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Abstract
We analyze the stability of a game-theoretic model of a polymorphic eco-evolutionary sys-
tem in the presence of human intervention. The goal is to understand how the intensity of
this human intervention and competition within the system impact its stability, with cancer
treatment as a case study. In this case study, the physician applies anti-cancer treatment,
while cancer, consisting of treatment-sensitive and treatment-resistant cancer cells, responds
by evolving more or less treatment-induced resistance, according to Darwinian evolution.
We analyze how the existence and stability of the cancer eco-evolutionary equilibria depend
on the treatment dose and rate of competition between cancer cells of the two different types.
We also identify initial conditions for which the resistance grows unbounded. In addition,
we adopt the level-set method to find viscosity solutions of the corresponding Hamilton–
Jacobi equation to estimate the basins of attraction of the found eco-evolutionary equilibria
and simulate typical eco-evolutionary dynamics of cancer within and outside these estimated
basins. While we illustrate our results on the cancer treatment case study, they can be gener-
alized to any situation where a human aims at containing, eradicating, or saving Darwinian
systems, such as in managing antimicrobial resistance, fisheries management, and pest man-
agement. The obtained results help our understanding of the impact of human interventions
and intraspecific competition on the possibility of containing, eradicating, or saving evolving
species. This will help us with our ability to control such systems.
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1 Introduction

Human actions often lead to a rapid evolution in biological entities that humans want to
save, contain, or eradicate [1–3]. This rapid evolution may lead these systems to states that
are unintended or undesirable. For example, an attempt to eradicate the diamondback moth
using different types of insecticides has led to its development of resistance to about 100
active chemicals, putting the diamondbackmoth first among the 20most insecticide-resistant
insect species [4]. In general, pest resistance as a consequence of the abundant application of
pesticides is a well-recognized problemworldwide [5–8]. Similarly, we observe an antibiotic
resistance crisis as a consequence of a too extensive antibiotic application [9], decreased fish
size followed by a collapse of fisheries due to overfishing [10, 11], and treatment-induced
resistance of cancer cells in response to the application of high-dose anticancer treatments
[12–17]. In all these examples, human interventions drive the evolution of traits that are
undesirable to humans [18–20].

Mathematical models, such as those within evolutionary game theory, can help us under-
stand how different selection pressures imposed by humans affect the evolution of biological
systems in terms of their eco-evolutionary dynamics [21–25]. When humans impose their
actions on the evolving systems, they become Stackelberg leaders in a game against or for
nature. The Stackelberg evolutionary game theory combines Stackelberg and evolutionary
game theory and has recently been termed the Stackelberg evolutionary game [19, 20].

While Stackelberg evolutionary game theory focuses on human actions that maximize
humanownbenefitwhen interactingwith evolutionary followers,much less attention has been
given to studying how competition between evolutionary followers contributes to human’s
ability to bring eco-evolutionary dynamics of these followers to states desired by the human.
Here, we will bridge this gap by studying the impact of both the rate of competition between
different types of evolutionary followers and the intensity of human action on their ability to
stabilize the followers’ eco-evolutionary dynamics.

As a specific case study, we will consider cancer treatment, where the physician applies
a constant treatment dose to target a polymorphic cancer cell population consisting of
treatment-sensitive and treatment-resistant cancer cells. These cells compete with each other
for space and resources, to proliferate and survive [26, 27]. In our modeling, this competition
is captured through the carrying capacity and competition matrix, leading to the density- and
frequency-dependent selection in cancer cells, respectively.

The resistant cancer cells may evolve more or less resistance in response to both the
treatment dose and rate of competition within the cancer cell population.While in early-stage
cancer the evolution of resistance may not occur when no resistant cells are present a priori
and/or when they are outcompeted by sensitive cells, here we consider a case of advanced
cancer where the evolution of resistance is typically inevitable. [28–30]. Ourmodel combines
qualitative and quantitative resistance [23].While we have a distinct resistant population, this
population does not have a fixed treatment-induced resistance. Rather, this resistance evolves
as a quantitative trait, affected by both the pre-existing and treatment-induced resistant cells.

Our game-theoretic model of cancer treatment is an extension of the evolutionary model
introduced by Pressley et al. [31]. Our model incorporates competition between cancer cells
to study the impact of competition between cancer cells and the administered treatment dose
on the ability to stabilize cancer dynamics.

The rest of this paper is organized as follows: we first introduce our Darwinian dynamics
model, which accounts for the effects of both human intervention and intraspecific competi-
tion (Sect. 2). Next, we describe the methodology for analyzing equilibria and their stability,
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estimating basins of attraction, and simulating typical cancer eco-evolutionary trajectories
(Sect. 3).We then present the results regarding stability, basins of attraction, and cancer trajec-
tories (Sect. 4). Finally, we discuss the implications of our findings formathematical oncology
and game theory, address limitations, and suggest future research directions (Sect. 5).

2 Game-theoretic model

Let us consider a polymorphic eco-evolutionary systemmodeled through Darwinian dynam-
ics [32–34] where a human imposes selection pressure on this system through a constant
action m ∈ R

0+ = R+ ∪ {0}. Here, we are interested in how cancer eco-evolutionary equi-
libria depend on the treatment dose m and competition coefficients αi j . For this reason, we
do not assume a priori any dependence of m on state variables in our model. In general,
treatment can be time-varying. However, because of our focus on the equilibria, we assume
the treatment dose to be constant. The method we use allows for extending this framework
to piecewise constant treatment doses.

The population and evolving trait of individuals of type i will be denoted by xi and ui ,
respectively, where x(t) = (xi (t)) and u(t) = (ui (t)) define population and evolving traits
of all individuals at time t .

Ecological dynamics of individuals of type i are defined as

ẋi (t) = xi (t)G(v(t),u(t), x(t),m)
∣
∣
v(t)=ui (t)

(1)

where G refers to the fitness-generating function from Darwinian dynamics [32] and v(t) is
the trait of a focal individual of type i at time t .

