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Hear-and-avoid for UAVs using convolutional neural
networks

Dirk Wijnker, Tom van Dijk, Mirjam Snellen, Guido de Croon and Christophe De Wagter∗

Delft University of Technology, Kluyverweg 1, 2629HS Delft, the Netherlands

ABSTRACT

To investigate how an Unmanned Air Vehicle
(UAV) can detect manned aircraft with a single
microphone, an audio data set is created in which
UAV ego-sound and recorded aircraft sound are
mixed together. A convolutional neural network
is used to perform the air traffic detection. Due
to restrictions on flying UAVs close to aircraft,
the data set has to be artificially produced, so
the UAV sound is captured separately from the
aircraft sound. They are then mixed with UAV
recordings, during which labels are given indi-
cating whether the mixed recording contains air-
craft audio or not. The model is a CNN which
uses the features MFCC, spectrogram or Mel
spectrogram as input. For each feature the ef-
fect of UAV/aircraft amplitude ratio, the type of
labeling, the window length and the addition of
third party aircraft sound database recordings is
explored. The results show that the best perfor-
mance is achieved using the Mel spectrogram
feature. The performance increases when the
UAV/aircraft amplitude ratio is decreased, when
the time window is increased or when the data set
is extended with aircraft audio recordings from
a third party sound database. Although the cur-
rently presented approach has a number of false
positives and false negatives that is still too high
for real-world application, this study indicates
multiple paths forward that can lead to an inter-
esting performance. In addition, the data set is
provided as open access, allowing the commu-
nity to contribute to the improvement of the de-
tection task.

1 INTRODUCTION

More and more UAVs are entering the air every day, both
for professional as well as for recreational purposes. Safety
and regulations are subjects undergoing intense study nowa-
days in the UAV industry, as UAVs form a hazard for people,
other (air) traffic, buildings, etc. For this research, the focus
is on the collisions between UAV and air traffic, which are
still possible to occur. For example, emergency helicopters

∗Email address(es): c.dewagter@tudelft.nl

sometimes fly low in UAV-permitted airspace. Part of this
problem can be solved by establishing (and following) good
rules and laws, but also technology can help out. Technol-
ogy becomes even more important when UAVs have to oper-
ate fully autonomously, as required by many future applica-
tions. A project initiated by Single European Sky ATM Re-
search (SESAR) that aims to increase air traffic safety regard-
ing to UAVs is called Percevite1. Using multiple lightweight,
energy-efficient sensors obstacles should be avoided to pro-
tect UAVs and their environment. One such a sensor is a mi-
crophone, which fulfills the task of ’hear-and-avoid’, mean-
ing that it should detect and avoid air traffic by sound. The
goal of this research is to create a safer airspace by creating
this hear-and-avoid algorithm.

Figure 1: The acoustic camera on the runway of Lelystad
Airport.

The first feasibility study for hear-and-avoid has been per-
formed by Tijs et al [1]. In this research an acoustic vector
sensor is used to detect other flying sound sources. Two co-
authors, De Bree and De Croon [2], have used an acoustic
vector sensor in order to detect sound recorded on a UAV for
military purposes. However, neither works have used deep ar-
tificial neural networks to separate aircraft and UAV sounds.
Moreover, there are two research groups that have tried to
identify the position of other UAVs using sound recorded
from a UAV. Basiri et al. [3, 4, 5, 6] try to determine the po-
sition of a UAV in a swarm of UAVs. The transmitting UAV
sends a chirp sound in the air that has frequencies different
than the UAV’s ego-sound, which can be picked up quite well

1www.percevite.org
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while flying. Also, they do tests with engines of the receiving
UAV turned off and the transmitting UAVs not transmitting
the chirp anymore. Also here, based on the engine sounds
of the transmitting UAV its location can be determined. The
hear-and-avoid algorithm can be seen as a follow up of these
researches, as they have not managed to identify other air
traffic by its original sound while also having the engines
turned on. Harvey and O’Young [7] show that with two mi-
crophones, the detection of another UAV can be performed at
such a distance that is double the distance to prevent head-on
collision. Furthermore, research is performed focusing only
on the UAV sound by Marmaroli et al. [8]. They have created
an algorithm that is able to denoise the ego-sound of the UAV
based on the knowledge about the propellers’ revolutions per
minute (RPM).

One of the reasons that there is not a large amount of re-
search performed on audio analysis for UAVs is that there are
alternatives that provide traffic information, such as ADS-B,
GPS, vision, etc. However, all alternatives have their disad-
vantages and do not fully eliminate the chance of a collision.
For example, ADS-B requires a system in an aircraft that
is not always present or turned on. For vision based sense-
and-avoid its images can be disturbed due to speed, rain, fog,
darkness, objects, etc. Sound, on the other hand, is inevitable
for motorized aircraft, so it is a promising method. More-
over, microphones are lightweight, easy to use, omnidirec-
tional and only weakly influenced by weather. The challenge
that sound brings in this application is that many different
sounds are present, such as the UAV’s ego-noise, wind, air
traffic and environmental sounds.

