 57]

Total 4227 319 3908

The compendium consists of data from 22 datasets measured by a single measurement platform, i.e. Affymetrix. The expression data was measured on two distinct array
designs, i.e. hgu133plus2 (top 11 datasets, 2,182 samples) and hgu133a (bottom 11 datasets, 2,045 samples). We only considered the 22,215 probesets that these designs
have in common, which represent all non-control probesets present on the hgu133a platform. Shared probesets are based on an identical set of probes with identical probe
sequences. Remaining heterogeneity on these datasets was further reduced using frozen RMA [17] normalization and robust scaling [12] (Methods). Furthermore, an
extensive quality control (QC) analysis was performed aimed at identifying (and removing) hybridizations that consistently showed indications of poor quality (Methods;
Additional file 1: Section 1.2). ID: short dataset identifier; Dataset: dataset name; Nr. of samples: total number of available samples; Rejected: number of samples removed based
on QC; Passed: total number of samples remaining after QC. In total 319 samples (7.55%) were rejected based on consistent indications of poor quality. Chip: array design
used, i.e. hgu133plus2 or hgu133a; Source: the accession number under which the raw intensity data can be found at GEO [34]. Dataset D10 is available at ArrayExpress [35]
(accession number E-MTAB-365); Reference: reference to main study. The 344 sample VDX dataset (D17) consists of the combined expression data of the 286 sample dataset
by Wang et al. [36] and the 58 ER- sample dataset by Yu et al. [37]. Finally, note that the Symmans datasets (D11-D13) represent ER+ datasets. To prevent bias due to scaling
of a dataset with a highly skewed subtype distribution [26, 38], datasets D12 and D13 were first concatenated to the VDX dataset and subsequently scaled as a single dataset,
after which the VDX dataset was removed. Similarly, dataset D11 was combined with the expO dataset during scaling. A similar strategy was followed by Haibe-Kains et al. [12]

Consensus sets and CS-based predictor construction and
evaluation
Consensus sets
In order to obtain predictors that are as concordant
as possible on the individual sample level, for a given
training set T, we only used those samples for predic-
tor construction that were concordantly subtyped by five
predictors: (i) the classic PAM50 SSP, (ii) three SCMs
estimated on T and (iii) an STG predictor estimated
on T (Additional file 1: Section 2). We refer to the set
of concordantly subtyped samples as the consensus set
(CS) of T. The complete procedure is outlined in Fig. 2a.
Of the five predictors used to determine a CS, four are

constructed via unsupervised learning on T itself. An
advantage of using consensus sets for predictor construc-
tion is that SSPs, SCMs and STGs can be constructed
on identical training cohorts. Furthermore, SSPs can be
constructed in a supervised way, i.e. a potentially highly
unstable hierarchical clustering step [12] can be avoided.
Five training sets were used for consensus set construc-
tion (Table 2). In each CS all four subtypes were well
represented. The stringent CS selection criteria implied
a strong reduction in terms of samples available for pre-
dictor construction (median 64.0% remaining). Note that
the consensus set samples themselves can be stably iden-
tified using hierarchical clustering and lead to module
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Fig. 2 Consensus set-based predictor construction and evaluation. In panels (a) and (b), row (i) represents subtype predictor models and row (ii)
corresponds to sets of predictions made by these models. Each column corresponds to a different predictor/subtype assignment set pair.
a Consensus set construction (see Methods). For a given training set T, five initial sets of subtype assignments are obtained. First, the original PAM50
predictor is applied to T, resulting in subtype assignment set ST PAM. Next, three SCMs models are estimated on T, based on the MGLs D, W and HK
(Additional file 1: Section 2). Here SCM X,T denotes an SCM estimated on T, based on MGL X. The resulting SCMs are subsequently applied to T
resulting in three additional sets of subtype assignments, i.e. ST D, ST W, and ST HK. A final set of subtype assignments ST STG is obtained by the
application of the STG predictor on the over/underexpression profile of ER, HER2, PGR and proliferation phenotypes, estimated on T. From the five
subtype assignment sets in row (ii) a consensus set (CS) is derived consisting of those samples in T for which all five subtype assignments are
concordant. b Construction and evaluation of the consensus set-based subtype predictors SSP.cs (left), SCM.cs (middle) and STG.cs (right), see
Methods. For a given CS, three SSPs are constructed that differ only by their associated IGL S, H or P (Additional file 1: Section 2). Here SSP X,CS
represents an SSP with associated IGL X, of which the centroids are estimated on CS. The SSPs are subsequently applied to a validation set V, leading
to subtype assignment sets SV S, SV H and SV P, respectively. On the same CS also three SCMs are constructed, based on the MGLs D, W and HK. The
resulting SCMs are subsequently applied to validation set V, yielding subtype assignment sets SV D, SV W and SV HK. Similar to SCMs, also three
STG.cs predictors are constructed based on MGLs D, W and HK and applied to validation set V