Following Fisher’s fundamental theorem of natural selection, the focal evolutionary trait
v(t) changes in the direction of the fitness gradient ∂G

∂v
[35]. The evolutionary dynamics are

defined as follows:

u̇i (t) = σi
∂G(v(t),u(t), x(t),m)

∂v(t)

∣
∣
∣
∣
v(t)=ui (t)

(2)

The rate at which the trait ui (t) changes is given by an evolutionary speed σi . A measure of
how quickly the trait responds to selection gradients, σi , encapsulates the combined effects
of genetic variation, mutation rates, and the overall responsiveness of the trait to evolutionary
pressures [32]. While this could reflect the trait’s sensitivity to spontaneous genetic changes,
in our formulation, σi is treated as a constant. It thus serves as an aggregate measure of
evolutionary responsiveness, encompassing interactions between the trait and the rest of the
system dynamics.

In our model, we assume that all individuals’ strategies have the same evolutionary speed,
while in reality σi ’smay depend on other parameters, such as the population size x and/ormay
be different for different types of individuals [36–38]. Moreover, as long as σi is constant, it
does not affect the eco-evolutionary equilibria of the system.

While the eco-evolutionary dynamics (1–2) can define any polymorphicDarwinian system
responding to a constant leader’s action m, here we will analyze an example of cancer
treatment game. In this example, m ≥ 0 corresponds to a constant treatment dose applied
by a physician and x(t) = (xS(t), xR(t))� is a vector of populations of cancer cells that are
sensitive (S) and resistant (R) to the treatment, respectively, at time t .



Dynamic Games and Applications

Table 1 Description of variables and parameters utilized in (4), including their values/ranges

Variable/parameters Description Value/range

x =
(

xS
xR

)

Population of cancer cells [0, K ]2

uS Resistance strategy of sensitive cells 0

uR Resistance strategy of resistant cells R
+
0

v Resistance strategy of a focal resistant cell R
+
0

g Magnitude of cost of resistance R
+
0

K Carrying capacity R
+
0

αi j Competition coefficient R
+
0

σ Evolutionary speed R
+
0

k Innate resistance [1,+∞]
b Magnitude of resistance benefit R

+
0

m Treatment R
+
0

rmax Maximum growth rate R
+
0

d Natural death rate R
+
0

We assume that only resistant cells have the capacity to evolve resistance uR(t) ∈ R
0+ and

that the G-function of these cells has the same form as introduced in [20, 31], i.e.,

G(v(t),u(t), x(t),m) = r(v(t))

(

1 −
∑

j∈{R,S} a(v(t), u j (t))x j (t)

K

)

− d − m

k + bv(t)

(3)

with a(ui , u j ) = αi j defining a competition effect of type j on type i,where i, j ∈ {R, S}. In
(3), the efficacy of the drug is reduced by a focal cell’s resistance v(t), innate drug immunity
k, and the benefit b of the resistance v(t) in reducing therapy efficacy. Various in-vitro and
in-vivo studies have demonstrated that resistance may incur a cost [39–41]. Therefore, our
model includes this cost of resistance, which affects the proliferation rate of resistant cells.
We assume that the resistance cost is expressed through the growth rate r(v(t)) of resistant
cells, which decreases with increasing resistance, i.e., r(v(t)) = rmax e−g v(t).

In our model, sensitive cells cannot evolve resistance, i.e., uS(t) = 0 for all t .
In the remainder of this paper, we drop the time symbol t for the sake of simplicity and

readability of our notation.
The model of cancer eco-evolutionary dynamics then reads as follows:

ẋS = xS

(

rmax

(

1 − αSSxS + αSRxR
K

)

− d − m

k

)

ẋR = xR

(

rmaxe
−g uR

(

1 − αRSxS + αRRxR
K

)

− d − m

k + b uR

)

u̇ R = σ

(

−grmaxe
−guR

(

1 − αRRxR + αRSxS
K

)

+ bm

(k + buR)2

)

(4)

The variables and parameters utilized in (4) and their ranges are summarized in Table 1
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3 Methods

3.1 Stability analysis of eco-evolutionary equilibria

We analyze the stability of eco-evolutionary equilibria of (4) using the Lyapunov indirect
method [42]. This entails linearizing the eco-evolutionary dynamics (4) around its equilibria
and calculating the eigenvalues of the corresponding Jacobian matrix at those equilibria. If
real parts of all eigenvalues of the Jacobian expressed in a given equilibrium are negative,
this equilibrium is locally stable. If at least one eigenvalue has a positive real part, the
corresponding equilibrium is unstable.

3.2 Estimating basins of attraction

In this study,we adopt the parameter values K , k,σ , and b as suggested by [31]. The remaining
parameters are selected to showcase the full spectrumof equilibria and their stability outcomes
for the dynamics described in (4). We summarize all parameters in Table 2.

When there is a single locally stable equilibrium for the dynamics (4), we estimate its
basin of attraction using the level set method [43], following the approach described by Yuan
and Li [44]. We rescale the initial conditions to (xS(0)/K , xR(0)/K , uR(0)), so that they are
within the range [0, 1] × [0, 1] × [0, 8], with other parameter values set as listed in Table 2.1

We partition the state space [0, 1]×[0, 1]×[0, 8] into a computational grid with a step size
of 0.05, to facilitate numerical calculations. Using this grid, we compute viscosity solutions
for the corresponding Hamilton-Jacobi equation by solving it backward in time as described
in [44]. To achieve this, we employ Ian Mitchell’s toolbox for level set methods [45] since it
is capable of solving time-dependent Hamilton-Jacobi equations in any dimension.

When multiple locally stable equilibria are present, we estimate their basins of attraction
within the state space [0, 1] × [0, 1] × [0, 8]. To achieve this, we randomly select 10000
initial conditions (xS(0)/K , xR(0)/K , uR(0)) within this state space and simulate their eco-
evolutionary trajectories.

If a trajectory converges to a stable equilibrium, the initial condition is considered within
the basin of attraction of that equilibrium. Conversely, if during a simulation uR grows
unbounded, it indicates that the initial condition is outside the basin of attraction of the
considered stable equilibrium, highlighting regions where the system dynamics lead to
instability.

