
Gamification of a Static Analysis Tool
A brief look into developer motivation

Version of May 26, 2019

Raies Saboerali

Gamification of a Static Analysis Tool
A brief look into developer motivation

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Raies Saboerali
born in Paramaribo, Suriname

Software Engineering Research Group
Department of Software Technology

Faculty EEMCS, Delft University of Technology
Delft, the Netherlands
www.ewi.tudelft.nl

www.ewi.tudelft.nl

c© 2019 Raies Saboerali

Gamification of a Static Analysis Tool
A brief look into developer motivation

Author: Raies Saboerali
Student id: 4080335
Email: r.a.a.saboerali@student.tudelft.nl

Abstract

Software development is more than only implementing the functional code. A
developer is also responsible for writing code measuring up to certain standards and
conventions. These conventions make sure that the code is of a particular quality that
improves readability and eases maintainability. Some of these conventions are checked
by automated tools. Automated static analysis tools (ASATs) perform an analysis of
the source code and issue warnings. ASATs are available for many programming lan-
guages and can be used to find functional or maintainability issues. Even though these
tools have been proven to be useful during the code development process, developers
do not always utilize them. The overload of warnings in large projects and relatively
low importance of these warnings are one of the many reasons why they are ignored.

In this study, a gamification tool, Checkpoint, is developed based on the GOAL
methodology. The purpose of this tool is to gamify the development process pertaining
to ASATs to motivate developers. The developers are motivated using various gam-
ification elements during a pretest-posttest pre-experimental experiment. The study
tested the usability of the tool and its effectiveness. The experiment showed that gam-
ification has an impact on developer motivation.

Thesis Committee:

Chair: Dr. A.E. Zaidman, Faculty EEMCS, TU Delft
University supervisor: Dr. A.E. Zaidman, Faculty EEMCS, TU Delft
Committee Member: Dr. A. Katsifodimos, Faculty EEMCS, TU Delft
Committee Member: Dr. M. Aniche, Faculty EEMCS, TU Delft

r.a.a.saboerali@student.tudelft.nl

Preface

Starting a Masters degree was not planned when I first came to the Netherlands. During this
journey, I have bee able to learn so much more about Computer Science. I owe my grati-
tude to Andy Zaidman who supervised during my Bachelors and Masters degree. Andy’s
guidance and feedback have always been helpful. During the last year of my study, there
were some bumps, and I am grateful for Andy’s support and understanding during this pe-
riod. I would also like to thank Susanne van Ardenne for all her advice and help with study
guidance and planning. The process of finding volunteers was not easy, thus I am grateful
to Maaike Ruisendaal at Sogeti for helping me find volunteers for the experiment. I would
also like to thank all the people who participated in the experiment of this thesis, and my
friends who volunteered for beta testing.

Support from my family has played a huge part in moving forward and I am thankful
for their support. I would like to thank my parents for their support and patience through
all these years. Had they not worked so hard, I would not have never been able to study
abroad. All of this would not have been possible without the two most important people
in this journey; my uncle and my aunt. I am forever grateful to my uncle Fayek and aunt
Sharida, without their support through all these years I would not stand where I am today.

Raies Saboerali
Delft, the Netherlands

May 26, 2019

iii

Contents

Preface iii

Contents v

List of Figures ix

1 Introduction 1
1.1 Research Question(s) . 2
1.2 Thesis Structure . 3

2 Background and Related work 5
2.1 Automated Static Analysis Tools . 5
2.2 Gamification . 6

3 Gamification 9
3.1 Behavior Change . 9
3.2 Motivational Drivers . 10
3.3 Mechanics . 11
3.4 Gamification in Software Engineering . 14
3.5 The GOAL methodology applied . 14
3.6 Defining the Mission . 14

4 Design and Implementation 19
4.1 Ad-hoc or Integrated solution . 19
4.2 Requirements . 20
4.3 Designing the tool . 21
4.4 Warnings Resolved in Action . 24
4.5 Warning Classification . 26
4.6 Achievements . 26
4.7 Git and GitHub . 28
4.8 Webhook Routing . 29

v

CONTENTS

5 Experiment 33
5.1 Design of the Experiment . 33
5.2 Pretest and Posttest . 35
5.3 The Interview . 37
5.4 Card Sorting . 37
5.5 The Case . 38
5.6 Participants Selection . 39
5.7 Experiment Setup . 39
5.8 Pilot . 41
5.9 Execution of the experiment . 42

6 Results 45
6.1 Participant Profile (Pretest) . 45
6.2 Checkpoint (Posttest) . 52
6.3 Expectations on Gamification . 57
6.4 Experiment Experience and Rating . 58

7 Discussion 61
7.1 Motivation . 61
7.2 Effectiveness . 62
7.3 Usability . 63
7.4 Mechanism . 64
7.5 Ignoring ASAT Warnigns . 65
7.6 Existing Gamification Models . 66
7.7 Gamification within Software Development 66
7.8 Extrinsic Motivators . 67
7.9 Competition . 68
7.10 Most Effective Mechanism . 69
7.11 Effectiveness of Checkpoint . 69
7.12 Usability of Checkpoint . 70
7.13 Threats to Validity . 70

8 Conclusions and Future Work 73
8.1 Conclusions . 73
8.2 Contributions . 74
8.3 Future work . 75

Bibliography 77

A Experiment Information Sheet 81

B Experiment Procedure Sheet 85

C Pretest Questionnaire 89

vi

Contents

D Posttest Questionnaire 95

E Checkpoint 105

vii

List of Figures

3.1 Fogg Behavior Model . 10
3.2 Trophies of Bunq . 12
3.3 First Payment Award by Bunq . 12
3.4 Leaderboard example of Duolingo . 13

4.1 Overview of Process . 21
4.2 Warning Set Example for a File . 25
4.3 Warning Schema . 27
4.4 Achievement Schema . 30
4.5 Achievement and Tasks . 31
4.6 GitHub App Authentication . 31
4.7 GitHub App Connection . 32

5.1 JPacman . 40

6.1 Age Distribution . 46
6.2 Education Levels . 46
6.3 Occupation . 46
6.4 Programming Experience in Years . 47
6.5 Familiarity with Eclipse . 47
6.6 Experience with Java . 47
6.7 Experience working in Teams . 47
6.8 Attitude towards Code Quality . 48
6.9 There is a code review process in the development process of the projects I

work on . 49
6.10 There are coding conventions in place for the projects I work on 49
6.11 Automated Static Analysis tools (ASATs) contribute in upholding the quality

of the code I write . 50
6.12 Warnings generated by ASATs are completely useless 50
6.13 How many Static Analysis tools do you use at one given time? 51
6.14 I use Automated Static Analysis tools to inspect my code during? 51

ix

LIST OF FIGURES

6.15 When an ASAT generates warnings I tend to? 52
6.16 UI Experience . 52
6.17 Process Experience . 53
6.18 Triggered to open Checkpoint . 53
6.19 Levels . 54
6.20 Notifications . 55
6.21 Activities Log . 55
6.22 Badges . 56
6.23 Leaderboard . 57
6.24 Expectations (average) . 57
6.25 Expectations (median) . 58
6.26 Experiment Experience . 59
6.27 Experiment Rating . 59

E.1 Checkpoint Dashboard . 106
E.2 Checkpoint Crusher Statistics . 107
E.3 Checkpoint Badges . 107
E.4 Checkpoint Activity Log . 108
E.5 Checkpoint Badge Example . 109
E.6 Checkpoint Activity Example . 110

x

Chapter 1

Introduction

Software engineering is more than coding, developers also need to comply with rules and
regulations within their organization or team. Coding conventions are part of such rules.
These conventions are guidelines for specific programming languages demanding certain
practices and styles. Source code which violates coding standards has the potential to de-
crease the maintainability and readability of the software [38]. It is therefore of importance
to follow these conventions. In order to keep the code quality high, developers use tools
which assist them in finding bugs which have the potential to increase technical debt in the
future. One of such kind of tools are Automated Static Analysis Tools (ASATs), which per-
form a static analysis on the code in order to find functional and maintenance issues [36].
Removing these warnings may make the software easier to maintain [3].

ASATs perform a static analysis of the code, in other words, the code does not need
to be executed for the analysis. The goal of an ASAT is to find bugs and design issues
[36]. Such a tool is used to assist developers in keeping the code quality of the software
up to higher levels. The static analysis of the code can be performed on the non-compiled
source code or on the bytecode [36]. FindBugs is one such tool which assists the developer
in finding issues by analyzing the code at the byte level. Many other tools such as PMD
and Checkstyle perform a similar analysis on the source code. ASATs can be used via the
command line or as integrated tools within an integrated development environment.

ASATs are also used during code review, which is also a software development process
focusing on quality control [26]. During code review, one or more developers inspect the
code committed to the repository. The use of ASATs during this process reduces the time
and effort of the review process [31].

1.0.1 Problems with ASATs

Even though ASATs have shown to be effective at finding design issues and contributing to
code quality [38], there are still hurdles on this road.

Software Developers may find certain tasks tedious and boring [16]. Dealing with the
warnings produced by static software analysis is one such task [16]. In order to make
the best use of static analysis, developers use these tools in combination [5]. However,
various tools give different warnings. Furthermore, their usage is still sporadic among many

1

1. INTRODUCTION

opensource projects [5]. Very few projects mandate the use of ASATs and the removal of
all warnings during development. Especially in larger projects, the probability of warnings
is quite high. When using these ASATs, chances are that developers get overloaded with
warnings from files they are not even working on. This creates a forest of warnings in which
the developer may get lost. The tediousness of the task and the overload of warnings have
a negative impact. Developers may start using ASATs irregularly during development or
completely abandon the use of these tools. Based on these findings, it is safe to say that
developers can be more productive when such tools are regularly used whilst writing code
because they can see and fix the issues faster.

1.1 Research Question(s)

The amount of overload of warnings and the tedious nature of dealing with these tasks leads
to developers ignoring the warnings [20]. The aim of this study is to find a way to make de-
velopers care about these warnings through gamification. Gamification is the use of gaming
elements in a non-game context to improve user engagement and motivation [16]. Gam-
ification has proven to be successful in motivating its users within software engineering
environments [16]. Arai et al. also [2] conducted a study in which a gamified bug removal
tool was developed. The tool was tested within a team of developers and resulted in in-
creased bug fixes [2]. The purpose of applying gamification is not merely about rewarding
users, but also to enrich the activities by enforcing a positive behavior [10].

The main goal of this study is to find out whether developers are motivated through
gamification to resolve ASAT produced warnings. The study will also investigate why
developers tend to ignore these warnings and what existing gamification models exist. As
part of this study, a prototype gamification application will be implemented. The application
will be put to test through a one-group pretest-posttest pre-experimental experiment. The
gamification application will be named Checkpoint.

The research questions investigated in this thesis are:

• RQ1: Why do developers ignore warnings produced by ASATs?

• RQ2: What existing gamification models for improving software engineering pro-
cesses exist?

• RQ3: Are developers willing to use gamification within their software development
process in order to resolve ASAT produced warnings?

• RQ4: Does gamification encourage developers to resolve ASAT produced warnings?

– RQ4.1: Do extrinsic motivators encourage developers to resolve ASAT pro-
duced warnings?

– RQ4.2: Does competition through gamification encourage developers to re-
solve ASAT produced warnings?

– RQ4.3: Which gamification mechanic is most effective in encouraging devel-
opers to resolve ASAT produced warnings?

2

1.2. Thesis Structure

– RQ4.4: Is Checkpoint effective in motivating developers to resolve ASAT pro-
duced warnings?

– RQ4.5: Is Checkpoint sufficiently usable for developers?

1.2 Thesis Structure

The study performed as reported through this thesis should be conducted with the applica-
tion of appropriate methodology. In Chapter 2 the findings of the literature study performed
as part of this thesis is presented. The findings reported in Chapter 2 will be used to answer
RQ2. In this chapter, the attitude of the developer towards automated static analysis tools
will be investigated. The background study will also report on the value of gamification
within software engineering.

Chapter 3 will report the findings on existing gamification methods and its applications
within software engineering. The study will show that applying gamification within SE
is not simple. The gamification needs to be translated to characteristics of the particular
domain. This translation will be executed through a proven methodology.

Based on the methodology the prototype, Checkpoint, will be developed. The design
and implementation decisions will be presented in Chapter 4.

Chapter 5 details the experimental design. As stated, the goal of this thesis is to inves-
tigate the impact of gamification on developers resolving warnings. To properly investigate
this, a proper experiment should be designed and executed.

The results gathered from the experiment will be presented in Chapter 6. In this chapter,
the results from the pretest and the posttest will be presented.

In Chapter 7 the results will be interpreted in terms of the research questions. There
will be a discussion on the dependent variables defined during the experiment. A deeper
dive will be made into the impact of individual gamification mechanisms which have been
implemented into Checkpoint. There will also be a discussion of threats to validity.

The study will be concluded in Chapter 8. In this chapter, the research questions will be
answered based on the facts found through results and discussion. A brief overview of the
contributions made by this study is provided. The thesis is concluded with possible ideas
for the future in order to improve the current findings.

3

Chapter 2

Background and Related work

This chapter includes the related work performed on Automated Static Analysis Tools
(ASATs) and gamification pertaining to software development.

2.1 Automated Static Analysis Tools

Automated static analysis tools are used to detect bugs or design issues. These tools assist
the developer in finding issues which could lower the code quality. Various tools have been
developed to audit the code. These tools detect issues by either analyzing the source code
or bytecode.

FindBugs 1, PMD 2, CheckStyle 3 and JSLint 4 are a few examples of such tools. Find-
Bugs, for example, is a well-known tool using bytecode analysis in order to audit the source
code [21]. FindBugs has evolved under the new name, SpotBugs 5. Over the years many
tools have been developed for various programming languages.

2.1.1 Ignoring the Warnings

Many studies have been performed in order to understand how ASATs are used. ASATs
throw a lot of warnings at the developer, one could expect that the developer would fix these
warnings as ASATs are a tool for guarding code quality. However, often these warnings are
not fixed [21]. In [29] they find that 56% of true warnings were acted upon by developers
and 24% of warnings were false positives. Furthermore, a study at Google found that 55%
of warnings were only acted upon after being entered into the bug tracking system [3].
Had these warnings been taken care of during the development, valuable time could have
been saved into solving these issues. The study [3] found that the average lifespan of the
bugs was between 5 and 9 months. Usually, older bugs are not fixed if they are marked as
deprecated or obsolete [3]. Older code that does stay in the system tends to be more trusted

1http://findbugs.sourceforge.net/
2https://pmd.github.io/
3http://checkstyle.sourceforge.net/
4https://jslint.com/
5https://github.com/spotbugs/spotbugs

5

2. BACKGROUND AND RELATED WORK

by other developers even if it would produce warnings by the ASATs [3]. If the code has
been working correctly up till now, then there is no need to fix it and risk the chance of
creating another bug. In [21] they find that only up to 9% of warnings are removed during
the evolution of the source code.

The overload of warnings generated by ASATs may cause developers to avoid them
[20]. Developers may not even be aware of the benefits of ASATs [20]. Another reason
for ignoring these tools might be that the list of recommendations might be too extensive
and can either be noisy or irrelevant to the developer [26]. Furthermore, not all warnings
are important. In different projects, different types of warnings may be more relevant than
others [26]. In [26] it is also shown that specific categories of warnings such as imports, type
resolution, and regular expression were removed more often than others. Another concern
is the high amount of false positives that ASATs produce [20, 29]. The lack of explanation
of the warnings and effectively implementing quick fixes is also a disadvantage [20].

2.1.2 Practical value of ASATs

Static analysis tools are an affordable means of fault detection in Software. They are effec-
tive at finding design issues while developers can focus on more complex problems such
as algorithmic errors [38]. However, the overwhelming amount of warnings, number of
false positives and lack of explanation of the warnings have a negative impact on the use of
ASATs.

An overwhelming amount of irrelevant warnings can cause the developers to lose sight
of issues which need to be solved, or even demotivate them to get started.

2.2 Gamification

In this section, the value of gamification in software development will be explained. First,
the argumentation will be made why gamification will be a useful addition to the devel-
opment process. Afterwards, the gamification elements and modeling approach will be
outlined.

2.2.1 Practical value of Gamification

Beller et al. [5] find the usage of ASATs to be common in popular OSS projects. ASATs
tend to be used sporadically by developers and are not ubiquitous in popular OSS [5]. This
can be caused by an overwhelming amount of warnings presented to the developer when
using an ASAT. A significant amount of warnings indicate that the developer will need to
put more effort into investigating.

Panichella et al. [26] found that specific categories of warnings were removed during the
code review process, thus showing that static analysis tools also assist developers during the
code review process in reducing the amount of warnings. The arguments in favor of ASATs
suggest that these tools are a useful addition to the development process. However, software
development is a human-centric and brain-intensive activity which requires motivation and
discipline of developers [14]. Therefore creating a solution for motivating the use of ASATs

6

2.2. Gamification

are of practical importance to the developer community and projected to be a beneficial
addition to the process.

Software engineering tasks may get tedious at times. As argued before, the static anal-
ysis process is a valued one as it is used to audit the code for maintenance issues. Even
though gamification has been a controversial topic [6], if implemented correctly, it will
have a positive impact increasing user engagement and motivation. To model and imple-
ment an effective mechanism it is useful to understand why we play games, what elements
attract us, and how to translate these into an SE (Software Engineering) process [10].

