
Novel machine learning methods to
enhance wind power probabilistic
forecasting
SPinHy-NN framework proposal for
European electricity markets
E. Lacoa Arends

Te
ch
ni
sc
he

U
ni
ve
rs
ite
it
D
el
ft

Novel machine learning methods to enhance
wind power probabilistic forecasting

SPinHy-NN framework proposal for European
electricity markets

by

E. Lacoa Arends

to obtain the degree of Master of Science in Sustainable Energy Technology
at the Delft University of Technology,

to be defended publicly on Friday, October 16, 2020 at 14:00.

Student number: 4772776
Project duration: November 18, 2019 – September 18, 2020
Thesis committee: Prof. dr. S.J. Watson, TU Delft (AE) Supervisor

Dr. S. Basu, TU Delft (CiTG) Supervisor
Dr. M.A. Schleiss, TU Delft (CiTG) Thesis committee

Cover image courtesy: Kayana Szymczak for the New York Times.

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Preface
My experience following the Sustainable Energy Technology master program has been quite a ride. A
22-year old boy from Caracas: ambitious and passionate about challenging topics, decided to leave
a collapsing hometown to become a specialist in the energy system. The growth of the offshore wind
energy sector and the emerging research of floating structures captured my attention to join the energy
transition. An unconventional thought for someone born and raised in the land of the largest proven
crude oil reserves in the world. There was more, though.

Following the Autonomous Systems track, I got introduced to different technologies and the impor-
tance of integrating them into a complex system. In particular, I was inspired by the future impact of
high penetration of weather-dependent sources in electricity markets, as there must be a match be-
tween supply and demand at all times. On the other hand, I enjoy solving optimization problems, using
my programming skills to model systems and find that local minimum. Therefore, I was closely follow-
ing the emerging field of machine learning, seeing how data-driven approaches were solving intriguing
problems. Just the simple handwritten digits recognition application amazed me enough to learn more.
However, only a few projects were working with machine learning in my program. Consequently, I
pitched my research topic at the Wind Energy Section of the Aerospace Faculty to the person who later
became my main supervisor. The intention: enhance wind power forecasting methodologies using
machine learning to aid power system operators’ decision-making process. I must say I had to start
from scratch. In this learning process, the MOOC in Machine Learning available in Coursera taught by
Andrew Ng, gave me the fundamentals to dig deeper into the application I wanted to solve. Also, my
second supervisor found the perfect setting to push myself by enrolling in the European Energy Markets
Forecasting Competition 2020. These were three intense months, amidst the outbreak of COVID-19
in Europe. I failed, I learned, I failed once more until I succeeded. As a result, our team published
two conference papers in this event, having the opportunity to present one of them as the main author,
which is part of the outcome of this research project.

Eight months of work are summarized in this document. Working from home most of the time,
adapting to the so-called ”new normal”, I made it to this point with the help of many people. Naming all
of them in this short one-page is not enough. I will still take this space to acknowledge some names:

My supervisors: Simon J. Watson and Sukanta Basu. I want to thank Simon for always pushing me
to provide a quality job. His professional character taught me how to be strategic beyond being smart.
I am grateful to Sukanta for his energy, passion, and brilliant mind. He gave me the resources to find
my way out during the bottlenecks of my project, encouraging me to follow new directions.

My family: Gardenia, Ulises, agüe Nancy. You have been part of the whole process, my evolution.
I want to thank you for the emotional, rational, and financial support to follow my aspirations in life.
Rodrigo, Nancy, and Juana: without you, this experience would not have been the same. I consider
you all my godparents, a solid rock to facilitate my decisions. I owe you my academic formation.

Judith Claassen: for taking such good care of me during these months and reviewing my work. Your
sense of caring and unconditional support has given me the energy to follow my dreams. It’s you.

My Venezuelan friends: some still back home, most of them spread across the world. I miss you
and keep you in my mind, the experiences we have lived together represent the most valuable treasure
taken from home, important to overcome the difficulties of these times. My friends in the Netherlands: I
have learned somuch from you, diverse cultures, different ways of seeing life; youmademe understand
the world in new ways, to question my beliefs in a constructuve manner. I am fortunate that we all
crossed paths and I felt the comfort of your presence.

Finally, on the eves of my 25th birthday, I reflect on this challenging yet beautiful road and cannot
stop thinking about my father. As I am writing this, he would be turning 59 years old today. I want to
acknowledge his teachings and discipline. After all, I think he would be very proud of me.

E. Lacoa Arends
Delft, October 2020

iii

Summary
The promotion of sustainable energy as a means to tackle climate change is producing continuous
growth of wind and solar. The increasing penetration of weather-dependent energy sources brings
additional challenges to the operation of the power system. Wind power forecasting is a valuable
resource for these operators: a tool that aids the decision-making process and facilitates risk manage-
ment. However, the energy transition requires further developments over these predictive models to
guarantee the security of supply and system adequacy. On the other hand, the progress of artificial in-
telligence algorithms and their success in different fields attracted research into wind power probabilistic
forecasting. In particular, the Smooth Pinball Neural Network (SP-NN) is a non-parametric model for
probabilistic applications, which introduces a customized objective function and addresses forecast-
ing inconsistencies. Therefore, the objective of the research was to enhance wind power forecasting
through data-driven or machine learning models, by proposing a new framework as an alternative to the
existing ones, underlying its advantages and limitations, which is validated in different climate regions
using as input grid-like topology data (weather images).

The project focused on the European Energy Markets 2020 Conference (EEM20) Forecasting Com-
petition. The setting emulates the day-ahead electricity market and the location consisted of all four
electricity price regions in Sweden, where threemain sets of data were provided: (a) NumericalWeather
Prediction (NWP) meteorological data (seven variables and ten ensemble members); (b) a wind tur-
bine record; (c) aggregated wind power production by price region. The data timestamps are divided
hourly for the years 2000 and 2001, serving each year as training and testing data sets, respectively.
The wind installed capacity at each price region was 1.33, 3.01, 2.66, and 1.64 (GW). The forecast
score uses the pinball loss (PL) function metric. Three main challenges are present in this competition,
namely the large volume of data (the curse of dimensionality), the lack of information regarding wind
turbine availability, and the growing evolution of wind installed capacity between data sets.

The methodology to create a framework consisted of three steps: (a) evaluating different methods
in deterministic approach such as two benchmark models, three Convolutional Neural Networks (CNN),
four Multi-layer Perceptrons (MLP), and k-means clustering; (b) feature engineering to make the best
use of the information, enhanced by data analysis; (c) tuning the final model by concatenating model
architectures based on weather images and additional features as input to compute quantile predic-
tions, learning from the heteroscedasticity of data. The final framework is called the Smooth Pinball
Hybrid Neural Network (SPinHy-NN), an extension of the SP-NN: introducing a CNN and a customized
MLP architecture.

The results show that the LeNet-5 is the best CNN architecture, obtaining a Mean Absolute Er-
ror (MAE) at each price region of 104.65, 187.58, 150.94, and 109.44 (MW), for the period March-
December 2001. The k-means clustering approach was optimized following the elbow method, obtain-
ing a MAE of 152.95, 297.02, 283.84, and 170.59 (MW), respectively. This showcases the potential of
CNN over k-means clustering. A high correlation is present between wind speed-wind gusts and power
output. However, joining both variables did not improve the quality of the forecasts and increased com-
putational costs. Hence, wind speed is the only input weather image. The SPinHy-NN was tuned for
each price region, considering the sub-sampling layer, spatial dropout for regularization, batch size
for stochastic gradient descent, and quantile margin (𝜖) for sharpness and consistency. The quantile
cross-over problem has been evaluated through the crossing loss (CL) and the number of crossings
(NC) metrics. The analysis shows that the quantile margin (𝜖) can correct this undesired behavior.

The conclusions validate the SPinHy-NN as a generalized framework for different climates through
the final score achieved post-competition, managing to capture the spatial patterns in all cases except
for rounds 1 and 4. Also, the global score of 57.54 is competitive with the top three teams of the com-
petition. Moreover, the framework can be adapted to reach a desirable trade-off between accuracy,
sharpness, and consistency by tuning the margin quantile parameter (𝜖) in different climates. Future
recommendations aim to extend this research by employing satellite imaging, further feature engineer-
ing, novel neural networks, and exploring spatiotemporal models to capture atmospheric dynamics.

v

Contents

Preface iii

Summary v

List of Figures ix

List of Tables xi

List of Abbreviations xiii

1 Introduction 1

2 Literature Review 3
2.1 Wind power forecasting . 3

2.1.1 Physical models . 4
2.1.2 Statistical and hybrid models . 4
2.1.3 Probabilistic forecasting . 5
2.1.4 Challenges of wind power forecasting. 7

2.2 Machine Learning . 8
2.2.1 Artificial Neural Networks (ANN). 9
2.2.2 Convolutional Neural Networks (CNN) . 14
2.2.3 K-means clustering . 17

3 Smooth Pinball Neural Network Framework 19
3.1 Framework overview . 19
3.2 Loss function . 19
3.3 Quantile cross-over. 21
3.4 Architecture parameters . 21

4 Methodology 23
4.1 European Energy Markets 2020 Forecasting Competition 23

4.1.1 Data overview . 24
4.1.2 Evaluation method . 25

4.2 Deterministic forecasting approach . 26
4.2.1 Shift-invariant architectures: CNN . 29
4.2.2 Fully-connected architectures: MLP . 30
4.2.3 Clustering: k-means . 31

4.3 Feature and output engineering . 32
4.4 SpinHy-NN: Integrating the SP-NN probabilistic framework 34
4.5 Programming framework . 36

4.5.1 Keras library . 36

5 Data Analysis 37
5.1 Meteorological variables . 37
5.2 Wind turbine record . 38

5.2.1 Installed capacity . 39
5.2.2 Terrain height . 42
5.2.3 Installation dates . 42

vii

viii Contents

6 Results & Discussion 45
6.1 Deterministic forecasts . 45
6.2 Feature engineering . 48
6.3 SPinHy-NN performance. 51

6.3.1 Clipping factors . 53
6.3.2 Quantile cross-over. 60
6.3.3 Competition results . 60

7 Conclusions & Recommendations 61

A Backpropagation algorithm intuition 63

B SPinHy-NN Python code implementation 67

C K-means clustering Python code implementation 79

D EEM20 Conference Paper 85

Bibliography 93

List of Figures

1.1 Offshore wind installed capacity growth by country [2]. 1

2.1 Forecasting methodologies: point forecast with bands (top); probabilistic forecast repre-
sented by quantiles (bottom) [6]. 6

2.2 Gaps and bottlenecks of forecasting tools [7]. 8
2.3 Architecture of an Artificial Neural Network (ANN). 9
2.4 Overview of common activation functions [35]. 11
2.5 Feed-forward pass and backward propagation in a unit of the neural network following

the chain rule [38]. 12
2.6 Comparison of common loss functions. 12
2.7 Different fitting model scenarios: underfitting (left), robust model (center) and overfitting

(right). 14
2.8 Bias and variance trade-off. 14
2.9 Dropout strategy in a neural network architecture: (a) standard neural network (left); (b)

applying dropout (right). 15
2.10 AlexNet: Convolutional Neural Network (CNN) architecture. 15
2.11 Convolution layer operation example [43]. 16
2.12 K-means clustering algorithm [46]. 17
2.13 Elbow method to select optimal k-value of clusters [47]. 18

3.1 SP-NN optimization algorithm [49]. 20
3.2 Basic architecture of a SP-NN with quantile output nodes [49]. 22

4.1 Timeline of the EEM20 Forecasting competition [50]. 24
4.2 Physical-based model flowchart. 28
4.3 Schematic of the LeNet-5 based neural network architecture. 29
4.4 Schematic of the VGG-16 based neural network architecture. 29
4.5 Schematic of the AlexNet based neural network architecture. 29
4.6 Schematic of MLP-1 architecture. 30
4.7 Schematic of MLP-2 architecture. 30
4.8 Schematic of MLP-3 architecture. 31
4.9 Schematic of MLP-4 architecture. 31
4.10 Weather analog-based approach using a simple k-means clustering method. 32
4.11 Model summary of the SPinHy-NN using the Keras package. 36

5.1 Overview of NWP meteorological variables for a particular time step. 38
5.2 Wind turbine locations classified for every price region. 39
5.3 Concentration of wind turbines in Sweden. 40
5.4 Concentration of wind turbines in every price region of Sweden. 40
5.5 Installed capacity concentration in Sweden. 41
5.6 Installed capacity concentration in every price region of Sweden. 41
5.7 Terrain height distribution of wind turbines in Sweden. 42
5.8 Close-up of terrain height distribution of wind turbines in Sweden. 43
5.9 Histogram of operational age of wind turbines in Sweden for period 1991-2001. 43
5.10 Histogram of installed capacity in Sweden for period 1991-2001. 44

6.1 Physical-model forecast of price region SE4 in the period January-Febraury 2001, com-
pared to the real observed value. 46

ix

x List of Figures

6.2 Physical-model forecast of price region SE1 in the period January-Febraury 2001, com-
pared to the real observed value. 47

6.3 Elbow method for multiple inputs (WS10, T2M, MSLP) in all price regions. 47
6.4 Elbow method for single input (WS10) in all price regions. 47
6.5 Analog-based approachmodel forecast of price region SE3 in the period January-February

2001, compared to the real observed value. 48
6.6 Analog-time MLP-4 model forecast of price region SE3 in the period January-February

2001, compared to the real observed value. 50
6.7 Hybrid model forecast of price region SE2 in the period January-February 2001, com-

pared to the real observed value. 50
6.8 Structure of the SPinHy-NN predictive-based model probabilistic framework. 51
6.9 Resulting probabilistic wind power forecasts in Sweden for period January-February 2001. 54
6.10 Resulting probabilistic wind power forecasts in Sweden for period March-April 2001. . . 55
6.11 Resulting probabilistic wind power forecasts in Sweden for period May-June 2001. . . . 56
6.12 Resulting probabilistic wind power forecasts in Sweden for period July-August 2001. . . 57
6.13 Resulting probabilistic wind power forecasts in Sweden for period September-October

2001. 58
6.14 Resulting probabilistic wind power forecasts in Sweden for period November-December

2001. 59
6.15 EEM20 forecasting post-competition results by round. 60

List of Tables

2.1 Overview of some statistical models for wind power forecasting [11]. 4
2.2 Overview of some learning and hybrid models used for wind power forecasting [4]. . . . 5

3.1 Additional parameters of the SP-NN. 22

4.1 NWP variables of the EEM20 Competition. 24
4.2 Drivers of wind power for feature engineering. 33

5.1 Correlation matrix between input and output variables. 38
5.2 Number of wind turbines and power capacity installed by price region for 1, 2 and 10 years. 44

6.1 Overview of results for benchmark predictive models (values in MW). 45
6.2 Overview of results for CNN-based predictive models (values in MW). 46
6.3 Results for analog-based approach using optimal k-clusters (values in MW). 48
6.4 Overview of results for MLP-based predictive models using analog-based features (val-

ues in MW). 49
6.5 Overview of results for MLP-based predictive models using analog-based features and

time dependencies (values in MW). 49
6.6 Results of the hybridmodel combining CNN-MLP architectures introducing NWP images,

analog-based and time proxy data (values in MW). 50
6.7 Overview of results based on tuning of hyperarameter values for each price region in

January-February 2001 testing data set (values in MW). 52
6.8 Overview results of SPinHy-NN models for each price region in March-December 2001

testing data set (values in MW). 52
6.9 Overview of results of SPinHy-NNmodels for each price region in March-December 2001

testing data set considering analog-based data (values in MW). 53
6.10 Final pinball loss results of the SPinHy-NN framework in six subsets of 2001 (values in

MW). 53
6.11 Clipping factors applied in rounds 1-6 based on historical data. 53
6.12 Improvement of the forecast round score based on clipping factor approach per round. . 60
6.13 Crossing loss (CL) and number of crossings (NC) results for every round at each price

region. 60

7.1 Post-competition results of the SPinHy-NN framework in six subsets of 2001 (values in
MW). 62

xi

List of Abbreviations

AdaGrad Adaptive Gradient optimization algorithm

Adam Adaptive Moment Estimation optimization algorithm

AdaMax Adam algorithm variation

AI Artificial Intelligence

AR Auto-Regressive model

ARIMA Auto-Regressive Integrated Moving Average model

ARMA Auto-Regressive Moving Average model

ANN Artificial Neural Network

CFD Computational Fluid Dynamics

CL Crossing Loss metric

CNN Convolutional Neural Network

ConvLSTM CNN-LSTM

DAG Directed Acyclic Graph

DNN Deep Neural Networks

EEM20 European Energy Markets 2020 Conference

ECMWF European Centre for Medium-Range Weather Forecasts

GBM Gradient Boosting Machine

GPU Graphical Processing Unit

HARMONIE HIRLAM-ALADIN Research on Mesoscale Operational NWP in Euromed

xiii

xiv List of Abbreviations

HCM Hybrid CNN-MLP

ICT Information and Communication Technology

IDE Integrated Development Environment

KDE Kernel Density Estimation

k-NN K-Nearest Neighbor

LES Large-Eddy Simulation

LSTM Long-Short Term Memory

MA Moving Average model

MAE Mean Absolute Error

MET Norway Norwegian Meteorological Institute

MLP Multi-layer Perceptron

MSLP Mean Sea Level Pressure

MSE Mean Squared Error

NetCDF Network Common Data Form

NC Number of Crossings metric

NWP Numerical Weather Prediction

PCA Principal Component Analysis

PDF Probability Density Function

QGAM Quantile Generalized Additive Model

QR Quantile Regression

QRF Quantile Regression Forest

ReLU Rectified Linear Unit

RGB Red Green Blue

RH2M Screen level (2-meter height) Relative Humidity

RMSprop Root Mean Square Propagation optimization algorithm

RNN Recurrent Neural Network

RES Renewable Energy Sources

SE1 Swedish electricity price region 1

SE2 Swedish electricity price region 2

List of Abbreviations xv

SE3 Swedish electricity price region 3

SE4 Swedish electricity price region 4

SGD Stochastic Gradient Descent

SLAF Scaled Lagged Average Forecasting

SP-NN Smooth Pinball Neural Network

SPinHy-NN Smooth Pinball Hybrid Neural Network

SVQR Support Vector Quantile Regression

SVM Support Vector Machine

SWEA Swedish Wind Energy Association

T2M Surface Temperature at 2-meter height

TCC Total Cloud Cover

U10 Zonal 10-meter height wind component

V10 Meridional 10-meter height wind component

WS10 10-meter height Wind Speed

1
Introduction

Renewable Energy Sources (RES) find an opportunity to produce a transformational change in the en-
ergy sector. Despite global disruptive events that showcase the fragility of our current socio-economic
system, the agenda to call for action to push resilient environmental-friendly solutions remains, as cli-
mate change poses itself as one of the biggest threats of the current generation.

In the context of COVID-19, renewable electricity has not been affected. In fact, during the first
quarter of 2020, the global use of renewables grew by 1.5% [1]. Moreover, estimations suggest that
renewable electricity generation will rise by 5% in 2020. In particular, wind energy positions itself as
a dominant driver in the energy transition. By the end of 2019, Europe increased the total installed
offshore wind capacity to 22 GW, connecting more than 5000 turbines, compared to 12.5 GW installed
in 2016 [2]. Figure 1.1 shows the growth of the wind energy sector in Europe. In the Netherlands, more
than 1.1 GW have been connected so far to commit to the National Offshore Wind Energy Roadmap
to 2030, aiming at 11 GW of wind energy by the end of the decade [3].

Figure 1.1: Offshore wind installed capacity growth by country [2].

Besides the promising growth of this infrastructure, one of the remaining challenges in the wind
energy sector is to deal with the uncertainty of the output production due to its chaotic and intermittent
nature. Power system operators still face the difficulty of integrating the variability of wind power into
the grid, compromising scheduling, unit commitment, and management of reserve systems [4].

1

2 Introduction

Wind power forecasting serves as a product to facilitate the decision-making of these operators: a
tool for risk management in electricity markets [5]. Existing methodologies include deterministic, prob-
abilistic, ensembles, and ramp event forecasts [6]. These are all mature techniques used by operators
worldwide, for which advantages and limitations are understood.

Several gaps and bottlenecks are present in these forecasting tools, namely data streams, models,
approaches, expertise, and visualization. These issues stimulate the research of new methodologies
and frameworks to solve different problems, such as the value of data and the acquisition of relevant
variables from Numerical Weather Prediction (NWP) products to improve the accuracy of forecasts [7].
Different strategies have been implemented to fulfill RES forecasting objectives, based on physical and
data-driven models [8].

Machine (deep) learning and artificial intelligence (AI) has shown successful results in different
fields and applications –including the energy sector–, to promote data-driven decision-making [4]. As
computers improve their computation performance and algorithms become increasingly efficient, our
society is shifting to an era of energy digitalization [9], where the use of massive Information and Com-
munication Technology (ICT) plays an essential role to the energy transition, subject to the complexity of
the system. In the sub-domain of deep learning, Artificial Neural Networks (ANN) are yielding research
in an unprecedented way owing to their versatile methodology and the abundance of data, introduc-
ing novel optimization techniques, model architectures, and dealing with non-linearity. Furthermore,
they are becoming more accessible through friendlier programming environments: simple yet powerful
framework packages, attracting professionals from different fields to train their data.

The problem statement is summarized as follows. The energy transition promotes wind energy as
a dominant technological driver to mitigate climate change. However, gaps and bottlenecks in power
forecasting tools are still present in the value chain or pipelines of these frameworks. A high-penetration
of RES challenge power system operators to balance the electricity demand effectively, introducing
additional technical and financial risks that jeopardize the security of supply, as this gap for accurate
forecasting methods remains open.

The objective of this report is to enhance wind power forecasting employing data-driven models,
using different machine learning approaches that capture patterns in meteorological data, applied to
different climate regions. The scope of this project compares novel approaches through different types
of forecasts, giving special attention to probabilistic methodologies. Remote sensing, on-site measure-
ments or simulation from NWP serve as possible data streams to train these models. Finally, creating
a framework as an alternative to the existing ones, underlying its advantages and limitations, which is
validated in different climate regions or data sets.

The outline of the report is structured by the following chapters:

• Chapter 2: offers a literature review and state-of-the-art of the two main pillars of this research
project, namely deep learning and wind power forecasting.

• Chapter 3: introduces a novel neural network methodology, the Smooth Pinball Neural Network
(SP-NN) for quantile regression problems.

• Chapter 4: explains the methodology and the approach followed to create the model for enhanc-
ing wind power forecasting, starting from the data stream to the forecast visualization, subject to
the scope of this project, and time planning. Moreover, it introduces the programming frameworks
(packages) and computational processing power.

• Chapter 5: analyses the data sets of different regions used to validate the created model frame-
work to characterize them.

• Chapter 6: provides the results of the followed methodology, considering the case study. More-
over, it compares the architectures, discussing the feature engineering process and hyperparam-
eter tuning of the model.

• Chapter 7: ends the report, concluding the research project with key takeaways, and provides
recommendations for future works based on the learning outcomes of this work.

2
Literature Review

The following chapter aims to provide the literature review explored during the research project. Hence,
it provides the necessary theory to understand the terminology and concepts utilized in this report. The
outline of the chapter is divided in two main section: Section 2.1 provides a state-of-the-art summary
of wind power forecasting. Section 2.2 overviews the field of machine learning.

2.1. Wind power forecasting

Wind power forecasting has been an active research area for the last decades. The interest to enhance
forecasting models increases as a higher penetration of wind energy technologies and other renewable
sources penetrate the electricity market [10].

Forecastingmodels in wind energy can be classified in two groups. The first group relies on historical
time series of relevant wind data variables. The second group used predicted NWP models as input,
making it a two-step forecasting process.

Another classification for wind forecasts is based on the approach [11]: models based on physical
methods, conventional statistics, and machine learning, the latter given by the recent success of AI.
Moreover, hybrid approaches that combine different strategies have served as a tool for enhancing
these models. Usually, a simple method to predict wind is used to benchmark a set of approaches:
persistence is one of them [8].

Persistence is a naïve measure defining the forecast value for the next time step (𝑃) to be equal
to the actual value (𝑃), for which information is available. Despite its simplicity, persistence shows to
be more accurate than NWP-based models for time horizons longer than 6 hours [10].

Given both classifications, the first group follows statistical approaches to forecast wind speed or
electricity production directly. The second group focuses on building relationships from explanatory
variables derived from another meteorological model that simulates wind dynamics to predict power
production.

All these approaches have shown successful results. However, the performance varies according to
the time horizon. Hence, some models are more suitable for certain cases than others. For instance,
short-term horizons are more susceptible to atmospheric dynamics, making it convenient to employ
meteorological models to enhance the accuracy of results [12].

Wind power forecasting then can also be classified in terms of the forecasting horizon [13]:

• Very short-term forecasting relates to models that predict for seconds to minutes ahead, finding
most of their application in wind turbine control and power system frequency control.

3

4 Literature Review

• Short-term forecasting predicts for hours to days, having applications in Economic Dispatch,
reserving units, and the day-ahead electricity (spot) market.

