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Abstract

Pedestrian trajectory prediction is essential for developing safe autonomous driving systems. Such trajecto-
ries depend on various contextual cues, among which surrounding objects.

This work proposes the first pedestrian trajectory prediction method in the 2D on-board domain that
models interactions between the pedestrian and surrounding static- and dynamic- contextual objects using a
graph-based approach. Our two-stream model separately encodes past motion history and interactions. The
encoded information from both streams is fused and decoded to generate future pedestrian trajectories. The
interactions are modelled using spatial graphs, which are temporally connected using a Gated Recurrent Unit.
The graph nodes represent the pedestrian and contextual objects, and the edges represent the interaction
importance between nodes.

In experiments on the PIE and JAAD f ul l dataset, it is shown that our graph-based interaction-aware tra-
jectory prediction method outperforms all considered baselines on nearly all metrics. Moreover, the perfor-
mance gain on JAAD f ul l is most significant for the close-by pedestrians. Finally, modeling the interactions
with all considered contextual objects, i.e. vehicles, crosswalks, and traffic lights, improves trajectory predic-
tion performance most compared to only using a subset of these objects.
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1
Introduction

Vehicles are one of the most widely used types of transportation around the globe. However, this widespread
use does come with safety concerns, as an estimated 1.35 million people die in vehicle-related accidents
every year. More than half of these deaths involve Vulnerable Road Users (VRUs), such as pedestrians and
cyclists [99]. A 2008 research in the united states into car crashes indicated that in over 94% of cases, the
critical reason, i.e. the last event in the crash causal chain, can be attributed to the driver [63]. Therefore,
taking the human out of the equation by the development of reliable autonomous driving systems (ADS) has
the potential to reduce this number drastically. In order to safely manoeuvre in a scene with other traffic
participants, it is paramount that an ADS understands how this scene will develop over time.

1.1. The trajectory prediction problem
In order to gain insights into scene development, researchers have been focusing on future behaviour pre-
diction of VRUs. These VRUs are particularly challenging traffic participants to deal with due to their ability
to quickly switch between motion modes, e.g., standing still to walking [67]. The type of VRU behaviour pre-
diction that can strongly influence safe ADS navigation is trajectory prediction, i.e. predicting the future path
of the VRU. The trajectory prediction problem can be divided into three sub-problems when viewed on the
highest level of abstraction [80], as is illustrated in Figure 1.1.

Figure 1.1: Overview of the trajectory prediction problem. Certain stimuli serve as input for a prediction method, which transforms the
input into a trajectory prediction. Figure adopted from [80]

Thus, for a certain scene, the trajectory prediction problem takes certain stimuli as input and processes
them to make predictions. The scene contains a certain number of dynamic objects, i.e. objects that have
the potential to move by themselves, such as pedestrians, cyclists, and vehicles. These objects are called
agents. The agent of interest, i.e. for which the trajectory is predicted, is denoted with the term target agent.
The environment and objects surrounding the target agent, as well as attributes of the target agent itself,
are potential contextual cues. These contextual cues present both internal- and external stimuli providing
relevant information for the motion behaviour of the target agent.

1
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1.1.1. Domains
Research into the field of trajectory prediction is performed in three application domains, namely service
robots, intelligent vehicles, and advanced surveillance systems [80]. Methods developed for these applica-
tions are distinguished based on the type of used sensor data, as well as in which coordinate system and
perspective they operate. The following distinct domains are defined as the reference for the remainder of
this thesis.

• The on-board domain: observes the environment from a moving ground-level perspective, i.e. the
sensors move along with the coordinate system of an autonomous system. Safe navigation of the au-
tonomous system through an environment is essential for enabling the use of this technology in soci-
ety. Safe navigation requires the autonomous system to anticipate the future behaviour of humans or
other road users and react accordingly. The first application belonging to this domain is self-driving
vehicles, in which case the autonomous system is a vehicle, and the environment is some drive-able
infrastructure within the operational design domain. The second application that belongs to the on-
board domain is mobile service robots, in which case the autonomous system is a service robot, and
the environment is an open-ended domestic, urban, or industrial space where there is interaction with
humans. A further distinction is made below, based on the type of used sensor data.

– The 2D on-board domain: solely uses a monocular camera for perception. This means that the
environment is perceived as projected on the 2D image plane, and thus, the system only uses
data in the image, or pixel, coordinate system. Most importantly, there is no reliable informa-
tion present in the sensor data about the actual distance in meters between the sensor and any
arbitrary agent or object in the scene.

– The 3D on-board domain: utilises any perception sensor where the data is provided in a three-
dimensional coordinate system, such as the car/sensor or world coordinate system. Most impor-
tantly, there is reliable information present in the sensor data about the actual distance in meters
between the sensor and any arbitrary agent or object in the scene.

• The top-down domain: observes the environment from a fixed, usually top-down perspective. In other
words, the sensors are fixed cameras, i.e. surveillance cameras, generally used to analyse human crowds
and vehicular traffic scenes. Trajectory prediction in this domain can be used to support many tasks,
such as traffic monitoring and crowd management. The advanced surveillance systems application be-
longs to this domain.

1.1.2. Challenges
Predicting the future motion of other road users is a complex problem in general. However, VRUs are partic-
ularly challenging road users to deal with due to their ability to quickly switch between motion modes, e.g.,
standing still to walking [67]. Predicting the correct future motion is problematic because it can depend on
various stimuli. Additionally, the domain-specific challenges are discussed below.

• The on-board domain: has two main challenges that are both present for the 2D- and 3D sub-domains.
First, the intelligent vehicle must deal with partial visibility [52]. That means the environment can be
partially occluded and only becomes visible in the next frame when the car has moved. Second, the
ego-motion of an autonomous system can influence the behaviour of other agents in the scene [74].

– The 2D on-board domain: specifically introduces two more challenges [72, 53], both related to
the limitations introduced by using only a monocamera. First, the ego-motion does not only affect
the motion of other agents in a scene, but it also directly influences the predicted trajectories, as
these are also projected on the image plane. In other words, disentangling the ego-motion from
the trajectory prediction is hardly possible. Second, the relative positioning of agents and objects
in a scene is harder to predict due to the absence of reliable depth information, which leads to a
more noisy environment perception.

– The 3D on-board domain: enables reliable depth information from 3D sensor modalities or prior
knowledge, e.g., LiDAR or Birds-Eye-View maps. This opens up the possibility to more accurately
determine relative positions of agents and objects, reducing the noise on the environment per-
ception. Contrary to the 2D domain, the 3D on-board domain can disentangle the trajectory pre-
diction from the ego-motion, although only if a mapping to world coordinates is available.
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• The top-down domain: generally works with stationary cameras that have a clear top-down overview
of the entire scene. Therefore, it does not have to deal with any of the on-board challenges. However,
due to the camera positioning, it is not able to work with more detailed agent- or scene attributes that
can only be captured with a ground-level camera.

1.1.3. Contextual cues
Contextual cues are the internal or external stimuli that provide relevant information for the motion be-
haviour of agents in a scene. These contextual cues can originate from two main sources. First, from the
target agent itself, i.e. target agent context cues and second, from anything that surrounds the target agent.
Regarding the latter, we can further differentiate between static surroundings, i.e. static context cues, and
dynamic surroundings, i.e. dynamic context cues. Each type of contextual cue is further elaborated on below.

• Target agent context cues refer to the target agent semantic attributes, articulated pose or kinematics.
Semantic attributes include demographic information, agent appearance, and latent features such as
awareness of the approaching vehicle. Pose includes visual features with regards to the agent’s body,
such as body pose, head- and body orientation, or hand gestures. Kinematics of the agent refers to the
position and velocity of the pedestrian.

• Static context cues refer to surrounding objects- or agents that remain stationary with which the target
agent can potentially interact. The static contextual objects include the infrastructural environment,
such as pedestrian crossings, stoplights and street layout, as well as non-moving surrounding agents,
such as parked vehicles.

• Dynamic context cues refer to the surrounding moving agents with whom the target agent can poten-
tially interact. These other agents include, amongst others, vehicles, riders, and pedestrians. Moreover,
in the on-board domain, the ego-vehicle is considered a dynamic context cue.

1.1.4. Pedestrian crossing action prediction
Pedestrian crossing prediction can be considered a reduced, simplified task compared to the trajectory pre-
dicting problem. Where pedestrian trajectory prediction is a regression problem predicting a future path,
crossing prediction is a more simple classification problem where the goal is to predict whether the pedes-
trian is going to cross the street in the near future. The task of pedestrian crossing prediction uses similar
stimuli and model architectures as trajectory prediction methods, and hence, the associated literature could
provide interesting insights.

Note that even though the task of crossing prediction is often called intention prediction in literature,
there is a distinction. Where crossing prediction is about the action of crossing, intention prediction refers
to predicting the pedestrian’s principal goal to cross the road, i.e. the true latent intention. For example, a
pedestrian waiting at a bus stop can walk onto the road for a brief moment to check if the bus is coming. In
this case, the pedestrian is performing the action of crossing, but its principal goal is not to cross the road.

Intention prediction has not been explored much [70, 89, 15], whereas pedestrian crossing prediction has
received more attention [106, 50, 72, 76, 12, 60, 93, 71].

1.2. Focus of the thesis
The focus of this thesis has been decided based on two particular aspects of the trajectory prediction problem.
The first aspect involves the application domain of choice, and the second is regarding the complex motion
behaviour of VRUs and how to adequately model this. Both are discussed below.

1. Regarding the application domain: the domain of main interest is the 2D on-board domain. The rea-
sons for choosing the 2D on-board domain over the 3D on-board domain are threefold.

• Improve 2D image-based reasoning: having strong 2D sensor processing would help in a late fu-
sion approach more than a weak sensor. Late fusion means that a vehicle with multiple sensor
modalities processes each sensing modality independently and only fuses them at the final stages
using probabilistic techniques. From this perspective, it is important to explore the limitations of
the sensors. Also, humans have been shown to be able to drive a motor vehicle in day-to-day cases
without explicit 3D information, i.e. by driving using only one eye [4, 56]. Although the driving
performance did suffer compared to humans with stereo-vision, this gap between humans and
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machines is still to be solved. Especially with the recent advances in monocular depth estimation
[57], the 2D predictions can be uplifted to usable 3D coordinates to accommodate a complete
monocular prediction pipeline.

• Wide applicability and low-cost: the only sensor requirements for the 2D on-board domain are a
monocular camera and optionally ego-motion sensors, such as a GPS and IMU. Operating with-
out the requirements of the additional sensors from the 3D domain, e.g., LiDAR/RaDAR/stereo,
or prior knowledge, e.g., HD maps, means 2D on-board methods are widely applicable, and the
associated sensor costs are relatively low.

• Functional-safety: The functional-safety standard is referred to in ISO 26262, which emphasises
the failure-safe behaviour of a system, such as a vehicle, in case of malfunctioning electrical sys-
tems. In case of an error, the system must switch into a safe state where the system is no longer
available or reliable, but at least safe [55]. Example safe states for an SAE level 2 and an SAE level
4/5 autonomous vehicle are that the driver takes over and that the vehicle stops in a safe place,
respectively. Making hardware in autonomous vehicles failure-safe is one of the challenges in
autonomous vehicles and requires redundancy [43]. Redundancy in an ADS that employs late-
fusion (or a combination of late- and early-fusion) can be realised by assuring that sensors can
operate largely independently from one another. In other words, in case of 3D sensor failure,
knowing to what extent 2D sensor modalities can (temporarily) take over is critical, be it with the
sole purpose of bringing the vehicle to a safe state. Therefore, it is relevant to assess how accurate
trajectory prediction methods can be whilst only using minimum sensors, i.e. only monocamera
and optionally IMU/GPS.

2. Regarding adequately modeling complex motion behaviour of VRUs: as has been described in section
1.1.2, the future motion of VRUs can depend on a large variety of stimuli. These stimuli can also include
static- and dynamic context cues. For example, when a pedestrian walks towards a pedestrian crossing,
it seems likely for an observing human that the pedestrian will cross the street using this pedestrian
crossing. However, a machine can only know this when the interaction between the pedestrian crossing
and the pedestrian is somehow accounted for. Hence, methods that model interactions with static- and
dynamic environmental cues are the second focus point.

1.3. Problem statement and research question
Within the overall trajectory prediction literature, the top-down and 3D on-board trajectory prediction do-
mains have recently seen strong growth of methods that account for interactions of the target agent with
the environmental context to improve performance. These methods are either distance-based [1, 29, 21, 13,
46], attention-based [83, 84], graph-based [44, 59, 33, 85, 48, 38, 51] or Transformer-based [27, 108]. The en-
vironmental context refers to either the static environment (e.g., stoplight, pedestrian crossing, signs) or the
dynamic environment (i.e. other agents). Although trajectory prediction in the 2D on-board domain has been
explored [6, 53, 72, 54, 70, 93, 100, 91, 102, 90, 105, 104, 66, 9, 104, 98, 69, 62], modeling interactions has not
received much attention. Only recently, the first two interaction modeling methods have been proposed [54,
73], both of which indicated that integrating interactions in the 2D domain is promising. This indicates the
potential to further improve the 2D trajectory prediction domain, which is interesting for the reasons men-
tioned in section 1.2. Moreover, the closely related 2D on-board domain that predicts pedestrian crossing
action, instead of trajectories, has recently seen a graph-based interaction modeling approach [50] indicat-
ing promising results. Since this method operates in the 2D on-board domain, it serves as an inspiration for
graph-based interaction modeling approaches in the respective trajectory prediction domain.

Considering the relevance of the 2D on-board domain, as well as the recent advances of graph-based in-
teraction modeling in the 3D on-board- and top-down domains [44, 59, 33, 85, 48, 38, 51], as well as in the
2D on-board crossing action prediction domain [50], an open research direction is to investigate a similar
graph-based interaction modeling method in the 2D on-board trajectory prediction domain.

The above-stated problems lead to the formulation of the following research questions:

• Can modeling the interactions between a pedestrian and its static- and dynamic context using a graph-
based approach benefit the performance of a 2D trajectory prediction framework?

• Which interactions with dynamic- or static context provide the most significant contribution to the 2D
on-board pedestrian trajectory predictions?
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1.4. Outline
First, chapter 2 discusses the previous work related to the topic of this thesis. Next, chapter 3 elaborates on
the method and the contributions of this work. Third, chapter 4 explains the experimental setup, as well as
the results and corresponding discussion points. Finally, chapter 5 concludes the thesis with an answer to the
research questions, method limitations and future work.



2
Related Work

This chapter first discusses the relevant deep learning fundamentals used throughout this thesis. Next, the
existing work in the field of pedestrian trajectory prediction is described. After that, the focus shifts towards
those methods that model interactions between the target agent and its environmental context. Finally, the
datasets and metrics used for evaluation are discussed.

2.1. Fundamentals
The section aims to build a strong foundation for understanding the remainder of this thesis.

2.1.1. Deep learning methods
This section will discuss the basics of deep learning methods often encountered in this thesis. The field
surrounding each method is much broader than explained below and the focus is only on the parts of each
method that will be used later on in this thesis.

2.1.1.1 Recurrent Neural Networks

A Recurrent Neural Network, or RNN for short [81], is a type of deep learning network with the purpose of
processing sequential data, for example machine translation, stock-market prediction or trajectory predic-
tion. The latter example indicates its relevance for this thesis. The networks are called recurrent because each
element in a sequence is processed using identical RNN cells, i.e. cells with identical weight- and bias values.
Thus, the RNN cell is used recurrently for all elements in the sequence. A key component of the RNN cell
is that it does not only take the current element of a sequence as input, but also the output of the cell that
processed the previous element. As such, RNNs are able to capture sequential patterns based on current and
previous inputs.

A downside of regular RNNs is that they suffer from vanishing gradients, which is problematic for longer
sequences. This means that the gradients, which are used for updating weights and thus for learning, become
smaller and smaller when performing backpropagation through time through a long sequence. Eventually,
they become so small that the weights of these far-away sequence elements can barely be updated, thus
impairing the model to learn from these far-away elements, i.e. early inputs. A solution to this problem was
posed in the form of a more elaborate RNN cell, namely the Long-Short Term Memory [32], or LSTM, cell.
LSTMs extend the classical RNN cell by adding a cell-state and three gates. The cell-state serves to retain
long- and short-term memory and the gates regulate what information is kept, added or forgotten from the
cell-state, using the previous hidden-state and current input.

A less memory intensive alternative to the LSTM is the more recently introduced Gated Recurrent Unit
[16], or GRU. Two key changes compared to the LSTM are firstly, the GRU gets rid of the cell-state, instead us-
ing the hidden-state to memorize relevant information and secondly, the GRU only uses two gates to regulate
what information is kept in the hidden-state.

6
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2.1.1.2 Convolutional Neural Networks

A Convolutional Neural Network [45], or CNN for short, is a type of deep learning network with the purpose
of processing data with a known grid-like topology [20]. For example, this can refer to images, where the data
represents a two-dimensional pixel grid, or to time-series, where the data represents a one-dimensional grid
with timesteps as grid-points. Both of these applications are relevant for this thesis, as spatial processing of
image data can be used to capture a large variety of contextual cues and processing time-series data can be
used for past- and future trajectory data.

The key to CNNs is the convolution operation, which is a method to process the input data with grid-like
topology to produce a feature map. This is done by sliding, or convolving, a matrix containing learn-able
weights of a certain size, i.e. the kernel, across the input and performing matrix multiplications between
the kernel and every subsection of the input grid it is slid across. The output is a feature map, which is a
representation of certain patterns in the data.

2.1.1.3 Graph Neural Networks

A Graph Neural Network, or GNN for short, applies neural networks to data that is presented as graphs. Ex-
amples include node classification, link prediction and clustering [110]. Recently, GNNs have been used to
model spatial and temporal interactions between objects and/or agents in the field of trajectory prediction,
which why these type of neural networks are of interest to this thesis.

A graph is denoted as G = (V ,E), where |V | = N is the number of nodes and |E | = N e the number of edges.
The adjacency matrix A ∈ RN xN contains which nodes are connected. Each node contains some representa-
tion for an entity of some type. The edges represent the type of connection between each pair of entities. The
nodes can send- and receive messages respectively to- and from neighbouring nodes over these connections.
The messages allow the nodes to learn about neighbouring nodes and the type of connection that exists be-
tween them. Doing so, the graph representation is updated and can be used for further processing. GNN
variants that are of specific interest to this thesis are the Graph Convolution Network [39], i.e. GCN, and the
Graph Attention Network, i.e. GAT.

GCNs generalize the convolution operation from CNNs to GNNs. A GCN layers works in three steps.
First, each node collects the embeddings, or messages, of all connected neighbouring nodes. Second, these
messages are aggregated using some aggregation function. Last, the aggregated messages are fed through
a neural network whose output represents the updated node embedding, which are in turn used for further
processing.

Graph Attention Neural Networks [96] apply the concept of self-attention [95], which is a method to ex-
tract global dependencies between inputs and outputs, to graph neural networks. This enables each node
to specify a different weight values to each neighbouring node. This allows the model to learn which neigh-
bouring nodes are most important for the state update. Also, the multi-headed attention, which performs the
self-attention operation multiple times in parallel, is used in GAT to increase the expressive capabilities of the
architecture.

2.2. Trajectory Prediction
As described in section 1.1, the trajectory prediction problem takes certain stimuli as input and processes
them using some prediction method to generate a prediction output. First, a broad overview of trajectory
prediction literature is provided based on the prediction method taxonomy defined by [80]. Subsequently,
the trajectory prediction literature of interest is distilled from this overview. This literature is analysed in great
detail to evaluate the stimuli, prediction methods and prediction outputs in both the 2D on-board domain,
as well as the top-down and 3D on-board domains.

2.2.1. Trajectory prediction method taxonomy
In trajectory prediction literature a distinction is made between three types of prediction methods, namely
physics-, planning- and pattern-based . First, physics-based methods use explicit dynamical models based
on Newton’s laws of motion, where a distinction is made between methods that define the kinematics using
only a single dynamical model [31, 58, 103] and method that use multiple dynamical models [42, 41, 88]. Sec-
ond, planning-based models aim to reach a particular goal via a route which minimizes an objective, or cost,
function. The cost function is defined differently depending on whether the method is a forward-planning
method [94, 10, 5], which means the cost function is predefined by the user, or an inverse-planning method
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[111, 40, 77], where the cost function is crafted in an online fashion based on observations of human behavior.
Lastly, pattern-based approaches learn motion dynamics from data patterns by approximating functions that
fit these patterns. Depending on the type of approximation, these approaches can be divided into sequential
methods [34, 1, 3], which assume that the current state has some conditional dependence on previous states,
and non-sequential methods [24, 107, 22], which aim to model the distribution over the entire trajectory with-
out any conditional dependencies between states. The pattern-based approaches have gained tremendous
traction in recent years, partly due to the increasing amount of readily available large scale datasets. This
thesis will revolve around prediction methods that use neural networks to fit data patterns and thus, look at
pattern-based methods.

