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Abstract: EURegulation 2009/72/EC concerning common rules for internalmarket in electricity calls upon80%
of EU electricity consumers to be equippedwith smartmetering systems by 2020, provided that a positive eco-
nomic assessment of all long-term costs and benefits to themarket and the individual consumer is guaranteed.
Understanding the impact that smart metering systems may have on the electricity stakeholders (consumers,
distribution system operators, energy suppliers and the society at large) is important for faster and e�ective
deployment of such systems and of the innovative services they o�er. For this purpose, in this paper an agent-
based model is developed, where the electricity consumer behaviour due to di�erent smart metering policies
is simulated. Consumers are modelled as household agents having dynamic preferences on types of electric-
ity contracts o�ered by the supplier. Development of preferences depends on personal values, memory and
attitudes, as well as the degree of interaction in a social network structure. We are interested in exploring pos-
sible di�usion rates of smart metering enabled services under di�erent policy interventions and the impact of
this technological di�usion on individual and societal performance indicators. In four simulation experiments
and three intervention policies we observe the di�usion of energy services and individual and societal perfor-
mance indicators (electricity savings, CO2 emissions savings, social welfare, consumers’ comfort change), as
well as consumers’ satisfaction. From these results and based on expert validation, we conclude that providing
the consumer withmore options does not necessarily lead to higher consumer’s satisfaction, or better societal
performance. A good policy should be centred on e�ective ways to tackle consumers concerns.

Keywords: Electricity Consumer, Agent-Based Modelling, Smart Metering, Consumer Values

Introduction

1.1 The deployment of smart metering systems in Europe is driven by EU legislation that views smart metering
infrastructure as a tool to both enhance competition in retail markets and foster energy e�iciency. Moreover,
smart metering infrastructure is considered as key enabler to realising the full potential of renewable energy
integration and provision of a secure energy supply.

1.2 The EU Directive on internal energy market 2009/72/EC establishes common rules for internal market in elec-
tricity and urges an access of consumption data and associated prices to the electricity consumers. The infor-
mation on electricity costs should be provided frequently enough in order to create incentives for energy sav-
ings and behavioural change. Such information provision could also create innovative services to e�ectively
enable active participation of consumers in the electricity supply market. Implementation of smart metering
infrastructure is expected to facilitate this process. Directive (EU) 2009/72/EC along with the Recommendation
2012/148/EU calls upon 80% EU electricity consumers to be equipped with smart metering systems by 2020,
providing the economic assessment of nation-wide smart metering roll-out is positive. Therefore, smart me-
tering systems, by providing feedback to the households on their electricity consumption, play an important
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role in the achievement of energy savings. The e�ect of feedback on consumer’s behaviour has been reported
in many pilot projects (Box & Draper 2014), indicating that the potential for smart metering systems per se to
trigger consumer engagement andbehavioural changes is rather limited: "Informationon consumptionwill not
work without a motivation to conserve, which may be provided by other instruments like financial incentives,
goal setting or personal commitment" (Fischer 2007). Thus, smart metering systems are enabling technologies,
which need to be coupledwith innovative end-user services to achieve better energymanagement through the
means of rewards, automation and information1. Moreover, technological di�usion is accompanied by tech-
nology concerns, in particular data privacy and security. Such concerns played an important role in some EU
national smart metering roll-outs, such as the Netherlands, where the consumers were granted the possibil-
ity to refuse the smart meter or accept it under "administrative-o�" option2. To this end, distribution system
operators (DSOs) and energy suppliers will need to take e�ective measures in motivating and engaging the
consumers inmanaging their electricity consumption by o�ering innovative services, while e�ectively tackling
concerns that may hinder the deployment of such services.

1.3 Agent-based modelling is a widely applicable tool for capturing the behaviour of socio-technical systems that
generate emergent phenomena in a bottom-up manner (Van Dam et al. 2012; Chappin 2010; Epstein & Axtell
1996). It has also been widely used to study the di�usion of new and green technologies and more recently to
study the di�usion of smartmetering technologies (Kowalska-Pyzalska et al. 2014; Zhang&Nuttall 2011; Rixen&
Weigand 2014). In particular, Zhang&Nuttall (2011) have developed an agent-basedmodel of amarket game in-
volving two parties: residential electricity consumers and electricity suppliers. The aim is to evaluate the e�ec-
tiveness of UK policy on promoting smart metering in the UK retail electricity market. They choose the Theory
of Planned Behaviour–TPB (Ajzen 1991) to formalize the behaviour of residential electricity consumer agents.
This theoretical choice is driven by the consideration that TPB emphasizes the role of psychological (attitudes),
sociological (subjective norms) and environmental factors (perceived behavioural control) in the consumers’
decisionmaking process. However, a limitation of the proposedmodel is consumer’s personality characteriza-
tion. They suggest that consumer’s intention to perform certain behaviour is essentially driven by consumer’s
personality trait "price sensitivity". However, the range of "beliefs" that jointly determine a person’s intention
to perform a behaviour is certainly broader. Building on the work of Zhang & Nuttall (2011), and broadening
consumer characterization, in the present paper we develop an agent-based model of electricity consumers,
interacting with the energy supplier through a series of electricity contracts, each characterized by a di�erent
typeof serviceo�ered to the consumer. Weare interested inexploringpossibledi�usion ratesof smartmetering
enabled services under di�erent policy interventions. The model can be used as a tool to gain insight into dif-
fusion patterns of energy services (represented by a contract) and associated switching rate among contracts.
Furthermore, related influencing factors are also observed in the transition to sustainable and cost-e�icient
energy consumption. The remainder of the paper is structured as follows: Section 2 describes the model, in-
cluding agents ’properties and actions and characterisation of electricity contracts. Section 3 illustrates the
policy intervention whose impact is observed under di�erent experimental set-up, defined in Section 4. We
conclude discussing the policy implications of our findings and future considerations.

Model Description

Model overview

2.1 An agent-based model is developed in this paper that includes a number of household agents (i.e,. electricity
consumers) and a portfolio of electricity contracts o�ered by the electricity supplier. An overview of themodel
is presented in Figure 1. The agents and their interactions with the electricity systems (through the contracts)
represent a socio-technical system, where the social subsystem consists of a network of consumers, each of
them having a contract with the electricity supplier. Each contract is characterized with a type of end-user ser-
vice (defined in the contract and enabled by the smart meter) and time duration. Agents gain experience with
a certain type of contract and have a memory retaining knowledge on that experience. They also communi-
cate this experience to other agents, which may influence their decision on the type of contract to be adopted
(Figure 1).