In this research the following situation is studied: a UAV,
which is carrying a single microphone, flies around and
should detect incoming or passing aircraft based on sound.
The detection of aircraft will be realized by means of a convo-
lutional neural network (CNN) due to their promising perfor-
mance on sound in [9],[10] and [11]. The representative data
set that is needed, which consists of audio recordings taken
on a UAV including aircraft sound, does not exist yet and
therefore needs to be artificially created. The CNN uses three
audio features as input: Mel Frequency Cepstral Coefficients
(MFCCs), spectrograms and Mel spectrograms. Four vari-
ables are changed in the data sets to discover their influence:
the window length, the amplitude ratio UAV/aircraft, the type
of labeling and the use of third party database recordings.

The remainder of the article is structured as follows. The
generation of the data set is explained in section 2, including
how the individual sound recordings are obtained, how those
are processed and mixed to recordings that include both UAV
and aircraft sound. Secondly, the features and the model are
described in section 3. The results for each of the models are
shown in section 4 and discussed in section 5.

2 AUDIO ACQUISITION

This research needs a database that contains audio record-
ings, recorded on UAVs, of the UAV’s ego-sound and closely
approaching aircraft. Such a database does not exist yet and
therefore it is created for this purpose. The database consists
of (preprocessed) sound recordings (of UAVs, aircraft and ro-
torcraft) and labels, which indicate whether only UAV sound
is present or UAV and aircraft sound are present.

2.1 Sound recordings
The laws on UAVs prevent the UAV to come in the vicin-

ity of an aircraft. In order to still have a representative
database of UAV sounds that include passing aircraft, the
UAV sounds and aircraft sounds are recorded separately and
mixed afterwards. Three types of recordings have been used:
self-made recordings using a microphone on a UAV, general
aviation aircraft recordings using a microphone array and air-
craft recordings obtained from a third party audio database.

2.1.1 Recordings of the UAV sounds

The UAV sounds are recorded in the Cyberzoo of the TU
Delft. This is a protected area for UAVs to be safely and
legally flown at the university. An 808 micro camera2 is
placed under a Parrot Bebop UAV, so that its body already
blocks part of the UAV’s ego-sound. Between the UAV and
the microphone, foam is used to absorb the mechanical vibra-
tions. During the recordings, the UAV performed rotations
and movements around its pitch, roll and yaw axes at differ-
ent speeds. After recording, the data is cropped to remove
the silences at the beginning and at the end. These record-
ings are complemented with audio recordings from a mobile
phone that filmed the UAV from a close distance. Effectively
a total of 20 minutes of UAV recordings are used.

2.1.2 Recordings of general aviation flights

Since the most probable group to come in contact with UAVs
is general aviation (GA) rotor- and aircraft, flyover data has
been obtained at the biggest GA airfield of the Netherlands,
Lelystad Airport, in collaboration with the Aircraft Noise and
Climate Effects (ANCE) section of the TU Delft.

As Lelystad airport is expanding to a larger airfield, the
runway is extended, but the new part is not in use yet. This
part of the runway is therefore a perfect place to obtain
recordings as the aircraft would fly straight over the so-called
”acoustic camera”.

The acoustic camera, designed and built by the TU Delft
[12], consists of an array with 8 bundles of 8 microphones3.
The bundles are arranged in a spiral shape for optimal beam-
forming purposes. The microphones are covered in a foam
layer to decrease the noise due to wind. Moreover, the array

2http://www.chucklohr.com/808/
3Model: PUI AUDIO 665-POM-2735P-R
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is covered in foam in order to absorb ground reflections. All
the bundles are connected to a Data Acquisition Box (DAQ)
which samples the data at 50 kHz and sends it to the con-
nected computer. Not only the DAQ is connected to the com-
puter, but also an ADS-B receiver in order to receive aircraft
position information. However, the ADS-B did not produce
useful information as none of the GA aircraft broadcast ADS-
B information. Moreover, a mobile phone camera is placed in
the center of the array to capture the flyover on video, but this
data is not used for this research. The setup of the acoustic
camera is shown in Figure 1.

In total 75 recordings are obtained, which consist of back-
ground noise recordings and flyovers. One recording some-
times consists of more than one flyover. Effectively, 75 GA
aircraft and 9 helicopter flyovers are captured. The back-
ground noise consists of microphone noise, noise due to wind,
distant traffic and a distant motor race track.

For this research only the recording of one microphone
is necessary, so from only one microphone the recordings
are extracted. Every microphone is checked to make sure it
worked correctly. One of the 64 microphones is faulty, so its
data is not used.

2.1.3 Recordings obtained from a third party audio
database

With regard to creating a data set that is representative for the
possible air traffic sounds that a UAV could encounter, it had
to consist of more than only flyover data. For example, other
background noise could influence the detection performance.
Therefore also a (free) audio database4 is consulted to obtain
helicopter and (propeller) aircraft sounds. Only the sound
samples that are of sufficient quality and which are not mixed
with (too much) other background noise are selected.

2.2 Data preprocessing
All the separate recordings are manually modified before

adding them together. Some UAV recordings contained heavy
vibrations of the tape that held the microphone. Those record-
ings are removed from the data set. For both the UAV record-
ings and the third party database recordings the silent/fading
start and end are cut out. The recordings obtained at Lelystad
airport do not require this as the parts that do not include
aircraft sound are used as background noise. Instead, we
manually labelled every second in the recording, indicating
whether it consists of only background noise or include air-
craft sound. The recordings from Lelystad Airport include
noise introduced by the microphones and the wind. A first
order Butterworth low-pass filter is used to remove most of
the noise. Most of the time the aircraft sound information is
in the frequency region lower than 100 Hz. Only during a
flyover aircraft sound information comes above this value. In
order to capture the higher frequency content during a flyover

4https://freesound.org/

but also remove much of the noise during the rest of the time,
the cut-off frequency is set on 2.5 kHz.