• Medium-term forecasting tries to predict for days up to weeks, being relevant for unit commitment
and scheduling maintenance labors.

• Long-term forecasting relates to months or years time scale, finding applications in wind power
planning and power system planning as a conceptual design or proposal to a new project.

2.1.1. Physical models

Physical models require detailed information of the lower atmosphere. It involves converting wind
speed given by meteorological services or NWP to wind turbine clusters or wind farms. The conversion
of wind speed has to go through an extrapolation process, correcting for hub height, which takes into
consideration the terrain: logarithmic or power laws are suitable for this upscaling process. Once a
proper wind speed is defined, the wind turbine power curve is used to relate this wind data with the
power production [8].

More complex approaches involve Large-Eddy Simulation (LES) or Computational Fluid Dynamics
(CFD), serving as an alternative method to adjust the local conditions. However, the complexity of
the model increases the computational costs of the model, which depending on the application might
be undesired. Some existing physical models for wind power forecasting are Prediktor (developed by
Landberg, 2001) and SOWIE (developed by Eurowind GmbH in Germany, 2002) [11].

2.1.2. Statistical and hybrid models

In the statistical realm of wind power forecasting, big data sets are analyzed, ignoring meteorologi-
cal variables. Therefore, these methods are also called ’black-box’ approaches. Statistical models
used include Auto-Regressive (AR), Moving Average (MA), Auto-Regressive Moving Average model,
(ARMA), and Auto-Regressive Integrated Moving Average model (ARIMA) [8]. Table 2.1 shows an
overview of some statistical models used in wind power forecasting.

Table 2.1: Overview of some statistical models for wind power forecasting [11].

Model name Developer Locations

WPPT IMM & DTU Denmark, Canada
The Netherlands, Sweden

Sipreólico University Carlos III &
Red Eléctrica de España Spain

WPMS ISET, Germany Germany
GH Forecaster Garrad Hassan Greece, Great Britain and USA
Alea Wind Aleasoft at UPC, Catalunya Spain

On the other hand, learning methods involve ANNs, fuzzy logic, Support Vector Machine (SVM),
or a combination of methods. Therefore, these are so-called ”grey-box” methods, as they are learning
from the relationship between the forecasted values (wind production) and historical sequential data
[14].

An example of learning methods is weather analogs based on a k-means clustering approach.
An analog-based approach based on weather classification consists of predicting future values based
on the most similar historical conditions. The use of a k-means method can enhance the traditional
statistical tool, integrating images in a multivariable framework. Given this approach, the model can
recognize the most similar patterns based on the target values among the training data [15].

Hybrid models combine physical and statistical models to enhance wind power forecasting. An
example of a hybrid model is using a deep learning architecture to capture spatial patterns in NWP

2.1. Wind power forecasting 5

data, learning from the real power prediction at a particular point in time that relates this grid-like topol-
ogy data. Table 2.2 shows an overview of existing learning and hybrid models used in wind power
forecasting.

Table 2.2: Overview of some learning and hybrid models used for wind power forecasting [4].

Inputs Data set Algorithms

Wind speed
Wind power

Global Energy
Forecasting Competition

(GEFCom) 2014

Sparse Bayesian learning
Kernel Density Estimation (KDE)
Beta distribution fitting method [16]

Wind speed
Wind power

Australian Energy
Market Operator
(AEMO) 2005

Random Forest
Gradient Boosting

SVM [17]

Wind speed
Wind power

National Renewable
Energy Laboratory

(NREL) 2006

Ensemble method: wavelet transform
partial least squares regression

ANN [18]
Wind speed
Wind power GEFCom 2012 Gaussian Processes

ANN [19]
Wind turbine data

Wind speed
Wind power

SCADA
wind farm data 2012 K-means clustering, bagging ANN [20]

Wind power
Weather forecasts

5 wind farms data
Europe

Mutual information
Deep auto-encoders

Deep belief networks [21]
Day, hour
Wind speed
Wind direction
Temperature
Pressure
Humidity

Active turbines

MADE wind farm
ITER Tenerife

Spain 2014-2016

Multi-layer perceptron (MLP)
with ReLU,

Long-Short Term Memory (LSTM) [22]

Wind speed
Wind direction
Temperature
Humidity
Pressure

MADE wind farms
ITER Tenerife

Spain

Feed-forward ANN
Convolutional Neural Network (CNN)
Recurrent Neural Network (RNN) [23]

2.1.3. Probabilistic forecasting

The original intuition of a forecasting tool is perceived as a single deterministic point, expressing the
expectation for the particular time ahead. This traditional methodology is known as point forecast.
However, a different forecasting methodology exists, namely probabilistic or uncertainty forecasting,
which instead of predicting one value at every time step, outputs the complete distribution of the ex-
planatory variable. The distribution of a probabilistic forecast is represented by quantiles [6]. Figure
2.1 compares a point forecast (black) with a quantile forecast.

The basic terminology to assess the quality of probabilistic forecasts relies on forecast skill and
sharpness (subject to calibration).

Forecast skill expresses the accuracy of the forecasting model respect to the real value. Since the
observed value is unique and the probabilistic model provides a range from a density distribution, it is
significant to reward how close these bands are to each other.

The closeness between boundary quantiles is expressed through the sharpness. However, fore-
cast sharpness is subject to calibration, which refers to the level of consistency between the distribution
(range) of the forecast with the real observed values [24].

6 Literature Review

Figure 2.1: Forecasting methodologies: point forecast with bands (top); probabilistic forecast represented by quantiles (bottom)
[6].

In comparison with point-value predictions, this methodology provides more information on future
events, exhibiting it as a forecasting tool advantage. On the other hand, conventional deterministic
wind forecasts are not able to provide enough accuracy, traduced into a complicated decision-making
process for those who analyze them. As the precision of these models depends on the time horizon,
high uncertainty levels for intermittent electricity production motivated the study of probabilistic tools.
Therefore, uncertainty forecasting is gettingmore attention in developing wind power predictionmodels,
as it turns to be of essential value for power system operators under high penetration of wind energy
[13].

The traditional methodology for wind power probabilistic forecasting is based on an essential data
stream, namely meteorological ensemble members. The vast amount of information available on these
models does not imply, however, that all information of a particular scenario is present. Hence, produc-
ing relevant scenarios rely on the auto-correlation of data [6]. On the other hand, there are two main
techniques to construct predictive distributions: parametric and non-parametric.

Parametric approach

Parametric approaches consist of assuming the ’shape’ of the density distribution, Gaussian being the
most common one. Therefore, the distribution is defined by a set of parameters that build the pre-
existing function. As an example, Gaussian distributions are defined by two parameters: mean (𝜇) and
deviation (𝜎) parameters. Several methods exist to determine these estimators, such as non-linear
time series and the use of AI [13]. Active research in this area is focused on the shape assumption of
the distribution, estimation, and evaluation of location and scale parameters [13].

Non-parametric approach

Non-parametric approaches, on the other hand, do not make any assumption of the shape of the distri-
bution, or it is ”shape-free”. A Probability Density Function (PDF) is estimated discretely using a finite

2.1. Wind power forecasting 7

number of points to interpolate between them and fit a function. Popular non-parametric approaches
include quantile regression (QR), KDE, and AI. Aside from historical data, forecasts information is also
necessary for this approach [13].

By comparing both approaches, parametric solutions offer a more simple methodology, depend-
ing on a few parameters and equations being more simply, translating in lower computational costs.
However, the a priori assumption of the shape is not always a reasonable one, as the nature of wind
does not resemble a Gaussian or any particular shape. Furthermore, complex atmospheric dynam-
ics produce a change of these shapes in time. This phenomenon influences directly the accuracy of
the parametric model. Therefore, without the need to make assumptions, a non-parametric version is
preferred to facilitate the modeling process. On the other hand, the computational costs are higher,
requiring many densities to be estimated. In cases, a particular model has to be trained for each quan-
tile of the distribution. One famous non-parametric approach for wind power probabilistic forecasting
is adaptive re-sampling [25], which consists of building an empirical distribution for similar conditions.

The development of forecasting based on AI methods brought research into wind power probabilistic
forecasting. The introduction of neural networks and machine learning in this field allowed to model
architectures in which the outputs are defined as the predictive quantiles. AI models train the data by
minimizing the cost function. Moreover, the cost function in non-parameter approaches can be directly
linked with the evaluation metric of the predictive interval. Therefore, these methods play a big role in
the development of probabilistic forecasting methodologies, as wind power probabilistic forecasts are
difficult to evaluate. Some scoring functions have been proposed to assess the quality of these models
compared to deterministic forecasts. Furthermore, probabilistic scoring rules require a way to reward
both the skill and sharpness of these predictive distributions [13].

2.1.4. Challenges of wind power forecasting

Forecasting models are reliable tools with significant value across its complete chain, from data acqui-
sition to data visualization. Nonetheless, some pending challenges to enhance wind power forecasting
have to be tackled when proposing new frameworks and methodologies [26], enumerated as follows:

1. Data cleansing: real-world data for energy forecasting is not free of error and mistakes. Using
low-quality data have a direct impact on the prediction, as incorrect measurements or values from
explanatory variables bias the decision-making.

2. Probabilistic forecasting methodologies: many fields within energy forecasting have reached dif-
ferent maturity levels in their methodologies forecasting. Finding suitable frameworks and identi-
fying robust data processing pipelines, subject to the application and domain-knowledge, is rele-
vant to mitigate the risks of variability in the renewable energy sector.

3. Forecast mix: using a combination of forecasts usually bringsmore accurate results and facilitates
decision-making, especially in point forecasting. The trade-off between computational time and
the complexity of the models, including ensemble models, has to be addressed to enhance their
robustness and obtain the optimal methodology for a particular application.

4. Integration: probabilistic forecasting processes can be divided into several components in their
pipeline or chain, namely data, assumptions, modeling, and visualization of the results. An opti-
mal segment does not mean optimal behavior throughout the whole process. An optimal outcome
from one component may not be the optimal one for the entire process. Therefore, following a
holistic approach to combine these aspects and produce the best methodology represents one
of the main goals of researchers in the field.

Figure 2.2 provide a scheme of the gaps and bottlenecks in the current forecasting value chain,
provided by Smart4RES consortium.

In the illustration, five main bottlenecks can be visualized in red warning signs. These relate the
connecting points in the value chain of forecasts, contrasting the challenges with the business gaps
from a pipeline perspective.

8 Literature Review

Figure 2.2: Gaps and bottlenecks of forecasting tools [7].

The first one relates to the lack of meaningful open data, generated by privacy issues and the value
of data itself. This directly affects renewable forecasting models.

The second one is concerned with the lack of price incentives to share data. The associated costs
break the forecasting business service model, despite the growth of remote sensing technologies.

The third aspect is the lack of standardization. Forecasting tools provide a broad spectrum of ser-
vices given by the nature of models, thus they are difficult to generalize. As a result, the task of validating
these instruments as decision-making models is laborious, forcing clients to diversify their portfolios to
accumulate different sources of information.

The fourth aspect is the open-loop between the generation of forecast and their actual use. The end-
user has little influence on the effect of the development of these models. Therefore, a communication
channel is still missing to better cope with the expectations of forecasters and decision-makers.

The last aspect considers the need for business cases to showcase the value of data. This can be
traduced to understanding the value of uncertainty.

Understanding the challenges of variable RES forecasting, machine learning algorithms represent
an alternative to this overcome this situation. Recent research prefers to use these methods because
they can adapt to changing patterns recognizable inside the data available, producing models based on
specific information instead of generalizations. The following section provides an overview of machine
learning, necessary to understand the approach followed during this research project.

2.2. Machine Learning
Machine learning, deep learning, and AI have made substantial improvements in various fields such
as speech recognition, computer vision, and machine translation [27]. The ability of deep learning
methods to capture intricate patterns in high-resolution data makes them successful at finding solutions
to complex problems [28].

2.2. Machine Learning 9

Researchers started exploring its applicability to model spatiotemporal dependencies [29], as this
type of data can be found in different sciences: social studies, economics, biology, and naturally, me-
teorology. In consequence, a diverse community has devoted efforts to exploit the capabilities of these
pattern recognition tools [30].

Machine learning can be classified into three groups based on the type of task: supervised, unsu-
pervised, and reinforcement learning. Each task relates the type of application and goes beyond the
data stream, implying that the same data set could serve different purposes.

Supervised learning corresponds tomodels where the output data is known, being themost common
form of deep learning [28]. This task is further classified into two types: regression and classification.
Regression consists of providing an output with infinite possible outcomes, while classification has a
fixed set of outputs [31].

Unsupervised learning makes use of unlabeled data [31], organizing or categorizing it to detect
features or group relationships from the data set. Clustering through k-means and Principal Component
Analysis (PCA) for dimensionality reduction are common methods applied for this type of task [32]. It
is common to confuse classification with unsupervised learning: the difference lays in the idea that
classification is aided by predefined labels or tags, while clustering organizes the data without making
an a priori assumption.

Reinforcement learning rewards particular signals, namely the machine learns how to map situa-
tions based on a set of actions tomaximize such reward. This idea resembles the positive reinforcement
concept from psychology, where a subject associates actions based on the stimulus of the recompense.
However, these rewarding actions are not predefined in advance, but instead, the algorithm has to dis-
cover what yields the highest compensation by trial and error [33].

2.2.1. Artificial Neural Networks (ANN)

ANN are inspired by the way our neurons work. Dendrites bring in the information processed in the
nucleus of the cell, and transmits the information through the axons, which is received by other neurons
across a synapse [32]. Analogous to the neural system, the structure of an ANN is composed of several
connected layers that contain units. These units are activated based on the information they receive
from the previous layers [31]. A basic ANN architecture is shown in Figure 2.3.

Figure 2.3: Architecture of an Artificial Neural Network (ANN).

The structure of the architecture is described employing the following terms:

10 Literature Review

The first layer is called the input layer, carrying the data stream features. The feature is ameasurable
variable used to characterize the problem [32].

The last layer is called the output layer, providing the results subject to the type of task [32]. For
supervised learning, the output label computes the classification label or value from a regression prob-
lem. In the case of unsupervised learning, the output provides an encoded version of the data, so a
new representation of the input data.

Between the input and output layers, hidden layers are located. These layers recognize patterns and
communicate the information to subsequent layer units [32]. The amount of hidden layers depends on
different aspects, such as the application and computational power. Hence, it is defined by the machine
learning engineer as a design choice [31]. Architectures with many hidden layers receive the name of
Deep Neural Networks (DNN), the realm of deep learning.

A vectorized notation can describe the computation process. It consists of an addition and multipli-
cation process, following linear algebra operations, transformed into a non-linear system through the
activation function. Equation 2.1 [31], describe two-step process for every unit in the architecture:

𝑧[] = 𝑊 ⋅ 𝑦[] + 𝑏
𝑦[] = 𝑔(𝑧[])

(2.1)

The first step expresses a linear operation, where a matrix of weights (W) is updated through an
optimization algorithm to fit the data. This matrix is multiplied by the output units of the previous layer.
A bias vector term (b) is added to this matrix multiplication, resulting in an output vector of the same
shape (z). In some cases, the bias factor is neglected [28].

The second step consists of applying an activation function (𝑔(𝑧)) to flatten the output between a
range of values, resulting in the values of the following layer (𝑦[]). This process is repeated from the
input layer until the last output layer, which provides the final output of the task.

Activation functions

The activation function (𝑔()) introduces non-linear properties to the ANN, which plays an essential role
in training deep learning models [34]. The purpose of introducing non-linear functions is to break the
linearity of the operations, otherwise, the model would consist of purely linear relationships, meaning
that it would not be able to capture complex patterns. Also, the lack of non-linear components removes
the necessity for hidden layers. Therefore, non-linear functions discover relevant information in these
layers. Frequently used activation functions are shown in Figure 2.4.

Common activation functions are the hyperbolic tangent (tanh) and the sigmoid function. The sig-
moid function transforms the input domain (−∞,∞) into the range domain (0, 1). On the other hand,
the tanh function maps the same input domain onto a slightly different domain (−1, 1). In other words,
these functions are flattening the input, replicating an ON/OFF switch. For example, the neurons under
an OFF state, are not transferring information to deeper layers.

Recent methods are moving towards novel non-linear activation function, being the Rectified Linear
Unit (ReLU) function a popular choice, given two main advantages:

1. Deals with the so-called “exploding/vanishing gradient” problem [36]. Traditional activation func-
tions are subject to optimization functions that rely on the calculation of gradient or derivatives,
as will be explained in the following subsection. However, these functions have segments where
the derivative is zero (see Figure 2.4), meaning there is no learning process where the matrix of
weights is unable to update its values. ReLU manages this by ensuring learning updates, regard-
less of the range in which the activation function falls. A variant of this function is the leaky ReLU
version.

2. Accelerates the convergence speed if combined with an appropriate optimization algorithm. This
is a derivation of the first point: as the slope of the ReLU ensures learning, the weights of the
matrix (W) are always updated in every iteration.

2.2. Machine Learning 11

Figure 2.4: Overview of common activation functions [35].

Optimization of Neural Networks

Training consists of updating the matrix of weights (W), subject to an objective function, also known by
its variations: lost or cost function.

The algorithm to minimize this cost function is called backpropagation. In essence, once the out-
put is computed through the feed-forward propagation algorithm using a particular weight initialization
matrix, the inverse process occurs. The weights are updated by comparing the target value with the
prediction, then calculating their respective derivatives at every layer, starting from the output until
reaching the input layer, going through all the hidden layers. Next, the ANN computes a new output
based on the actualization of these weights, repeating this process to minimize the cost function as
desired. Consequently, the backpropagation algorithm is a way to memorize the training data set, as
large iterations tend to make the training error close to zero [32].

Equation 2.2 shows the general form to compute the gradient in neural networks following the back-
propagation algorithm [37]. The derivation and intuition of the backpropagation algorithm can be found
in Appendix A.

∇() =∑𝜃()𝛿() ∗ (𝑎() (1 − 𝑎())) ∗ 𝑎() (2.2)

Figure 2.5 illustrates the feed-forward pass and backward propagation flow in a particular node or
unit of the neural network. The optimization algorithm can be summarized as follows [32]:

• Step 1 - Forward propagation: computing predictions from the input layers to the output layer
using a particular random initialization of the matrix of weights (W).

• Step 2a - Backward propagation: computing errors (𝛿) from the resulting output in Step 1.

• Step 2b - Backward propagation: computing the gradient of the cost function using the results
from Step 1 and 2a (predictions and errors), following Equation 2.2.

12 Literature Review

Figure 2.5: Feed-forward pass and backward propagation in a unit of the neural network following the chain rule [38].

• Step 3 - Optimization technique: obtain new weights to build a new matrix (W) that computes new
predictions, going back to Step 1.

Many loss functions can be evaluated to compare the output value of the model with the target
value. The following functions represent the most commonly used ones for regression problems:

• Mean Absolute Error (MAE, or L1-loss).

• Mean Squared Error (MSE, or L2-loss).

• Huber loss, a smooth version of L1-loss.

• Quantile loss, used for probabilistic forecasting.

Figure 2.6 compares these objective (cost) functions.

Figure 2.6: Comparison of common loss functions.

The Huber loss includes a smoothening parameter (𝛿) to deal with the original non-convex L1-loss
function. Converting the L1-loss function into a convex optimization facilitates the convergence process
of the algorithm, as the L1-loss by itself has a non-differentiable point at zero.

2.2. Machine Learning 13

The quantile loss, also similar to L1-loss, includes a quantile parameter (𝜏) accounting for an un-
der(over)estimation criterion. This function accommodates output in such a way that lower quantiles
parameters, i.e. quantiles below the median (Q50) are rewarded by underestimating the target value,
while upper quantiles are rewarded by overestimation.

There is an on-going extensive research regarding optimization techniques to integrate it on the
backpropagation algorithm.

Having the classical gradient descent technique as a starting point, the first variant is Stochastic
Gradient Descent (SGD), which randomly selects a subset of the training data set to calculate the
partial derivatives [32]. This strategy reduces computational time significantly, as fewer calculations
are required. However, the disadvantage of SGD is the trouble of finding local optimal points in cases
where the steepness of surfaces between different axes is not equally distributed. [39].

Motivated by this, Qian (1999) discovered that using momentum can help to speed up this process,
adding a 𝛾 fraction component to the updated gradient [40], resulting in the Adagrad method [41].

In 2014, Diederik Kingma (University of Amsterdam) and Jimmy Lei Ba (University of Toronto) in-
troduced a revolutionary algorithm in the field, intended to solve ever more complex applications: the
so-called Adam optimizer [42]. Adam is a combination of two popular methods: AdaGrad and RM-
SProp. RMSProp is an adaptive learning rate method developed by Hinton (2012). The creators of
the Adam algorithm also proposed the AdaMax algorithm [42]. The AdaMax uses an L-infinity norm
instead of the L2-norm, to enhance a stable optimization algorithm.

Regularization of Neural Networks
.

Regularization consists of a set of strategies developed to rectify the data in such a way that en-
hances performance in the validation and test sets. Therefore, there is a trade-off between improving
the error of the test set at the expense of the training error [37]. The end goal is to produce a generalized
model, beyond the information trained.

Two concepts are used to assess the need for regularization: underfitting and overfitting.
Underfitting refers to a model that is not able to characterize the problem because the training

error is too high, hence the training data still have many points outside of the fitted model. Underfitting
is also defined as a bias problem.

Overfitting refers to a model that is not able to characterize the problem because the cross-
validation error or test error is high when the training error is low. In other words, the fitted model
is more intricate than it is in reality. Overfitting is also defined as a variance problem, where the training
data set has been memorized but fails to generalize for new examples.

The goal of a machine learning engineer is to produce an appropriate fit, which means not under-
fitting, such that the training error is too high, nor overfitting, such that it over complicates the problem
and produces still a high test error. Depending on the case, regularization techniques are introduced
in the model to correct both situations. Figure 2.7 illustrates the underfitting and overfitting problem,
as displays an ideal scenario. Figure 2.8 shows a plot illustrating the optimal complexity of the model,
highlighting the bias and variance errors.

A basic regularization technique is to include a penalty factor in the objective function. This penalty
is linked to the weights, preserving the important ones as the least relevant ones have a high cost,
undesired for obtaining local minima. Equation 2.3 illustrates the regularization term introduced to the
objective function of a linear regression problem [37].

𝐽(𝜃) = 1
2𝑚 [∑(ℎ (𝑥()) − 𝑦()) + 𝜆∑𝜃] (2.3)

14 Literature Review

Figure 2.7: Different fitting model scenarios: underfitting (left), robust model (center) and overfitting (right).

The parameter 𝜆 is the penalty factor, which is multiplied by the square of each weight. This term
is added to the basic objective function, affecting the minimization criteria. Defining 𝜆 depends on the
judgment of the modeler, in an effort to produce a robust (proper) fit.

Figure 2.8: Bias and variance trade-off.

Dropout is another strategy, mostly used in DNNs. It consists of randomly turning ON/OFF units
across the architecture. This strategy aims to generalize the model, even under circumstances in
which some patterns are not fully captured by it as the units are unavailable. Additionally, it pushes
the optimization algorithm to find basic the most basic patterns from the data without tackling intricate
ones, as this might result in overfitting. The dropout ratio is a hyperparameter that randomly determines
the number of units turned off or ”dropped out” from the algorithm. Figure 2.9 illustrates the process of
dropout in a neural network architecture.

2.2.2. Convolutional Neural Networks (CNN)

A particular type of ANN architecture is the CNN. These are mainly used in the field of computer vi-
sion, given its remarkable ability to capture and extract spatial patterns in grid-like topology data [31].
Similar to ANNs, they contain multiple layers, designed to progressively learn higher-level features.
Famous CNN architectures are LeNet-5, AlexNet, and VGG-16 [32]. Figure 2.10 shows an AlexNet
CNN architecture.

2.2. Machine Learning 15

Figure 2.9: Dropout strategy in a neural network architecture: (a) standard neural network (left); (b) applying dropout (right).

Traditionally, images are used as input for these neural networks. The first layer can contain multiple
channels, also called feature maps. In the case of images, it typically denotes the use of red-green-
blue (RGB) values as three feature maps. Furthermore, it makes use of three operations, namely the
convolution layer, sub-sampling layer, and fully-connected layer.

Figure 2.10: AlexNet: Convolutional Neural Network (CNN) architecture.

Convolution layer

The convolution layer extracts features from the input image using multiple filters or kernels. These
symmetric-size kernels are small compared to the input data, moving as a sliding window through the
input feature map covering the whole grid. Applying element-wise multiplication, the value in the output
layer is computed. A visual example of the convolution operation is shown in 2.11.

16 Literature Review

Figure 2.11: Convolution layer operation example [43].

The new feature map is determined by element-wise multiplication, where the kernel window slides
to the neighboring cells given the stride parameter. Stride determines the shift or number of positions
that the window moves to calculate the following cell. Moreover, to counteract the shrinkage of the
feature map, padding can be used. Padding refers to an addition of zero-value cells around the feature
map.

The amount of filters used to extract patterns is a design choice, making this value another hyper-
parameter, next to the size of the kernel. Every value or cell inside the kernel is optimized using the
optimization techniques described in subsection 2.2.1.