2.2 Agents’ behaviour may be influenced by governmental policy (e.g., national roll-out of smart metering sys-
temswithopt-outoption for theconsumers), national/local authority initiatives (e.g., environmental campaign)
or business case driven initiatives from the DSO/supplier. While policies and institutions are influenced and
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Figure 1: Overview of model entities and their relationship.

shaped by actors’ behaviours (DSO, consumers, markets, etc.) and change over time, for the purpose of this
model they are assumed to be exogenous and fixed.

2.3 The socio-technical system as a whole evolves based on the decisions of individual agents. These decisions
influence the overall system level performance indicators defined as: - adoption of contract types, - energy sav-
ings, -CO2 emissions savings, - comfort changeand - socialwelfare; whichwill be further detailed in Section 2.2
below. Themodel is simulated for a period of 10 yearswith time steps of onemonth and in each simulation run,
the system behaviour is a combined result of the actions of all agents.

Characterization of agents

2.4 Agents have personal goals and preferences determined by their own personal values. According to the liter-
ature (Steg et al. 2014; Steg & de Groot 2012), we can distinguish between self-transcendent values that refer
primarily to collective consequences and self-enhancement values, which refer primarily to personal costs and
benefits. Self-transcendence values include altruistic values that focus on societal well-being and biospheric
values that focus on protecting the environment. Self-enhancement values include egoistic values, which fo-
cus on enhancing personal resources (e.g., wealth), and hedonic values, which focus on improving theway one
feels (Steg et al. 2014; Steg & de Groot 2012).

2.5 These self-enhancement and self-transcendence values characterise the agents’ weight factorswe,wh,wb and
wa and describe the agents’ relevance (Menanteau & Lefebvre 2000) towards four criteria: financial savings,
comfort change,CO2 savings and social welfare. The weights are randomly assigned to each agent, following
a uniform distribution [0, 1], as defined in Table 3 below. The highest weight factor determines the "archetype"
each agent belongs to (e.g., agents belonging to egoistic archetype have highest weight factor for the egoistic
criterion), which indicates that the agents are heterogeneous with respect to archetype. The weight factors are
normalized such that the sum of the weights equals 1. At the same time, these four values represent the four
criteria against which agents evaluate contracts. The four criteria are detailed in the Appendix.

2.6 Each time step, agents get experience with a certain contract and based on that experience they develop an
attitude towards the contract they have. They also memorise the experience they have with all contracts that
they have had earlier in time and communicate this memorised experience to other agents, thus influencing
their decisions. When an agent is not satisfied with her current contract, she decides to opt for a new one. The
satisfaction level ismeasured relative to the threshold-attitude, as an agent specific variable (for further details,
see Appendix). In case the agent is satisfied with her contract, but the contract has ended, the agent considers
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Figure 2: Household agent’s activities.

the present contract in the portfolio of contracts to be evaluated in the next time step. The decision on what
type of contract the agent opts for is based on the scores on individual criteria ae, ah, ab and aaweighed against
weight factors we, wh1, wb and wa and modelled as multi-criteria problem, as consumers evaluate multiple
electricity contracts against the given set of criteria.

Agents’ activities

2.7 The main activity is that of the household agent, as summarized in Figure 2. Agents have a certain contract
αj with the electricity supplier. Each contract communicates range of values (acmin, acmax) relative to the 4
criteria mentioned above, and expected to be achieved with that contract. The average of that range is the
communicated score of contract αj on criterion c, i.e.:

ac,communicated(αj) =
acmax + acmin

2
(1)

2.8 We normalize the scores as in Equation 2 to be able to combine them across criteria when evaluating single
contract.

ac,norm,communicated(αj) =
ac,maxmax − ac,communicated
ac,maxmax − ac,minmin

(2)

ac,maxmax = maxk(acmax) and ac,minmin = mink(acmin) are the best and worst communicated score of
αj on criterion c among all k communicated contracts. This way, ac,norm,communicated will always be a value
between 0 and 1.

Updatingmemory

2.9 Positive consumers’ experience would certainly pave the path towards di�usion of more advanced smart me-
tering services, which addresses both the acceptance and e�ective use of the smart metering system. While
EU currently progresses towards nation wide deployment of smart metering systems, the real impact of smart
metering enabled services and consumers experience with smart metering systems is still uncertain and lim-
ited. However, some observations on potential impacts (energy/financial, CO2 savings, comfort change, etc.)
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of using smart metering systems (smart meter and feedback device) is already reported in the literature (see
Appendix) and we therefore use a range of such impacts for deriving the experienced score. In this context,
each time step agents gain experiencewith contractαj and the experienced score on each criterion c is derived
as a random value from the communicated range, i.e.

ac,experienced = rand(acmin, acmax) (3)

Next, the experienced score is normalized, as follows:

ac,norm,experienced(αj) =
acmaxmax − ac,experienced
ac,maxmax − ac,minmin

(4)

where ac,norm,experienced(αj) is the normalized experienced score of contract αj on criterion c and ac,maxmax
and ac,minmin are defined as in Equation 2.

2.10 Consumers update existing values in their memory with the current experience they have by calculating the
average of the past experienced and the new experienced score, as in Equation 5. At the initial time step and in
case of no previous experience: ac,memory(αj) = ac,norm,communicated(αj).

a?c,memory(αj) =
1

2
∗ ac,memory(αj) +

1

2
∗ ac,norm,experienced(αj) (5)

where ac,norm,experienced(αj) is calculated as in Equation 4 and a?c,memory(αj) is the updatedmemory value.

2.11 Next, each agent calculates the attitudes towards contract αj by multiplying the scores on criterion cwith the
criteria-specific weight factorwc and summing the result, i.e.:

Ac,experienced(αj) = wc ? a
∗
c,memory(αj) (6)

with wc being the weight factor, as a measure of relative importance the agent gives to criterion c and it is
randomly drawn from uniform distribution between 0 and 1.

2.12 The total attitude towards contract αj is summation of all individual attitudes relative to each single criterion
c, where c ∈ e, h, b, a:

A(αj) =
∑
c

Ac,experienced(αj). (7)

Based on this attitude and agent-specific satisfaction threshold, the agents decide whether to switch to a dif-
ferent contract or keep the same one they currently have.