All the recordings are resampled to a sample rate of 8
kHz as there is no important information present above the
Nyquist frequency of 4 kHz and it decreases the size of the
data set significantly, which shortens the computational time.
Secondly, the sound recordings are normalized by scaling the
amplitude between -1 and 1, so that the amplitude of two
recordings is similar. Before mixing aircraft and UAV sounds,
also data augmentation is applied to all the separate aircraft
and UAV recordings in order to increase the size of the data
set, which increases the performance of the model. Three
types of data augmentation are applied: addition of white
noise, increase in pitch and decrease in pitch. The white noise
is a randomly generated Gaussian distribution with mean 0
and a variance of 0.005. The pitch is increased and decreased
by two semitones on the 12-tone. An increase of two semi-
tones relates to 12/2

√
2 ≈ 1.12 times the original frequency.

After augmentation, the data set is four times its original size,
one original data set plus three augmented data sets.

2.3 Mixing the recordings

In order to get sound samples that include both aircraft
and UAV sound, the following mixing procedure is used.

First, the whole data set is split up in a test set and in a
training set. All the augmented versions of a sound sample
are always in the same set as their original sound sample to
ensure that the two sets are uncorrelated.

Secondly, each recording from Lelystad airport is com-
bined with a randomly selected UAV recording of the same
set. In some (part of the) recordings only background noise
is present. This background noise is necessary since without
the noise, the model might classify every sound which is not
UAV sound as aircraft sound. Mixing consists of adding a
segment of the Lelystad airport sound sample, which has a
random length, to one of the UAV recordings on a random
starting position. If the starting position plus the length of
the segment is longer than the length of the UAV sound sam-
ple, the added segment is cut off at the end of the UAV sound
sample. The mixed sample therefore never exists of only air-
craft sound. The total length of each mixed sample is equal to
the length of the UAV recording, which is different for each
recording.

Mixing the third party database recordings is done
slightly different than the method described for the Lelystad
recordings because the third party database recordings always
exist fully of aircraft sound. The difference between the two
mixing methods is that not only a part of the recording is
added to the UAV sound sample, but the whole recording is
added instead (at a random starting position).

The detection model in this paper requires the inputs to be
of equal length (more on this in subsection 3.2). As this is not
the case for the combined samples, the third step is to cut the
combined samples to equal lengths. To maximize the amount
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of data in the sets, the cutting length is set on 51 seconds,
which is equal to the length of the shortest combined sound
sample.

The amplitude ratio when mixing the UAV and aircraft
sound is not always 1:1. In this work, four UAV/aircraft am-
plitude ratios will be used, namely 0:1 (which means no UAV
sound), 1:1 (equal amplitudes), 1:4 (aircraft sound amplitude
is four times larger) and 1:8 (aircraft sound amplitude is eight
times larger). Most of the time, a ratio of 1:4 is used. This
ratio is obtained as follows. Assuming the average Sound
Pressure Level (SPL) of a UAV at one meter distance is 76
dB5 and that of an aircraft at 300 meters distance is 88 dB6,
the difference between the SPLs of the two sounds is 12 dB.
Equation 1 shows how the SPL is calculated from the pres-
sure p1 (which is the amplitude in the waveform) of a sound
and a reference pressure p0. Taking the amplitude of the UAV
waveform as reference pressure and the aircraft waveform as
p1, an SPL of 12 is obtained when the aircraft waveform is 4
times larger. If the ratio 1:4 is corresponding to an airplane
on 300 meters distance, 1:1 corresponds to a distance of 1200
meters and 1:8 to a distance of 150 meters, following Equa-
tion 2. In this equation, r2 is the distance of interest, r1 the
original distance, SPL1 the SPL at r1 and SPL2 the SPL at
r2.

SPL = 20 log
p1
p0

(1)

r2 = r1 · 10
|SPL1−SPL2|

20 (2)

2.4 Labels
Each second of a mixed sample is given a binary label,

indicating whether there is other aircraft sound present (1)
or not (0). The recordings from Lelystad airport are labeled
manually before mixing. There are two types of labeling,
called nearby detection labeling and distant detection label-
ing. Nearby detection labeling is partly based on listening
to the sound, and partly on looking at the spectrogram. The
spectrogram, which is shown in Figure 2 and elaborated on
in subsubsection 3.1.2, shows the amount of frequency con-
tent over time. Nearby detection labeling gives label 1 when
a peak is visible in the spectrogram. By ear this is noticeable
as more high frequency content is heard.

Distant detection labeling is purely based on hearing. The
frames in which a human is able to separate noise from air-
craft sounds are labeled 1. This time it cannot be based on the
spectrogram as the aircraft sound is either not visible on the
spectrogram (when it is blended in too much with the back-
ground noise) or it is visible (as a line on a single frequency
caused by the propeller’s rotational speed) but the background
noise is louder than the aircraft sound. An example of the lat-
ter is shown in Figure 3, at which the horizontal line around
100 Hz is also present when no label is given.