Sub-sampling layer

The function of the sub-sampling layer is to take average or maximum values from a window cell, multi-
plied by a trainable scalar. To avoid overlap, a common practice is to match the size of the window cell
with the stride (shift). The operation reduces the size of the output cell, keeping the number of channels
or feature maps. Therefore, sub-sampling results in lower resolution filters. However, alternating the
convolution layers and the sub-sampling layers is an approach to preserve the number of features in
order to enhance robustness from variability [44]. Additionally, sub-sampling layers reduce the com-
putational cost of the model. The use of averaging in machine learning is called Average Pooling [44],
while taking the maximum value corresponds to Max Pooling [45].

Fully-connected layer

A fully connected layer restructures the architecture to a basic ANN version, as shown in Figure 2.3. The
last layer of spatially-connected features is ”flattened” in a way that the grid-like topology characteristic
is lost. The Flatten operation promotes the dimensional reduction of the data when the feature maps
have shrunken enough, so the number of filters is comparable to the number of features or pixels in
the feature map. The subsequent layers reduce the number of nodes to provide a final output.

2.2. Machine Learning 17

2.2.3. K-means clustering

K-means clustering is a simple machine learning algorithm. The objective of the method consists of
saving training examples to group them in k clusters. The flexibility of the approach allows its imple-
mentation for both unsupervised -clustering- and supervised learning. In the latter, it can be used also
for regression problems, if a continuous target value is available.

This strategy should not be confused with k-Nearest Neighbor (k-NN), which is a classification algo-
rithm that employs a voting system based on the output labels. In the case of k-means, the grouping is
based on a similarity measure or distance function. The algorithm has been used in pattern recognition
for non-parametric weather prediction, directly related to analog-based approaches.

The algorithm process of this method can be described as follows [46]:

• Step 1: specify a k-value for the number of groups or clusters.

• Step 2: assign by randomness each sample to a particular cluster.

• Step 3: compute the cluster centroid coordinates.

• Step 4a: determine the distances of each data point to the centroids.

• Step 4b: re-assign each point to the closest cluster centroid based upon minimum distance.

• Step 5: calculate cluster centroids again.

• Step 6: Iterate steps 4 and 5 until reaching global optima, where no improvements are possible,
or there is no switching of data points from one cluster to another.

• Step 7: optimize the k-value based on the elbow method.

Figure 2.12: K-means clustering algorithm [46].

Figure 2.12 illustrates the grouping process of this algorithm. The original data is clustered based
on the algorithm described above, resulting in k-clusters with their respective centroids, highlighted with
black borders. In this case, K = 3 is defined to cluster the data.

A distance function has to be defined to maximize the similarity between samples. The most com-
mon approach is to use Euclidean distance, which is expressed by the following formula:

𝑑 = √∑(𝑞 − 𝑝) (2.4)

Equation 2.4 takes the distance between two points (p, q) connected by a straight line. Moreover,
this expression is generalized for i-components, allowing for multiple dimensions or variables. This
expression can be expanded to include weights or corrections based on the nature of the data.

18 Literature Review

In reality, the last step of the k-means process is outside of the algorithm. However, it is important to
determine optimal k-values. A common approach is to use the elbowmethod. Figure 2.13 illustrates the
selection of the optimal k-value. From the illustration, the error diminishes with increasing the number
of k-clusters. The optimal case is located in the red dot. This red dot can be defined as the point in
which the k-value stops decreasing the error drastically by increasing its value.

Figure 2.13: Elbow method to select optimal k-value of clusters [47].

The advantages of this model are seen in its simplicity, being able to learn from data with low
computational effort. Moreover, no assumptions have to be made; a single k-group value has to be
optimized. Last, it is versatile for different learning tasks. On the other hand, the main disadvantage is
seen when the number of examples or the amount of features increases. Hence, for big data problems,
it can result in a computational prohibitive tool.

3
Smooth Pinball Neural Network

Framework
The following chapter describes a deep learning-based probabilistic forecasting framework: the Smooth
Pinball Neural Network (SP-NN). This novel architecture was first proposed by Kostas Hatalis, Alberto
Lamadrid, Katya Scheinberg, and Shalinee Kishore in 2017 [48].

The outline of the chapter consists of four parts. First, it provides an overview of this particular ma-
chine learning architecture. Second, it explains the custom loss function employed in the optimization
algorithm. Third, it introduces the quantile cross-over problem, showing the way the model corrects
this inconsistency. Finally, the architecture parameters and the original structure are shown.

3.1. Framework overview
The SP-NN was inspired in the traditional Support Vector Quantile Regression (SVQR) model [48, 49].
This model was developed for probabilistic problems, introducing a combination of the Huber loss
(smooth L1-loss) and quantile (pinball) loss, following a non-parametric approach. According to the
researchers [48], some features of the model include:

• Introduction of a custom objective function for neural networks;

• Strategy to deal with the quantile cross-over problem;

• Integration of multiple neural networks for probabilistic wind forecasting applications;

• Improvement of the skill, reliability, and sharpness over various benchmarks.

Figure 3.1 illustrates the algorithm process of the SP-NN.

3.2. Loss function
The core of this neural network lies in the customized objective function. The so-called smooth pinball
loss function results from a combination between the Huber loss (smooth L1-loss) and the quantile
loss. An approximation of this loss is described in Equation 3.1.

𝑆 = 𝜏 ⋅ 𝑢 + 𝛼 ⋅ log(1 + exp(−𝑢𝛼)) (3.1)

In Equation 3.1, 𝜏 represents the quantile target, while 𝛼 expresses the smooth parameter. Addi-
tionally, 𝑢 reflects the difference between the predicted value and the real value. The reasoning behind

19

20 Smooth Pinball Neural Network Framework

Figure 3.1: SP-NN optimization algorithm [49].

the smooth parameter obeys the same idea of the Huber loss: dealing with the non-convex segment
of L1-loss and formally treat the problem as a convex optimization case. The final expression of the
minimization problem is:

min
,
1
𝑁 ∑𝑆 , (𝑦 − �̂�()) (3.2)

Equation 3.2 refers to the optimization of the weights (W, b), based on Equation 3.1. The difference
is that for the case of QR, the latter evaluates the difference between the predicted quantile value and
the actual value, considering every target parameter.

However, it is important to clarify that in current Neural Network packages (e.g. TensorFlow, Keras),
the implementation of advanced and state-of-the-art optimization algorithm such as Adam, easily deal
with non-convex functions [42]. Despite the powerful optimization algorithms, a formal approach to
express the cost function as a traditional non-convex optimization problem is presented.

The pinball loss function serves as a useful metric for probabilistic forecasting, being able to penalize
the overestimation and underestimation of particular quantiles. To better understand the nature of this
formula, an example for estimating a single quantile is given: when a prediction lies above a reported
quantile, such a lower bound Q10 (or decile 1), the loss computed results in the difference from the
estimate multiplied by the correspondent target 0.1 value of the quantile. Otherwise, by falling below
the reported value, the loss is calculated as the same difference multiplied by one minus its probability
target (0.9 in the case of Q10). Therefore, the pinball loss function penalizes low-probability quantiles
more for overestimation than for underestimation and vice versa in the case of upper quantile targets.
This represents a simple yet elegant way to reward for underestimation and overestimation, according
to the evaluated quantile.

3.3. Quantile cross-over 21

3.3. Quantile cross-over
One challenge of non-parametric forecasting methodologies in deep learning is the quantile cross-over
[49]. It happens when the prediction output values for higher quantiles are smaller than lower quantiles
(e.g. Q20 < Q10). This behavior becomes common when explanatory variables are heteroscedastic
[30]. Naturally, these estimations are undesired, as they do not follow the nature of a probability distri-
bution function, hence it reduces the reliability of the forecast. To tackle this situation, a penalty factor
has been applied in the objective function to stimulate particular local minima, similar to the idea of
reinforcement learning, leaving the algorithm to learn by itself which scenarios to repeat. The penalty
factor summed to the objective function is described in Equation 3.3:

𝑝𝑒𝑛𝑎𝑙𝑡𝑦 = 𝜅max[0, 𝜖 − (𝑞 − 𝑞)] (3.3)

From Equation 3.3, 𝜅 represents the penalty factor, while 𝜖 represents the least amount that two
quantiles should differ between them. Therefore, if higher quantiles are greater than smaller quantiles,
the penalty becomes zero. Otherwise, a high penalty is applied, thus omitting that particular local
optimum of the original objective function.

The procedure is repeated by comparing the differences of all consecutive quantiles for the target
quantiles considered. Including this in the original loss function converts this methodology in a multitask
learning approach, in which the algorithm is learning to capture patterns in the data and simultaneously
avoids inappropriate results in the quantile estimation.

A way to evaluate the cross-over problem for probabilistic models is shown in [30]. In this paper,
they use deep learning to produce a joint mean and QR for spatiotemporal problems. They addressed
the cross-over problem and assessed the quality of their model by introducing two relevant metrics:
the crossing loss (CL) and the number of crossings (NC).

The CL is defined as in Equation 3.4:

CL =
pred

∑ ∑max(0, �̂�() − �̂�()) (3.4)

Equation 3.4 represents the absolute error between two consecutive quantiles, assuming that the
desired behaviour is 𝜏 > 𝜏 , ∀𝑗 ∈ 1,… , 𝐽−1. This metric serves as a calibration instrument to improve
the sharpness of probabilistic frameworks, especially in deep learning approaches. Furthermore, it
validates the multitask learning approach of the loss function, enforcing coherence and consistency.

The NC metric counts the cross-over incidences, regardless of the magnitude of the crossing.
Therefore, it serves as a metric to produce a sensitivity analysis of the 𝜖 parameter from Equation
3.3. As a consequence, optimal values for this equation could be determined by analyzing this value.
The objective is to develop a methodology that has a negligible CL, subject to accuracy.

3.4. Architecture parameters
For this novel neural network architectures, additional parameters have to be trained to tune the model
subject to the application. Therefore, Table 3.1 shows an overview of the defined parameters, alongside
a short description, based on the equations shown in this chapter.

These parameters have to be tuned next to the traditional hyperparameters of a conventional neural
network. The tuning depends on the application, accuracy, and sharpness of the results. For example,

22 Smooth Pinball Neural Network Framework

Table 3.1: Additional parameters of the SP-NN.

Parameter Name Description
𝜅 Penalty factor Value to penalize for quantile cross-over
𝜖 Quantile margin Minimun margin between quantiles
𝛼 Smoothening parameter Convexity level of the loss function

increasing the quantile margin parameter (𝜖) reduces the sharpness of the forecast. The same idea
can be derived for the penalty factor (𝜅), as it directly influences the objective function. The higher 𝜅,
the less sharp the forecast becomes.

In the case of 𝛼, the difference could facilitate faster convergence of the algorithm. However, an
appropriate optimization algorithm can deal with the non-convexity of the optimization problem. Hence,
under a robust optimization setting, this parameter does not have greater influence.

Figure 3.2 illustrates a basic architecture of the SP-NN. It consists of a traditional ANN, differentiated
by the number of output nodes, which corresponds to the number of quantile targets. Every node is
optimized by a particular objective function, using the respective target parameter (𝜏) from the general
expression in Equation 3.1.

Figure 3.2: Basic architecture of a SP-NN with quantile output nodes [49].

4
Methodology

The following chapter discusses the methodological approach followed during this research project.
Based on the problem statement in Chapter 1, the investigation is focused on used state-of-the art
machine (deep) learning methods to enhance wind power forecasting tools. The approach is motivated
by the recent success of this field in different applications, including renewable energy forecasting, as
explained in Chapter 2. Therefore, based on the novel SP-NN framework, discussed in Chapter 3, an
extension of this approach is explored to answer the research question.

The nature of the research project consisted of using quantitative methods to assess the quality of
the predictive models. The quality of a forecast is directly related to its accuracy, or the relationship
existing between the real and predicted values. Moreover, to compare the quality of different models,
they are benchmark with traditional approaches, namely physical and statistical models.

4.1. European Energy Markets 2020 Forecasting Competition

The aim of the project tackled a practical problem, proposed by the European Energy Markets 2020
Conference (EEM20) [50]. Motivated by the increasing penetration of RES in the European electricity
grid –especially wind energy–, the organizers promoted a competition to produce novel probabilistic
forecasting methodologies that improve existing wind power production forecasts.

The setting of the competition simulates a real-life scenario. The location is based in Sweden
mainland, consisting of four electricity price regions (SE1, SE2, SE3, SE4). To keep fair participation
amongst competitors, the organizers provide three main sets of data, namely:

• NWP variables.

• Wind turbine record.

• Aggregated wind power production by region.

Given this available data, the intention was to replicate the day-ahead electricity market. To achieve
this, the organizers provided these three main data sets in advance, corresponding to the year 2000, to
train initial models. On the other hand, the objective of the competition was to accurately predict wind
power production for the year 2001, divided into six submissions.

Every submission rounds accounted for two months of predictions (thus, six submission rounds
make up for twelve months). Moreover, forecast submissions occurred every week, having deadlines
on Tuesdays, results of the forecasts, and newly available NWP data for the following submission round
on Wednesdays, and preliminary ranking on Fridays. The timeline of the competition is illustrated in
Figure 4.1.

23

24 Methodology

Figure 4.1: Timeline of the EEM20 Forecasting competition [50].

The final ranking consists of the best five submission rounds of every team. As can be seen from
Figure 4.1, the data corresponding to the year 2000 was made available two months before the first
submission deadline. The end of the competition finished with the last submission deadline in June
2019.

4.1.1. Data overview

The first part of the data set consists of NWP variables. The grid-like topology is centered in Swe-
den, having a spatial size of 169 x 71. Furthermore, ten ensemble members are available for seven
explanatory variables, shown in Table 4.1

Table 4.1: NWP variables of the EEM20 Competition.

Variable name Long name Units
Temperature Surface temperature (T2M) K
Wind U Zonal 10-meter wind (U10) m/s
Wind V Meridional 10-meter wind (V10) m/s

WindGustSpeed Wind Gust m/s
Pressure Mean Sea Level Pressure (MSLP) Pa

CloudCover Total Cloud Cover (TCC) [-]
RelativeHumidity Screen level relative humidity (RH2M) [-]

The NWP data was divided into daily NetCDF files, containing hourly explanatory variables. Hence,
one meteorological variable is structured in 24 time steps, 10 ensemble members, 169 y-coordinate
values (latitude), and 71 x-coordinate values (longitude). These files were archived by Greenlytics,
facilitating the storage of big data.

The ensemble members were produced by MET Norway (Norwegian Meteorological Institute), to
cope with the chaotic nature and its intrinsic uncertainty. As part of their traditional weather forecasts,
they employed the HIRLAM-ALADIN Research on Mesoscale Operational NWP in Euromed (HAR-
MONIE) based-model [51], characterized by a 10-kilometer spatial resolution.

The first ensemble member constitutes a control forecast based on the best initial and boundary
conditions taken from the European Centre for Medium-Range Weather Forecasts (ECMWF) model
[52]. The remaining nine ensemble members were developed by modifying these conditions using a
Scaled Lagged Average Forecasting (SLAF) approach, focused on scaling lateral boundary perturba-
tions differences between forecasts [53].

The second part of the data consisted of the wind turbine record, a spreadsheet containing the
following information:

4.1. European Energy Markets 2020 Forecasting Competition 25

• Wind turbine ID.

• Terrain height.

• Nacelle height.

• Rotor diameter.

• Maximum (rated) power.

• Price region.

• Installation date.

• Longitude.

• Latitude.

The record accounted for 4004 wind turbines, representing 8640 MW on installed capacity. How-
ever, according to the Swedish Wind Energy Association (SWEA), the actual value was 4099 wind tur-
bines, comprised of 8984 MW of installed capacity. Therefore, a mismatch existed between the record
provided and the real situation. However, it served for multiple purposes in classifying the produc-
tion beyond the price region, namely the dynamic installed capacity, and estimating a physical-based
model.

The third part of the data consisted of aggregated power production. This spreadsheet was orga-
nized based on the price regions of the Swedish electricity market. Since the installed capacity varied
in every submission round, integration of the record and the power production was necessary to treat
the increasing installed capacity of wind power.

Based on the data available for the competition, the first step consisted of visualizing and under-
standing this information. Hence, data analysis of these three components was developed in Chapter
5. These results provided comparisons between different price regions, quality of data, and the re-
lationship between input and output variables. Moreover, it gave a more profound insight into the
challenges of the competition setting. Alongside this, it allowed the team to define a strategy and assist
the selection of input variables.

4.1.2. Evaluation method

The organizers defined the competition in a probabilistic forecasting framework, expecting the submis-
sion of nine quantiles for every time step –from Q10 to Q90–, representing an 80% range-bound. As
a result, the simplest way to assess the accuracy of forecasts was through the pinball loss function, or
quantile loss function. The formula expressing this function is shown as follows in 4.1:

𝜌 , (𝑞 , , 𝑦 ,) = {
(𝑖/100) (𝑦 , − 𝑞 ,) , 𝑦 , ≥ 𝑞 ,

(1 − 𝑖/100) (𝑞 , − 𝑦 ,) , 𝑞 , < 𝑦 ,
(4.1)

The pinball loss function is suitable for probabilistic forecasts, as it contains a target parameter (i),
relating a particular quantile. It expresses the difference between the predicted value (q) and the real
value (y), multiplied by the corresponding target quantile. Furthermore, it always gives a positive value,
penalizing differently when the predictions are overestimated and underestimated, depending on the
target.

The final score was determined by the average loss over the best five submission rounds, meaning
that the worst submission score of every participant team was not accounted for the final metric. More-
over, the pinball loss function in every submission round was averaged for every quantile, price region,
and time step, hence a global average. The process of calculating the final score is shown in 4.2-4.4:

26 Methodology

𝜌 , =
1
9 ∑ 𝜌 , (𝑞 , , 𝑦 ,) , ∀𝑘, ∀𝑎 (4.2)

𝑆𝑐𝑜𝑟𝑒 , =
1
𝑇 ∑𝜌 , , ∀𝑎 (4.3)

𝑆𝑐𝑜𝑟𝑒 = 1
4 ∑𝑆𝑐𝑜𝑟𝑒 , (4.4)

In this process, a refers to the price region, k refers to the time step, and (i) refers to the quantile
target. The decision from the organizers to use this particular metric was based on its simplicity.

4.2. Deterministic forecasting approach

The challenges of the EEM20 forecasting competition were addressed following a machine deep learn-
ing approach, using the data provided by the organizers. Moreover, every price region (SE1, SE2, SE3,
and SE4) was trained separately. Hence, the following machine learning strategies were implemented
to model wind power forecasting:

• Fully-connected architectures: MLP.

• Shift-invariant architectures: CNN.

• K-means clustering.

This represented the first step of the research, namely identifying potential architectures that could
capture relevant patterns from the available EEM20 data set. The goal was to select the best deter-
ministic models to integrate them in a probabilistic framework.

The metric to assess the accuracy of deterministic forecasts is the MAE. Equation 4.5 presents how
the errors are computed:

MAE = 1
𝑛 ∑|𝑦 − �̂� | (4.5)

From the equation above, n represents the number of samples considered, while the terms between
the absolute represent the difference between the real –observed– value (𝑦) and the predicted value
(�̂�).

The MSE metric has been left out of the analysis. Two reasons support this decision. First, this
metric does not align with the pinball loss function used in the forecasting competition. Second, since
the deterministic approach only represents an initial approach to assess the accuracy of forecasts, the
use of MAE is sufficient to quantify the capabilities of different models.

The strategy to standardize the quality of different neural networkmodels consisted of characterizing
them as follows:

1. Data cleansing: the raw data provided had missing or NaN (not-a-number) values, as commonly
named in programming environments. Therefore, these values were substituted by interpolation.
In some cases, interpolation could not resolve the problem, hence as a further step, these values
were replaced by standard meteorological conditions.

4.2. Deterministic forecasting approach 27

2. Feature scaling: to facilitate the convergence of the optimization algorithm to find local optima,
the input variables were normalized by removing the mean and scaling to the variance of the
data set. As a result, the data set was more symmetric, reducing possible skewness between
variables.

3. Optimization: the adaptive learning rate Adam algorithm was implemented to converge in suit-
able local optima, motivated by its success in non-convex optimization problems among different
application fields. Moreover, as already discussed, the loss function used for this process is the
MAE. In machine learning terminology, this is also called the L1-loss.

4. Activation function: to ensure the learning process of the algorithm, a ReLU function was em-
ployed in all the layers of the architectures tested. The reason was to avoid gradient vanishing
or explosion during the backpropagation algorithms, a typical challenge in DNN structures.

5. Regularization: to avoid overfitting of data, the introduction of regularization terms are neces-
sary to find a balance between bias and variance. However, as the input data is the same in
all cases, regularization terms are initially neglected in this stage, unless otherwise mentioned.
The introduction of regularization terms was only considered in the last stage of the forecasting
framework.

6. Training data: the values used for machine learning processes consisted of the information pro-
vided by the forecasting competition concerning the year 2000. Next to this, a validation split was
implemented to evaluate the bias and variance of the model. Hence, 25% of the training data set
was separated to convert it into a cross-validation data set.

7. Testing data: the values used to test the models trained consisted of the information provided
by the forecasting competition through every submission round, corresponding to the year 2000.
Moreover, instead of testing every submission round, the testing data was split into two segments.
The first segment corresponded to submission round 1, while the second segment corresponded
to submission round 2-6.

To compare the reliability of these models, they are benchmarked against different traditional sta-
tistical models. The most basic approach is a similarity model [54], which can be expressed by the
following formula:

�̂� = 𝑦 (4.6)

Although the competition replicated a day-ahead situation, the power output information was given
for every two months. Hence, it was not appropriate to define a persistence-based model on the day
or hour before, but the year before. As a result, the best way to formulate a naive approach was by
defining the normalized power production to the same value corresponding to the previous year. For
instance, the normalized aggregated power production for price region 3 (SE3) on October 16, 2001,
at 14:00 is assumed to be equal to the value reported that same day at the same time.

On the other hand, these models are also benchmarked against a physical-based approach, follow-
ing the nature of wind power production and using the wind turbine record to relate the meteorological
conditions of a particular location. This process can be shown in Figure 4.2.

The process of building the physical model was inspired by the work of Sukanta Basu during the
same competition [55], being illustrated in Figure 4.2. It starts with the wind turbine record, identifying
the locations of all wind turbines for a particular price region. These location coordinates were linked
with the meteorological variables available from the NWP grid-like data. Therefore, every wind turbine
corresponds to specific 10-meter wind speed, temperature, and pressure values. Note that the wind
speed value is themagnitude of both zonal (U10) andmeridional (V10) vector components. The second
step was to correct the wind speed at 10 meters to the hub height of every wind turbine. This vertical
extrapolation was achieved using the power law. Consequently, a power-law coefficient (𝛼) had to be
defined for this purpose. Although the surface roughness can vary across the country and in time, a

28 Methodology

Figure 4.2: Physical-based model flowchart.

value of 𝛼 = 0.3 was assumed constant to facilitate these calculations. This simplification would affect
the effective wind speed at hub height. However, it was not possible to directly determine the surface
roughness based on the available data. The resulting wind speed at the corresponding hub height
was inputted in a standardized class I power curve, extracted from IEC 61400. This power curve is
normalized, following traditional control regimes, namely, torque and pitch control. The final step was to
compute the power produced by the wind turbine in a particular time step by multiplying the normalized
power production with the rated power, derived again from the wind turbine record. Moreover, since
this power curve was based on standard meteorological conditions, the following corrections were
introduced:

• A temperature correction: air density is inversely proportional.

• A pressure correction: air density is directly proportional. approximating to Equation 4.7. This
correction is an addition of the original approach followed by [55].

• Elevation correction: air density decreases in an exponential approximation. Hence, based on
terrain and hub height (𝑧 + 𝐻), it follows the following relationship:

𝜌(𝑃) = 𝜌 (𝑃𝑃) (4.7)

𝜌(𝑧 + 𝐻) = 𝜌 exp(−𝑧 + 𝐻𝐻) (4.8)

Equation 4.7, relates a density correction based on mean sea level conditions. Here, 𝜌 = 1.225
kg/m3, while P0 = 101.325 kPa. On the other hand, Equation 4.8 corrects the density respect to sea
level (𝜌) to the desired elevation, assuming the scale height of density, 𝐻 = 8550 m. Given the
nearly exponential relationship, this term is relevant to properly estimate the production in mountainous
regions.

4.2. Deterministic forecasting approach 29

4.2.1. Shift-invariant architectures: CNN

The CNN architectures were used to capture spatial patterns in the data provided. Given the grid-like
topology nature of the NWP data, the methodology focused on using proven architectures that are suit-
able for identifying spatial patterns. Therefore, a LeNet-5, VGG-16, and AlexNet-based architectures
were tested. Figure 4.3 shows a schematic of the LeNet-5 based architecture tested. Moreover, Figure
4.4 and Figure 4.5 illustrate the schematics of the VGG-16 and AlexNet architectures, respectively.

Figure 4.3: Schematic of the LeNet-5 based neural network architecture.