Choosing contract from portfolio of contracts o�ered by the supplier

2.13 Personal preferences
Agents may consider switching to di�erent contract for one of the following reasons: 1) Being dissatisfied with
the current one and 2) Expiration of current contract. In each of these cases, agents ask for new contracts from
the supplier andperformevaluationof portfolio of contracts received. If the agentwas satisfiedwith the current
contract and the same has ended, she reconsiders it for evaluation, along with the new ones received.

2.14 The decision making process is modelled as multi-criteria problem and is presented in Figure 2. Technology
concerns, in terms of data privacy and security, health, etc. were evident in many EU pilots and national roll-
outs of smart metering systems. In the case of the Netherlands, for instance, the original legal obligation to
accept themeter was revoked due to data privacy concerns. This resulted in granting the consumer with possi-
bility to either refuse themeter or accept themeter but block the remote reading facility (so called "administra-
tive o�" option). To introduce such concerns in our model, we characterise each agent with "techno-tolerance
threshold" and each contract with a level of perceived concerns ("techno-risks"). For each contract from the
portfolio received, an agent considers only those that have a "techno-risks" value below her "techno-tolerance
threshold".

2.15 The total attitude towards each contract under evaluation is summation of all individual attitudes relative to
each single criterion c, where c ∈ e, h, b, a:

A(αj) =
∑
c

Ac,communicated(αj) (8)

Ac,communicated(αj) = wC ∗ ac,norm,communicated(αj) (9)
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2.16 Social influence
Household agents belong to a social network, used to simulate share of agents’ perceptions. The network is
generated such that each agent communicates with n other peers in a network of 200 agents. Half of those
peers belong to the same archetype âĂŞ people tend to associate with others who are similar with accord-
ing to the principle of "homophily" (McPherson et al. 2001) and the rest are randomly chosen from di�erent
archetypes. This determines the level of heterogeneity in our model and it is defined as number of peers, each
agent communicates with, belonging to di�erent archetype than her own one.

2.17 Based on the experience each agent shares (through personal interactions, social media, etc.) with these n
peers, agents update their attitude, as follows:

A∗
c(αj) = Ac,communicated(αj) +

(∑n
i=1Aic,experienced(αj)

n
−Ac,communicated(αj)

)
∗ wSN (10)

whereAi,c,experienced(αj) presents the attitude of the i-th neighbour among n neighbours the agent commu-
nicates with and it is calculated as in Equation 6; wSN stands for the susceptibility factor, as a measure of im-
portance the agent gives to the opinion of her peers andAc,communicated(αj) represents the personal attitude
the agent has towards alternative αj and relative to the score on criterion c, calculated as in Equation 9.

2.18 The agent behaviour, in terms of electricity contract adoption, thus depends first on her personal attitude to-
wards a certain contract and second on howmuch the attitude of her peers di�ers from her own personal atti-
tude. In this regard, behaviour change according to the second factor is a�ected by the individual susceptibility.

2.19 Finally, the agent comes up with an overall attitudeA?(αj) towards contract αj , i.e.:

A?(αj) = A?e(αj) +A?h(αj) +A?b(αj) +A?a(αj) (11)

2.20 The contract for which the agent has the highest attitude is her preferred one; that is its final decision onwhich
contract αj to accept. The decision making can be formulated as follows:

A? = max(A?(α1), A
?(α2), . . . , A

?(αj), . . . , A
?(αk) (12)

Characterization of contracts

2.21 Existing type of contracts along with potential future ones o�ered by major EU suppliers has been considered
in ourmodel and all the agents have the same contract options. Most of them can be grouped in seven types of
contracts, according to the type of service provided, namely:

A. Indirect feedbackwith ownhistorical andpeer comparison oncea year: this type of feedbackprovision allows
for historical analysis of consumer’ electricity consumption and peer comparison at the end of each year
and it does not require adoption of a smart meter;

B. Indirect feedback with own historical and peer comparison once per two months: this type of feedback pro-
vision allows for historical analysis of consumer’s electricity consumption and peer comparison every
second month. Such feedback provision is in line with the requirement in some EU Member States (e.g.
Sweden, Netherlands) for smart metering data reading and energy billing 6 times a year;

C. Indirect feedback with own historical and peer comparison once per month: this type of feedback provision
allows for historical analysis of consumer’ electricity consumption and peer comparison every month;

D. Direct feedback with In-House Display (IHD): this type of feedback provision allows for analysis of consumer’
electricity consumption on amore granular base (near real-time). This feedback provision grants the con-
sumerwith the rightofhavingdataaccess tohermeteringdatawithout sharing themwith theDSO/supplier
or any third party (e.g. "administrative-o�" option in the Dutch national roll-out of smart metering sys-
tems);

E. Direct feedback with Time of Use (ToU)/Real Time Pricing (RTP): this type of feedback provision allows for
detailed analysis of consumer’s electricity consumption on amore granular base (near real time) and the
possibility of having more advanced pricing mechanism (tailored to consumer’s load profile);

F. Direct feedback with Home Automation (HA): this type of feedback provision allows for detailed analysis of
consumer’ electricity consumption on a more granular base (near real-time) and the possibility to auto-
mate the usage of consumer’s home appliances by responding to electricity prices;
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Contract A B C D E F G

Mandatory policy No Yes Yes No Yes Yes Yes
Voluntary policy Yes Yes Yes Yes Yes Yes Yes
Environmental policy Yes Yes Yes Yes Yes Yes Yes

Table 1: Contract types available for each policy

G. Direct feedback with Home Automation, including demand response and renewable energy self-consumption
(ECCOM, 2015): this typeof feedbackprovision allows for demand response to electricity price usinghome
automation (as in contract F), however, including self-consumption of electricity produced at consumer’s
premises.

Policy Interventions

3.1 Asmentioned before, themodel in this paper explores the Directive (EU) 2009/72/EC on internal energymarket
for electricity and in particular, the recommendation (EU) 2012/148/EU on smart metering deployment. In this
context, three possible policy interventions are presented.

1. Mandatory smart metering policy: There is governmental policy in place, which mandates the DSO to
install smart meters to all electricity consumers. This situation resembles the situation in most of the EU
countries, where the consumer is required to accept the smartmeter and can choose one of the contracts
indicated in Table 1.