scores that are reasonably bimodal (Additional file 1:
Section 3).

Construction of CS-basedmodels
On each consensus training set, three SSPs, three SCMs
and three STGs were constructed. For SSP construc-
tion we employed the IGLs related to the classic SSPs,

i.e. IGL S(ørlie), H(u) and P(arker) (Additional file 1:
Section 2), and used the updated probeset-to-gene map-
pings of Mackay et al. [19]. Similarly, for SCMs we used
the module gene lists (MGLs) related to the classic SCMs,
i.e. the MGL D(esmedt), W(irapati) and H(aibe-)K(ains)
(Additional file 1: Section 2). For all IGLs and MGLs,
in case multiple probesets mapped to the same Entrez

Table 2 Consensus set statistics

Dataset Chip Nr. of samples Nr. of samples (%)

after QC CS Basal HER2 LumA LumB

Bos hgu133plus2 188 119 (63.3) 49 (41.2) 19 (16.0) 23 (19.3) 28 (23.5)

expO hgu133plus2 333 213 (64.0) 56 (26.3) 20 (9.4) 75 (35.2) 62 (29.1)

Guedj hgu133plus2 501 235 (46.9) 40 (17.0) 21 (8.9) 88 (37.4) 86 (36.6)

Li hgu133plus2 109 83 (76.1) 25 (30.1) 10 (12.0) 29 (34.9) 19 (22.9)

Sabatier hgu133plus2 242 162 (66.9) 63 (38.9) 15 (9.3) 40 (24.7) 44 (27.2)

Total 1373 812 (59.1) 233 (28.7) 85 (10.5) 255 (31.4) 239 (29.4)

Overview of the five training sets (see also Table 1) used for consensus set construction and the resulting consensus sets. Numbers in parentheses represent percentages. For
CS, percentages were calculated w.r.t. the number of samples after QC; for the subtypes w.r.t. the size of the CS. The complete set of 812 consensus set samples, including
subtype assignments, is available as Additional file 3
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Gene ID, the most variable probeset was selected [12].
SCMs consider three out of the four biological processes
included in STGs, i.e. ER and HER2 signaling and prolif-
eration. We therefore constructed a variety of CS-based
STGs in which ER, HER2 and proliferation phenotypes
were measured by the same modules as for SCMs, i.e.
MGLs D, W and HK. As SCMs do not consider PGR, for
this marker we always used the same single probeset mod-
ule (Additional file 1: Section 2). We refer to the resulting
CS-based predictors as SSP.cs, SCM.cs and STG.cs pre-
dictors, respectively. Note that CS-based predictors con-
cordantly subtype each other’s samples (Additional file 1:
Section 3). Hence, CS-based predictors were highly con-
cordant on the individual sample level on training data.
After CS-based predictor construction, all predictors were
applied to a large collection of validation sets, of which
the resulting subtype assignments were subsequently used
in various concordance assessments. The complete proce-
dure is outlined in Fig. 2b.