The LeNet-5-based architecture was the most basic CNN tested. It consists of two convolutional
layers with 6 and 16 kernels, respectively. Moreover, the size of the kernel was 3x3. After each convo-
lutional layer, a sub-sampling layer is introduced, using the Max Pooling strategy. Next, the structure is
flattened to couple it into two fully-connected layers of 120 and 84 nodes, respectively. The last layer
consists of one output node, corresponding to the aggregated power production of the relevant price
region.

Figure 4.4: Schematic of the VGG-16 based neural network architecture.

The VGG-16-based architecture was the most complex CNN tested. Given its deepness, a simpli-
fied version was built to align with the computer processor resources. It consists of three convolutional
layers with 16, 64, and 128 kernels, respectively. Similar to the LeNet-5 architecture, the size of the
kernel was 3x3, while a sub-sampling layer is introduced after the convolutional layer, using the Max
Pooling strategy. In comparison to the previous architecture, this model introduced a stride of 2 for
the sub-sampling section. For the last segment, the structure is flattened to couple it into one fully-
connected layer of 4096 nodes. Again, the last layer consisted of the output node corresponding to the
power production in the relevant price region.

Figure 4.5: Schematic of the AlexNet based neural network architecture.

The AlexNet-based represented amodel with a complexity level between the previous architectures.
It consisted of two convolutional layers with 96 and 256 kernels, respectively. In comparison to the

30 Methodology

previous architecture, this model employs variable kernel sizes of 11x11, and 5x5, respectively. A sub-
sampling layer was introduced after the convolutional layer, using the Max Pooling strategy. Similar to
the VGG-16 model, this structure imposes a stride of 2. For the last segment, the structure is flattened,
fully-connected to a layer of 4096 nodes, alongside a Dropout factor of 25% for this last hidden layer.
The output layer consisted of a single node corresponding to the power production in the relevant price
region.

4.2.2. Fully-connected architectures: MLP

Different MLP architectures were tested with the expectation of finding relationships following a non-
grid-like topology data approach, neglecting the spatial relationship between the values in the array.

The conventional ANNmodel served as a complementary way to relate to the output data. Addition-
ally, it gave the possibility of capturing temporal patterns in the data without building a computationally
expensive model. A series of models with different amount of nodes and layers were evaluated. The
selection of MLP architectures was based on the best models obtained by Torres and Aguilar, where
they tested a variety of traditional architectures to predict wind farm generation [22]. Moreover, one
personal choice architecture was designed. Figures 4.6, 4.7, 4.8, and 4.9 illustrate schematics of the
MLP architectures.

Figure 4.6: Schematic of MLP-1 architecture.

The first MLP architecture tested –identified as MLP-1– consists of a single hidden layer with 70
nodes. This structure resulted in the best model employed in [22] for ReLU-based structures.

Figure 4.7: Schematic of MLP-2 architecture.

The second MLP architecture tested –identified as MLP-2– consists of three hidden layers with 20,
13, and 7 nodes, respectively. This structure resulted in the best model employed in [22] for a different
type of activation function. However, given the methodology of this project, it was replicated using a
ReLU activation function.

The third MLP architecture tested –identified as MLP-3– represented the most complex structure of
this type of architecture tested for this application. It consists of 6 hidden layers: the node distribution

4.2. Deterministic forecasting approach 31

Figure 4.8: Schematic of MLP-3 architecture.

for every layer is [80, 66, 53, 40, 27, 14]. This represented the best model using the ReLU activation
function but with a feature engineered data set in [22].

Figure 4.9: Schematic of MLP-4 architecture.

The last MLP architecture (MLP-4) was a personal design choice, hence does not have any sup-
porting documentation. However, the reason to use this architecture was to elaborate a structure that
could capture temporal patterns in the data set. The architecture consists of two hidden layers with 6
and 26 nodes, respectively.

Since all price regions were trained separately, the output layer consisted of a single node. However,
the input node could vary based on feature engineering. For these visualizations, the default input layer
also consists of a single node.

4.2.3. Clustering: k-means

The k-means clustering unsupervised method is introduced to organize and reduce the dimensionality
of data. The objective of this technique was two-fold:

On the one hand, to tackle the traditional clustering problem by selecting relevant data points from
the NWP data grid. Therefore, a weighted k-meansmethod was utilized to consider not only the number
of wind turbines but also its rated power, thus, to make wind turbine clusters based on wind power
concentration. Therefore, this decision served for feature engineering (further discussion is provided
in the following Section 4.3).

On the other hand, to build a k-means regression-based predictive model. Hence, a simple imple-
mentation by calculating the cluster average of the numerical target. The motivation to use this method
was to test algorithms outside the supervised learning realm. Moreover, it was meant as a method of
weather classification. Figure 4.10 illustrates the analog-based approach for weather classification, in
which every class provides an average wind power production. The analog-based approach is based
on the strategy followed by the winning team of the EEM20 forecasting competition: MINES ParisTech
[56, 57].

As shown from the figure, a new atmospheric situation is inserted, related to a cluster of weather
class based on its similarity or analogous conditions. The similar patterns derived from the training set

32 Methodology

Figure 4.10: Weather analog-based approach using a simple k-means clustering method.

were found using the Euclidean distance formula. Finally, the average power production of the weather
class (containing a set of similar events) represents the output of the new situation.

The process of weather classification consisted of organizing the available NWP data to enhance
wind power prediction. In other words, to select averaged past values of power production during
similar weather conditions. As a consequence, the meteorological variables were selected based on
the performance of the weather classes to predict wind power production.

The selection of the number of weather classes was based on forecasting accuracy. Therefore,
different class values (k) were evaluated. As a result, the regression method aimed at optimizing the
number of classes, introducing various input data available from the NWP meteorological variables.

4.3. Feature and output engineering
The second step of the research focused on feature/target engineering. Forecasting competitions
have shown that winning teams tend to stand out for working out the available data, relating the input
and output data. Beyond data cleansing and normalization, employing optimal features is relevant to
enhance the accuracy of these models. Therefore, domain knowledge of wind power facilitates the
feature design process.

An extensive exploration of the wind power drivers based on various physical phenomena was
performed. Table 4.2 summarizes different factors inspected during this phase of the research.

As seen from the table, feature variables had to be pre-processed before inserting them in the
different models tested. For instance, the wind speed variable was obtained from calculating themodule

4.3. Feature and output engineering 33

Table 4.2: Drivers of wind power for feature engineering.

Physical phenomena Feature engineering
Wind speed (WS10) Resulting magnitude of U10 & V10

Spatial dependencies (WD10) Wind direction from U10 & V10

Extreme wind values (Gust) Gust wind speeds

Atmospheric conditions (T, P) MSLP & T2M

Wind power (WP)

Vertical extrapolation of WS10 for hub height (𝑊)
Cube of wind speed (𝑊)

Air density for T2M and terrain height (z)
Standard IEC power curve class 1

Turbine location (latitude, longitude)
Rated power

Operational constraints
Temporal dependencies

Time of the day
Day of the year

Weather classes k-means analog-based approach averaged historical production

of the zonal and meridional components of wind speed. Equation 4.9 shows the process to create a
grid of wind speeds:

𝑊𝑆10 = √𝑈10 + 𝑉10 ∀𝑖, ∀𝑗 (4.9)

From the equation above, U10 represents the zonal wind component, while V10 represents the
meridional wind component. Both components are related to a 10-meter height. Hence, for every
coordinate point (i,j), the 10-meter wind speed magnitude was computed.

The same approach was followed to determine the wind direction. Equation 4.10 shows the formula
used to compute this feature:

𝑊𝐷10 = arctan (
𝑉10
𝑈10) ∀𝑖, ∀𝑗 (4.10)

The same variables from 4.9 are used in 4.10. In the latter, the inverse tangent function served to
calculate the angle between both vectors. Additionally, to extend the range from 0 to 360∘, for negative
meridional components, a factor 2𝜋 is summed, while for negative zonal components a factor 𝜋 is
summed. When both factors are negative, a factor 1.5𝜋 is summed. The remaining meteorological
variables were not altered concerning the raw NWP data.

The wind power features were used following the same methodology described in Figure 4.2. The
motivation is to use this data as a new input for a machine learning approach, hence a neural network
architecture.

Operational constraints were introduced to capture certain operational logistics of wind power, such
as demand and maintenance. In the case of the physical model, a 100% availability was assumed.
However, the availability of each wind turbine was one of the principal challenges given the com-
petition settings. Hence, the simplest way to address the behavior of each turbine consisted of comput-
ing a time proxy pair, based on a sine-cosine function. Equations 4.11 and 4.12 show the computations
for time pairs based on the time of the day and day of the year, respectively:

34 Methodology

ℎ → (sin ℎ
24 , cos

ℎ
24) (4.11)

𝑑 → (sin 𝑑
365 , cos

𝑑
365) (4.12)

The equations above relate the hour of the day (h) in a pair of sine-cosine functions. The same
applies to the day of the year (h). In consequence, 4 time-proxy features were considered as temporal
dependencies.

The second main challenge of the EEM20 forecasting competition was the size of the data. In
machine learning terminology, this setting would be considered as a Big Data problem. The available
NWP training data set consisted of 840.000 values per hour, considering the meteorological variables,
the number of ensemble members, and the size of the grid. Hence, to reduce the dimensionality of the
data, the following decisions were made:

• Understanding the compilation of the ensemble members, only the median values of these en-
sembles were taken into account. This simple strategy already processes the data in a way that
reduces it to 10% of the original size.

• Although every price region was trained separately, the NWP grid size (169 x 71) was kept un-
altered when introduced in convolutional layers. Hence, determining the optimal grid size for
every price region was left out of the scope of this research. However, the k-means approach
was employed to reduce the dimensionality of data, but this input data was only introduced in
fully-connected layers, such as in MLP architectures.

• Meteorological variables were selected based on initial steps, given time constraints and compu-
tational resources. In other words, feature engineering was not developed in all machine learning
models, but guided by domain knowledge and literature.

The third challenge of the forecasting competition was to address the dynamic installed capacity
during the submission rounds. The best approach to manage the growth of installed wind power was
by means of normalizing the production. Hence, the forecasting models would predict the capacity
factor of the respective price region. After the prediction outcome, to comply with the competition
requirements and facilitate visualization, the capacity factor is multiplied by the installed capacity in the
respective time step. In this step, a 100% availability was also assumed.

4.4. SpinHy-NN: Integrating the SP-NN probabilistic framework

After exploring different architectures, the last step consisted in developing a methodology for proba-
bilistic forecasting. As explained in the literature review, two approaches are possible: a parametric
and non-parametric approach.

As the objective of this research is to introduce a new methodology that can be generalized for
different data sets, a non-parametric approach was followed, making the model learn the shape of the
PDF. Particularly for wind power forecasting, this decision seems appropriate as the complex nature
of wind does not allow to fit a traditional ”shape curve” varying in every climate. Moreover, the shape
for the same location could change in time [25], having to re-adapt existing parametric models, making
non-parametric models suitable for wind applications. However, the non-parametric approach requires
the tuning of additional parameters and hence, increased computational costs.

On the other hand, under the context of the Swedish case study, another possibility was to de-
velop an ensemble forecast model. However, ensemble members require substantial amounts of data
from meteorological variables that are not always available. Although it was possible to follow this
methodology, the approach was discarded to promote a generalized method for future case studies.

4.4. SpinHy-NN: Integrating the SP-NN probabilistic framework 35

The metric to assess the accuracy of forecasts during the competition is similar to the cost function
employed in the SP-NN. The only difference lies in its smoothening. In this sense, the final framework
trained directly the evaluation method, or in other words, the setup of the neural network guaranteed
the optimization of the model following the competition scoring guidelines. As a consequence, the
evaluation of this method expresses the score for a particular round.

To introduce both spatial and temporal data, a variation of the original SP-NNwas created to forecast
wind power production under a probabilistic framework: the Smooth Pinball Hybrid Neural Network
(SPinHy-NN). The differences between both architectures are:

1. Implementation of a CNN to capture spatial patterns of NWP data.

2. Concatenation of a traditional MLP to use it as a proxy for additional variables and capture oper-
ational availability and maintenance;

3. Adjustment of tailor-made hyperparameters to account for sharpness and reliability.

The CNN-branch of the structure was selected based on the best initial model of the convolutional
neural networks tested. Similarly, the tailor-made MLP branch was selected.

Regarding the hyperparameters, the smoothening parameter was assumed to 𝛼 = 0.001, as em-
ployed in [49]. The reason is that the Adam optimization algorithm managed to adapt the learning rate
to converge particular local optima, proving its capabilities in non-convex optimization problems. On
the other hand, a penalty factor of 𝜅 = 1000 was assumed [49]. Hence, the only SPinHy-NN parameter
to tune was the quantile margin. This strategy corrected the undesired crossing of quantiles, which
is an inconsistent behavior in non-parametric approaches. The SPinHy-NN included a regularization
term for the MLP branch, which is assumed to be (𝜆) = 0.0001, following the approach in [49]. This
term is used in the kernel initializer as well, which is in charge of reducing the influence of certain terms
during the random initialization of weights.

Finally, the following hyperparameters were tuned: spatial dropout, batch size, and sub-sampling
layer, based on the method followed in [37]. In this method, batch sizes of 32, 64 are typically used,
depending on the data set size. Moreover, both Max Pooling and Average Pooling sub-sampling layers
were tested to reduce the size of the convolutional operations. The spatial dropout was kept small, from
no dropout factor up to 25%.

The best results obtained post-competition are compared against the three best models during the
event, which all turned out to be based on machine learning approaches, namely:

• MINES ParisTech: Quantile Regression Forest (QRF) [56].

• University of Strathclyde: Quantile Generalized Additive Model (QGAM) & Gradient Boosting
Machine (GBM) [58].

• TU Delft: Hybrid CNN-MLP (HCM) neural network [55].

The last team was led by Sukanta Basu, assisted by Simon J. Watson, Bedassa Cheneka, and the
author of this report. Regarding the team representing this thesis project (DeepWinds), submission
mistakes occurred during the competition, hence these are not reported in this document. Therefore,
the best outcome of this research project is benchmarked against the best forecasts during the com-
petition timeline, providing a time advantage and expertise to improve the accuracy using the same
data set. However, the probabilistic methodology during the re-forecasting process did not change,
meaning that the outcome was already constrained by the same approach.

36 Methodology

4.5. Programming framework
A comparison between different models was performed during this research. These models are char-
acterized by their complexity, hence framing the computational tools available was relevant to deal with
the time constraints of the project. The trade-off between accuracy and computational time represented
a constraint on the decision-making and research direction for quality results.

The algorithms were executed on an HP ZBook Studio G5. This device is integrated with an Intel
i7-8750H processing unit, holds 16 GB of RAM, and two Graphical Processing Units (GPU): an Intel
UHDGraphics 630 and NVIDIA Quadro P1000 GPU. The operative system of the computer is Windows
10.

GPUs are a valuable resource in the development of spatial based deep learning models, such
as the case of CNN. They can execute many computations in parallel that have a grid-like topology.
Therefore, the computational effort was reduced by including them in the framework.

The code was written in Python language, using a GPU-enabled Jupyter Notebook Integrated De-
velopment Environment (IDE) under the Anaconda management software, useful for the deployment of
this programming language. Jupyter Notebooks facilitate the sharing of files, as the environment allows
the inclusion of notes, headers, and images to characterize every section of the script. Furthermore,
the following library package versions were installed:

• Python: 3.7.4

• Keras: 2.3.1

• netCDF4: 1.4.2

• scikit-learn: 0.23.1

The main Python code is available in Appendix B and C.

4.5.1. Keras library

Keras is an application programming interface (API) designed for AI. It follows innovative practices to
reduce cognitive load through simple APIs, diminishing the number of actions required by the user with
clear and actionable error messages. It also has extensive documentation and developer guides [59].
Therefore, Keras has emerged as one of the most powerful libraries to develop these algorithms in a
simple manner. The Keras functional API is a way to create flexible models compared to sequential
ones. The functional API can handle models with non-linear topology, shared layers, and models with
multiple inputs or outputs. Since deep learning models have become directed acyclic graph (DAG) of
layers, the tool allowed to build graphs of layers. Figure 4.11 shows a summary model example of the
SPinHy-NN using this package.

Figure 4.11: Model summary of the SPinHy-NN using the Keras package.

5
Data Analysis

Given the big data problem of this case study, understanding the available information and using optimal
variables is relevant to enhance the accuracy of a predictive model. Therefore, the following chapter
is focused on analyzing the main data sets through clear visualizations.

The outline of this chapter is divided into two sections. The first section provides an overview
of the NWP meteorological variables, assessing the resolution and quality of data. Additionally, a
correlation between variables is performed to understand the relationship between the input and output
of the model. The second section illustrates the wind turbine record: showcasing the installed capacity
operating in Sweden for the period 2000-2001. Moreover, it visualizes the terrain height, evaluating its
influence on the predictive model. Finally, the last part addresses the installation dates of wind turbines
across the submission round periods.

5.1. Meteorological variables
The most crucial information provided by the competition was the NWP data. The following section
provides an analysis of this information, to assess the quality of the data archived by Greenlytics.
Moreover, a correlation between these variables and output power production.

The Swedish case study data set can be defined as a big data problem. Given seven meteorological
variables, each of them containing ten ensemble members of hourly values for a whole year (except
two missing dates) in a 169 x 71 spatial grid. This represents 839,930 variables every hour, hence
7.3 billion values. An overview of the seven meteorological variables available is shown in Figure 5.1.
These visualizations correspond to January 1st, 2000 at 00:00. For this purpose, only the median of
the ensemble members is shown.

An initial assessment of the quality of these images for the training data set counts the number of
NaN-values for every variable present in the NetCDF files. By performing this calculation, the results
showed that all the variables contained simultaneous missing hours. In addition to the two missing
days, 128 hours did not contain any information, meaning that one week of the year 2000 data was
missing in the training set.

A correlation matrix is shown in Table 5.1 to assess relationship between input-output variables. The
input meteorological variables relate the full grid size (169 x 71), while the output represents the aggre-
gated power production at every price region. On the other hand, the wind component variables have
been derived into wind speed magnitude and direction, as the vectors have positive-negative values.
Additionally, the matrix has been normalized between a range of [0, 1], following mutual information
theory.

As expected, wind speed (WS10) resulted to have the greatest correlation with wind power. Along-
side wind speed, gust wind shows a very similar correlation as well (> 0.5), which can be understood

37

38 Data Analysis

Figure 5.1: Overview of NWP meteorological variables for a particular time step.

Table 5.1: Correlation matrix between input and output variables.

Feature variable SE1 SE2 SE3 SE4
Wind speed (WS) 0.523 0.659 0.696 0.560
Wind direction (WD) 0.060 0.060 0.016 0.164

Zonal 10-meter wind (U10) 0.336 0.453 0.545 0.527
Meridional 10-meter wind (V10) 0.416 0.512 0.511 0.338

Wind gust 0.521 0.657 0.687 0.548
Mean sea level pressure (MLSP) 0.063 0.240 0.315 0.234
Screen level rel. humidity (RH2M) 0.050 0.017 0.012 0.051

Surface temperature (T2M) 0.034 0.002 0.103 0.199
Total cloud cover (TCC) 0.065 0.149 0.244 0.197

by the methodology used in weather forecasts to produce NWP data sets. On the other hand, other
variables like wind direction show almost no correlation, which is an interesting indication for the prob-
lem. As a result, based on the NWP information provided by the organizers, wind speed and wind gust
are the only variables relating to the aggregated power production.

5.2. Wind turbine record
Next to the NWP meteorological variables, relevant information can be collected from the wind turbine
record. The first step consists of visualizing the location of the wind turbine, alongside the price region
they belong to. This is shown in Figure 5.2.

As it has been stated in Chapter 4, the record provided contains information of 4004 wind turbines.
However, the record held by the SWEA accounts for 4099 wind turbines. Regardless of the discrep-
ancies, this information provides valuables insights into the case study presented in the competition.

The subsequent sub-sections will provide further insights into the installed capacity, power concen-
tration, terrain height variations, and installation dates. The visualizations are classified by price region,
motivated by the approach of training the models separately.

5.2. Wind turbine record 39

Figure 5.2: Wind turbine locations classified for every price region.

5.2.1. Installed capacity

The share of installed wind capacity in Sweden varies per price region. Figure 5.3 illustrates the number
of wind turbines concentrated in clusters in Sweden. It can be seen that price regions SE2 and SE3
have the highest share of wind turbines. In fact, the share is 12%, 28%, 36%, and 24%, respectively.
In detail, the concentration of wind turbines per region is shown in 5.4.

Based on Figure 5.4, it can be seen that wind turbine clusters are present throughout the country,
especially in price regions SE1, SE2, and SE3. For SE4, the amount of wind turbines is spread roughly
in equal proportions. The total number of wind turbines per price region is 472, 1112, 1450, and 970,
respectively.

On the other hand, the rated power of these wind turbines varies from 0.01 MW to 4.2 MW. Hence,
it is more appropriate to visualize power concentration in Sweden. Figure 5.5 shows the power con-
centration in Sweden. It can be seen that the same clusters are present, especially in the North. Figure
5.6 shows in detail the power concentration for every price region. The share of installed wind power
capacity is 15%, 35%, 31%, and 19%, respectively for every price region.

Similar to the number of wind turbines in Figure 5.5, wind turbine clusters are present throughout the
country, especially in price regions SE1, SE2, and SE3. For price region SE4, wind power concentration
is spread roughly in equal proportions. The installed capacity per price region is 1.33 GW, 3.01 GW,
2.66 GW, and 1.64 GW, respectively. In consequence, the ratio between installed capacity and the
number of turbines [MW/turbine] is 2.82, 2.70, 1.83, and 1.69. As a result, the biggest turbines are
located in the North of Sweden, corresponding to the price regions SE1 and SE2, in that order. In
total, the case study aims to predict the performance of a system with 8.64 GW of wind power installed
capacity.

40 Data Analysis

Figure 5.3: Concentration of wind turbines in Sweden.

Figure 5.4: Concentration of wind turbines in every price region of Sweden.

5.2. Wind turbine record 41

Figure 5.5: Installed capacity concentration in Sweden.

Figure 5.6: Installed capacity concentration in every price region of Sweden.

42 Data Analysis

5.2.2. Terrain height

Sweden is the third-largest country in the European Union, accounting for 450,295 km2 of land. More-
over, it is the largest country in Northern Europe [60]. Hence, the elevation greatly varies along its
surface area. Figure 5.7 shows the terrain height distribution of wind turbines in Sweden (2000-2001).
The average terrain height for every price region is 348 m, 476 m, 170 m, and 73 m, respectively.

Figure 5.7: Terrain height distribution of wind turbines in Sweden.

Wind turbines in SE1 and SE2 are mostly located far inland, while wind turbines for price regions 3
and 4 are situated close to sea level. Furthermore, in the south of the country, most of the wind turbines
are located near the coast. Figure 5.8 zooms the terrain height distribution for every price region in
Sweden.

Figure 5.8 details that wind turbine locations for SE1 and SE2 are in mountainous areas. In par-
ticular, the location with the highest terrain height is in SE2 at 1003 m MSL. On the other hand, the
locations for SE3 and SE4 are close to sea level. As a result, these low-land regions have a better
correlation with the wind components provided by the NWP meteorological data, given for 10-meter
elevations.

5.2.3. Installation dates

The last assessment of the wind turbine record consists of determining the operational time of the wind
turbine, which has a direct impact on its availability for the long term. Older turbines have a higher
downtime, hence the effective capacity factor is reduced.

Figure 5.9 shows a histogram based on the installation date of wind turbines for the period 1991-
2001, as the operational age has been determined with respect to the last day of the year 2001. The
histogram shows that 68% of the wind turbines have an operational age below ten years, equivalent
to 2725 turbines. Moreover, almost 15% of the wind turbines were installed in the period 2000-2001

5.2. Wind turbine record 43

Figure 5.8: Close-up of terrain height distribution of wind turbines in Sweden.

Figure 5.9: Histogram of operational age of wind turbines in Sweden for period 1991-2001.

44 Data Analysis

Figure 5.10: Histogram of installed capacity in Sweden for period 1991-2001.

–equivalent to 582 turbines–, which concerns the competition setting. On the other hand, the installed
power capacity for the period 1991-2001 is shown in Figure 5.10.

In the installed power capacity histogram for the period 1991-2001, 81% of the wind power capacity
was installed in the last ten years, equivalent to 7.04 GW. Additionally, 2.02 GW of installed capacity
was installed in the period of the competition (2000-2001) Hence, there is a big fluctuation between
the training data and testing data installed capacity, as this value is equivalent to 23% of the power
capacity.

Regarding the testing data period, 364 wind turbines were installed during the submission rounds
period, accounting for 1.26 GW, equivalent to almost 15% of the total installed capacity available from
this record. On the other hand, the majority of the wind turbines are reasonably new, considering that
the lifetime for a megawatt-scale wind turbine is 20 years [61], although this can be extended with
additional maintenance and increased downtimes of the machine (less availability).