2. Voluntary smart metering policy: This policy mandates the DSO to carry on nation-wide smart metering
deployment, nevertheless, the consumer can choose to refuse themeter (contract A) or opt for "adminis-
trative o�" (contract D). This represents the situation in some EU countries where data privacy concerns
resulted in introduction of the "opt-out" and "administrative-o�" option for the consumer. The types of
contracts o�ered to the consumer in this policy are indicated in Table 1.

3. Environmental smart metering policy: The conditions in this policy option are the same as in the volun-
tary policy and the agents are entitled to the same contracts (see Table 1). In addition, environmental
campaign, launched by national/local authority is assumed to take place at a certain time step ( e.g., 40th
month in our model). As a result, we assume that consumer will becomemore sensitive to environmen-
tal issue and therefore their biospheric weight will increase. We hypothesize an increase of biospheric
weight by 100%, thus for some agents becoming the most salient weight. This would ultimately imply
change of archetype for these agents and increase of biospheric agents.

3.2 We are interested in monitoring possible di�usion rates of smart metering enabled services under the three
di�erent policy interventions presented above.

Simuation and Data Analysis

4.1 The model has been implemented in NetLogo (Wilensky 1999) and extensively verified using both single and
multi- agent testing (VanDamet al. 2012), whereas theprogramming languageRwasused for thedata analysis3.

Experimental set-up

4.2 Data analysis was performed by building experimental set-up relative to the following variables: heterogeneity,
policy, initial contract distribution and contract duration.

4.3 We have built four experiments, relative to the initial contract distribution and contract duration (see see Ta-
ble 2). The contract types considered in our study reflect possible smart metering enabled services to be de-
ployed in EU and we are interested to observe the impact of initial contract distribution on the final system
level contract adoption. Scenario 1 and 3 are conservative assumption in this regard and reflect the current EU
situations, whereas Scenario 2 and 4 depicts future conditions, where variety of smartmetering serviceswill be
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Scenario Initial contract distribution Contract duration

1 All agents have the least technologically advanced contract (B in the
mandatory policy and A in the voluntary and environmental policy)

12 months

2 Equal contract distribution 12 months
3 All agents have the least technologically advanced contract (B in the

mandatory policy and A in the voluntary and environmental policy)
Indefinite

4 Equal contract distribution Indefinite

Table 2: Experimental set-up

available to the end-user. Similarly, the idea of having 12 months (as minimum contract duration observed in
most of the EUmember states) and indefinite contract duration is centred on our interest to analyse the e�ect
of "lock-in" periods, during which the consumer would need to pay a penalty for leaving the contract or other
switching barriers, in case of fixed contract duration. Each experiment is tested for each policy separately.

4.4 The model was run in an experimental setup of 20 runs for each parameter combination in order to be able to
explore the spread in the outcomes, which is caused by randomly determined factors like the social network
layout, weight factors of household agents, agents’ experience with certain contract, agents’ susceptibility and
technology threshold. Theparameterization for the simulation experiments is given in Table 3. Empirical values
were not available for most of the parameters and as a result, synthetic data were used, based on expert judg-
ment and the same were extensively varied. Nevertheless, wherever a source is given, the parameter value is
empirically based. Each experiment startswithN agentswith randomly generatedweights. The highestweight
of an agent determines the archetype she belongs to.
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Variable name Brief description Value Source

Simulation parameters
n Number of peers each agent communicates

with
7 (fixed) -

policy The policy determines what contracts are
available, and whether an environmental
campaign is introduced at t = 40months

mandatory,
voluntary, envi-
ronmental

-

heterogeneity Level of peers belonging to di�erent
archetype then agent’s own

0; 0,5; 1 -

Initial contract
distribution

Contract distribution among agents at the
beginning of the simulation

Equal distribution
or all consumers
have contract A or
B (depending on
the policy)

-

threshold-
attitude

Measure of agent satisfaction with the cer-
tain contract. If the overall attitude is lower
than the threshold-attitude, agent decides
to change contract.

0.5 (fixed) -

contract-duration Contract time duration 12 months or in-
definite

-

Simulation variables depending on the parameterization
N Number of household agents, depends on

the policy
200 or 280 -

Available con-
tracts

The contracts that are available to the con-
sumers, depends on the policy

A,B,C,D,E,F,G or
B,C,E,F,G

-

Environmental
campaign

Determines whether or not an environmen-
tal campaign is introduced in month 40 de-
pends on the policy

Yes or no -

Agent-specific variables
we,wh,wb,wa Weight factors, as relative importance agent

gives to certain criterion (egoistic, hedonic,
biospheric, altruistic)

Chosen from uni-
form distribution
[0,1]

-

wSN Susceptibility factor: measure of the impor-
tance agent gives to the opinion of her social
network peers

0.5 -

techno-tolerance
threshold Accep-
tance level due
to perceived risks
associated with
smart metering
technology [1,11]

-

Contract-specific variable
aemin, aemax communicated range for financial savings See Table 4 Eurostat Statistics

Explained (2016)
ahmin, ahmax communicated range for comfort change See Table 4 Boardman et al.

(2005)
abmin, abmax communicated range forCO2 savings See Table 4 Covenant of May-

ors (2010)
aamin, aamax communicated range for social welfare See Table 4 Darby & McKenna

(2012)
techno-risks perceived technological risks [1,6] -

Table 3: Parameterization for the simulation experiments
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Figure 3: Average contract distribution.

Data analysis

4.5 The numerous individual decisions of agents to switch to a certain type of contract influences system level
outcomes: adoption of contract types, average financial savings and CO2 savings, comfort change and social
welfare. Since we are interested in the system level performance that emerges from lower-level properties and
processes, we focus our attention on these indicators and analyse the patterns due to change of policy and
scenario. Parameter values vary between runs due to the stochastics used during agents’ initialization and
model execution (see Table 2). To be able to arrive at realistic assessment of patterns observed in the simulated
system evolution, one needs to do a statistical analysis of the results of many runs.

Average contract distribution

4.6 Figure 3 depicts the average contract distribution among agents for each policy intervention and experiment
performed, discussed in the following section. In the sections therea�er, the average and standard deviation of
financial savings, comfort change,CO2 emissions savings and social welfare, is analysed, based on the 20 runs
performed. They are visualized in Figure 4 to Figure 7.

4.7 Regarding the contract distribution, we can observe and explain the following:

1. In all experiments performed, there is a major di�erence in the adoption level of contract A ("opt-out"
option and feedback once a year) and contract D ("administrative-o�") when comparing the mandatory
policy on the one hand, and the voluntary and environmental policy on the other hand. This di�erence
is caused by the fact that contract A and D are not available in the mandatory policy.