2.2.2. Stimuli
The stimuli are the internal and external influences that affect the target agent’s future behavior. The various
stimuli that have been researched in trajectory prediction literature are discussed below.

2.2.2.1 2D on-board domain

The motion history of the target agent represents an important cue for its likely future behavior. This becomes
evident from literature, as all reviewed trajectory prediction papers rely on information that captures some
sort of motion history of the target agent. This information includes bounding boxes [6, 53, 72, 54, 70, 93, 100,
91, 102, 90, 105, 104, 66, 92], bounding box velocity [9, 90, 92] or implicit motion history relative to contextual
objects [50]. Note that the 2D on-board domain uses bounding boxes instead of only a pixel location, such as
the bounding box center, as the bounding box size provides additional information on agent size. The size in-
formation enables implicit learning of the depth dimension to some extent, e.g. a small pedestrian bounding
box is likely to be further away than a large one. Note that this requires certain restrictive assumptions on, for
example, agent size, introducing an issue for agents of non-average size, such as children.

Section 1.1.2 mentioned that the observations and predicted trajectories are both relative to the motion of
the ego-vehicle. To account for this, the majority of methods incorporate ego-motion information explicitly
in their trajectory predictions, either by using an encoding of the past ego-motion [54, 93], the predicted or
ground truth future ego-motion [53] or both [6, 72, 70]. The methods that do not take into account ego-
motion at all [50, 100] likely do so due to the absence of ego-motion data in the dataset. Ego-motion can also
be captured implicitly by inferring the camera motion from dense optical flow maps over the images [90, 91,
102] or, arguably, by feeding the model image features, like the pedestrian image patch [50] or environmental
semantic segmentation [92].

Optical flow is not only used for inferring ego-motion, but also in conjunction with Region-of-Interest
pooling [26], i.e. ROI Pooling. In this case, the dense optical flow map is evaluated only in the region of inter-
est, that is, the target agent bounding box [53, 105]. The optical flow captures agent motion and appearance
changes, both of which are considered relevant cues.

Several methods prove it is beneficial to take the appearance of the target agent into account [100, 93, 50],
by encoding the target agents’ bounding box using a CNN. This allows the model to implicitly learn agent
attributes that can help with the prediction, e.g. gaze direction or body orientation. Information on agent
attributes can also be provided explicitly to the model to improve performance. For example, [93] used body
pose, [92] used body orientation and [54] integrated (predicted) agent actions, e.g. getting into a car, as a cue.

2.2.2.2 Top-down and 3D on-board domain

Similar to the 2D on-board domain, all reviewed trajectory prediction papers in the top-down and 3D on-
board domain rely on information that captures some sort of motion history of the target agent. However,
contrary to the 2D on-board domain the motion history is captured using spatial coordinates in the world
coordinate system [46, 78, 21, 84, 83, 108, 1, 38, 48] or dynamical states [13, 85], which also include the
coordinates. Next to the motion history, Ridel, Deo, Wolf, and Trivedi [78] show that incorporating pedes-
trian head orientation as a prior improves the trajectory prediction performance. Their method encodes past
ego-motion, past trajectory and additionally the past head orientations of the pedestrian using LSTMs. This
information is concatenated and decoded to obtain future target agent trajectory.

Also the 3D on-board methods have to deal with the challenges associated with the moving ego-vehicle.
Therefore, these methods incorporate ego-motion information explicitly via an encoding of the past ego-
motion [78, 106] or of the predicted- or ground truth future ego-motion [85]. On the other hand, [13] do not
explicitly take ego-motion into account.
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Some methods integrate stimuli from the static context which allows the model the learn interactions
between the target agent and static objects. Such stimuli include a top-down scene image [46, 84, 83] or a
top-down binary obstacle- or semantic map [85].

2.2.3. Prediction method
The prediction method represents the core of the trajectory prediction problem. It takes the stimuli as input
and processes them in a highly non-linear manner using some neural network-based method. All prediction
methods contain a temporal sequence modeling component, which involves processing the temporal obser-
vations of the agents’ trajectory and use those to make a future prediction. Additionally, a subset of methods
contain an interaction modeling component, which involves reasoning over interactions between the tar-
get agent and contextual cues. This section will discuss the temporal sequence modeling for all domains,
whereas the interaction modeling will be broadly discussed in section 2.3

2.2.3.1 2D on-board domain

A large body of 2D on-board trajectory prediction literature heavily relies on Recurrent Neural Network-based
architectures for predicting the future temporal sequence [6, 53, 54, 91, 105, 105, 70, 100, 72, 90, 66, 104, 9,
98]. In the field of RNNs for example, Bhattacharyya, Fritz, and Schiele [6] implement a two-stream LSTM
encoder-decoder architecture. The first stream is responsible for future ego-motion prediction, i.e. the odom-
etry prediction, which is taken care of by first encoding the past ego-motion using an LSTM encoder and
concatenating the final hidden state with a representation of the most recent video frame. This representa-
tion is obtained using a CNN and allow the model to implicitly learn about road features that tell something
about possible future ego-motion. A prediction of the future ego-motion is obtained by decoding this con-
catenated information using an LSTM-decoder. The second LSTM encoder-decoder stream is responsible
for future bounding box predictions. The predictions are conditioned on the past ego-motion, past bounding
boxes of the target agent, as well as the predicted future ego-motion. The model is illustrated in figure 2.1.

Figure 2.1: Two-stream trajectory prediction framework from [6]. The bottom stream predicts future ego-motion, conditioned on past
ego-motion and a raw scene image. The top stream predicts future bounding boxes, conditioned on the past bounding boxes,

ego-motion and future ego-motion

Many follow-up methods have taken inspiration from [6] and are therefore similar in design [53, 70, 105].
For example, Rasouli, Kotseruba, Kunic, and Tsotsos [70] add a third stream for the prediction of the pedestri-
ans’ crossing intention. This intention prediction stream uses an LSTM encoder-decoder with the bounding
box and corresponding local context as input. The binary intention predictions serve as input in the trajec-
tory decoder together with the representation of the past motion history. To weigh the importance of both
representations self-attention units are added. Additionally, a temporal attention module is added to the
bounding box prediction stream encoder to learn the important information of the input sequence. Condi-
tioning the future bounding box predictions on the predicted latent intentions was shown to improve model
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performance across all evaluated metrics. [105] and [53] condition the bounding box predictions additionally
on optical flow, which allows the model to reason over the motion of the agent relative to the environment.
Moreover, they swap out the LSTMs for more efficient GRUs. Styles, Guha, and Sanchez [90] follow up on [105]
and state that using pose as a cue can be unreliable, as pose predictions tend to be difficult in low resolution
and low light settings. Hence, they propose STED which uses a two stream architecture that encodes optical
flow information using a CNN and past bounding box and velocity information using GRUs. The outputs are
concatenated and decoded using another GRU to obtain future bounding box locations.

Opportunities to improve trajectory prediction performance have also been chased by approaching it
from a multi-task perspective, i.e. predicting jointly with another task such as crossing prediction [72, 9, 92]
or end-point prediction [72, 104, 98]. For example, Rasouli, Rohani, and Luo [72] first encode the past bound-
ing boxes and past image-plane grid locations of the target agent, as well as ego-vehicle motion using LSTM
encoders. The interactions are modeled using a Categorical Interaction Module, elaborated in chapter 2.3,
to obtain the relevant interactions. The temporal encoding and decoding use the same concept - one mod-
ule encodes or decodes using a single LSTM with shared weights, respectively Joint en- & de-coding, and one
module encodes or decodes using three separate LSTMs, i.e. Independent en- & de-coding. The ’joint’ and ’in-
dependent’ information of the encoding and decoding modules is combined to obtain respectively the final
encoded representation and the multi-task prediction output. Similar to [72], other endpoint-based methods
[104, 98] train the end-point and trajectory prediction pipeline jointly. however, the latter two condition the
trajectory predictions explicitly on the predicted endpoints. For example, Yao, Atkins, Johnson-Roberson,
Vasudevan, and Du [104] leverage a custom bi-directional decoder that first predicts the end-point of the tra-
jectory, after which the trajectory is reconstructed in a backwards fashion from the end-point to the current
location. Wang, Wang, Xu, and Crandall [98] do not only predict a single end-point for a trajectory, but in-
stead predict step-wise endpoints for each frame in the prediction horizon. An attention mechanism is used
to reason over which step-wise endpoints are most important to the future trajectory, after which this is used
as input in the trajectory decoder to make future trajectory predictions.

Next to RNNs, there is a small portion of papers that rely on Convolutional Neural Networks, either entirely
[102] or combined with physics-based constant velocity model [91]. Yagi, Mangalam, Yonetani, and Sato [102]
use agent pose, location, scale and camera ego-motion, inferred from optical flow, to make pedestrian trajec-
tory predictions from a first-person view. The proposed method utilizes a three-stream architecture, where
each stream encodes temporal information of each cue using 1D convolution layers. The outputs of each
stream are concatenated and decoded using de-convolutions to obtain future location and scale predictions.
Styles, Ross, and Sanchez [91] use the constant velocity model to make an initial trajectory prediction. The
initial prediction is then corrected using optical flow map of the target pedestrian, which is processed with
a CNN. The paper also evaluates the model when pre-training on machine-annotated data, which is shown
to improve performance. Contrary to what one may think, using such a relatively simple method to make an
initial prediction does not necessarily mean the performance will suffer [87].

2.2.3.2 Top-down and 3D on-board domain

Just as with the 2D on-board domain, the prediction method will be discussed in terms of sequence modeling
and interaction modeling. Again, the latter is much more extensively elaborated in chapter 2.3.

temporal sequence modeling Recurrent Neural Network-based models have been used extensively in the
top-down domain for prediction of temporal sequences [1, 29, 21, 84, 83, 59, 108, 33, 44, 38, 48, 13]. For ex-
ample, [1] is an early work that that introduced an LSTM encoder-decoder structure with interaction modeling
to jointly predict individual-aware trajectories of all agents in a scene. This paper has been an inspiration to
many follow-up works [21, 33, 29, 84]. Deo and Trivedi [21] apply a similar concept to a top-down vehicu-
lar traffic situation, but where the observing camera moves with the the target agents coordinate system. To
account for this, a representation of the vehicles ego-motion is also implemented. Huang, Bi, Li, Mao, and
Wang [33] change the decoder LSTM to generate multiple trajectories for each agent per time-step using a
generator based on Generative Adversarial Networks. Diversity in the trajectories is obtained by training with
the variety loss function from [29]. This architecture is illustrated in figure 2.2.
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Figure 2.2: Trajectory prediction framework from [33]. First, the encoder (left) encodes the motion history of each agents using an LSTM
encoder, i.e. M-LSTM. Next, the encoder performs interaction modeling using GAT modules and an additional LSTM encoder, i.e.

G-LSTM, which is further elaborated in section 2.3.2. The final hidden states of both the M- and G-LSTM are concatenated with some
randomly sampled noise into a state (middle). This state is decoded (right) using decoder LSTM cells to generate future trajectories.

Other works rely on Convolutional Neural Networks for temporal sequence prediction [59, 97]. Compared
to RNNs, the use of CNNs improves computational efficiency because it enables parallel processing. For
example, Mohamed, Qian, Elhoseiny, and Claudel [59] construct a spatio-temporal graph where all agents
are connected in the spatial and temporal dimension. The graph is updated by feeding it through a spatio-
temporal graph CNN, which is an extension of the known spatial graph convolution neural network. The
resulting graph node embeddings are extrapolated by a temporal CNN to generate the future trajectory pre-
dictions.

Only recently people have started using Transformers-based architecture in temporal sequence prediction
[108, 27, 49]. For example, [108] propose a network that encodes spatial and temporal correlations between
pedestrians by using Transformer-based encoders in the temporal and spatial dimension. The resulting rep-
resentation is fed through a fully connected layer to make future coordinate predictions one time-step into
the future. The prediction is added to the motion history of the agent. These steps are performed in an auto-
regressive fashion until the desired prediction horizon is obtained. Ablation studies indicated that temporal-
and spatial modeling capabilities of Transformers are superior to several counterparts, such as LSTMs for
temporal modeling and GCN and GAT for spatial modeling. An interesting notion is that the benefit of the
Transformer-based spatial modeling over alternatives diminished for less crowded scenarios.

Figure 2.3: The Transformer-based temporal encoder from [108]. The encoder takes past trajectory embeddings hi
t of a pedestrian as

input. Consequently, it learns the query Q, key K and value V tensors before utilizing the multi-headed attention mechanism to learn
meaningful temporal dependencies. Next, two skip connections and a fully connected layer are used to obtain the updated trajectory

embeddings.

2.2.4. Prediction output
The prediction output is the third and final component in the trajectory prediction problem and discusses
how the actual future trajectory predictions are represented.

2.2.4.1 2D on-board domain

The prediction output is discussed in three components. First, in terms of output modality. Second, in terms
of trajectory output representation, which refers to how the agents’ future location is represented and third,
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in terms of uncertainty, which discusses to what extend methods capture the associated uncertainty in their
predictions.

Modality Often, methods make a single future trajectory prediction, i.e. they are unimodal [72, 70, 100, 90,
91, 102, 105]. However, in real life an agent would have multiple future modes. Methods that cover this more
representative and complex output are called multi-modal. The multi-modality is obtained either by pre-
dicting a Gaussian distribution from which samples are taken [6, 53, 54] or by using a Conditional Variational
Auto-encoders where multiple random samples are taken from the latent space [66, 104, 98]. Although [6, 53]
claim to predict multi-modal distributions by sampling from a Gaussian distribution, they suffer from mode
collapse. This means that in actuality they only predict one mode with high variance [52], thus not capturing
the different likely future trajectories associated with different motion modes.

Trajectory output representations The trajectory output for all the reviewed trajectory prediction papers
is represented by four bounding box coordinates. This is essential because a real-life trajectory is inherently 3-
dimensional, but only the 2D image plane is available. Hence, the size of the bounding box contains implicit
information about depth, e.g. a small pedestrian bounding box is likely to be further away then a large one.

Uncertainty Knowledge of the uncertainty associated with the future predicted trajectory is of great impor-
tance. However, the majority of methods does not account for this. Their output is deterministic and is ob-
tained by training using some distance error function, such as L1-loss [90], L2-loss [91, 72, 98] or MSE loss [102,
100, 70]. Methods that do account for uncertainty obtain this by training the model using a probabilistic loss
function, such as negative log-likelihood [6, 53, 54, 13, 104] where the output of the model at each timestep
is a Gaussian distribution. Most of these methods only capture the uncertainty associated with the data, i.e.
aleatoric uncertainty. In this case, the uncertainty associated with the model parameters, i.e. epistemic un-
certainty, is not taken into account. However, epistemic uncertainty is especially important in safety-critical
applications such as autonomous driving [35] as it enables the model to learn what it knows and what it does
not know. Therefore, there are works that aim to capture both aleatoric and epistemic uncertainty in the deep
learning model using a Bayesian formulation [6, 53]. For example, Bhattacharyya, Fritz, and Schiele [6] im-
plement a Bayesian bounding-box prediction stream to obtain an estimate of the full predictive uncertainty.
In practice, this is done by combining the T outputs obtained by running inference T times. For each infer-
ence run the models’ parameters are re-sampled from a certain distribution. Malla and Choi [53] additionally
define the ego-motion prediction stream using a Bayesian formulation to account for the full predictive un-
certainty in the predicted ego-motion. The future bounding box predictions are therefore conditioned on the
uncertainty in the future ego-motion to improve prediction accuracy.

2.2.4.2 Top-down and 3D on-board domain

Just as with the 2D on-board domain, the prediction method will be discussed in terms of output modality,
trajectory output representations and uncertainty.

Output modality Because the future trajectory of an agent has multiple modes, there are many methods
that account for this multi-modality in their predictions. Different approaches have been considered, such
as utilizing a Conditional Variational Autoencoder [85, 46, 98, 66, 104]. For example, Salzmann, Ivanovic,
Chakravarty, and Pavone [85] use a CVAE to predict a discrete Categorical latent variable, where each category
in this discrete distribution represents a different mode of behavior. Another approach is the implementation
of a GAN in the network to generate multiple predictions per timestep [29, 44, 83, 2]. For example, Gupta,
Johnson, Fei-Fei, Savarese, and Alahi [29] propose a method where the generator builds a representation
of past agent trajectories which are individual-aware by combining an LSTM-encoder with a social-pooling
layer, inspired by [1]. Next, the generator predicts multiple trajectories per time step conditioned on this
representation and some added noise. The discriminator is used to pick out the socially not-acceptable tra-
jectories from the socially-acceptable ones. Using a novel variety loss the generation of diverse multi-modal
predictions is encouraged. This work is extended by Sadeghian, Kosaraju, Sadeghian, Hirose, Rezatofighi,
and Savarese [83], in which the pair-wise interactions vary in strength via the use of a social attention unit.
Moreover, they additionally model the agent interactions with the static environment via a so-called Physical
Attention Module. Even though both of these works claim to make multi-modal predictions using a GAN, [44]
state that they rather predict a single mode with a high variance. Consequently, they propose Social-BiGAT
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which captures a trajectories’ true multi-modality by encouraging the model to develop a bijection between
the outputted trajectories and the latent space inputted to the generator. Another approach to modeling
multi-modal output is presented by [21], where a single Gaussian distribution is predicted for the future
trajectory conditioned on 6 different and predefined agent manoeuvres. These manoeuvres include going
straight, left, right combined with either simultaneously braking or continue at the same speed.

Trajectory output representation In the 3D domain and top-down domain the future trajectory prediction
is generally a sequence of directly predicted coordinates [1, 29, 21, 84, 83, 59, 108, 33, 44, 38, 48, 13, 78, 51].
There is also a work that predict the future coordinates indirectly [85] by predicting control inputs which are
used to update the state space model of the target agent. Modeling each agent as a dynamical system and
updating their state with control inputs, such as in [85], means the dynamical constraints corresponding to
this agent are explicitly accounted for.

Uncertainty Just as in the 2D on-board domain, knowledge of the uncertainty associated with the future
predicted trajectory is of great importance. There are methods that produce a deterministic output by training
using some distance error function, such as L2-loss [84, 108, 83, 44], variety loss [33, 29] or Mean-Squared Error
loss [78]. Other methods make a prediction that inherently contains an uncertainty measure by training the
model using a probabilistic loss function, such as negative log-likelihood [13, 51, 21, 59, 1]. In these cases, the
output of the model at each timestep is a Gaussian distribution.

2.3. Interaction modeling in trajectory prediction
This sections zooms in on the interaction modeling methods of the previously discussed trajectory prediction
literature. The objective is to categorize the interaction modeling techniques for each domain. First, inter-
action modeling methods for the 2D on-board domain are discussed, after which the focus is shifted to the
top-down and 3D on-board domains.

2.3.1. 2D on-board domain
It is challenging to model interactions between the target agent and its static and/or dynamic context in
the 2D on-board domain, as discussed in section 1.1.2. The majority of trajectory prediction methods do
not account for any form of contextual information [6, 53, 100, 105, 91, 90, 102, 104, 66, 98]. Attempts have
been made to integrate interactions, for example by looking at the local context surrounding the target agent
[70, 93], thereby implicitly accounting for either static or dynamic context cues. This is realised by encoding
a bounding box patch exceeding the size of the agent using a CNN. Only very recently, papers in the 2D
on-board trajectory prediction [54, 72, 92] and crossing- or intention prediction [50, 15, 92] domain have
started to integrate interactions with dynamic- or static context features. Such interactions are captured using
models based on a variety of concepts, namely Recurrent Neural Networks [54], attention [72] and graphs [50,
15]. Each concept is discussed below.