5https://www.youtube.com/watch?v=uprXhH6-FNI
6http://airportnoiselaw.org/dblevels.html

Figure 2: Spectrogram of a flyover recording. The exact fly-
over is between 100 and 110 seconds, which can be recog-
nized by a yellow peak and a Doppler shift around 100 Hz.
Also before and after the peak the aircraft sound is present,
which is visible by the horizontal line around 100 Hz.

The time instances that are not labeled one are labeled
zero, so also the background noise from the Lelystad record-
ings is given the same label as when there is no other aircraft
sound present. In Figure 3, the areas in the spectrogram that
are labeled as 1 are indicated in red for nearby detection la-
beling and green for distant detection labeling.

For the third party sound database, the whole aircraft
recording is always labeled as a one, as each of the sound
samples is selected on only having aircraft sounds. Again, all
the time instances in the mixed recording that are not one are
labeled zero.

3 AIRCRAFT AUDIO EVENT RECOGNITION

The aircraft sound will be detected by a framework that
exists of a feature extractor and a classifier. The features
capture important sound information and reduce the dimen-
sionality of the data. They are the inputs for the classifier.
Thereafter the classifier determines whether the sound sam-
ple contains aircraft sound or not.

3.1 Feature extraction
Three features are extracted from the combined sound

samples using Python library Librosa [13]. First there are the
Mel Frequency Cepstral Coefficients (MFCCs) [14], which
are chosen because of their popularity in one of the biggest
domains in machine hearing, Automatic Speech Recogni-
tion (ASR). The two other features, the spectrogram and Mel
spectrogram, are visual representations of the sound samples.
Content-based analysis of images is already quite developed
[15], therefore the image of a sound might be a good starting
point.

For every feature, each frame in the time dimension has a
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Figure 3: Spectrogram showing nearby detection labeling
(red) and distant detection labeling (green).

length of one second. One second is a rather large frame but it
chosen to reduce in dimensionality. The window moves over
the sound sample with a step of one second. All the sound
samples are 51 seconds long, thus from each sound sample
51 separate frames are obtained in the time dimension.

3.1.1 MFCC

The cepstrum is a domain which represents the rate of change
in multiple frequency bands. MFCCs are the coefficients of
which the cepstrum is composed. It has the ability to sepa-
rate convoluted signals in the time domain7. This domain is
therefore often used in speech recognition, to separate the vo-
cal pitch and the vocal tract. The coefficients are obtained by
taking the logarithm of the amplitude spectrum, converting
this to the Mel scale and taking the Discrete Cosine Trans-
form (DCT). The Mel scale, which is expressed as a function
of frequency (f ) in Equation 3, is a scale that approximates
the human perception of frequency. This scale emphasizes
the low frequencies (<1 kHz), which is also the frequency
range in which most of the UAV/aircraft sound information is
present. The full transformation from time domain signal to
MFCC is shown in Equation 4 [16].

M(f) = 2595 log

(
1 +

f

700

)
(3)

MFCC(d) =

K∑

k=1

(logXk) cos

[
d

(
k − 1

2

)
π

k

]

for d = 0, 1, ..., D

(4)

In this equation Xk is the Discrete Fourier Transform
(DFT) obtained in Equation 5 of which the frequency belong-

7http://research.cs.tamu.edu/prism/lectures/sp/
l9.pdf

ing to each k is warped to the Mel scale by Equation 3. D is
the total number of coefficients and N the number of data
point in the time frame. The number of coefficients used in
this research is 20.

Xk =

N−1∑

n=0

Xne
− 2πi

N kn for k = 1, 2, ..., N (5)

3.1.2 Spectrogram

Spectrograms are visual representations of the energy per fre-
quency plotted against time, of which the Mel spectrogram
uses the Mel scale of Equation 3 on the frequency axis. A
typical flyover spectrogram (without UAV sound), is shown
in Figure 2. In this figure the point where the aircraft is pass-
ing the array is between 100 and 110 seconds, which is visible
with the large yellow peak and a Doppler shift (the sigmoid-
shaped line around 1 kHz). It also shows that when the air-
craft is further away, it lacks in high frequency content (due to
atmospheric attenuation). That means most of the time only
the aircraft’s low frequency content is heard by the UAV in
combination with low frequency noise.

The spectrograms are calculated following Equation 6,
which is the magnitude to the power p of the Short-Time
Fourier Transform (STFT). Usually the Power Spectral Den-
sity (PSD) is chosen, for which p = 2. It uses a window
function w[n], in this case the Hann window of one second,
of which m is the index of the position in the window func-
tion with length N , discrete frequency k, signal x[n] at time
n.

Spectrogram =

∣∣∣∣∣
∞∑

n=−∞
x[n]w[n−m]e

−i2πkn
N

∣∣∣∣∣

p

(6)

3.2 Model
The previously described features are the input for a deep

artificial neural network: the convolutional neural network
(CNN). It has shown best performance for sound event recog-
nition tasks in [9],[10] and [11]. The basic CNN used in this
research is shown in Figure 4. The network is created with
the Python libraries Keras [17] and Tensorflow [18].