2. There are no significant di�erences in the adoption level of the contract types between the voluntary and
environmental policywithin a scenario even though onewould expect that the environmental policy and
the associated increase of biospheric consumers would yield a higher share ofmore advanced contracts.
This can be explained by the fact that the techno-tolerance threshold, as currently modelled, does not
varywith thearchetype, i.e. it has the samevalue for eacharchetype. Asa result, increase in thenumberof
biospheric consumers does not necessarily lead to increased adoption ofmore technologically advanced
contracts.

3. More technologically advanced contracts, such as contract F and G are highly adopted in all policies. This
is causedby the fact that theseare thebest-scoring contracts for 3outof the4 criteria that agents consider
in their choice.
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4. For the voluntary and environmental policy, consumers have a much higher adoption level of contract
C when contracts are initially equally distributed amongst agents (2nd and 4th scenario), than when all
agents have initially contract A (1st and 3rd scenario). This is explained by the fact that some people
tend not to switch away from their initial contracts since they remain satisfied over the course of the
simulation.

4.8 Figures 4-7 illustrates the impact of agents’ behaviour on the four criteria mentioned above: financial savings,
CO2 emissions savings, comfort change and socialwelfare, both the average value across thewhole simulation
period and all simulation runs (continuous line) and the spread around the average value (colour shaded area).
These results are discussed in the following sections.

4.9 Heterogeneity, as modelled in this paper does not prove to have impact on the average contract distribution.
This is due to the fact that egoistic, biospheric and altruistic agents have objectives which pull in the same
direction, in terms of contract type preference, i.e. agents who belong to these three archetypes will behave
similarly, whereas hedonic agents will act di�erently. As such, more technologically advanced contracts that
would yield higher energy and financial savings, would also result in higherCO2 savings and increased social
welfare.

Analysis of the system level performance indicators

4.10 In Figure 4 financial savings are lowest in the 3rd scenario, due to highest average adoption of contract B (feed-
back once per two months) in the mandatory policy and both contract A (feedback once a year with no smart
meter) and B in the voluntary policy. Similarly, highest financial savings can be observed in the 4th scenario, as
a result of highest adoption of contract G, as most technologically advanced contract and lowest adoption of
both contracts A and B across all three policies (see Figure 3). There is no significant di�erence in the financial
savings between the 1st and 2nd scenario. This means that when the contract duration is 12 months it does not
make a di�erence what the initial contract distribution is. The contract duration does however have an impact
if the contracts last indefinitely.

4.11 In scenario 3, highest financial savings are observed in the environmental policy and lowest in the voluntary
one, owing to higher adoption rate of contract F and G in the environmental policy (in comparisonwith the first
twopolicies) and lower adoption rate of contract A andB. In scenario 1, 2 and 4, the financial savings are highest
in the mandatory policy due to high adoption of contract G and low adoption of contract A.

4.12 Contrarily to the financial savings, one can observe lowest comfort reduction in scenario 3 and highest in sce-
nario4. Thesamereasoningholds, as in theanalysisof the financial savings, i.e. loweradoption level of contract
A and B, combined with higher adoption of contract G in scenario 4 results in highest comfort change for that
scenario.

4.13 Similarly to the financial and CO2 savings, highest increase in social welfare is observed in scenario 4 (for the
same reasons mentioned above). Nevertheless, the di�erence between this indicator and the financial and
CO2 savings is the increasing trend in the outcome of social welfare as moving from the mandatory policy to
voluntaryandenvironmentalpolicy in scenario 1, 2and3 (Figure7). This isdue to the factof contractA (feedback
provision once a year with no smart meter) having the same communicated range for the social welfare as
contract B and C (see Table 4 in the Appendix), i.e. increased adoption level of contract A in the mandatory
and environmental policy does not lead to decreased social welfare, as it was the case of financial and CO2

savings. Additionally, increased adoption of contract D (and to some extent contract E) in the last two policies,
comparing to the first one, yields increased social welfare. The adoption level of contract G does not seem to
significantly vary among the 3 policies.

4.14 Scenario 3 shows worst performance of this indicator due to the fact of having highest average adoption level
of contract A, B and C (see Figure 3), when comparing to the rest of the scenarios.

Techno tolerance and attitude satisfaction

4.15 Along with the system level performance, i.e. financial and CO2 savings, comfort change and social welfare,
we also observed the agents’ satisfaction, in terms of their perception towards potential risks associated with
single contract type (data privacy and security, health, etc.), but also agents’ overall satisfaction due to specific
attitude threshold, set up in the initialization.

4.16 Figure 8 illustrates agents’ satisfaction due to their perceived smart metering technology risks, as di�erence
between agent specific tolerance threshold and technology risk associated with the adopted contract. On this
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Figure 4: Financial savings.

Figure 5: Comfort change.

note, onemay observe that agentsmay be satisfied with their choice, in terms of overall contract performance,
nonetheless at the expense of the technology risks perceivedwith the chosen contract. The tolerance threshold
is initialized at the beginning as a random number drawn from a predefined set. In futuremodel development,
the tolerance threshold shall vary in accordance to the experience the agent has with the smart metering tech-
nology or the impact onemay have frommedia or experiences in her social network.

4.17 Furthermore, one may observe from Figure 8 that average agents’ tolerance satisfaction is worst in scenario 4,
owing to higher adoption of contracts F and G (asmost technologically advanced contracts and thus perceived
technological risks) and lower adoption of contract A. Similarly, highest tolerance satisfaction is observed in
scenario 3 due to lower adoption of contract F and G and higher acceptance of contract A, in comparison with
other scenarios. Moreover, in all 4 scenarios, the average techno tolerance satisfaction is the least for the envi-
ronmental policy.

4.18 Energy savings, CO2 emissions reduction and social welfare score highest for the environmental policy (Fig-
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Figure 6: CO2 emissions savings.

Figure 7: Social welfare.

ures4, 6 and 7) in scenario 3, which results in lowest techno-tolerance satisfaction, due to higher adoption of
contract F and G and lower adoption of contract A. Similarly, all performance indicators perform worst for the
voluntary policy, in scenario 4 (Figures 4-7), due to lower adoption level of contract G, in comparison with the
mandatory and environmental policy and higher adoption level of contract A, in comparison with the first pol-
icy. This also leads tohighest techno-tolerance satisfaction for the voluntarypolicy. Figure9depicts theaverage
attitude satisfaction, as di�erence between the agent’s general attitude regarding the certain contract and the
agent specific attitude threshold.