2.3.1.1 Recurrent Neural Network-based

Malla, Dariush, and Choi [54] reason over interactions using a so-called interaction module, which takes the
positions and corresponding actions of each agent in the scene as input and outputs a vector representing
the interactions between the target agent and its surrounding context. The core novelty of the interaction
encoder lies in the integration of both position and actions; the goal is to learn pair-wise interactions be-
tween an agent and a contextual object in case the agents’ action involves a contextual object. For example,
a pedestrian action of get in a vehicle enables the model to build a relation between this pedestrian and the
other relevant agent, in this case a vehicle. This pair-wise interaction should be strong if the two agents are
positioned nearby. The interaction encoder is illustrated in figure 2.4.



2.3. Interaction modeling in trajectory prediction 14

Figure 2.4: Interaction encoder from [54] using action- and position information jointly to reason over pair-wise interactions between
the target- and surrounding agents.

First, the action, a, and position, x, information is extracted for all agents in a scene with one target agent
and ( j −1) surrounding agents. This information is put in a matrix with ( j −1) rows, where each row contains
both the actions & positions of the target agent, as well as of one surrounding agent. This matrix is embedded
using an MLP into a vector of length ( j −1) where each element represents the pair-wise interactions between
the target agent and one surrounding agent. This interaction vector is fed through a spatial GRU to obtain one
context feature vector representing the most important interactions with respect to the target agent. Ablation
studies indicate a strong benefit of using such action-based interactions by comparing.

2.3.1.2 Graph-based

The method by Liu, Adeli, Cao, Lee, Shenoi, Gaidon, et al. [50] proposes to model the spatio-temporal inter-
actions between the target agent and its static- and dynamic context by using spatial graphs connected tem-
porally using GRUs. The novelty of this method lies in the graph construction and the instance segmentation-
based input. It is illustrated in figure 2.5.

Figure 2.5: Interaction modeling method from [50]. First, the scene is parsed into static and dynamic objects. These are used to
construct a spatial-graph centered at the target pedestrian, which is processed using graph convolution. The temporal dependencies

are then captured via a GRUs connecting the pedestrian and context-node.

The scene is first parsed to obtain the target agent bounding box, as well as binary masks for all relevant
objects in a scene using instance segmentation. The masks and bounding boxes are used to construct a sparse
star-graph centered around the target pedestrian, i.e. the pedestrian node is connected to all object nodes.
Additionally, a context node is connected to the pedestrian that contains an aggregation of all contextual
visual information. The edge weights of the graph correspond to the interaction importance between the
pedestrian and an object and are learnable based on two components. First, pedestrian appearance, which
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can implicitly provide information on pedestrian intent, e.g. from head orientation. and second, the spatial
relationship between the target agent & the object. Inspired by [109], the spatial relationship between the
target agent and each contextual object is inferred by cropping out a union binary bounding box covering the
target agent and the object, thereby preserving the relative spatial information. These union binary bounding
boxes are encoded and used in the edge weight calculation, as well as in the object node representations. To
account for temporal interactions between the spatial graphs at each timestep a GRU connects the target
agent between each frame. Moreover, a second GRU is connected to the context nodes between each frame,
although this is shown to not always be beneficial due to redundancy. By connecting the model sparsely in the
the spatial and temporal domains the computational complexity is reduced. To improve the use of learnable
edge weights the authors tried to add pose and object class information in the embedding, but this was was
shown to decrease performance.

2.3.1.3 Attention-based

The interactions with the static- and dynamic context in the method by Rasouli, Rohani, and Luo [72] are
modeled via the Categorical Interaction Module (CIM), which is illustrated in figure 2.6. Similar to [50], CIM
bases its modeling on semantic parsing to generate semantic maps of the scene, each of which contain ob-
jects of one semantic class in one time step. Where [50] uses these semantic maps to encode the relative
distance between objects & target pedestrian and consequently employs this as a proxy for edge weighting
to reason over a spatio-temporal graph, CIM takes a different approach. The semantic maps corresponding
to a semantic class for each time step are spatially encoded using a CNN and these embeddings are tempo-
rally encoded using an LSTM. The final hidden states of these LSTMs are concatenated to obtain a shared
categorical representation, i.e. a concatenation of all temporal embeddings for each semantic category. Fi-
nally, an Interaction Attention Unit (IAU) is used to determine relative importance of each category in the
shared categorical representation. IAU first calculates attention weights based on the similarity between the
last time-step and every other time step. Next, the scores per time-step are obtained via a softmax and used
to calculate the relative importance of each category in the shared categorical representation vector for each
time-step, called the context vector. The context vector and the last time-step representation are used to
calculate the final interaction context.

Figure 2.6: Categorical Interaction module from [72]. First, the scene is semantically parsed into different object categories. Per
category, each sequence of semantic maps is processed using a CNN and LSTM. The outputs are concatenated and processed using the

Interaction Attention Unit to obtain a context vector.

Ablation studies show several interesting components of the CMI. First, categorizing the semantic maps
based on appearance and motion pattern improves results, irrespective of the used processing method. Sec-
ond, the processing method used in CMI excluding the IAU already outperforms the alternative interaction
processing methods, which include 3D convolution and 2D convolutions with averaging in the temporal di-
mension. Adding the IAU further improves the results.

2.3.2. Top-down and 3D on-board domain
Interaction modeling has been more regularly investigated in the top-down and 3D on-board trajectory pre-
diction domains, compared to the 2D domain. From the reviewed literature, only [78] does not account for
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contextual objects. There is a large chunk of literature that focuses on modeling interactions with the dy-
namic context, whereas interactions with the static context has seen less exploration [46, 85, 84, 44]. For the
dynamic context cases, a distinction is made for interactions between homogeneous agents [1, 29, 21, 84, 83,
59, 108, 33, 44, 38] and between heterogeneous agents [85, 48, 13, 51, 106]. The latter poses an additional
challenge as the agents have different shapes, sizes, maneuverability and behavior, thereby leading to more
complex agent-agent interactions [14]. In order to deal with this, methods generally use some kind of differ-
ent embedding for each of the semantic classes. For example, Li, Yang, Tomizuka, and Choi [48] accounts
for the heterogeneous agents by calculating the agents’ node embedding by feeding the agents coordinates
through a semantic class specific embedding function. Yau, Malekmohammadi, Rasouli, Lakner, Rohani, and
Luo [106] explicitly include object size, velocity and class in the embedding. Chandra, Bhattacharya, Bera,
and Manocha [13] approach the problem by modeling each agent based on on their their differences on size,
velocity and additionally shape and driving behavior.

The interactions can be captured using a variety of algorithms. These algorithms are either distance-based
[1, 29, 21, 13], attention-based [83, 85, 84], graph-based [44, 59, 33, 85, 48, 38] or Transformer-based [27, 108].
Each of which will be discussed below.

2.3.2.1 Distance-based

Alahi, Goel, Ramanathan, Robicquet, Fei-Fei, and Savarese [1] models interaction between homogeneous
agents by embedding the motion history of n agents using n LSTMs and allowing the LSTM hidden states
of neighboring pedestrians to be shared via a social pooling layer. This pooling layer informs the target agent
about the latent representation of the surrounding agents, i.e. agents within a certain distance from the target
agent. The social pooling layer takes the form of a ’social’ occupancy grid centered around the target agent,
where each grid cell contains a summation of LSTM hidden states corresponding to surrounding agents lo-
cated in that grid cell. This means the ’social’ occupancy grid also preserves spatial information to some
extent. The social occupancy grid and coordinates are both embedded via fully connected layers and used
as input for the next LSTM cell. There are two main downsides to this interaction modeling method. First,
it only takes into account local information and second, by feeding the social occupancy grid through a fully
connected layer the spatial structure of the social occupancy grid is nullified. This means that two adjacent
cells will be treated the same as two distant cells, which can cause generalization problems.

Figure 2.7: The social pooling operation from [1] uses a occupancy grid centered around the target agent to share spatial information
and latent representations of surrounding agents

The social-module was improved by Gupta, Johnson, Fei-Fei, Savarese, and Alahi [29], who proposed
to get rid of the grid-based pooling scheme at every time step and replace it with a Multi-Layer Perceptron
(MLP) and max pooling operation at the end of the encoding process once. Consequently, a significant (16x)
gain in time-efficiency is obtained. Moreover, because far-away agents can also have an influence on motion
behaviour of the target agent, the pooling method is adopted to account for global interactions; the relative
position of the target agent with respect to all other agents is calculated and processed using MLPs and a
max-pooling operations to obtain a pooling vector for the target agent that takes into account all surrounding
agents.

Deo and Trivedi [21] apply a similar social pooling system as [1], but instead of feeding the social occu-
pancy grid through a fully-connected layer they process it using a Convolutional Neural Network. This means
the spatial structure of the social occupancy grid is preserved by learning local features. This convolution-
based method was shown to outperform the fully-connected method. Finally, the encoded social interactions
are concatenated with the encoded positional motion history of the target agent to make trajectory predic-
tions.

Chandra, Bhattacharya, Bera, and Manocha [13] approach the interaction modeling problem based on
two core ideas. First, in dense traffic a road agent does not respond to all surrounding agents and second,
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pair-wise agent interactions depend on difference between heterogeneous agents. These ideas are formal-
ized through two encoding streams, respectively called the horizon- and neighborhood stream. Both of these
streams use the state space of the agents located in their respective relevant region. This region is a semi-
elliptical horizon in front of the target agent for the horizon stream and all agents in the scene for the neigh-
bourhood stream. The state space contains information on the agent shape, velocity, position and driving be-
havior. These states are embedded and processed using an LSTM to obtain temporally relevant information.
The resulting hidden states are pooled together in respectively a horizon- and neighborhood map, which are
then processed using Convolutional Neural Networks to obtain information about scene dynamics around
the target agent.

2.3.2.2 Attention-based

Sadeghian, Legros, Voisin, Vesel, Alahi, and Savarese [84] propose an interaction module that leverages an
attention-mechanism to learn the most relevant static context cues of a scene. It does so by first extract-
ing image features from a raw top-down image using a Convolutional Neural Network. These features are
combined with the hidden state of the decoder RNN, which contain information on the agents’ future trajec-
tory. This information is fed through an a physical attention module, which learns the most influential static
context features on the agents’ predicted trajectory. The attention module combines two types of attention
mechanisms, namely single-source and multi-source. The former learns to extract local visual cues in a single
area of the image with an attention mechanism similar to [28], whereas the latter learns to extract local visual
cues from different areas across the image using soft attention [101].

Sadeghian, Kosaraju, Sadeghian, Hirose, Rezatofighi, and Savarese [83] extends this work and adds a
’social’-attention module to account for the dynamic context. A feature representation of the past trajec-
tory of each agent is obtained using LSTMs and combined into a joint feature vector. This vector is fed into
the social-attention module together with the hidden state of the decoder LSTM. By using the decoder LSTM
hidden state, which contains information on the future trajectory of the target agent, the method can rea-
son over which surrounding agents are most influential on the target agents’ future trajectory. The trajectory
prediction pipeline of [83] is outlined in figure 2.8.

Figure 2.8: Trajectory prediction method from [83]. First, static context features are extracted from a raw image using a CNN and
dynamic context features are extracted using LSTMs (left side). Next, the social- and physical attention modules are used for interaction

modeling. The physical attention module takes as input the processed static context features & the decoder LSTM hidden states and
the social attention module takes as input the processed motion history of the dynamic context & decoder LSTM hidden state (middle).

Using the interaction-aware encoding a GAN is used to generate future trajectories (right).

2.3.2.3 Graph-based

Graph-based methods model the agents and contextual objects as nodes on a graph with the edges in be-
tween two nodes representing the pair-wise interactions. One can reason over such graphs in an implicit [44,
59, 33, 85] and explicit manner [38, 48]; implicit methods use a predefined graph structure and reason over
the graph via the use of a certain message passing function. Explicit methods aim to first predict the un-
derlying interaction graph explicitly, i.e. which nodes are connected and what type of connection define the
pair-wise interaction. This predicted graph is then used to reason over via some message passing function.
Both methods will be discussed below.

Graph-based: implicit interaction modeling Kosaraju, Sadeghian, Martín-Martín, Reid, Hamid Rezatofighi,
and Savarese [44] propose a method that models interactions between the target agent and both static- and
dynamic context. First, the agent-agent interactions are realized by constructing a fully-connected graph



2.3. Interaction modeling in trajectory prediction 18

where each node represents the motion history of an agent and each edge represents the pair-wise interac-
tion between two connected nodes. The graph is updated using Graph Attention operations, i.e. the node
embeddings are updated using a self-attention mechanism. The interactions with the static context is real-
ized by performing soft-attention over the physical features relative to the target pedestrians’ motion history,
where the physical features are extracted from a raw top-down scene image using a Convolutional Neural
Network. This is similar to [83] and [84], but they perform the attention relative to the agents’ future trajec-
tory embedding. The component of the model responsible for reasoning over the interactions is illustrated
in figure 2.9

Figure 2.9: The component of the social-BiGAT model from [44] which is responsible for interaction modeling. First, static context
features are extracted from a raw image using a CNN and dynamic context features are extracted using LSTMs (left side). Next,

graph-attention is used to reason over dynamic context features (middle-top) and soft-attention to reason over the physical context
features in relation to past motion history (middle bottom). Finally, the interactions embeddings and motion history embeddings are

concatenated and decoded to obtain future trajectories (right)

This approach however, only uses the graph for spatial modeling, i.e. they essentially use it as a sophis-
ticated pooling mechanism for the embedded motion history of each pedestrian. Accordingly, [33] and [59]
propose different ways to improve this shortcoming. For example, Huang, Bi, Li, Mao, and Wang [33] put
the graph structure to better use by also accounting for temporal continuity of interactions. Their method,
STGAT, uses a similar approach as in [44], but the temporal continuity between interactions is preserved
by employing a second LSTM connecting each graph output node embedding. It is shown that the perfor-
mance is, on average, significantly improved by also modeling the temporal dependencies of interactions.
Mohamed, Qian, Elhoseiny, and Claudel [59] propose social-STGCNN, which improves use of the graph struc-
ture by modeling the temporal dimension within the graph representation. This spatio-temporal graph is
constructed by first embedding the motion history of all agents, in each timestep, as nodes on a spatial
graph, Gt . The edges represent the interactions and edge weights are determined using a kernel function,
i.e. the inverse L2-distance between agents. To account for spatio-temporal dependencies, a second tempo-
ral graph, G , is introduced whose attributes are the set of attributes of the spatial graphs, Gt . The authors
extend the conventional spatial Graph convolution operation to also account for the temporal domain. This
spatio-temporal graph convolution is then performed to update the graph and obtain spatio-temporal em-
beddings for each node, i.e. agent. These embeddings are then used to generate a trajectory for the respective
agent. A limitation of this method is that the spatial graph structure must be identical in each time step, i.e.
if any agent is not present in a given frame in a sequence, the interactions with this agent cannot be modeled
throughout the entire sequence.
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Figure 2.10: The social-STGCNN model from [59]. A spatio-temporal graph is constructed using the embeddings P of N pedestrians in T
time frames. The agent embeddings are represented by V and the edges by A. Graph convolution operations are performed to update
the spatio-temporal embeddings, after which the time-extrapolator CNN extends the temporal dimension of the embedding for the

desired time steps into the future

Yau, Malekmohammadi, Rasouli, Lakner, Rohani, and Luo [106] improve upon [59] in three ways in
their proposed method Graph-SIM. First, the agent embeddings in Social-STGCNN only contain coordinates.
Graph-SIM embeds information on semantic class, size and motion status of each agent, as well as relative
location to the target agent. Second, Social-STGCNN weighs interaction importance using a simple kernel
function depending on the relative distance between agents, whereas graph-SIM makes the interactions de-
pendent on a combination of Euclidean distance between agents and a distance metric based on the agents’
location on the road and orientation. Third, the graph in Social-STGCNN is constructed in a simple manner,
whereas graph-SIM constructs the graph in a more sophisticated manner; semantically identical agents are
first clustered together based on velocity, direction and position, as objects interacting in a group usually ex-
hibit similar behavior. Next, Inspired by [50], the target pedestrian is connected to all agents in a scene with a
pedestrian-centric star graph and nodes that are within the same cluster are connected via a fully-connected
graph. Next to modeling multi-agent interactions, the model additionally accounts for motion of the target
pedestrian and ego-vehicle by encoding their motion history, i.e. position and velocity, using an LSTM. The
complete model vastly outperforms the baselines [59, 93], where especially performance gains are obtained
by adequately modeling group behavior. Another interesting observation is that results significantly improve
by embedding both velocity and position of the target pedestrian- and ego-vehicle, instead of only one.

Figure 2.11: Graph-SIM model from [106]. The agents in the scene are clustered according to their similarity in behavior. Similar to
Social-STCNN an embedding Q of all N agents in all T time frames is obtained. The clustered agents are transformed into an
interaction tensor, which represent the edges in the spatio-temporal graph, and the agent embeddings represent the nodes.

Spatio-temporal graph convolution is performed to update the graph and obtain target pedestrian graph features. Finally, these
features are concatenated with a temporal embedding of the ego-vehicle & target pedestrian dynamics to make a action prediction.

Salzmann, Ivanovic, Chakravarty, and Pavone [85] account for dynamic context via a combination of a
spatial graph with temporal LSTMs and an attention module. The first step is to construct a graph where the
target agent node i is connected to a surrounding agent node j if the L2-distance is within a certain threshold.
This threshold corresponds to the perception range of the semantic class of agent j . The graph is modeled
with directed edges only to account for asymmetric influence between nodes. e.g. a car driver tends to look
further ahead than a pedestrian walking on the side walk. Next, the edge information of neighbouring agents
of the same semantic class is aggregated and fed into a semantic class-specific LSTM. An attention module
is used to combine the LSTM embeddings for each semantic class and determine the importance of each
surrounding agent relative to the target agent. The interaction with the static context is implicitly modeled
by encoding a local occupancy or semantic map, rotated to match the agents’ heading.
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Graph-based: explicit interaction modeling Kipf, Fetaya, Wang, Welling, and Zemel [38] starts with a fully
connected graph, where each node represents an embedding of the agents’ past trajectory. Message passing is
performed to obtain edge embeddings with information on the latent interactions between nodes. Each edge
embeddings is fed through a softmax to obtain a discrete probability distribution over K edge types. The
latent interaction type between each node-pair is now sampled from this distribution to obtain the latent
interaction graph. The decoder uses this graph to update the node representation by message passing and
consequently generate trajectory predictions. Limitations include that the interaction graph cannot change
over time during training, which is required for sufficiently training a model in scenarios where these graphs
dynamically change, such as with autonomous driving. Moreover, it has not been applied to any real world
trajectory prediction dataset and can only account for homogeneous agents. This is illustrated in figure 2.12.

Figure 2.12: The NRI model from [38]. The encoder is a fully connected graph neural network which performs message passing to learn
edge representations of the latent interaction between two nodes (left). Next, an edge type is sampled from each edge representation

resulting in the final latent interaction graph structure (middle). The decoder then uses this graph structure, the motion history nodes
and message passing operations to generate future trajectories. (right)

Li, Yang, Tomizuka, and Choi [48] improve on this work in three ways, namely by adding static-context
interactions, allowing the latent interaction graph to dynamically change and introducing interactions be-
tween heterogeneous agents. Similar to [38], It starts with a fully-connected graph, but with an additional
context node, called the observation graph. The context node contains some context embedding and each
agent node embedding contains information on its own state, called self-attributes, as well as information
on other nodes’ states, called social-attributes. The self-attributes are embedded with a class-specific em-
bedding function to account for heterogeneous agents. The nodes and edge embeddings are now updated
using Graph Attention. The latent interaction graph is obtained using these edge embeddings in the same
way as Kipf, Fetaya, Wang, Welling, and Zemel [38]. To make the interaction graph dynamic over time, the
observation graph and corresponding static interaction graph are re-calculated every τ time steps. τ can
be understood as the number of future time-step predictions using the same latent interaction graph. The
re-calculated interaction graphs are connected temporally via a GRU because interaction graphs depend on
their history. The output of each GRU cell is the adjusted interaction graph with time dependence. This
method outperformed state-of-the-art baselines [33, 59] on real-life datasets.

2.3.2.4 Transformer-based

A recent development is the use of Transformer-based models in trajectory prediction literature [27, 108, 49].
The reason for this is that recent State-of-the-Art models in other domains, such as Natural Language Pro-
cessing, rely on the Transformer-concept.