Even though the features consist of 51 second of
UAV/aircraft sound, the input for the CNN is a smaller time
window which slides over the time axis. The smaller time
window is used as otherwise the detection output of a frame
could be depended on data from later frames, due to the fully
connected layer. Multiple window lengths are used, as shown
in section 4. In the basis, however, the window size is three
seconds. This window slides over the feature’s time axis with
a step of one second.

The first layers of the CNN are convolutional layers.
There are two subsequent sets of layers, each consisting
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Figure 4: Architecture of the CNN. The input is a mov-
ing time window over the spectrogram, Mel spectrogram or
MFCC. The output a binary value indicating whether aircraft
sound is present or not.

Table 1: Model parameters of the CNN from Figure 4.

Parameter CNN
Convolution units first set 32
Convolution units second set 64
Kernel size 3x3
Pooling size 2x2
Dropout probability 1 0.25
Dropout probability 2 0.5

of two convolutional layers, followed by a max pooling
layer. The convolutional layers use the Rectified Linear Unit
(ReLU) as activation function and it applies zero padding to
the input. After the two sets, the output is flattened in order to
be able to connect it with the output layer, a fully connected
layer. For the output, a sigmoid activation function is used,
which scales the output (as a float) between 0 and 1. The bi-
nary discrimination threshold determines whether this output
becomes a 1 or a 0, so whether an aircraft is present or not,
respectively. The network is based on [11] and its parameters
are modified based on preliminary test results.

Training the network is performed by means of a binary
cross-entropy loss function and the Adam optimizer [19]. The
Adam optimizer parameters are the same as in the original
paper, so a learning rate of 0.001, β1 = 0.9, β2 = 0.999,
ε = 10−8, and no decay. After each pooling layer, dropout is
used in order to prevent overfitting of the training data. The
parameters for the CNN are shown in Table 1.

4 RESULTS

Each feature is combined with the CNN, so in total three
models are tested. They are trained and tested on multiple
data sets, which are listed in Table 2. To check the influence
of certain parameters in the data set or in the model, four pa-
rameters are altered during the runs: the window length, the
labeling type, the ratio in amplitude between the UAV and air-
craft sound and whether third party database recordings and
Lelystad airport recordings are used or only the Lelystad air-
port recordings.

There is one basis run, for which the window length
is 3 seconds, the labeling is nearby detection labeling, the
UAV/aircraft ratio is 1:4 and there are no third party database

Table 2: Overview of the variables that are changed for each
run, including their corresponding values and the values of
the standard case, the basis run.

Variables Basis
values Variations

UAV/Aircraft ratio 1:4 0:1 1:1 1:8

Third party
database used No Yes

Labeling type
Nearby detection
labeling

Distant detection
labeling

Window length (s) 3 10 15 20

Table 3: The number of each run with their corresponding
changed variable and the corresponding value.

Run # Variation
1 UAV/Aircraft ratio: 0:1
2 UAV/Aircraft ratio: 1:1
3 Basis run
4 UAV/Aircraft ratio: 1:8
5 Database used: Yes
6 Distant detection labeling
7 Window length: 10
8 Window length: 15
9 Window length: 20

recordings involved. For all the other runs, only one variable
of the basis run is changed each time.

The window length is either 3, 10, 15 or 20 seconds. The
Lelystad airport recordings are labeled manually, in two man-
ners, as explained in subsection 2.4. For distant detection
labeling the training is performed with distant detection la-
beling and the testing is performed with nearby detection la-
beling. The idea behind this method is that the model could
learn aircraft sound when it is not so obviously present, so that
detection when the aircraft is obviously present is outstand-
ing. The amplitude ratio between the UAV and the aircraft is
tested when no UAV sound is present, and for the ratios 1:1,
1:4 and 1:8. Lastly, the third party database sounds are either
added to the data set or omitted.

From here on, each specific run is indicated by the number
of the run given in Table 3. The performance of the models
is compared for each of the variables (window length, label
type, etc.). This comparison is based on the Receiver Op-
erating Characteristic (ROC) curve. The ROC curve shows
the True Positive Rate (TPR) against the False Positive Rate
(FPR) for all possible binary discrimination thresholds. The
area under the curve (AUC) is a measure of accuracy of the bi-
nary classifier. In this research specifically, especially the re-
gion of low FPR is important, as it shows how many times the
UAV would falsely decide to warn the operator or descend.
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For each point on the ROC curve the desirable discrimination
threshold can be extracted, which determines whether the out-
put from the model is classified with label 1 or label 0.

4.1 Influence of the UAV/aircraft ratio
Runs 1, 2, 3 and 4 are simultaneously plotted for the

CNNs in Figure 5. In general, the best performance is
achieved for the cases where there is no UAV sound present
(run 1). If the UAV’s ego-sound is added to the aircraft sound
with an amplitude ratio of 1:1 (run 2), the performance is
the worst in all cases. The figures show that amplifying the
aircraft sound increases performance, however, there is little
increase between the ratio 1:4 and 1:8. The expected result
is that the less UAV content is present, the more the perfor-
mance would converge to the result of run 1. Only for the
MFCC and Mel spectrogram this trend is visible in the lower
FPR region. Looking at the AUC, the MFCC and the spec-
trogram show no convergence to the ratio of 0:1. In the case
of the Mel spectrogram, there is only a difference visible be-
tween the ratio of 1:1 and the others.