In simulations, we consider three different cases. Case 1 with one locally stable trivial
equilibrium, case 2 with one locally stable interior equilibrium, and case 3 with two locally
stable fully sensitive and fully resistant equilibria. We approximate the basin of attraction
for these cases. Moreover, all our calculations are reported with a precision of 3 significant
digits.

3.3 Simulations of typical eco-evolutionary trajectories

Here we illustrate the behavior of trajectories inside and outside the basins of attraction of
stable equilibria. We demonstrate how stable equilibria attract trajectories within their basins
of attraction and how unstable equilibria repel trajectories outside these basins.

1 If uR(0) exceeds 8 for the parameters in Table 2, uR(t) will grow unbounded.
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We simulate trajectories governed by (4), starting from various random initial conditions
(xS(0), xR(0), uR(0)). The parameter values used in these simulations are detailed in Table 2.
For simulations, we consider three different cases mentioned before. In addition, all our
calculations are reported with a precision of 3 significant digits.

4 Results

With substitutions

cR(uR,m) = rmaxe
−g uR − d − m

k + buR
, cRR(uR) = rmax

K
e−g uR ,

cS(m) = rmax − d − m

k
, cSS = rmax

K
(5)

Equations (4) can be rewritten as

ẋR = xR

(

cR(uR,m) − αRRcRR(uR)xR − αRScRR(uR)xS

)

ẋS = xS

(

cS(m) − αSScSSxS − αSRcSSxR

)

u̇ R = σ

(

− g rmaxe
−guR (1 − αRRxR + αRSxS

K
) + b m

(k + buR)2

)

(6)

The Jacobian matrix J (xS, xR, uR) of (6) is
⎛

⎜
⎜
⎝

cS(m) − cSS(2αSSxS + αSRxR) −αSRxS 0

−αRScRR(uR)xR cR(uR ,m) − cRR(uR)(2αRRxR + αRSxS) xR
∂GR
∂uR

σ gcRR(uR)αRS σ gcRR(uR)αRR σ
∂2GR
∂u2R

⎞

⎟
⎟
⎠

(7)

where GR denotes G(v,u, x,m)

∣
∣
∣
∣
v=uR

.

4.1 Eco-evolutionary equilibria and their stability

We have four different potential equilibria of eco-evolutionary dynamics (6): interior, trivial,
fully sensitive, and fully resistant equilibria, which will be analyzed in Sects. 4.1.1, 4.1.2,
4.1.3, and 4.1.4, respectively.

4.1.1 Interior equilibrium

If an interior equilibrium x∗ = (x∗
S, x

∗
R, u∗

R)� of (6) exists, it satisfies

x∗
R(m) = 1

D

(

− αRS
cS(m)

cSS
+ αSS

cR(u∗
R(m),m)

cRR(u∗
R(m))

)

(8)

x∗
S(m) = 1

D

(

αRR
cS(m)

cSS
− αSR

cR(u∗
R(m),m)

cRR(u∗
R(m))

)

(9)

u∗
R(m) = −k

b
+ −mg + √

m2g2 + 4mgdb

2bdg
(10)
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where

D = αSSαRR − αSRαRS

Existence of the interior equilibrium (8–10) requires the following conditions:

1. Condition k2dg + kmg < mb, which ensures that u∗
R(m) is positive.

2. Equations (8) and (9) are positive.

Let us analyze when the second condition is satisfied. We will do so by considering two
separate assumptions: D < 0 and D > 0, as D = 0 implies no interior equilibrium:

• Case D > 0. If cS(m) < 0, cR(u∗
R(m),m) must be negative, otherwise x∗

S(m) becomes
negative. For (8) and (9) to become positive, the following has to be held:

αSS
cR(u∗

R(m),m)

cRR(u∗
R(m))

> αRS
cS(m)

cSS
�⇒ αRS

αSS
>

cR(u∗
R(m),m)

cS(m)
egu

∗
R

αRR
cS(m)

cSS
> αSR

cR(u∗
R(m),m)

cRR(u∗
R(m))

�⇒ αRR

αSR
<

cR(u∗
R(m),m)

cS(m)
egu

∗
R

This implies αRR
αSR

<
αRS
αSS

, and D < 0, a contradiction to our assumption that D >

0. Therefore, if D > 0, cS(m) must be positive to have an interior eco-evolutionary
equilibrium of (4).

• Case D < 0. If cS(m) < 0, cR(u∗
R(m),m) has to be negative, otherwise x∗

R(m) becomes
negative. For (8) and (9) to become positive the following has to be held:

αSS
cR(u∗

R(m),m)

cRR(u∗
R(m))

< αRS
cS(m)

cSS
�⇒ αRS

αSS
<

cR(u∗
R(m),m)

cS(m)
egu

∗
R

αRR
cS(m)

cSS
< αSR

cR(u∗
R(m),m)

cRR(u∗
R(m))

�⇒ αRR

αSR
>

cR(u∗
R(m),m)

cS(m)
egu

∗
R

This implies αRR
αSR

>
αRS
αSS

and D > 0, a contradiction to our assumption that D < 0.
Therefore, if D < 0, cS(m) has to be positive to have an interior eco-evolutionary
equilibrium of (4).

We can conclude that regardless of the sign of D, the condition cS(m) > 0 has to be satisfied
for the existence of an interior equilibrium of (4).

Let us investigate local stability properties of the interior equilibrium (8–10). Eigenvalues
of Jacobian (7) evaluated at the interior equilibrium (8–10) are:

λ1,2 = −(cRR(u∗
R(m))αRRx∗

R(m) + cSSαSSx∗
S(m))

2
± S(m)

2
(11)

λ3 = σ
∂2G

∂u2R

∣
∣
∣
∣
uR=u∗

R(m)

(12)

where S(m) is defined as
√

(cRR(u∗
R(m))αRRx∗

R(m) + cSSαSSx∗
S(m))2 − 4cSScRR(u∗

R(m))x∗
S(m)x∗

R(m) · D (13)

The eigenvalues (11) and (12) are calculated through expressing cS(m) and cR(u∗
R(m),m)

through equations (8) and (9), as follows:

cS(m) = cSSαSSx
∗
S(m) + cSSαSRx

∗
R(m) (14)

cR(u∗
R(m),m) = cRR(u∗

R(m))αRSx
∗
S(m) + cRR(u∗

R(m))αRRx
∗
R(m) (15)
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Through comparing equations u̇ R = 0 and ẋR = 0, we can rewrite (12) into

λ3 = σ

(
gbm

(k + bu∗
R(m))2

− 2b2m

(k + bu∗
R(m))3

)

= σbm
(

g(k + bu∗
R(m)) − 2b

)

(k + bu∗
R(m))3

(16)

Theorem 1 If the interior equilibrium x∗ exists, it is locally stable if D = αSSαRR −
αSRαRS > 0.

