

Investigation of dominating DEM parameters for multicomponent segregation during heap formation, hopper discharge and chute flow

Hadi, A.H.; Shi, H.; Pang, Y.; Schott, D.L.

Publication date 2023

Document Version Final published version

Citation (APA)
Hadi, A. H., Shi, H., Pang, Y., & Schott, D. L. (2023). *Investigation of dominating DEM parameters for* multicomponent segregation during heap formation, hopper discharge and chute flow. Poster session presented at DEM 9: 9th International Conference on Discrete Element Methods, Erlangen, Germany.

To cite this publication, please use the final published version (if applicable). Please check the document version above.

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

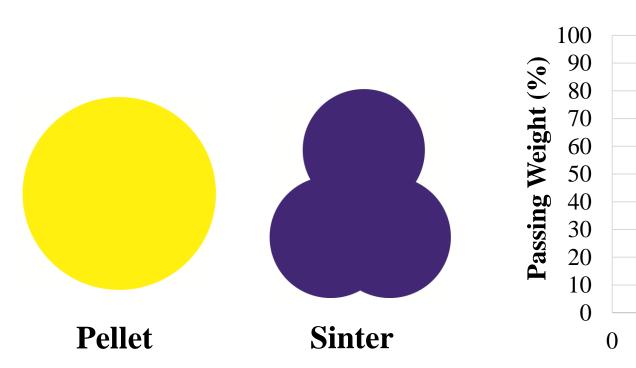
Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim.

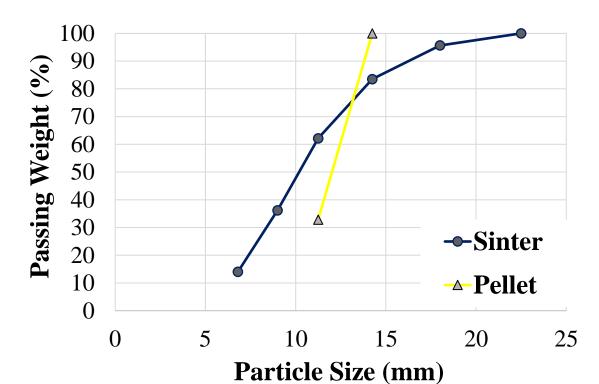
Investigation of dominating DEM parameters for multicomponent segregation during heap formation, hopper discharge and chute flow

Ahmed Hadi, Hao Shi, Yusong Pang, Dingena Schott

Department of Maritime and Transport Technology, Faculty of Mechanical Engineering, Delft University of Technology, Delft, The Netherlands

