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PREFACE 
In completion of the Master Civil Engineering at the University of Technology Delft the 
Master’s Thesis “Force distribution and connection strength in timber lock gates” is 
presented in this report. The report presents research to the calculation en verification of 
strength of the mortise and tenon joint in timber lock gates. Currently construction 
companies are not able to verify the joint’s strength while in practice the mortise and tenon 
joint performs well. 
 
In this research many subjects which have my interest came together. Firstly a wooden 
mitre gate is a beautiful example of traditional craftsmanship in timber. Timber structures 
in general have much of my interest and for this research this interest came together with 
the Dutch pride hydraulic engineering. Although the finite element modelling part took 
more time relative to the other parts than I preferred, all research aspects which I enjoy, 
such as analytical derivation, carrying out experiments and analysing test results, came 
forward during the research. 
 
The coming about of this Master’s Thesis is firstly thanks to my daily supervisors Geert 
Ravenshorst and Peter de Vries who supported the research greatly and with which I’ve had 
many meetings, of which some took a large amount of time during difficult parts of the 
research. I am also grateful to the section of Steel and Timber Structures because I could use 
a workplace at the Stevin II laboratory during a large period of my research work. Working 
at this office definitely made working more pleasant, sociable and made perseverance of 
work better possible.  
 
Thirdly I want to thank my other thesiscommittee members Jan-Willem van de Kuilen, Max 
Hendriks and Vincent Raadschelders for their enthusiasm on the subject and feedback on 
my work. I want to thank Wijma Kampen B.V. which contributed to the research as well by 
supplying the wood used for testing and giving much information on - and insight into the 
construction of wooden mitre gates. Further all persons involved from various companies 
are thanked. 
 
Fourthly I want to thank my fiancée Santosha for her uninterrupted support during the 
coming about of this Master’s Thesis. I also want to thank my family and friends for their 
support with special reference to Gerben and Simon with whom I frequently had lunch and 
who were a great support as well. Finally, but with emphasis, I want to thank God from 
Whom I received my talents, many blessings and Who belongs all honour, including the 
honour for this thesis (Luke 2: 14). 
 
J.R. (Jorick) van Otterloo 
20 March 2013 
Delft 
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SUMMARY 
 
IMMEDIATE CAUSE OF RESEARCH 
Many lock gates in the Netherlands are equipped with mitre gates made of hardwood. These 
gates are still built with real craftsmanship and according traditional design, perfected 
during the last hundreds of years. Construction companies are recently obliged by building 
authorities to prove the structure satisfies safety standards on e.g. strength more extensive 
than formerly. However, construction companies are not able to prove whether the mortise 
and tenon joint between the crossbeams and posts in such a wooden mitre gate satisfies 
strength requirements. Experience from practice reveals no loss or damage in relation with 
these connections though. 
 

 
Figure 1: Common design wooden mitre gate with specialist terms (Van Leusen (1991), fig. 52.3) 

 
Figure 2: Design mortise and tenon joint (Van Leusen (1991), fig. 63.16) 

Calculations on the mortise and tenon joint, common in practice, assume a simple force 
distribution, as is illustrated in Figure 3. Bending in the crossbeam, caused by water 
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pressure acting normal to the beam axis, introduces shear stresses in the beam. The shear 
force at the rear end of the beam is transferred through the tenon to the rear post at the 
location of the seal strip. Compression in the crossbeam due to the pointing shape of the two 
doors is transferred through the rear post to the support at the back of the rear post. Note 
the fibre direction of the crossbeam is set square on the fibre direction of the post and seal 
strip. How the load is actually transferred through the joint is unknown up to now though. 
 