Proof According to (11), if D < 0, S(m) defined by (13) becomes larger than
cRR(u∗

R(m))αRRx∗
R(m) + cSSαSSx∗

S(m). As a consequence, one of the eigenvalues (11)
becomes positive. But if D > 0, S(m) from (13) becomes less than the term
cRR(u∗

R(m))αRRx∗
R(m) + cSSαSSx∗

S(m) and, subsequently, both eigenvalues (11) become
negative.

Moreover, from (16), we can imply that if k + bu∗
R(m) < 2b

g , the third eigenvalue λ3 is
also negative.

We can see that this is true from (10), which implies

− k − bu∗
R(m) = gm − √

g2m2 + 4gdbm

2dg
(17)

Adding 2b
g to the both sides of (17) yields

2b

g
− (k + bu∗

R(m)) = 4bd + gm − √

g2m2 + 4gbdm

2dg
(18)

By comparing 4bd+ gm and
√

g2m2 + 4 gbdm, we can see that (18) is positive and, indeed,
k+bu∗

R(m) < 2b
g and λ3 is always negative. Consequently, if the interior equilibrium (8–10)

exists and corresponding D is positive, this equilibrium is locally stable. 
�

4.1.2 Trivial equilibrium

By a trivial equilibrium we mean an equilibrium with xS = xR = 0, while u̇ R = 0, i.e.,

− grmaxe
−guR + bm

(k + buR)2
= 0 (19)

Let us refer to uR solving (19) as u�
R and to the trivial equilibrium as to x�, where x� =

(0, 0, u�
R)�.

Note that (19) consists of a sum of an exponential function grmaxe−guR and a reciprocal
squared function bm

(k+buR)2
. Therefore, depending on the values of parameters g, rmax, b, m,

and k, this equation can have zero, one, or two solutions: If the value of the exponential
function at uR = 0 is greater than or equal to the value of the reciprocal squared function at
uR = 0, equation (19) will have one solution. Otherwise, equation (19) can have up to two
solutions, which means we may have more trivial equilibria.

Eigenvalues of the Jacobian (7) evaluated at x� are:

λ1 = cS(m) (20)

λ2 = cR(u�
R,m) (21)

λ3 = σ
∂2G

∂u2R

∣
∣
∣
∣
uR=u�

R

(22)
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Using (19), we can rewrite (22) as follows:

λ3 = σ

(
gbm

(k + bu�
R)2

− 2b2m

(k + bu�
R)3

)

= σbm

(k + bu�
R)2

(

g − 2b

k + bu�
R

)

(23)

Theorem 2 If a trivial equilibrium x� exists and additionally, cS(m) < 0, cR(u�
R,m) < 0,

and k + bu�
R < 2b

g , then x� is locally stable.

Proof The trivial equilibrium x� is locally stable if the eigenvalues (20–22) have negative
real parts, implying also that cS(m) < 0 and cR(u�

R,m) < 0. Equation (23) implies that

σbm
(k+bu�

R)2

(

g − 2b
k+bu�

R

)

< 0. This is equivalent to k + bu�
R < 2b

g . Thus, if cS(m) < 0,

cR(u�
R,m) < 0, and k + bu�

R < 2b
g , while equation (19) has at least one solution, the

trivial equilibrium will be locally stable. In this case, if the initial state is within the basin of
attraction of x�, then the corresponding trajectory will converge to x�. 
�

4.1.3 Fully sensitive equilibrium

At this equilibrium, xR = 0. Let us refer to this equilibrium as x† = (0, x†S, u
†
R)�. Sub-

stitution of xR = 0 in ẋS = 0 and u̇ R = 0 yields the following expressions for x†S and

u†R :

x†S = K

αSS

(

1 − 1

rmax

(

d + m

k

))

(24)

u†R ∈
{

uR ∈ R
+| − grmaxe

−guR

(

1 − αRSx
†
S

K

)

+ bm

(k + buR)2
= 0

}

(25)

A similar argument as in case of (19) holds for (25), implying that (25) can have up to two
solutions.

As x†S > 0, it implies

d + m

k
< rmax

In addition, (25) implies:

grmaxe
−gu†R

(

1 − αRSx
†
S

K

)

= bm

(k + bu†R)2

which leads to

1 − αRSx
†
S

K
> 0 (26)

By substituting x†S from (24) to (26), we obtain:

cS(m) <
αSS

αRS
rmax

Thus, the existence of the fully sensitive equilibrium requires inequality

0 < cS(m) <
αSS

αRS
rmax (27)

to be held.
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Eigenvalues of the Jacobian (7) evaluated at x† are:

λ1 = cS(m) − 2cSSαSSx
†
S = −cS(m) (28)

λ2 = cR(u†R,m) − cRR(u†R)αRSx
†
S (29)

λ3 = σ
∂2G

∂u2R

∣
∣
∣
∣
uR=u†R

(30)

Using equations u̇ R = 0 and ẋR = 0, we can rewrite (30) in the following way:

λ3 = σ

(
gbm

(k + bu†R)2
− 2b2m

(k + bu†R)3

)

= σbm

(k + bu†R)3

(

g(k + bu†R) − 2b

)

(31)

Now we introduce κ(uR,m) = αSS
cR(uR ,m)
cRR(uR)

− αRS
cS(m)
cSS

. We can see from (8), that

x∗
R(m) = 1

Dκ(u∗
R,m).