Concordancemeasure
The level of concordance between subtype assignments
of two distinct subtype predictors was measured by the
percentage of concordant samples (cc) and Cohen’s kappa
statistic [20]. The range of values kappa can take is gen-
erally subdivided into five intervals that describe concor-
dance in qualitative terms: 0–0.2 (slight), 0.21–0.4 (fair),
0.41–0.6 (moderate), 0.61–0.8 (substantial) and 0.81–1
(almost perfect). Kappa statistics were computed over all
subtypes or for a specific subtype only. In the latter case,
for a given subtype s, the complete subtype vector was
transformed into a binary vector indicating whether the
prediction was either s or not s. Subsequently, a con-
tingency table was formed for which a kappa statistic
was computed representing the subtype-specific kappa for
subtype s.

Results
This section is divided into two parts: (i) concor-
dance assessments based on a large set of previously
reported classic SSP subtype assignments, (ii) evaluation
of CS-based subtype predictors (Fig. 2) and their classic
counterparts via intra- and inter-predictor concordance
assessments on the Affymetrix compendium. The main
results are shown in Fig. 3 that presents the central figure
of this text.

Concordance of classic SSPs on published subtype
assignments
We compiled a large set of reported subtype (includ-
ing normal-like) assignments for the classic SSPs based
on the efforts of four research groups. The top box and
whisker (BW) plot in each panel of Fig. 3 (‘weigelt uncen-

tered’) shows the concordance levels calculated based on
the subtype assignments reported by Weigelt et al. [5]
(normal-like not shown) for four datasets, profiled on dif-
ferent array platforms, with a total of 832 samples (mod-
erate concordance, median κ=0.467; Additional file 2:
Table S1). Concordance levels when properly centering
the data [9–11] are depicted by a second set of BW plots
in Fig. 3 (‘weigelt centered’) and did not show a substan-
tial improvement (median κ=0.561). Our reanalysis shows
that for single-channel datasets, the effect of centering or
not is in fact as large as the effect of a change to another
SSP as studied by Weigelt and colleagues (Additional
file 2: Table S3). From the latter observation the criticisms
expressed by Perou et al. [9] and Sørlie et al. [10] appear
justified.
The concordance estimates based on thousands of sub-

type assignments by the other three groups are super-
imposed over the ‘weigelt centered’ BW plots in Fig. 3
as gray symbols. Each symbol indicates a particular
pair of classic SSPs (see legend), while letters indicate
the origin of the subtype assignments, i.e. G: Guedj
et al. [21], H: Haibe-Kains et al. [12] and P: Perou
lab (https://genome.unc.edu/pubsup/breastGEO/). These
findings clearly confirm the main claim by Weigelt et al.
namely the lack of concordance of the classic SSPs, on
a much larger number of samples. Especially the lumi-
nal B subtype was highly discordant (κ=0.192–0.633,
Additional file 2: Table S4). In agreement with previ-
ous observations the basal subtype was most concor-
dantly subtyped (κ=0.692–0.907). The highest level of
overall concordance between SSPs was obtained by the
Perou lab for the SSP by Hu and PAM50 (κ=0.710,
cc=77.60%). This is not surprising given that both
SSPs were developed at the Perou lab and were mainly
applied by them to data from the same dual-channel
platform.

Concordance of classic and CS-based subtype predictors
on Affymetrix compendium
We next assessed the concordance of classic subtype pre-
dictors and CS-based predictors when evaluated on a
large set of uniformly preprocessed validation datasets
measured on Affymetrix hgu133plus2 and hgu133a
microarrays (Table 1).

Classic SSP intra-predictor evaluationwith andwithout a
normal-like subtype
The classic SSP concordance estimates presented above
were based on previously reported subtype assignments
that included a normal-like subtype. We also estimated
these on our hgu133plus2 compendium and again only
moderate levels of agreement between classic SSPs
were observed (median κ=0.575, median cc=70.75%;
Additional file 2: Table S2). SCM predictors, as well