Table 5.2 summarizes the information provided by the histograms, considering every price region.
Most of the wind turbines and power capacity were installed in SE1, SE2, SE3. On the contrary, SE4
did not introduce additional capacity throughout the period 2000-2001. In particular, SE1 installed 47%
of its wind turbines during the competition setting period, accounting for 59% of its total wind power
installed capacity. This represents the biggest wind energy addition in relative terms amongst all price
regions in Sweden for the given period.

Table 5.2: Number of wind turbines and power capacity installed by price region for 1, 2 and 10 years.

Region SE1 SE2 SE3 SE4 Total
Amount of turbines < 1 year 115 170 70 9 364

Wind power capacity installed < 1 year (MW) 387.5 590.2 259.9 19.0 1256.6
Amount of wind turbines < 2 years 224 211 134 13 582

Wind power capacity installed < 2 years (MW) 779.9 737.9 475.3 28.9 2022
Amount of wind turbines < 10 years 414 954 863 494 2725

Wind power capacity installed < 10 years (MW) 1240.1 2637.1 2066.4 1093.9 7037.5

6
Results & Discussion

The following chapter presents the results derived from this project. Once the data available for this
case study has been analyzed, the next step consists of comparing the different machine learning-
based predictive models for wind power production, alongside an optimal feature engineering and tun-
ing of hyperparameters. Therefore, the outline of this chapter comprises three main sections. Firstly,
introducing an overview of the results obtained from the deterministic models. Secondly, the perfor-
mance of feature engineering to define themost suitable variables for this application, subject to compu-
tational effort. Lastly, the integration of these models into a probabilistic framework called SPinHy-NN,
based on the novel SP-NN.

6.1. Deterministic forecasts

The following section provides results for the first part of the methodology described in Chapter 4. To
compare the models proposed in this project, basic approaches are followed to serve as a benchmark.
Hence, Table 6.1 provides an overview of the results for the similarity model and the physical-based
model.

Table 6.1: Overview of results for benchmark predictive models (values in MW).

Models Testing data MAE SE1 MAE SE2 MAE SE3 MAE SE4

Similarity 01/02-2001 230.37 707.35 642.61 405.85
03/12-2001 220.86 611.48 537.91 358.78

Physical 01/02-2001 226.84 587.73 613.94 360.01
03/12-2001 213.93 489.84 517.18 348.34

From Table 6.1, both benchmark models shows similar results. In particular, the physical-based
model returns slightly better predictions, but still fails to capture value in the training data. However, as
previously stated, these models serve as a reference for future models. Figure 6.1 compares a forecast
example of the physical-based model benchmark with the observed values.

The next group of models consists of the structures that require grid-like topology data, namely three
CNN-based architectures: LeNet-5, VGG-16, and AlexNet. In this case, only WS10 is considered as
input data. Table 6.2 shows an overview of the results for the CNN-models.

The CNN-based models show reasonable improvement concerning the benchmark. The most sim-
ple CNN architecture, LeNet-5, shows the best MAE for price regions SE1, SE2, and SE3. The AlexNet
architecture only performs better for the first segment of the testing data set corresponding to January-
February 2001. In price region SE4, the VGG-16 based approach shows the most promising results,
closely followed by the AlexNet and LeNet-5 based architectures. The more complex architectures

45

46 Results & Discussion

Figure 6.1: Physical-model forecast of price region SE4 in the period January-Febraury 2001, compared to the real observed
value.

Table 6.2: Overview of results for CNN-based predictive models (values in MW).

Models MAE SE1 MAE SE2 MAE SE3 MAE SE4

LeNet-5 99.68 326.73 258.78 153.35
104.65 187.58 150.94 109.44

VGG-16 114.62 379.30 217.17 145.09
123.91 206.36 160.23 100.43

AlexNet 102.66 238.51 238.51 152.24
116.10 207.89 169.61 107.14

(i.e. AlexNet and VGG-16) generalized the data, failing to enhance the predictions despite their intri-
cate structures. Moreover, the computational time for the LeNet-5 architecture was almost 2 hours. In
other cases, it required 2.5 hours for the AlexNet architecture and over 6.5 hours for the VGG-16 (the
most complex architecture), compiling for 200 epochs in every instance. In consequence, the LeNet-5
is used as the CNN branch to build a probabilistic framework for all price regions. This architecture
reduces the error from the best benchmark model to 47%, 38%, 29%, and 31% of the initial predic-
tions, respectively. Figure 6.2 compares a forecast example of the LeNet-5-based CNN model with the
observed values.

The k-means clustering following a weather analog-based approach is evaluated. The first step
consists of defining optimal k-clusters. The elbow method is used for the training data to define these
values. In this case, two different input groups are considered. The first input group considers only
WS10, while the second input group considers WS10, T2M, MSLP. On the other hand, only the first
testing data group was used, namely January-February 2001. Figure 6.3 illustrates the results for
different k-values in all price regions for the multiple-input case.

In the multiple-input case, no elbow was clearly defined, given the irregular shape of the results.
However, the error follows a decreasing trend up to the last value tested (364), dropping until 241.37%,
69.98%, 55.09%, and 72.75%, respectively at each price region. In particular, price region SE1 did not
manage to capture the spatial patterns of the clustering algorithm, while in other cases shows promising
results.

Figure 6.4 illustrates the elbow method results for a single input (WS10), under the same conditions
defined above. Again, the irregular shape did not facilitate the decision for an optimal k-cluster. How-
ever, in this case, the results improved respect to the multiple-input approach, reducing the percentage
error to 140.63%, 63.42%, 48.94%, and 56.55%, respectively at each price region. In consequence, the
single input k-means clustering shows the most promising approach to build the probabilistic forecast
framework. In this case, K = 364 is selected.

6.1. Deterministic forecasts 47

Figure 6.2: Physical-model forecast of price region SE1 in the period January-Febraury 2001, compared to the real observed
value.

Figure 6.3: Elbow method for multiple inputs (WS10, T2M, MSLP) in all price regions.

Figure 6.4: Elbow method for single input (WS10) in all price regions.

48 Results & Discussion

Using a single input approach with K = 364 relates to averaging the daily power production of the
training data to predict future values based on similarity. Hence, the most similar wind conditions of a
particular day are chosen for forecasting the production in the future. Table 6.3 shows the results for
the analog-based approach.

Table 6.3: Results for analog-based approach using optimal k-clusters (values in MW).

Testing data MAE SE1 MAE SE2 MAE SE3 MAE SE4
01/02-2001 163.77 400.07 355.37 190.31
03/12-2001 152.95 297.02 283.84 170.59

Comparing the results with benchmark models, the analog-based approach provides a significant
improvement. However, it does not enhance the predictive model concerning the grid-like topology data
approach (NWP images). In perspective, the analog-based inputs enhance the forecasts respect to the
physical-based benchmark by 24%, 39%, 45%, and 51%, respectively at each price region, considering
the second testing set (March-December 2001). On the other hand, the CNN-based model is 32%,
37%, 47%, and 36% better, respectively at each price region, considering the same data set. Figure
6.5 compares a forecast example of the analog-based approach model with the observed values.

Figure 6.5: Analog-based approach model forecast of price region SE3 in the period January-February 2001, compared to the
real observed value.

6.2. Feature engineering

The second main task was to determine the optimal features to introduce in the MLP branch. In this
case, four MLP architectures are tested to assess the performance of such a model. In this scenario the
goal was not to understand the optimization algorithm performance, thus an Early Stopping callback is
implemented in case the iterative process does not improve the validation split after 20 iterations.

The first approach consisted of using the output of the physical model as input for the different MLP-
based architectures. However, no learning was achieved. Hence, these results are excluded as they
do not provide additional information. Also, feature engineering by combining different features with
the results of the physical-based model output was not tested further, as the latter variable does not
enhance the accuracy of the forecasts.

The second approach included the output of the analog-based approach. Using the output of the
values provided by the k-means clustering algorithm, these are introduced as an input for the MLP-
based architecture. Moreover, the single input optimal k-value is employed for these features, as they

6.2. Feature engineering 49

provided the best performance given the elbow method. Table 6.4 shows the results for different MLP-
based models using analog-based inputs.

Table 6.4: Overview of results for MLP-based predictive models using analog-based features (values in MW).

Models Testing data MAE SE1 MAE SE2 MAE SE3 MAE SE4

MLP-1 01/02-2001 129.63 382.88 360.23 194.32
03/12-2001 145.34 299.23 277.78 172.21

MLP-2 01/02-2001 130.24 383.45 359.65 192.34
03/12-2001 145.78 298.98 277.34 172.92

MLP-3 01/02-2001 129.73 382.72 359.81 192.45
03/12-2001 146.12 298.22 279.02 172.38

MLP-4 01/02-2001 129.36 382.64 359.57 193.29
03/12-2001 145.08 297.76 277.25 172.07

The analog-based inputs did not show relevant differences in respect to the original approach,
meaning that these features did not learn significantly to relate the input features with the power pro-
duction. Moreover, all architectures show almost identical results, implying that the architecture is not
further enhancing the predictions. However, it exhibits a small improvement in comparison to the ini-
tial analog-based approach, except in SE4. Consequently, this is an encouraging feature for the MLP
branch of the final architecture.

A more intricate combination of input features consists of the analog-based inputs and time de-
pendencies. The objective is to capture the wind turbine availability and maintenance based on sea-
sonal patterns learned from the training sample. Table 6.5 provides the results obtained combining the
analog-based input with the temporal features.

Table 6.5: Overview of results for MLP-based predictive models using analog-based features and time dependencies (values in
MW).

Models Testing data MAE SE1 MAE SE2 MAE SE3 MAE SE4

MLP-1 01/02-2001 133.54 400.02 367.06 202.16
03/12-2001 142.20 285.38 270.27 170.08

MLP-2 01/02-2001 130.52 407.82 367.29 206.12
03/12-2001 140.99 292.90 269.49 171.14

MLP-3 01/02-2001 131.09 404.64 369.05 190.37
03/12-2001 136.90 283.14 272.67 168.11

MLP-4 01/02-2001 132.68 399.19 370.98 199.53
03/12-2001 142.50 288.10 265.35 170.90

The results for this case improve with respect to the previous test, namely using only analog-based
input features. However, the improvement in percentage terms is not remarkable, changing between
1% and 4%. Nevertheless, considering that the temporal dependencies do not promote any additional
computational expense and provide a small improvement to a reasonably good predictive model, these
features are kept to build the final framework. Figure 6.6 compares a forecast example providing
analog-time inputs to the MLP-4 model with the observed values.

Regarding the architectures, using the time proxy produces more fluctuations in the results com-
pared to the analog-base single input, which provides stagnant outcomes regardless of the architecture.
Given the output similarity in all MLP-based models, MLP-4 is selected in this stage, as it is a tailor-
made architecture design for this application, motivated by personal choice during this project. Hence,
the remaining feature engineering is analyzed using this fully-connected architecture.

The last feature engineering approach consists of concatenating a CNN branch using NWP input
with the MLP branch, using analog-based and time proxy inputs. In this setting, only the LeNet-5 based

50 Results & Discussion

Figure 6.6: Analog-time MLP-4 model forecast of price region SE3 in the period January-February 2001, compared to the real
observed value.

Table 6.6: Results of the hybrid model combining CNN-MLP architectures introducing NWP images, analog-based and time
proxy data (values in MW).

Testing data MAE SE1 MAE SE2 MAE SE3 MAE SE4
01/02-2001 109.11 350.72 257.81 159.81
03/12-2001 91.89 190.25 150.41 101.83

architecture and MLP-4 are considered as one hybrid architecture. Moreover, this hybrid structure
represents the general model for the SPinHy-NN. Results for this approach appear in Table 6.6.

The results from the hybrid approach are similar to the LeNet-5 based approach. In SE3 and SE4,
it manages to improve the accuracy in the period March-December 2001 (the second segment of the
data set). On the other hand, for the first testing data set, all cases showed lower performance in
comparison to the best CNN model. Figure 6.7 compares a forecast example of the hybrid model with
the observed values.

Figure 6.7: Hybrid model forecast of price region SE2 in the period January-February 2001, compared to the real observed
value.

6.3. SPinHy-NN performance 51

6.3. SPinHy-NN performance
The final step of the strategy consists of building a framework based on a hybrid architecture: the
SPinHy-NN. Figure 6.8 illustrates the probabilistic framework of the final architecture.

Figure 6.8: Structure of the SPinHy-NN predictive-based model probabilistic framework.

In this step, the final structure is tuned by the following hyperparameters: batch size, sub-sampling
layer, spatial dropout, and quantile margin (𝜖). Table 6.7 shows the best results tested for January-
February 2001, based on this sensitivity analysis. The error metric used for the probabilistic setting
is the pinball loss (PL) function. These results indicate that every price region in Sweden is tuned
using different hyperparameters. In particular, Model C fits SE2 and SE3, while Model E fits SE1 and
SE4. Table 6.8 shows the results for the same models using the second part of the testing data set,
corresponding to March-December 2001.

Based on the sensitivity analysis for both testing sets, various models are considered. In all cases,
a Max Pooling sub-sampling layer approach provides the best results as a strategy to reduce the size
of the feature maps. However, differences between the hyperparameters can be noted:

• In SE1, the first testing set shows better results with Model E; no spatial dropout, a smaller batch
size of 32, and a quantile margin of 0.001. For the second testing data set, all parameters change
in Model A; increasing the spatial dropout to 0.25, batch size of 64, and quantile margin of 0.002
produces the best results.

• In SE2, the first testing set performs better with Model C; no spatial dropout, batch size of 64,
and small quantile margin of 0.001. The second testing data improves with Model B; increasing
the spatial dropout to 0.25 while keeping the other parameters the same.

• In SE3, Model C shows the best results for both testing data sets.

• In SE4, Model E also shows the best results for both segments of the testing data set.

In general, the regions with the highest installed capacity performed better with a bigger batch size
of 64, except in the case of SE1, which also shows a better performance for the second segment of the

52 Results & Discussion

Table 6.7: Overview of results based on tuning of hyperarameter values for each price region in January-February 2001 testing
data set (values in MW).

SPinHy-NN Model description PL SE1 PL SE2 PL SE3 PL SE4
Model A

a. Max Pooling
b. Spatial Dropout = 0.25

c. Batch size = 64.
d. 𝜖 = 0.002

39.9 179.8 109.8 74.1

Model B
a. Max Pooling

b. Spatial Dropout = 0.25
c. Batch size = 64.

d. 𝜖 = 0.001

38.9 184.2 117.4 77.3

Model C
a. Max Pooling

b. Spatial Dropout = 0
c. Batch size = 64.

d. 𝜖 = 0.001

34.6 142.2 92.8 60.5

Model D
a. Average Pooling

b. Spatial Dropout = 0
c. Batch size = 64.

d. 𝜖 = 0.001

34.9 143.3 106.0 59.6

Model E
a. Max Pooling

b. Spatial Dropout = 0
c. Batch size = 32.

d. 𝜖 = 0.001

32.2 148.3 106.0 58.2

testing data set. Moreover, a quantile margin of 0.001 seems to exhibit better accuracy in all forecasts,
except in the second testing data set of SE1. Lastly, the models perform better without spatial dropout
terms, except in the second segment of the testing data set of SE1.

The same models are used introducing the analog-based approach input features as an alterna-
tive for comparison of two SPinHy-NN based architectures. The results are summarized in Table 6.9.
However, since the Average Pooling approach did not show significant improvements, Model D was
discarded from this analysis.

Despite the results obtained by including the analog-based production input features, these do not
enhance the accuracy of forecasts respect to the time proxy dependencies. The CNN branch seems
to dominate the neural network architecture, blocking the learning process of the MLP input features.
Hence, in all price regions, the time proxy approach suits best these predictive models.

The final model forecasts are shown in Table 6.10. These values extract the best models from both

Table 6.8: Overview results of SPinHy-NN models for each price region in March-December 2001 testing data set (values in
MW).

SPinHy-NN Model PL SE1 PL SE2 PL SE3 PL SE4
Model A 34.4 137.6 64.6 47.7
Model B 35.1 137.4 65.2 50.7
Model C 37.8 149.8 57.4 40.9
Model D 112.4 274.1 296.3 108.1
Model E 41.0 138.5 59.3 39.7

6.3. SPinHy-NN performance 53

Table 6.9: Overview of results of SPinHy-NN models for each price region in March-December 2001 testing data set considering
analog-based data (values in MW).

SPinHy-NN Model Testing data SE1 SE2 SE3 SE4

Model A 01/02-2001 46.2 205.8 158.9 81.0
03/12-2001 38.7 80.4 91.0 60.7

Model B 01/02-2001 52.2 207.5 152.3 80.1
03/12-2001 37.8 79.2 97.2 59.4

Model C 01/02-2001 41.3 139.4 85.7 60.3
03/12-2001 36.3 78.4 58.5 40.4

Model E 01/02-2001 39.5 149.8 86.7 59.4
03/12-2001 39.6 71.9 59.1 39.9

cases evaluated in the probabilistic framework setting considering six rounds. The global score is given
by the average of the best five rounds. Figures 6.9-6.14 visualize the resulting probabilistic forecasts
for rounds 1-6 of the forecasting competition.

Table 6.10: Final pinball loss results of the SPinHy-NN framework in six subsets of 2001 (values in MW).

Round R1 R2 R3 R4 R5 R6
SE1 39.97 42.70 33.92 41.76 33.19 46.94
SE2 149.78 83.55 69.62 102.60 72.06 83.44
SE3 92.79 62.53 55.87 79.92 62.08 83.00
SE4 58.20 55.65 35.34 50.95 46.39 61.41

Round score 85.19 61.11 48.69 68.81 53.43 68.70

6.3.1. Clipping factors

Historical output production data shows that most of the time the wind turbines are not operating at
the maximum capacity factor. Hence, to avoid the overestimation of certain quantiles, a clipping factor
was applied to avoid outliers in the forecasts. For instance, the power production in a particular time
step cannot be higher than the installed capacity available at that moment. Therefore, upper quantiles
are constrained such that �̂� < 𝐼𝐶 . Given the historical data, Table 6.11 shows the clipping factors
applied in rounds 1-6.

Table 6.11: Clipping factors applied in rounds 1-6 based on historical data.

Round R1 R2 R3 R4 R5 R6
SE1 0.877 0.896 0.900 0.872 1.00 1.00
SE2 0.827 0.855 0.874 0.792 0.832 0.852
SE3 0.946 0.826 0.891 0.866 0.929 0.902
SE4 0.904 0.885 0.763 0.795 0.888 0.886

Clipping factors between 76% and 95% have been applied to increase the accuracy of forecasts.
Table 6.12 shows the percentage improvements for every round and each price region. In conse-
quence, the application of the clipping factor enhanced these models, despite the unnatural strategy.
It also implies that these models tend to overestimate predictions concerning the observed values. On
the other hand, the same holds valid to underestimation. In this case, the power output must always
have a positive output. Therefore, lower quantiles are constrained such that �̂� > 0. The improvement
in clipping factors range from zero to 8.47%. Additionally, the regions that did not require clipping fac-
tors imply a recognition of the NWP data. As a result, given the framework proposed in this research
project, the predictive model managed to properly capture intricate spatial patterns in rounds 3 and
5, while failing to recognize them in rounds 1 and 4. In the case of round 6, the performance did not
show good results. However, all teams during the competition faced the same situation, relating the
inaccuracy to the original NWP data of that period.

54 Results & Discussion

Figure 6.9: Resulting probabilistic wind power forecasts in Sweden for period January-February 2001.

6.3. SPinHy-NN performance 55

Figure 6.10: Resulting probabilistic wind power forecasts in Sweden for period March-April 2001.

56 Results & Discussion

Figure 6.11: Resulting probabilistic wind power forecasts in Sweden for period May-June 2001.

6.3. SPinHy-NN performance 57

Figure 6.12: Resulting probabilistic wind power forecasts in Sweden for period July-August 2001.

58 Results & Discussion

Figure 6.13: Resulting probabilistic wind power forecasts in Sweden for period September-October 2001.

6.3. SPinHy-NN performance 59

Figure 6.14: Resulting probabilistic wind power forecasts in Sweden for period November-December 2001.

60 Results & Discussion

Table 6.12: Improvement of the forecast round score based on clipping factor approach per round.

Round R2 R2 R3 R4 R5 R6
Round score 5.70% 8.30% 0.37% 8.47% 0.00% 2.88%

6.3.2. Quantile cross-over
To assess the quality of the probabilistic framework, the CL metric is computed for every price region
forecast. Table 6.13 shows CL and NC value for every round and at each price region. The SPinHy-NN
probabilistic frameworkmanages to deal with the quantile cross-over problem as stated in [49]. The total
CL for each price region is 2657, 35818, 56295, and 42512, respectively. This validates the robustness
of the non-parametric approach, as the average of CL/crossing [MW/crossing] at each price region is
4.4, 13.4, 12.1, and 8.8, respectively. Additionally, the NC represents 0.86%, 3.82%, 6.65%, and 6.91%
of the predicted quantiles. In particular, SE1 has a lower CL and NC given the higher quantile margin
(𝜖), showing that this parameter can enhance forecast consistency. Nevertheless, the predictive model
hyperparameters were optimized to enhance accurate and sharp forecasts, considering the trade-off
with the logical order of quantiles. In consequence, these crossings represent a minor inconsistency
in a simple but robust methodology.

Table 6.13: Crossing loss (CL) and number of crossings (NC) results for every round at each price region.

Price region Metric R1 R2 R3 R4 R5 R6

SE1 CL 60 32 27 0 510 2028
NC 34 23 9 0 154 383

SE2 CL 5079 4566 7065 8048 5695 5365
NC 478 362 495 524 389 432

SE3 CL 8160 6888 8026 9649 10367 13205
NC 719 625 740 747 802 1025

SE4 CL 6185 7297 6759 8279 6728 7264
NC 731 787 771 871 817 864

6.3.3. Competition results
The post-competition model is compared to the top three teams of the competition. Figure 6.15 il-
lustrates the results per round between the aforementioned models. The SPinHy-NN model exhibits
reasonable results compared to other machine learning approaches except in round 4, where it was not
able to capture the spatial patterns. The reasons for this behavior are not well understood, as the top
teams improved their accuracy in this round. The final score for the top teams and the post-competition
results obtained by the SPinHy-NN are: (1) MINES ParisTech: 44.92; (2) Univ. of Strathclyde: 47.93;
(3) TU Delft, Turbulence: 51.52; (-) SPinHy-NN: 57.54. Refer to the conference paper in Appendix D.

Figure 6.15: EEM20 forecasting post-competition results by round.

7
Conclusions & Recommendations

The problem statement at the beginning of the report stressed the need for accurate forecasting tool,
given the increasing penetration of RES. The rise of variable generation in the power system can in-
crease operational uncertainty. The objective of this project was to employmachine learning techniques
to enhance wind power forecasting, applying them to different regions and promoting an alternative
methodology, understanding its advantages and limitations.

The case study consisted of the wind turbine aggregated power hourly production of Sweden for
its four price regions (SE1, SE2, SE3, SE4) in the period 2000-2001. The setting provided three main
data sets: NWP data, a wind turbine record, and aggregated power output based on region. The
approach comprised the use of data-driven models to create an alternative probabilistic forecasting
framework. The main steps of this strategy consisted of evaluating different deep learning architectures
in a deterministic approach, extensive feature engineering for optimal input values, and integration
of a probabilistic-based predictive model. The outcome reached from this methodology was named
Smooth Pinball Hybrid Neural Network (SPinHy-NN).

The SPinHy-NN is a simple non-parametric deep learning-based approach for wind power proba-
bilistic forecasting. It can deal with non-convex optimization problems, manages the quantile cross-over
problem, and shows reasonable results in comparison to other methods. The difference between this
architecture and the novel SP-NN is the concatenation of a CNN with a customized MLP architecture
design. The parameters of this framework were tuned to achieve the most accurate forecasting results.
Each price region climate was trained following this framework, using a particular hyperparameter tun-
ing in each case.

The most suitable CNN is a simple LeNet-5 based architecture. More complex CNN architectures
such as the VGG-16 and the AlexNet managed to capture intricate spatial patterns during the testing
phase, but they did not perform better than the structure used for the final models. Moreover, the LeNet-
5 is computationally more efficient, requiring less time to output the values of the predictive model. This
represents a supplementary outcome of the original research objectives of this project.

The final results of this framework are highlighted in Table 7.1. It shows the pinball score for six
groups of the testing data (2001), every group defined by two months of the year. These results corre-
spond to the best tuned models developed post-competition.

The global results of this approach are compared with the best teams of the EEM20 forecasting
competition. The top three teams, namely MINES ParisTech, University of Strathclyde, and TU Delft,
scored 44.92, 47.93, and 51.52, respectively. Hence, the simple framework proposed in this project
showed reasonable good predictions compared to other techniques for all periods, except for round 4,
obtaining a post-competition final score of 57.54.

This framework tackled the main challenges of the competition, namely big data, wind turbine avail-
ability, and dynamic installed capacity. The simple yet robust SPinHy-NN probabilistic framework model

61

62 Conclusions & Recommendations

Table 7.1: Post-competition results of the SPinHy-NN framework in six subsets of 2001 (values in MW).