4.2 Influence of the third party database recordings
In the basis run, only the recordings from Lelystad airport

are used. This means that all the recordings have (fairly) the
same background noise and types of airplanes and they use
the same recording equipment. In order to check how much
the models rely on these characteristics, they are trained and
tested with the third party database recordings as well for this
run.

Figure 6 shows that for all the models, the addition of
the third party database recordings improves the performance
of the model. Only for the very low FPR (< 0.01), the
basis run performs better for the MFCC-CNN and the Mel
spectrogram-CNN.

4.3 Influence of labeling
The third type of modification made in the data set re-

lates to which labels are used for training. For all cases the
nearby detection labeling is used for testing. For training,
however, one run uses distant detection labeling and one run
uses nearby detection labeling. When an aircraft is approach-
ing, the lower frequencies of its generated sound reach the
ear first. This low frequency content is in the same range as
the background noise. It is therefore expected that for distant
detection labeling a better separation is found in the model
between drone and aircraft and therefore would also better
perform for the nearby cases. Figure 7, however, does not
prove this hypothesis. This time, for all features, the perfor-
mance deteriorates when distant detection labeling is used.

4.4 Influence of the window length
The window length of the CNN determines how many

seconds of history are used to determine whether the sound
contains aircraft sound or only UAV sound. The more history
the sound contains, the better the development of (possible)
aircraft sound can be captured. It is therefore expected that
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(c) Spectrogram-CNN for different UAV/aircraft amplitude ratios.

Figure 5: ROC curves showing the influence of the
UAV/aircraft ratio for each feature. Best accuracy is achieved
for the ratio 0:1 (no UAV sound present). The more UAV
content is added, the worse the performance.
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(a) MFCC-CNN with and without third party database recordings.
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(b) Mel spectrogram-CNN with and without third party database
recordings.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at
e

Third party database not used (basis run) (area = 0.86)
Third party database used (area = 0.89)

(c) Spectrogram-CNN with and without third party database record-
ings.

Figure 6: ROC curves showing the influence of the third party
database recordings for each of the features. For all features,
the performance increases using the third party database
recordings.
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(a) MFCC-CNN comparing the performance for different label
types.
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(b) Mel spectrogram-CNN comparing the performance for different
label types.
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(c) Spectrogram-CNN comparing the performance for different la-
bel types.

Figure 7: ROC curves showing the influence of labeling type
for each of the feature. Each run is tested with nearby detec-
tion labeling. One run is using the nearby detection labeling
for training as well and the other one uses the distant detec-
tion labeling during training.
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with a larger window length a better performance is achieved.
However, eventually the performance of longer time win-
dows are expected to converge as history from long ago does
not give useful information in detecting aircraft sound in the
present.

This hypothesis is confirmed for the CNNs using Mel
spectrogram, spectrogram and MFCC in Figure 8. Improve-
ment in AUC between a three second window and a ten sec-
ond window is shown in each of the subfigures. For window
lengths of more than ten seconds, the AUC hardly changes.
For the spectrogram-CNN there is a clear difference in the
low FPR region between the 10 and 15 seconds.

4.5 Comparison of the features
So far, the results are only shown per feature. In order to

show which feature works best, the features have been com-
pared for the basis run in Figure 9. The results show that the
Mel spectrogram performs best, followed by the MFCC. The
spectrogram performs worst compared to the other two.

Even though the results are only set out for one run, this
is true in general for the other runs. For the runs with a
UAV/aircraft ratio of 0:1, 1:1, and distant detection labeling
(run 1, 2 and 6) the MFCC is equally accurate as the Mel
spectrogram. For the runs with an increase window size (run
7,8 and 9), the spectrogram is slightly better then the MFCC.

Moreover, a ROC curve with the binary discrimination
threshold based on the pure energy of the signal is shown in
Figure 9. This curve is used to see whether the model just
checks the amount of energy in the signal or if it uses more
elaborate features. The AUC gives away directly that the per-
formance is significantly worse than the CNNs, so the model
does not base its outputs simply on the amount of energy in
the signal. Especially in the low FPR region (< 0.1) the TPR
is significantly lower than for the CNNs.

4.6 Visualization of the output
In order to clarify the output of the model, one of the runs

is used to visualize the outputs. In Figure 10, the spectrogram
of one sample of the basis run test set is shown, along with the
expected label (in red), the output of the network (in black)
and the binary discrimination threshold belonging to a FPR
of 0.1 (in purple). This example shows a decent detection
result in which the results in the time window for which the
label is 1 (between 28 and 40 seconds) is correctly above the
threshold (except for the first second). The rest of the output
is always under the threshold and therefore not detected as an
aircraft.

The correctness of the result of Figure 10, however, is not
observed for all cases of the test set. False positives and false
negatives are appearing as well, such as shown in Figure 11.
In this figure the time span between 30 and 45 seconds should
be given a label of 1, but but the model output is still under
the threshold, except for 1 second. Also, the point at second
3 is just above the threshold, whereas it should be labeled 0.
On the other hand, also for the human eye the presence of an
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(a) MFCC-CNN for different window lengths.
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(b) Melspectrogram-CNN for different window lengths.
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(c) Spectrogram-CNN for different window lengths.