4.19 One may observe from Figure 9 that the average attitude satisfaction is similar among scenarios, and with no
significant di�erence among the three policies. What is evident however, is the negative average satisfaction
level in all the scenarios and for all policies, which indicates high average switching rate.
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Figure 8: Average techno-tolerance satisfaction.

Figure 9: Average attitude satisfaction.

Conclusions

5.1 The research question that the model aimed to answer is how smart metering technologies (and thereby en-
abled services) di�usion can be promoted under di�erent policy settings and how this technological di�usion
a�ect individual and societal performance indicators. The outcomes are not meant as predictions, but rather
an exploration ofmechanisms at play. Themodel cannot be classically validated as it discusses possible future
mechanisms, and as such it has been subject to expert validation.

5.2 Themost remarkable outcome is that granting the consumers with opt-out and "administrative-o�" option for
smart metering system resulted in increased number of consumers opting for a less technologically advanced
contract (i.e., contract A or D). Given our initial assumptions on population preference distribution, one may
conclude that addressing consumers concerns (such as data privacy and security) by granting themwith more
options, does not necessarily lead to higher energy and CO2 savings and ultimately higher consumers’ satis-
faction. During expert validation, this pattern has been recognized as realistic.
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5.3 This e�ect remained strong even under the environmental policy, where despite significant number of agents
becoming more environmentally concerned (i.e., having a higher weight for the biospheric criterion) system
level indicators, such as energy and CO2 savings remained lower, in comparison with the mandatory policy.
This result is due to significant adoption of contracts that do not require data sharing with DSOs (e.g. contract
A and D in the environmental policy) and thus do not present additional benefits, such as energy/financial sav-
ings due to dynamic pricing. Furthermore, technologically advanced contracts that yield higher benefits may
also be subject to technology concerns, as perceived by the consumers. As a result, average techno-tolerance
satisfaction appears to be lowest for the environmental policy, which is associated with high level of perceived
technological risk by the consumers for the adopted (more technologically advanced) contracts. Hence, it can
be argued that giving consumer more choices do not necessarily produce better system level results, which is
in line with psychological research. Schwartz &Ward (2004) claims that an abundance of choice is likely to pro-
duce worst decisions because people tend to simplify their choices to the point that the simplification hinders
their capability to opt for a good choice. In this regard, policies may need to target the information to the right
segment of population in order to avoid information overload.

5.4 Di�erently from the average techno-tolerance satisfaction, the average total-attitude satisfaction does not vary
greatly among policies and scenarios. For instance, agents experience highest techno-satisfaction in Scenario
3 (due to highest adoption level of contract A); nevertheless, the total-attitude satisfaction remains similar as
in the rest of the scenarios. This can be associated with the high diversity of the agents’ population (in terms of
agents’ archetype).

5.5 Furthermore, there is no significant di�erence in the average total-attitude satisfaction among the policies;
nevertheless, it appears tobeslightlyhigher in themandatorypolicy. Thismaybedue to the increasedadoption
level of contract A in the voluntary and environmental policy, i.e., agents opt for less attractive contracts due to
technological risks perceived formore attractive ones. Therefore, it can be argued that providing the consumer
withmore options (voluntary policy) does not necessarily lead to higher consumer’s satisfaction. Indeed, giving
consumers too many options (in our case contracts) to choose from leads the consumer feeling less satisfied
even a�er taking the decision (Schwartz & Ward 2004).

5.6 Hence, risks perceived by the consumers shall be approached as an early attention point, and in particular, the
ways in which their energy consumption data is used, by whom, and for which purposes. Information strate-
gies (e.g., environmental campaigns in the environmental policy) for increasing consumers’ awareness (e.g.,
towards environmental benefits) do not seem su�icient to e�ectively di�use the full potential of smart meter-
ing services, even in the case of targeting specific segment of population (e.g., biospheric archetype). Associ-
ated risks perceived by the consumers (e.g. data privacy and security) still remain hurdle towards adoption of
more advanced contracts. Therefore, policy interventions need to simultaneously address adoption barriers
and openly communicate potential concerns and treat them e�ectively (e.g. reassuring the consumer that she
cannot be disconnected without notice, ensuring that "administrative o�" actually means no metering data is
being exchanged, etc.).

5.7 To conclude, our results show some interesting policy implications. A good policy should be designed so as to
adequately inform (right and complete information) the consumer on the advantages and disadvantages of the
o�ered technological solution. The consumer can therefore feelmore comfortable in acceptingmore advanced
technologies and lower her technological concerns (e.g., lower techno concern for well-designed information
campaign âĂŞ not presently included in our current model). Consequently, this could lead to the consumer
feeling more satisfied.

Future Considerations

6.1 The famous quote by P.E. Box states that "Allmodels arewrong, but some are useful" (Box &Draper 1987). While
there are clear useful insights to be drawn from the current work, there are four important limitations that we
wish to address in the future.

6.2 First of all, total-attitude satisfaction stays below 0 in all the scenarios, i.e. agents are constantly dissatisfied,
which results in high switching rate. This can be explained by two facts: first, in our study, the experience the
agents get with each contract is modelled as exogenous variable, each time step randomly drawn from a pre-
defined set of values (defined in the contract) for each indicator, whereas the evaluation of the current contract
shall reflect upon learning e�ects from past experiences and adapt the current experience accordingly (e.g.
through adaptive set for each indicator). Second, the attitude threshold and techno-tolerance threshold are ex-
ogenous, fixed at the initialization of themodel. Fixed techno-tolerance thresholdmeans consumers disregard
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the contracts that arebelow their techno-tolerance threshold. Suchanapproachprevents the agent to consider
more "technologically risky" contracts at the expense of better outcome (in terms of energy savings, environ-
mental impact, etc.). The perception formore "technologically risky" contractsmay change over time, owing to
the experience an agent haswith her contract, whichwill ultimately result in adaptive techno-tolerance thresh-
old. Similarly, attitude threshold shall consider agents’ learning and adaptation and therefore be reflexive and
reactive to the environment. This certainly deserves attention in future developments of the model.

6.3 Third, futuremodel development shall considermore reflexive and reactive institutions, aswell as explore insti-
tutions emerging from agents’ behaviour. Finally, improving themodel with empirical data constitutes amajor
route for further development of the model.