One popular example closer to the field of engineering is the well-known Q&A plat-
form, StackOverflow. Gamification has been part of StackOverflow’s success [35]. The
platform awards its users with points for asking and answering questions. Each milestone is
celebrated by awarding the user a badge which is publicly visible. These points and badges
make up the user’s reputation on the platform and are intended to further motivate them.

Gamification is also related to behaviorism since it is built on the concept of rewards
[10]. The intuition behind behaviorism is not always trivial. Kohn found that removal of
these reward elements may result in the user to return to baseline performance [10]. This
does not mean that there is no hope. On the contrary, behaviorism is only a small part of
gamification. McGonigal argues that the success of gamification originates from a reward
which represents the foundation of optimal human experiences, such as satisfying work, the
experience of being successful, social connection, and deeper meaning [10].

The purpose of applying gamification is not merely about rewarding users, but also to
enrich the activities by enforcing a positive behavior [10].

7

Chapter 3

Gamification

The existing gamification methods and its applications will be explained in this chapter
along with gamification within software engineering. Applying gamification in a software
development process may not be as straightforward as it appears to be since it has to be
transformed to the characteristics of the domain [14]. It is therefore of importance to study
gamification within software engineering in order to design and develop an adequate system
to fit within the development process of the daily programmer.

3.1 Behavior Change

The purpose of implementing gamification so developers resolve (more) ASAT warnings, is
to make it a regular task. The aim is to create a new behavior such that developers who are
not keen of resolving ASAT produced warnings, are motivated to resolve them on a regular
basis.

Fogg presents the Fogg Behavior Model (FBM) [15] to understand the human behavior.
In the FBM three important factors are presented: motivation, ability and triggers. To assert
the target behavior to happen, it is siginificant for the developer to be sufficiently motivated,
be able to perform the task, and be triggered. In Figure 3.1 the FBM 1 is visualized. Based
on the studies performed, is it safe to conclude that developers are able to perform the tasks
of resolving warnings, however, they are not motivated enough. In the application to be
created, the motivation is of significance in this formula and vital for the success of the
application’s competence in persuading the developer.

Another interesting concept is the one of flow as introduced by Csikszentmihalyi [25].
In the article Concept of Flow[25], flow is defined as “a good life is one that is characterized
by complete absorption in what one does”. Flow is the optimal state in which a person
becomes totally immersed in an activity [19]. When a person is in a state of flow, a great
deal of enjoyment of the process is experienced and full of energized focus. However,
when a task is perceived as too difficult, the person can experience frustration. On the other
hand, if the task is too easy, the person can experience boredom. The trick when applying

1https://www.behaviormodel.org/

9

3. GAMIFICATION

Figure 3.1: Fogg Behavior Model

gamification to any process, is to create an experience in such a way that the users spend
their time in a state of flow.

In games this is done by leveling users up and increasing the difficulty as they gain ex-
perience. One of the challenges of gamifying the development process of resolving ASAT
warnings is that many developers and teams have different levels of experience. In a video
game for example, everyone starts at the beginning and progresses as they play. In gam-
ification of software development, however, one team member may be significantly more
experienced or familiar with the system than another member. Some teams may have never
used ASATs and want to start using it. Others may have configured the tools but used them
infrequently. These factors will be taken into account and used to delimit the scope of this
project.

3.2 Motivational Drivers

In general there are two types of motivators, intrinsic and extrinsic motivators. Intrinsic
motivation is linked to positive human behavior [34]. This type of motivator refers to au-
tonomy, belonging, curiosity, learning, mastery and meaning. Extrinsic motivator refers
to external motivators such as rewards, money, badges, points, competition, fear of fail-

10

3.3. Mechanics

ure, etc. Extrinsic motivators are effective for simple tasks is what Daniel Pink found [23].
When tasks get more difficult and require more effort, extrinsic motivators may turn into
de-motivators [23]. The Self Determination Theory [30] suggest that extrinsic motivators
may lead to motivated behavior when used properly [34]. Focusing on extrinsic motivators
in such a way that leads developers to perform these tasks regularly is the key of this project.

3.3 Mechanics

Aside from intrinsic and extrinsic motivators, game mechanics play a significant role in
the effectiveness of the gamification entity [1]. There are many mechanics with different
levels of granularity and not all of them are particularly suitable in every business case. In
this chapter the purpose and motivational driver of suitable mechanisms will be discussed.
These mechanisms are points, badges, leaderboard, levels, and progress bars.

3.3.1 Points

Points are one of the most used gamification mechanics in the game world [27]. In many
games some sort of pointsification system can be found. Pointsification is about reward-
ing the user’s behavior with points [27]. Points are the most granular measurement in the
gamification world, and they provide instant feedback to the user. Because of this, points
contribute to the feedback as a motivation driver. Points may also be contributing to collect-
ing as a motivation driver, because users see their points go up.

3.3.2 Badges

The second most used gamification mechanism is badges [27]. Badges represent the achieve-
ment a user has attained. If used correctly, badges may enforce positive behavior and ad-
dress collection as the motivational driver. Badges can be awarded to users after completing
tasks or gaining a certain amount of points.

Bunq for example is an online bank 2 which markets itself as a bank of the free. Cus-
tomers of Bunq need to download an application in order to perform their banking oper-
ations. In their application they also make use of gamification in order to motivate their
customers to perform a number of tasks. A slight difference here is that Bunq calls these
trophies instead of badges. In Figure 3.2 the total collection of badges a user can achieve
can be found. The design of this screen has been implemented in such a way that the user
who is triggered by the motivational driver of collecting is compelled. Figure 3.3 shows the
screen when a users has achieved a badge.

3.3.3 Leaderboard

Leaderboards are part of a social aspect of gamification. Leaderboards show a ranking of
users in order to increase competitiveness among them. The position of the user on the board
can be determined by many factors such, e.g. points, levels, etc. A leaderboard may also

2https://www.bunq.com/

11

3. GAMIFICATION

Figure 3.2: Trophies of Bunq Figure 3.3: First Payment Award by Bunq

have a demotivating effect on the user, especially for new users who are starting with close
to zero points while a top player might already have significantly more points. Players who
become demotivated by this may not even try to play the game. It is therefore important to
think about the consequences of this element and take appropriate design decisions in order
to minimize the chance of demotivating users.

Some applications try to solve this by having cross-situational leaderboard [23]. In such
a leaderboard the user is show in between other players who have more and less points
respectively. Having a cross-situational leaderboard provides especially new users with
a realistic starting point. Leaderboards may also be further divided among certain time
periods such as weeks or months. Such leaderboards motivate the users to start over each
period and provides the players with new opportunities to compete.

In Figure 3.4 an example of a leaderboard can be found. This leaderboard from Duolingo3,
a language learning app, shows by default the a weekly leaderboard between friends.

3.3.4 Levels

Levels are a powerful mechanism which address to the user’s drive for achievement [12].
The levels mechanism is also used as a competitive mechanism in order to drive users in a
social setting by showing their status. Levels are based on point rewards. As the user plays
the game, points are earned, after which the user may get promoted if the threshold for the
current level is exceeded.

3https://www.duolingo.com/

12

https://www.duolingo.com/

3.3. Mechanics

Figure 3.4: Leaderboard example of Duolingo

3.3.5 Progress

The progress mechanism provides the user feedback of the journey completion. Progress
bars are used to display the overall progression and can be used to motivate users who are
close to achieving their goal [22]. Progress bars are also used in combination with other
gamification mechanisms. For example, by showing the progress of the user relative to the
next level.

3.3.6 Game economy and rules

Game economy are the four basic currencies players can accumulate during the game [23].
The four economies are self-esteem, fun, social capital and fun. The game rules on the other
hand, pull together the mechanics in order to create a flow which motivates the player. Game
rules define when users are awarded points, level up, how much points they are awarded,
etc. The purpose of the game should be taken into account when selecting the mechanics
and designing the rules.

13

3. GAMIFICATION

3.4 Gamification in Software Engineering

So far the various motivators and gamification mechanisms have been discussed. Although
these subjects are important for our understanding of designing and implementing a gami-
fied platform, applying these mechanisms to software engineering is not a straightforward
task [14]. Garcia et al. argue that the essential difference between a game and software engi-
neering is skill building enhanced by the influence of the gamification elements [16]. The re-
search on applying gamification within SE, however, is scarce and premature, and provides
no systematic methodology to incorporate these gamification elements within software en-
gineering [16]. In order to support the integration of gamification within software engineer-
ing, the GOAL (Gamification focused On Application Lifecycle Management) methodol-
ogy is proposed. The purpose of GOAL is to support integration of gamification in software
engineering. Garcia et al. designed a generic software gamification architecture from which
an engine has been built [16]. This engine has been tested in a software company. The
blueprint for this project, GOAL, will be used in this project as a guideline.

3.5 The GOAL methodology applied

In this section the execution of activities of the GOAL methodology will be described.
The steps one till four will be discussed for now. The last two steps, development and
monitoring, will be part of the next chapter. First the objectives of the gamification will be
identified, after which a player analysis will be performed. Thirdly, the gamification scope
definition will be discussed. Based on the results of the data acquired during these activities,
the fourth step, game analysis and design will be executed.

3.6 Defining the Mission

In Gamification at work, Janaki Kumar [23] states that the mission refers to the goal of
the gamification activity. It is therefore vital to define a meaningful mission to guide the
development process of the gamification tool.

The following steps are outlined in Gamification at Work [23] in order to create an
effective mission:

• Understanding the current scenario. This is the first step in identifying the objective
based on the results of the background study (Chapter 2).

• Understanding the target outcome

• Identifying a S.M.A.R.T. mission, which stands for specific, measurable, actionable,
realistic, and time bound. Each letter corresponds to an objective, however, there are
different sources referring different concepts 4.

4https://en.wikipedia.org/wiki/SMART_criteria

14

https://en.wikipedia.org/wiki/SMART_criteria

3.6. Defining the Mission

Current Scenario The work described in Chapter 2 has been performed in order under-
stand the current scenario. Based on the findings, currently, a large portion of developers
either use automated static analysis tools infrequently or they tend to ignore them.

Target Scenario The target scenario is the desired situation to move developers to. The
target is therefore defined as the situation in which developers use ASATs more frequently.

The mission Based on the analysis of the current scenario and the target scenario, a mis-
sion needs to be defined. The mission needs to be specific, measurable, actionable, realistic,
and time bound. The original mission as defined during this project was to get developers
to resolve 20% more warnings in a fun and engaging manner within a span of two months.
However, due to the nature of the experiment during this project the mission will be specific
but not time bound. The M for measurable, which alternatively stands for motivating will
be part of the mission. More details on the experiment setup will be presented in Chapter 5.
The mission will thus be to get developers resolve warnings in a fun and engaging manner.

3.6.1 Player analysis

The next step is to perform a player analysis. However, since this project is not performed
at a company, the player analysis will be based on purely fictional characters. It is still
important to have some idea of the kinds of people which are going to use the gamification
application, because the goal is to end up with a solution which is going to improve their
engagement and motivation.

Based on the identified personas the organizations culture can be described as infor-
mal, cooperative, structured and group achievement oriented. The organization is also is
relatively young in terms of average age of its employees. The players are motivated intrin-
sically based on their own duties and contribution to the projects they work on. The players
are motivated extrinsically by being recognized for their work related accomplishments.
Players may even receive a promotion at the end of the year for their performance.

3.6.2 Definition of Scope

This step is performed in order to define the scope of the gamification and to conduct a
feasibility study, in order to choose the best solution.

Based on the objectives of the game and background study on ASATs, the area of code
quality process with respect to ASATs will be gamified. Since it is not technically feasible
within the scope of this study to gamify an ASAT plugin, an Ad-hoc solution will be applied
in order to affect the process of developers resolving warnings generated by static analysis
tools by gamification. The tooling will be web-based and enforce extrinsic motivators and
it will be team-oriented.

3.6.3 Game Design

Based on the player analysis the following game mechanics has been selected:

15

3. GAMIFICATION

Name Jordan Peele
Gender Male, 25
Job Title Developer
Industry Software Development
Job Goals Combine technical expertise and business logic. Keep up with

new technology
Pain Points Needs to solve complex problems under time pressure
Aspirations Be an expert at coding
Work Culture Informal, cooperative, structured, group achievement
Player Type Achiever

Table 3.1: Persona: Jordan

Name Harold Kumar
Gender Male, 36
Job Title Senior Quality Engineer
Industry Software Development
Job Goals Become manager of the department
Pain Points Difficulty dealing with new technologies
Aspirations Become an expert at software quality
Work Culture Formal, cooperative, structured, individual
Player Type Explorer

Table 3.2: Persona: Harold

Name Mia Hoffman
Gender Female, 28
Job Title Software Developer
Industry Software Consulting and open-source development
Job Goals Combine human experience within software technology
Pain Points Has a busy schedule
Aspirations Contribute to open-source projects
Work Culture Informal, competitive, structured, group achievement
Player Type Socializer

Table 3.3: Persona: Mia

16

3.6. Defining the Mission

• Experience: points the developer will be awarded when resolving warnings.

• Levels: after having accumulated a certain amount of points the developer will be
promoted to the next level.

• Progress bar for level: the developer will be able to see how many points left to gain
in order to be promoted to the next level.

• Progress over time showing how many warnings resolved: the developers will be
shown how many warnings they resolve over time.

• Badges: a set of badges the developer can unlock by performing the tasks shown for
each badge.

• Leaderboard: where the developers can compare the progress of each other by seeing
where they rank.

• Activity log: where the developers can find a summarized timeline of their progress.
This timeline will provide the developers continuous feedback on the progress they
make.

The developers will obtain experience points as they play the game (resolve warnings).
Gaining points will lead to leveling up, and probably increase their rank on the leaderboard.
The game economics will be based on:

• Things: the use of experience points and badges.

• Self-esteem: the use of badges, level, and progress bars.

3.6.4 Changed game plan

During the first draft of the GOAL methodology, a streak count, was added to the game me-
chanics. Streak counts are also powerful gamification mechanics, especially if the number
starts to get higher. Duolingo for example, shows a streak count for the number of consec-
utive days a player has achieved their daily goal. In this game the streak count would have
shown how many consecutive workdays the user has committed code while resolving warn-
ings. However, due to the nature of the experiment, this mechanism was dropped. There is
no way the streak counter could have been tested fairly within an hour experiment.

In order to add a little bit of fun to the game, hidden achievements were going to be
added as a mechanism. However, for hidden achievement to be effective the players of a
game need to get familiar by playing the game for a lot more than just an hour. Hidden
achievements are not always easy to unlock, they require some experience of the game,
which is exactly what makes hidden achievements interesting.

Instead of the hidden achievements, it was decided to add a virtual buddy to the game
in order to add a little bit of fun. The virtual buddy would change its expression based on
the activities the user performed.

17

Chapter 4

Design and Implementation

The previous chapters have discussed about gamification and reason why ASAT produced
warnings are low prioritized or even ignored. The purpose of this chapter is to show how
these results led to the implementation of the tool in this project. Screenshots of the imple-
mented Checkpoint can be found in Appendix E.

4.1 Ad-hoc or Integrated solution

On of the early decisions during the design and implementation process was deciding to
make the tool integrated or ad-hoc. In Chapter 2 it is reported that the gamified tool needs
to be incorporated into the software engineering process. The choice between these two
options would impact the whole development process and design of the tool.

An integrated tool, in this case, meant developing a tool integrated into the IDE. The
plugin would be running while the developer was coding in the IDE. During the develop-
ment, the tool would analyze the modified code. An ad-hoc solution meant a separate tool
which would analyze the code.

An integrated tool could work offline. The tool could analyze the code each time the
developer saved modified or new code. Such a tool would also require a connection with
a server to synchronize the results of the developer and teammates. However, this design
would make cheating relatively easier. Because everything is processed offline, the devel-
oper could easily cheat the system. This could be achieved by for example creating warnings
and resolving them on your own. Other developers would not even be aware about this be-
havior. Another downside to this solution is, one would have to develop a tool for every
IDE. Or at least, every major IDE.

The ad-hoc solution, on the other hand, would be a tool running on a server. Developers
could view their progress through a web portal. To facilitate this, the tool would require
access to the repository. Each commit is analyzed and based on the results the gamification
engine would act accordingly. This system makes it harder to cheat because everything is
processed remotely. A developer could still deliberately introduce warnings to resolve these
and gain points. However, these commits would be shown in the history of the developer
and could possibly hurt their reputation. An ad-hoc solution would be required to read the

19

4. DESIGN AND IMPLEMENTATION

repository and commits.
Based on this analysis, an ad-hoc solution was chosen. The tool was named: Check-

point.

4.2 Requirements

Before implementing the actual tool, a set of requirement were setup in order to guide the
implementation. The requirements were setup based on the information from the previous
chapter. The requirements are as follows:

• Warnings should be scanned and logged.

• Based on warnings resolved, the user should be awarded points.

• Accumulating a number of points should award the user with badges.

• Resolving a specific number of warnings should award the user a badge. The follow-
ing combinations are possible:

– x warnings of type Y

– x warnings of category type Y

• Accumulating a number of points should level the user up.