https://genome.unc.edu/pubsup/breastGEO/
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Fig. 3 (See legend on next page.)
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(See figure on previous page.)
Fig. 3 Intra-predictor concordance of SSPs and SCMs. Comparisons between predictors of the same type, e.g. the SSP of Hu vs. the SSP of Parker. The
five panels show box and whisker (BW) plots for kappa statistics calculated over all subtypes and for each subtype separately, as indicated on the left
hand side. Results for individual datasets are superimposed as dots. Each panel contains ten BW plots. From top to bottom these respectively
indicate concordance for pairs of: (i) classic SSPs initially reported by Weigelt et al. [5], i.e. based on uncentered data (‘weigelt uncentered’), (ii) classic
SSPs by Weigelt et al. [11], based on centered data (‘weigelt centered’). Estimates based on subtype assignments from the literature are
superimposed as gray symbols with letters (see running text), (iii) classic SSPs without a normal-like subtype (SSP.classic.4s), (iv) classic SCMs
(SCM.classic), (v) SSP.cs predictors, different CS and IGL, (vi) SSP.cs, same CS and different IGL, (vii) SSP.cs, same IGL and different CS, (viii) SCM.cs,
different CS and MGL, (ix) SCM.cs, same CS and different MGL, and (x) SCM.cs, same MGL and different CS. Results for BWs (iii)-(x) are based on the
hgu133plus2 compendium consisting of 11 datasets (2,019 samples after QC, Table 1). Vertical gray lines indicate kappa estimates that were pooled
over all three groups of comparisons per predictor type. Top legend: type of concordance assessment indicated by the color of BW median values
(indicated by a bar) (GL: gene list, IGL or MGL). Bottom legend: predictor type indicated by the color of a BW box. Numerical details of the BW plots
and, highly similar, results for the analyses on all 3,908 arrays (including the hgu133a samples) are presented in Additional file 2: Tables S1 and S2

as our CS-based predictors, however, do not consider
a normal-like subtype. The primary motivation for this
choice is that currently there is no consensus whether
this subtype is a genuine breast cancer subtype [21] or
an artifact of breast tumor tissues having a high percent-
age of normal contamination in the tumor specimen [8].
Although the PAM50 predictor does include a normal-
like subtype, this classification is merely considered as
a quality-control measure [8]. In the remainder we do
no longer consider the normal-like subtype and focus
on the identification of the remaining subtypes instead.
The third BW plot in each panel of Fig. 3 (SSP.classic.4s,
where ‘4s’ indicates that we consider four subtypes
instead of five) shows the concordance of the classic
SSPs on our hgu133plus2 compendium when the normal-
like centroid is removed. In this scenario we obtained
similar kappa statistics for the classic SSPs as above
(median κ=0.560, median cc=66.97%; Additional file 2:
Table S2).

Classic SCM intra-predictor evaluation
In our compendium the concordance of the classic SCMs
was substantially higher than for the classic SSPs and
in the upper range of substantial agreement (median
κ=0.778, median cc=83.88%; Fig. 3, Additional file 2:
Table S2). Lowest concordance was observed for the lumi-
nal B subtype (median κ=0.701). Kappa statistics here
are higher than those reported in Haibe-Kains et al. (see
[12], Table 3), where concordance between the three clas-
sic SCMs reached an average κ=0.720 (median κ=0.700).
In our case, however, the classic SCMs were all con-
structed and evaluated using data measured on a single
array design, whereas Haibe-Kains et al. constructed the
classic SCMs on Affymetrix data and evaluated them on
a compendium that also contained many non-Affymetrix
datasets. When excluding the non-Affymetrix datasets,
the concordance estimates for the classic SCMs based
on the subtype assignments reported by Haibe-Kains
et al. [12] are highly similar to ours (Additional file 2:
Table S5).

Strong increase in intra-predictor concordance for CS-based
SSPs
The concordance levels of the consensus set-based SSPs,
denoted as SSP.cs, showed a vast improvement w.r.t. the
classic SSPs with kappa statistics in the range of almost
perfect agreement (median κ=0.865, median cc=90.32%;
Additional file 2: Table S2). Note that 5 of the 11
hgu133plus2 validation sets were also used for the con-
struction of the consensus sets and CS-based predictors.
In order to avoid an upward bias of the concordance
of CS-based predictors, the reported kappa statistics are
strictly based on those combinations where the training
set and the validation set were different. Subtype-specific
performances were equally strong with median kappa
statistics of 0.970, 0.846, 0.845 and 0.780 for the subtypes
basal, HER2, luminal A and luminal B, respectively. In
order to investigate differences due to a change in IGL or
consensus set in more detail, kappa statistics were parti-
tioned into three disjoint groups ( Fig. 3, blue BW plots)
for SSPs in which (i) both the consensus set and IGL
were different, (ii) only the IGL was different and (iii)
only the consensus set was different. As expected, con-
cordance was lowest when both elements were different
(median κ=0.828, Additional file 2: Table S1). Surprisingly,
the impact of changing the IGLwas larger than of a change
to another consensus set (median κ=0.854 vs. κ=0.914).
Consistent with previous literature, the luminal B subtype
was most susceptible to changes in both the consensus
set and IGL (median κ=0.738). However, when only the
consensus set was changed, consensus for luminal B was
still in the range of almost perfect agreement (median
κ=0.857).