Appendix

In the following, the agent-basedmodel developed in this paper is described using the ODD (Overview, Design
concepts, Details) protocol (Grimm et al. 2010).

Purpose

The purpose of this paper is to explore the di�usion potential of smart metering enabled services among a
population of interacting electricity consumer and to evaluate the impact of such di�usion on individual and
societal performance indicators.

Entities, state variables and scales

Central entity of the model is electricity consumer, representing individual household. Consumer agents are
characterised by: weight factors, memory retaining knowledge on the experience with the contract they cur-
rently own, aspiration threshold on the perceived technological risks and aspiration threshold on the overall
attitude ("threshold-attitude") towards certain contract. The weight factors we, wh, wb and wa describe the
criteria’s relevance (Menanteau & Lefebvre 2000) and the highest one determines the social aggregation i.e.
"archetype" each agent belongs to. The weight factors are normalized such that the sum of the weights equals
1.

At the same time, the four values of the weight factors represent the four criteria against which agents evaluate
and score contracts:

Financial savings, resulting from energy savings:

ae[AC] = Eaverage,saved[kWh] ∗ price
[ AC
kWh

]
(13)

Eaverage,saved[kWh] is the average monthly energy saved and price [ ACkWh ] is the electricity price.

Thermal comfort change:

ah[%] =
Tfinal[

◦C]− Tset[◦C]
Tset[C]

∗ 100% (14)

Tset[%] is the target thermostat temperature set by the agent and Tfinal[C] is the actual temperature occurred
due to behaviour change.

CO2 emissions reduction:
ab[tco2] = Eaverage,saved[kWh] ∗ erf

[ tco2
kWh

]
(15)

Eaverage,saved[kWh] is the average monthly energy saved and erf [ tco2kWh ] represents emissions reference fac-
tor4.

Social welfare – Demand factor is used as a proxy of how e�iciently the customer is using electricity during
defined time period (e.g. month), i.e.:

aa[%] =
(
1− Pmax[kW ]

Ppeak[kW ]

)
∗ 100% (16)
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Pmax[kW ] is the maximum load used in a given time period (i.e. month) and Ppeak[kW ] is the peak power
during time period of one month, corresponding to the contracted capacity of the household5. Low demand
factor means less system capacity is required to serve the connected load.

Temporal resolution of the model is monthly time step, whereas the spatial resolution is abstract. Contracts
have a fixed position in a rectangular plane and agents move within the space by changing contracts.

Process overview and scheduling

The model consists of the sub-models "experience with certain contract" and "opting for new contract", which
areexecutedconsecutively at each timestep. Within the first sub-model, agents change their state variablesdue
to: experience theyhavewith certain contacts andagent specific aspiration threshold. Basedon theexperience,
agent formsanattitude towards a certain contract and relative to her aspiration threshold-attitude; shedecides
to eventually switch to di�erent contract. In the second sub-model, agent develops an overall attitude towards
each contract under evaluation, built upon consumer’s personal preferences and opinion of peer agents, and
opts for the highest scoring contract. The process overview is defined in Figure 2 and all agents follow the same
decision making structure.

Design concepts

In our model, we apply basic principles of three scientific theories: goal framing theory, social network theory
and theory of planned behaviour. Goal framing theory (Lindenberg 2001; Fetchenhauer et al. 2006; Lindenberg
2008; Lindenberg & Steg 2007) postulates that goals "frame" theway people process information and act upon
it. Three goal frames are distinguished: a hedonic, gain, and normative goal frame. In this context, we charac-
terise agents as egoistic (gain), hedonic, biospheric and altruistic (normative goals).

Social network theory focuses on interaction of people, organizations or groups inside their network. The so-
cial network defines social ties, as information-carrying connections between households. This informs agents
about the experience and attitude of their peers regarding certain contracts. Consequently, social influence can
a�ect households’ decisions in adopting certain contract.

Contract adoption is partly based on the Theory of Planned Behaviour (Ajzen 1991), which underlines agents
’decision to adopt certain contracts. According to this theory, an adoption decision depends on both adopter’s
preferences and her peers’ decisions.

Temporal aspects in the decision process

Past experience is incorporated in the representation of the agents ’memory and used in the decision making
process of contract change/adoption. Also, temporal aspects are introduced in the time step t = 40months, as
representation of policy change at certain time step (e.g. environmental policy, as explained in Section 3).

Sensingof householdagents occurs through social ties of the social networkgraph. Agentsperceive theattitude
of their peers regarding a certain contract and consider this social influence in their decision (Equation 10). Also,
agents sense theperformance indicators, communicatedby the contracts, in termsof financial savings, comfort
change,CO2 savings and social welfare.

Interaction occurs through social influence between household agents interconnected in the social network. In
such network, agents communicate directly with each other and the interactions depend on the heterogeneity
level and susceptibility. Each agent communicates directly to a number of randomly chosen agents. The het-
erogeneity determines howmany of these agents are of the same and di�erent archetypes. Agent’s behaviour
(ultimate decision on contract type adoption) may be influenced based on the experience the other agents in
the social network have with certain contract and the value she gives to the opinion of those other agents (i.e.
susceptibility).

Stochasticity appears in four aspects. First, the social network is randomly created each time step when agents
evaluate setof contracts, i.e. agents communicatewith randomlyselectedpeers fromheranddi�erentarchetype.
Second, agents’ archetype is determined by randomly assigned weight. Third, at each time step, agent consid-
ers to change contract, based on the experience with certain contract (which is a random value drawn from
communicated range of that contract). Last, the techno-tolerance 26 threshold is randomly generated inside a
pre-defined range and initialised at the beginning of the simulation.
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Observation

Overall financial savings, CO2 emissions reduction, social welfare and thermal comfort are collected at the
end of the simulation to analyse the impact of contract distribution on the system level performance for each
policy and scenario. On this note, average contract distribution is alsoobservedat each time step tounderstand
the reasoning behind the contract adoption patterns and influencing factors (incentives, social influence, etc.).
Finally, average technology satisfaction and average attitude satisfaction have been analysed in each policy
and among scenarios to understand the link between system level performance (in terms of financial savings,
CO2 emissions reduction, etc.) and the agents’ satisfaction level. A distinct pattern of distribution of contracts,
system level outcomes and satisfaction level emerges.