Li, Yang, Liang, Zeng, Ren, Segal, et al. [49] propose Interaction Transformer, which is an end-to-end
framework consisting of three main components. First, multi-modal sensor data from LiDAR, maps and
cameras are embedded and fused to contain a representation in BEV-map space. Second, this representa-
tion is fed into a detection module which detects spatial features of the surrounding agents. Last, and most
importantly, the BEV representation and agent spatial features are fed into the Transformer-based module,
which reasons over the interactions with the static- and dynamic environment and outputs agent interaction
features. These features are used by a recurrent model to auto-regressively predict future agent features. In
order to make the Transformer architecture work in the trajectory prediction domain, the authors made sev-
eral changes. For example, the positional embeddings have been changed from absolute to relative, as the
relative position between agents is most relevant in determining their interactions.
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Figure 2.13: The interaction transformer module from [49]. First, the interaction attention part (1) calculates the attention weights
using queries the features of all n agents, F i n , as queries and the spatial location, Ri , of the target agent relative to all other actors as

keys. These weights are then used to determine which agent features are most important in the context aggregation part (2). Finally, the
feature update part generates the future frame features Fout for the target agent.

The architecture proposed by [108] employs spatial- and temporal encoders based on the Transformer-
architecture and uses them both parallel- and sequential to capture spatio-temporal interactions. While the
temporal encoder is similar to the original Transformer encoder, the spatial encoder mainly leverages the
multi-headed attention mechanism from Transformers on a fully-connected graph. This spatial transformer
is named TGConv and ablation studies indicated that its spatial modeling capabilities were superior to exist-
ing counterparts, such as GCN and GAT. An interesting notion is that the benefit of the Transformer-based
spatial modeling over alternatives diminished for less busy crowds.

2.4. Evaluation
The strengths and weaknesses of any trajectory prediction algorithm are evaluated on datasets and are quan-
tified using metrics. Sharing metrics and datasets between methods provides a basis to compare perfor-
mance. This section discusses the datasets and metrics used in the reviewed literature.

2.4.1. Datasets
This section first provides a tabular overview of the datasets used by the previously discussed literature and
follows up with a more detailed explanation regarding these datasets.

2.4.1.1 overview

An overview of datasets used in the reviewed literature is provided below. For each dataset the following
attributes are indicated; the domain and type of environment where it has been recorded, the sensors used
to capture the data, the type of annotations, the total number of frames and how many of these frames are
actually annotated, and finally the number of annotated agents and how many of those are unique.
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Sensors Annotations # of (annotations) agents

Dataset Year Type Dom Mono Stereo LiDAR RaDAR GPS/IMU Annot freq Pos Track C/NC Agent att. Scene att. # of (annotated) frames Pedestrian Rider Vehicle

NGSIM 2006 Traf. Bird ✓ - - - - 10Hz Coords ✓ - ✓ ✓ ✓ - - 2.9K

UCY 2007 Surv. Bird 2.5Hz - - - - 2.5Hz Coords ✓ - Gaze - ✓ (✓) 600 - -

ETH 2009 Surv. Bird 2.5Hz - - - - 2.5Hz Coords ✓ - Vel - ✓ (8.9K) 650 - -

Stanford Drone 2016 Traf. Bird ✓ - - - - ✓ 2D BB ✓ - interactions Sem map (929K) 11.2K 6.4K 1.3K

CityWalks 2019 Urb. 2D ego 1x 30Hz - - - - 30Hz 2D BB ✓ - - - (215K) 2.2K-3.6K - -

JAAD 2017 Traf. 2D Ego 1x 30Hz - - - - 30Hz 2D BB ✓ ✓ ✓ Agent/driver actions (75K) 82K (381K) 2.8K - -

PIE 2019 Traf. 2D ego 1x 30Hz - - - ✓ 30Hz 2D BB ✓ ✓ ✓ obj. BB + annot (293K) 911K (740K) 1.8K - -

STIP 2020 Traf. 2D ego 3x 20Hz - - - - 2/20Hz 2D BB ✓ ✓ - - (1.1M) 1.1M (3.5M) 25K - -

TITAN 2020 Traf. 2D ego 1x 60Hz - - - 100Hz 10Hz 2D BB ✓ - actions - (75K) 750K (395K) 3.6K - (250K) 5.5K

KITTI Tracking 2012 Traf. 3D ego - 2x 10Hz 1x 10Hz - 100Hz 10Hz 3D/2D BB ✓ - - - 18K ✓ ✓ ✓

Apollo Scape 2018 Traf. 3D ego 1x - 1x 1x 10Hz 2Hz 3D BB ✓ - dir - 93K 16.2K 5.5K 60.1K

NuScenes 2019 Traf. 3D ego 6x12Hz - 5x 20Hz 1x 13Hz 100Hz 2Hz 3D/2D BB ✓ - pose, activity raster/sem map (40K) 1.4M (222K) 9.1K (944K)

Argoverse 2019 Traf. 3D ego 7x 30Hz 2x 5Hz 2x 10Hz - GPD 10Hz 3D BB ✓ - - Semantic map (350K) (132K) 1.5K (11K) 7K ✓

Waymo Perception 2019 Traf. 3D ego 5x 10hz - 5x 10Hz - - 10Hz 3D/2D BB ✓ - - Raster/sem map (800K)
2D: (2.7M) 58K.
3D: (2.8M) 23K

2D: (81K) 1.7K.
3D: (67K) 620

2D: 6.1M (60k).
3D: 9M (194k)

PePScenes 2020 Traf. 3D ego 6x12Hz - 5x 20Hz 1x 13Hz 100Hz 10Hz 3D/2D BB ✓ ✓ pose, activity raster/sem map (1.4M) (845K) (3.58M)

Waymo Motion 2021 Traf. 3D ego ? 10Hz 3D BB ✓ - dir/vel (Sem map, traffic-light states) (20M) (534M) 7.6M

Euro-PVI 2021 Traf. 3D ego 2x 10Hz - 1x 10Hz - ✓ 10Hz Coords ✓ - - Sem map 83K 6.2K 1.6K -

Table 2.1: Overview of the most common datasets used in the reviewed trajectory prediction literature, where the headers are explained
as following. Dataset: dataset name, Year: year of release, Type: Type of dataset, which could be surveillance, traffic or urban. Dom:
Domain, Mono: Presence ( specifications) of monocamera, Stereo: Presence ( specifications) of stereo cameras, LiDAR: Presence (

specifications) of LiDAR, RaDAR: Presence ( specifications) of RaDAR, GPS/IMU: Presence ( specifications) of GPS or IMU, Annot freq:
Annotation frequency, Pos: Type of positional agent annotations (2D/3D BB = 2D/3D bounding box, Coords = point coordinates),

Track: Presence of tracking IDs C/NC: Presence of cross/no-cross labels Agent Att.: Presence of agent attribute annotations (Gaze =
gaze direction, Vel = velocity, Dir = heading direction, ✓= too many types) Scene Att: Presence of scene attribute annotations (✓= too
many types), # of (annotated) frames: Total number of frames (if provided, else ✓), where the number between brackets indicates the
total number of annotated frames, # of (annotated) agents. Total number of agents (if provided, else ✓), where the number between

brackets indicate the total number of (per-frame) annotations for these agents

2.4.1.2 Ego-centric naturalistic datasets

In the collection of ego-centric naturalistic datasets a divide is present between the datasets captured from a
driving vehicle and datasets captured from a walking pedestrian. Both are discussed below.

Driving datasets
The Joint Attention in Autonomous Driving (JAAD) dataset [71] contains 346 videos that have been recorded
in 5 different cities in Europe and North-America by an on-board camera with a resolution of 1920x1080 or
1280x720. The dataset annotations come in three different categories. First, pedestrian bounding boxes with
tracking IDs, occlusion ratios and crossing/not-crossing actions. Second, pedestrian attributes with regards
to its state before crossing, how the pedestrian becomes aware of an approaching vehicle and what action the
pedestrian takes in response to the approaching vehicle. Third, scene attributes that list the environmental
contextual elements. JAAD is used in a variety of action/intention [50, 70, 71, 9, 72] and trajectory prediction
papers [70, 72, 104, 98]. The dataset has no ego-motion information, but it does contain high-level driver
actions such as speeding up, slowing down etc. However, this information is less informative than actual
ego-motion information [76].

The Pedestrian Intention Estimation (PIE) dataset [70] is the first dataset to have annotations for the latent
intention of pedestrian crossing. Note that these annotations refer to the intention of crossing instead of the
crossing action. It was recorded during daytime in 1 city in Canada with only sunny and over-cast weather
conditions using a single camera with resolution 1920x1080. Similar to JAAD, the dataset includes pedestrian
bounding boxes with tracking IDs and occlusion ratios. Moreover, pedestrian attributes are included for ac-
tions and the true intention of crossing. Finally, scene attributes and object annotations are present, which
includes bounding boxes for pedestrian crossings, vehicles and stoplights. Contrary to JAAD, this dataset also
comes with on-board diagnostics sensor data that provides GPS coordinates and vehicle information, such
as velocity and heading angle. PIE is used in [70, 72, 93, 104, 98].

The Stanford-TRI Intent Prediction (STIP) dataset [50] was recorded under various weather conditions in
dense urban environments in 8 different US cities. The recordings are made with 3 different cameras facing
left, right and straight ahead, all with a resolution of 1216x1936. The frames have been labeled for pedestrian
bounding boxes at 2Hz, which has subsequently been extrapolated to annotations at 20Hz. Each bounding
box has tracking information and crossing/not crossing action information. Access to this dataset is restricted
to universities and non-commercial organizations. The only paper to use this dataset is [50].

The Trajectory Inference using Targeted Action priors Network (TITAN) [54], has been recorded in highly
interactive urban environment in Tokyo by a single camera with 1920x1200 resolution. Additionally, a IMU
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sensor recorded the ego-motion at 100Hz. The TITAN dataset has been labeled for pedestrians, 2-wheel and
4-wheel vehicles, all of which contain tracking information. Vehicles have an motion-status label, as well as a
door/trunk status label specifically for 4-wheel vehicles. Pedestrians are accompanied by an age group label
and and a large variety of hierarchically annotated action labels. That means each pedestrian can have up
to 5 different action labels, ranging from individual atomic actions (e.g. laying down) to contextual actions
(e.g. getting into a car, bicycling) to transportive (e.g. pushing) to communicative (e.g. looking at phone).
Access to this dataset is restricted to universities and non-commercial organizations. The only paper to use
this dataset is [54].

The NuTonomy Scenes (NuScenes) dataset [11] has been recorded in 2 cities, namely Boston and Singa-
pore, in multiple weather conditions in day- and night conditions. The sensor modalities included 6 cameras
with resolution 1600x900, 1 LiDAR, 5 RaDARs and a GPS & IMU. It contains over 1000 hand-selected driving
scenes, which are 20 seconds long and annotated at 2Hz. The annotations include 3D bounding boxes over
23 agent- and object (including static context) classes with corresponding attributes such as visibility, activity
and pose. Additionally, there are raster maps and semantic maps with 11 semantic classes available. The
Pedestrian Prediction on NuScenes (PePScenes) dataset [75] is an extension of the NuScenes dataset. The an-
notation density is increased from 2Hz to 10Hz by interpolation and additionally behavioral labels are added
for crossing actions to a subset of the pedestrians. Both NuScenes and PePScenes also contain 2D bounding
boxes, which are projections of the 3D bounding boxes on the image plane. Therefore, the 2D bounding boxes
do generally not have a tight fit around an agent. The NuScenes dataset has been used in [85, 49, 7] and the
PePScenes dataset in [106, 76].

TheWaymo Perception dataset is similar to NuScenes datasets and has been recorded in three cities in
North-America in Sunny, cloudy & rainy weather during the day- & night. The sensor modalities include 5
cameras with resolution 1920x1280 and 5 LiDARs. It contains annotations for pedestrians, riders, vehicles
and signs with both 2D- and 3D bounding boxes. The main purpose of the Waymo Perception dataset is de-
tection & tracking. To better accommodate trajectory prediction research, Waymo has recently released the
Waymo Motion dataset [23]. This dataset has been recorded in six cities in the United States and covers over
100.000 scenes spread out over 570 hours of data. The data has been specifically selected to contain interest-
ing scenarios with interactions. In addition to 3D bounding box labels for pedestrians, riders & vehicles, the
dataset also includes high-definition 3D maps, velocity & heading annotations and traffic signal states.

The KITTI tracking dataset [25] has been recorded in- and around Karlsruhe in Germany using two sets
of stereo cameras with a resolution of 1392x512, a LiDAR and a IMU/GPS localization unit. It is a relatively
small dataset, counting 50 sequences with varying length from 78 to 1176 frames. This dataset has been used
in [46].

The Cityscapes [19] dataset is not intended for the trajectory prediction task due to the absence of bound-
ing box & corresponding track ID annotations. Hence, it has been excluded from table 2.1. Nonetheless, it
has been used for trajectory prediction in [6], who added bounding box annotations and tracks themselves.
CityScapes has been recorded in over three different seasons. It contains 5000 images, recorded in 27 different
cities, with pixel-level instance segmentation of 30 different classes and 20000 additional images, recorded in
another 23 different cities, with more coarsely annotated semantically segmented labels.

The Euro-PVI dataset [7] is a dataset that focuses on scenarios where interactions between the ego-vehicle
and surrounding pedestrians or riders play a significant role. The clips are recorded dense urban scenes of
Brussels and Leuven in Belgium with two cameras with a resolution of 1280x806 and a LiDAR (Velodyne HDL-
64E). Annotations include world coordinates for agents, ego-motion and semantic maps of the environment.
This dataset has been used in [7].

Other ego-centric walking datasets
The CityWalks dataset [90] is an ego-centric dataset recorded from the first-person view of a walking pedes-
trian. A total of 358 video sequences have been recorded using a camera with 1280x720 resolution in many
different settings. These settings including in- and outdoor, during the day- & night, whilst sunny, cloudy,
rainy and snowy and in a total of 21 cities in 10 European countries. The frames are annotated for 2D pedes-
trian bounding boxes. These are obtained using different detection algorithms, namely YOLO (2201 unique
tracks) and Mask-RCNN (3623 unique tracks). The dataset was used in [90]
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2.4.1.3 Top-down surveillance- and traffic datasets

The UCY dataset [47] is an outdoor surveillance top-down dataset comprising of 3 scenes, namely the sparsely
populated scenes ZARA-01 & ZARA-02 and the densely populated UCY. The ZARA scenes It contains pedes-
trian position annotations with tracking labels and gaze directions. The pedestrians show complex behavior,
such as walking in unpredictable non-linear fashion and walking in groups. It has been widely used as a
benchmark for top-down methods [85, 83, 44, 29, 1, 108, 97, 59, 33]. The ETH dataset [65] is very similar to
UCY and contains 2 moderately crowded sub-sets, namely ETH and Hotel. It also has seen widespread use as
a benchmark dataset for top-down methods [85, 83, 44, 29, 1, 108, 97, 59, 33].

The Stanford Drone Dataset (SDD) [79] also is an outdoor surveillance top-down dataset, but with hetero-
geneous agents. The dataset is recorded in 20 unique scenes that contain physical obstacles that the agents
avoid. It has been used in [46, 83, 48, 84]. The dataset contains top-down 2D bounding box annotations,
scene semantics and additionally agent-agent & agent-environment interactions.

The Next Generation Simulation (NGSIM) [18, 17] dataset has been recorded on the US Highway 101 and
interstate 80 and hence contains only vehicles. This top-down dataset has annotations at 10Hz for local and
global positions, velocities, lanes, vehicle type and parameters. It has been used by [13, 21]

The Apollo Scape dataset [51] contains 155 minutes of clips with ± 1000km of trajectories for different
agents. It has has been recorded under various lighting conditions and varying traffic densities using an
RGB camera with resolution 1920x1080, a VeloDyne HDL-64ES3 LiDAR, a Continental ARS408-21 RaDAR and
localization sensor. The annotations include full 3D bounding boxes with heading angle. Moreover, even
though a localization system is present the ego-motion not among the annotations. This dataset has been
used by [51].

2.4.2. Metrics
The type of metrics used for evaluation of future trajectory predictions is dependent on the prediction out-
put type. For deterministic output types, a geometric measure of trajectory similarity or final displacement
is required. In case the prediction output is stochastic a probabilistic measure for similarity between prob-
ability distributions is required. Table 2.2 summarizes the use of different metrics throughout the reviewed
literature. The metrics are discussed in more detail below.

Metric Used by

Geometric

ADE
[102, 91, 72, 54, 90, 66, 46, 13, 78, 85, 51, 21, 84,

83, 108, 33, 29, 1, 44, 48, 49, 104]

FDE
[91, 72, 54, 90, 66, 13, 85, 51, 84, 83, 108, 33, 29,

1, 44, 48, 7, 49, 104]

MSE [6, 70, 66, 69, 104, 38, 62]

CMSE [70, 69, 104, 62]

C FMSE [70, 69, 104, 62]

AIOU [100, 90]

FIOU [105, 53, 54, 90]

(A/F )RMSE on bbox coordinates [72]

NADE [100]

probabilistic
NLL [6, 21]

KDE-NLL [104, 85, 7]

Best-of-N [66, 104, 85, 59, 1, 108, 33, 29, 44, 48, 7]

Table 2.2: Overview of the used geometric and probabilistic metrics in the reviewed literature

2.4.2.1 Geometric metrics

The majority of methods utilize a metric based on some sort of displacement error. The most commonly
used ones are Average Displacement Error (ADE) and Final Displacement Error (FDE). The former takes the
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euclidean distance between the predicted and ground truth trajectory and averages the distances across all
timesteps. The latter does the same, but instead of averaging it only takes the euclidean distance for the
last timestep of the prediction horizon. In the 2D on-board domain ADE [105, 70, 100, 72, 54, 90] and FDE
[105, 102, 70, 72, 54, 90] are widely adopted to measure the euclidean distance between the ground truth
and predicted bounding box centroids. In the 3D on-board and top-down domain, ADE and FDE are used to
measure the euclidean distance between predicted coordinates [66, 46, 13, 78, 85, 51, 21, 84, 83, 108, 33, 29,
1, 44, 48, 49, 104]

Some papers adopt distance metrics similar to ADE and FDE, such as Mean Squared Error (MSE), Average
Root Mean Square Error (ARMSE) and Final Root Mean Squared Error (FRMSE). MSE is solely used in the 2D
ego-centric domain [6, 70, 66, 69, 104, 62] to measure the squared distance error averaged over all bounding
box coordinates across the prediction horizon. Alternatively, the mean squared error is calculated over the
bounding box centroids across the prediction horizon, CMSE [70, 69, 104, 62] or for the final timestep only,
C FMSE [70, 69, 104, 62]. Another alternative is ARMSE [72], which calculates the average euclidean distance
between the predicted and ground truth bounding box coordinates averaged over all timesteps, or FRMSE

[72] calculating the Root Mean Square Error over the bounding box coordinates in the last predicted timestep.
Styles, Ross, and Sanchez [91] calculate the euclidean distance at different timesteps and calls it DE@t , where
@ indicates the future timestep where the evaluation is made. To make a fair comparison between datasets
with different image resolutions Xiong, Flohr, Wang, Wang, Wang, and Li [100] additionally normalise ADE
with respect to image resolution.

There are also metrics that are used to jointly evaluate scale and position of the predicted bounding box.
These include Average Intersection Over Union (AIOU) [100, 90], which calculates the intersection over union
between the predicted and ground truth bounding box, and Final Interaction Over Union (FIOU) [53, 105, 54,
90], which calculates the intersection over union between the predicted and ground truth bounding box.

In addition to these distance metrics, two papers attempt to integrate a metric to measure social com-
pliance between different actors. For example, [49] introduces Trajectory Collision Rate and [83] uses the
average % of colliding pedestrians per frame for each scene as a try-out metric.

2.4.2.2 Probabilistic metrics

Geometric metrics can not be used for predictions with uncertainty or which are multi-modal. In these cases,
probabilistic metrics are required. For example, Negative Log-Likelihood (NLL) provides a measure of the
assigned probability to the true sequence by the predicted distribution. It is used in the 2D on-board domain
[6] and in the top-down domain [21]. An alternative to this is the Kernel Density Estimation-based Negative
Log Likelihood (KDE-NLL) [104, 7, 85], which evaluates the ground truth negative log-likelihood under the
predicted distribution estimated by a Gaussian Kernel.