SCM.cs intra-predictor concordance
SCM predictors trained on consensus sets (SCM.cs)
were also strongly concordant (median κ=0.812, median
cc=86.67%; Fig. 3 red BW plots; Additional file 2: Table
S2), however, notably less than the SSP.cs predictors.
The change to another MGL as compared to a change
of consensus set showed a substantial loss in agreement
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(median κ=0.814 vs. κ=0.876). When both elements were
changed, concordance dropped to the range of substantial
agreement (median κ=0.778), a value equal to the overall
concordance observed for the classic SCMs. Hence, SSP
predictors benefit more from the consensus set construc-
tion scheme than SCMs.

Concordance of CS-basedmodels and their classic
counterparts
When based on the same MGL, the SCM.cs pre-
dictors showed almost perfect levels of concordance
with their classic counterparts (median κ=0.893–0.926,
median cc=92.15–94.55%; Additional file 2: Figure S2,
Table S6), with equally strong subtype-specific levels of
agreement. A similarly strong level of concordance was
observed between the classic PAM50 predictor and its
CS-based counterpart based on IGL P (median κ=0.870,
median cc=90.77%). For the two oldest SSPs by Hu
and Sørlie, however, only substantial (SSP Hu: median
κ=0.775, median cc=83.95%) and moderate ( SSP Sørlie:
median κ=0.584, median cc=70.24%) levels of concor-
dance were obtained with their CS-based counterparts,
respectively.

Inter-predictor concordance of CS-based SSPs and SCMs is
only substantial
Weigelt et al. [5, 11] mainly considered SSP intra-
predictor concordance, i.e. concordance between pre-
dictors of the same type. Above, we showed that the
intra-predictor concordances for CS-based SSPs and
SCMs are in the range of almost perfect concordance. In
the challenging scenario in which the consensus training
set, predictor type and (as a consequence) the gene list,
are different we observed only substantial levels of con-
cordance when comparing SSP.cs and SCM.cs predictors
(median κ=0.741; median cc=81.02%; Fig. 4; Additional
file 2: Table S7), despite the fact that the CS-based predic-
tors showed almost perfect levels of concordance on the
consensus sets themselves (Additional file 1: Section 3).
In line with previous observations, only the basal subtype
was identified with almost perfect levels of agreement
(median κ=0.849), while the luminal B and HER2 subtype
assignments were least concordant (median κ=0.688 and
κ=0.671, respectively).

High inter-predictor concordance of CS-based SCMs and STGs
So far we mainly focused on SSP and SCM-based
approaches. We now consider in more detail the third
subtype predictor type (STG; Figs. 1 and 2b), based on
the St. Gallen surrogate intrinsic subtype definitions [14].
When based on the sameMGL, SCM.cs and STG.cs mod-
els show almost perfect concordance (median κ=0.861;
median cc=89.84%; Fig. 4, Additional file 2: Table S7).
The SSP framework is conceptually quite different and

overall concordance between STG.cs and SSP.cs mod-
els is indeed considerably lower (κ=0.729). Interestingly,
the lowest concordance between STG.cs and SSP.cs mod-
els was not obtained for the luminal B subtype, but for
the HER2 subtype (median κ=0.599). Note that even
though the STG.cs predictors represent only a simple rule-
based subtyping prediction scheme, fully defined by the
over/underexpression status of four markers, their intra-
predictor concordance was the highest of all predictors
considered when based on the same MGL (Additional
file 2: Figure S5).