Theorem 3 If x† exists, and additionally cS(m) > 0, κ(u†R,m) < 0, and k + bu†R < 2b
g ,

then x† is locally stable.

Proof According to (28), if cS(m) > 0, then λ1 < 0.
By substituting (24) in (29), we can rewrite λ2 in the following way:

λ2 = cR(u†R,m) − cRR(u†R)αRSx
†
S

= cR(u†R,m) − αRS

αSS
cRR(u†R)

cS(m)

cSS

= cRR(u†R)

αSS

(

αSS
cR(u†R(m),m)

cRR(u†R(m))
− αRS

cS(m)

cSS

)

(32)

We can see that λ2 = cRR(u†R)

αSS
κ(u†R,m). Thus, if κ(u†R,m) < 0, λ2 is negative.

Equation (31) implies that if k + bu†R < 2b
g , λ3 becomes negative. Thus, if the conditions

mentioned in the Theorem are satisfied, the fully sensitive equilibrium will become locally
stable.

4.1.4 Fully resistant equilibrium

At this equilibrium, which we will denote by x‡ = (x‡S, x
‡
R, u‡R)�, x‡S = 0, while xR = x‡R

and uR = u‡R, with

x‡R = K

αRR

(

1 − 1

rmaxe−gu‡R
(d + m

k + bu‡R
)

)

(33)

u‡R ∈
{

uR ∈ R
+| − grmaxe

−guR

(

1 − αRRx
‡
R

K

)

+ bm

(k + buR)2
= 0

}

(34)

Positivity of the right-hand side of (33) implies

rmaxe
−gu‡R > d + m

k + bu‡R
�⇒ cR(u‡R,m) > 0 (35)

In addition, αRR does not have any effects on the positivity of u‡R, since αRR in (34) will be
canceled out by itself in (33).
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Substituting (33) to (34) yields:

− gd − gm

k + bu‡R
+ bm

(k + bu‡R)2
= 0 (36)

Now we introduce the next lemma, which is used for calculating u‡R .

Lemma 1 Consider the function

�(uR,m) = −gd − gm

k + buR
+ bm

(k + buR)2
(37)

where �(uR,m) = 0 for uR = u∗
R(m). For uR < u∗

R(m), the function �(uR,m) > 0, while
for uR > u∗

R(m), �(uR,m) < 0.

Proof By rewriting dynamics of uR as

u̇ R = σ

(

− g
ẋR
xR

−gd − gm

k + buR
+ bm

(k + buR)2
︸ ︷︷ ︸

�(uR ,m)

)

(38)

at u∗
R(m) we have:

− gd − gm

k + bu∗
R(m)

+ bm

(k + bu∗
R(m))2

= 0 (39)

Thus, at u∗
R(m),

− gd(k + bu∗
R(m))2 − gm(k + bu∗

R(m)) + bm = 0 (40)

Multiplying �(uR,m) by uR yields:

�(uR,m)(k + buR)2 = −gd(k + buR)2 − gm(k + buR) + bm (41)

Now we can subtract (40) from (41):

�(uR,m)(k + buR)2 − 0 = −gd(k + buR)2 − gm(k + buR) + bm

− (−gd(k + bu∗
R(m))2 − gm(k + bu∗

R(m)) + bm)

After some algebraic manipulations, we obtain:

�(uR,m)(k + buR)2 = −gb(uR − u∗
R(m))

(

d(2k + buR + bu∗
R) + m

)

(42)

By comparing both sides of (42), we can see the sign of �(uR,m)(k + buR)2 is opposite
to the sign of uR − u∗

R(m). Consequently, for uR > u∗
R(m), we get �(uR,m) < 0, and for

uR < u∗
R(m), we get �(uR,m) > 0. 
�

According to Lemma 1, and by comparing (36) with (40), we can see that u‡R = u∗
R(m).

Eigenvalues of the Jacobian (7) evaluated at x‡ are:

λ1 = cS(m) − cSSαSRx
‡
R (43)

λ2 = cR(u‡R,m) − 2cRR(u‡R)αRRx
‡
R = −cR(u‡R,m) (44)

λ3 = σ
∂2G

∂u2R

∣
∣
∣
∣
uR=u‡R

(45)
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Using (34), we can rewrite (45) as follows:

λ3 = σ

(
gbm

(k + bu‡R)2
− 2b2m

(k + bu‡R)3

)

= σbm

(k + bu‡R)3

(

g(k + bu‡R) − 2b

)

(46)

Theorem 4 If x‡ exists, and additionally cR(u‡R,m) > 0 and D · x∗
S < 0, then x‡ is locally

stable.

Proof Equation (43) can be rewritten as

λ1 = cS(m) − cSSαSRx
‡
R

= cSS

(
cS(m)

cSS
− αSR

αRR
K

(

1 − 1

rmaxe−gu∗
R(m)

(

d + m

k + bu∗
R(m)

)))

= cSS

(
cS(m)

cSS
− αSR

αRR

K

rmaxe−gu∗
R(m)

cR(u∗
R(m),m)

)

= cSS

(
cS(m)

cSS
− αSR

αRR

cR(u∗
R(m),m)

cRR(u∗
R(m))

)

(47)

Comparing (47) with (9), we obtain

λ1 = cSS
D · x∗

S

αRR
(48)

Thus, if D · x∗
S < 0, then λ1 < 0. Moreover, since u‡R = u∗

R(m), similarly to what we

showed in subsection 4.1.1, we can conclude that k+bu‡R < 2b
g , and, as a result, λ3 is always

negative. Consequently, if cR(u‡R,m) is positive and D · x∗
S is negative, all corresponding

eigenvalues are negative, and the fully resistant equilibrium is locally stable.

Note that when D = 0, (47) implies that instead of the sign of D · x∗
S , we should check

the sign of cS(m)
cSS

− αSR
αRR

cR(u∗
R(m),m)

cRR(u∗
R(m))

. And when we substitute cSS and cRR(u∗
R(m)) from into

the previous term, that turns into cS(m)e−gu∗
R − αSR

αRR
cR(u∗

R(m),m).