Round R1 R2 R3 R4 R5 R6
SE1 31.90 33.57 34.55 43.88 33.19 44.29
SE2 139.30 73.06 69.16 94.63 72.06 79.18
SE3 92.08 62.36 55.55 73.01 62.08 82.33
SE4 58.07 55.16 34.75 40.39 46.39 61.10

Global score 80.34 56.04 48.51 62.98 53.43 66.72

can be used in future works based on grid-like topology input data and additional features to capture
spatial patterns and operational features, respectively. Moreover, tuning these models separately for
each price region turned out to be a good strategy. Finally, this proposal successfully managed to
minimize the quantile cross-over problem, which is a typical issue in non-parametric approaches.

On the other hand, the SPinHy-NN framework has limitations. First, it serves as a framework to cap-
ture only spatial patterns. As can be seen from the results, the CNN branch dominated the output of
the forecast. Therefore, feature engineering is limited to selecting the most optimal meteorological im-
ages. Second, the probabilistic approach is purely based on the pinball loss objective function defined
by the target quantiles. The architecture does not run stochastic simulations, reducing the reliability in
particular cases (such as in round 4 of the forecasting competition). Moreover, the structure does not
make use of ensemble members, which were available for this competition setting.

The recommendations for future work are summarized as follows:

1. Incorporation of satellite imaging as input data. During this research project, only NWP data was
used from the models provided by MET Norway. Therefore, The substitution of simulated weather
data by real images is a promising research direction for short-term wind power forecasting.

2. A basic approach for wind turbine availability was proposed. The time proxy did not seem to fully
capture the operational constraints of the case study. Hence, it is suggested to complement this
framework with another machine learning approach for anomaly detection.

3. The physical-based model was used as a benchmark, establishing elementary assumptions that
have an impact on the final forecast. In particular, an 𝛼 = 0.3 was assumed in all locations,
neglecting the terrain height and additional effects. The competition allowed only to use the data
provided by organizers, restricting the possibility of exploring external information. However,
future work can enhance the physical-based model with additional data on the surface conditions
surrounding every wind turbine.

4. The SPinHy-NN is a simple and reliable tool for probabilistic forecasting. However, based on
the limitations, it is suggested to evaluate different probabilistic methodologies to enhance the
accuracy of these forecasts.

5. In this project, the full grid size of the NWP data was used. It is encouraged to evaluate different
grid sizes for every price region. This is supported by a correlation matrix between input-output,
following mutual information theory.

6. Spatio-temporal models were not fully covered. The proposed tool focused on capturing spatial
patterns. However, it is still not capable of capturing temporal patterns that govern atmospheric
dynamics. Using novel convolution layers such as the ConvLSTM architecture –a combination of
CNN and LSTM–, could further improve the accuracy of these forecasts. In this case, identifying
the optimal window time is a relevant study.

7. Ensemble models were not part of the scope of this thesis. However, it is known that decision-
makers work with various forecasts of different nature. Hence, the integration of multiple models
to enhance the reliability of prediction is a possible next step.

A
Backpropagation algorithm intuition

The following derivation is obtained from Andrew Ng, lecturer of the Machine Learning course available
in Coursera [37]. Also, acknowledgements to Aditya Saini for these demonstrations [62]. He provides
an intuition of the backward propagation algorithm (backpropagation). It concerns the intuition behind
the gradient computation ∇() of the objective (cost) function 𝜃(). Furthermore, this derivation is used
following a conventional gradient descent technique to simplify the explanation and understand the
reasoning of the errors (𝛿()). Furthermore, a classical non-linear activation function is assumed.

The starting point is the derivative. The gradient is defined as:

∇() = 𝜕𝐶
𝜕𝜃()

(A.1)

This formula cannot be solved directly. Hence, it has to be modified using two methods to derive a
formula that can be computed by the neural network model. This final applicable formula is:

∇() = 𝜃() 𝛿() ⋅ ∗ (𝑎() (1 − 𝑎())) ∗ 𝑎() (A.2)

The first method is based on the idea that the gradient can be written using 𝛿():

∇() = 𝛿() ∗ 𝑎() (A.3)

Where 𝛿() is defined by the partial derivative of the cost function respect to every feature or variable,
as follows:

𝛿() = 𝜕𝐶
𝜕𝑧()

(A.4)

The second method is based on the relation between 𝛿() and 𝛿(), or adjacent errors in the
network, following chain rule to communicate the updates and pass the information to other nodes:

𝛿() = 𝜃() 𝛿() ⋅ ∗ (𝑎() (1 − 𝑎())) (A.5)

As a result, a derivation for both methods is obtained, adapting the general form of backpropagation
shown in Chapter 2.

∇() = 𝜃() 𝛿() ⋅ ∗ (𝑎() (1 − 𝑎())) ∗ 𝑎() (A.6)

63

64 Backpropagation algorithm intuition

Demonstration of Equation A.3

Initially, it was defined that:

∇() = 𝜕𝐶
𝜕𝜃()

(A.7)

Using the chain rule for higher dimensions enables re-writting it to the following expression:

∇() =∑ 𝜕𝐶
𝜕𝑧()

∗ 𝜕𝑧
()

𝜕𝜃()
(A.8)

On the other hand:

𝑧() =∑𝜃() ∗ 𝑎() (A.9)

Thus, the following expression can be given:

𝜕()

𝜕𝜃()
= 𝜕
𝜕𝜃()

∑𝜃() ∗ 𝑎() (A.10)

By linearity of the differentiation [(u + v)’ = u’+ v’]:

𝜕𝑧()

𝜕𝜃()
=∑ 𝜕𝜃()

𝜕𝜃()
∗ 𝑎() (A.11)

𝑖𝑓𝑘,𝑚 ≠ 𝑖, 𝑗, 𝜕𝜃
()

𝜕𝜃()
∗ 𝑎() = 0 (A.12)

𝑖𝑓𝑘,𝑚 = 𝑖, 𝑗, 𝜕𝜃
()

𝜕𝜃()
∗ 𝑎() =

𝜕𝜃()

𝜕𝜃()
∗ 𝑎() = 𝑎() (A.13)

Then for k=i:

𝜕𝑧()

𝜕𝜃()
=
𝜕𝜃()

𝜕𝜃()
∗ 𝑎() + ∑ 𝜕𝜃()

𝜕𝜃()
∗ 𝑎() = 𝑎() + 0 (A.14)

Finally:

𝜕𝑧()

𝜕𝜃()
= 𝑎() (A.15)

The first expression of the gradient ∇() resuts in:

∇() = 𝜕𝐶
𝜕𝑧()

∗ 𝜕𝑧
()

𝜕𝜃()
(A.16)

Backpropagation algorithm intuition 65

Equivalent to:

∇() = 𝜕𝐶
𝜕𝑧()

∗ 𝑎() (A.17)

Or, using A.4 and A.15:

∇() = 𝛿() ∗ 𝑎() (A.18)

Demonstration of Equation A.5

It was established that:

𝛿() = 𝜕𝐶
𝜕𝑧()

(A.19)

Again, using chain rule for higher dimensions:

𝛿() =∑ 𝜕𝐶
𝜕𝑧()

𝜕𝑧()

𝜕𝑧()
(A.20)

Replacing () by 𝛿():

𝛿() =∑𝛿() 𝜕𝑧()

𝜕𝑧()
(A.21)

Focusing on the
()

() part:

𝑧() =∑𝜃() ∗ 𝑎() =∑𝜃() ∗ 𝑔 (𝑧()) (A.22)

Then, an expression is derived based on 𝑧():

𝜕𝑧()

𝜕𝑧()
=
𝜕∑ 𝜃() ∗ 𝑔 (𝑧())

𝜕𝑧()
(A.23)

By linearity of the derivation:

𝜕𝑧()

𝜕𝑧()
=∑𝜃() ∗

𝜕𝑔 (𝑧())
𝜕𝑧()

(A.24)

If j ≠ i, then
()∗ (())

() = 0

As a consequence:

𝜕𝑧()

𝜕𝑧()
=
𝜃() ∗ 𝜕𝑔 (𝑧())

𝜕𝑧()
(A.25)

66 Backpropagation algorithm intuition

Then:

𝛿() =∑𝛿()𝜃() ∗
𝜕𝑔 (𝑧())
𝜕𝑧()

(A.26)

The activation function follows the following relationship, g’(z) = g(z)(1-g(z)), then:

𝛿() =∑𝛿()𝜃() ∗ 𝑔 (𝑧()) (1 − 𝑔 (𝑧()) (A.27)

Finally, using vectorized notation:

∇() = [𝜃() 𝛿() ∗ (𝑎() (1 − 𝑎()))] ∗ [𝑎()] (A.28)

This final expression results in the same equation A.2

B
SPinHy-NN Python code implementation

#!/usr/bin/env python
coding: utf−8

In[]:

#Import packages

import tensorflow as tf
import numpy as np
import random as rn
import pandas as pd
import datetime as dt
import matplotlib.pyplot as plt

import warnings
warnings.filterwarnings(”ignore”)

from netCDF4 import Dataset
from sklearn.preprocessing import StandardScaler
from keras.models import Model, Sequential
from keras.layers import Dense, Convolution2D, AveragePooling2D,

MaxPooling2D, Dropout, Flatten, Input, concatenate
from keras.layers import SpatialDropout2D
from keras.layers import BatchNormalization
from keras import backend as K
K.set_floatx(’float64’)
from keras.callbacks import EarlyStopping, ModelCheckpoint

In[]:

#Check if GPU is working properly

tf.config.list_physical_devices(’GPU’)

In[]:

67

68 B. SPinHy-NN Python code implementation

#Fix random seed for reproducibility

seed = 2

np.random.seed(seed)
rn.seed(seed)
tf.compat.v1.set_random_seed(seed)

In[]:

#Call local directory to load data

get_ipython().run_line_magic(’cd’, ’”C:\\Users\\Eric Lacoa Arends\\
Documents\\MSc SET\\MSc Thesis\\Data\\NC files 2000”’)

The Smooth Pinball Function and Quantile Cross−over Penalty

In[]:

#Defining the smooth pinball loss function and the penalty for cross−over
frequency

def pinball_loss(y, q, tau, alpha = 0.001, kappa = 0, margin = 0):

”””
:param y: target
:param q: predicted quantile
:param tau: coverage level
:param alpha: smoothing parameter #see paper to understand how it

works
:param kappa: penalty term #to avoid cross−over of quantiles
:param margin: margin for quantile cross−over #define a suitable

margin of quantiles
:return: quantile loss
”””

Calculate smooth pinball loss function
error = (y − q)
quantile_loss = K.mean(tau ∗ error + alpha ∗ K.softplus(− error /

alpha))

Calculate cross−over penalty
diff = q[:, 1:] − q[:, :−1]
penalty = kappa ∗ K.mean(tf.square(K.maximum(tf.constant(0, shape = (1

, 1), dtype = tf.float64), margin − diff)))

return quantile_loss + penalty

In[]:

69

#Defining CL function

def CL_score(q,tau):
diff = q[:, 1:] − q[:, :−1]
penalty = np.sum(np.maximum(0,−diff))
penalty2 = np.sum(np.array(diff) < 0)
return penalty, penalty2

Additional Functions

Load NWP data function

In[]:

def load_weather(begin, finish):

”””
:param begin: string start−date (YYYYMMDD)
:param finish: string end−date (YYYYMMDD)
”””

WS10_data = []
WD10_data = []
Gust_data = []
time_data = []

file = list(pd.date_range(start = begin, end = finish, freq = ’D’).
strftime(’%Y%m%d’) + ’T00Z.nc’)

for day in file:
if day == ’20000514T00Z.nc’ or day == ’20000926T00Z.nc’ or day ==

’20010730T00Z.nc’:
continue

ds = Dataset(day, ’r’)

#Create spatial data

Wind_U = ds.variables[’Wind_U’][:, :, :, :]
#Wind_U[Wind_U <= 1e−3] = 1e−3
#Wind_U[np.isnan(Wind_U)] = 1e−3
Wind_V = ds.variables[’Wind_V’][:, :, :, :]
#Wind_V[Wind_V <= 1e−3] = 1e−3
#Wind_V[np.isnan(Wind_V)] = 1e−3

#WS10 = np.sqrt(Wind_U ∗∗ 2 + Wind_V ∗∗ 2)
WS10 = np.median(np.sqrt(Wind_U ∗∗ 2 + Wind_V ∗∗ 2), axis = 1)
#WD10 = np.median(np.arctan(Wind_V / Wind_U), axis = 1)

WS10_data.append(WS10)
#WD10_data.append(WD10)

#Create temporal data

70 B. SPinHy-NN Python code implementation

NumberDay = (dt.date(int(day[:4]), int(day[4:6]), int(day[6:8])) −
dt.date(2000, 1, 1)).days + 1

NumberDay_vector = NumberDay ∗ np.ones(24).reshape(24, 1)
Hours = np.arange(24)

hour_cos = np.cos((Hours / 24) ∗ 2 ∗ np.pi).reshape(24, 1)
hour_sin = np.sin((Hours / 24) ∗ 2 ∗ np.pi).reshape(24, 1)
day_cos = np.cos((NumberDay_vector / 366) ∗ 2 ∗ np.pi)
day_sin = np.sin((NumberDay_vector / 366) ∗ 2 ∗ np.pi)

time_values = np.hstack((hour_cos, hour_sin, day_cos, day_sin))
time_data.append(time_values)

WS10_data=np.array(WS10_data, dtype = ”float64”).reshape(−1, 169, 71)
#WD10_data=np.array(WD10_data).reshape(−1, 169, 71)
time_data=np.array(time_data, dtype = ”float64”).reshape(−1, 4)

return WS10_data, time_data

Load (output) power data

In[]:

def load_power(begin, finish, SE):

power_data = []
IC_data = []
file = list(pd.date_range(start = begin, end = finish, freq = ’D’).

strftime(’%Y%m%d’) + ’T00Z.nc’)
for day in file:

if day == ’20000514T00Z.nc’ or day == ’20000926T00Z.nc’ or day ==
’20010730T00Z.nc’:
continue

NumberDay = (dt.date(int(day[:4]), int(day[4:6]), int(day[6:8])) −
dt.date(2000, 1, 1)).days + 1

power = pd.read_csv(’windpower_updated.csv’).values
start = (24 ∗ NumberDay) − 24

#prod = power[start:start + 24, SE]
CF = power[start:start + 24, SE + 8]
IC = power[start:start + 24, SE + 4]

power_data.append(CF)
IC_data.append(IC)

power_data = np.array(power_data, dtype = ”float64”).reshape(−1, 1)
IC_data = np.array(IC_data, dtype = ”float64”).reshape(−1, 1)

return power_data, IC_data

Feature scaling function

71

In[]:

#Feature scaling: based on node[i,j] respect to m−examples

def feature_scaling(df):

sc = StandardScaler()
data_array = sc.fit_transform(df.reshape(−1, df.shape[1] ∗ df.shape

[2])).reshape(df.shape)
return data_array

Evaluate test loss

In[]:

def quantile_loss(y, q, tau):
quantiles = []
N_tau = len(tau)
for i in range(N_tau):

diff = y−q[:,i].reshape(q.shape[0],1)
pinball = np.maximum(tau[i] ∗ diff, (tau[i] − 1) ∗ diff)
quantiles.append(pinball.T)

quantiles = np.average(np.array(quantiles).T, axis = 0).reshape(1,
N_tau)

return quantiles

Smooth Pinball Hybrid Neural Network (SPinHy−NN)

Step 1: Define dates and price region

In[]:

#Define price region to forecast

SE = 1

#EM = 0

In[]:

#Training data

begin_training = ’20000101’
finish_training = ’20000102’

WS_train , time_train = load_weather(begin_training, finish_training)
power_train, IC_train = load_power(begin_training, finish_training, SE)
WSnorm_train = feature_scaling(WS_train)

72 B. SPinHy-NN Python code implementation

In[]:

#Test data

begin_test = ’20011101’
finish_test = ’20011231’

WS_test, time_test = load_weather(begin_test, finish_test)
power_test, IC_test = load_power(begin_test, finish_test, SE)
WSnorm_test = feature_scaling(WS_test)

In[]:

#Reshape to according dimensions of the neural network

x_train = WSnorm_train
x_train = x_train.reshape(x_train.shape[0], x_train.shape[1], x_train.

shape[2], 1)
t_train = time_train
y_train = power_train

x_test = WSnorm_test
x_test = x_test.reshape(x_test.shape[0], x_test.shape[1], x_test.shape[2],

1)
t_test = time_test
y_test = power_test

Step 2: Define features of the forecast and the SPinHy−NN

In[]:

#Define features of the forecast

tau = np.arange(0.1, 1.0, 0.1) #Vector of quantiles
N_tau = len(tau) #Number of quantiles
N_PI = int(N_tau / 2) #Prediction intervals (for plots)

N_train = x_train.shape[0] #Number of examples in training set
N_test = x_test.shape[0] #Number of examples in test set

dim_in_space = (x_train.shape[1], x_train.shape[2], x_train.shape[3]) #
Shape of spatial features

In[]:

#Define SPinHy−NN features

73

Lambda = 0.0001 # L2 regularization

loss function parameters (no need to modify)
loss_param = {

’tau’: tau,
’alpha’: 0.0001,
’kappa’: 1000,
’margin’: 0.000 #0.001

}

Step 3: Build the NN architecture

In[]:

def spinhy():

#Inputs

space = Input(shape = dim_in_space, name = ’space’)
time = Input(shape = (4,), name = ’time’)

#CNN (LeNet−5)−based architecture for spatial recognition

conv = Sequential()
conv.add(Convolution2D(6, (3, 3),

activation = ’relu’,
input_shape = dim_in_space,
kernel_initializer = ’normal’))

conv.add(MaxPooling2D())

conv.add(Convolution2D(16, (3, 3),
activation = ’relu’,
kernel_initializer = ’normal’))

conv.add(MaxPooling2D())

#Flatten to convert into a fully−connected layer

conv.add(Flatten())
conv.add(Dense(120, activation = ’relu’,

kernel_initializer = ’normal’))

conv.add(Dense(84))

encoded_wind = conv(space)

#MLP based architecture for temporal features

mlp = Sequential()
mlp.add(Dense(6, input_shape = (4,), activation = ’relu’,

kernel_initializer = ’normal’))

mlp.add(Dense(26))

74 B. SPinHy-NN Python code implementation

encoded_time = mlp(time)

#Combine the outputs of both models to produce the quantiles of our
probabilistic forecast

merge = concatenate([encoded_wind, encoded_time])
#merge = concatenate([conv.output, mlp.output], axis = −1)

final = Dense(N_tau)(merge)

#Define the resulting model SPinHy−NN

model = Model(inputs = [space, time], outputs=[final])
#model = Model([conv.input, mlp.input], [final])

#Compile the model
model.compile(loss=lambda Y, Q: pinball_loss(y = Y, q = Q, ∗∗

loss_param), optimizer = ’Adam’)

return model

Step 4: fit the model

In[]:

#Callbacks

filepath = ”bestweights−” + ”SE” + str(SE) + ”.hdf5”
es = EarlyStopping(monitor = ’val_loss’, mode = ’min’, patience = 5,

verbose = 1)
cp = ModelCheckpoint(filepath, monitor = ’val_loss’, verbose = 1,

save_best_only = True, mode=’min’)

In[]:

#Fit

model = spinhy()
model.summary()
#model.save(”SpinHy”)
#with tf.device(’/cpu:0’):
model.fit([x_train, t_train], y_train, epochs = 10, verbose = 3,
batch_size = 64, shuffle = True, callbacks = [es, cp],

validation_split = 0.25)

Step 5: predict the test data

In[]:

75

#Predict

model.load_weights(’bestweights−SE1_sub4.hdf5’)
#model.load_weights(’bestweights−SE2_sub4.hdf5’)
#model.load_weights(’bestweights−SE3_sub4.hdf5’)
#model.load_weights(’bestweights−SE4_sub4.hdf5’)
with tf.device(’/cpu:0’):

forecast = model.predict([x_test,t_test])
forecast[forecast > 1] = 1
forecast[forecast < 0] = 0
q_hat = forecast ∗ IC_test

q_hat.shape

Step 6: evaluate the test data (if observed values are available)

In[]:

#Evaluate
evaluate = quantile_loss(IC_test∗power_test, q_hat, tau)
crossloss, crossing = CL_score(q_hat,tau)
print(evaluate)
print(’The average pinball error is: ’, np.mean(evaluate))
print(’The CL loss is: ’, crossloss)
print(’The number of crossing is: ’, crossing)

#
Forecast Plot

In[]:

plt.figure(figsize=(17,7))
plt.plot(y_test ∗ IC_test, color = ’red’, label = ’Observed’)

months = ’November−December’
labels = [’Nov−01’,’Nov−15’,’Dec−01’,’Dec−15’,’Dec−31’]
positions = [0,N_test/4,N_test/2,3∗N_test/4,N_test]

for i in range(N_PI):
if i == 1:

lab = ’Quantile forecast’
else:

lab = str()
y1 = q_hat[:, i]
y2 = q_hat[:, − 1 − i]
plt.fill_between(np.arange(N_test), y1, y2, color = ’blue’, alpha = 1

/ N_PI, label = lab)
plt.title(’SPinHy−NN model forecast in SE’ + str(SE) +’: ’+ months +’ 2001

’, fontsize = 22)
plt.xlabel(’Time step (h)’, fontsize = 20)
plt.ylabel(’Power production [MW]’, fontsize = 20)

76 B. SPinHy-NN Python code implementation

plt.xticks(positions, labels, fontsize =20)
plt.yticks(fontsize =20)
plt.ylim(ymin=0, ymax = np.max(q_hat) + 250)
plt.xlim(xmin=0,xmax=N_test)
plt.ylabel(’Power production (MW)’, fontsize = 20)
plt.figtext(.14, .83, ”PL Error = ” + str(round(np.mean(evaluate), 2)),

fontsize = 16)
plt.legend(loc = ’BEST’, fontsize = 15)
filetitle = ’spinhy_forecast_’ + ’SE’ + str(SE) + ’_’ + str(begin_test

[4:6]) + str(finish_test[4:6])
plt.savefig(filetitle, dpi = 300)

In[]:

#For SE1_wk2 0.66, wk3 [0.70,0.02(HIGH)], wk4 [0.88, 0.02], wk5 [0.90,
0.005], wk6 sub2 0.65,0.02, wk7 sub2 0.70 0.002

#Fpr SE2_wk2 0.75, wk3 [0.80, 0.01(MID)], wk4 [0.88, 0.01], wk5 [0.90,
0.005], wk6 sub4 0.73,0.01, wk7 sub4 0.75 0.02

#For SE3_wk2 0.82, wk3 [0.86. 0.005], wk4 [0.90, 0.005], wk5 [0.90, 0.005]
, wk6 sub4 0.80,0.01, wk7 0.85 0.01 sub 4

#For SE4_wk2 0.88, wk3 [0.87, 0.005], wk4 [0.90, 0.005], wk5 [0.90, 0.005]
, wk6 sub2 0.80,0.005

#The clipping should start at Q50, CF(Q50)+C∗CF(Q50) [starting week 4]

In[]:

plt.figure(figsize = (24, 15))

plt.xlim([0, 1464])
plt.ylim([0, 2200])
plt.ylabel(’Wind Power (MW)’)
plt.xlabel(’Time (hour)’)
positions = [0,360,720,1080,1440]
labels = [’May−01’,’May−15’,’June−01’,’Jun−15’,’June−30’]
plt.xticks(positions, labels)
#period = ’Jan−Feb 2001’
title = ’SE’ + str(SE) + ’ Wind Power prediction in round 3 ’ #+

begin_test[4:6] + ’/’ + finish_test[4:6]
plt.title(title)
filetitle = ’SE’ + str(SE) + ’_’ + begin_test[4:6] + finish_test[4:6] + ’

_final’
#plt.savefig(filetitle, dpi = 300)

In[]:

#Corrections

#Power clipping based on experience
bound = 0.71

77

delta = 0.005

quant_CF = np.repeat(IC_test, N_tau, axis = 1)
limit_low = bound∗np.ones((1,4)) #q10 to q50
limit_up = np.arange(bound, bound+delta∗4.1, delta).reshape(1,5) #q50 to

q90
limit = np.concatenate((limit_low, limit_up),axis = 1)

clipping = limit ∗ quant_CF

#Clipping of the SpinHy forecast
forecast = np.minimum(q_hat, clipping)

#Negative value are physically impossible
forecast[forecast < 0] = 0

filecsv = ’SE’ + str(SE) + ’_’ + begin_test[4:6] + finish_test[4:6] + ’.
csv’

#np.savetxt(filecsv, forecast, delimiter=”,”)

C
K-means clustering Python code

implementation

#!/usr/bin/env python
coding: utf−8

In[]:

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import datetime as dt
from sklearn.preprocessing import StandardScaler
from sklearn.datasets import fetch_mldata
from sklearn.decomposition import PCA
from sklearn.manifold import TSNE
from sklearn.cluster import MiniBatchKMeans
from sklearn.metrics import homogeneity_score

import seaborn as sns
import warnings
warnings.filterwarnings(”ignore”)

from netCDF4 import Dataset

In[]:

#Call local directory to load data

get_ipython().run_line_magic(’cd’, ’”C:\\Users\\Eric Lacoa Arends\\
Documents\\MSc SET\\MSc Thesis\\Data\\NC files 2000”’)