Discussion
A limitation of previous studies that assessed the con-
cordance between subtype assignments [5, 9–12] is that
subtype predictors were evaluated in what could be con-
sidered a worst-case scenario. Next to differences in gene
lists, reported concordance statistics may have been neg-
atively influenced by differences in the training sets used
and technical heterogeneity, e.g. differences in microarray
platforms, normalization and scaling strategies. More-
over, robustness and concordance of SSPs may have been
negatively affected by the instability of the hierarchical
clustering step [16, 19, 22, 23]. Our goal was to design an
experimental setup that disentangles the various factors
influencing concordance estimates, in order to obtain an
improved perspective on the behaviour of modern sub-
type predictor schemes such as PAM50 [8] and SCMs
[12, 13, 24].

Standardization of microarray data
In contrast to the studies by Weigelt et al. [5, 11] and
Haibe-Kains et al. [12], we constructed and evaluated
predictors on data from a single measurement platform
only, i.e. Affymetrix. Previously reported subtype assign-
ments provide some evidence of the negative impact of
technical heterogeneity (Additional file 2: Table S5), sug-
gesting a decrease in performance when evaluating pre-
dictors in a multi-platform setup. In our study, all arrays
were treated identically via a three-step procedure which
involved a stringent quality control stage, renormaliza-
tion of the intensity data by frozen RMA [17] and a
subsequent robust scaling step. The quality of the result-
ing data was further supported by the high concordance
obtained on replicate array pairs (Additional file 2: Figure
S6, Table S8). In this standardized setup, we observed
only a slight decrease in concordance when evaluating the
CS-based predictors on data from another array design
(hgu133a) than the one on which they were constructed
(hgu133plus2), see Additional file 2: Tables S1 and S2.
Note that the robust scaling step was essential for the
removal of systematic technical variation between arrays
from different chip designs after fRMA (Additional file 1:
Figure S1). Robust scaling was also effective in datasets
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Fig. 4 (See legend on next page.)
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(See figure on previous page.)
Fig. 4 Inter-predictor concordance of CS-based models (hgu133plus2 compendium). Comparisons between predictors of different types, e.g. SCM
vs. SSP. The five panels show box and whisker plots for kappa statistics calculated over all subtypes and for each each subtype separately, as
indicated on the left hand side. Results for individual datasets are superimposed as dots. The upper three BW plots in each panel show the
inter-predictor concordance estimates between the SSP.cs, SCM.cs and STG.cs predictors pairs, as indicated by the legend. The bottom BW plot in
each panel provides the concordance estimates for SCM.cs and STG.cs predictor pairs when based on the same modules, i.e. MGLs (with exception
of PGR). Results are based on the hgu133plus2 compendium. Numerical details of the BW plots are presented in Additional file 2: Table S7

with a subtype distribution that is very different from the
distribution used to train the subtype predictor. Recently,
alternative approaches have been proposed that enable
subtyping of highly skewed subtype distributions. Zhao
et al. [25] introduced subgroup-specific gene centering for
this purpose. Their approach is, however, limited by the
need for an initial subtyping of the data, for example using
ER, HER2 and PGR status as determined via immunohis-
tochemistry. For many publicly available datasets includ-
ing the ones in our Affymetrix compendium, this type of
information is (partly) missing. Paquet and Hallett [26]
proposed absolute intrinsic molecular subtyping (AIMS),
a novel rule-based model that relates raw expression mea-
surements of subtype-specific genes to the levels of other
genes within each tumor sample. Since AIMS is truly a sin-
gle sample predictor, it does not rely on a gene-centering
step. An in-depth comparison of CS-based predictors
and AIMS would be an interesting avenue for future
research.