4.1.5 Effect of competition coefficients on different equilibria

Equation (8) and Theorem 1 imply that for x∗
R to be positive, it is required that cS(m) > 0

and

αRS

αSS
<

cR(u∗
R(m),m)

cS(m)
egu

∗
R (49)

Moreover, (27) implies:

αRS

αSS
<

rmax

cS(m)

Further, (5) leads to

cR(u∗
R(m),m)

cS(m)
egu

∗
R <

rmax

cS(m)
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Fig. 1 Different types of equilibria in the (
αRS
αSS

,
αRR
αSR

)-plane when cS(m) is positive. Abbreviations: IE -
stable interior equilibrium, FSE - stable fully sensitive equilibrium, FRE - stable fully resistant equilibrium,
FRSE - stable fully sensitive and fully resistant equilibria, NE - no stable equilibrium

Thus, when cS(m) > 0, αRS
αSS

determines whether the cancer dynamics have stable fully
sensitive equilibria (FSE) or not. If

cR(u∗
R(m),m)

cS(m)
egu

∗
R <

αRS

αSS
<

rmax

cS(m)
, (50)

the dynamics (4) have at least one stable FSE. But, if

rmax

cS(m)
<

αRS

αSS
(51)

the dynamics (4) have no stable FSE. Moreover, (9), and Theorem 1 imply that for x∗
S to be

positive, inequalities cS(m) > 0 and

αSR

αRR
<

cS(m)

cR(u∗
R(m),m)

e−gu∗
R (52)

have to be held. In addition, (47) implies that for the existence of a stable fully resistant
equilibrium (FRE), the following has to be held:

αSR

αRR
>

cS(m)

cR(u∗
R(m),m)

e−gu∗
R (53)

From (49–53), we can determine the type of locally stable equilibria in the
(

αRS
αSS

, αRR
αSR

)

-plane

when cS(m) > 0, as demonstrated in Fig. 1.
If cS(m) < 0, the signs of cR(u�

R,m) and cR(u‡R,m) determine the existence of the stable
trivial and fully resistant equilibria, respectively.
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Fig. 2 Estimation of the basin of attraction (green) of the locally stable trivial equilibrium (blue). Parameter
values: rmax = 0.350, g = 0.800, K = 10000, αSS = αRR = 1, αSR = 1.150, αRS = 2, d = 0.200,
m = 0.500, k = 2, b = 10, and σ = 1

Figure 1 shows that when the net growth rate cS(m) of sensitive cells is positive, the
existence of an FRE is dependent on the ratio of competition coefficients αRR and αSR . If
αRR
αSR

is less than � = cR(u∗
R(m),m)

cS(m)
egu

∗
R , the cancer dynamics will have an FRE. But if αRR

αSR
is

greater than �, the cancer dynamics can have an IE if αRS
αSS

is less than �. The existence of an
FSE depends on the ratio of competition coefficients αSS and αRS . If

αRS
αSS

lies between rmax
cS(m)

and �, the cancer dynamics will have an FSE. Furthermore, if at the same time αRR
αSR

< �,
the cancer dynamics will have one FSE and one FRE.

4.2 Estimating basins of attraction

Case 1: In this case, we have one locally stable trivial equilibrium. Parameters for this case
are mentioned in Table 2. One can obtain:

x∗
S = 1440.000, x∗

R = −2871.000, u∗
R = 0.248, u�

R ∈ {0.271, 7.135}
D = −1.300, cS(m) = −0.100, cR(u�

R,m)

∣
∣
∣
∣
u�
R=0.271

= −0.024

Since k + bu�
R > 2b

g for u�
R = 7.135, trivial equilibrium (0, 0, 7.135)� is unstable. Thus,

there exists only one locally stable trivial equilibrium: (0, 0, 0.271)� The obtained estimation
of the basin of attraction of the locally stable trivial equilibrium is shown in Fig. 2.

Case 2: In this case, we approximate the basin of attraction for one locally stable interior
equilibrium. Using parameters in Table 2, we obtain

x∗
S = 3197.000, x∗

R = 6833.000, u∗
R = 0.835

Since the three-dimensional basin of attraction is easier to see from the two-dimensional
projections, we plot such projections on the (xS/K , xR/K )- and (xR/K , uR)-planes in Fig. 3.
In these figures, the interior equilibrium is highlighted by a blue square.
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Fig. 3 Projections of the basin of attraction (green) of the locally stable interior equilibrium (blue) on the
(xS/K , xR/K )-and (xR/K , uR)-planes. Parameter values: rmax = 0.450, g = 0.800, K = 10000, αSS =
αRR = 1, αSR = 0.150, αRS = 0.200, d = 0.010, m = 0.500, k = 2, σ = 1, and b = 10

From Figs. 2 and 3, we can see that the basins of attraction for both the trivial and interior
equilibria are determined by uR . This shows that the initial resistance rate is more important
than the initial population size of cancer cells for delineating the basin of attraction of a stable
equilibrium.

Case 3: In this case, dynamics (4) has one fully sensitive and one fully resistant locally
stable equilibria. With values from Table 2, we obtain:

x∗
S = 3363.000, x∗

R = 747.000, u∗
R = u‡R = 0.835

x†S = 4222.000, u†R ∈ {1.571, 3.205}, u�
R ∈ {0.204, 7.604}
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Fig. 4 Estimation of basins of attractions of two locally stable equilibria of (1–2). Parameter values: rmax =
0.450, g = 0.800, K = 10000, αSS = αRR = 1, αSR = 1.150, αRS = 2, d = 0.010, m = 0.500, k = 2,
b = 10, and σ = 1. Abbreviations: FRE - fully resistant equilibrium, FSE - fully sensitive equilibrium

x‡R = 7472.000, D = −1.300, cS(m) = 0.190

Among the two possible values of u†R , only u†R = 1.571 satisfies k + bu†R < 2b
g . Thus,

(x†S, 0, 3.205)
� is unstable, while (x†S, 0, 1.571)

� is locally stable.Moreover, as cR(u‡R,m) is

positive and D.x∗
S < 0 is negative, (0, x‡R, u‡R)� is locally stable. In the following simulation,

we normalize populations xi of cancer cells i ∈ {R, S} to xi/K .