• A global leaderboard should be available where the positions of the player is dis-
played among other players.

• The user should be displayed an activity log where the progress is displayed. E.g.
which achievement is unlocked.

The application about to be designed needs to comply with the requirements above.
The following are the technical requirements for the application:

• MySQL Database

• PHP 7.1

• CakePHP 3.6 as a MVC framework

• firebase/php-jwt for JSon Web Token generation

• Checkstyle v8.11

• Java v8

• Git 2.14

• Smee.io

• GitHub App

20

4.3. Designing the tool

4.3 Designing the tool

When starting to design, the tool was visioned to run on a server with a web portal for every
user. The server would listen to events of remote repositories. The web portal would contain
the gamification elements. These ideas led to the design of the system. The back-end of
the application consists of an event engine, analysis engine, and game engine. In Figure 4.1
a high level overview of the design can be found. When the developer pushes a commit,
the the changes are received by the remote repository. The repository sends an event to
the server of Checkpoint. Checkpoint will be configured to listen to webhook events of the
remote repository. The developer, can log-in on a web-portal and view the results. The
results are retrieved from the server.

Figure 4.1: Overview of Process

4.3.1 Event Engine

The event engine is responsible for handling requests from the remote repository. For this
project, GitHub was chosen. GitHub is a widely used hosting service which uses Git as its
version control. The tasks of the event engine are to process the webhook events and log
the changes of the commit to the database. GitHub is capable for sending out many types of
events 1. The events are received in JSON format. The significant events for Checkpoint are
push, repository, and installation. The installation event is fired when a new GitHub app
is installed or its permissions are altered on an existing installation. The repository event is
fired when a repository is created, deleted, archived, un-archived or edited.

After installation of a new repository, the server receives the event. The event data is
processed, and the an entity for the project is saved in the database. This process also checks
if the project already exists in the database. The reason for this is failed webhook events. If
an event fails to be processed midway, the event should be processed again without errors.
For each project, a folder on the server is created. In this folder Git is used to clone the

1https://developer.github.com/webhooks/

21

https://developer.github.com/webhooks/

4. DESIGN AND IMPLEMENTATION

entire repository. After cloning, the project is analyzed. The same process is executed for
the repository event. The main difference for this process is, an installation event may
contain multiple repositories, because the GitHub app can be installed on an organization
with multiple repositories. A repository event pertains only a single repository.

This process may take a while, because all the files in the project need to be scanned us-
ing Checkstyle. For push events, the JSON data contains and array of commit information.
The JSON contains the hash, author, commiter, files modified, files added, files removed,
and some other data. When a push event is received, the commit data is saved into the
database. During processing, the author in the commit is searched for in the database. If the
author is registered in Checkpoint, a link is made between the commit and the author. For
each file, the same actions are executed. Each file in the JSON commit data is saved to the
database and linked with the registered author.

4.3.2 Analysis Engine

The analysis engine has the responsibility of processing and analyzing every commit which
has been processed by the Event Engine. Processing for the Analysis Engine means running
Checkstyle and computing solved warnings for each commit.

The event which is going to be most used by the program is the push event from GitHub.
Whenever this event is received, the commits are saved with their relevant details. After-
ward, Checkstyle is executed on the server given the file to check. Checkstyle on the server
was configured to run using sun checks. This is one of the two default configurations within
Checkstyle. The configuration was also set to default within the IDE used during the ex-
periments. Given the purpose of this project, it was not deemed necessary to implement
reading custom Checkstyle configuration for each project. sun checks also resulted in more
warnings than the google checks configuration. This benefited the experiment because with
more warnings it would be easier to stimulate annoyance of warning overload. Checkstyle
version 8.11 was used in the IDE and on the server to check the files. The tool was executed
using shell exec and the results were formatted in XML. The XML was then parsed and
saved as an entity in the database. Each warning entity was linked with the file, commit,
and project. During this step, each warning entity was also linked with a warning type en-
tity. This was performed by using the source error parameter of the Checkstyle results and
check it against known warning types. The classification of warning types will be explained
in Section 4.5; The warning type is an important link here, because it is used for serving
points and keeping track of types of warnings resolved.

Checkstyle is executed on modified and new files. A list of these files can be found
within the event data from the webhook. At the end of this process, the commits are marked
for being logged for warnings. This step of the process is also developed defensively to
avoid duplicate warnings during a failure during processing. Each warning for a certain file
can only be saved once in the system. The check for duplicates is performed using file, line,
column and the warning itself.

After the warnings have been saved to the database, the next step is to compute the
resolved warnings. This step is executed for each commit in the push event. For each
commit, the revision is checked out on the server. Using Git the commit hash history of

22

4.3. Designing the tool

the file is extracted. Git is executed by using a the exec command of PHP. If the command
is executed with success the revision before the current one is returned. The hash of the
commit is used to get the commit entity in the database. Previous warnings of the file are
retrieved from the database using the identified commit entity and file name. The current
warnings and previous warnings are then used to compute the warnings resolved. Each
resolved warning is then saved as a warning action entity in the database. The warning
action entity keeps track of each warning and the commit in which it is resolved. This step
will be explained in more detail in Section 4.4. For now, it is important to remember that
warning action states which warning is resolved in a commit, and how much XP the action
is worth. After resolved warnings have been computed, the Game Engine it is the turn of
the Game Engine to process the warnings.

If a repository or installation event is received, Checkstyle is executed using the same
procedure to analyze the files. The step to compute warnings resolved is skipped during
these events. At first, Checkstyle was run on every file during initialization of the repository.
This turned out to be an exhausting operation. It took nearly thirty minutes on average
to process the repository used during the experiment. This step was optimized by only
executing on Java files. By doing so, the initial scan was cut down to an average of five
minutes.

4.3.3 Game Engine

The responsibility of the Game Engine is to compute the changes relating to game elements
based on warnings resolved. To achieve this, warning actions are used. After the analysis is
complete, each commit during the push event should have warning actions. If there are no
actions present, then no warning is resolved. The achievements (Section 4.6) have a value
and a type. An achievement can be either a badge of just points. Achievements have tasks.

During this process, all warning actions of the commit are taken into consideration. The
steps are as follows:

• Get warning actions of the commit.

• Increase the warnings resolved counter for each task.

• Compute the XP gain for each unprocessed warning action in this commit.

• Update the XP of the user.

• Increase the points tasks on the user based on the XP gained.

• Unlock the applicable achievements.

In the second step for each warning task, the resolved warning counter is incremented
if the warning action is applicable to the task. The warning action is only applicable to
the task if the warning type of warning action and task are a match. For example, a task
demands to resolve Java doc warnings for methods, and there is a warning action found
in the actions of this commit representing a resolved Java doc warning. Then the warning

23

4. DESIGN AND IMPLEMENTATION

resolved counter for this task is increased. If the tasks appear to be completed by this action,
the task is marked as completed for the user. All warning actions are compared against all
the uncompleted warning tasks to find a match and increase counters.

In the third step, the total XP gain from all unprocessed warning actions in the commit
is computed. The total XP gain is then added to the total XP of the user. The same XP is
also used to increase the points for all the point tasks for the user which are not completed
yet.

After these steps, the warning actions are processed and counter for all tasks are updated.
The achievement component will then check which achievement the user deserves. All the
locked achievements of the user are retrieved from the database. For each achievement,
all the tasks are checked for completion. If all tasks are marked as completed and the
achievement is locked, then the achievement is handed out to the user. If the achievement
is worth XP points, the XP is also added to the total XP of the user. After handing out
achievements, notifications are created in order to inform the user. The changes are also
written to the activity log. The activity log is visible on the right side of the screen.

After each XP update of a user, events are triggered to invoke relevant updates. First,
the level of the user is checked. If the new XP of the users applies for a level upgrade, the
user’s level is updated. The total points of the user on the global leaderboard is also updated.
Other users are also able to observe this change. The commit entity and warning actions are
used to display the warnings resolved graph on the dashboard.

4.4 Warnings Resolved in Action

To hand out achievement it is crucial to keep track of warnings resolved. The algorithm for
determining resolved warnings was one of the key decisions in the process of developing
this system. Tools like Checkstyle, are as they are called, static. In order words, the tools
themselves do not keep track of warnings which have been resolved. Checkstyle only scans
the source code and shows the warnings based on the provided configuration. It is also not
Checkstyle’s purpose to keep track of resolved warnings. However, for this system it is
important to keep track of resolved warnings. Resolved warnings are the one thing which
needs to be measured for for the game mechanics to work.

The way resolved warnings are computed has an impact on the user experience of the
system. If the system discards a noticeable amount of the warnings a user has really re-
solved, users may lose faith in the system. On the other end of the spectrum, the gamifica-
tion may become too easy if more warnings are marked as resolved than the user actually
resolved.

To decide how the resolved warnings would be computed, diffs from personal projects
and random Java projects on GitHub were investigated. This resulted in the idea to investi-
gate code changes.

The first option was to track changed lines of code. Canfora et al. [9] proposed an
algorithm for identifying changed source code lines.

The second option was to track code regions. Duala et al. [13] proposed a technique
to track code clones in evolving software. Code clones are generally considered harmful

24

4.4. Warnings Resolved in Action

[13]. Duala et al. also proposed a code clone management system based on Clone Region
Descriptors (CRDs). The CRDs were also improved to track code when moved to other
locations by Higo et al. [18]. This seemed interesting, if the moved code can be tracked
then, the warnings could also be possibly tracked even when moved. The tracking works by
parsing the source code into an abstract syntax tree and approximating the distance between
the blocks identified.

The first option explores the idea of tracking changed lines. If this option were used,
warnings resolved would be computed based on changed lines. For each line that was
changed, the previous version of the file would be checked in which the same line was
present. However, tracking changed lines is not perfect. The second option is a broader
approach to this issue. Instead of looking at lines, code regions are compared. The algorithm
for the second approach was not provided, this was one limiting factor for implementing this
algorithm. The accuracy of the algorithm depends on its implementation.

Both of these options have one important issue. They limit warnings to specific re-
gions. The problem is, at this point, there is no knowing how the users are going to view the
resolved warnings when used in Gamification. Not to forget, the main goal of this exper-
iment is to find out the effect of gamification on the process of resolving ASAT produced
warnings.

Figure 4.2: Warning Set Example for a File

A third option was considered. Instead of identifying changed lines or code regions,
look into warnings on file level. For each file, a number of warnings are produced. This
approach would then take into account all the warnings of the current version of a file and
compare the warnings to all warnings in the previous version of the file. The warnings
would be compared based on their type. The algorithm would perform a count for each

25

4. DESIGN AND IMPLEMENTATION

warning type in both versions of the file. This would result in two sets of warnings types
and a counter. These two sets would then be compared by subtracting the old set from the
new set of warnings resolved. The difference between these two sets would be the result
of resolved warnings. During the processing of a push event, the warning action would be
created by marking a warning from the old set as resolved.

In Figure 4.2 an example for one file is visualized. This example contains a set of
warning for some file of revision A and revision B, with revision B being the newer version.
The colors on this set represent the warning types. In this example one can see that of
warning type blue, no warnings are marked as resolved. This is because, in revision B, more
warnings of type blue exists. One warning of type green is marked as resolved because the
newer revision contains one less green warning. The purple warnings are all marked as
resolved because they are not present in revision B. The green warnings are completely
new, and therefore no further actions are taken against them.

4.5 Warning Classification

To hand out points for the warnings resolved, each warning will need to be assigned a
reward value. Checkstyle version 8.11 has 154 warning types. Each type of warning is
different, some types may be perceived as more difficult or more work to fix than other
warning types. For example, a white space warning is easier to fix than missing Java doc
method documentation or resolving magic numbers.

Classifying 154 types of warnings would not be easy. The General Defect Classification
2 provides a way to classify warnings from several tools under mutually shared categories
[7]. The GitHub repository for the GDC already contained a list of Checkstyle warnings
being classified under the GDC. This list was compiled for version 6.6 of Checkstyle at the
time this repository was accessed. New types of warnings had to be manually classified. The
classification was performed by finding the best fit of each Checkstyle warning within the
GDC based on the description of a GDC category and the warning type. All 154 warnings
were classified within the 18 GDC categories. The GDC divides these categories within
functional and maintainability warnings. This distinction was used when assigning points.

Each warning type was linked with a warning category within the system. Each of
the GDC warning categories was assigned a reward value. In Figure 4.3 the link between
warning type and warning category is visualized by showing part of the database schema.
Functional category warnings were assigned more points than maintainability warnings.
Although the system allows for assigning a reward value for each warning type, rewards
were only assigned to categories. Assigning values to each warning type would have been
redundant in this case.

4.6 Achievements

The achievements are an integral part of the system representing the link between tasks and
users. A simple and abstract depiction can be found in Figure 4.5. The green tasks represent

2https://github.com/Inventitech/gdc

26

https://github.com/Inventitech/gdc

4.6. Achievements

Figure 4.3: Warning Schema

completed tasks, and blue achievements represent unlocked achievements. Achievement
A2 in this example in not unlocked, because not all the tasks for achievement have been
completed. Achievement A3 on the other is unlocked, because all the linked tasks are
completed.

Part of the database schema representing the Achievements are visualized in Figure 4.4
. At the top of the schema, the level, achievement, leaderboard and user activity can be
found. The achievement element is the largest in terms of design and implementation. The
achievement represents a badge achievement or points achievement. Distinctions between
the two types are achieved by the achievement type.

4.6.1 Tasks

Each achievement has a value, rewards points which are awarded when unlocked. Each
achievement has tasks. The tasks are divided into warning tasks and point tasks. Each task
has an evaluation mode and activation mode. The evaluation mode represents when the task
should be evaluated. The idea was to create a distinction between tasks for every commit
and tasks which should be evaluated monthly or weekly. This part is therefore not relevant
anymore, because of the setup of the experiment. The activation mode and completion value

27

4. DESIGN AND IMPLEMENTATION

provide the formula for task completion. The only activation mode used in this experiment
is ¿=, therefore rendering this part irrelevant for the experiment.

All tasks can be coupled to multiple achievements. Point tasks are tasks which activated
when a certain amount of points are earned. Warning tasks represent the number of warnings
of a certain type which should be resolved. The completion value represents the number of
warnings to resolve. The warning type or warning category is used to determine which
warning should be resolved.

Upon registration, links are created between the user and all the tasks and achievements.
These diagrams can be found in the lower part of Figure 4.4. For each task, a value is kept
track of. The value represents the points acquired or warnings resolved for point tasks and
warning task.

4.6.2 Unlocking

The user achievement keeps track of the achievement unlocked by the user. When process-
ing a commit, the warning actions are compared against the tasks. The value for each user is
then incremented and stored if either the warning type of warning category match with the
warning resolved in the warning action. If the value of the task is equal or greater than the
completed value, the task is marked a completed. User achievement is subsequently used to
get all the unlocked achievements. For all these unlocked achievements, the links between
all the tasks for the user is audited. If all the tasks are completed, the achievement is marked
as achieved.

4.7 Git and GitHub

The Git component and GitHub component within Checkpoint are crucial elements. The
GitHub component is not only responsible for handling webhook events from GitHub, but
also in making a secure connection from the server to GitHub.

After an event is received and a new repository needs to be installed, or changes need
to be pulled, the server makes a connection with GitHub. In order to be able to successfully
pull those changes, the GitHub App has to be authorized 3. For this authorization, a JSON
web token is generated on the server. The generated JWT token is used to make a call to the
API of the installed repository. If the call is successful, GitHub’s API will return a token.
This token is then used by Git on the server for operations which require authentication. An
overview of this process can be found in Figure 4.6. A git pull operation required such a
token in order to fetch changes.

A GitHub App was chosen instead of an OAuth App. The decision was made based
on the information provided by GitHub 4. OAuth Apps can only be installed per user on
a repository, while a GitHub App is installed for the user or organization and has access
to all repositories. The OAuth App acts as a user, whereas the GitHub App is installed for

3https://developer.github.com/apps/building-github-apps/authenticating-with-githu
b-apps/

4https://developer.github.com/apps/differences-between-apps/

28

https://developer.github.com/apps/building-github-apps/authenticating-with-github-apps/
https://developer.github.com/apps/building-github-apps/authenticating-with-github-apps/
https://developer.github.com/apps/differences-between-apps/

4.8. Webhook Routing

everyone working on the repository using its own identity. This is a major difference for
Checkpoint. The GitHub App makes teamwork easier because the App is installed as an
independent entity watching over all changes made by each developer. Furthermore, in an
OAuth App, the user has to configure the webhook URL on their own. In the GitHub App,
the webhook URL is configured within the App.

4.8 Webhook Routing

Ideally, an application running on a web server would receive webhook events from GitHub
directly. However, for this experiment, the application was run on a local server. Webhook
events cannot be sent to localhost. In order to redirect the connection, the GitHub App was
rerouted. The overview is depicted in Figure 4.7.

Smee was used for handling the webhook events. Smee is a webhook payload delivery
system 5. A smee channel can be created online or locally after having installed the smee
client. The smee client should be installed on every machine which wished to listen to smee.
The GitHub App, in this case, was configured to send its payloads to the smee channel.
Smee, when running locally on the experimenter’s computer, would then listen to all the
events. The events would then be routed to a local webhook URL.