Some papers use a sampling approach to evaluate a stochastic trajectory prediction using the best-of-N
metric [66, 104, 85, 59, 1, 108, 33, 29, 44, 48, 7], where N trajectories are sampled from the predicted distribu-
tion and the the evaluation is performed with the best one. Concretely, these metrics take shape in the form
of minimum Average Displacement Error (mADE), minimum Final Displacement Error (mFDE), minimum
Final Intersection Over Union (mFIOU).
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Method

This chapter elaborates on the proposed method in detail and concludes with the contributions of this work.

3.1. Overview
The proposed method, Interaction-Aware Pedestrian Trajectory Prediction (IA-PTP), performs trajectory pre-
diction while accounting for interactions with the static- and dynamic context in the 2D on-board domain.
At time step t , given a sequence of video frames for the last τ time steps, Xt = {Xt−τ+1, ...,Xt }, where X con-
tains information for the target pedestrian (i.e. bounding box coordinates and appearance) and contex-
tual objects (i.e. binary instance masks) the goal is to predict the future trajectory of the target pedestrian
Yt = {yt+1, ...,yt+T }, where y represents four bounding box corner coordinates and T the prediction horizon.

Figure 3.1: Overview of the proposed method, IA-PTP.

An overview of the proposed model is illustrated in figure 3.1, where each component is colourised to
enable easy referral to components in the figure later on. First, the target pedestrian and other semantic
entities are extracted from the observation data (purple). The extracted information is then processed using
two separate encoding streams. The first encodes the motion history of the pedestrian (green). The second
encodes the interactions between the pedestrian and its static- and dynamic environment (light-grey), and
is inspired by STIP [50]. The embeddings resulting from each encoding stream, respectively hbbox

t and hi nt
t ,

are fused to form a joint representation hdec
t . This joint representation serves as the initial hidden state- and

input for the recurrent decoder (red). For the decoder input specifically, the representation is first updated
using a soft-attention mechanism to generate i dec

t . Each decoder cell output is linearly mapped using a fully

26



3.2. Semantic extraction of objects and pedestrian 27

connected layer to obtain a bounding box prediction yt+n , where n ∈ [1..T ]. Optionally, the future ego-motion
is fused with the input of each decoder cell (yellow module).

The remainder of this chapter will provide a detailed elaboration of the architecture. More specifically,
the semantic extraction is discussed in section 3.2, after which the interaction modeling stream is elaborated
in section 3.3. The bounding box encoding stream is described in section 3.4. Finally, section 3.5 discusses
the temporal decoding, including the fusion of future ego-motion.

3.2. Semantic extraction of objects and pedestrian
First, each of the τ observation frames is parsed for the target pedestrian and contextual objects. This step is
illustrated in figure 3.1 by the purple module. The parsing procedure for the target pedestrian and contextual
objects is discussed below.

Target pedestrian the pedestrian location is defined by four ground truth bounding box corner coordi-
nates in pixels, i.e. x- and y-pixel location for the bounding box top-left and bottom-right. The ground truth
is used instead of predictions from a pedestrian detector because it makes model performance independent
of pedestrian detector performance. This allows for a more careful evaluation of the proposed method. More-
over, the large majority of previous work [105, 70, 104, 62, 98, 72, 54] uses ground truth coordinates. Thus,
doing the same provides a more solid basis for comparison.

Contextual objects the contextual objects are detected and semantically segmented using an off-the-shelf
instance segmentation network, Seamseg [68], pre-trained on the Mapillary Vistas V1.0 dataset [61]. Seamseg
is the network of choice because of the open-source code, available pre-trained model on Mapillary Vistas,
as well as ease of implementation while having decent performance. Pre-training on Mapillary Vistas is cho-
sen because it contains pedestrian crosswalks, contrary to the alternative, i.e. the CityScapes dataset [19].
The parsed contextual objects represent only a subset of all labelled instance categories contained within the
Mapillary Vistas dataset. The objects in this subset are called the contextual objects of interest and the selec-
tion is based on the set of objects used in STIP [50]. An overview of all available instance categories within
the Mapillary Vistas dataset is provided in appendix A.1. An overview of the contextual objects of interest is
provided in table 3.1.

Cue type Category Objects
Dynamic- or static Vehicles Bicycle, Bus, Car, Motorcycle, Trailer, Truck

Static Infrastructure Plain crosswalk, Zebra crosswalk, Traffic light

Table 3.1: The contextual objects of interest including their cue type and category

3.3. Interaction modeling stream
modeling the interactions between the target pedestrian and contextual objects is approached from a graph-
based perspective. The interaction modeling stream is inspired by STIP [50] and contains three components,
which are shown within the (light-gray) module in figure 3.1. The first step is to use the parsed informa-
tion described in the previous section to construct τ spatial graphs. For each graph, the nodes contain a
representation of the target pedestrian or a contextual object. The edges between two nodes define the inter-
action importance (section 3.3.1). Second, Graph Convolution operations are performed to reason over each
graph. This process aims to inform the pedestrian node of the presence of different contextual objects, i.e.
update the pedestrian node representation based on the object node representations (section 3.3.2). Finally,
the pedestrian node of each graph is connected via a temporal GRU to aggregate the temporal correlations
between the spatial interactions (section 3.3.3).

3.3.1. Graph construction
For each observed frame, the parsed information is used to construct a graph that represents the spatial
relationships between the pedestrian and each contextual object. Assume a graph to be defined as G = (V ,E),
where |V | = Nnode is the number of nodes and |E | = Ned g e is the number of edges. The square adjacency
matrix A ∈ RNnode xNnode stores information on which nodes are connected, as well as the importance of these
connections. Formally, the importance of each connection is expressed using an edge weight, w . The graph



3.3. Interaction modeling stream 28

construction will be discussed in two components. First, the node definitions and second, the adjacency-
matrix and edge weights.

3.3.1.1 Node definitions

The graph contains two types of nodes, namely one for the target pedestrian and one for each contextual
object. Both are discussed below.

• Target pedestrian node: contains an embedding of the pedestrian appearance. The appearance pro-
vides implicit cues on pedestrian behaviour, such as body- and head orientation or hand gestures.

• Object nodes: contain an embedding of the binarised union of the pedestrian bounding box and the
object instance mask. The union is chosen, as opposed to only the object instance mask, because it
captures the relative location- and shape of an object with respect to the pedestrian. An example of a
union binary mask is provided in figure 3.2.

The pedestrian appearance image patch or binary union masks are processed in three steps. First, the
image patch or union mask is reshaped to 224x224 using bilinear interpolation to prepare it for C N N pro-
cessing. Next, the reshaped image patch or union mask is fed through a ResNet-18 backbone [30] pre-trained
on ImageNet [82] to generate a a 512-dimensional output embedding for each node. ResNet-18 is the back-
bone of choice because it is relatively fast in terms of inference time while having decent performance [8].

Figure 3.2: Visualization of the binary union mask representing an object node. left: current frame. Middle: object instance mask and
pedestrian bounding box printed over the current frame. Right: cropped and reshaped binary union mask covering both the pedestrian

and object instance.

3.3.1.2 The adjacency matrix and edge weights

The graph aims to inform the pedestrian about surrounding contextual objects that influence its future be-
haviour. This is accommodated by connecting each object node with the pedestrian node, creating a pedestrian-
centric star-graph. Each connection, i.e. edge, is weighted to differentiate between more- and less important
objects. By making the edge weights a learnable feature of the graph, the model becomes more explainable
regarding which objects have the most- and least influence on trajectory prediction performance. Thus, the
adjacency matrix A of this pedestrian-centric star-graph with weighted edges takes the shape of a symmet-
ric matrix with unit weights corresponding to the self-loops on the diagonal and learned weights on the first
column- and row- corresponding to the bi-directional weighted edges between the target pedestrian and
each object.

A
[
i , j

]=


1 i = j
wo,i i = 1, j ̸= 1
0 el se.

(3.1)

The edge weight wo,i between object i and the pedestrian is based on the binary union mask of the object
i - and pedestrian, i.e. object i node embedding, as well as a spatially-aware pedestrian appearance embed-
ding, i.e. an extended version of the pedestrian node embedding. Both elements are used as follows in the
edge weight calculation.

• spatially-aware pedestrian appearance embedding: the pedestrian node embedding, v p , is represented
by the pedestrian appearance. This embedding is concatenated with a spatial vector so,i , where so,i

captures the spatial relationship between the bounding box of object i and the pedestrian bounding
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box. Additionally, object class co,i is added. The results is a pedestrian appearance embedding, v ps,i ,
that is spatially- and class-aware of object i . Finally, this is fed through a fully-connected layer with a
ReLU activation function to get v̂ ps,i . The calculation of v̂ ps,i is shown in equation 3.2 and the calcula-
tion of the spatial relationship vector so,i is shown in equation 3.3.

v̂ ps,i =σr

(
v ps,i

)
=σr

([
v p σr (so,i ) co,i

]T
)

(3.2)

so,i =
[
∆xo,i

mi n ∆yo,i
mi n ∆xo,i

max ∆yo,i
max ∆xo,i

c ∆yo,i
c wo,i ho,i

]T
(3.3)

Where∆xo,i
mi n ,∆xo,i

max ,∆yo,i
mi n and∆yo,i

max indicate the minimum- and maximum pixel distance in bound-

ing box corners in x- and y-direction,∆xo,i
c and∆yo,i

c indicate the pixel distance between bounding box
centers in x- and y-direction, wo,i and ho,i indicate the pixel width- and height of the union.

• Binary union mask embedding: the object node is represented by a binary union mask embedding, v o,i .
This embedding contains information regarding the relative location between object- and pedestrian,
as well as on object shape. The mask is embedded using a fully-connected layer with a ReLU activation
function, shown in equation 3.4.

v̂ o,i =σr

(
v o,i

)
(3.4)

Using the two above calculated components, the edge weight is obtained according to equation 3.5.

ŵ o,i = sigmoid
(

v̂ ps,i ⊗ v̂ o,i
)

wo,i = ŵ o,i
(3.5)

Where the spatially-aware pedestrian appearance embedding, v̂ ps,i , and the binary union mask embed-
ding, v̂ o,i are combined via an element-wise multiplication, ⊗. The combined information is activated using
a sigmoid activation, resulting in ŵ o,i . By taking the average over all of the embedding’s elements, a final edge
weight value, wo,i , is obtained

3.3.2. Spatial reasoning over the graph
A graph message passing algorithm is adopted to reason over each spatial graph, i.e. to refine the pedestrian
node embedding with information from the object node embeddings. Specifically, the Graph Convolution
[39] operation is implemented, which is defined by equation 3.6:

Z = (A ·X )W T (3.6)

Where A is the adjacency matrix, W the learnable weight matrix, X the feature matrix containing the row-
wise concatenated node embeddings and Z is the refined feature matrix. Following [50], A is not normalised,
and no activation is added to the refined feature matrix, even though that is customary in the original Graph
Convolution Network implementation. Moreover, only one layer of graph convolution is performed. This
configuration showed the best results, as shown in the experiments in appendix A.2.2.

3.3.3. Temporal reasoning
Not only the spatial interactions matter, but also the temporal correlations between spatial interactions. For
example, without temporal correlations, a pedestrian can be aware of a nearby car at time-step n, and have
no awareness of the same vehicle at time-step n+1. To encourage temporal consistency, a GRU connects the
pedestrian nodes between each graph.

3.4. Bounding box encoding stream
As has been shown by previous work, the motion history of the target pedestrian is a cue for its future tra-
jectory [6, 53, 72, 54, 70, 93, 100, 91, 102, 90, 105, 104, 66, 92]. Therefore, a bounding box encoding stream
is adopted that uses a GRU to embed the pedestrian’s motion history, as is illustrated by the red module in
figure 3.1.
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Given an observation sequence of pedestrian bounding box coordinates, Bt = bt−τ+1, ...,bt , the GRU en-
codes temporal correlations between these into a final hidden state embedding hbbox

t . Each bounding box
is described by x- and y-pixel location for the bounding box top-left and bottom-right pixel coordinates, i.e.

bt =
[
x t l

t y t l
t xbr

t ybr
t

]T
.

The motion history is embedded separately from the interaction modeling stream instead of jointly, be-
cause this was proven most beneficial for model performance in experiments, as shown in appendix A.2.1.

3.5. Temporal decoding
The embeddings generated by the interaction modeling- and bounding box stream combined, contain a rich
representation of the scene history. The final step is to use this information in a useful way to generate future
trajectory predictions. To accommodate this, a GRU decoder is adopted that uses both encoding stream
embeddings, and optionally ego-motion information. The decoding module is illustrated in yellow in figure
3.1.

First, the final hidden state, or embedding, of the interaction modeling- and bounding box encoding
streams are aggregated into a joint representation, hdec

t .

hdec
t = hi nt

t ⊕hbbox
t (3.7)

Where ⊕ is the concatenation operator. The joint representation, hdec
t , is used for the initial hidden state-

and input of the recurrent decoder. Before using it in the input however, an additional soft-attention mech-
anism is applied. Moreover, the future ego-motion, E = et+1, ...,et+T , is optionally concatenated with each
GRU input. The calculation for the first decoder cell is provided in equation 3.8.

i dec
t =

(
σsm(hdec

t )⊗hdec
t

)
⊕et+1 (3.8)

Where σsm is a fully-connected layer with a softmax activation function, ⊗ an element-wise multipli-
cation, ⊕ the concatenation operation and et+1 the future ego-motion at the time-step t+1. Note that the
soft-attention mechanism, i.e. the addition of σsm(hdec

t ) with an element-wise multiplication, is not present
for all subsequent decoder cells.

For each future time-step n ∈ [1,T ] in the prediction horizon, the corresponding GRU cell outputs a hid-
den state hdec

t+n . This state is subsequently fed through a fully-connected layer with linear activation function,
σl , which maps the high-dimensional hidden state to a four-dimensional bounding box prediction, bt+n .

bt+n =σl (hdec
t+n) (3.9)

Where σl is a fully-connected layer with a linear activation function

3.6. Main contributions
Table 3.2 provides a tabular overview that puts the proposed method, IA-PTP, into the context of previous
methods. IA-PTP is distinguished based on three main classifiers. Firstly, the prediction task, which discusses
the task(s) the method performs. Secondly, the interaction modeling module, which discusses the interac-
tion modeling method in terms of used architecture, used stimuli and context types with which interactions
are modelled. Finally, other modules, which discusses other architectural modules used by the method to
improve trajectory prediction performance. Note that all tabulated methods operate in the 2D on-board do-
main.
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Interaction modeling module

# Method Prediction task Architecture Context types Stimuli Other modules

1 B-LSTM [6] • trajectory - - - -

2 FOL-X [105] • trajectory - - -
• motion appearance

encoder

3 PIEtr a j [70] • trajectory - - - -

4 PIE f ul l [70]
• trajectory
• intention

- - - • intention prediction

5
BiTraP-D

[104]
• trajectory - - - • endpoint prediction

6 SGNet-D [98] • trajectory - - -
• step-wise endpoint

prediction

7 H-LSTM [69] • trajectory - - -
• correlation

• custom LSTM
• intention prediction

8 PFT [62] • trajectory - - -
• ego-motion
disentangling

9 TITAN [54] • trajectory • RNN-based
• dynamic

• static
• agent actions
• agent location

-

10 BiPed [72]
• trajectory

• final location
• crossing action

• attention-
based

• dynamic
• static

• class-wise
semantic maps

-

11 STIP [50] • crossing action • graph-based
• dynamic

• static
• instance masks
• ped appearance

-

12 IA-PTP • trajectory • graph-based
• dynamic

• static

• instance masks
• ped appearance

• object class
-

Table 3.2: Overview of the proposed (bold-faced) and existing methods in the 2D on-board domain. Each method is discussed in terms
of the prediction task it performs, the interaction modeling module, and other type of modules. In turn, the interaction modeling

module is discussed in terms of the used architecture, context types, and used stimuli.

As can be observed from table 3.2, there are no previous 2D on-board trajectory prediction methods that
reason over interactions with the static- and dynamic context using a graph-based approach. One recent
work in the 2D on-board domain, STIP [50], does perform this type of interaction modeling, but it performs
pedestrian crossing action prediction. Therefore, this graph-based interaction modeling approach is the in-
spiration for this work to investigate a similar method in the trajectory prediction domain. Even though the
interaction modeling module is inspired by STIP, there are some key differences. First, the object class has
been added to the edge embedding in IA-PTP to differentiate between object classes explicitly. Second, STIP
uses an additional node in each graph that contains an aggregation of all other context nodes, i.e. an ag-
gregated context node. These aggregated context nodes are temporally connected with an additional GRU,
similar to the pedestrian nodes. This aggregated context node and the corresponding GRU have been re-
moved, as early experiments showed difficulties with generalisation. Third, the architecture surrounding the
interaction modeling module, which includes the bounding box encoding stream and the decoder, is new.

The contributions of this work can be summarised as follows:

1. This work proposes the first pedestrian trajectory prediction method in the 2D on-board domain that
incorporates interactions between the target pedestrian and its static- and dynamic environment using
a graph-based approach.

(a) It is shown that graph-based interaction modeling enables the proposed method to outperform
all considered baselines for the PIE and JAAD f ul l datasets on nearly all metrics.

(b) It is shown that the performance gain on JAAD f ul l is most significant for the close-by pedestrians
by evaluating the model on the JAADbeh subset containing only such pedestrians.

2. This work shows that modeling interactions with all considered objects, i.e. crosswalks, traffic lights,
and vehicles, improves trajectory prediction performance most compared to only modeling interac-
tions with a subset of the aforementioned objects.



4
Experiments

This section describes the experimental setup adopted for the proposed approach. First, the baselines are
discussed (section 4.1), after which the evaluation procedure is explained in terms of metrics (section 4.2) and
datasets (section 4.3). Next, data pre-processing (section 4.4) and training setup (section 4.5) are discussed.
Finally, the experimental results and discussion are elaborated on (section 4.6).

4.1. Overview of models and baselines
The proposed- and baseline methods are described below.

• PIEtraj [70]: Attentive single-stream LSTM encoder-decoder model which encodes past bounding box
coordinates. The architecture is illustrated in figure 4.1. The method was implemented using the pub-
licly available code with the same parameters settings as described in the paper.

– PIEfull: extends PI Etr a j by conditioning the predictions additionally on predicted ego-vehicle
speed and pedestrian intention. These predictions are then concatenated with the embedded
encoder hidden-state before using the soft-attention mechanism. to generate bounding box pre-
dictions.

Figure 4.1: The PI Etr a j baseline architecture. First, the bounding box sequence is fed through a temporal attention element weighing
the relevance of each element in the input sequence. The weighted bounding box coordinates are used as input in the LSTM encoder to

extract the most relevant temporal correlations. The resulting final cell state- and hidden state- are then used as initial states for the
LSTM decoder. The input for each decoder LSTM cell is obtained by first embedding the final encoder hidden-state and subsequently

performing soft-attention on this embedding.

• FOL-X [105]: multi-stream GRU encoder-decoder model. The first stream encodes past bounding box
coordinates, and the second stream dense optical flow maps localized around the target agent. Both
encodings are combined and fed into a GRU decoder. In parallel, a third stream feeds past ego-motion
into a GRU encoder-decoder model to generate future ego-motion predictions, which are consequently
used to condition the future predictions on.

• B-LSTM [6]: LSTM encoder-decoder model using a Bayesian formulation. The encoder encodes past
bounding box locations, after which this is decoded to generate future bounding box predictions with
an uncertainty measure.

32
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• Linear Kalman Filter [70]: Linear Kalman Filter with a constant velocity motion model. This model is
integrated as a recent publication [87] demonstrates the relevance of the constant velocity model for
trajectory prediction, even in the current research space dominated by complex models.

• IA-PTP: this work.

Looking at the current state of literature in the 2D on-board domain, other recent methods rise to the
surface. However, these are not considered baselines for various reasons. Firstly, while formulating the thesis
proposal, these methods were not yet published (reason I). Second, the methods are not considered a direct
comparison to the proposed method because their main objective is to investigate the effect of other archi-
tectural components on trajectory prediction performance (reason II). However, integrating the proposed in-
teraction modeling module in one of these methods could be an interesting future research direction. Lastly,
the evaluation procedure is different, and no open-source implementation exists to evaluate with the same
procedure as used in this work (reason III). The roman numbers behind each method below indicate what
reason(s) led to excluding this method from the baselines.