Figure 8: ROC curves showing the influence of the window
lengths for each feature. In general, the increase in window
length increases the performance, but it converges to the per-
formance of a window length of 20 seconds.
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Figure 9: ROC curves of each feature for the basis run. Also
the energy of the signal is used as an input for the ROC curve
to show that the model does not base its output only on the
energy in the signal. The Mel spectrogram is the best per-
forming feature, MFCC second best, the spectrogram is the
worst feature and energy performs significantly worse than
all features.

Figure 10: Correct classification example of a sound sample.
In red is the expected label, in black the given output and in
purple the discrimination threshold. The left axis belongs to
the spectrogram only, the right axis belongs to the output, the
label and the threshold lines. As the output is always under
the purple line when the label is 0 and above the purple line
when the label is 1 (except for 1 second), this sample is accu-
rately classified.

Figure 11: Partly wrong classification example of a sound
sample. In red is the expected label, in black the given out-
put and in purple the discrimination threshold. The left axis
belongs to the spectrogram only, the right axis belongs to the
output, the label and the threshold lines. A false positive is
shown at 3 seconds and false negatives between 30 and 45
seconds (except second 40).

aircraft is better visible in the spectrogram of Figure 10 than
in the spectrogram of Figure 11, due to the Doppler shift and
the increase in energy (which can be seen by the increase of
the yellow content) in Figure 10.

In order to confirm that the model can recognize Closest
Point of Approach (CPA) such as shown in the spectrogram,
all the audio samples of the test set of the basis run are cen-
tered around the CPA (if any). For each second in the range
of 10 seconds before the CPA and 10 seconds after the CPA,
the mean values and standard deviation of the model output
are taken. Those values are shown in Figure 12. Each dot
represents the value of the mean, each bar the standard devi-
ation from the mean. This figure shows that at the CPA, the
output value is usually the highest. Furthermore, the larger
the time distance from the CPA, the lower the mean and stan-
dard deviation. There is, however, relatively much spread in
the output of the network.

4.7 Precision and recall

The AUC gives a good overall indication for the accuracy
of the model. However, in order to see how well the model
performs per point on the ROC curve, precision and recall
is used. Precision is defined in Equation 7, in which FP is
the number of false positives and TP is the number of true
positives. For recall, also the false negatives FN are used,
such as shown in Equation 8.

Precision =
TP

TP + FP
(7)
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Figure 12: Means (dots) and standard deviations (bars) per
time distance from the center of a CPA in the spectrogram. It
shows that the closer the aircraft is, the better the detection
performance.

Recall =
TP

TP + FN
(8)

In this research, an important value is 1−recall for the la-
bel 0. This value shows how many false positives are present,
so how often the UAV would falsely perform an avoidance
maneuver. The recall for the label 1 is the second most im-
portant. It shows how well the aircraft is detected when it is
present. The reason that it is less important than the 1−recall
for label 0 is because this value does not say when the false
negatives appear. It is expected that the closer the aircraft
gets, the better the detection performance. Figure 12 shows
that this is actually the case for this model. So if the model
does not detect the aircraft it is probably not too close, so it
would not directly lead to a critical situation. Precision shows
how many of the predicted labels are relevant, which is less
important for this application than the recall.

An example of the precision and recall and the confusion
matrix for the Mel spectrogram-CNN with the window length
20 are shown in Tables 4 and 5 respectively. As a very low
FPR beneficial, but still aircraft should detected, the point on
the curve for which the ROC curve just separates from the Y-
axis is chosen (which is around an FPR of 0.01 and a TPR of
0.7).

Table 4: Precision and recall of the Mel spectrogram-CNN
using window length 20.

Precision Recall
0 0.97 0.99
1 0.85 0.70

Table 5: Confusion matrix of the Mel spectrogram-CNN us-
ing window length 20.

Predicted class

Actual
class

0 1
0 2823 42
1 101 234

5 DISCUSSION

The results shown in section 4 are further discussed in
this section. Starting with the different UAV/aircraft ampli-
tude ratios, Figure 5 shows in the lower FPR region an ex-
pected trend, which is that the lower the UAV amplitude is
compared to the aircraft amplitude, the better the aircraft is
detected. That means, in order to use this model for real-
world application, it is best to diminish the UAV’s ego-sound
as much as possible, for example by means of the method of
Marmaroli et al. [8].

The addition of third party database recordings also im-
proves the performance, such as shown in Figure 6. Those
recordings consist of different background noise, which could
be easier for the model to distinguish from the typical back-
ground noise from the Lelystad recordings. The basis run
performed better in the very low FPR (< 0.01), but the corre-
sponding TPR is to low to be a good detector.

The fact that the different type of labeling performs
worse, which is shown in Figure 7, is unexpected. The la-
bels that are 1 for the distant detection labeling consist of the
ones from nearby detection labeling plus some extra ones be-
fore and after. In other words, the nearby detection labels are
a part of the distant detection labels. As the distant detection
labeling includes the nearby detection labels, it is expected
that training with distant detection labeling at least performs
the same as training with nearby detection labeling. However,
the model performs worse (or equal, for any FPR lower than
0.05) which means that there is no benefit in using the distant
detection labeling. The consequence of using nearby detec-
tion labeling over distant detection labeling is that the aircraft
is closer to the UAV when it is detected.