5https://smee.io/

29

https://smee.io/

4. DESIGN AND IMPLEMENTATION

Figure 4.4: Achievement Schema

30

4.8. Webhook Routing

Figure 4.5: Achievement and Tasks

Figure 4.6: GitHub App Authentication

31

4. DESIGN AND IMPLEMENTATION

Figure 4.7: GitHub App Connection

32

Chapter 5

Experiment

In order to answer the research questions the tool developed as part of this project will be
evaluated. The goal of this experiment is measuring the effectiveness of Checkpoint and
impact of gamification on the software development process. A number of subjects were
selected and tasked to perform a number of programming assignments within Eclipse while
using Checkstyle and Checkpoint. The development environment was set up beforehand,
the participants were asked to focus on the assignment itself. For the experiment type, a
pretest-posttest pre-experimental design [4] was chosen. An interview was conducted at
the end of the experiment. The purpose of the interview was to gather insights from the
participants which would not have been possible with a questionnaire.

In this chapter the design of the experiment will be explained. This will be followed
by the pretest-posttest and interview setup. The chapter will end with the setup of the
experiment and the execution description.

5.1 Design of the Experiment

The experimental design is an important part of an experiment. A good experimental de-
sign will allow the researcher to gather credible results and draw sound conclusions. The
experimental design and proper documentation are also essential for the repeatability of the
study. It is important to distinguish which variables are to be tested and which approach is
best suited to investigate the impact of these variables. In a scientific experiment, two main
variables, the dependent and independent variables are tested. The independent variable is
the variable which is either being altered or controlled in order to measure the effect on the
independent variables [17]. The dependent variable is the one being tested. These variables
may also be seen in terms of cause and effect [17].

5.1.1 Variables

The primary subject of this experiment is Checkpoint, a tool developed as part of this exper-
iment. Checkpoint has be implemented based on the gamification mechanisms as explained
in Chapter 3 with the aim to gamify part of the development process. Checkpoint will be

33

5. EXPERIMENT

the independent variable in this process in order to measure the effect of the application on
the development process.

The effect of Checkpoint is what is being measured. A good starting point in defining
the dependent variables are the research questions which have been defined in Chapter 1.
The first and second research question are related to the background and technical issue
respectively.

The last research question is addressing the effect of the gamification onto the process.
In this research question there are four sub questions. Each of these questions address a
different issue. The first question focuses on the effect of extrinsic motivators while the
third question focuses on the effectiveness of the gamification mechanics. The dependent
variable from these questions map to the ability to motivate. The second question focuses
on the competitiveness. This maps to competition as a dependent variable. The fourth and
fifth questions map to effectiveness and usability as dependent variables.

The following dependent variables can thus be described:

• Motivation - whether the application of extrinsic motivators and competition through
gamification has an effect on the ability of developers to resolve warnings.

• Effectiveness - whether the tool is effective in motivating developers to resolve warn-
ings on a regular basis

• Usability - whether the tool is functional and easy to use for the developers.

5.1.2 Type of experiment

The type of experiment is another important factor. Ideally a controlled experiment would
be performed in which there would be two groups. One group would be working with the
tool, while another would be working without the tool. The results of the two groups would
be compared in order to gather the results. Such an experiment would provide quantitative
data based on which conclusions could be drawn. However, for such an experiment, this
would be difficult. It would be impossible to measure the motivational impact without the
tool’s presence.

Another possibility would be to have the same experimental group work without the tool
and with the tool. Such an experiment would be a longitudinal study, and only in such an
experiment would the effects of the tool be effectively measurable. It would not be practical
to perform either of these types of studies given the time and resources of this project.

After having considered the possibilities, a one-group pretest-posttest pre-experimental
design was chosen [8]. The main difference between this type of experiment and a lon-
gitudinal study are the time factor and environment. This kind of experiment is called
pre-experimental because it does not meet the scientific standards of experimental design
[4]. However, it still allows us to report its findings regardless of the limited sample size
[11]. Even though this type of experiment would not allow for drawing firm conclusions,
it would still allow gathering valuable data for the effect of gamification on resolving auto-
mated static analysis warnings.

34

5.2. Pretest and Posttest

5.2 Pretest and Posttest

A one-group pretest-posttest is a pre-experimental design experiment in which one group of
participants is tested. In a typical experiment, the effect of the independent variable on the
dependent variable is examined by a dichotomy [4]. The researcher will typically compare
the scenario of the experimenter being exposed to the independent variable against the one
that is not exposed to the independent variable. In this type of experiment, the researcher is
able to test the validity of the hypothesis by comparing the two scenarios.

In pretesting and post-testing, instead of having a control group, the same group is
subjected to the independent variable. Pretesting is defined as the measurement of the de-
pendent variables among the subjects, while post-testing is defined as the measurement of
the dependent variable after the subjects have been exposed to the independent variable [4].
The subjects are exposed to a questionnaire before the independent variable is administered.
The results of this questionnaire will function as a baseline. Afterward, the subjects are ex-
posed to the independent variable. At the end of the experiment, the same questionnaire is
given to the subjects. The difference between the results of these two rounds is credited to
the independent variable. However, this type of experiment has the risk when participants
receive the questionnaire for the second time, they may know what is being tested and re-
spond in a way they think is desirable. These risks should be carefully considered when
conducting the experiment.

5.2.1 Prestest Questionnaire

For the pretest, five themes were chosen. Each theme relates to an aspect of the experiment
and the influence on the dependent variables. A quick overview of the themes is provided
in this section. The results can be found in Chapter 6.

• Personal background: information about the participants such as age, education, and
occupation were collected.

• Developer experience: is about collecting information about the years of program-
ming experience and experience with Java in particular. Information about working
in teams was also part of the questionnaire.

• Attitude towards software quality: participants were asked about their coding be-
havior pertaining to writing test, documentation, code review process, and coding
conventions. The purpose of the questions within this theme was to determine the
participant’s attitude towards code quality.

• Attitude towards ASAT produced warnings: participants were asked if they believed
ASATs contributed in upholding the quality of the code they write. Information about
ASAT usage was gathered, such as how many tools are used, how often, and what step
they take when warnings are encountered.

• Expectations of Checkpoint: participants were asked if gamification would contribute
to resolving more warnings. Questions were asked pertaining to code review, team-
work, and the development process.

35

5. EXPERIMENT

5.2.2 Posttest Questionnaire

After the pretest questionnaire, the participant takes part in the programming experiment.
After having completed the experiment, the participant is presented with the posttest ques-
tionnaire. The purpose of this questionnaire is to capture the effectiveness and usability of
Checkpoint. In order to determine this, a set of questions divided into eleven themes are
asked.

• Experiment experience: is about acquiring information about the participant’s experi-
ence of the assignment. The experience may have an influence on the results gathered
for the following themes.

• UI Experience: a series of questions pertaining to the clearness of the tool. In Chapter
3 it was found that aesthetics matter when it comes to gamification. Therefore the
information about the user interface and experience is gathered.

• Process Experience: whether having Checkpoint as an Ad-hoc solution was inconve-
nient. How many times a participant opened the tool was also asked.

• Levels: series of questions about the levels widget. Questions about the difficulty and
interestingness were asked.

• Notifications: participants were asked about the frequency and effectiveness of the
notifications. Notifications can be effective in capturing the user’s attention. How-
ever, too many notifications may also cause a disturbance.

• Activity: questions whether the activity log and crusher chart is useful and detailed
enough.

• Badges: questions about the effectiveness and competitiveness of the badges system.
A question about the naming for badges was also put in to review whether the partic-
ipant’s found the naming scheme creative. The creativeness is part of the fun factor.

• BugsBuddy: questions about the effectiveness of BugsBuddy and its expressions.

• Leaderboard: the leaderboard shows were the current user stands among others.
Questions about the usefulness and effectiveness of the leaderboard were asked.

• Checkpoint: this theme is a repeat of the expectations theme in the pretest ques-
tionnaire. The same questions of the pretest are asked again in order to determine a
difference in attitude towards gamification.

• Experiment rating: a final set of questions about the quality of the experiment, the
documentation, and guidance.

The posttest was followed by an interview and thus no feedback section was added to
the questionnaire. The participants were provided the opportunity of giving feedback during
the interview.

36

5.3. The Interview

5.3 The Interview

In order to obtain the views and perspective of the subject, after the posttest questionnaire,
an interview will be conducted. This interview will be executed in the format of a semi-
structured interview. There are three types of interview: structured, unstructured, and semi-
structured [24]. A structured interview allows no room for deviation. An unstructured inter-
view, on the other hand, is also known as an informal conversational interview. Unstructured
interviews are less useful when one already has a basic understanding of the phenomenon
[37]. If the research goals are well-defined then it is best to use a semi-structured interview
and/or a questionnaire [37]. A semi-structured interview is more suitable than an unstruc-
tured interview during this experiment because it allows us to collect data more efficiently
[37].

The purpose of the semi-structured interview is to gather qualitative data. This type of
interview is used when one wants to gather personal and descriptive data such as emotions,
behavior, and opinions of the experiences of the participants. Such data would be difficult
to gather with a questionnaire only.

In a semi-structured interview, a list of questions is prepared in order to guide the inter-
view. Then questions are based on the goals of the experiment, in other words, they relate to
the research questions. The questions should be asked in such a way that they are not biased
and or not leading the participants. 1 The questions should be specific and address only one
issue. Questions which have multiple hidden questions are not allowed. For example: do
you use program X and Y? One should also avoid making strong opinions in the questions.
Finally, the questions need to be open-ended. By asking such questions the participant is
given room to give descriptive answers.

It is usual to have a few introductory questions in the beginning in order to warm up the
interview and making the participant feel comfortable. There are also other points to keep
in mind when conducting such an interview, such as body language and not interrupting the
participant.

The interview data has to be recorded textually and may also be recorded by audio or
video. During this experiment the interview was recorded textually. Since the interviews
will be relatively short (fifteen minutes), taking notes is faster than recording and tran-
scribing the audio afterwards 2. After the interview has been conducted the data has to be
analyzed. In order to analyze the results of the interview, the card sorting method will be
used.

5.4 Card Sorting

Card sorting is a method to identify patterns within unstructured data [33]. Card sorting
may be used for many types of projects, e.g. generating navigation for a website. For this
project, card sorting will be used to identify patterns within the interview data. The concept
of card sort is to have content ideas on index cards and have them sorted into groups.

1http://designresearchtechniques.com/casestudies/semi-structured-interviews/
2https://www.thoughtco.com/notebooks-vs-recorders-for-interviews-2073871

37

http://designresearchtechniques.com/casestudies/semi-structured-interviews/
https://www.thoughtco.com/notebooks-vs-recorders-for-interviews-2073871

5. EXPERIMENT

There is an open card sort and closed card sort. In an open card sort, the participants are
required to first create groups of overlapping content and then label the groups. In closed
card sort, the groups are predetermined and participants are required to sort the content
cards. Open card sorts are more frequently used because one can learn more from them
[33]. Open card sorts are not required to be completely free either. Based on what you want
to learn, participants may be asked to focus on particular criteria.

Card sort consists of the following main steps: deciding what one wants to learn, select-
ing the open or closed method, choosing the content, selecting the participants, running the
sort, and analyzing the outcome.

For this project, the open card sort will be selected since there is more to be learned
from the data in this way.

5.5 The Case

In order to test the influence of the independent variable, Checkpoint, on the dependent
variables, a project has to be chosen. The project for this case preferably has to be con-
structed in a way that is able to simulate a real-life experience and maximizes the output of
the results.

Finding such a project for the experiment is not an easy task. Therefore, the project has
to meet the following criteria:

• Realistic: the project should be one which one would possibly work on while on the
job.

• Complexity: the project has to be complex enough such that the participants are able
to get familiar and complete the tasks within the time they are provided. If the project
is too easy the experiment will fail to measure the impact of the independent variable.
A project which is too difficult may increase the chance of participants not completing
the tasks. It is, therefore, necessary to have a sufficiently complex project such that
the findings of this experiment can be generalized.

• Interesting: the project should be interesting enough such that participants feel en-
gaged to work on the tasks.

• Tedious: in the background (Chapter 2), one of the factors of ASAT produced warn-
ings being neglected is that the tasks are tedious. The project will therefore have to
contain enough warnings such that tediousness in practice can be simulated.

• Easy to learn: since the time is limited the project should be one that participants are
either familiar with or need very little time to get familiarized with.

• Technicality: the project has be in Java, because Checkstyle works only on Java
source code.

After having set the criteria for the project, there was a choice to be made between
creating a project which satisfies these requirements or searching for a project which already

38

5.6. Participants Selection

satisfies these requirements. Creating a project complex and interesting enough to simulate
a real working project would have been too difficult and unnecessary. In order to search for
a project, GitHub was queried for Java projects and TU Delft projects were also looked at.
JPacman 3 was finally chosen as the project the work with.

JPacman is a Java project used in a first-year course of the Computer Science bachelor
program (Figure: 5.1). The purpose of this course is to teach students the value of testing.
During the course, students are also required to use Checkstyle. Each commit needs to be
free of Checkstyle warnings. The source code of this project is not completed and lacks
key functionality of the game, such as ending the game when winning. However, in this
experiment, the participants are not tasked to implement missing functionality or write tests.
Their task will be to resolve the existing warnings. The source contains a custom Checkstyle
configuration. In order to simulate the tediousness, the custom configuration is removed
and the “sun checks.xml” configuration of Checkstyle is used. This application of this
configuration resulted in the creation of 630 warnings of 15 distinct categories according
to the GDC classification [5]. The top three warnings categories were trailing spaces, final
parameter warnings, java documentation issues. A full list of these issues is available in
Appendix (ref).

5.6 Participants Selection

Finding suitable participants for an experiment is not an easy task. The source code of the
case in this experiment is written in Java and the programming tasks will be performed
within Eclipse. Due to the nature of the setup of this experiment, it is important that the
subjects are at least familiar with Java and have at least two years of programming expe-
rience. Since the programming tasks will be resolving the warnings and not implementing
new functionality, the participants do not need to be experts in Java. In other words, they
are not required to architect and setup a Java project by themselves.

The participants were searched mainly on the TU Delft. A message was posted within
the group of the Software Engineering Research Group (SERG) of Computer Science.
There were also messages posted on the board within the faculty of EEMCS, and Face-
book messaged were also posted within various groups. During the search for a possible
job after graduation, Sogeti offered to help for the experiment participant selection. Sogeti
is an information technology consulting company 4 The company offered five participants.
In total eleven participants were selected, of which five from the company, four members
of SERG, and two students who also had job experience. For the pilot, two students were
selected.

5.7 Experiment Setup

Another important factor for the experiment is the environment in which it is conducted.
To control the variables, a specific environment was set up for each experiment. As stated

3https://github.com/SERG-Delft/jpacman-framework
4https://www.sogeti.nl/over-sogeti

39

https://github.com/SERG-Delft/jpacman-framework
https://www.sogeti.nl/over-sogeti

5. EXPERIMENT

Figure 5.1: JPacman

earlier, the tool works with projects hosted on GitHub for which the GitHub application is
installed and configured. For this experiment, a new GitHub organization was created. On
this organization, the GitHub application for Checkpoint was installed. The application was
configured for all current and future repositories in the organization. This means that ap-
plications created in the future are automatically authorized and imported into Checkpoint.
After the creation of a new repository, the Checkpoint web application would receive the
event and process the request. For each participant, a new repository with a clean set of
code of JPacman with the configuration as described in Section 5.5 was added. By doing
this, each participant had the same starting point. To save time, the creation of each repos-
itory and the initial process by Checkpoint was performed beforehand. The initial process
is a first-time scan on the whole repository during which all files are saved to the database.
During this process, Checkstyle is executed on every Java file. This process can take some
time depending on the size of the project. The same protocol was followed during the pilot
run.

The Eclipse IDE version oxygen March 2018 was installed in which the participants had
to perform their tasks. The project was also already added within the workspace. Partici-

40

5.8. Pilot

pants were only required to open the project. Checkstyle version 8.11 was already installed
within the IDE.

A GitHub desktop application was installed and opened. Participants were required to
use the application for committing and pushing changes. The Checkpoint web application
was available in Firefox Developer edition.

Checkpoint was running on the machine of the observer using a XAMPP server with
PHP version 7.2.3, Apache 2.4, MariaDB server version 10.1.31, and Checkstyle 8.11. To
redirect the webhook events of GitHub to the localhost server on the machine, Smee was
running in the background. The IDE, GitHub desktop application, and Firefox were all
running in a separate desktop view on Windows 10.

The experiments were conducted in quiet spaces. Only the participant and experimenter
were present during each run. During the experiment, each participant’s actions were ob-
served. Internet searches during the experiment were allowed for task-related tips and tricks.
The participants were also nudged by the observer to make sure they followed the tasks.
These nudges were verbal, reminding the participant to keep moving forward. An example
of such a nudge is to remind the participant to commit their change when they had already
resolved a significant amount of warnings.

5.8 Pilot

To minimize the chance of errors in the experiment, a pilot was run. For the pilot, two
people were selected. One was a non-programmer student who studied Computer Science
for one year, while the other was a Computer Science student. A pilot is a good way to
fine-tune an experiment design. The students provided valuable information regarding the
user experience and user interface from different perspectives. During the pilot runs each
gamification widget was assessed. Furthermore, some bugs were discovered during the pilot
and fixed afterward.