• BiTraP-D [104] (I/II): goal-conditioned trajectory prediction method that combines a GRU encoder-
decoder architecture with a goal prediction module. The goal prediction module predicts the end-point
of the trajectory, which is consequently combined with a bi-directional trajectory decoder to improve
the trajectory prediction. Both modules are trained jointly with a combined loss function.

• SGNet-D [98] (I/II): goal-conditioned trajectory prediction module that combines a GRU encoder-decoder
architecture with a goal prediction module that predicts not only end-points like [104], but a goal for
each future timestep. Subsequently, these goals are used to improve the trajectory prediction. Both
modules are trained jointly with a combined loss function.

• PFT [62] (I/II): a method that explicitly disentangles the target pedestrian motion from the ego-motion.
By first disentangling, the method uses a simple linear model to achieve very good performance. The
objective of this method is to illustrate the importance of disentangling pedestrian motion from ego-
motion.

• BiPed [72] (I/III): multi-modal model that, jointly- and separately, encodes past agent bounding boxes,
image-plane grid locations and ego-motion using LSTMs. The interactions between the target agent
and surrounding static- and dynamic context are modeled using a Categorical Interaction Module (see
chap. 2.3) using class-wise semantic maps. The resulting joint- and separate encoding vectors are
combined with the interaction information before decoding to obtain a multi-task prediction output
containing future trajectory, crossing action and final location.

• TITAN [54] (III): multi-modal model that uses agent actions- and locations to reason over interactions
between agents using a spatial GRU. Consequently, the resulting interaction information is jointly en-
coded with past target agent bounding boxes, agent actions and ego-motion using a GRU before de-
coding it into future bounding box predictions.

4.2. Metrics
The proposed method is quantitatively compared against the baselines based on metrics. These metrics
should contain a measure of bounding box location, as well as a measure for bounding box size as a way
to compensate for the missing depth dimension. Following previous work [105, 70, 6, 104, 62, 98], various
metrics are adopted to evaluate the trajectory prediction in terms of bounding box size- and location.

1. MSE : bounding box Mean Squared Error measures the mean squared error in pixels averaged over the
four bounding box coordinates for each timestep, after which the value for each timestep is averaged
across the entire prediction horizon. This metric is adopted for a prediction horizon of 0.5, 1.0 and 1.5
seconds.

2. CMSE : bounding box Center Mean Squared Error measures the mean squared error in pixels over the
bounding box centre coordinates for each timestep, after which the value for each timestep is averaged
across the entire prediction horizon. This metric is adopted for a prediction horizon of 1.5 seconds.

3. CF MSE : bounding box Centre Final Mean Squared Error measures the mean squared error in pixels
over the bounding box centre coordinates at the last timestep of the prediction horizon. This metric is
adopted for a prediction horizon of 1.5 seconds.
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4.3. Datasets
The proposed method and baselines are evaluated on multiple datasets, each of which is discussed below.

1. Joint Attention in Autonomous Driving (JAAD f ul l ): The Joint Attention in Autonomous Driving (JAAD)
dataset [71] contains 346 videos that have been recorded in 5 different cities in Europe and North Amer-
ica by an on-board camera with a resolution of 1920x1080 or 1280x720. The dataset annotations come
in three different categories. First, pedestrian bounding boxes with tracking IDs, occlusion ratios and
crossing/not-crossing actions. Second, pedestrian attributes, i.e. behavioural annotations, regarding
its state before crossing, how the pedestrian becomes aware of an approaching vehicle and what ac-
tion the pedestrian takes in response to the approaching vehicle. Third, scene attributes that list the
environmental contextual elements. The dataset contains 2.8K pedestrians, out of which 686 contain
behavioural annotations. JAAD is used in a variety of action/intention [50, 70, 71, 9, 72] and trajec-
tory prediction papers [70, 72, 104, 98, 62, 69]. The dataset has no ego-motion information, but it does
contain high-level driver actions, such as speeding up and slowing down.

(a) JAAD behavioural subset (JAADbeh ): the JAADbeh dataset is a subset of JAAD f ul l and contains
only the pedestrians that come with behavioural annotations, i.e. the far-away or non-interacting
pedestrians are filtered out and only the ones that are close-by and potentially interacting with
the ego-vehicle remain. This subset contains a total of 686 pedestrians.

2. Pedestrian Intention Estimation (PIE): The Pedestrian Intention Estimation (PIE) dataset [70] has been
recorded during daytime in 1 city in Canada with only sunny and overcast weather conditions using a
single camera with a resolution of 1920x1080. Similar to JAAD, the dataset includes pedestrian bound-
ing boxes with tracking IDs and occlusion ratios. Moreover, pedestrian attributes are included for ac-
tions and the intention of crossing. Finally, scene attributes and object annotations are present, in-
cluding bounding boxes for pedestrian crossings, vehicles and stoplights. The dataset contains 1.8K
pedestrians, which are all fully annotated. Contrary to JAAD, this dataset also comes with on-board
diagnostics sensor data that provides GPS coordinates and vehicle information, such as velocity and
heading angle. PIE is used in [70, 72, 93, 104, 98, 62, 69, 36].

4.4. Data pre-processing
The data requires to be pre-processed before use. First, pedestrian tracks of 2 seconds are sampled, con-
taining 0.5s seconds observation and 1.5 seconds prediction. This equates to 15 frames observation and 45
frames prediction for both JAAD and PIE. Following baseline work [70], the tracks overlap by 80% for JAAD
and 50% for PIE to generate more training data. Moreover, the bounding boxes are normalized by subtracting
the first bounding box of a two-second track from all successive boxes, i.e. bounding box motion relative to
the first bounding box is preserved. Next, the masks and pedestrian crops corresponding to each track are
generated and fed through a pre-trained Instance Segmentation Network to generate binary object masks
(see section 3.2). An illustration of the masks printed on a frame of the PIE dataset is shown in figure 4.2.

Figure 4.2: Visualisation of the predicted instance masks using Seamseg [68] pre-trained on Mapillary Vistas on a frame of the PIE
dataset.
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The union of the pedestrian bounding box and each object mask is cropped and encoded using a pre-
trained CNN to obtain feature vectors. Additionally, the pedestrian appearance is encoded using the same
pre-trained CNN (see section 3.3.1). The object- and pedestrian feature vectors are combined with the object
bounding boxes, classes, and confidence scores and stored as pickle files to be extracted during data loading.

An overview of the total number of modelled interactions, as well as the average number of interactions
per frame, is provided in table 4.1. Note that the number of interactions is not equal to the number of detected
objects. Instead, each pedestrian, in each observation frame of each track, interacts once with each detected
object in that frame. For example, assuming no track overlap, a single frame containing n pedestrians and m
objects will result in n ×m interactions, spread out evenly over n tracks. Moreover, as discussed in section
4.4, the observation horizon overlaps between tracks resulting in identical interactions in multiple tracks. A
more detailed breakdown of the total number of interactions with each class is provided in figure A.1 in the
appendix.

PIE JAADfull

Train Testing Train+Test Train Test Train+Test

Object category
Num

masks
Avg per
frame

Num
masks

Avg per
frame

Num
masks

Avg per
frame

Num
masks

Avg per
frame

Num
masks

Avg per
frame

Num
masks

Avg per
frame

Crosswalks 4.5M 5.5 2.7M 5.0 7.2M 5.3 3.5M 3.5 2.6M 3.6 6.1M 3.5

Vehicles 17.7M 21.5 10.8M 19.9 28.5M 20.9 13.7M 13.4 8.8M 12.6 22.5M 13.1

Traffic light 11.0M 13.4 7.9M 14.5 18.9M 13.9 1.8M 1.8 0.9M 1.3 2.7M 1.6

Table 4.1: Number of interactions with each object category for train- and test-split of the PIE and JAAD f ul l datasets. Moreover, the
average number of interactions per frame is provided within each data split. Note that the number of interactions is not equal to the
total number of detected objects. Each pedestrian, in each observation frame of each track, interacts once with each detected object.

4.5. Training
The model is implemented in PyTorch [64] and has been trained on a single Tesla V100 16GB GPU. Across
all datasets, the Adam [37] optimizer is used, combined with a plateau learning rate scheduler that reduces
the learning rate by a factor of five after the validation loss has not improved for five consecutive epochs.
Additionally, early-stopping is adopted to terminate training after the validation loss has not improved for
ten epochs. L2 regularisation is set to 10−4, batch size to 32 and the maximum number of epochs to 80.
The initial learning rate for JAAD is set to 7.5−5. For PIE, the model’s parameters are split into two parameter
groups, where the initial learning rate of the graph module parameters are set to 2.5e−5 and the parameters of
all other layers set to 7.5e−5. During training, the data is randomly shuffled. The hidden states of the bounding
box-, interaction modeling- and decoder-GRU are set to respectively 256, 512 and 768 units. The graph node
features are 512 dimensional, and the fully-connected layers for embedding the spatial relationship vector
so,i , the spatially-aware pedestrian appearance v ps,i and the binary union mask v o,i have respectively 64, 128
and 128 units.
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4.6. Results and discussion
This section describes the experimental results, where each experiment is concluded with a discussion. First,
the quantitative results are described and second, qualitative results that support the quantitative findings
are presented.

4.6.1. Benchmark trajectory prediction performance using graph-based interactions
The performance of the proposed model is compared against the baselines using the benchmark evaluation
procedure, i.e. evaluating on the JAAD f ul l and PIE datasets using the metrics as described in section 4.2. The
results are provided in table 4.2.

PIE JAADfull

Stimuli MSE CMSE CFMSE MSE CMSE CFMSE

Method BB Ego-motion Intent Other 0.5s/1.0s/1.5s 1.5s 1.5s 0.5s/1.0s/1.5s 1.5s 1.5s

Linear [70] ✓ - - - 123/477/1365 950 3983 233/857/2303 1565 6111

B-LSTM [6] ✓ - - - 101/296/855 811 3259 159/539/1535 1447 5615

PIEtr a j [70] ✓ - - - 58/200/636 596 2477 110/399/1248 1183 4780

FOL-X [105] ✓ yaw/speed - optical flow 47/183/584 546 2303 147/484/1374 1290 4924

PIE f ul l [70] ✓ speed ✓ - -/-/559 520 2162 -/-/- - -

IA-PTP (this work) ✓ - - interactions 52/177/550 513 2156 110/386/1205 1145 4653

Table 4.2: Results for the baseline- and proposed methods on the JAAD f ul l and PIE benchmark datasets. Every method contains a
description of the used stimuli (for JAAD f ul l , no ego-motion is used). The best results for each dataset and metric are boldfaced.

The observations from table 4.2 are discussed for each dataset individually.

• PIE dataset: it can be observed that the baseline PIEtr a j is outperformed by a large margin on all met-
rics for all prediction horizons (10.34/11.50/13.52% MSE, 13.93% CMSE and 12.96% CF MSE ). The pro-
posed method is only outperformed on short-term 0.5s predictions (9.62%) by FOL-X, which also uses
ego-motion information. Additionally, the proposed method performs similarly to PIE f ul l , which uses
predicted ego-vehicle speed and pedestrian intention.

• JAAD f ul l dataset: comparing the proposed method, IA-PTP, to the baseline PIEtr a j , it can be observed
that the short-term 0.5s predictions are similar in performance, whereas the longer 1.0/1.5s prediction
horizon results are improved by 3.26/3.45% MSE, 4.90% CMSE and 2.66% CF MSE .

To gain a better understanding in which scenarios of JAAD f ul l the performance gains are most significant,
IA-PTP and PIEtr a j are both trained on JAAD f ul l and evaluated on the JAADbeh subset. The latter contains
only close-by pedestrians that potentially interact with the ego-vehicle, for example by crossing, and are of
special interest. The results are provided in table 4.3.

Stimuli MSE CMSE CFMSE

Method BB Ego-motion Intent Other 0.5s/1.0s/1.5s 1.5s 1.5s

PIEtr a j [70] ✓ - - - 218/742/2304 2166 8735

IA-PTP ✓ - - interactions 188/645/2054 1926 7992

Table 4.3: Results for the baseline- and proposed method on JAADbeh . Both methods are trained on JAAD f ul l .

Comparing IA-PTP to PIEtr a j suddenly shows a much larger improvement across the whole range of pre-
diction horizons, with performance gains of 13.76/13.07/10.85% MSE, 11.08% CMSE and 8.51% CF MSE .

Discussion From the benchmark results in table 4.2, we observe a clear improvement in trajectory pre-
diction performance on all metrics across all datasets, except for the short-term 0.5s prediction when com-
pared with FOL-X on the PIE dataset. This performance difference can likely be attributed to FOL-X using
future ego-motion information, which our model in its current benchmark-setting does not use. Because
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ego-motion can help disentangle the bounding box predictions from ego-motion induced image translation
and rotation, integrating this cue is expected to further improve the proposed model’s performance. This is
investigated in section 4.6.1.1

Moreover, the model performs on-par with PI E f ul l , which additionally uses intention- and ego-motion
information. The authors of PI E f ul l [70] also provide the results of their model without ego-motion, called
PI Etr a j+i nt , on the PIE dataset, with scores of 611 (1.5s MSE), 570 CMSE and 2414 CF MSE . Similar to our
proposed method, the intention module of PI Etr a j+i nt uses pedestrian appearance information, although
differently. PI Etr a j+i nt processes the appearance information to predict future pedestrian intention, which
is consequently used to condition the trajectory predictions on. Our method on the other hand, uses the
appearance jointly with contextual objects to reason over interactions with the environment. Our approach
shows an average improvement of 11.4% over PI Etr a j+i nt on the aforementioned metrics. This suggests that
modeling graph-based interactions could be more useful than using pedestrian intention in a way that the
authors of PI Etr a j+i nt did.

Additionally, an interesting observation is that our proposed method outperforms the baseline on J A ADbeh

more significantly than on J A AD f ul l . The pedestrians contained in J A ADbeh are all close-by or interacting
with the ego-vehicle, thus generally more important to accurately predict, with regards to safety, than the far-
away non-interacting pedestrians. This suggests that our proposed method improves most in places where it
is most critical.

4.6.1.1 Oracle case with ego-motion

The benchmark performance has been evaluated without explicitly accounting for ego-motion. However,
ego-motion plays an important role (see section 1.1.2), especially in the 2D on-board domain, where the
trajectories are relative to the moving image plane. By explicitly integrating ego-motion, the model can, in
theory, better compensate for this in its predictions. To assess the capabilities of the model when account-
ing for ego-motion, an oracle case is discussed where future ground truth ego-motion is used in the trajectory
decoder. Two different types of ego-motion information are integrated. First, only ego-motion speed and sec-
ond, ego-motion speed combined with yaw angle. Because JAAD does not contain ego-motion information,
the experiment is performed only on PIE. The results are provided in table 4.4.

Stimuli MSE CMSE CFMSE

# Method Ego-motion Other 0.5s/1.0s/1.5s 1.5s 1.5s

1 IA-PTP - - 52/177/550 513 2156

2 PIE f ul l speed (GT) intention (GT) -/-/473 453 1741

3 IA-PTP speed and yaw (GT) interactions 51/158/456 422 1678

4 IA-PTP speed (GT) interactions 49/160/453 419 1626

Table 4.4: Oracle case with ground truth ego-motion on the PIE dataset

From table 4.4, it can be observed that the results of IA-PTP improve dramatically across all metrics, when
feeding any type of ground truth ego-motion into the decoder. The variants of IA-PTP using either speed
(row 3) or both yaw- and speed (row 4) perform similar, only showing a significant difference for the short-
term 0.5s prediction (4.1%) and CF SME (3.2%). Overall, the proposed model using only ground truth speed
performs best, improving on its counterpart without ego-motion by 6.1/10.6/21.4% MSE, 22.4% CMSE and
32.6% CF MSE . Additionally, the proposed method outperforms the extended baseline PIE f ul l , using ground
truth speed- and pedestrian intentions (row 2), by 4.4% 1.5s MSE, 8.1% CMSE and 7.1% CF MSE . Unfortunately,
PIE f ul l with ground truth ego-motion and without ground truth intention is not available.

Discussion The oracle case experiment brings up two discussion points. First, the results of the oracle case
show a significant improvement when ego-motion is added. This reinforces the knowledge that ego-motion
is important in the 2D on-board trajectory prediction domain.

Second, it can be seen that using both yaw- and speed performs on-par with only using speed. This seems
counter-intuitive, as excluding yaw would make it more difficult to compensate for camera yaw. A potential
explanation is that the PIE test-set does not contain many scenarios where the ego-vehicle changes its yaw
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angle, i.e. turns. To verify this, the maximum change in yaw angle within each track of the PIE testset is
extracted and shown as a histogram in figure 4.3.

Figure 4.3: Histogram showing the distribution of maximum change of yaw angle in radians within a sequence for the PIE test-set. The
horizontal axis shows maximum change in yaw angle with twenty equally distributed bins. The vertical axis shows the number of

sequences contained within each bin on a log-scale.

As can be observed in the histogram, 35875 sequences have a maximum change in yaw angle correspond-
ing to the first bin, i.e. not exceeding 0.314 rad. This equates to 99.1% of all sequences and explains the neg-
ligible effect of integrating yaw. We note that on other datasets, in which yaw angle plays a more significant
role, the explicit integration of speed- and yaw would likely improve results over the case where only speed is
used.

4.6.2. Contribution of various contextual objects to trajectory prediction performance
The experiments discussed below analyze the contribution of various contextual objects on trajectory pre-
diction performance.

4.6.2.1 Analysis of different sets of contextual objects

The previous section showed that the proposed method outperforms the baselines on the benchmark exper-
iments. These experiments were performed while taking into account interactions with all contextual object
types mentioned in table 3.1, i.e. the contextual objects of interest. This ablation study investigates the con-
tribution of different contextual objects to model performance. Four different sets of contextual objects are
investigated:

1. Set with all context objects
2. Set with all contextual objects excluding the plain- and zebra- pedestrian crosswalks.
3. Set with all contextual objects excluding all objects belonging to the category vehicles, i.e. excluding

bicycle, bus, car, motorcycle, trailer and truck.
4. Set with all contextual objects excluding the traffic lights.
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The proposed IA-PTP method is trained- and tested using each of the four sets of contextual objects on
PIE and JAAD f ul l . Moreover, the model trained on JAAD f ul l is additionally evaluated on JAADbeh . The results
are provided in table 4.5.

PIE JAADfull JAADbeh

Contextual object MSE CMSE CFMSE MSE CMSE CFMSE MSE CMSE CFMSE

# Vehicles Crosswalks Traffic lights 0.5s/1.0s/1.5s 1.5s 1.5s 0.5s/1.0s/1.5s 1.5s 1.5s 0.5s/1.0s/1.5s 1.5s 1.5s

1 ✓ ✓ ✓ 52/177/550 513 2156 110/386/1205 1125 4653 188/645/2054 1926 7992

2 ✗ ✓ ✓ 57/202/668 627 2679 114/428/1356 1295 5243 198/725/2347 2214 9159

3 ✓ ✗ ✓ 52/187/612 573 2442 113/413/1284 1223 4932 193/700/2231 2100 8640

4 ✓ ✓ ✗ 85/235/658 619 2460 116/451/1412 1353 5394 200/760/2402 2276 9204

Table 4.5: Results of IA-PTP which has been trained with different sets of contextual objects. ✓and ✗ indicate which contextual objects
are respectively used and not used. The best results are boldfaced.

The observations from table 4.5 are discussed for each dataset individually. Note that the performance
differences are expressed in percentage relative to the full model (row 1).

• PIE dataset: in general, it can be observed that removing any type of contextual object results in deteri-
orating performance across nearly all metrics. More specifically, removing the vehicles (row two) leads
to performance loss on all metrics of 9.6/14.1/21.5% MSE, 22.2% CMSE and 24.3% CF MSE . Removing the
pedestrian crosswalks (row three) also leads to performance loss on all metrics with the exception of
the short-term 0.5s prediction, with losses equating to 5.7/11.3% MSE, 11.7% CMSE and 13.3% CF MSE .
Finally, the case without traffic lights (row four) sees short-term predictions suffering most, with losses
of 63.5/32.8/19.6% MSE, 20.7% CMSE and 14.1% CF MSE . Overall, long-term 1.5s predictions suffer most
when the vehicles are removed, whereas short-term 0.5/1.0s prediction suffers most when removing
traffic lights.