Introduction

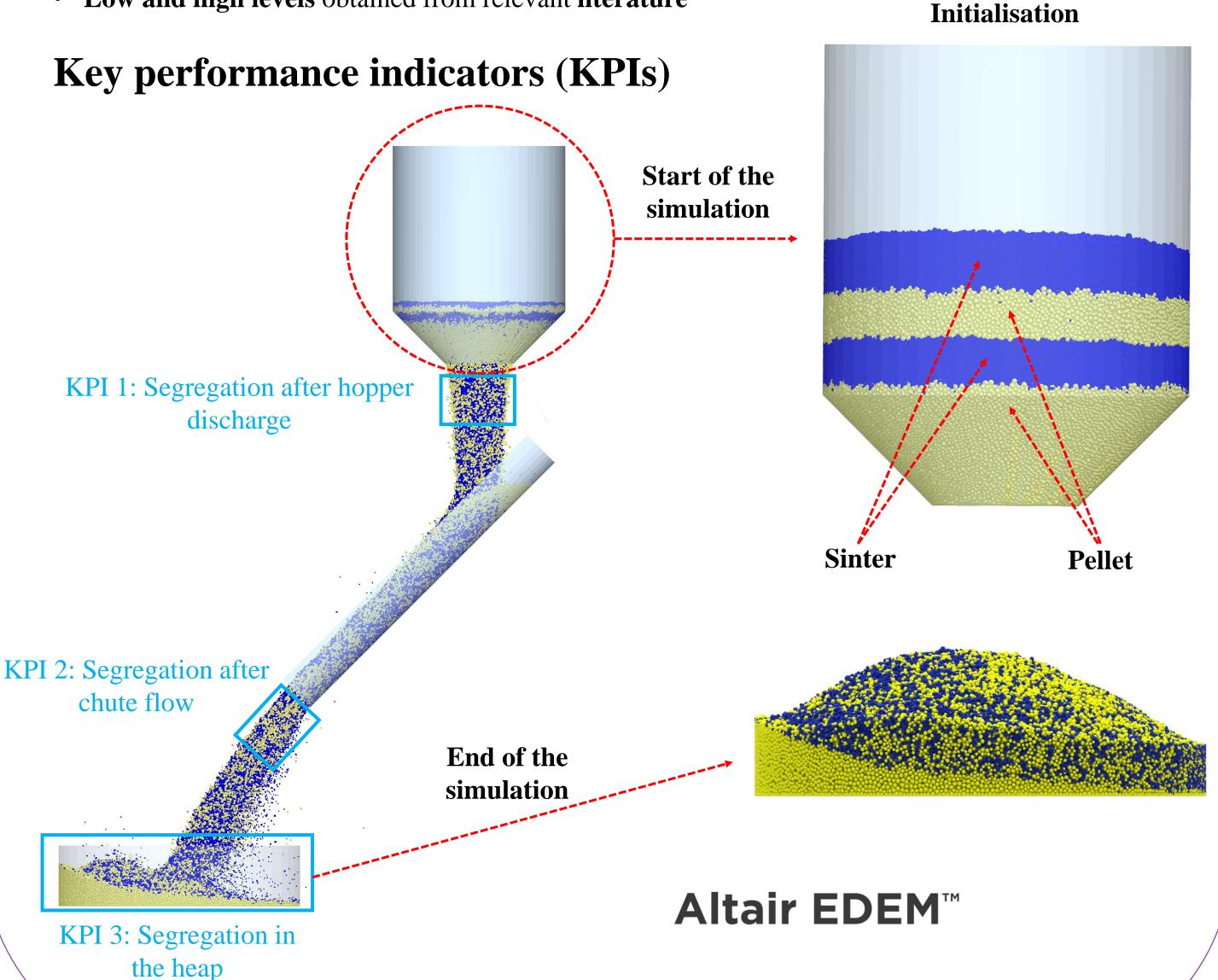

- Granular segregation is a critical phenomenon in various industries, such as food processing, pharmaceuticals, and mining.
- DEM is an **effective tool** for gaining insight into granular segregation since it provides **particle-level** information that is often difficult or impossible to obtain through experiments.
- To ensure realistic material behaviour and correct representation of segregation, it is essential to systematically calibrate the model against experimental results.
- In the context of multi-component segregation, it is extremely challenging and computationally expensive to consider all parameters in the calibration procedure.


Objective

- This work aims to identify the most influential DEM parameters for modelling multi-component segregation during heap formation, hopper discharge, and chute flow.
- Our findings will aid researchers in calibrating DEM models for multi-component segregation more efficiently.

DEM model

• Contact model: Hertz-Mindlin with rolling friction type C



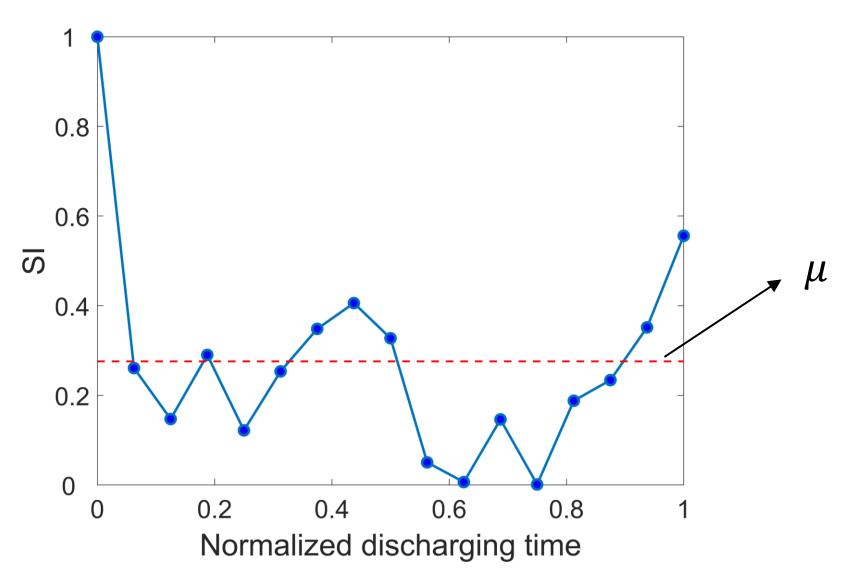
- 50%-50% mass ratio of pellets and sinter (500 kg each)
- Parameters of interest (interaction parameters):

	Coefficient of restitution	Coefficient of sliding friction	Coefficient of rolling friction
Pellet-pellet	$C_{r,p-p}$	$\mu_{s,p-p}$	$\mu_{r,p-p}$
Pellet-sinter	$C_{r,p-s}$	$\mu_{s,p-s}$	$\mu_{r,p-s}$
Sinter-sinter	$C_{r,s-s}$	$\mu_{s,s-s}$	$\mu_{r,s-s}$
Pellet-geometry	$C_{r,p-g}$	$\mu_{s,p-g}$	$\mu_{r,p-g}$
Sinter-geometry	$C_{r,s-g}$	$\mu_{s,s-g}$	$\mu_{r,s-g}$

Design of experiment (DoE)