• The initial idea was to have each user log in using their GitHub account. During the
experiment, it became clear that this was not such a trivial task. Changing a GitHub
account on the machine and switching it back requires a bit more work than logging in
and out of the GitHub application. One has to clear the old account via the command
line and add the new one. This process had to be repeated before every run and was
time-consuming. Since there was no need for the experimenters to use their own
account, this part of the process was changed. Thus simplifying the start process of
each run.

• Another issue discovered pertained to the empty graph view of the warnings resolved.
After registration, the graph had no commit points and showed nothing. After the first
commit, the first y-coordinate (amount of warnings resolved) would show up right
on the 0-axis. This behavior confused users about the purpose of the graph. This
issue was taken care of by adding empty commits to the graph when the number of
commits was less than the span of the x-axis. Secondly, an explanation to this widget
was added explaining its purpose.

41

5. EXPERIMENT

• The activity log was showing achievements, but not in detail. The testers wanted to
see more details in the activity log. Why a user was being promoted and which warn-
ings were resolved in each activity was missing from the timeline. These points were
fixed by adding a more detailed description of each activity log item. The warnings
resolved activity showed a small summary of warnings fixed. The badge itself was
also put in the activity log.

• Competition was a key element in the gamified platform and being able to see the
progress of others would have been valuable. Thus the badge system was expanded
by showing how many other players unlocked the badge.

After the pilot, the user interface of the program was updated based on the feedback
of the pilot. The process of the experiment was changed by removing unproductive steps
such as adding the user to a repository and logging them in on the machine. However,
not all feedback was dealt with. A point was made about showing the progress of friends
in the graph. The idea was to show the progress of friends alongside the progress of the
user to increase motivation. Considering the nature of the experiment, the only possible
comparison would have been among individual commits between the users. Comparing
individual commits in the graph of warnings resolved is not a fair comparison. Each commit
is different, has a different purpose, is committed at a different time and can therefore not
be compared in a meaningful way. The progress could have been compared over a longer
span, such as a week. This could be achieved by showing the total or the average number
of warnings resolved per week and plotting the progress of friends in the graph. Due to
the nature of the experiment, it was not valuable to show the progress of friends within the
graph.

5.9 Execution of the experiment

The experiments were conducted on seven days in January 2019. Each experiment was
conducted in a room with only the participant and the observer. A small procedure of the
experiment was developed and can be found in Appendix (B). Before each run, a new repos-
itory with the JPacman code was created. All repositories were processed with Checkpoint
beforehand to save time. Each participant was assigned an experiment code. The same code
was used for the repository naming.

At the start of each experiment, the participant was welcomed and an informal introduc-
tion took place. After the introduction, participants were presented with a document provid-
ing the necessary explanation for the experiment. Participants were required to complete the
pretest questionnaire. Twenty minutes were given to each participant for the programming
part of this experiment. The documentation of the tasks can be found in Appendix (A).
Due to the short amount of time, participants were guided through the start process of the
programming tasks. Such as familiarizing participants with the GitHub desktop application
and Eclipse IDE. Each participant was asked if they were comfortable with being observed
during the programming tasks. None objected to being observed. Before the end of the
twenty minutes, participants were reminded to make one last commit.

42

5.9. Execution of the experiment

During one experiment, the last commit of the participant was not processed due to
internet connection failure. This issue was resolved afterward. In this case, the participant
did not mind this problem. All other experiments went well without any notable issues.

After completion participants were required to fill in the posttest questionnaire. The ex-
periment was concluded with a fifteen-minute interview. The total length of the experiment
was one hour. All participants finished their tasks within the time limit.

43

Chapter 6

Results

In this chapter the data of the pretest and posttest are discussed. The discussion about these
results will be performed in Chapter (7).

6.1 Participant Profile (Pretest)

To get an understanding of each participant several questions were asked about themselves,
their experience and attitude towards software quality.

Personal Background The participants were asked about their personal background first.
The participants were recruited at the Technical University of Delft, and at Sogeti. All the
participants were above the age of twenty. Eight participants were below thirty, while three
were above thirty years of age (Fig. 6.1). All the participants had at least a Bachelor level
degree or in pursuit of one (Fig. 6.2). Only one participant did not have a Bachelor degree,
but was still studying and already had work experience. Since half of the participants were
from the SERG, it is not a surprise that there were two post-doc researchers, one Ph.D.
student, and an assistant professor (Fig. 6.3). All the participants from the company were
working as back-end developers.

Developer Experience Seven out of eleven participants had between two and five years
of development experience. Four participants had more than five years of development
experience (Fig. 6.4). The participants found themselves averagely experienced (3.0) with
Java (Fig. 6.6). Only one participant said not to be experienced with Java while still having
three years of development experience. The participants of TU Delft, on average, found
themselves more experienced in Java than participants from Sogeti. This result is not such
a surprise. According to the participants, the use of Java is quite common at the TU Delft.
The results pertaining to years of development experience and average experience with Java
meets the requirements for the participants shown in Chapter 5. The participants’ experience
of working in teams resulted in an average score of 3.5 (Fig. 6.7). Only two developers were
not familiar with Eclipse as an IDE (Fig. 6.5). Nine developers were familiar with Eclipse.
Taking into account the years of development experience the developers had, this was not

45

6. RESULTS

Figure 6.1: Age Distribution Figure 6.2: Education Levels

Figure 6.3: Occupation

46

6.1. Participant Profile (Pretest)

Figure 6.4: Programming Experience in Years Figure 6.5: Familiarity with Eclipse

Figure 6.6: Experience with Java Figure 6.7: Experience working in Teams

an issue. The two participants who did not user Eclipse only required extra guidance in
finding shortcuts within the IDE.

Attitude towards Software Quality The following questions were asked about the par-
ticipants’ attitude towards code quality and resulted in average scores of:

• Functional code is more important than clean code (2.6)

• When programming, I write documentation for all code (2.8)

• When programming, I write tests for all code (2.8)

• I find the code review process useful (4.2)

• I obey to the coding conventions when programming (4.4)

The results are also available in Figure 6.8. On average the participants did find the code
review process to be useful, and they also obey to coding conventions. When asked whether
they think that functional code is more important than clean code, 45% of the participants
responded with neutral and 36% responded with less than the neutral position. This shows
that on average, the participants do not think that functional code is more important than

47

6. RESULTS

Figure 6.8: Attitude towards Code Quality

clean code. The results also show that participants do not write tests or documentation for
the code at all times.

Seven out of eleven participants answered yes when asked if there is a code review
process in place in the projects they are working on. Six out of eleven participants said that
there are no coding conventions in place for the projects they work on.

Automated static analysis tools In this section the following questions were asked about
the participants’ attitude towards code quality.

• Automated Static Analysis tools (ASATs) contribute in upholding the quality of the
code I write (3.5)

• Warnings generated by ASATs are completely useless (2.1)

• How many Static Analysis tools do you use at one given time?

• I use Automated Static Analysis tools to inspect my code (during)

• When an ASAT generates warnings I tend to (do the following)

When asked whether ASATs contribute to upholding the quality of writing source code,
the average score was 3.5. This result shows that on average the participants do agree that

48

6.1. Participant Profile (Pretest)

Figure 6.9: There is a code review process in the development process of the projects I work
on

Figure 6.10: There are coding conventions in place for the projects I work on

49

6. RESULTS

Figure 6.11: Automated Static Analysis tools (ASATs) contribute in upholding the quality
of the code I write

Figure 6.12: Warnings generated by ASATs are completely useless

ASATs play a role in the quality of the source code (Fig. 6.11). One participant totally
disagreed with the question.

None of the participants agreed when asked whether warnings generated by ASATs are
completely useless (Fig. 6.12). The scores resulted in an average score of 2.1.

45.5% of the participants disclosed to not use automated static analysis tools. 54.6% of
participants stated to use one or more ASATs at a given time (Fig. 6.13).

In Figure 6.14 the results show that 27.3% of the participants never use ASATs. 72.8%
of developers disclosed using ASATs during development. Half of the developers using
ASATs disclosed only using ASATs just before committing the source code.

Figure 6.15 show what the participants tend to do when an automated static analysis
tool shows warnings. The majority of participants, 50% tend to resolve warnings pertaining
to their code only. Another 33% tends to only resolve warnings they consider important.
One participant disclosed to resolve all warnings provided by ASATs.

50

6.1. Participant Profile (Pretest)

Figure 6.13: How many Static Analysis tools do you use at one given time?

Figure 6.14: I use Automated Static Analysis tools to inspect my code during?

51

6. RESULTS

Figure 6.15: When an ASAT generates warnings I tend to?

Figure 6.16: UI Experience

6.2 Checkpoint (Posttest)

In this section, the results of the posttest will be presented. For each mechanism in Check-
point, there is a section in the posttest addressing the usefulness and creativity factor of the
widget.

Figure 6.16 show the results for the user interface and user experience. Figure 6.17 and
6.18 show the results for Checkpoint with respect to the developer experience.

52

6.2. Checkpoint (Posttest)

Figure 6.17: Process Experience

Figure 6.18: Triggered to open Checkpoint

53

6. RESULTS

Figure 6.19: Levels

Levels The following questions were asked about the levels mechanism:

• The level progress bar motivated me to keep going for the next level (Motivation)

• The level naming was interesting (Fun)

• I knew why I was promoted to the next level (Feedback)

• How easy or difficult did you find to progress to the next level (Challenge)

Notifications The following questions where asked with regard to the notifications:

• The push notifications from Checkpoint were a disturbance to my workflow (Process)

• The push notifications from Checkpoint awakened my curiosity (Motivation)

• The feedback from Checkpoint through notifications was frequent enough for me
(Feedback)

Activities Log The following questions were asked about the activities log mechanism:

• The Activity log is a useful widget, it provides me information about my progress
(Feedback)

• The activity log was detailed enough (Feedback)

• The Crusher Statistics (warnings resolved chart) is a useful widget as it provided me
information about my progress (Feedback)

54

6.2. Checkpoint (Posttest)

Figure 6.20: Notifications

Figure 6.21: Activities Log

• If I could see how many warnings in a day other users resolved, my motivation to
resolve more would increase (Competition)

Badges The following questions were asked to measure the usefulness of badges:

• Badge Achievements motivated me to resolve more warnings in order to unlock them
(Motivation)

55

6. RESULTS

Figure 6.22: Badges

• The tasks to unlock a badge could have been more interesting (Fun)

• The badge naming was creative (Fun)

• The task progress of badges were clear (Feedback)

• How easy or difficult did you find the tasks to unlock badges (Challenge)

• Seeing how many users unlocked a badge motivated me to earn that badge (Competi-
tion)

Leaderboard The following question were asked about the leaderboard:

• I found it useful to see were other players rank in the game (Competition)

• The leaderboard motivated me to gain XP (Motivation)

• If I had a leaderboard with my friends, it would motivate me more than having just a
global leaderboard (Competition)

BugsBuddy During the experiment, none of the participants had noticed BugsBuddy. No
participant’s action resulted in BugsBuddy being sad. Due to these reasons, the questions
for BugsBuddy were scrapped from the results except for one question. The question “I
found the idea of having a virtual buddy creative” will still be addressed in the results
and discussion. This question addresses the need for and creativeness of the mechanism.
The score for this question resulted in an average of 3.5 and a mean score of 4.0. Two
participants disagreed with having BugsBuddy.

56

6.3. Expectations on Gamification

Figure 6.23: Leaderboard

Figure 6.24: Expectations (average)

6.3 Expectations on Gamification

In figures 6.24 and 6.25 the results for the expectations of gamification and the results after
having worked with Checkpoint can be found. The results show no drastic changes between
the expectation and perceived value. The results are, on average, in favor of gamification.
The results show that after being exposed to Checkpoint, the participants changed their
opinion about gamification having an effect on their motivation (mean of 3 becoming 4 in
the posttest).

57

6. RESULTS

Figure 6.25: Expectations (median)

6.4 Experiment Experience and Rating

In the first section of the posttest questionnaire, the participants were provided the oppor-
tunity to provide feedback about the experiment’s experience (Fig. 6.26). The experience
addresses: difficulty, time pressure, interest, and guidance. The results show that the time
pressure and difficulty of the assignment were low. The participants found the assignment
to be interesting resulting in an average score of 4.2. The guidance for the assignment was
more than enough resulting in a score of 4.7.

In figure 6.27 the scores for the overall rating for the experiment can be found. The
results show a high rating for all questions. The quality of the project was also rated high
with an average score of 4.2.

58

6.4. Experiment Experience and Rating

Figure 6.26: Experiment Experience

Figure 6.27: Experiment Rating

59

Chapter 7

Discussion

The purpose of the questions asked was to test the dependent variables in the experiment.
The variables are motivation, effectiveness and usabiltiy as stated in Chapter 5.

7.1 Motivation

Motivation is a key element in a gamified environment. To investigate whether the tool is
adequate to motivate developers the following questions were asked:

• 12. The level progress bar motivated me to keep going for the next level (3.5)

• 17. The push notifications from Checkpoint awakened my curiosity (3.6)

• 23. Badge Achievements motivated me to resolve more warnings in order to unlock
them (3.7)

• 28. Seeing how many users unlocked a badge motivated me to earn that badge (3.5)

• 34. The leaderboard motivated me to gain XP (3.6)

• 36. Checkpoint motivates me to resolve more warnings than I usually do (3.5)

• 37. The competition with colleagues will motivate me to resolve more warnings
produced by ASATs (3.6)

• Interview Q4. Do you think Checkpoint would motivate developers in resolving
ASAT warnings

The purpose of each game mechanism in Checkpoint is to motivate the developer. For
each mechanism, a question relating to motivation was asked.

With an average score of 3.5 as presented in Figure 6.19, the results show that the level
widget is interesting enough to nudge developers. One participant scored the question with
a one, expressing that the level bar does not play a role in motivation at all. The purpose of
the notifications was to nudge developers into opening the dashboard and reviewing their

61

7. DISCUSSION

latest achievements. The score for notification’s curiosity suggests that the notifications do
grab the developers attention. The scores for badges and leaderboard also suggest playing
a positive motivational role.

When asked whether Checkpoint would motivate developers in resolving ASAT warn-
ings, the participants gave an average score of 3.5. The score in the pretest averaged 2.6.
This result shows that the participants’ opinion did change in favor of gamification after be-
ing exposed to Checkpoint. One participant did give a score of one. This participant stated
in the interview that there should be a balance between gamification and seriousness. The
participant stated that at the moment the application is too playful being centered too much
around gamification. The seriousness of the application could be increased by showing
metrics with respect to business goals.

As far as competition is concerned, the average score is 3.6. Many participants find
common-ground that competition will motivate them to resolve more warnings. One partic-
ipant even stated that “It is Human nature to compete, whether we like to admit it or not”.
However, many participants also stated in the interview that developers should be careful of
competitions. The competition among developers in a team may cause developers to lose
focus. Some participants feared that developers may resolve warnings only for the sake of
gaining points.

7.2 Effectiveness

The effectiveness of the tool lies in its ability to stimulate its users to achieve the intended
goals. As stated before, the purpose of Checkpoint is to motivate developers into resolving
ASAT produced warnings. In a short experiment, it is difficult to measure the effectiveness
of the program. To still get an impression of the effectiveness of Checkpoint, questions,
whether Checkpoint would support warning reduction by colleagues, were asked.

• 40. Checkpoint would ensure that I get fewer warnings from my colleagues (3.7)

• 41. I expect Checkpoint to motivate my colleagues to commit code free from ASAT
warnings (3.6)

• 42. I expect ASAT warnings to be taken into account during the code review process
when Checkpoint is used (3.6)

• 38. Checkpoint would be a valuable tool for my development process (3.8)

When asked if Checkpoint would ensure that developers get fewer warnings from col-
leagues the score resulted in 3.7. In the pretest, the score resulted in 3.1. The result from
the questionnaire shows that the expectations of the participants changed in favor of Check-
point. The second question asked whether colleagues would be motivated to commit code
free from warnings, the score rose from 3.3. to 3.6. These results can be found in Chapter 6.
The results of these questions show that the participants expect their peers to be motivated
to resolve warnings due to Checkpoint.

62

7.3. Usability

The impressions of the participants using Checkpoint during the code review process
did tumble from 4 to 3.6 (Fig. 6.24). The result shows that the participants’ expectation
of Checkpoint playing a part during the code review process was not as the participants
expected.

Overall the impression of Checkpoint was quite good. When asked if Checkpoint would
be valuable for the development process, the scores rose from 3.6 to 3.8. During an inter-
view, a participant stated to find Checkpoint useful, especially for projects which have been
around for a while. During the interview, participants were asked if they see themselves
using Checkpoint. Eight out of eleven said that they would use the tool. One participant
stated only to use the tool if team members used it. The other three participants did not
agree to use the tool on their own project. These three participants were not keen on using
gamification and competition to support business goals. Two of those participants stated not
to like competition. One participant stated to not care about competition and not being a fan
of gamification. The concern here was that developers may be looked down upon when they
have resolved fewer warnings. Even participants who said to like the idea of gamification
warned against having competition. One participant worried about the results being used as
a metric of developer performance.