• JAAD f ul l and JAADbeh datasets: similar to the PIE evaluation, performance loss is observed for re-
moving any type of contextual objects. More specifically, removing the vehicles reduces performance
with 3.6/10.9/12.5% MSE, 15.1% CMSE and 12.7% CF MSE on JAAD f ul l , whereas JAADbeh shows slightly
worse performance, with losses of 5.3/12.4/14.3% MSE, 15.0% CMSE and 14.6% CF MSE . Training with-
out crosswalks leads to a performance loss of 2.7/7/6.6% MSE, 8.7% CMSE and 6.0% CF MSE on the
JAAD f ul l dataset and a again slightly worse performance on JAADbeh , showing losses of 2.7/8.5/8.6%
MSE, 9.0% CMSE and 8.1% CF MSE . Finally, the case without traffic lights sees a drop in performance of
5.5/16.8/17.2% MSE, 20.3% CMSE and 15.9% on the JAAD f ul l dataset and 6.4/17.8/16.9% MSE, 18.2%
CMSE and 15.2% on the JAADbeh dataset. Overall, removing traffic lights leads to the greatest perfor-
mance loss for both JAAD datasets, especially for the 1.0s/1.5s metrics.

Discussion This experiment brings forward three discussion points. First, we observe a performance loss
when excluding any contextual object compared to the model trained on the set with all context objects.
This suggests that all contextual objects contribute in some meaningful way to improve overall trajectory
performance.

Second, re-training the model excluding crosswalks results in the most negligible performance loss on all
metrics for all datasets. This implies that the pedestrian crossings are least important to the overall trajectory
prediction performance in their currently integrated way. However, this does not necessarily always have to
be the case. For example, it could also just be that the cues typically obtained from crosswalks can be captured
quite well in some way by the other objects, for example, the presence of a traffic light could mean that there
will also be a crosswalk. Therefore, an interesting direction for future work would be to try out other sets of
contextual objects to further investigate dependencies between objects.

Third, this analysis shows that the traffic lights are relatively important, whereas crosswalks are not. This
is especially interesting on the JAAD datasets, where the average number of traffic lights per frame, provided
in table 4.1, is relatively low. This could suggest that the presence of a relatively rare traffic light would have a
relatively large impact on the trajectory prediction.
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4.6.2.2 Sensitivity analysis

This ablation study discusses the model’s sensitivity to scenarios with limited presence of the contextual ob-
jects the model was trained on. Therefore, IA-PTP is trained on the set of all contextual objects and subse-
quently evaluated on each of the three sets of contextual objects that exclude one type of object category. In
addition to this, the results will be compared to the respective case from the previous ablation study, where
the model has not seen the removed objects during training either. All results are provided in table 4.6. Row
one shows the model trained- and tested using the set of all contextual objects, i.e. the full model. Rows two,
four, and six show the sensitivity analysis results. Rows three, five and seven have been copied from table
4.5 of the previous ablation study and have been added to easily compare these with the sensitivity analysis
results, as part of this ablation study.

PIE JAADfull JAADbeh

Contextual objects (train/test) MSE CMSE CFMSE MSE CMSE CFMSE MSE CMSE CFMSE

# Vehicles Crosswalks Traffic lights 0.5s/1.0s/1.5s 1.5s 1.5s 0.5s/1.0s/1.5s 1.5s 1.5s 0.5s/1.0s/1.5s 1.5s 1.5s

1 ✓/✓ ✓/✓ ✓/✓ 52/177/550 513 2156 110/386/1205 1125 4653 188/645/2054 1926 7992

2 ✓/✗ ✓/✓ ✓/✓ 120/350/886 843 3091 425/1155/2568 2499 7948 846/2129/4554 4411 13797

3 ✗/✗ ✓/✓ ✓/✓ 57/202/668 627 2679 114/428/1356 1295 5243 198/725/2347 2214 9159

4 ✓/✓ ✓/✗ ✓/✓ 53/184/574 537 2239 151/464/1350 1289 5041 286/831/2400 2271 8925

5 ✓/✓ ✗/✗ ✓/✓ 52/187/612 573 2442 113/413/1284 1223 4932 193/700/2231 2100 8640

6 ✓/✓ ✓/✓ ✓/✗ 53/188/603 565 2390 156/469/1323 1263 4882 301/839/2310 2181 8418

7 ✓/✓ ✓/✓ ✗/✗ 85/235/658 619 2460 116/451/1412 1353 5394 200/760/2402 2276 9204

Table 4.6: Sensitivity analysis of proposed IA-PTP method by training and/or testing using different sets of contextual objects. Which
contextual objects are used for training and/or testing is indicated with ✓or ✗. In the case JAADbeh , the model was trained on JAAD f ul l

and tested on JAADbeh

First, the focus is on the sensitivity analysis, as shown in rows two, four and six of table 4.6. The perfor-
mance differences are expressed in percentage relative to the proposed model.

• PIE dataset: the performance deteriorates in all cases when removing any type of contextual object
compared to the full model. The performance drop is most significant for all metrics when removing
the vehicles (row two) during test-time (130.8/97.7/61.1% MSE, 64.3% CMSE and 43.4% CF MSE ). The ex-
periment without traffic lights (row six) results in a less severe performance decrease on long-term 1.5s
metrics (6.2% MSE, 10.1% CMSE and 10.9% CF MSE ), whereas short-term 0.5/1.0s prediction horizons
show only minor losses compared to the full model (3.8/1.9 MSE). Similarly, removing the pedestrian
crosswalks (row four) also shows minor losses for the short-term 0.5/1.0s prediction horizons (1.9/4.0
MSE). Furthermore, excluding crosswalks shows relatively the smallest performance loss on the long-
term 1.5s metrics (4.4% MSE, 4.7% CMSE and 3.8% CF MSE ).

• JAAD f ul l and JAADbeh datasets: similar to the evaluation on PIE, performance deteriorates in all cases
when removing any type of contextual object. On JAAD f ul l , excluding the vehicles reduces performance
most significantly for all metrics (286.4/199.2/113.1%T, 122.1% CMSE and 70.8% CF MSE ). This is also
the case for JAADbeh , where the losses are even more pronounced (350.0/230.1/121.7% MSE, 129.0%
CMSE and 72.6% CF MSE ). The experiment excluding traffic lights mainly sees a drop in performance on
JAAD f ul l for short-term 0.5/1.0s predictions, and less so for the long-term 1.5s metrics (44.3/21.1/9.8%
MSE, 12.3% CMSE and 4.9% CF MSE ). The same pattern is visible for excluding traffic lights on JAADbeh ,
but the losses are slightly more pronounced (60.1/30.1/12.5% MSE, 13.2% CMSE and 5.3%). Finally,
excluding crosswalks leads to a performance loss on JAAD f ul l that is, on one hand, less severe for the
short-term 0.5/1.0s predictions (37.3/20.2 MSE) compared to excluding traffic lights and, on the other
hand, more severe for the long-term 1.5s predictions (12.0% MSE, 14.6% CMSE and 8.3% CF MSE ). Again,
excluding crosswalks on JAADbeh shows a similar pattern as excluding them on JAAD f ul l , but with more
significant losses (52.1/28.8/16.8% MSE, 17.9% CMSE and 11.7% CF MSE ).

The focus is shifted toward comparing the sensitivity analysis result in rows two, four, and six in table
4.5 with the results of table 4.6. As mentioned before, to ease comparison, the results of table 4.6 have been
added to rows three, five and seven of table 4.5.



4.6. Results and discussion 41

• PIE dataset: It can be observed that the model not using vehicles during both training- and test-
time outperforms its counterpart, where vehicles are only excluded during test time, on all metrics
(110.5/73.3/32.6% MSE, 34.4% CMSE and 15.4% CF MSE ). On the contrary, the model that excludes cross-
walks during both training- and testing, performs worse on the 1.5s metrics than its counterpart (6.6%
MSE, 6.7% CMSE and 9.1% CF MSE ). The performance on the 0.5/1.0s metrics is similar. Finally, compar-
ing traffic lights exclusion during both training- and testing with its counterpart shows similar behavior
on the 1.5s metrics as for the crosswalks case (9.1% MSE, 9.6% CMSE and 2.9% CF MSE ). Differently
though, it performs much worse for the short-term 0.5s metrics (60.4/25.0% MSE)

• JAAD f ul l and JAADbeh datasets: the model that excludes crosswalks or vehicles during both training-
and test-time outperforms its counterpart, that only excludes the context category during test-time, on
all metrics. The difference for the crosswalk case is 33.6/12.3/5.1% MSE, 5.4% CMSE and 2.2% CF MSE ,
whereas the difference for the vehicles case is 272.8/169.9/89.4% MSE, 93.0% CMSE and 51.6% CF MSE .
This behavior is similar to the no-vehicles case on the PIE dataset. Removing traffic lights also shows
similar behaviour for short-term 0.5/1.0s predictions (37.1/4.0% MSE), as was seen for PIE. On the con-
trary, the model excluding traffic lights only during test-time outperforms the model also trained with-
out these contextual objects on the long-term 1.5s metrics (6.7% MSE, 7.1% CMSE and 10.5% CF MSE ).
The performance differences on JAADbeh show similar behavior, but generally slightly more exagger-
ated.

Discussion The sensitivity analysis brings forward two discussion points. First, we look at the model’s per-
formance where one object category (i.e. vehicles, crosswalks or traffic lights) has been excluded only during
test time. Based on the results in table 4.6, the model seems most sensitive to scenes without vehicles for
both datasets. For PIE, the model seems least sensitive to scenes without crosswalks. For JAAD, the model
is least sensitive to scenes without crosswalks for short-term predictions, whereas removing traffic lights has
the least influence on the long-term predictions. It is hard to draw real conclusions from this, as the perfor-
mance loss- or gain from removing certain contextual objects might arise due to other reasons. For example,
the performance loss could be related to the number of object interactions that is removed during test time,
where a larger number has a more significant impact. This could have an impact because we do not employ
normalization in the GC N based on the number of interactions. Therefore, we turn to the number of object
interactions in the test-set for both JAAD and PIE, which can be retrieved from figure 4.4a. For PIE, we observe
that the majority of interactions is with vehicles (10.8M), followed by traffic lights (7.9M), and the minority
of interactions is with crosswalks (2.7M). For JAAD, we see that the majority of interactions are with vehicles
(8.8M), followed by crosswalks (2.6M) and, finally, traffic lights (0.9M). We see a pattern that the performance
for long-term predictions suffers more when more interactions are removed during test time. This could sug-
gest that the number of interactions with an object category potentially plays a role in the model’s sensitivity
regarding that specific object category.

Second, the general drop in performance when removing certain object categories during test-time only,
is the expected behaviour. The model learns to use each type of object category in some way during training.
By suddenly removing all objects of a certain category, the model loses certain cues. Cues from other objects
can likely not compensate for the missing cues, as they did not need to compensate for the missing cues
during training either. That brings us to the counter-intuitive result, namely that in the case of removing
crosswalks and traffic lights from PIE, as well as when removing traffic lights from JAAD, the performance is
worse compared to when these objects were already excluded during training. A possible explanation for this
could be that the masks for these classes in the training set are relatively noisy. Noisy masks include partly-
or completely erroneous detected instances, or multiple detected instances of one object. These noisy masks
make the graph input noisier, which impairs the learning process resulting in a worse model. Moreover, it is
complicated for the model to selectively ignore noisy classes due to the current implementation of the GCN.
The GCN uses a single weight matrix to combine the feature vectors of all objects with that of the pedestrian.
In other words, it aims to generalize over all object classes, which becomes increasingly complex in case there
are many noisy masks.

4.6.2.3 Analysis of learned edge weights

To evaluate the capabilities of the model to learn useful edge weights, a comparison is made between the
proposed method with learnable- and non-learnable edge weights. In the latter case, each edge weight is set
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to 1/n, where n equals the number of objects. The models are trained from scratch on JAAD f ul l and PIE, after
which they are evaluated. The results are shown in table 4.7.

PIE JAADfull JAADbeh

MSE CMSE CFMSE MSE CMSE CFMSE MSE CMSE CFMSE

# Ablation 0.5s/1.0s/1.5s 1.5s 1.5s 0.5s/1.0s/1.5s 1.5s 1.5s 0.5s/1.0s/1.5s 1.5s 1.5s

1 Learned edge weights 52/177/550 513 2156 110/386/1205 1125 4653 188/645/2054 1926 7992

2 Uniform edge weights 57/208/701 659 2846 114/441/1374 1315 5224 193/731/2321 2195 8916

Table 4.7: Results of using learned edge weights versus uniform edge weights on the PIE, JAAD f ul l and JAADbeh datasets

The results are discussed for all datasets individually.

• PIE dataset: Replacing the learnable edge weights with uniform edge weights results in a loss on all
metrics of 9.6/17.5/27.4% MSE, 28.5% CMSE and 32% CF MSE .

• JAAD f ul l and JAADbeh datasets: Replacing the learnable edge weights with uniform edge weights re-
sults in a loss on all metrics of 3.6/14.2/14% MSE, 16.9% CMSE and 12.3% CF MSE on JAAD f ul l and
2.7/13.3/13% MSE, 14% CMSE and 11.6% CF MSE on JAADbeh .

Next, a quantitative analysis of the assigned edge weights during test-time for the best model on the PIE
and JAAD f ul l datasets is performed. The results are shown in figure 4.4, which shows a bar-plot for each
object class for both datasets. Each bar colour represents an edge weight bin of size 0.05. Since the edge
weights are [0.5,1], this bin size results in a total of ten bins. The vertical axis shows the percentage of the
total number of interactions with objects of class c that have been assigned to a particular bin. Each set of ten
bars sums to 100%.

(a) Edge weight distribution for PIE (b) Edge weight distribution for JAAD f ul l

Figure 4.4: Overview illustrating the percentage of total interactions assigned to each edge weight bin per object class for the PIE and
JAAD f ul l datasets. Each class, shown on the horizontal axis, contains ten bars, corresponding to the ten edge weight bins. For each of

these ten bars, the left-most bar corresponds to the lowest edge weight bin (0.5-0.55) and the right-most bar corresponds to the highest
edge weight bin (0.95-1.00). Each set of ten bars sums to 100%

First, the edge weight distribution for PIE is analyzed. From figure 4.4a, it can be observed that there is a
strong bias toward edge weight bin 0.95-1. Moreover, the percentage of objects assigned to the highest weight
bin is highest for both crosswalk classes, followed by the trailer class. Also, the contribution of the lowest
weight bins is, in all cases, very minor.

Next, the edge weight distribution on JAAD is investigated. From figure 4.4b, it can be observed that the
weights are distributed more equally across the bins, with peaks for both the lowest- and highest edge weight
bins across all object classes. The peaks for the highest edge weight bins are relatively high for both crosswalk
classes and relatively low for the traffic light class.
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Discussion The edge weight investigation brings up three discussion points. First, table 4.7 suggests that
the learned edge weights provide a substantial benefit over uniform edge weights on all metrics for all datasets.

Secondly, figure 4.4a indicates a strong bias towards high edge weights for the PIE dataset. This begs the
question whether the edge weights are being optimally used, as it seems unlikely that such a large percentage
of all interactions should contribute equally. An interesting future research direction would be to craft a dif-
ferent edge weight equation that can better learn to differentiate between more- and less important weights
on PIE.

On the other hand, the edge weight distribution for JAAD is more like we would expect, with the majority
of edge weights in the lowest- and highest bin. This suggests that the model is better able to differentiate
between more- and less important objects on JAAD, compared to PIE.

The third discussion point is that the edge weights cannot get below 0.5. This is attributed to the combina-
tion of Sigmoid and ReLU activation functions, as shown in equation 3.5. This property seems sub-optimal,
as it does not allow the method to completely ignore certain contextual objects by assigning them a weight of
0. This property would allow the model to completely ignore certain masks. This could help the model train
more effectively, for example, by completely ignoring noisy masks.

4.7. Qualitative analysis
A qualitative analysis is performed to gain more intuitive knowledge regarding the graph-based interactions
and how they relate to the predicted trajectories. Even though qualitative results can help understand what a
model is doing for specific cases, one must tread carefully not to over-interpret the results.

4.7.1. Visualization protocol
Each visualization, shown in figures 4.5-4.7, contains two frames of one track. The left image is the last frame
of the observation horizon, i.e. timestep t , and the right image is the last frame of the prediction horizon, i.e.
timestep t +45 (1.5s). The following content is printed on the observation frame:

• The ground truth bounding box in green, i.e. GT.
• The predicted instance masks in various colours. Each mask colour corresponds to a bin of edge

weights, i.e. the edge weights for all objects are divided over three bins (0.5-0.7, 0.7−0.9 and 0.9−1.0)
depending on the learned weight value.

• A dotted line is printed from the pedestrian to the centre of the most important object masks, i.e. to all
objects with an edge weight in the highest bin (0.9-1.0).

The following content is printed on the prediction frame:

• Ground truth bounding box in green, i.e. GT.
• Bounding box prediction of proposed IA-PTP method trained and tested on the set of all contextual

objects in black, i.e. graph.
• Bounding box prediction of proposed IA-PTP method trained on the set of all contextual objects and

tested on the set without plain- and zebra pedestrian crossings in red, i.e. graph_no_crossings. This has
been added, as it provides an interesting qualitative insight.

• Bounding box prediction of baseline PIEtr a j in blue, i.e. bbox.
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Discussion The first qualitative result is illustrated in figure 4.5. It shows a pedestrian motion change from
an almost stand-still to crossing the street over a pedestrian crossing right in front of the ego-vehicle. The
pedestrian crossing in front of the ego-vehicle has been correctly detected and is part of the most important
objects. Looking at the predictions, graph outperforms graph_no_crossings, which in turn outperforms bbox.
This demonstrates the expected behaviour in this scenario. The improvement of both graph models over
bbox could be explained because they additionally use appearance features. The improvement of graph over
graph_no_crossings could be explained due to the detected and heavily weighed pedestrian crossing in front
of the ego-vehicle.

Figure 4.5: Visualization of a track on JAAD showing the last frame of the observation horizon (left) and the last frame of 1.5s prediction
horizon (right). The track contains a pedestrian motion change from an almost standstill into crossing. The motion change occurs close

to the final observation frame. Poor crossing prediction by bbox (blue) model, better prediction by graph_no_crossings (red) and best
prediction by graph (black). The most important objects include three vehicles (31, two zebra- (8) and one unmarked- (3) crosswalk,

which are outlined in blue on the observation image.

The second qualitative result is illustrated in figure 4.6. It shows a pedestrian that just crossed the street
over a pedestrian crossing on the right side of the intersection and continues walking on the sidewalk. The
crosswalk in front of the ego-vehicle and the crosswalk on the right side have been detected and assigned high
importance. Moreover, the image also contains several noisy and erroneous crosswalk predictions, among
which the crosswalks in the middle of the street and on the sidewalk. Looking at the predictions, it can be
observed that both the bbox model and graph model make a prediction that steers the pedestrian towards
his right, i.e. towards the crosswalk in front of the ego-vehicle. The graph_no_crossings model, however,
makes a correct prediction following the pedestrian along the sidewalk. First, the use of appearance informa-
tion in graph_no_crossings could explain why it outperforms bbox, because the orientation of the pedestrian
matches the direction of his future trajectory. Second, graph_no_crossings outperforming graph could be ex-
plained by graph_no_crossings not using the high edge-weight crosswalks in front of the ego-vehicle, contrary
to graph.

Figure 4.6: Visualization of a track on JAAD showing the last frame of the observation horizon (left) and the last frame of 1.5s prediction
horizon (right). The track contains a pedestrian that just crossed the crosswalk on the right side and continues walking along the

sidewalk, instead of crossing the road in front of the ego-vehicle. Poor crossing prediction by bbox (blue), better prediction by graph
(black) and best prediction by graph_no_crossings (red). The most important objects include four zebra- (8) and one unmarked (3)

crosswalk, which are outlined in blue on the observation image.
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The third qualitative result is illustrated in figure 4.7. It shows a pedestrian motion change from a stand-
still to crossing the street over a poorly marked pedestrian crossing right in front of the ego-vehicle. Looking
at the predictions, it can be observed that graph performs worst by staying in roughly the same location.
Graph_no_crossings captures the motion change much better, performing best on this example. This could
be explained by the fact that the pedestrian crosswalk, that the pedestrian intends to cross has not been cor-
rectly detected. Instead, a noisy and erroneous mask has been detected on the left side of the pedestrian,
which additionally has been assigned the highest importance. Thus, graph is distracted and steers the pre-
diction towards the left, i.e. wrong, direction. This is contrary to graph_no_crossings, which does not see the
erroneously detected pedestrian crossing on the left side and makes a prediction in the correct direction.