The trends shown in Figure 8, at which the window length
is increased, are not unexpected. The longer the window
length, the more information the model uses to make a deci-
sion and therefore the performance is better. This only works
up to a certain amount since sound information to far in the
past can have nothing to do with the present sound. Based
on the presented experiments, a window length between 15
and 20 seconds should be used to be as accurate as possible.
Choosing a value above 20 seconds will not increase the per-
formance and makes it computationally more expensive. Of
course, also other forms of memory can be explored, such as
Long Short Term Memory [20] or GRU [21].

In the ideal situation, no false positives or false negatives
are present in the output of the detector. Since the ROC curves
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in Figures 5, 6, 7 and 8 never have an AUC of 1, this is not
possible. Therefore, we aim to have as little false positives
and false negatives. In Table 4 and Table 5 a limit of one
false positive in 100 seconds is set. If after a false positive a
warning is send to the operator, once in 100 seconds he/she
has to check whether there is really other air traffic present,
which is not increasing the workload to much and therefore
once in a 100 seconds is a reasonable limit. If the UAV has
to descend (or even land) after a detection, a false positive
once in a 100 seconds is too much, so for those cases a filter
should be applied, which checks whether multiple positive
detections are found in a short-time frame. The percentage
of missed detections corresponding to a once in a 100 FPR,
is 30%. Luckily, Figure 12 shows that the closer the aircraft
is the better the accuracy, so the missed detections will be
mostly appear in the early stages of the detection.

Alongside the conclusions drawn from the results, there
are a few general comments to be made concerning the re-
search method.

Firstly, the data set should be extended. The data set used
in the basis case (run 3) only contains the recordings from
Lelystad airport. This data set has in total 84 flyovers. The
data augmentation increases the data set times four, so 336
flyovers are available for the data set. This is considered a
relatively small data set for machine learning purposes such
as this research. For comparison, ImageNet8, a famous data
set for image recognition, has 15 million examples in to-
tal. In addition, the ratio of the data set that includes aircraft
sound and that only includes background noise is not 50/50,
due to the fact that the cut-outs from the recordings are ran-
dom. The ratio aircraft/background in this data set is approx-
imately 20/80. The problem with this ratio is that the model
could classify all the sound samples as background noise and
still would have an accuracy of 80%. Another comment about
the data set is that it is artificially mixed, so the UAV and air-
craft sound are individually recorded. In the spectrogram, it
is visible where the aircraft sound is added to the UAV sound
by vertical lines at the stop and start. An example is shown
in Figure 13, at which the aircraft recording part stops at 30
seconds. In order to avoid this effect, recordings should be
taken on a UAV, which flies close to flying aircraft.

So far, the only different scale used is the Mel scale. Two
features use this scale which mimics the way humans perceive
frequency. The comparison of the Mel spectrogram and the
spectrogram in Figure 9 shows that stretching the lower fre-
quencies works well in combination with the CNN. One idea
is to make a scale that stretches the lower frequencies even
more. As most of the distant aircraft sound lies in the low fre-
quency region, further stretching the lower frequencies could
show more important low frequency sound information for
the CNN.

What is more, is that there is not much difference in type

8http://www.image-net.org/

Figure 13: Spectrogram of a mix of UAV and aircraft sound.
The end of the aircraft sound recording is visible on the spec-
trogram at 30 seconds by the vertical line (which is the sudden
decrease in energy).

of background noise. Only two types of microphones are
used, the 808 micro camera microphone and the microphone
from the array. Different microphones could show different
noise content. Further research in the quality of the micro-
phones is demanded. Also, the background noise is pretty
constant during the recordings, whereas on a flying UAV this
could differ considerably. Other background noise, such as
cars, trains, lawnmowers, etc., is not added.

Not only is there one composition of background noise,
but also only one type of UAV sound has been used. In or-
der to make a model for versatile applications, multiple UAV
sounds should be included in the data set. If the model is ap-
plied to only one UAV, it is useful to use its specific model
in training the detection network. In this process it is also
important to check whether the ego-noise of the UAV is in
the same order of loudness as the Parrot Bebop used in this
research.

6 CONCLUSION

Detection of air traffic sounds on a UAVs could increase
the safety of the airspace. This paper builds on existing sound
features and classification methods, but this time applied to
combined UAV and aircraft sound.

The three features used are the MFCC, spectrogram and
Mel spectrogram, which are the input to a CNN classifier.
The best performance of the model is obtained using the Mel
spectrogram, which moves over the sound recording with a
20-second window length. The detection performance in-
creases when the aircraft is closer to the UAV. Longer time
windows give better performance up until a certain window
length, but also decrease the potential reaction time for an
avoidance maneuver. Secondly, the model works best if as
little UAV sound is present as possible. Thirdly, the cur-
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rent method still gives too many false positives for real-world
application. Improvements may be expected from a better
filtering over time (ignoring solitary peaks of the network’s
output), a more extensive data set, and potentially additional
information such as the commanded RPMs of the UAV’s pro-
peller(s). Finally, a more realistic data set should include
sound recordings of aircraft taken from a (moving) UAV.
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