The majority of participants liked the idea of having gamification and competition. One
participant stated that Checkpoint would only be useful in the long run if there was an
incentive from the company they work in. Having period rankings in the leaderboard would
also be effective. For example, having a weekly ranking.

The results show that one should be aware of unfavorable competition and possible
abuse of the system. Overall, participants do think that Checkpoint can be effective in
reducing ASAT produces warnings.

7.3 Usability

The last variable tested, usability, addresses the ease of use and functionality of the tool.
The participants were asked questions about the User Interface, and the process experience.

In Chapter 3 it was shown that the whole experience of the tool including the user
interface play an important part in gamification. Therefore, the first question was to ask the
participants whether they liked the interface of Checkpoint. The average score was 4.2. The
result show that the participants liked the interface. Using Checkpoint was also easy (4.5).
Joining a project was also well experienced, resulting in a score of 4.3.

When asked whether the participants needed help in understanding the widgets, the
score was an average of 3.0. Five participants even gave a score 2.0. These scores show that
participants needed more help than expected in understanding the purpose of the widgets.

Having Checkpoint as separate program was not much of an issue. Ad-hoc gamified
solutions may have a lesser impact as discussed in Chapter 2. Therefore, it was of signifi-
cant value to test whether Checkpoint would be less effective as a separate program. Two
participants gave a score of 2.0 and another two a score of 4.0. Although the result show
that an ad-hoc tool is not completely inconvenient, the tool in not completely exonerated.

63

7. DISCUSSION

These numbers show that four participants did experience some inconvenience in having the
tool as ad-hoc. A further investigation would be needed to resolve such an issue in practise.

Eight participants stated to open the tool after every commit. This result shows that par-
ticipants were interested and anticipated the feedback they would receive from Checkpoint
after they committed code.

When asked if Checkpoint was limited by the fact it only work with GitHub, most
participants disagreed (2.6). This result shows that participants do not mind that the tool
work with repositories hosted in GitHub only.

7.4 Mechanism

To measure the effectiveness of each widget, questions concerning each has been asked in
the questionnaire.

Notifications The Notifications are part of the feedback loop that keeps nudging the user.
As long as the application is running, whenever points are gained or achievements are un-
locked, notifications are pushed. The notifications are part of a loop that is supposed to
motivate the user by providing a nudge and feedback. Notifications also have an impact
on the usability of an application. Users may perceive notifications as annoying if they are
pushed too frequenty.

When asked whether the push notifications were a disturbance, the average score was a
2.8. Four of the eleven participants gave a score of 4.0. The results show that the frequency
of the notifications should have been a little lower. A few participant’s attention was grabbed
when after their first commit, they had three or more notifications at once. Possible solutions
here could have been to group notifications.

One a positive note, the notifications did awake curiosity (3.6) and the feedback from
the notifications was enough (4.2). These two results show that although the frequency was
on the edge, the notifications did fulfill their tasks of nudging the user.

Levels The levels widget is used to provide the user with the sense of a reputation. As
XP points are gained, a user is promoted to a higher level. The name of the level is also
shown in the leaderboard. The Levels in this application also embody a fun factor by using
a creative naming scheme.

The levels were appreciated in general. When asked if levels motivated the participant
to progress to the next level, the score was averaged 3.5. The same score is also given to
the creativeness of the level naming. The results show that the levels were motivational,
creative and the users knew why they were getting promoted to the next level. Only one
participant indicated not to be motivated by the levels.

Badges Badges were another interesting widget of the application. The badges were given
creative names in an attempt to incorporate a fun factor. According to the results, the partic-
ipants agreed that the naming for badges was indeed creative (4.1). During the experiment,
some participants even laughed after reading some of the badge names. The badges also

64

7.5. Ignoring ASAT Warnigns

motivated the participants to complete certain tasks and gain points (3.7). By showing how
many other developers had achieved a badge, an element of competition was added. Results
showed that this had an impact on the motivation of participants. The score for this ques-
tion was an average of 3.5. The participants also found the progress of the tasks to be clear
enough.

The tasks were also interesting enough. When asked if the task naming could have been
more interesting, the users disagreed with an average score of 2.7. The participants found it
to be relatively easy to unlock badges. For this short experiment, this result is not an issue.
However, if this application were to be put in production and used for a longer time, this
may cause an issue. Easy badges may become boring. The effects of this could only be
tested in a long-running experiment.

Leaderboard The leaderboard was an interesting widget in the sense that it is the most
competitive one. The leaderboard shows of where a participant stands among others. The
participants agreed to find it useful to see where other players rank and also stated to be
motivated by it. Due to the nature of this experiment a global leaderboard was shown. The
participants were asked if they would have been more motivated if instead they were shown
a leaderboard with friends. The participants completely agreed that this would be more
effective. Even though many participants noted to like the leaderboard and the competition,
they were also concerned. One participant stated that instead of resolving relevant warnings,
one might start resolving warnings for the sake of points or beating a teammate on the board.

Activity Log The activities of the user are shown in two sections. The activity log on
the right of the screen shows the activities of the user. A chart on top of the screen shows
how many warnings per commit are resolved. These widgets’ main purpose is to provide
feedback. The activity log was best received out of all widgets. This can be concluded
based on the results of the scores. The usefulness of the widget scored quite high (4.0). The
participants also rated the activity log to be detailed enough. One participant did not like the
activity log. The participant found the log to be too centered around gamification instead of
the commit itself. Even though this was the purpose of the tool, there is also a point here.
The gamification tool needs to balance playfulness and seriousness.

The chart showing how many warnings were resolved was also well appreciated. The
participants rated its usefulness with an average of 3.9. Participants also stated that the chart
could be more motivational if the warnings resolved of other users were also shown in the
chart. As stated earlier, this is something which could not have been implemented in this
experiment. The results do show that users wish to see more competition.

7.5 Ignoring ASAT Warnigns

RQ1: Why do developers ignore warnings produced by ASATs? In Chapter 2 the back-
ground literature is presented. The background literature explored the current state of ASAT
produced warnings.

The literature study found the following:

65

7. DISCUSSION

• Overload of warnings.

• Relevancy of warnings.

• Some less important types of warnings are ignored.

• High amount of false positives.

• Lack of explanation.

• Lack of quick fixes.

• Old bugs not being fixed.

These are some of the reasons which studies have found contributing to the lack of
developers resolving warnings. The overload and importance of warnings lead to developers
ignoring all warnings altogether. The longer a bug stays in the system, the more trusted the
bug becomes. Trusted code is rarely updated because it is believed to be stable. This results
in old warnings which forever stay in the code base. The lack of explanation and quick fixes
for some warnings may also be the cause of the developer ignoring the warning. This is not
at all surprising if the developer does not understand the warning, it becomes difficult to fix
it.

7.6 Existing Gamification Models

RQ2: What existing gamification models for improving software engineering processes ex-
ist? In Chapter 3 various gamification mechanisms and techniques which have been inves-
tigated are presented. The subject explored in the Chapter is significant, but its application
within software engineering is still a challenge. Designing and implementing an application
for gamification during code development is a serious task. One must make sure that the
seriousness and playfulness are balanced. Therefore, it is significant to have a guideline for
applying gamification within SE.

During the research, the GOAL methodology was identified. The GOAL(Gamification
focused On Application Lifecycle Management) methodology works by identifying the ob-
jective of the gamification, performing a player analysis, and defining a gamification scope.
Based on these criteria the game is designed. This methodology was proven to work and
the only extensively detailed methodology on this topic.

7.7 Gamification within Software Development

In this section, RQ3 is explored. RQ3: Are developers willing to use gamification within
their software development process in order to resolve ASAT produced warnings? This
question addresses the issue of developer behavior. Are developers ready to alter their daily
development routine to include Checkpoint? Do developers see themselves using a tool
like Checkpoint? What are the thoughts of developers using gamification in general within
software development?

66

7.8. Extrinsic Motivators

During the interview developers were asked the following: “Do you see yourself using
a tool like Checkpoint when working on your projects?”. Three participants stated not
to use Checkpoint on the projects they are working on. The remaining eight participants
said “yes” to using Checkpoint. Two of those participants had an additional statement to
their “yes”. One participant said that the use of the tool depended on company policy.
The policy was needed in order to ensure that team members would actually use the tool.
Another participant stated only to use the tool if others are participating. This result is not a
surprise, the tool is built around various gamification elements including competition. The
gamification effect is stronger if a connection between players is formed. One could state
that working in the same team is a significant connection.

Three participants also stated “I can see my friends using this”. This statement shows
how powerful the meaning of connection is within gamification.

The following question was also asked: “7. What are your thoughts about gamification
within software development? ” This questions had a low priority during the interview
and was asked to five participants. The purpose of this question was to gain insight from
the participants about gamification in general. Of those five participants, two answered
“yes” to the previous question. These two participants stated that this is a good and fun
idea. The three participants who had answered “no” to the previous question, stated to
have concerns. One common statement was that they saw risk, even though they recognized
something positive in gamification. The risk that developers might get caught up in the game
of gaining points. These participants evaluated that the risks are greater than the benefits.
This experiment is not suited to conclude whether or not the risk outweighs the benefits.

The answers to these questions show that developers do think that gamification within
software development is fun and they are willing to use it. They do, however, see some
risks. These risks should be taken into account and monitored when the tool is applied in
practice.

7.8 Extrinsic Motivators

In this section RQ4.1: Do extrinsic motivators encourage developers to resolve ASAT pro-
duced warnings? is investigated. During the posttest questionnaire the participants were
asked to answer a set of questions about each game mechanism. Questions were asked
about the levels, activity (log and crusher statistics), badges, and leaderboard. Each of these
components addressed a combination of the following elements: fun, feedback, challenge,
competition, and motivation. The results on these can be found in Chapter 6.

The purpose of this experiment is to test whether developers can be motivated into
resolving ASAT produced warnings. Gamification is a way of motivating the developers
through various mechanics. Therefore it is important to investigate the extrinsic motivators
and their effect on the developers. Each mechanic has been strategically designed and
implemented into the dashboard. When a user visits Checkpoint, the first thing visible
is the crusher statistics showing how many warnings are resolved. On the side, the latest
activities are also visible. The questions addressing the motivators and their scores are
found in Section 7.1. The results show that the participants agree that Checkpoint would

67

7. DISCUSSION

motivate them to resolve warnings. The increase in score after the pretest confirms this.
Before being exposed to gamification through Checkpoint, the participants were on average
less optimistic about gamification.

The fact that participants were not optimistic about gamification is not at all a surprise.
As seen in the background study in Chapter 2, gamification within Software engineering is
relatively new. During the interview developers were asked whether they think Checkpoint
would motivate developers to resolve ASAT warnings. Eight participants said that it would
certainly help. The answers of the participants in combination with their reactions to the
feedback from Checkpoint during the experiment shows that the majority of the participants
were affected by the extrinsic motivators. Many participants’ attention was grabbed by the
graph on top and the badges. The graph was specifically interesting because it showed them
how many warnings they had just resolved.

A few participants also mentioned that developers would end up fixing things that
should not be be fixed. These participants were concerned that developers may just re-
solve warnings for the sake of points and competition. This is a legitimate risk of using
gamification which participants have repeated many times. Ironically, in such a situation,
the extrinsic motivators might be more effective than desired.

One participants mentioned that the feedback from Checkpoint is a confidence booster
because on can visualize their progress. The scores and responses from the participants do
indicate that extrinsic motivators have an impact for resolving ASAT warnings.

7.9 Competition

This section investigates RQ4.2: Does competition through gamification encourage devel-
opers to resolve ASAT produced warnings? Competition can be classified as an extrinsic
motivator. The elements which incorporated competition where badges and leaderboard.

Results from the posttest in Chapter 6 show that the participants liked competition.
One notable observation during the experiments was that some participants objected against
competition at the start of the experiment. However, as the experiment progressed they were
triggered by the competitive elements. During this process, the leaderboard was most ef-
fective. The leaderboard showed the participants were they stand among other participants.
Some of the participants were acquainted and recognized some users on the board. At the
end of the experiment, some participants tried to beat the score of at least one other partici-
pant on the board. A quote by one of the participants serves this observation quite well: “It
is Human nature to compete, whether we like to admit it or not”.

Participants were asked about their thoughts on competition through gamification for
resolving warnings during the interview. A few participants responded by saying that the
competition is a fun thing to have in a team. One participant also mentioned being more
focused on their personal progress instead of the progress of others. Another stated that it
is fun in bragging rights, but may lose its effect in the future.

The results show that based on the scores, the competition was quite interesting. During
the interview most participants were happy with the competition elements, however, some
did not like the idea. The criticism here was that competition may end up being bad com-

68

7.10. Most Effective Mechanism

petition or that it may stop being effective. It is safe to say that based on the responses and
scores, on average competition did motivate the developers.

7.10 Most Effective Mechanism

RQ4.3: Which gamification mechanic is most effective in encouraging developers to re-
solve ASAT produced warnings? The previous questions explored the effectiveness of the
motivators. Based on the results, the motivators have an effect on the participants. How-
ever, each mechanism has a different effect on a user. The idea behind this question was to
explore the effectiveness behind the mechanisms.

Looking at the scores from the posttest, the leaderboard is the number one motivating
element in this game. After the leaderboard, the activity mechanism is most effective. The
activity log mechanism consists of the log and the graph. Considering that many participants
have warned about competition pertaining to serious work, they subconsciously like the
competition.

The fact that the activity log mechanism is the second best effective mechanism is a
possible explanation that the participants were indeed motivated by feedback. The activity
log and stats provided the participants with feedback after each commit. The log showed
how many warnings they resolved, what type of warnings they had resolved, and many more
game details. Based on the results one could safely say that competition and feedback are
two of the most effective mechanisms for motivating developers.

7.11 Effectiveness of Checkpoint

RQ4.4: Is checkpoint effective in motivating developers to resolve ASAT produced warn-
ings? The effectiveness of this tool lies in its ability to stimulate the users such that its
goals are achieved. In Section 7.2 a list of questions are asked regarding the effectiveness
of Checkpoint. As explained in the section, the questions are asked to measure the possi-
ble effectiveness because measuring the actual effectiveness during this experiment is not
feasible.

Participants were asked whether they deemed Checkpoint useful during the code review
process. The rationale behind this question is that during code review ASAT warnings
might be present. If Checkpoint were in place, the teammates would see the warnings and
be triggered to resolve these warnings. Some developers might even be more motivated to
commit code which is free from ASAT warnings because they know that they will receive
positive feedback after doing so.

On average the participants were positive about the effectiveness of Checkpoint. How-
ever, based on the interview data, participants are concerned with the effectiveness wearing
out over time. One method of keeping the effectiveness up is having periodic leaderboards
or maybe incentives from within the company where the tool is applied.

69

7. DISCUSSION

7.12 Usability of Checkpoint

RQ4.5: Is Checkpoint sufficiently usable for developers? The usability of the tool lies in
its ability to be operated by an intended user with minimal assistance. During the interview,
many participants stated to find Checkpoint intuitive and easy to use. The tool was also
called mature and nicely designed.

The results from the posttest in Chapter 6 show that participants needed some help in
understanding the purpose of the widgets. This was also observable during the experiments.
Many participants were trying really hard to get familiar with the dashboard after registra-
tion. The crusher statistics did show a text with an explanation, but that was not effective
enough. Many participants did not even read the text. This is an issue which could be
fixed with a relatively simple solution in the future, on-boarding. Onboarding is the pro-
cess used by many applications featuring many functions. During this process, the user is
guided to significant elements of an application. Each element is then provided with a short
explanatory text.

During the experiment, participants were guided by the observer when things got un-
clear. As participants started committing code and the dashboard responded with feedback,
participants started to get an improved understanding of each widget. The problem was
actually an empty dashboard with no on-boarding process.

Overall the tool was easy to use, and the GitHub integration worked seamlessly. The
participants did not mind the processing time for each commit either. This was also not
a problem because many participants kept going back to their IDE after having made a
commit. They only checked the dashboard after a few commits or in some cases at the end
of the experiment. This shows that even though notifications were at times quite annoying,
the participants were so focused that they were not always nudged by them.

7.13 Threats to Validity

In this section, the limitations of the experiment and its results are discussed. Perry et al.
[28] identified three types of threats to validity: construct validity, internal validity, and
external validity.

Construct Validity Construct validity measures how well the test measures the construct.
The construct here is the hypothesis being tested. In this experiment, the effect of gamifica-
tion on resolving ASAT warnings is tested. The independent variables as defined in Chapter
5 are motivation, effectiveness, and usability. The experiment has been set up in such a way
to simulate a possible real development environment. In this environment, the participant is
using Eclipse, GitHub, Checkstyle, and other tools required for the development tasks. The
experiment was a pretest-posttest pre-experimental test. In this test, the participants were
provided with a pretest questionnaire containing questions about their expectations about
gamification. In the posttest, the questions about expectations are repeated as per the design
of the test. Participants might be able to guess the desired outcome of the result based on
the pretest questionnaire and answer less truthfully.

70

7.13. Threats to Validity

Another threat is leading questions during the interview. To avoid this, the questions
were carefully set up in order to avoid leading.

Internal Validity The internal validity measures how well the experiment was performed.
The internal validity is threatened by confounding variables [32] . The degree of control
over confounding variables determines the internal validity.