Figure 4.7: Visualization of a track on JAAD showing the last frame of the observation horizon (left) and the last frame of 1.5s prediction
horizon (right). The track contains a pedestrian motion change from stand-still to crossing a pedestrian crosswalk (which has not been

detected correctly). Motion change is poorly predicted by graph (black), slightly better by bbox (blue) and well captured by
graph_no_crossings (red)



5
Conclusion

5.1. Summary
This work presented the first 2D on-board pedestrian trajectory prediction method performing graph-based
interaction modeling with static- and dynamic contextual objects. As discussed in section 1.3, the objective
of this research was to answer two research questions.

• Can modeling the interactions between a pedestrian and its static- and dynamic context using a graph-
based approach benefit the performance of a 2D trajectory prediction framework?

• Which interactions with dynamic- or static context provide the most significant contribution to the 2D
on-board pedestrian trajectory predictions?

The proposed method works by first extracting the target pedestrian and other semantic entities from the
observation data. The extracted information is then processed using two separate encoding streams. The first
stream encodes the motion history of the target pedestrian using a Gated Recurrent Unit (GRU). The second
stream encodes the interactions between the target pedestrian and its static- and dynamic environment.
These interactions are modelled by connecting the various semantic entities in each time-step using a spatial
graph and subsequently reasoning over each graph using Graph Convolution Networks (GCN). The graphs
are connected temporally using a GRU to account for temporal correlations between the spatial interactions.
The embeddings resulting from both encoding streams are fused to form a joint representation, which serves
as initial hidden state- and input for the GRU decoder. For the decoder input specifically, the representation
is first updated using a soft-attention mechanism. Each decoder cell output is linearly mapped using a fully
connected layer to obtain a bounding box prediction. Optionally, the future ego-motion is fused with the
input of each decoder cell.

Our experiments in section 4.6.1 have shown that using graph-based interaction modeling with the static-
and dynamic context improves trajectory prediction performance, outperforming the baseline method on all
metrics by 10-14% for PIE, as well as on JAAD f ul l for the longer (>1s) prediction horizons between 3-4.9%.
In addition, by evaluating the model, that was trained on JAAD f ul l , on the subset JAADbeh , we saw an im-
provement of between 8.5-13.8% on all metrics. This is considered evidence of the potential for modeling
interactions with the static- and dynamic context using our graph-based approach in the 2D on-board tra-
jectory prediction domain.

Our ablation studies in section 4.6.2 have indicated that it is relevant to model interactions with all of the
contextual objects proposed in this work, more specifically, vehicles, crosswalks and traffic lights. Removing
any of these contextual objects leads to reduced model performance. This is the case for removing objects
both during train- and test-time, as well as only during test-time. However, it is difficult to draw a definitive
conclusion regarding which contextual objects have the most significant influence. We observed inconsis-
tent results with regards to performance loss when removing certain contextual objects depending on the
dataset. This could have various reasons; firstly, due to noisy instance masks that impair the learning pro-
cess. Secondly, because there is a potential relation between the number of masks of a certain object class
and the impact of this object class on performance. Thirdly, because the graph edge weights are calculated
in a way that noisy masks and irrelevant objects cannot be ignored completely, and finally, because a GCN
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approach is adopted that tries to generalize over all objects classes. Future work in this field is required to
better determine which contextual objects contribute most.

5.2. Limitations
The proposed method has several limitations. First of all, the model is computationally expensive, even with-
out the pre-processing steps included. Other recent approaches propose a computationally less demand-
ing method for improving trajectory prediction performance, for example, the goal-conditioned approaches
SGNet [98] and BiTraP [104].

Second, the model is complex to train, likely because of the noisy graph input. The model required mon-
itoring of the gradient magnitudes to see if the graph was being used. In the case of JAAD, any initial learning
rate greater than 1e−4 renders the graph module obsolete, whereas for PIE this upper bound was equal to
5e−5. The training process will likely improve by reducing noise, for example by using a confidence threshold
on the instance predictions or by merging multiple instance predictions of the same object.

Third, the edge weight lower bound is equal to 0.5 due to the combination of the Sigmoid and ReLU ac-
tivation functions, as shown in equation 3.5. This seems suboptimal, as this does not allow the method to
ignore certain contextual objects completely. The ability to learn weights equal to 0 would be beneficial in
selectively ignoring noisy masks and possibly improving model performance.

Fourth, the model uses a regular Graph Convolution operation, which tries to generalise over all nodes on
the graph. This means that the GCN weights try to generalise over the various object categories, as well as the
pedestrian appearance. It would make more sense to learn class- and pedestrian specific weights in the GCN,
for example via the implementation of a Relational GCN [86].

Finally, a general limitation of the 2D on-board domain is that the benchmark metrics are not normalised
using image size. This means that results cannot be compared across datasets with different image resolu-
tions, as is the case for PIE and JAAD. Moreover, there is an imbalance in penalising far-away and close-by
pedestrians due to the pixel error metrics. If a far-away and close-by pedestrian both have the same pixel
error in the horizontal direction, the model would be penalised identically for both pedestrians. However,
the actual distance error would be larger for the far-away pedestrian since every pixel equates to a greater
real-world distance.

5.3. Future work
Several recommendations for future work are made. First, the noise in the graph model should be reduced
to enable better generalisation. This can be achieved by, for example, pre-processing the instance masks by
merging multiple detections of the same object before using them in the graph or by integrating a threshold
on the prediction confidence of the instance masks.

Second, a Graph Neural Network should be implemented that can operate on heterogeneous graphs, i.e.
where the graph structure is assumed to be heterogeneous with various semantic classes. For example via
the implementation of a Relational GCN [86]. This would also be an important step in future work where the
ego-vehicle is integrated into the graph.

Third, the pre-processing step where the graph node embeddings are generated should be replaced with
trainable Convolution Neural Networks. This means the whole network, excluding the scene parsing, can be
trained in an end-to-end fashion. This could potentially lead to richer representations of the graph nodes
and edge weights.

Fourth, different sets of contextual features should be evaluated; for example, only training and/or testing
with crosswalks, vehicles or traffic lights. Moreover, the vehicles category could be split into multiple different
types of vehicles, for which the impact on performance can be evaluated. Additionally, more semantic classes
could be added to the contextual objects of interest.

Fifth, various recent publications have shown to improve 2D trajectory prediction performance using a
different approach compared to this work, for example by conditioning the predictions on future goals [104,
98] or by explicitly disentangling ego-motion from the trajectory predictions via viewpoint normalisation
[62]. An interesting future research direction is to combine the graph-based interaction modeling module
with either of the previous approaches [98].

Sixth, the current output of all methods in the 2D on-board trajectory prediction domain is on the image
plane. This is not directly useable by the ego-vehicle, as this operates in the 3D world. Therefore, this method
should be coupled to a monocular depth estimation network [57] to uplift the predictions into 3D. This would
also be the start of an interesting experimental study investigating the difference in performance between 3D
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on-board methods and 2D on-board methods, whose predictions have been uplifted to 3D.
Finally, this work has indicated the potential of integrating the ground truth ego-motion in the oracle-

case experiment, as this led to a performance increase on all metrics between 6.1-32.6%. Therefore, future
work should integrate non-ground truth ego-motion into this framework; for example, by using a parallel
ego-motion prediction stream.



A
Appendix

A.1. Semantic extraction
Figure A.1 illustrates the number of labeled instances per class contained within the Mapillary Vitas V1.0. Any
of these instances could be integrated into the interaction modeling module of the proposed method.

Figure A.1: Illustration of number of labeled instances per class for the Mapillary Vistas V1.0 dataset. Figure adopted from [61]

49
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Table A.1 provides an overview of the total number of interactions with each object class for the complete
PIE and JAAD f ul l datasets. The interactions are counted with a track overlap of 80% on JAAD f ul l and 50% on
PIE.

Object category PIE JAADfull

Bicycle 5.1M 1.1M

Bus 0.9M 0.6M

Car 19.6M 18.7M

Motorcycle 1.6M 0.9M

Trailer 0.03M 0.1M

Truck 1.2M 1.0M

Plain crosswalk 0.8M 2.0M

Zebra crosswalk 6.4M 4.1M

Traffic light 18.9M 2.7M

Table A.1: The total number of interactions with each object class for the complete PIE and JAAD f ul l datasets. The interactions are
counted with a track overlap of 80% on JAAD f ul l and 50% on PIE.

A.2. Additional experiments
This appendix section contains additional experiments focusing on architectural choices within the proposed
method.

A.2.1. Joint and separate encoding of modalities
The proposed method separately encodes pedestrian motion history and the interactions before fusing them.
Alternatively, a combination of joint- and separate encoding has been investigated. Joint encoding adds
bounding box information at each time step t-τ+n, where n ∈ [1,τ], to the refined pedestrian node embed-
ding of the corresponding time-step before feeding it into the GRU i nt

enc . Jointly encoding interactions and
motion history could lead to a better understanding of temporal correlations between these modalities.

PIE

MSE CMSE CFMSE

# Ablation 0.5s/1.0s/1.5s 1.5s 1.5s

1 separate encoding 52/177/550 513 2156

2 separate + joint encoding 51/184/597 561 2367

Table A.2: Ablation study on various encoding paradigms for the interactions- and motion history on the PIE dataset

The results show that performance is similar for the short-term 0.5s prediction horizon. However, per-
formance decreases when combining joint- and separate fusion for the 1.0 and 1.5s prediction horizons by
4.0/8.5% MSE, 9.4% CMSE and 9.8% CF MSE .

Discussion We see that combined joint- and separate encoding performs worse than only separate encod-
ing. A possible explanation is that the interaction modeling module starts to overfit on the bounding box
coordinates, thereby losing information of the relevant interactions. Looking at the literature, we observe
that the interaction-aware 2D on-board trajectory prediction method BiPed [72] employs a combined joint-
and separate encoding paradigm for three different modalities (i.e. ego-motion, motion history and grid
locations). However, their interaction modeling module is excluded from this and is fused with the other
modalities after separate encoding only. This corresponds to our findings.
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A.2.2. Configuration of Graph Convolutional Network
The original implementation of the Graph Convolution Network [39] uses a non-linearity and normalises the
adjacency matrix A to account for a varying number of nodes. Moreover, graph convolution layers can be
stacked on top of each other to gain more representational power. Therefore, three different graph configura-
tions are ablated. First, normalisation is added by multiplying the adjacency matrix A with its degree matrix
D (row 1), i.e. normalising each node based on its number of connections. Second, the adjacency matrix is
normalised, and the refined pedestrian node representation after one layer is activated using a ReLU activa-
tion function (row 3). Third, two GCN layers are stacked without any normalisation or activation function
(row 4). The results are shown in table A.3.

PIE

MSE CMSE CFMSE

# Ablation 0.5s/1.0s/1.5s 1.5s 1.5s

1 GCN (1 layer) 52/177/550 513 2156

2 GCN (1 layer) + Norm 53/180/565 527 2212

3 GCN (1 layer) + Norm + ReLU 53/186/586 547 2286

4 GCN (2 layer) 53/188/606 568 2384

Table A.3: Ablation study on settings of the Graph Convolution Network on the PIE dataset

It can be observed that complicating the GCN generally leads to performance loss relative to the proposed
configuration (row 1), with two exceptions. First, all ablated models perform similar on the the short-term
0.5s prediction horizons and second, only adding normalization (row 2) shows similar performance on all
metrics. When additionally adding ReLU activations (row 3), the performance drop for the 1.0/1.5s metrics
becomes more significant, with losses of 5.1/6.5% MSE, 6.6% CMSE and 6.0% CF MSE . Using two GCN layers,
without any normalization or activations, leads to the greatest performance loss, with values of 6.2/10.2%
MSE, 10.7% CMSE and 10.6% CF MSE .

Discussion The discussion will focus on the performance difference between the proposed graph config-
uration (row 1) and the two-layer counter-part (row 4), because this performance difference is most signifi-
cant. One might expect that a two-layer GCN would work better because it adds more parameters to the node
refinement process. This would provide, in theory, more representational power. However, it could alterna-
tively give the model too much freedom, impairing the learning process. Moreover, stacking K graphs is used
in graphs to reach K th-order nodes [39], i.e. nodes that are K steps away from the pedestrian node. However,
our graph only contains 1th-order nodes, i.e. nodes that are only one step away from the pedestrian node.
Stacking multiple layers is therefore not necessary in our method for using all nodes.
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[96] Petar Velicković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua Bengio.
“Graph attention networks”. In: arXiv (2017), pp. 1–12. ISSN: 23318422.

[97] Chengxin Wang, Shaofeng Cai, and Gary Tan. “GraphTCN: Spatio-Temporal Interaction Modeling for
Human Trajectory Prediction”. In: Proceedings of the IEEE/CVF Winter Conference on Applications of
Computer Vision (2020), pp. 3450–3459. ISSN: 23318422.

[98] Chuhua Wang, Yuchen Wang, Mingze Xu, and David J. Crandall. “Stepwise Goal-Driven Networks for
Trajectory Prediction”. In: IEEE Robotics and Automation Letters. 2. 2021. URL: http://arxiv.org/
abs/2103.14107.

[99] World Health Organization (WHO). “Global Status Report on Road Safety”. In: World Health Organi-
zation (2018), p. 20.

[100] Hui Xiong, Fabian B. Flohr, Sijia Wang, Baofeng Wang, Jianqiang Wang, and Keqiang Li. “Recurrent
neural network architectures for vulnerable road user trajectory prediction”. In: IEEE Intelligent Ve-
hicles Symposium, Proceedings 2019-June.May 2020 (2019), pp. 171–178. DOI: 10.1109/IVS.2019.
8814275.

[101] Kelvin; Xu, Jimmy; Lei Ba, Ryan; Kiros, Kyunghyun; Cho, Aaron; Courville, Ruslan; Salakhutdinov, et
al. “Show, Attend and Tell: Neural Image Caption Generation with Visual Attention”. In: Proceedings
of the 32nd International Conference on Machine Learning, 37 (2015).

[102] Takuma Yagi, Karttikeya Mangalam, Ryo Yonetani, and Yoichi Sato. “Future Person Localization in
First-Person Videos”. In: Proceedings of the IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (2018), pp. 7593–7602. ISSN: 10636919.

[103] Kota Yamaguchi, Alexander C. Berg, Luis E. Ortiz, and Tamara L. Berg. “Who are you with and where
are you going?” In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pat-
tern Recognition. 2011. ISBN: 9781457703942. DOI: 10.1109/CVPR.2011.5995468.

[104] Yu Yao, Ella Atkins, Matthew Johnson-Roberson, Ram Vasudevan, and Xiaoxiao Du. “BiTraP: Bi-directional
pedestrian trajectory prediction with multi-modal goal estimation”. In: proceedings of the IEEE Robotics
and Automation Letters 2021 6.2 (2021), pp. 1463–1470. ISSN: 23318422. DOI: 10.1109/lra.2021.
3056339.

[105] Yu Yao, Mingze Xu, Yuchen Wang, David J Crandall, Ella M Atkins, and C V Jul. “Unsupervised Traffic
Accident Detection in First-Person Videos”. In: IEEE International Conference on Intelligent Robots
and Systems. 2019, pp. 273–280.

[106] Tiffany Yau, Saber Malekmohammadi, Amir Rasouli, Peter Lakner, Mohsen Rohani, and Jun Luo. “Graph-
SIM: A graph-based spatiotemporal interaction modelling for pedestrian action prediction”. In: EEE
International Conference on Robotics and Automation (2021). ISSN: 23318422. URL: http://arxiv.
org/abs/2012.02148.

[107] Youngjoon Yoo, Kimin Yun, Sangdoo Yun, Jonghee Hong, Hawook Jeong, and Jin Young Choi. “Visual
Path Prediction in Complex Scenes with Crowded Moving Objects”. In: Proceedings of the IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition 2016-Decem (2016), pp. 2668–
2677. ISSN: 10636919. DOI: 10.1109/CVPR.2016.292.

[108] Cunjun Yu, Xiao Ma, Jiawei Ren, Haiyu Zhao, and Shuai Yi. “Spatio-Temporal Graph Transformer Net-
works for Pedestrian Trajectory Prediction”. In: Proceedings of the European Conference on Computer
Vision (2020), pp. 507–523. ISSN: 16113349. DOI: 10.1007/978-3-030-58610-2{\_}30.

[109] Kuo Hao Zeng, Shih Han Chou, Fu Hsiang Chan, Juan Carlos Niebles, and Min Sun. “Agent-centric
risk assessment: Accident anticipation and risky region localization”. In: Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition 2017-Janua (2017), pp. 1330–1338. DOI: 10.1109/
CVPR.2017.146.

[110] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, et al. “Graph neural
networks: A review of methods and applications”. In: (2021). DOI: 10.1016/j.aiopen.2021.01.001.
URL: https://doi.org/10.1016/j.aiopen.2021.01.001.

http://arxiv.org/abs/2103.14107
http://arxiv.org/abs/2103.14107
https://doi.org/10.1109/IVS.2019.8814275
https://doi.org/10.1109/IVS.2019.8814275
https://doi.org/10.1109/CVPR.2011.5995468
https://doi.org/10.1109/lra.2021.3056339
https://doi.org/10.1109/lra.2021.3056339
http://arxiv.org/abs/2012.02148
http://arxiv.org/abs/2012.02148
https://doi.org/10.1109/CVPR.2016.292
https://doi.org/10.1007/978-3-030-58610-2{\_}30
https://doi.org/10.1109/CVPR.2017.146
https://doi.org/10.1109/CVPR.2017.146
https://doi.org/10.1016/j.aiopen.2021.01.001
https://doi.org/10.1016/j.aiopen.2021.01.001


Bibliography 59

[111] Brian D. Ziebart, Nathan Ratliff, Garratt Gallagher, Christoph Mertz, Kevin Peterson, J. Andrew Bag-
nell, et al. “Planning-based prediction for pedestrians”. In: IEEE/RSJ International Conference on In-
telligent Robots and Systems. Dec. 2009, pp. 3931–3936. ISBN: 9781424438044. DOI: 10.1109/IROS.
2009.5354147.

https://doi.org/10.1109/IROS.2009.5354147
https://doi.org/10.1109/IROS.2009.5354147

	Introduction
	The trajectory prediction problem
	Domains
	Challenges
	Contextual cues
	Pedestrian crossing action prediction

	Focus of the thesis
	Problem statement and research question
	Outline

	Related Work
	Fundamentals
	Deep learning methods
	Recurrent Neural Networks
	Convolutional Neural Networks
	Graph Neural Networks


	Trajectory Prediction
	Trajectory prediction method taxonomy
	Stimuli
	2D on-board domain
	Top-down and 3D on-board domain

	Prediction method
	2D on-board domain
	Top-down and 3D on-board domain

	Prediction output
	2D on-board domain
	Top-down and 3D on-board domain


	Interaction modeling in trajectory prediction
	2D on-board domain
	Recurrent Neural Network-based
	Graph-based
	Attention-based

	Top-down and 3D on-board domain
	Distance-based
	Attention-based
	Graph-based
	Transformer-based


	Evaluation
	Datasets
	overview
	Ego-centric naturalistic datasets
	Top-down surveillance- and traffic datasets

	Metrics
	Geometric metrics
	Probabilistic metrics



	Method
	Overview
	Semantic extraction of objects and pedestrian
	Interaction modeling stream
	Graph construction
	Node definitions
	The adjacency matrix and edge weights

	Spatial reasoning over the graph
	Temporal reasoning

	Bounding box encoding stream
	Temporal decoding
	Main contributions

	Experiments
	Overview of models and baselines
	Metrics
	Datasets
	Data pre-processing
	Training
	Results and discussion
	Benchmark trajectory prediction performance using graph-based interactions
	Oracle case with ego-motion

	Contribution of various contextual objects to trajectory prediction performance
	Analysis of different sets of contextual objects
	Sensitivity analysis
	Analysis of learned edge weights


	Qualitative analysis
	Visualization protocol


	Conclusion
	Summary
	Limitations
	Future work

	Appendix
	Semantic extraction
	Additional experiments
	Joint and separate encoding of modalities
	Configuration of Graph Convolutional Network