In Fig. 4, we estimate basins of attractions of the two locally stable equilibria. The fully
resistant and fully sensitive equilibria are highlighted by blue and green squares, respectively.
Moreover, the basins of attraction of the fully resistant and fully sensitive equilibria are
estimated through blue and green dots. Starting from initial conditions highlighted by red
dots results in an uncontrollable growth of uR . Projections of the basins of attraction on the
two-dimensional planes are shown in Fig. 5.

From Fig. 5, we can see that when cancer dynamics have two stable equilibria, the basin
of attraction is determined mainly by uR and xR . This shows that the initial resistance rate
and the initial population size of resistant cells are more important than the initial population
size of sensitive cells for distinguishing the basins of attraction of an FRE and an FSE.

4.3 Simulations of typical cancer trajectories

Case 1: In this case, we will see the trajectories that are absorbed by the locally stable trivial
equilibrium and those that are repelled from the unstable trivial equilibrium. We saw that we
have one locally stable and one locally unstable trivial equilibrium in this case.

In Fig. 6, we execute the simulation for 80 different initial conditions. In this figure, the
locally stable trivial equilibrium is shown with a blue circle, while the unstable equilibrium
is demonstrated with a red square. The initial conditions that end up in the stable equilibrium
are illustrated by green circles, while the ones that result in an uncontrollable growth of
resistance rate are highlighted by red circles. Moreover, the projections of these trajectories
on the (xS/K , uR)-plane and (xR/K , uR)-plane are illustrated in Fig. 6.
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Fig. 5 Projections of basins of attraction on the (xS/K , uR) and (xR/K , uR) planes. Parameter values:
rmax = 0.450, g = 0.800, K = 10000, αSS = αRR = 1, αSR = 1.150, αRS = 2, d = 0.010, m = 0.500,
k = 2, b = 10, and σ = 1. Abbreviations: FRE - fully resistant equilibrium, FSE - fully sensitive equilibrium

Case 2: As mentioned in Sect. 4.2, in this case, we have one locally stable interior
equilibrium. Using parameters in Table 2, we can calculate the following:

x†S
K

= 0.422,
x‡R
K

= 0.747, u∗
R = u‡R = 0.835

u�
R ∈ {0.204, 7.604}, u†R ∈ {0.226, 7.441}, D = 0.970

In this case, D · x∗
S > 0 and, as a result, the fully resistant equilibrium is unstable. Also,

both trivial equilibria are unstable since cS(m) > 0. Dynamics (4) has two fully sensitive
equilibria in this case. Since κ(0.226,m) = 0.259 > 0, the equilibrium (x†S, 0, 0.226)

� is

unstable. Moreover, for u†R = 7.441 we have k + bu†R < 2b
g = 25, and, consequently, this

trivial equilibrium is unstable, too. Figure7 demonstrates projections of trajectories starting
from 60 different initial conditions on the (xS, K − uR)- and (xR, K − uR)-planes.
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Fig. 6 Projections of various eco-evolutionary trajectories starting from different initial conditions on the
(xS/K , uR)-plane and (xR/K , uR)-plane. In this case, we have two trivial equilibria (TE): The blue star
denotes the locally stable equilibrium, while the red square denotes the unstable trivial equilibrium. Parameter
values: rmax = 0.35, g = 0.8, K = 10000, αSS = αRR = 1, αSR = 1.15, αRS = 2, d = 0.2, m = 0.5,
k = 2, b = 10, and σ = 1

From Figs. 6 and 7, we can see that the resistance rate of the unstable trivial equilibrium
delineates the border of the basin of attraction of the stable equilibrium.

Case 3: In this case, dynamics (4) have one fully sensitive and one fully resistant locally
stable equilibria. Using parameter values from Table 2, we obtain:

x∗
S = 3363.000, x∗

R = 747.000, u∗
R = u‡R = 0.835

x†S = 4222.000, u†R ∈ {1.571, 3.205}, u�
R ∈ {0.204, 7.604}

x‡R = 7472.000, D = −1.300, cS(m) = 0.190

In this example, the interior equilibrium exists, but it is unstable, since D < 0. Also, cS(m) >

0, and, as a result, the trivial equilibrium is unstable as well. For u†R = 1.571, k + bu†R < 2b
g

and for u†R = 3.205, k + bu†R > 2b
g . Thus, (x

†
S, 0, 3.205)

� is unstable, while (x†S, 0, 1.571)
�
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Fig. 7 Projection of trajectories starting from different initial conditions on the (xS/K , uR)- and (xR/K , uR)-
planes. In this case, we have one locally stable interior equilibrium (IE). The blue star denotes the locally stable
equilibrium, while the red square, red pentagon, and red diamond denote the unstable fully sensitive (FSE),
fully resistant (FRE), and trivial equilibria (TE), respectively. Parameter values: rmax = 0.45, g = 0.8,
K = 10000, αSS = αRR = 1, αSR = 0.15, αRS = 0.2, d = 0.01, m = 0.5, k = 2, b = 10, and σ = 1

is locally stable. Moreover, cR(u‡R,m) > 0, D.x∗
S < 0 and, consequently, (0, x‡R, u‡R)� is

locally stable.
In Fig. 8, we demonstrate trajectories started from different initial conditions. One can

see the trajectories that are absorbed by both locally stable FSE and locally stable FRE, and
those that are repelled by unstable equilibria.