In this experiment, the development environment itself was fully controlled. The setup
consisted of tools a developer would normally use during a regular workday. In order to be
able to measure the true effectiveness of gamification, the application needs to be put to test
for a longer period of time within a real team of developers working on the same project.
Such a project would also create other threats and variables which would be beyond the
control of a researcher.

A significant part of measuring the effectiveness of gamification is time. The main threat
to its effectiveness is the probability that its effect will reduce over time and developers
may not be motivated. This effect can only be tested in a longitudinal study. The impact of
gamification on the code review process could also only be measured in such an experiment.

The regression towards mean is also a known threat. Extreme scores may result in
skewed results. In order to combat this, for each result set the mean and median was com-
puted. These values were compared to see if the difference between the mean and median
was significant. None of the result sets resulted in such a difference.

There was one unexpected change during the experiments. A game widget called Bugs-
Buddy was implemented and questions were put into the posttest pertaining to this widget.
However, none of the participants had the time to even notice the widget. This resulted in
participants not being able to answer questions in the section about this widget. Participants
were instructed to just mark something and ignore the section. The results were removed
from the experiment to avoid bias. No further analysis was performed on BugsBuddy.

External Validity The external validity is aimed to investigate whether or not the research
is applicable to the “outside world”. The study can be generalized outside the research
environment based on the population validity and development environment validity.

The development environment was replicated as close as possible to a real-world sce-
nario. However, both the population and the environment are not diverse enough to be
generalized. This result should not be surprising. In Chapter 5 it was stated that this exper-
iment is a pre-experimental test. In such a test no hard facts can be concluded. The results
of such an experiment are a reason for further study. Furthermore, this study may function
as a base study for other review studies.

71

Chapter 8

Conclusions and Future Work

This chapter will draw conclusions based on the results and discussion. Afterward, an
overview of the contributions of this project is given. Finally, some ideas for future work
will be discussed.

8.1 Conclusions

In Chapter 1 four main research questions were formulated. Based on those questions a
literature study was performed. The findings of that study resulted in the implementation of
Checkpoint.

• RQ1: Why do developers ignore warnings produced by ASATs?

• RQ2: What existing gamification models for improving software engineering pro-
cesses exist?

• RQ3: Are developers willing to use gamification within their software development
process in order to resolve ASAT produced warnings?

• RQ4: Does gamification encourage developers to resolve ASAT produced warnings?

Why developers ignore warnings produces by ASATs The literature study found var-
ious reasons why developers would ignore warnings. An overload of warnings and the
relevancy of warnings are pitfalls for ignoring warnings. A high number of false positives
also contribute to this. Furthermore, when developers do not understand what a warning
means, they are not able to fix it. As a result, these warnings stay in the system. The study
also found that old bugs have a lower chance of being fixed. The combination of these
issues creates a pool of pitfalls which lead to a bunch of unresolved warnings.

Existing gamification models for improving SE The application of gamification to soft-
ware engineering processes is a relatively new field. The application of gamification to
static analysis tools was only tested in one other paper found. The correct application of

73

8. CONCLUSIONS AND FUTURE WORK

gamification to a SE process is significant for its success. The GOAL (Gamification focused
On Application Lifecycle Management) methodology was found during this process. The
purpose of this methodology is to provide a systematic approach to designing the gamifica-
tion system. The approach starts off by first determining the objectives of gamification and
player analysis. Based on this analysis the scope and game economy is created. The GOAL
methodology creates a foundation for the implementation of the actual tool.

Willingness to use gamification within SE The results and discussion show that on av-
erage the developers are excited about gamification. Many developers stated to be willing
to use gamification within software engineering. At the same time, developers were also
concerned about the effects of gamification. The concern was that developers would re-
solve warnings just for the sake of gaining points. The majority of the developers identified
gamification as a fun and useful additions to their daily development process.

Does gamification encourage developers to resolve ASAT produced warnings? To an-
swer these questions, five sub-questions were asked. The results showed that the extrin-
sic motivators in Checkpoint did motivate the participants. Even though participants were
concerned about competition, they did enjoy the competition during the experiment. The
leaderboard was even ranked as the most effective mechanism in encouraging developers
to resolve warnings. The second most effective was the activity log mechanism. The feed-
back provided by Checkpoint turned out to be a powerful motivator. Feedback provided the
participants with an overview of their progress which in turn boosted their motivation.

On average the participants were positive about the effectiveness of Checkpoint. How-
ever, the effectiveness could not be measured during this experiment. The effectiveness was
based on the expectation of the participants. Participants were mostly concerned about the
motivational effect of gamification wearing off.

Overall, based on the results of these questions it is safe to conclude that gamification
did encourage the developers to resolve ASAT produced warnings.

8.2 Contributions

This thesis has shown that gamification has the potential to be used within software engi-
neering. There are pitfalls, but these should be considered and monitored when putting in
practice. The work in this thesis makes the following contributions:

• Checkpoint: a gamification tool for keeping track of warnings resolved Checkstyle.
The tool shows that gamification can have an effect on the motivation of developers.

• Gamification: this thesis shows another application of gamification within software
engineering. The results of this experiment show that the GOAL methodology can
be successfully used as a foundation for developing a gamification platform in an
unexplored environment.

• Motivators of Gamification: the results of this experiment also show that Feedback
and Competition are strong motivators.

74

8.3. Future work

8.3 Future work

More work needs to be done in order to find out if gamification is indeed effective in the
long run. For the future, a non-pre-experimental study would need to be executed. A
quantitative and qualitative study is needed in order to draw hard conclusions. A study with
larger population size and more diversity among tools tested would also provide insight on
the applicability of such a tool in the “real world”.

Another suggestion is the creation of dynamic tasks and achievements. In this project,
the tasks and achievements were generated beforehand because the project was known. In
practice, such a tool would be used by many different teams and different projects. Each
project would be different. It would be a challenge to developer achievements to fit all
types of projects with various difficulty levels. An algorithm which could possibly generate
interesting tasks based on the current state of the repository would be a significant improve-
ment. That way each project would have their own tasks tailored to their project instead of
a generalized achievement set.

75

Bibliography

[1] Bilal Amir and Paul Ralph. Proposing a theory of gamification effectiveness. In Com-
panion Proceedings of the 36th International Conference on Software Engineering,
pages 626–627. ACM, 2014.

[2] Satoshi Arai, Kazunori Sakamoto, Hironori Washizaki, and Yoshiaki Fukazawa. A
gamified tool for motivating developers to remove warnings of bug pattern tools.
In 2014 6th International Workshop on Empirical Software Engineering in Practice,
pages 37–42. IEEE, 2014.

[3] Nathaniel Ayewah, William Pugh, J David Morgenthaler, John Penix, and YuQian
Zhou. Evaluating static analysis defect warnings on production software. In Proceed-
ings of the 7th ACM SIGPLAN-SIGSOFT workshop on Program analysis for software
tools and engineering, pages 1–8. ACM, 2007.

[4] Earl R Babbie. The basics of social research. Cengage Learning, 2013.

[5] Moritz Beller, Radjino Bholanath, Shane McIntosh, and Andy Zaidman. Analyzing
the state of static analysis: A large-scale evaluation in open source software. In Soft-
ware Analysis, Evolution, and Reengineering (SANER), 2016 IEEE 23rd International
Conference on, volume 1, pages 470–481. IEEE, 2016.

[6] Kay Berkling and Christoph Thomas. Gamification of a software engineering course
and a detailed analysis of the factors that lead to it’s failure. In Interactive Collabora-
tive Learning (ICL), 2013 International Conference on, pages 525–530. IEEE, 2013.

[7] Tim Buckers, Clinton Cao, Michiel Doesburg, Boning Gong, Sunwei Wang, Moritz
Beller, and Andy Zaidman. Uav: Warnings from multiple automated static analysis
tools at a glance. In 2017 IEEE 24th International Conference on Software Analysis,
Evolution and Reengineering (SANER), pages 472–476. IEEE, 2017.

[8] Donald T Campbell and Julian C Stanley. Experimental and quasi-experimental de-
signs for research. Handbook of research on teaching. Chicago, IL: Rand McNally,
1963.

77

BIBLIOGRAPHY

[9] Gerardo Canfora, Luigi Cerulo, and Massimiliano Di Penta. Identifying changed
source code lines from version repositories. In Fourth International Workshop on
Mining Software Repositories (MSR’07: ICSE Workshops 2007), pages 14–14. IEEE,
2007.

[10] Tommaso Dal Sasso, Andrea Mocci, Michele Lanza, and Ebrisa Mastrodicasa. How
to gamify software engineering. In Software Analysis, Evolution and Reengineering
(SANER), 2017 IEEE 24th International Conference on, pages 261–271. IEEE, 2017.

[11] Michiel De Wit, Andy Zaidman, and Arie Van Deursen. Managing code clones using
dynamic change tracking and resolution. In Software Maintenance, 2009. ICSM 2009.
IEEE International Conference on, pages 169–178. IEEE, 2009.

[12] Silviya Dencheva, Christian R Prause, and Wolfgang Prinz. Dynamic self-moderation
in a corporate wiki to improve participation and contribution quality. In ECSCW 2011:
Proceedings of the 12th European Conference on Computer Supported Cooperative
Work, 24-28 September 2011, Aarhus Denmark, pages 1–20. Springer, 2011.

[13] Ekwa Duala-Ekoko and Martin P Robillard. Tracking code clones in evolving soft-
ware. In 29th International Conference on Software Engineering (ICSE’07), pages
158–167. IEEE, 2007.

[14] Daniel J Dubois and Giordano Tamburrelli. Understanding gamification mechanisms
for software development. In Proceedings of the 2013 9th Joint Meeting on Founda-
tions of Software Engineering, pages 659–662. ACM, 2013.

[15] Brian J Fogg. A behavior model for persuasive design. In Proceedings of the 4th
international Conference on Persuasive Technology, page 40. ACM, 2009.

[16] Félix Garcı́a, Oscar Pedreira, Mario Piattini, Ana Cerdeira-Pena, and Miguel Pen-
abad. A framework for gamification in software engineering. Journal of Systems and
Software, 132:21–40, 2017.

[17] Todd Helmenstine. What is the difference between independent and dependent vari-
ables? https://www.thoughtco.com/independent-and-dependent-variables
-differences-606115, 2018. Accessed: 2019-01-11.

[18] Yoshiki Higo, Keisuke Hotta, and Shinji Kusumoto. Enhancement of crd-based clone
tracking. In Proceedings of the 2013 International Workshop on Principles of Software
Evolution, pages 28–37. ACM, 2013.

[19] Susan A Jackson and Herbert W Marsh. Development and validation of a scale to
measure optimal experience: The flow state scale. Journal of sport and exercise psy-
chology, 18(1):17–35, 1996.

[20] Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert Bowdidge. Why
don’t software developers use static analysis tools to find bugs? In Proceedings of the
2013 International Conference on Software Engineering, pages 672–681. IEEE Press,
2013.

78

https://www.thoughtco.com/independent-and-dependent-variables-differences-606115
https://www.thoughtco.com/independent-and-dependent-variables-differences-606115

Bibliography

[21] Sunghun Kim and Michael D Ernst. Which warnings should i fix first? In Proceedings
of the the 6th joint meeting of the European software engineering conference and the
ACM SIGSOFT symposium on The foundations of software engineering, pages 45–54.
ACM, 2007.

[22] Gabriela Kiryakova, Nadezhda Angelova, and Lina Yordanova. Gamification in edu-
cation. In Proceedings of 9th International Balkan Education and Science Conference.
Proceedings of 9th International Balkan Education and Science Conference, 2014.

[23] Janaki Kumar. Gamification at work: Designing engaging business software. In
International conference of design, user experience, and usability, pages 528–537.
Springer, 2013.

[24] Robyn Longhurst. Semi-structured interviews and focus groups. Key methods in
geography, pages 117–132, 2003.

[25] Jeanne Nakamura and Mihaly Csikszentmihalyi. The concept of flow. In Flow and
the foundations of positive psychology, pages 239–263. Springer, 2014.

[26] Sebastiano Panichella, Venera Arnaoudova, Massimiliano Di Penta, and Giuliano An-
toniol. Would static analysis tools help developers with code reviews? In Software
Analysis, Evolution and Reengineering (SANER), 2015 IEEE 22nd International Con-
ference on, pages 161–170. IEEE, 2015.

[27] Oscar Pedreira, Félix Garcı́a, Nieves Brisaboa, and Mario Piattini. Gamification in
software engineering–a systematic mapping. Information and Software Technology,
57:157–168, 2015.

[28] Dewayne E Perry, Adam A Porter, and Lawrence G Votta. Empirical studies of soft-
ware engineering: a roadmap. In Proceedings of the conference on The future of
Software engineering, pages 345–355. ACM, 2000.

[29] Joseph R Ruthruff, John Penix, J David Morgenthaler, Sebastian Elbaum, and Gregg
Rothermel. Predicting accurate and actionable static analysis warnings: an experi-
mental approach. In Proceedings of the 30th international conference on Software
engineering, pages 341–350. ACM, 2008.

[30] Richard M Ryan and Edward L Deci. Self-determination theory and the facilitation of
intrinsic motivation, social development, and well-being. American psychologist, 55
(1):68, 2000.

[31] Jan Schumacher, Nico Zazworka, Forrest Shull, Carolyn Seaman, and Michele Shaw.
Building empirical support for automated code smell detection. In Proceedings of the
2010 ACM-IEEE International Symposium on Empirical Software Engineering and
Measurement, page 8. ACM, 2010.

79

BIBLIOGRAPHY

[32] Marion K Slack and Jolaine R Draugalis Jr. Establishing the internal and external
validity of experimental studies. American Journal of Health-System Pharmacy, 58
(22):2173–2181, 2001.

[33] Donna Spencer. Card sorting: Designing usable categories. Rosenfeld Media, 2009.

[34] Naomi Unkelos-Shpigel and Irit Hadar. Gamifying software development environ-
ments using cognitive principles. In CAiSE Forum, pages 9–16, 2015.

[35] Bogdan Vasilescu, Vladimir Filkov, and Alexander Serebrenik. Stackoverflow and
github: Associations between software development and crowdsourced knowledge.
In Social computing (SocialCom), 2013 international conference on, pages 188–195.
IEEE, 2013.

[36] Carmine Vassallo, Sebastiano Panichella, Fabio Palomba, Sebastian Proksch, Andy
Zaidman, and Harald C Gall. Context is king: The developer perspective on the usage
of static analysis tools. In 2018 IEEE 25th International Conference on Software
Analysis, Evolution and Reengineering (SANER), pages 38–49. IEEE, 2018.

[37] Yan Zhang and Barbara M Wildemuth. Unstructured interviews. Applications of
social research methods to questions in information and library science, pages 222–
231, 2009.

[38] Jiang Zheng, Laurie Williams, Nachiappan Nagappan, Will Snipes, John P Hudepohl,
and Mladen A Vouk. On the value of static analysis for fault detection in software.
IEEE transactions on software engineering, 32(4):240–253, 2006.

80

Appendix A

Experiment Information Sheet

81

Checkpoint

Introduction
In this experiment, you will be working with JPacman a project developed at the Technical University of

Delft with the purpose of teaching student the art of testing and software quality, and Checkstyle.

Checkstyle is an automated static analysis tool (ASAT) which helps programmers write Java code that

adheres to a coding standard. Coding standards or conventions are a set of rules which recommend a

programming style such as method naming, spacing, comments, etc. There are many ASATs out there

for various languages, however, for this project you will be working with Java and Checkstyle. The

experiment should not take more than an hour in total. For the programming part of this experiment,

you have 20 minutes.

JPacman
JPacman is inspired by Pacman and written in Java. The purpose of JPacman is to teach students the art

of testing. In case you are a TU Delft student, chances are, you are familiar with JPacman. The code

version you will be working on is incomplete and missing some functionality. You can run JPacman by

executing MainUI.java. After a few seconds, the Pacman game should be visible for you to test out.

Checkpoint
Checkpoint is a tool which has been developed as part of this experiment. In Checkpoint, you will be

able to visually keep track of the number of warnings you have resolved over time. By resolving

warnings you will be earning XP points. There is also a set of badges to earn after completing various

tasks. The badges also reward you with XP points. In the leaderboard, you are able to see how you

compare against other players. The more warnings you resolve, the more XP you gain, and the cleaner

your code becomes.

Development Environment
Your development environment is already set up for you. You will be working in Eclipse for Java. The

Checkstyle plugin is already installed and configured for the project. The source code is hosted on

GitHub. Within the local GitHub application, you will be able to commit and push your changes to

GitHub. In your browser, you will register and login into Checkpoint. You will first need to navigate to

the Projects page in Checkpoint and join the project which has been assigned to you.

A few things to look out for
Checkpoint is still a prototype and therefore the queueing system of the computation engine is not

functional yet. What this means is, that you need to wait at least 30 seconds between a push. You may

push multiple commits at once, but make sure to wait a minute for the next push. You can just keep

working on your main branch, you do not need to create new branches.

Tasks
Let’s take a look at what you will do. Read this page in its entirety first.

Registration
First, you will need to go to Checkpoint and register your Account by filling in the form after clicking

“Register a new membership”. Make sure to register using the following GitHub username: Raies1000.

That is the username for the commits which will take place.