Defining functions

In[]:

79

80 C. K-means clustering Python code implementation

def load_weather(begin, finish):

”””
:param begin: string start−date (YYYYMMDD)
:param finish: string end−date (YYYYMMDD)
”””

WS10_data = []
WD10_data = []
temp_data = []
pres_data = []
time_data = []

file = list(pd.date_range(start = begin, end = finish, freq = ’D’).
strftime(’%Y%m%d’) + ’T00Z.nc’)

for day in file:
if day == ’20000514T00Z.nc’ or day == ’20000926T00Z.nc’ or day ==

’20010730T00Z.nc’:
continue

ds = Dataset(day, ’r’)

#Create spatial data

Wind_U = ds.variables[’Wind_U’][:, :, :, :]
#Wind_U[Wind_U <= 1e−3] = 1e−3
#Wind_U[np.isnan(Wind_U)] = 1e−3
Wind_V = ds.variables[’Wind_V’][:, :, :, :]
#Wind_V[Wind_V <= 1e−3] = 1e−3
#Wind_V[np.isnan(Wind_V)] = 1e−3
#Temp = np.median(ds.variables[’Temperature’][:, :, :, :], axis =

1)
#Temp[np.isnan(Temp)] = 273.15
#Pres = np.median(ds.variables[’Pressure’][:, :, :, :], axis = 1)
#Pres[np.isnan(Pres)] = 101325

#WS10 = np.sqrt(Wind_U ∗∗ 2 + Wind_V ∗∗ 2)
WS10 = np.median(np.sqrt(Wind_U ∗∗ 2 + Wind_V ∗∗ 2), axis = 1)
#WD10 = np.median(np.arctan(Wind_V / Wind_U), axis = 1)

WS10_data.append(WS10)
#temp_data.append(Temp)
#pres_data.append(Pres)
#WD10_data.append(WD10)

#Create temporal data

#NumberDay = (dt.date(int(day[:4]), int(day[4:6]), int(day[6:8]))
− dt.date(2000, 1, 1)).days + 1

#NumberDay_vector = NumberDay ∗ np.ones(24).reshape(24, 1)
#Hours = np.arange(24)

#hour_cos = np.cos((Hours / 24) ∗ 2 ∗ np.pi).reshape(24, 1)
#hour_sin = np.sin((Hours / 24) ∗ 2 ∗ np.pi).reshape(24, 1)

81

#day_cos = np.cos((NumberDay_vector / 366) ∗ 2 ∗ np.pi)
#day_sin = np.sin((NumberDay_vector / 366) ∗ 2 ∗ np.pi)

#time_values = np.hstack((hour_cos, hour_sin, day_cos, day_sin))
#time_data.append(time_values)

WS10_data=np.array(WS10_data, dtype = ”float64”).reshape(−1, 169, 71,
1)

#temp_data = np.array(temp_data, dtype =”float64”).reshape(−1,169,71,
1)

#pres_data = np.array(pres_data, dtype =”float64”).reshape(−1,169,71,
1)

#WD10_data=np.array(WD10_data).reshape(−1, 169, 71)
#time_data=np.array(time_data, dtype = ”float64”).reshape(−1, 4)
#weather_image = np.concatenate((WS10_data, temp_data, pres_data),

axis = 3)

return WS10_data

In[]:

def load_power(begin, finish):

power_data = []
IC_data = []
file = list(pd.date_range(start = begin, end = finish, freq = ’D’).

strftime(’%Y%m%d’) + ’T00Z.nc’)
for day in file:

if day == ’20000514T00Z.nc’ or day == ’20000926T00Z.nc’ or day ==
’20010730T00Z.nc’:
continue

NumberDay = (dt.date(int(day[:4]), int(day[4:6]), int(day[6:8])) −
dt.date(2000, 1, 1)).days + 1

power = pd.read_csv(’windpower_updated.csv’).values
start = (24 ∗ NumberDay) − 24

#prod = power[start:start + 24, SE]
PP = power[start:start + 24, 1:5]
IC = power[start:start + 24, 5:9]

power_data.append(PP)
IC_data.append(IC)

power_data = np.array(power_data, dtype = ”float64”).reshape(−1, 4)
IC_data = np.array(IC_data, dtype = ”float64”).reshape(−1, 4)

return power_data, IC_data

In[]:

#Feature scaling: based on node[i,j] respect to m−examples

82 C. K-means clustering Python code implementation

def feature_scaling(df):

sc = StandardScaler()
data_array = sc.fit_transform(df.reshape(−1, df.shape[1] ∗ df.shape

[2])).reshape(df.shape)
return data_array

Data set

In[]:

#Load three datasets for training period
begin_training = ’20000101’
finish_training = ’20001231’

#NWP images
NWP_images= load_weather(begin_training, finish_training)

#Aggregated power production for training dataset labelling
PP2000, IC2000 = load_power(begin_training,finish_training)

In[]:

#Feature scaling
NWP_images_norm = feature_scaling(NWP_images)

In[]:

#Training data
x_train = NWP_images_norm
y_train = PP2000

In[]:

#Reshaping input data
X_train = x_train.reshape(len(x_train),−1)
X_train.shape

In[]:

#Load three datasets for test period
begin_test = ’20010301’
finish_test = ’20011231’

#NWP images test

83

NWP_images_test= load_weather(begin_test, finish_test)

#Aggregated power production for testing dataset labelling
PP_test, IC_test = load_power(begin_test,finish_test)

In[]:

#Feature scaling
NWP_images_test_norm = feature_scaling(NWP_images_test)

In[]:

#Testing data
x_test = NWP_images_test_norm
y_test = PP_test

In[]:

#Reshaping input data
X_test = x_test.reshape(len(x_test),−1)
X_test.shape

Analog−based weather classification

In[]:

total_clusters = 364
Initialize the K−Means model
kmeans = MiniBatchKMeans(n_clusters = total_clusters, max_iter = 200,

random_state =2)
Fitting the model to training set
kmeans.fit(X_train)

In[]:

weather_class = kmeans.labels_
weather_class = weather_class.reshape(weather_class.shape[0],1)

In[]:

#Create Pandas dataframe of weather classes with the power production
matrix = np.concatenate((weather_class,y_train),axis = 1)
df = pd.DataFrame(matrix, columns = [’Weather Class’,’SE1’,’SE2’,’SE3’,’

SE4’])

84 C. K-means clustering Python code implementation

In[]:

matrix = df.groupby(’Weather Class’).mean()
classification = np.array(matrix)

In[]:

class_prediction = kmeans.predict(X_test)

In[]:

power_prediction = classification[class_prediction,:]
power_prediction.shape

In[]:

MAE = np.sum((np.abs(y_test−power_prediction)), axis =0)/power_prediction.
shape[0]

D
EEM20 Conference Paper

The following section refers to the conference paper published for the European Energy Markets 2020
Conference. The event took place online (originally in Stockholm, Sweden), September 16-18 2020.
The outcome of this research project was presented on Thursday 17 September 2020, during the Fore-
casting Competition session (17:00-18:30). The top three teams, namely, MINES ParisTech, University
of Strathclyde, and TUDelft (this teamwas led by Sukanta Basu), presented their results in this session.
The following conference paper is referred in the bibliography, under numbering [63].

85

Probabilistic wind power forecasting combining
deep learning architectures

Eric Lacoa Arends∗, Simon J. Watson†, Member IEEE, Sukanta Basu‡, and Bedassa Cheneka†
∗Faculty of Electrical Engineering, Mathematics & Computer Science

Delft University of Technology
Delft, The Netherlands

†Faculty of Aerospace Engineering, Wind Energy Section
‡Faculty of Civil Engineering and Geosciences

Corresponding author: s.j.watson@tudelft.nl

Abstract—A series of probabilistic models were bench-marked
during the European Energy Markets forecasting Competition
2020 to assess their relative accuracy in predicting aggregated
Swedish wind power generation using as input historic weather
forecasts from a numerical weather prediction model. In this
paper, we report the results of one of these models which uses a
deep learning approach integrating two architectures: (a) Con-
volutional Neural Network (CNN) LeNet-5 based architectrure;
(b) Multi-Layer Perceptron (MLP) architecture –with two hidden
layers–. These are concatenated into the Smooth Pinball Neural
Network (SPNN) framework for quantile regression. Hyperpa-
rameters were optimised to produce the best model for every
region. When tuned, the re-forecasts from the model performed
favorably compared to other machine learning approaches and
showed significant improvement on the original competition
results, though failed to fully capture spatial patterns in certain
cases when compared to other methods.

Index Terms—wind power forecasting, convolutional neural
network, smooth pinball neural network, multilayer perceptron,
numerical weather prediction

I. INTRODUCTION

System operators face the challenge of integrating variable
wind power into the grid and avoiding possible power imbal-
ances by scheduling other dispatchable generation units and
calling on reserve mechanisms [3]. Wind power forecasting
serves as a means to facilitate the decision-making of these
operators, providing a tool for risk management in electricity
markets [4]. This has stimulated research into new method-
ologies to to make best use of Numerical Weather Prediction
(NWP) products [5].

Machine learning and Artificial Intelligence (AI) have
shown promise in the energy sector to assist data-driven deci-
sion making [3]. As the performance of computers improves
and algorithms become more efficient, society is shifting to an
era of energy digitalisation [6], where the use of Information
and Communication Technology (ICT) plays a key role in
the energy transition. AI has also become a favored tool to
provide probabilistic wind power forecasts [1]. The use of a
Convolutional Neural Network (CNN) model is described in
[8] for wind power generation forecasting using NWP data,

capturing spatial patterns from relevant meteorological vari-
ables. Moreover, a Smooth Pinball Neural Network (SPNN)
model is presented in [8], where an alternative is proposed
to the traditional quantile deep regression model. Both archi-
tectures motivated the development of a deep neural network
model described in this paper, developed by DeepWinds, Team
18 of the European Energy Markets (EEM) 2020 forecasting
competition.

This paper describes the DeepWinds model, how it was
implemented and its accuracy during the various rounds of
the EEM 2020 competition. Furthermore, there is discussion
of the challenges in developing the model, including feature
selection, application to multiple price regions (climates), and
how to apply the model when installed capacity is changing
over time.

The structure of the remaining part of this paper is as
follows: in Section II, the competition is described and an
overview of the measured and forecast data is given. The
methodology for the deep neural network model is explained
in Section III. Section IV presents an analysis of the compe-
tition results, highlighting the performance of the DeepWinds
model with respect to other models in the competition. The
conclusions are given in Section V.

II. COMPETITION SETTING

The EEM organizers hosted a day-ahead market forecasting
competition, in which teams were asked to predict the aggre-
gated wind power of four price regions in Sweden, using a
probabilistic methodology. The competition was divided into
six submission rounds with every round focusing on two
months of onshore wind power output during 2001 for which
day-ahead forecasts were to be produced. The data provided
to the competitors in order to make the forecasts consisted of
three elements:

• NWP data of seven different meteorological variables.
• Aggregated wind power from the four price regions in

Sweden.
• A record of the wind turbines installed in Sweden over

the period of interest.

978-1-7281-6919-4/20$31.00©2020 European Union

86

The EEM 2020 edition started on May 5, 2020 and ended
on June 9, 2020. The data were released the day after every
round submission, giving one week to train the models and
produce new results for the following round. The ranking was
published three days after the submission deadline for every
round.

The data corresponding to the year 2000 were made avail-
able in advance of the competition proper, allowing partici-
pants to train their initial models and develop their forecast
strategy, depending on their approach.

This first part of the data were daily netCDF format NWP
model output consisting of 24 hourly values of seven meteoro-
logical variables (2m temperature, 10 m zonal and meridional
wind speed components, 10 m wind gust speed, mean sea
level pressure, relative humidity and total cloud cover) for ten
ensemble members on a 71 × 169 grid covering Sweden with
a spatial resolution of 10 km × 10 km. The forecasts were
generated by MET Norway and archived by Greenlytics.

The first challenge was how best to utilize the multi-
dimensional dataset which contained 83,993 variables per
hour, accounting for 8736 hours in year 2000 (May 14, 2000
and September 26, 2000 were missing). Data cleansing and
dimensionality reduction strategies were necessary to develop
a model which was not computationally prohibitive.

The second part of the data consisted of the aggregated
power production for the four price regions in Sweden, defined
as: SE1, SE2, SE3 and SE4. The competition required quantile
day-ahead forecasts to be produced for these data. Therefore,
a further challenge was to derive quantile forecasts from
a trained single-value output. Furthermore, a decision was
required between training a single model for all price regions
or training separate models for each region.

The third part of the data corresponded to a record over time
of installed wind turbines in Sweden as the power capacity
increased significantly during the training and forecasting time
horizon of the competition (2000–2001). Therefore, there was
a challenge in capturing the dynamics of the changing wind
power installed capacity. Moreover, this record contained 4004
turbines accounting for 8640 MW, while in reality 4099 wind
turbines were installed by that time, accounting for 8984 MW.
As a consequence, the record did not entirely represent the
actual conditions in which the aggregated power output was
based for every price region.

The share of the installed capacity by the end of 2001 was
15.4 %, 34.8%, 30.8% and 18.9%, for the four price regions
SE1–SE4, respectively. At the same time, the share of the
number of turbines was 11.8%, 27.8%, 36.2% and 24.2%,
respectively. Furthermore, the average terrain height in each
region was 348 m, 476 m, 170 m and 73 m, respectively. It is
important to note that the highest terrain location is 1003 m in
SE2. This information is relevant to understand the diversity of
conditions in every price region which represented a challenge
to produce accurate forecasts with the limited data provided.

The accuracy of the models was measured using the pinball

loss function. In this edition of the competition, the prediction
output was required to consist of nine deciles from Q10 to
Q90. Equation (1) shows the formula for the pinball loss
function, ρik, evaluated for each price region:

ρik
(
qik, yk

)
=

{
(i/100)

(
yk − qik

)
, yk ≥ qik

(1− i/100)
(
qik − yk

)
, qik < yk

(1)

where i represents the percentile to be assessed (between
10 and 90), qik is the predicted power value and yk is the
observed power value at time step k. Note that this formula
only gives positive values. One of the purposes of this loss
function is to properly penalize over- and under-estimates [8].
The final forecast score is calculated by averaging the pinball
loss function over all percentiles, price regions and time steps
for the particular two-month period.

III. METHODOLOGY

The deep learning-based (DeepWinds) forecasting model
was developed in several stages: (a) Data cleansing; (b) Feature
engineering; (c) Target engineering; (d) Development of a
probabilistic framework; (e) Development of the deep learning
framework. These stages are explained below:

A. Data cleansing

Identifying incorrect or missing data may be necessary
to avoid any bias when training a model. Using a deep
learning approach can facilitate and partly automate this time-
consuming task [9]. In the case of the NWP data, the cleansing
approach consisted of substituting missing or incorrect values
with zeros. Outliers were not filtered out as a deep CNN
approach is relatively robust to a small number of such data
points. In fact, it was found that only a relatively small number
of forecast values needed to substituted.

B. Feature engineering

Wind power forecasting models developed for one location
may not be representative of other locations for a variety of
reasons, e.g. the effects of varying terrain height, localised
wind speed patterns, differences in local temperature, pres-
sure and humidity, etc, [10]. Forecast bias and accuracy is
a function of these and other variables. The challenge is
to decide what input variables add value to a probabilistic
forecast and how to develop a model which is both accurate
and parsimonious.

The first approach was to reduce the dimensionality of the
input data. This done by using the median value of the ten
ensembles, as suggested in [11]. The full size grid NWP data
was used to model every price region. The aim was thus for
the model to use deep learning to output quantile forecasts
directly.

According to [12], the accuracy of wind power predictions
is seasonally dependent. In order to capture seasonal and
diurnal dependencies, a time proxy was use, namely the day of
year and time of day, following [14], in the form of periodic
functions.

87

The main feature in deep learning-based models related
to power production is wind speed as shown in [13], [14].
This variable is derived from the 10-meter zonal (U10) and
meridional (V10) wind speed components. Table I summarizes
the correlation between the input forecast variables and the
power data for the four price regions.

TABLE I
ABSOLUTE CORRELATION BETWEEN FORECAST VARIABLES AND WIND

POWER BY PRICE REGION - HIGHEST CORRELATIONS ARE SHOWN IN BOLD

Feature variable SE1 SE2 SE3 SE4
Wind speed (WS) 0.523 0.659 0.696 0.560

Wind direction (WD) 0.060 0.060 0.016 0.164
Zonal 10-meter wind (V10M) 0.336 0.453 0.545 0.527

Meridional 10-meter wind (V10M) 0.416 0.512 0.511 0.338
Wind gust 0.521 0.657 0.687 0.548

Mean sea level pressure (MLSP) 0.063 0.240 0.315 0.234
Screen level rel. humidity (RH2M) 0.050 0.017 0.012 0.051

Surface temperature (T2M) 0.034 0.002 0.103 0.199
Total cloud cover (TCC) 0.065 0.149 0.244 0.197

Wind speed resulted to have the greatest correlation with
wind power, as expected. On the other hand, wind direction
showed almost no correlation. Although wind gust also shows
a good correlation with power output, inclusion as an input to
the model did not improve the forecast beyond using only the
wind speed magnitude as they are already highly correlated
between them (>0.97). The relative humidity shows little
correlation. Pressure shows a small degree of correlation but
this varies significantly by region. Consequently, only the wind
speed magnitude was used as a forecast input variable in the
model. The wind speed input was scaled by subtracting the
mean and dividing by the variance of the training dataset to
promote an efficient optimization process of the model [15].

C. Target engineering

As mentioned earlier, installed capacity per region changed
over time. In order for the model to adequately cope with this
variation, the power values for each price region were divided
by the current installed capacity for that respective hour. This
has the effect of normalizing the output values in the form of a
capacity factor in order to train the model. Predicted capacity
factors are then converted back into power production values
for producing the final forecasts, assuming that wind turbine
availability is 100%.

D. Development of a probabilistic framework

Traditional Bayesian statistics are used when more infor-
mation about a forecast is required, extending the model
from a deterministic to a probabilistic nature, by inferring the
distribution over the dataset. Nevertheless. Bayesian methods
have a high computational cost when used with large datasets
and thus are unsuitable for this application [16].

In order to build a model that could be generalized for all
price regions, a non-parametric approach was followed. No
assumptions about the shape of the wind speed distributions
were made, as this can vary in time for a given location [17].
However, the non-parametric approach requires the tuning

of additional parameters and consequently, brings additional
computational costs.

The Smooth Pinball Neural Network (SPNN) architecture
was used to develop a deep learning model for quantile
regression that uses a non-parametric approach [18], [19] and
is a combination between a Huber loss (smooth L1-loss) and a
pinball loss using an objective function Sj for each jth decile
(j = i/10) with quantile value τ=i/100, of the form:

Sj = τ · uj + α · log(1 + exp(−uj
α
)) (2)

The difference between the observed and predicted value
for each decile, uj , was smoothed using the parameter, α, to
promote a non-convex optimization algorithm, facilitating the
convergence of the model. The advantage of this approach was
that optimization was based directly on the forecast evaluation
metric used in the competition.

Non-parametric deep learning models can have difficulties
interpreting the ranked order of quantiles. Hence, another ad-
vantage of the framework was dealing with the quantile cross-
over problem: it occurs when the prediction output values
for higher quantiles is smaller than lower quantiles (e.g. Q20
< Q10). This behaviour becomes common when explanatory
variables are heteroscedastic [8]. Eventually, the estimations
do not follow the nature of a probability distribution function,
reducing the reliability of the forecast. As a consequence, a
penalty factor was applied in the objective function such that
it stimulates particular local minima, similar to the idea of
reinforcement learning [20]. The penalty function P is given
by:

P = κ ·max[0, ε− (q<τ−1> − q<τ>)]2 (3)

The margin, ε, expresses the desired spacing between two
consecutive quantile forecast values, qτ , and qτ−1, while the
penalty factor, κ, indicates the severity of the cross-over error.
This penalty term was added to the smoothed pinball function
in (2), meaning that three additional parameters had to be
tuned in the model.

E. Development of the deep learning framework

The final stage consisted of expanding the SPNN frame-
work for quantile regression, concatenating CNN and MLP
architectures. Hence, the input layer consists of two branches:
(a) the NWP grid data, introduced in the CNN architecture;
(b) the time proxy, introduced in the MLP architecture.

Three CNN architectures were considered, namely LeNet-5
[21], AlexNet [22] and the VGG-16, the latter used to win
the Imagenet competition in 2014 [23]. The motivation to
introduce a CNN was to capture spatial patterns in the NWP
data. On the other hand, to simplify the MLP branch, a simple
architecture with two hidden layers was used (6 and 26 nodes).

Quantile forecasts were made simultaneously following the
methodology in [8]. The concatenation between the CNN
and the MLP takes place at the last hidden layer of both
architectures. This structure is integrated in the framework of
the traditional SPNN, in which the nodes of the output layer

88

represent the quantiles to be forecasted. Hence, the output
layer corresponds to nine nodes, each having a customized
optimization function based on their respective decile target
(τ), given in (2). The final quantile regression loss function
(QRLF) can be expanded to the sum of every unit of the dense
output layer representing the nine deciles:

QRLF =

9∑
j=1

Sj (4)

Figure 1 illustrates the framework of the SPNN, including
the concatenation of both branches.

The models were trained separately for each price region.
However, the entire NWP grid of data was used to train a
single model. As a consequence, the deep learning algorithm
was able to capture the relationships between the input data,
without introducing a spatial subset of the meteorological
variables. Figure 1 shows an schematic representation of
the final concatenated model, based on the SPNN quantile
regression framework.

The training phase consisted of using 10 months of shuffled
data from year 2000, while the testing data consisted of the
remaining two months. Furthermore, a validation split was per-
formed in the training set to evaluate both bias and variance:
indicators of under- and over-fitting. To simplify the tuning
process, the SPNN parameters, α and κ, were replicated from
[18], and only the margin parameter, ε, was used to calibrate
the forecasts. Moreover, the kernel random initialization used a
normal distribution, while the regularization term, λ = 0.0001,
was used to avoid over-fitting [18]. Regarding the activation
function, the Rectified Linear Unit (ReLU) function was used.
Finally, an early stopping criterion was employed instead of
defining a fixed number of epochs. In this manner, once the
validation error showed no further improvement, the model
terminated the optimization algorithm to avoid memorizing
the training dataset.

IV. RESULTS

A. Model training

The selection of the CNN architecture was performed prior
to the first round of the competition. Once the competition
started, the deep learning architecture was not altered. Table
II shows the results of the different architectures considered
comparing the predicted and observed wind power values for
the two-month testing period and determining the best mean
absolute percentage error (MAPE) after model tuning.

It can be seen that the simple LeNet-5 architecture clearly
showed the best results for this application. The more complex
architectures (i.e. AlexNet and VGG-16) generalized the data,
failing to predict well the power values during the testing
period. Therefore, it was decided to concatenate the LeNet-
5 architecture with the MLP architecture.

Four elements (hyper-parameters) were tuned to produce the
best model for every price region: the type of sub-sampling
layer (maximum or average pooling), the degree of spatial
dropout, the batch size and the margin to manage quantile

TABLE II
COMPARISON OF RESULTS BETWEEN DIFFERENT CNN ARCHITECTURES;

MAPE = MEAN ABSOLUTE PERCENTAGE ERROR.

Architecture Overview Best MAPE

LeNet-5

Conv. layer: [6, 16]
Fully-connected layer: [120, 84]
Kernel: 3x3
Padding: no; stride: 1

8.5%

VGG-16

Conv. layer: [16, 16, 64, 64, 128, 128]
Fully-connected layer: [4096, 4096]
Kernel: 3x3
Padding: no; stride: 1

18.7%

AlexNet

Conv. layer: [96, 256, 384, 384, 384]
Fully-connected layer: [4096, 4096]
Kernel: variable from 3x3 to 11x11
Padding: 1; stride: variable from 1 to 4

16.2%

cross-over. Table IV-A shows the results of the pinball loss
metric as a function of four different models with different
hyper-parameter settings. The best (lowest) values for each
price region are shown in bold.

TABLE III
PINBALL LOSS FUNCTION AS A FUNCTION OF HYPER-PARAMETER VALUES
FOR EACH PRICE REGION. THE BEST CHOICE OF PARAMETERS FOR EACH

PRICE REGION IS SHOWN IN BOLD

Parameters SE1 SE2 SE3 SE4
Model A

a. Max Pooling
b. Spatial Dropout = 0.25

c. Batch size = 64.
d. ε = 0.002

38.9 184.2 117.4 77.3

Model B
a. Max Pooling

b. Spatial Dropout = 0
c. Batch size = 64.

d. ε = 0.001

34.6 139.6 92.2 60.5

Model C
a. Average Pooling

b. Spatial Dropout = 0
c. Batch size = 64.

d. ε = 0.001

34.9 143.3 92.4 59.6

Model D
a. Max Pooling

b. Spatial Dropout = 0
c. Batch size = 32.

d. ε = 0.001

32.2 148.3 106.0 58.2

Based on the sensitivity analysis, two models were consid-
ered, namely Model B and Model D. Both models performed
best with a margin, ε = 0.001, while the best sub-sampling
layer approach was Max Pooling to reduce the shape of
the input data. Moreover, Spatial Dropout did not improve
the score, hence only the λ term was used for regularizing
the weights of the kernels. In Model B, a batch size of 64
performed best for price regions SE2 and SE3. In contrast,
the best fit for price regions SE1 and SE4 was achieved with
a batch size of 32, corresponding to Model D. Finally, to avoid
forecast quantile values exceeding the installed capacity factor
at each time step, a clipping factor between 65% to 88% was
applied based on the historical training data starting from the
median quantile.