Since we projected three-dimensional trajectories onto two-dimensional planes, some
trajectories appear to exhibit sudden changes. However, in the full three-dimensional space,
no such sudden changes exist.
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Fig. 8 Projection of trajectories starting from different initial conditions on both (xS/K , uR)- and
(xR/K , uR)-planes. In this case, we have one locally stable fully resistant equilibrium (FRE) and one locally
stable fully sensitive equilibrium (FSE). This figure estimates which states are in the basins of attraction of
these two locally stable equilibria. Parameter values: rmax = 0.450, g = 0.800, K = 10000, αSS = αRR = 1,
αSR = 1.150, αRS = 2, d = 0.010, m = 0.500, k = 2, b = 10, and σ = 1

5 Discussion

In this paper, we analyzed a polymorphic Darwinian dynamics model under human interven-
tion and studied its stability with respect to intraspecific competition and intensity of human
intervention. As a specific example of such a Darwinian system, we took cancer under treat-
ment. We analyzed how this system’s eco-evolutionary equilibria depend on competition
coefficients and treatment dose. We demonstrated that Darwinian dynamics lead to four dif-
ferent equilibria that can be stable or unstable, depending on the intensity of the human
intervention and intraspecific competition. In the cancer treatment case study, we demon-
strated thatwhen the treatment dose is sufficiently low tomaintain a positive net growth rate of
sensitive cells, the system can reach three possible equilibria, depending on the intraspecific
competition: (1) interior equilibrium when both effects of sensitive cells on resistant ones
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and resistant cells on sensitive ones are not too high, (2) fully resistant equilibrium when the
effect of resistant cells on sensitive ones is too high, (3) fully sensitive equilibrium when the
effect of sensitive cells on resistant ones is neither too high nor too low.Moreover, we showed
that when the treatment dose is higher than a threshold, which results in a negative net growth
rate of sensitive cells, the system can reach either a fully resistant equilibrium or a trivial
equilibrium (extinction of cancer cells) with higher treatment doses. We also approximated
basins of attraction of different equilibria using the level-set method. We demonstrated typi-
cal eco-evolutionary trajectories of cancer cells within and outside these basins of attraction
through simulations.

Our results strengthen our understanding of the stability of evolutionary games. While
the stability of different types of dynamic games has been studied extensively [46–51] and
also properties of evolutionarily stable equilibria, including their stability, are well defined
and understood [34, 52–54], we believe our study is the first one that focuses specifically
on the impact of both human intervention and competition coefficients on eco-evolutionary
stability. Goh found conditions for globally asymptotically stable equilibria in Lotka-Volterra
dynamics [55]. Themost closely relatedwork to ours is that ofMougiwho added evolutionary
dynamics to Lotka-Volterra two-species model with an allelopathic interaction and showed
under what conditions these dynamics oscillate or stabilize on an equilibrium by depending
on the evolutionary speed [56]. Here, we added evolutionary dynamics to competitive Lotka-
Volterra ecological dynamics under human intervention and demonstrated that there are no
globally stable equilibria.

Our results contribute to mathematical oncology as we consider cancer treatment as our
main case study. Most existing literature in mathematical oncology uses models with quali-
tative type of resistance, thus explicitly not considering the evolution of resistance [57–65].
This literature often focuses on treatment protocols for containing tumor burden for as long
time as possible. The limited mathematical oncology literature that utilizes models similar to
the one introduced in this paper, i.e., models considering resistance as a quantitative evolving
trait, mostly assumes either a monomorphic cancer population or a polymorphic population
with no competition coefficients, which both lead to no interior eco-evolutionary equilibria
[23, 31, 66–68]. Suchmodels are often utilized for treatment optimization with respect to var-
ious measurable outcomes, such as time to progression or variance of tumor burden. Adding
competition to the polymorphic Darwinian dynamics of cancer, one can focus on therapies
stabilizing the eco-evolutionary dynamics of cancer at their interior equilibria, in the spirit
of ongoing clinical trial in metastatic ovarian cancer (NCT05080556 [69]). Moreover, our
model can be extended to allow for double-bind and extinction therapies, which are novel
evolutionary therapies currently tested in initial clinical trials (NCT04343365) [70, 71].

Although we focused on cancer treatment as the main application of our work in this
manuscript, the same results can be applied to similar case studies such as antibiotic resistance
and pest management. For instance, according to our results in pest management, we should
never use pesticides extensively unless there exists a stable trivial equilibrium for the dynamic
of evolution of the pest population. If no stable trivial equilibrium exists, one should aim at
stabilizing pest population at the interior or fully sensitive or resistant equilibria by using
fewer pesticides.

How can physicians use our results? If a stable trivial equilibrium exists, a physician can
do so by applying a sufficiently high dose of treatment corresponding to that stable trivial
equilibrium and can eradicate all cancer cells. If no stable trivial equilibrium exists and
sensitive cells do not evolve, a physician should check the existence of a stable fully sensitive
equilibrium. If it exists and tumor volume at this equilibrium is tolerable for the patient, the
physician should stabilize the tumor on this fully sensitive equilibrium. If no trivial and fully
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sensitive equilibrium exists, the physician should aim at stabilizing the tumor on the interior
or fully resistant equilibrium. This also depends on the tumor burden at these equilibria. If
the corresponding tumor burden is not tolerable for the patient or no stable equilibria exist,
the physician should consider maximizing time to progression with the current treatment or
using multi-drug therapy [72–74].

Tomake the results of the case study on cancer treatment presented in this paper applicable
in the real world, we need to fit our model to patient time-series data, such as volumetric
data (e.g., through serum biomarkers or imaging) [75–77] or information on different cancer
cell types (e.g., liquid biopsies [78–80]). While for some cancers, such as prostate cancer,
such information is easy to find (prostate-specific antigen; [81]), for other cancers, such as
non-small cell lung cancer, we rely on imaging and liquid biopsies. Measuring resistance rate
may be (nearly) impossible and must be estimated through time-series data, thus availability
of such data is a must.

While this paper focused on equilibria of eco-evolutionary dynamics, future research
directions should aim at stabilizing the dynamics at desirable equilibria through optimal
control, similarly as it was done in simpler models before in [64, 82–84].

Our model of Darwinian dynamics presented here has some limitations, especially as it
approximates evolutionary dynamics less well when the distribution of evolutionary traits
is multi-modal or, for example, in the case of disruptive selection [85, 86]. Lion et al. have
proposed to apply moment closure approximation to solve this problem [87]. Future research
should address how different distributions of evolutionary dynamics impact our ability to
capture the eco-evolutionary system in question through Darwinian dynamics and/or how to
approximate these dynamics more precisely.
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