Fun with Programming
Your main task for this assignment is to resolve warnings produced by Checkstyle. The warnings can be

found in the Problems tab of your Eclipse IDE. You are free to choose which warnings and how many

warnings you resolve.

Your checklist:

o Register in Checkpoint

o Join the project assigned to you

o Get familiar with Checkpoint

o Open Eclipse and get familiar with JPacman

o Get JPacman to run

o Resolve warnings produced by Checkstyle. Try to resolve the warnings as you would normally.

o After resolving a few warnings, commit and push your code via the GitHub application.

o Navigate the Checkpoint dashboard during this process.

o Try to unlock a few badges by completing the tasks viewed by the badge.

o If you find a friend or colleague on the leaderboard, try to beat them at their score

Repeat the tasks in bold.

Feel free to ask any questions now or during the experiment!

Head to Firefox (the blue icon) to start Checkpoint.

Good Luck and Have Fun!

Appendix B

Experiment Procedure Sheet

85

Checkpoint

Welcome (5 min)
Welcome the participant

About the Experiment sheet + Pretest (Form B) (10 min)
Show PDF, printout

https://goo.gl/forms/G65OT64fw6rsc6412

Introduction + Programming (20 min)
The participant will program

Posttest (Form A) (10 min)

https://goo.gl/forms/CqdcdKNCPVflTH6N2

Interview (15 min)
Interview the participant

My Checklist
o Make sure webhook redirect for GitHub is active
o Couple Raies1000 with personal Checkpoint account
o Create Repo on GitHub and checkout
o Add Clean JPacman code and push to GitHub
o Verify if processing by Checkpoint has completed OK
o Change personal GitHub username in Checkpoint to fake

o Open new Desktop for experiment
o Have Eclipse ready for project
o Have GitHub ready
o Have Checkpoint ready

o Register new user with GitHub username Raies1000
o Join user in project
o Let the fun begin

o After the experiment, switch GitHub username back.

Appendix C

Pretest Questionnaire

89

Thank you for participating in this experiment.

* Required

Your age? *1.

What is your educational background? *2.

What is your current occupation? *3.

Experience

How many years of programming
experience do you have? *

4.

I am experienced in Java Development *

Mark only one oval.

1 2 3 4 5

Totally Disagree Completely Agree

5.

I work in teams when developing software *

Mark only one oval.

1 2 3 4 5

Totally Disagree Completely Agree

6.

I am familiar with Eclipse for development *

Mark only one oval.

Yes

No

7.

About Software Quality

Pretest Form (B) https://docs.google.com/forms/d/1E0xpFw74jiWcYQtpHfCYXQfoY...

1 of 5 18-Jan-19, 10:15 AM

Functional code is more important than clean code *

Mark only one oval.

1 2 3 4 5

Totally disagree Completely Agree

8.

When programming, I write documentation for all code *

Mark only one oval.

1 2 3 4 5

Totally disagree Completely Agree

9.

When programming, I write tests for all code *

Mark only one oval.

1 2 3 4 5

Totally disagree Completely Agree

10.

There is a code review process in the development process of the projects I work on *

Choose "Yes" if one or more of the projects you work on have a code review process
Mark only one oval.

Yes

No

11.

I find the code review process useful

You can skip this question if you answered "No" to the previous one.
Mark only one oval.

1 2 3 4 5

Totally disagree Completely Agree

12.

There are coding conventions in place for the projects I work on *

Choose "Yes" if one or more of the project of the projects you work on have coding
conventions in place.
Mark only one oval.

Yes

No

13.

I obey to the coding conventions when programming

You can skip this question if you answered "No" to the previous one.
Mark only one oval.

1 2 3 4 5

Totally Disagree Completely Agree

14.

On ASATs

Pretest Form (B) https://docs.google.com/forms/d/1E0xpFw74jiWcYQtpHfCYXQfoY...

2 of 5 18-Jan-19, 10:15 AM

Automated static analysis tools perform a static analysis on the code providing warnings for
functional or maintainability problems. Some examples of ASATs are: Checkstyle, PMD, FindBugs,
JSLint. In this section you are asked a series of questions about your experience with ASATs.

Automated Static Analysis tools (ASATs) contribute in upholding the quality of the
code I write *

Mark only one oval.

1 2 3 4 5

Totally Disagree Completely Agree

15.

Warnings generated by ASATs are completely useless *

Mark only one oval.

1 2 3 4 5

Totally Disagree Completely Agree

16.

How many Static Analysis tools do you use at one given time? *

Mark only one oval.

None

One

Two

Three or more

17.

I use Automated Static Analysis tools to inspect my code *

Mark only one oval.

During development

During code review process

Before commiting

I never use it

18.

When an ASAT generates warnings I tend to *

Mark only one oval.

Completely Ignore the warnings

Only resolve warnings I consider important

Resolve warnings pertaining to my code

Resolve warnings pertaining to my code and from commits of others

Resolve warnings only if the CI fails

Resolve all warnings

19.

Expectations
This section is about your expectations for a tool which would enhance developer motivation for
tedious tasks.
This tool would gamify part of the development process.

By gamifying the use of static analysis tools one should be able to have more fun in resolving
tedious warnings. The goal of gamification is to make tasks (especially tedious tasks in serious

Pretest Form (B) https://docs.google.com/forms/d/1E0xpFw74jiWcYQtpHfCYXQfoY...

3 of 5 18-Jan-19, 10:15 AM

environments) more fun. Resolving warnings should award the user with experience, badges and
a ranking among friends or colleagues. By adding a gamification tool into the development
process developers should be more inclined to perform less exciting tasks.

Gamification would help me resolve more warnings generated by Automated Static
Analysis Tools (ASAT) *

Mark only one oval.

1 2 3 4 5

Totally Disagree Completely Agree

20.

The competition with colleagues will motivate me to resolve more warnings produced
by ASATs *

Mark only one oval.

1 2 3 4 5

Totally Disagree Completely Agree

21.

Such a tool would be valuable to the development process *

Mark only one oval.

1 2 3 4 5

Totally Disagree Completely Agree

22.

Such a tool would be interfering in my development process *

Mark only one oval.

1 2 3 4 5

Totally Disagree Completely Agree

23.

Such a tool would ensure that I get less warnings from my colleagues *

Mark only one oval.

1 2 3 4 5

Totally Disagree Completely Agree

24.

I expect such a tool to motivate my colleagues to commit code free from ASAT
warnings *

Mark only one oval.

1 2 3 4 5

Totally Disagree Completely Agree

25.

Pretest Form (B) https://docs.google.com/forms/d/1E0xpFw74jiWcYQtpHfCYXQfoY...

4 of 5 18-Jan-19, 10:15 AM

Powered by

I expect ASAT warnings to be taken into account during the code review process *

Mark only one oval.

1 2 3 4 5

Totally Disagree Completely Agree

26.

I do not see the value in using such a tool *

Mark only one oval.

1 2 3 4 5

Totally Disagree Completely Agree

27.

Pretest Form (B) https://docs.google.com/forms/d/1E0xpFw74jiWcYQtpHfCYXQfoY...

5 of 5 18-Jan-19, 10:15 AM

Appendix D

Posttest Questionnaire

95

This is the final questionnaire and should not take more than 7 minutes.

* Required

Experiment Experience

The assignment was difficult for me *

Mark only one oval.

1 2 3 4 5

Totally Disagree Completely Agree

1.

I felt a lot of time pressure *

Mark only one oval.

1 2 3 4 5

Totally Disagree Completely Agree

2.

The experiment was interesting *

Mark only one oval.

1 2 3 4 5

Totally Disagree Completely Agree

3.

The guidance for the experiment was enough *

Mark only one oval.

1 2 3 4 5

Totally Disagree Completely Agree

4.

UI Experience
In this section you will be asked a series of questions regarding the User Interface of Checkpoint,
the tool developed as part of this experiment

I like the interface design of Checkpoint *

Mark only one oval.

1 2 3 4 5

Totally Disagree Completely Agree

5.

Form (A) https://docs.google.com/forms/d/1DK_3lZxDgPuJz0lgjLfDvijDh_G_...

1 of 8 01-Feb-19, 2:16 PM

Checkpoint is easy to use *

Mark only one oval.

1 2 3 4 5

Totally Disagree Completely Agree

6.

Joining a project in Checkpoint was easy *

Mark only one oval.

1 2 3 4 5

Totally Disagree Completely Agree

7.

I needed little help in understanding the purpose of the widgets in Checkpoint *

Mark only one oval.

1 2 3 4 5

Totally Disagree Completely Agree

8.

Process Experience

I opened Checkpoint: *

Mark only one oval.

After every commit

Occasionally

Only when I recieved notification in windows

Never

Other:

9.

Checkpoint as a separate program was inconvenient *

Mark only one oval.

1 2 3 4 5

Totally Disagree Completely Agree

10.

The fact that checkpoint only works with repositories hosted on GitHub is limiting *

Mark only one oval.

1 2 3 4 5

Totally Disagree Completely Agree

11.

Levels

Form (A) https://docs.google.com/forms/d/1DK_3lZxDgPuJz0lgjLfDvijDh_G_...

2 of 8 01-Feb-19, 2:16 PM

The level progress bar motivated me to keep going for the next level *

Mark only one oval.

1 2 3 4 5

Totally Disagree Completely Agree

12.

The level naming was interesting *

Mark only one oval.

1 2 3 4 5

Totally Disagree Completely Agree

13.

I knew why I was promoted to the next level *

Mark only one oval.

1 2 3 4 5

Totally Disagree Completely Agree

14.

How easy or difficult did you find to progress to the next level *

Mark only one oval.

1 2 3 4 5

Very Easy Extremely Difficult

15.

Notifications

The push notifications from Checkpoint were a disturbance to my workflow *

Mark only one oval.

1 2 3 4 5

Totally Disagree Completely Agree

16.

The push notifications from Checkpoint awakened my curiosity *

Mark only one oval.

1 2 3 4 5

Totally Disagree Completely Agree

17.

The feedback from Checkpoint through notifications was frequent enough for me *

Mark only one oval.

1 2 3 4 5

Totally Disagree Completely Agree

18.

Activity

Form (A) https://docs.google.com/forms/d/1DK_3lZxDgPuJz0lgjLfDvijDh_G_...

3 of 8 01-Feb-19, 2:16 PM

The Activity log is a useful widget, it provides me information about my progress *

Mark only one oval.

1 2 3 4 5

Totally Disagree Completely Agree

19.

The activity log was detailed enough *

Mark only one oval.

1 2 3 4 5

Totally Disagree Completely Agree

20.

The Crusher Statistics (warnings resolved chart) is a useful widget as it provided me
information about my progress *

Mark only one oval.

1 2 3 4 5

Totally Disagree Completely Agree

21.

If I could see how many warnings in a day other users resolved, my motivation to
resolve more would increase *

Mark only one oval.

1 2 3 4 5

Totally Disagree Completely Agree

22.

Badges

Badge Achievements motivated me to resolve more warnings in order to unlock them *

Mark only one oval.

1 2 3 4 5

Totally Disagree Completely Agree

23.

The tasks to unlock a badge could have been more interesting *

Mark only one oval.

1 2 3 4 5

Totally Disagree Completely Agree

24.

The badge naming was creative *

Mark only one oval.

1 2 3 4 5

Totally Disagree Completely Agree

25.

Form (A) https://docs.google.com/forms/d/1DK_3lZxDgPuJz0lgjLfDvijDh_G_...

4 of 8 01-Feb-19, 2:16 PM

The task progress of badges were clear *

Mark only one oval.

1 2 3 4 5

Totally Disagree Completely Agree

26.

How easy or difficult did you find the tasks to unlock badges *

Mark only one oval.

1 2 3 4 5

Very Easy Extremely Difficult

27.

Seeing how many users unlocked a badge motivated me to earn that badge *

Mark only one oval.

1 2 3 4 5

Totally Disagree Completely Agree

28.

BugsBuddy

BugsBuddy motivated me to keep resolving warnings *

Mark only one oval.

1 2 3 4 5

Totally Disagree Completely Agree

29.

When BugsBuddy was sad, I was more inclined to resolve warnings *

Mark only one oval.

1 2 3 4 5

Totally Disagree Completely Agree

30.

I found the idea of having a virtual buddy creative *

Mark only one oval.

1 2 3 4 5

Totally Disagree Completely Agree

31.

The expressions of BugsBuddy should have been better *

Mark only one oval.

1 2 3 4 5

Totally Disagree Completely Agree

32.

Leaderboard

Form (A) https://docs.google.com/forms/d/1DK_3lZxDgPuJz0lgjLfDvijDh_G_...

5 of 8 01-Feb-19, 2:16 PM

If found it useful to see were other players rank in the game *

Mark only one oval.

1 2 3 4 5

Totally Disagree Completely Agree

33.

The leaderboard motivated me to gain XP *

Mark only one oval.

1 2 3 4 5

Totally Disagree Completely Agree

34.

If I had a leaderboard with my friends, it would motivate me more than having just a
global leaderboard *

Mark only one oval.

1 2 3 4 5

Totally Disagree Completely Agree

35.

Checkpoint

Checkpoint motivates me to resolve more warnings than I usually do *

Mark only one oval.

1 2 3 4 5

Totally Disagree Completely Agree

36.

The competition with colleagues will motivate me to resolve more warnings produced
by ASATs *

Mark only one oval.

1 2 3 4 5

Totally Disagree Completely Agree

37.

Checkpoint would be a valuable tool to my development process *

Mark only one oval.

1 2 3 4 5

Totally Disagree Completely Agree

38.

Checkpoint would be interfering in my development process *

Mark only one oval.

1 2 3 4 5

Totally Disagree Completely Agree

39.

Form (A) https://docs.google.com/forms/d/1DK_3lZxDgPuJz0lgjLfDvijDh_G_...

6 of 8 01-Feb-19, 2:16 PM

Checkpoint would ensure that I get less warnings from my colleagues *

Mark only one oval.

1 2 3 4 5

Totally Disagree Completely Agree

40.

I expect Checkpoint to motivate my colleagues to commit code free from ASAT
warnings *

Mark only one oval.

1 2 3 4 5

Totally Disagree Completely Agree

41.

I expect ASAT warnings to be taken into account during the code review process when
Checkpoint is used *

Mark only one oval.

1 2 3 4 5

Totally Disagree Completely Agree

42.

I do not see the value in using Checkpoint *

Mark only one oval.

1 2 3 4 5

Totally Disagree Completely Agree

43.

Experiment Rating

The clearness of the assignment *

Mark only one oval.

1 2 3 4 5

Very bad Excellent

44.

The quality of the selected project JPacman *

Mark only one oval.

1 2 3 4 5

Very bad Excellent

45.

The quality of the information document *

Mark only one oval.

1 2 3 4 5

Very bad Excellent

46.

Form (A) https://docs.google.com/forms/d/1DK_3lZxDgPuJz0lgjLfDvijDh_G_...

7 of 8 01-Feb-19, 2:16 PM

Powered by

The quality of the questionnaire *

Mark only one oval.

1 2 3 4 5

Very bad Excellent

47.

The opportunity to give feedback *

Mark only one oval.

1 2 3 4 5

Very bad Excellent

48.

Overall impression *

Mark only one oval.

1 2 3 4 5

Very bad Excellent

49.

Form (A) https://docs.google.com/forms/d/1DK_3lZxDgPuJz0lgjLfDvijDh_G_...

8 of 8 01-Feb-19, 2:16 PM

Appendix E

Checkpoint

105

E. CHECKPOINT

Figure E.1: Checkpoint Dashboard

106

Figure E.2: Checkpoint Crusher Statistics

Figure E.3: Checkpoint Badges

107

E. CHECKPOINT

Figure E.4: Checkpoint Activity Log

108

Figure E.5: Checkpoint Badge Example

109

E. CHECKPOINT

Figure E.6: Checkpoint Activity Example

110

	Preface
	Contents
	List of Figures
	Introduction
	Research Question(s)
	Thesis Structure

	Background and Related work
	Automated Static Analysis Tools
	Gamification

	Gamification
	Behavior Change
	Motivational Drivers
	Mechanics
	Gamification in Software Engineering
	The GOAL methodology applied
	Defining the Mission

	Design and Implementation
	Ad-hoc or Integrated solution
	Requirements
	Designing the tool
	Warnings Resolved in Action
	Warning Classification
	Achievements
	Git and GitHub
	Webhook Routing

	Experiment
	Design of the Experiment
	Pretest and Posttest
	The Interview
	Card Sorting
	The Case
	Participants Selection
	Experiment Setup
	Pilot
	Execution of the experiment

	Results
	Participant Profile (Pretest)
	Checkpoint (Posttest)
	Expectations on Gamification
	Experiment Experience and Rating

	Discussion
	Motivation
	Effectiveness
	Usability
	Mechanism
	Ignoring ASAT Warnigns
	Existing Gamification Models
	Gamification within Software Development
	Extrinsic Motivators
	Competition
	Most Effective Mechanism
	Effectiveness of Checkpoint
	Usability of Checkpoint
	Threats to Validity

	Conclusions and Future Work
	Conclusions
	Contributions
	Future work

	Bibliography
	Experiment Information Sheet
	Experiment Procedure Sheet
	 Pretest Questionnaire
	 Posttest Questionnaire
	 Checkpoint