 
Figure 3: Commonly assumed force distribution within mortise and tenon joint 

To take into account spitting at the pit of the tenon calculation rules for notched beams from 
paragraph 6.5.2 from Eurocode 5 (NEN-EN 1995-1-1, 2005) are often used by construction 
companies. According this standard the maximum shear stress in a notch needs to be 
compared with a reduced shear strength: 

𝜏𝑑 =
1.5𝑉
𝑏ℎ𝑒𝑓

≤ 𝑘𝑣𝑓𝑣,𝑑 

where 

𝑘𝑣 =
𝑘𝑛 �1 + 1.1𝑖1.5

√ℎ
�

√ℎ ��𝛼(1− 𝛼) + 0.8 𝑥ℎ�
1
𝛼 − 𝛼2�

, 

 
kn depends on the wood product: LVL, 
solid timber or glued laminated timber ,  
α = hef/h and other variables are depicted 
in Figure 28. 

 
Figure 4: Variables notch strength formula EC5 

(NEN-EN 1995-1-1 (2005), Figure 6.11) 

 
The unity check for the mortise and tenon joint, designed according traditional design and 
where heff is taken to be equal to the height of the tenon, often returns values several times 
higher than 1.0. To make it possible for construction companies to satisfy building 
authorities’ demands the mortise and tenon joint’s strength needs to be researched. 
 
RESEARCH SPECIFICATION 
The main goal of this thesis is to obtain the strength of the mortise and tenon joint in a mitre 
gate made of hardwood and to provide means to calculate this strength in practice in order 
to keep traditional wooden mitre gates competitive to the use of other materials. 
 
From the main goal the following main questions are formulated: 
 How are the forces distributed in a mortise and tenon joint in a hardwood mitre gate 

and does this connection satisfy the demands from standards and regulations? 
 Can the strength of a tenon be expressed in a formula and do the calculation rules 

for the strength of a notch from Eurocode 5 have to be supplemented for 
hardwoods? 

 

RV

RN
N

V

FN

FN

x

FV

RV

V



 

ix 

Literature is studied to investigate common design and building practice of wooden mitre 
gates and the background of calculation rules from standards. Finite element modelling is 
applied to investigate the force distribution in a wooden mitre gate and its mortise and 
tenon joint. Notch and tenon strength for soft- and hardwoods is researched analytically 
after which finally an experimental program is set up to judge the result of the analytical 
research on notch and tenon strength. 
  
PERFORMED RESEARCH 
The remarkable case of the mortise and tenon joint not fulfiling the ultimate limit state can 
be addressed to three main issues of the calculation: the assumed force distribution, 
material properties of hardwood and use of the calculation rules for notched beams from 
Eurocode 5. These three main issues return in two main parts of this research: the force 
distribution within the mortise and tenon joint and the strength of tenonned Azobé beams. 
 
Part on the force distribution within the mortise and tenon joint 
Calculations common in practice assume a simple force distribution as is explained above. 
However, the specific geometry of the joint including its specific supports and its loading by 
compression, shear force and bending moment, make that a very different load transfer 
could actually occur. 
 

y

z
x

 
Figure 5: Exploded 3D view of a simplified mortise and tenon joint including magnified deformations. 

Note the fibre direction of the rear post and seal strip runs along the z-axis and the fibre direction of the 
crossbeam runs along the x-axis. 

As deformation of the mortise in the rear post in Figure 5 indicates, applied forces from the 
crossbeam can be transferred in two directions. Firstly, the load can be transferred in the x-
direction until its line of action meets the line of action of the support at the seal strip. In the 
x-direction the stiffness of the rear post is relatively low and therefore, when the analysis is 
restricted to the x-y plane, most of the load is transferred through the tenon until the 
support’s line of action is reached. 
 
Secondly, the load can be transferred in the relatively stiff z-direction after which the forces 
need to be transferred to the seal strip support within the full section of the rear post next to 
the mortise. An important condition for the load to be transferred along this route is that the 
rear post needs to resist rotation to make it possible for the applied force, when it is first 
transferred in the z-direction to the full-section rear post, to shift along the x-axis to the seal 
strip support. In fact, a negative moment needs to develop in the rear post if the line of 
action of the reaction force on the tenon would move in the positive x-direction. As a large 
compression force is present in the crossbeam and friction at the back of the rear post can 
develop, the rear post could be considered to be clamped for a certain amount. Note that 
next to the mortise the full section of the rear post is very stiff. Figure 6 illustrates the 
mentioned phenomenon. 
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Figure 6: A negative moment in the rear post must develop when (a part of) the shear force from the 

crossbeam is not transferred from the tenon to the rear post at the line of action of the seal strip support 

Using finite element modelling the force distribution is researched in detail using a 2D FE-
model. The 3D effect is taken into account by adding an elastic support to the lower part of 
the rear post. Conclusions on the results are presented further on within this summary. 
 