Initialisation

Model initialisation follows three successive steps: creating household agents, generating the social network
and setting the state variables of themodel. Each agent is assigned randomweight for each of the four criteria.
This means that also the archetype she belongs to is randomly assigned. Next, the peers each agent communi-
cates with are randomly chosen from her social network.

Finally, the state variables (mentioned in Table 3) are initialised for each agent and contract type. Weighting
factors, threshold-attitude, susceptibility and heterogeneity are assumed not to change during the simulation
period, whereas the memory varies according to the experience the agent has in each time step. The techno-
tolerance threshold is initialised at the beginning of the simulation and randomly chosen from a predefined
range. Contracts are assumed to be initially equally distributed among the agents and further experiments
with di�erent initial contract distribution are also tested in Section 4. Each contract is characterised with con-
tract duration, communicated range for each criterion and perceived technological risk. The communicated
ranges for financial savings assumed average energy savings between 0 and 10% from contract A to G, respec-
tively (Box & Draper 2006; Van Elburg 2014). The analysis of electricity prices for households is based on prices
for the medium EU standard household consumption band, namely one with annual electricity consumption
between 2500 and 5000 kWh (Eurostat). We have considered an average annual household consumption of
3600 kWh/year or 300 kWh/month in our analysis. The average price of electricity for household consumers in
the EU- 28 (the prices for each EUMember State areweighted according to their consumption by the household
sector for 2013) was EUR 0.208 per kWh (Eurostat).

We express comfort change as a temperature deviation relative to the target thermostat settings. Comfort can-
not be defined absolutely; however the World Health Organization’s standard for warmth indicates 18◦C as
suitable temperature for healthy peoplewho are appropriately dressed. For thosewith respiratory problems or
allergies, they recommend a minimum of 16◦C; and for the sick, disabled, very old or very young, a minimum
of 20◦C (Organisation 1990). According to a study by housing expert RichardMoore (see Boardman et al. 2005),
comfortable indoor temperature lies within a range of [18◦C − 21◦C]. We have considered a temperature of
20◦C as a target thermostat setting and gradually reduce it to a minimum of 17◦C in the case of contractG. As
for theCO2 emissions savings, the EUCovenant ofMayors reports a valueof 0.460 (t CO2/MWhe) as standard
emission factor and 0.578 (tCO2− eq/MWhe), as LCA emission factor6, for EU 27 (Covenant of Mayors 2010).
In our model, we have used a value of 0.5 t CO2/MWhe as standard reference factor.

Finally, demand factor was used as a proxy of social welfare. One shall note here, that the social welfare, in our
model, is mainly linked to security of supply, since lower demand factor leads to more flatten household load
profile and thus contribute towards enhanced energy usage and reduced outages in the neighbourhood. We
have used peak load reduction between 10%due to demand response andmaximum50%due to both demand
response and renewable energy self-consumption for contractG (Darby & McKenna 2012). Table 4 provides an
overview of the communicated ranges for each contract type.

Sub-model: Decisionmaking on switching to di�erent contract

The twomain processes in our model are: 1) decisionmaking on switching to di�erent contract (decision crite-
rion: agent’s attitude is below the threshold-attitude) and 2) decisionmaking on which contract to be adopted
(decision criterion: agent’s personal preferences and opinion of social network peers).

Each time step, agents have random probability to decide whether to consider contract change. This is due to
the agent’s experience with certain contract being modelled as a random value within a range, communicated
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Contract Financial savings [AC] Comfort change [%] CO2 emissions savings [t] Social welfare [%]

A [0; 0.1] [0; 0.1] [0; 0.5] [10; 20]
B [0.54; 0.66] [0; 0.1] [1; 2] [10; 20]
C [0.54; 0.66] [0; 0.1] [1; 2] [10; 20]
D [1.08; 1.32] [-6; -4] [2; 4] [20; 30]
E [2.2; 2.6] [-12; -8] [5; 7] [20; 30]
F [3.2; 4] [-12; -8] [8; 10] [30; 40]
G [5; 7] [-17; -13] [12; 16] [40; 50]

Table 4: Communicated ranges for electricity contracts

in the contract. The randomization is associated with lack of empirical evidence on the actual experience elec-
tricity consumers have with certain type of contracts. Moreover, some of the contracts described in our paper
are not yet available on the market.

Once the agent gets experience with certain contract, the same is memorised in the agent’s memory, and the
memory is updated considering the new experience, as formulated in Equation 5. Based on the updated score
in the memory and agent’s specific weighting factors, the household consumer comes out with an overall atti-
tude towards certain contract, as stated in Equation 7. This overall attitude and agent’s satisfaction threshold
accounts for the ultimate agent’s decision to switch to a di�erent contract or stay with the current one. Agents
also consider switching to di�erent contract, in case the current one has terminated, i.e. at the end of each 12th
time step.

Sub-model: Choosing contract from portfolio of contracts communicated by the sup-
plier

This sub-model represents the decision framework for adopting a new contract, based on: multiple choices
agents get from the supplier, agent’s specific preferences, experience of other agents belonging to her social net-
work and the importance the agent gives to the experience of her peers’ agents (level of susceptibility). The adop-
tion decision is modelled as multi-criteria problem and follows the same structure for all agents. The agent
receives a portfolio of contracts and based on her perception of technological risks associated with each con-
tract ("techno-risks") and agent’s specific aspiration threshold ("techno-tolerance threshold"), the agent eval-
uates only contracts with perceived technological risks above her aspiration threshold, whereas the rest are
discarded. The evaluation process includes: agent’s personal attitude, as sum of the weighted communicated
scores on each criterion (Equation 9) and attitudes of peers agents regarding each contract under evaluation,
i.e. social influence (Equations 10 and 11).

Finally, the best scoring contract is the one to be adopted (Equation 12).

Notes

1http://ses.jrc.ec.europa.eu/smartregions
2Under this option in the Netherlands, the consumer does not remotely exchange consumption data infor-

mation with the supplier or any third party and cannot be remotely disconnected
3Access to the model granted on request.
4CO2 emissions reference factor indicates the emissions of the systemmarginal unit (i.e. the unit with high-

est marginal cost), expressed in tonnes ofCO2 per kWh.
5Contracted amper capacity is an indication of the volumeof electricity that household can use at any single

time.
6Methodwhich takes into consideration the overall life cycle of the energy carrier, i.e. not only the emissions

of the final combustion, but also all emissions of the supply chain.
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