- **Definitive screening design (DSD)**
- The number of runs: N = 2k + 3; given $k = 15 \gg N = 33$
- Adding four extra runs to make the screening design more powerful
- Three repetitions to capture the standard error
- Low and high levels obtained from relevant literature

Quantifying segregation:


Segregation index (SI) for KPI 1 and KPI 2:

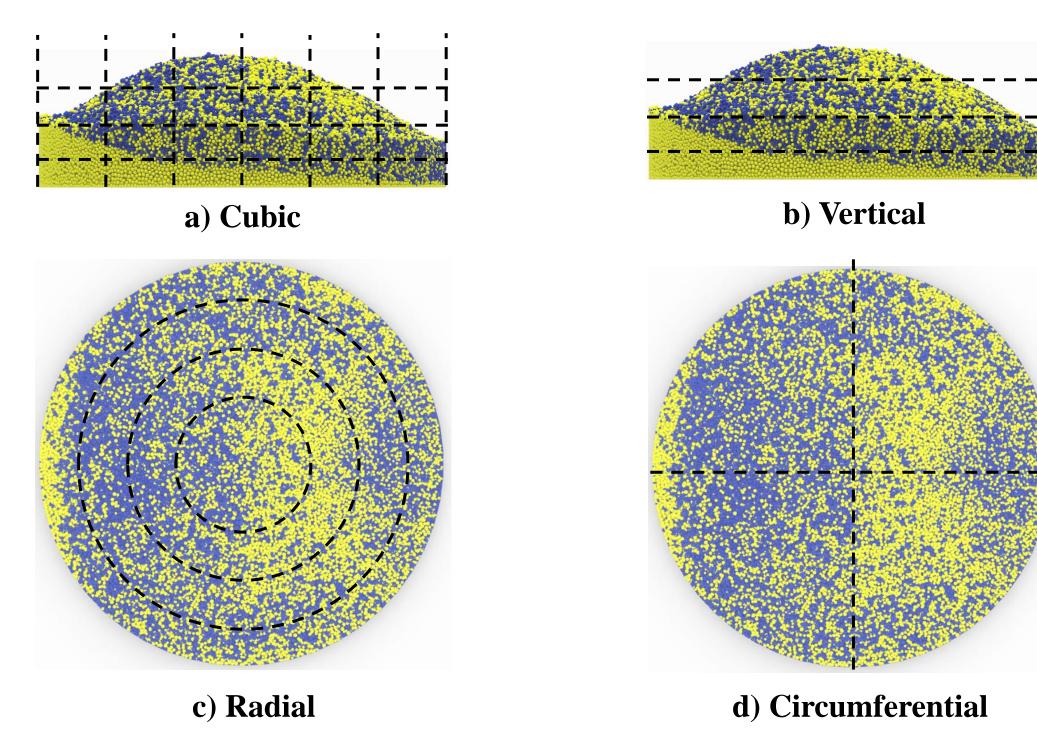
$$SI = \frac{|MR_P - MR_{mixed}|}{|MR_{max} - MR_{mixed}|} \quad \bullet \quad SI = 0$$

$$\bullet \quad SI = 1$$

• $SI = 0 \gg Fully mixed$ • $SI = 1 \gg Fully segregated$

where MR_P is the instantaneous mass ratio of pellets. A typical time evolution example of SI during discharge is given in Figure below:

We need to transform this graph into a **single value** for use as a response in definitive screening design. We employ relative standard deviation (RSD) as follows:


$$RSD = \frac{\sigma}{\mu}$$

where

- σ is the standard deviation of the points
- μ is the mean of the points (showing as the red dashed line)

II. KPI 3

• We divided the heap into a number (m) of bins in different directions:

- We then measured the mass ratio of pellets (or sinter) in each bin (C_{P_m}) .
- We calculated the mean (μ_P) and standard deviation (σ_P) of C_{P_m} .
- Segregation index (i.e., relative standard deviation (RSD)) is calculated using the equation above.

Screening Results

		Pellet-Pellet		Sinter-Sinter		Pellet-Sinter		Pellet-Geometry		Sinter-Geometry						
		C_r	μ_s	μ_r	C_r	μ_s	μ_r	C_r	μ_s	μ_r	C_r	μ_s	μ_r	C_r	μ_s	μ_r
KPI1							ĺ			I		*	*			
KPI2													* !		*	
KPI3	Cubic		*		 * 	*										
	Radial					*	*			i			I	*		
	Vertical		*	*	l I		I			I						*
	Circumferential			*		*	I								*	

Conclusion

- Segregation occurring after discharging from hopper and chute is mainly affected by particle-geometry interactions.
- Segregation in the heap is mostly affected by pellet-pellet and sinter-sinter interactions.
- The influence of pellet-sinter interactions on segregation is negligible.
- Future work will include conducting the sensitivity study for spherical sinter particles, different pellet-sinter mass ratios and different mixture compositions (e.g., mixed) in the hopper.

Acknowledgement