Importance of consensus set
In our setup, predictor construction was performed on
carefully designed training sets. Only those samples were
used of which the subtypes could be concordantly identi-
fied across multiple sources, i.e. the consensus set samples
(Additional file 3). The idea of a consensus set is reminis-
cent of the use of a core set of samples in most hierarchical
clustering based subtyping approaches. From all clustered
samples in general a selection is made in order to exclude
samples with low correlation to each subtype. Core set
selection is based on heuristics [6, 7] or statistical meth-
ods that assess the stability of a hierarchical clustering
[8, 27]. Guedj et al. [21] constructed a core set by select-
ing those samples that were assigned to the same subtype
by three different clustering methods, viz. hierarchical
clustering, k-means andGaussianmixturemodels. In con-
trast to these approaches, our consensus set inclusion
criteria are stricter and also incorporate differences in
gene lists. Since there is reasonable certainty regarding
the subtype classification of the consensus set samples,
we hypothesized that subtype predictors can safely be
constructed on a consensus set via supervised learning.
Indeed, our results show that the subtype classification of
the consensus set samples themselves is highly concordant

(median κ=0.957; Additional file 1: Table S6). Another
important advantage of using consensus sets for predictor
construction is that subtype predictors can be constructed
on identical training sets. This allowed us to establish that
the influence of a change in gene list is larger than of
a change in consensus training set. Changing both ele-
ments still led to (close to) almost perfect concordance
(SSP.cs: median κ=0.828, SCM.cs: median κ=0.778). For
SSPs our concordance estimates are considerably higher
than those reported by Weigelt et al. [5, 11] (median
κ=0.467 before centering, median κ=0.561 after center-
ing) and Haibe-Kains et al. [12] (κ=0.45–0.58). Concor-
dance reported for the classic SCMs trained on the expO
dataset (κ=0.65–0.81) [12] is also lower but more compa-
rable to ours (SCM.cs, different MGL: median κ=0.814).
If we consider only subtype assignments on Affymetrix
cohorts, reported estimates on the concordance of the
classic SCMs [12] (Additional file 2: Table S5) are highly
similar to those reported here. SSPs appear to benefit
more from the consensus set approach than SCMs. This is
likely due to the fact that in our setup no hierarchical clus-
tering stage was required in order to construct SSPs. For
SCMs it may actually not be necessary to identify a con-
sensus set for model fitting purposes.We observed almost
perfect levels of concordance between SCM models
based on consensus set samples only and those fitted on
complete cohorts (median κ=0.954; median cc=96.67%).
In this respect SCMs are clearly superior in terms of
robustness compared to SSPs constructed via hierarchical
clustering.

Factors influencing concordance
Prat et al. [28] recommend the highest level of concor-
dance, i.e. almost perfect concordance for routine clin-
ical use of pathology and gene-expression-based tests.
Their comprehensive review shows that for virtually all
currently used biomarkers in breast cancer only sub-
stantial or moderate concordance between two different
methods has been reported. They state that almost per-
fect concordance can only be achieved by using a sin-
gle platform and a standardized protocol for such tests.
Our experimental setup provides an improved perspective
on the factors influencing concordance between differ-
ent subtyping schemes. When comparing different SSPs
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trained on different consensus sets, we moved from mod-
erate concordance [5, 12] to almost perfect concordance.
These results clearly illustrate the large benefit of using a
standardized approach. The inter-predictor results, how-
ever, show that the choice of predictor type and associated
gene lists matters. We observed large differences in the
subtype assignments from predictors of different types. In
the most challenging scenario in which training set, pre-
dictor type and gene list are different, we moved from
moderate concordance (median κ=0.5) [12] to substan-
tial concordance (median κ=0.741; Additional file 2: Table
S7). Even though we based our conclusions on research
data, we feel such discrepancies are an impediment to
their incorporation into clinical practice as it is clear
that the specific choice of a predictor type matters, yet
it is unclear which predictor type is to be preferred. In
the scenario analysed by Weigelt et al. [5] one could
argue that the PAM50 predictor presents an evolution
over time in which deliberate design changes were made
with respect to older SSPs [9] and one may therefore
claim that the observed discordance is a feature instead
of a flaw. In the scenario analysed here, however, there
is little room for such an interpretation as all predic-
tors were specifically designed to be concordant on the
individual sample level, while the influence of technical
heterogeneity was strongly reduced. Our results also show
large differences in concordance for the different sub-
types. In general, the basal subtype was the only subtype
which could consistently be identified with almost per-
fect concordance (Additional file 2: Table S1), as reported
previously [5, 12].
The observed intra- and inter-predictor discordances