89

Fig. 1. A visual representation of the final model; (a) a LeNet-5 based CNN architecture for the NWP data; (b) a simple MLP for the time proxy. Both
architectures are concatenated in their final hidden layer to compute the output quantiles.

B. Competition and re-forecast results

The pinball score results for the top four teams and the
DeepWinds model are shown by round in Figure 2. For com-
parison, the DeepWinds model scores are also shown for re-
forecasts using the final tuned version of the model in Round
6 and post-competition. Note that the model architecture and
the feature engineering have not been changed.

Fig. 2. Pinball scores by round for the top teams in the forecasting
competition, compared with the DeepWinds model in three cases; (a) Official
competition; (b) Tuned until round 6 parameters; (c) Tuned post-competition.

As the final score of the teams was determined by the
best five submission rounds, the standings at the end of the
competition are shown in Table IV, along with model type.

The DeepWinds model re-forecasts show competitive results
with respect to the top performing teams and are a significant
improvement on the model used during Rounds 1–5. How-
ever, the model was not able to capture the spatial patterns
sufficiently well in rounds 1 and 4 when compared with other
models by using the full size NWP grid data. Note that a
separate team from TU Delft (Turbulence), which came third,
also used a model incorporating a CNN and MLP, but the
architecture was quite different to the DeepWinds model, and
incorporated additional feature engineering.

TABLE IV
FINAL RESULTS OF THE TOP FOUR TEAMS IN THE FORECASTING
COMPETITION COMPARED WITH THE DeepWinds MODEL; QRF =

QUANTILE REGRESSION FOREST; QGAM = QUANTILE GENERALIZED
ADDITIVE MODEL; GBM = GRADIENT BOOSTING MACHINE; HCM =

HYBRID CNN-MLP

Rank Team Final Score Model Type
1 MinesTech Paris 44.92 QRF
2 Univ. of Strathclyde 47.93 QGAM & GBM
3 TU Delft, Turbulence 51.52 HCM

- TU Delft, DeepWinds
(Post-competition) 57.55 SPNN, CNN & MLP

- TU Delft, DeepWinds
(until R6 parameters) 63.78 SPNN, CNN & MLP

- TU Delft, DeepWinds
(Competition) 80.38 SPNN, CNN & MLP

The post-competition tuned version of the model followed
a re-evaluation of Model B and Model D. This showed that
the accuracy of the models displayed a seasonal dependence
despite the time proxy, i.e. Model D performed better in
winter for price regions SE1 and SE4 but also performed
better than Model B in summer for regions SE2 and SE3, and
vice versa for Model B. As a consequence, better performance
was achieved by having models tuned with hyper-parameters
appropriate for both price region and season.

V. CONCLUSIONS

This paper has summarized the approach followed by
the DeepWinds model to predict wind power production in
Sweden using a probabilistic framework for the EEM 20
forecasting competition. The model was based on a deep learn-
ing method using the novel Smooth Pinball Neural Network
(SPNN), concatenating CNN and MLP architectures.

The resulting framework provided a simple way to output
quantile values from NWP input data. The non-parametric
approach allowed a generalization of the model to different
datasets, allowing it to be trained for different price regions
separately. Moreover, ways to reduce data dimensionality and
changes in installed capacity were proposed. The application
of this deep learning model is suitable for mid- and long-term
forecasting and can be used as a benchmark tool for other
similar models.

90

ACKNOWLEDGMENT

The authors would like to thank the team at KTH, Sweden
for organising the forecasting competition and providing help
in interpreting the data. We would also like to thank Rob-
bert Eggermont for making the High-Performance Computing
(HPC) cluster from TU Delft available, and by providing his
technical support.

REFERENCES

[1] Maldonado-Correa, Jorge and Solano, J. C. and Rojas-Moncayo, Marco.
”Wind power forecasting: A systematic literature review”, Wind Engi-
neering, Early Access, pp 1–14, 2019, doi: 10.1177/0309524X1989167.

[2] “Global energy review 2020 – analysis”, International Energy Agency,
apr. 2020. https://www.iea.org/reports/global-energy-review-2020 (con-
sulted jul. 15, 2020).

[3] S. Mujeeb, T. A. Alghamdi, S. Ullah, A. Fatima, N. Javaid, and T. Saba,
“Exploiting Deep Learning for Wind Power Forecasting Based on Big
Data Analytics”, Applied Sciences, vol. 9, nr. 20, p. 4417, oct. 2019,
doi: 10.3390/app9204417.

[4] Morales, Juan M., Antonio J. Conejo, Henrik Madsen, Pierre Pinson, and
Marco Zugno. ”Integrating renewables in electricity markets: operational
problems”, Springer Science & Business Media, vol. 205, 2013.

[5] G. Kariniotakis and P. Pinson, “Data science for renewable
energy prediction”, presented by Smart4RES, Online, jun.
04, 2020, consulted: jun. 04, 2020. [Online]. Available in:
https://www.slideshare.net/sustenergy/smart4res-data-science-for-
renewable-energy-prediction.

[6] S. Kr. Jha, J. Bilalovic, A. Jha, N. Patel, and H. Zhang, “Renewable
energy: Present research and future scope of Artificial Intelligence”,
Renewable and Sustainable Energy Reviews, vol. 77, pp. 297–317, sep.
2017, doi: 10.1016/j.rser.2017.04.018.

[7] “Forecasting Competition”, European Energy Markets 2020.
https://eem20.eu/forecasting-competition/ (consulted jul. 16, 2020).

[8] F. Rodrigues en F. C. Pereira, “Beyond Expectation: Deep Joint
Mean and Quantile Regression for Spatiotemporal Problems”,
IEEE Trans. Neural Netw. Learning Syst., pp. 1–13, 2020, doi:
10.1109/TNNLS.2020.2966745.

[9] T. Rozario, T. Long, M. Chen, W. Lu, en S. Jiang, “Towards
automated patient data cleaning using deep learning: A feasibility
study on the standardization of organ labeling”, arXiv:1801.00096
[physics], dec. 2017, Consulted: jul. 18, 2020. [Online]. Available from:
http://arxiv.org/abs/1801.00096.

[10] S. S. Soman, H. Zareipour, O. Malik and P. Mandal, ”A review of wind
power and wind speed forecasting methods with different time horizons,”
North American Power Symposium 2010, Arlington, TX, 2010, pp. 1-8,
doi: 10.1109/NAPS.2010.5619586.

[11] Wallach, D. ”When and why to predict using the mean or median of a
crop multi-model ensemble.” FACCE MACSUR Reports 10.S (2017):
37.

[12] Foley, A. M., P. G. Leahy, and E. J. McKeogh. ”Wind power forecasting
& prediction methods.” 2010 9th International Conference on Environ-
ment and Electrical Engineering. IEEE, 2010.

[13] Pinson, Pierre, and Henrik Madsen. ”Ensemble-based probabilistic fore-
casting at Horns Rev.” Wind Energy: An International Journal for
Progress and Applications in Wind Power Conversion Technology 12.2
(2009): 137-155.

[14] Torres, J. M., R. M. Aguilar, and K. V. Zuñiga-Meneses. ”Deep learning
to predict the generation of a wind farm.” Journal of Renewable and
Sustainable Energy 10.1 (2018): 013305.

[15] Ng, Andrew. ”Machine learning. coursera.” Standford Univer-
sity,[Online]. Available: https://www. coursera. org/learn/machine-
learning.[Accessed 15 February 2020] (2016).

[16] S. Abeywardana, “Deep Quantile Regression”, Medium, mar. 20, 2019.
https://towardsdatascience.com/deep-quantile-regression-c85481548b5a
(consulted jul. 27, 2020).

[17] Pinson, Pierre, and George Kariniotakis. ”Conditional prediction inter-
vals of wind power generation.” IEEE Transactions on Power Systems
25.4 (2010): 1845-1856.

[18] K. Hatalis, A. J. Lamadrid, K. Scheinberg, en S. Kishore, “Smooth
Pinball Neural Network for Probabilistic Forecasting of Wind Power”,
arXiv:1710.01720 [stat], oct. 2017, Consulted: jul. 18, 2020. [Online].
Available from: http://arxiv.org/abs/1710.01720.

[19] K. Hatalis, A. J. Lamadrid, K. Scheinberg, en S. Kishore, “A Novel
Smoothed Loss and Penalty Function for Noncrossing Composite Quan-
tile Estimation via Deep Neural Networks”, arXiv:1909.12122 [cs,
eess], sep. 2019, Consulted: jul. 18, 2020. [Online]. Available from:
http://arxiv.org/abs/1909.12122.

[20] Sutton, Richard S., and Andrew G. Barto. ”Reinforcement learning: An
introduction.” MIT press, 2018.

[21] LeCun, Yann. ”LeNet-5, convolutional neural networks.” URL:
http://yann. lecun. com/exdb/lenet 20.5 (2015): 14.

[22] Krizhevsky, A., I. Sutskever, and G. E. Hinton. ”2012 AlexNet.” Adv.
Neural Inf. Process. Syst. (2012): 1-9.

[23] R. Thakur, “Step by step VGG16 implementation in Keras for begin-
ners”, Medium, aug. 20, 2019. https://towardsdatascience.com/step-by-
step-vgg16-implementation-in-keras-for-beginners-a833c686ae6c (con-
sulted jul. 18, 2020).

91

Bibliography
[1] International Energy Agency. Global energy review 2020 - analysis and key findings. URL https:

//www.iea.org/reports/global-energy-review-2020/renewables.

[2] Wind Europe. Offshore Wind in Europe. Feb 2020. URL https://windeurope.org/
data-and-analysis/product/.

[3] Ministerie van Algemene Zaken. Dutch national government - offshore wind energy - renew-
able energy, Jul 2017. URL https://www.government.nl/topics/renewable-energy/
offshore-wind-energy.

[4] Sana Mujeeb, Turki Ali Alghamdi, Sameeh Ullah, Aisha Fatima, Nadeem Javaid, and Tanzila
Saba. Exploiting deep learning for wind power forecasting based on big data analytics. Applied
Sciences, 9(20):4417, 2019.

[5] Juan Morales, Antonio Conejo, Henrik Madsen, Pierre Pinson, and Marco Zugno. Integrating re-
newables in electricity markets: operational problems, volume 205. Springer Science & Business
Media, 2013.

[6] H Nielsen, T Nielsen, and Henrik Madsen. An overview of wind power forecasts types and their
use in large-scale integration of wind power. pages 25–26, 2011.

[7] Kariniotakis, Georges and Pinson, Pierre. Data science for renewable en-
ergy prediction, 2020. URL https://www.slideshare.net/sustenergy/
smart4res-data-science-for-renewable-energy-prediction.

[8] Aoife Foley, PG Leahy, and EJ McKeogh. Wind power forecasting & prediction methods. pages
61–64, 2010.

[9] Sunil Kr Jha, Jasmin Bilalovic, Anju Jha, Nilesh Patel, and Han Zhang. Renewable energy:
Present research and future scope of artificial intelligence. Renewable and Sustainable Energy
Reviews, 77:297–317, 2017.

[10] Gregor Giebel, Richard Brownsword, George Kariniotakis, Michael Denhard, and Caroline Draxl.
The state-of-the-art in short-term prediction of wind power: A literature overview. 2011.

[11] Aoife M Foley, Paul G Leahy, Antonino Marvuglia, and Eamon J McKeogh. Current methods and
advances in forecasting of wind power generation. Renewable Energy, 37(1):1–8, 2012.

[12] Lars Landberg. Short-term prediction of local wind conditions. Journal of Wind Engineering and
Industrial Aerodynamics, 89(3-4):235–245, 2001.

[13] Yao Zhang, Jianxue Wang, and Xifan Wang. Review on probabilistic forecasting of wind power
generation. Renewable and Sustainable Energy Reviews, 32:255–270, 2014.

[14] Georges Kariniotakis, Hans-Peter Waldl, Ignacio Marti, Gregor Giebel, Torben S. Nielsen, Jens
Tambke, Julio Usaola, F Dierich, Alexis Bocquet, and Silvère Virlot. Next generation forecasting
tools for the optimal management of wind generation. pages 1–6, 2006.

[15] Mohammad Bannayan and Gerrit Hoogenboom. Weather analogue: A tool for real-time predic-
tion of daily weather data realizations based on a modified k-nearest neighbor approach. Envi-
ronmental Modelling & Software, 23(6):703 – 713, 2008. ISSN 1364-8152. doi: https://doi.
org/10.1016/j.envsoft.2007.09.011. URL http://www.sciencedirect.com/science/
article/pii/S1364815207001764.

93

https://www.iea.org/reports/global-energy-review-2020/renewables
https://www.iea.org/reports/global-energy-review-2020/renewables
https://windeurope.org/data-and-analysis/product/
https://windeurope.org/data-and-analysis/product/
https://www.government.nl/topics/renewable-energy/offshore-wind-energy
https://www.government.nl/topics/renewable-energy/offshore-wind-energy
https://www.slideshare.net/sustenergy/smart4res-data-science-for-renewable-energy-prediction
https://www.slideshare.net/sustenergy/smart4res-data-science-for-renewable-energy-prediction
http://www.sciencedirect.com/science/article/pii/S1364815207001764
http://www.sciencedirect.com/science/article/pii/S1364815207001764

94 Bibliography

[16] You Lin, Ming Yang, Can Wan, Jianhui Wang, and Yonghua Song. A multi-model combination
approach for probabilistic wind power forecasting. IEEE Transactions on Sustainable Energy, 10
(1):226–237, 2018.

[17] Nick Ellis, Robert Davy, and Alberto Troccoli. Predicting wind power variability events using differ-
ent statistical methods driven by regional atmospheric model output. Wind Energy, 18(9):1611–
1628, 2015.

[18] Song Li, Peng Wang, and Lalit Goel. Wind power forecasting using neural network ensembles
with feature selection. IEEE Transactions on sustainable energy, 6(4):1447–1456, 2015.

[19] Duehee Lee and Ross Baldick. Short-term wind power ensemble prediction based on gaussian
processes and neural networks. IEEE Transactions on Smart Grid, 5(1):501–510, 2013.

[20] WenbinWu andMugen Peng. A data mining approach combining 𝑘-means clustering with bagging
neural network for short-term wind power forecasting. IEEE Internet of Things Journal, 4(4):979–
986, 2017.

[21] Aqsa Saeed Qureshi, Asifullah Khan, Aneela Zameer, and Anila Usman. Wind power prediction
using deep neural network based meta regression and transfer learning. Applied Soft Computing,
58:742–755, 2017.

[22] Jesús Torres, RosaMaría Aguilar, and K. Zuñiga-Meneses. Deep learning to predict the generation
of a wind farm. Journal of Renewable and Sustainable Energy, 10(1):013305, 2018.

[23] Jesús Torres and Rosa María Aguilar. Using deep learning to predict complex systems: a case
study in wind farm generation. Complexity, 2018, 2018.

[24] Tilmann Gneiting, Fadoua Balabdaoui, and Adrian E Raftery. Probabilistic forecasts, calibration
and sharpness. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 69(2):
243–268, 2007.

[25] Pierre Pinson and George Kariniotakis. Conditional prediction intervals of wind power generation.
IEEE Transactions on Power Systems, 25(4):1845–1856, 2010.

[26] Tao Hong, Pierre Pinson, Shu Fan, Hamidreza Zareipour, Alberto Troccoli, and Rob J Hyndman.
Probabilistic energy forecasting: Global energy forecasting competition 2014 and beyond. 2016.

[27] Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural networks, 61:85–
117, 2015.

[28] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436–444,
2015.

[29] Shi Xingjian, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-Kin Wong, and Wang-chun Woo.
Convolutional lstm network: A machine learning approach for precipitation nowcasting. pages
802–810, 2015.

[30] Filipe Rodrigues and Francisco C Pereira. Beyond expectation: Deep joint mean and quantile
regression for spatiotemporal problems. IEEE transactions on neural networks and learning sys-
tems, 2020.

[31] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

[32] Andrew Ng. Neural networks and deep learning, 2017. URL https://www.coursera.org/
learn/neuralnetworks-deep-learning.

[33] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

[34] Prajit Ramachandran, Barret Zoph, and Quoc V Le. Searching for activation functions. arXiv
preprint arXiv:1710.05941, 2017.

https://www. coursera. org/learn/neuralnetworks-deep-learning
https://www. coursera. org/learn/neuralnetworks-deep-learning

Bibliography 95

[35] Dana Hughes and Nikolaus Correll. Distributed machine learning in materials that couple sensing,
actuation, computation and communication. arXiv preprint arXiv:1606.03508, 2016.

[36] Sepp Hochreiter. The vanishing gradient problem during learning recurrent neural nets and prob-
lem solutions. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 6
(02):107–116, 1998.

[37] Andrew Ng. Machine learning, 2014. URL https://www.coursera.org/learn/
machine-learning.

[38] Romain Thalineau. An introduction to backpropagation, 2018. URL https://www.qwertee.
io/blog/an-introduction-to-backpropagation/.

[39] Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv preprint
arXiv:1609.04747, 2016.

[40] Ning Qian. On the momentum term in gradient descent learning algorithms. Neural networks, 12
(1):145–151, 1999.

[41] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning
and stochastic optimization. Journal of machine learning research, 12(Jul):2121–2159, 2011.

[42] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[43] Belajar Pembelajaran Mesin Indonesia. Student notes to convolutional neural net-
works: an introduction, Jul 2018. URL https://indoml.com/2018/03/07/
student-notesconvolutional-neural-networks-cnn-introduction.

[44] Fu Jie Huang and Yann LeCun. Large-scale learning with svm and convolutional for generic object
categorization. 1:284–291, 2006.

[45] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. pages 1097–1105, 2012.

[46] Imad Dabbura. K-means clustering: Algorithm, applications, evaluation methods, and drawbacks,
Aug 2020. URL https://towardsdatascience.com.

[47] Marco Dena. K-means incoherent behaviour choosing k with elbow method, bic, variance ex-
plained and silhouette, Aug 2015. URL https://datascience.stackexchange.com.

[48] Kostas Hatalis, Alberto Lamadrid, Katya Scheinberg, and Shalinee Kishore. Smooth pinball neural
network for probabilistic forecasting of wind power. arXiv preprint arXiv:1710.01720, 2017.

[49] Kostas Hatalis, Alberto Lamadrid, Katya Scheinberg, and Shalinee Kishore. A novel smoothed
loss and penalty function for noncrossing composite quantile estimation via deep neural networks.
arXiv preprint arXiv:1909.12122, 2019.

[50] Lars Herre, Mikhail Skalyga, and Priyanka Shinde. European energy markets 2020 forecasting
competition, Mar 2020. URL https://eem20.eu/forecasting-competition/.

[51] Lisa Bengtsson, Ulf Andrae, Trygve Aspelien, Yurii Batrak, Javier Calvo, Wim de Rooy, Emily
Gleeson, Bent Hansen-Sass, Mariken Homleid, Mariano Hortal, and et al. The harmonie–arome
model configuration in the aladin–hirlam nwp system. Monthly Weather Review, 145(5):1919–
1935, May 2017. ISSN 0027-0644. doi: 10.1175/MWR-D-16-0417.1.

[52] Inger-Lise Frogner, Andrew T. Singleton, Morten Ø Køltzow, and Ulf Andrae. Convection-
permitting ensembles: Challenges related to their design and use. Quarterly Journal of the Royal
Meteorological Society, 145(S1):90–106, 2019. ISSN 1477-870X. doi: 10.1002/qj.3525.

[53] Eugenia Kalnay. Historical perspective: earlier ensembles and forecasting forecast skill. Quarterly
Journal of the Royal Meteorological Society, 145(S1):25–34, 2019. ISSN 1477-870X. doi: 10.
1002/qj.3595.

https://www.coursera.org/learn/machine-learning
https://www.coursera.org/learn/machine-learning
https://www.qwertee.io/blog/an-introduction-to-backpropagation/
https://www.qwertee.io/blog/an-introduction-to-backpropagation/
https://indoml.com/2018/03/07/ student-notesconvolutional-neural-networks-cnn-introduction
https://indoml.com/2018/03/07/ student-notesconvolutional-neural-networks-cnn-introduction
https://towardsdatascience.com
https://datascience.stackexchange.com
https://eem20.eu/forecasting-competition/

96 Bibliography

[54] Gilles Notton and Cyril Voyant. Chapter 3 - forecasting of intermittent solar energy re-
source. In Imene Yahyaoui, editor, Advances in Renewable Energies and Power Tech-
nologies, pages 77 – 114. Elsevier, 2018. ISBN 978-0-12-812959-3. doi: https://doi.
org/10.1016/B978-0-12-812959-3.00003-4. URL http://www.sciencedirect.com/
science/article/pii/B9780128129593000034.

[55] Sukanta Basu, Simon J. Watson, Eric Lacoa Arends, and Bedassa Cheneka. Day-ahead wind
power predictions at regional scales: Post-processing operational weather forecasts with a hybrid
neural network. IEEE, Sep 2020.

[56] Kevin Bellinguer, Valentin Mahler, Simon Camal, and Georges Kariniotakis. Probabilistic forecast-
ing of regional wind power generation for the EEM20 competition: a physics-oriented machine
learning approach. IEEE, Sep 2020.

[57] Kevin Bellinguer, Robin Girard, Guillaume Bontron, and Georges Kariniotakis. Short-term pho-
tovoltaic generation forecasting using multiple heterogenous sources of data based on an ana-
log approach. EGU General Assembly 2020, 2020. URL https://doi.org/10.5194/
egusphere-egu2020-13790.

[58] Jethro Browell, CiaranGilbert, Rosemary Tawn, and LeoMay. Quantile combination for the EEM20
wind power forecasting competition. IEEE, Sep 2020.

[59] Keras guide, 2020. URL https://www.keras.io.

[60] Statistics Sweden. Number of persons with foreign or swedish background (rough division) by
region, age and sex. year 2002 - 2019, 2019. URL http://www.statistikdatabasen.scb.
se.

[61] Christian Schumacher and Florian Weber. How to extend the lifetime of wind tur-
bines, Sep 2019. URL https://www.renewableenergyworld.com/2019/09/20/
how-to-extend-the-lifetime-of-wind-turbines/.

[62] Aditya Saini. Backpropagation algorithm intuition, 2014. URL https://stats.
stackexchange.com/questions/94387/how-to-derive-errors-in-neural-net.

[63] Eric Lacoa Arends, Simon J. Watson, Sukanta Basu, and Bedassa Cheneka. Probabilistic wind
power forecasting combining deep learning architectures. IEEE, Sep 2020.

http://www.sciencedirect.com/science/article/pii/B9780128129593000034
http://www.sciencedirect.com/science/article/pii/B9780128129593000034
https://doi.org/10.5194/egusphere-egu2020-13790
https://doi.org/10.5194/egusphere-egu2020-13790
https://www.keras.io
http://www.statistikdatabasen.scb.se
http://www.statistikdatabasen.scb.se
https://www.renewableenergyworld.com/2019/09/20/how-to-extend-the-lifetime-of-wind-turbines/
https://www.renewableenergyworld.com/2019/09/20/how-to-extend-the-lifetime-of-wind-turbines/
https://stats.stackexchange.com/questions/94387/how-to-derive-errors-in-neural-net
https://stats.stackexchange.com/questions/94387/how-to-derive-errors-in-neural-net

	Preface
	Summary
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Literature Review
	Wind power forecasting
	Physical models
	Statistical and hybrid models
	Probabilistic forecasting
	Challenges of wind power forecasting

	Machine Learning
	Artificial Neural Networks (ANN)
	Convolutional Neural Networks (CNN)
	K-means clustering

	Smooth Pinball Neural Network Framework
	Framework overview
	Loss function
	Quantile cross-over
	Architecture parameters

	Methodology
	European Energy Markets 2020 Forecasting Competition
	Data overview
	Evaluation method

	Deterministic forecasting approach
	Shift-invariant architectures: CNN
	Fully-connected architectures: MLP
	Clustering: k-means

	Feature and output engineering
	SpinHy-NN: Integrating the SP-NN probabilistic framework
	Programming framework
	Keras library

	Data Analysis
	Meteorological variables
	Wind turbine record
	Installed capacity
	Terrain height
	Installation dates

	Results & Discussion
	Deterministic forecasts
	Feature engineering
	SPinHy-NN performance
	Clipping factors
	Quantile cross-over
	Competition results

	Conclusions & Recommendations
	Backpropagation algorithm intuition
	SPinHy-NN Python code implementation
	K-means clustering Python code implementation
	EEM20 Conference Paper
	Bibliography