can be explained by various factors. Our experiments
clearly highlight the importance of the selected gene list,
whose influence was consistently larger than the choice
for a particular training set during predictor construction.
Of the intrinsic subtypes the luminal B subtype was the
most challenging subtype to detect concordantly. When
based on the same gene list, however, we still obtained
concordance levels in (or close to) the range of almost per-
fect agreement (SSP.cs: median κ=0.857, SCM.cs: median
κ=0.797; Additional file 2: Table S1). To a certain degree,
discordance between luminal A and luminal B subtype
assignmentsmay be expected if proliferation indeed forms
a continuum, as suggested before [5, 12]. In most datasets
considered here, however, the proliferation markers were
bimodal, albeit almost never strongly (Additional file 2:
Table S9). The observed lack of inter-predictor concor-
dance can be further explained by differences in model
assumptions and subtype definitions. Note that after more
than a decade of molecular breast cancer subtyping, there
still is no consensus on both the number and definitions
of breast cancer subtypes. Especially problematic is the
relation of HER2 to the other subtypes. HER2 has often

been considered to belong to the ER- branch of subtypes,
as is the case for the original St. Gallen surrogate intrin-
sic subtype definitions consisting of five subtypes [14]. In
these, the luminal B subtype is split into two subtypes,
i.e. luminal B (HER2+) and luminal B (HER2-) (Additional
file 2: Figure S7A). In order to obtain a 4-subtype tax-
onomy as considered in this paper, we mapped the lumi-
nal B/HER2+ subtype to the HER2 subtype and luminal
B/HER2- to the luminal B subtype. This mapping was cho-
sen as it maximizes similarity with SCMs, in which HER2
subtype assignments are possible for both ER- and ER+
samples [13] (Additional file 2: Figure S7B). This mapping
likely has a positive effect on the inter-predictor concor-
dance of STG.cs and SCM.cs predictors. However, dis-
cordance may still arise between SCMs and STGs due to
the PGR status, which is not considered by SCMs. Finally,
we note that various studies have shown that within each
of the intrinsic subtypes there still is considerable het-
erogeneity left [29–33]. Prat et al. [29] identified the
claudin-low subtype, consisting of triple-negative tumors
with different molecular characteristics than basal-like
tumors. Lehmann and colleagues [30] described a further
subdivision of triple-negative breast cancer into six stable
molecular subtypes. Curtis et al. [32] proposed the 10 Int-
Clust subtypes refining several of the intrinsic subtypes
based on the integration of genomic and transcriptomic
data. Molecular heterogeneity within a subtype does not
imply discordance as studied in this article per se. How-
ever, this changes when it affects more than one of the
intrinsic subtypes, as is the case in the St. Gallen crite-
ria and for several of the IntClust subtypes. Therefore, in
future concordance studies it is likely that considerable
discordance will remain to be observed until the defi-
nitions of the molecular subtypes have been sufficiently
refined. Another potential limitation of this study is that
we did not evaluate the concordance of the predicted sub-
ypes with clinical parameters and their prognostic value
in survival analysis. Note, however, that the high con-
cordance of CS-based models with the classic SCMs and
PAM50 suggests that they share the strong prognostic
value that has been reported for classic subtype predictors
[8, 12].

Conclusions
We presented a comprehensive evaluation of SSP and
SCM subtype predictors instigated by the Lancet Oncol-
ogy article by Weigelt et al. [5] and subsequent reac-
tions [9–11]. The initial study by Weigelt and colleagues
reported low concordance between subtype assignments
based on the classic SSPs and concluded that SSPs do not
reliably assign subtypes to individual patients. In contrast,
our findings show that in a carefully standardized setup
via the use of consensus sets almost perfect concordance
can be achieved by both SSP and SCM predictor types
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and for multiple gene lists. However, differences between
predictor types, gene lists and training datasets combined
result in subtype assignments that only show substantial
levels of agreement. Prospective clinical trials are needed
to go beyond the concordance issues investigated in this
paper and to determine which subtype predictor is most
relevant for guiding treatment choice for an individual
patient.
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