Part on the strength of tenonned Azobé beams 
The Eurocode 5 expression for the strength of notched beams is used today for the 
calculation of the strength of the mortise and tenon joint. Without further notice this seems 
reasonable since the indicative failure mechanism for notched beams, splitting of the wood 
at the pit of the notch, is indicative for tenonned beams too. 
 
The theoretical basic expression for notched beams (TEN) is derived by Gustafsson (1988): 
 

𝑉𝑓
𝑏𝛼𝑑

=
�𝐺𝑓,𝑦

𝑑

�0.6(𝛼 − 𝛼2)
G𝑥𝑦

+ 𝛽�
6 �1
𝛼 − 𝛼2�
𝐸𝑥

 

where 𝑏 is the width of the beam, 𝐺𝑓,𝑦  is the fracture energy in pure tensile spitting 
perpendicular to the grain (mode 1), G𝑥𝑦 is the shear modulus and 𝐸𝑥 is the modulus of 
elasticity parallel to the grain. In Figure 7 𝛼, 𝛽 and 𝑑 are indicated. 
 

αd 

βd
V

d

 
Figure 7: Variables notched beam 

In TEN the influence of notch geometry on stresses and strains near the transition from 
tenon to beam is included. To obtain the expression given by Eurocode 5, the expression is 
reformulated and material parameters for softwood are included. Therefore the Eurocode 5 
expression for the strength of notched beams assumes the considered beam is notched and 
the wood species used is softwood. 
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For tenonned beams a theoretical basic expression for tenonned beams (TET) is derived 
within this research: 
 

𝑉𝑓
bαd

= √2
�

𝐺𝑓,𝑦

𝑏𝛼2𝑑 �
1.2 � 1

𝑏𝛼 −
1
𝑏�

𝐺 + 2𝑐𝛽𝑑2 +
12𝛽2 � 1

𝛼3 − 1�
𝐸𝑏 �

 

where 𝑉𝑓 [N] is the shear force, 𝑏 [m] is the width of the beam, 𝐺𝑓,𝑦  [N/m] is the fracture 
energy in pure tensile spitting perpendicular to the grain, 𝐺𝑥𝑦 [N/m2] is the shear modulus 
and 𝐸𝑥 [N/m2] is the modulus of elasticity parallel to the grain. In Figure 8 𝛼 [-], 𝛽 [-] and 𝑑 
[m] are indicated. 

αd 

βd
V

d
γd 

 
Figure 8: Variables tenonned beam 

The fracture energy for softwoods is researched extensively by Larsen and Gustaffson 
(1990). A similar research project has not (yet) been performed for hardwood. In fact, very 
little, to nothing, is known about the fracture energy of hardwoods. Therefore several 
expressions are assumed for the determination of the fracture energy of hardwoods: 
 The regression line found by Larsen and Gustaffson (1990) for European softwoods; 
 An approximation of the fracture energy of softwoods by Larsen and Gustafsson 

(1992); 
 An expression for the fracture energy of Azobé modeled using test results. 

 
All three equations TEN, TET and the Eurocode 5 expression are compared with test results 
from two experimental programs. Conclusions on this analysis are presented further on 
within this summary. 
 
CONCLUSIONS AND RECOMMENDATIONS 
For a wooden mitre gate designed according traditional design the most important 
conclusions relating to the force distribution in the mortise and tenon joint are: 
 The shear force from the crossbeam is transferred to the rear post for the largest 

part through the tenon. A 3D effect is present in the joint whereby the shear force 
from the tenon is transferred to the sides of the mortise and is then transferred to 
the seal strip via the full section of the rear post. 

 
 Due to the 3D effect the line of action of the reaction force on the tenon lies closer to 

the pit of the tenon than the line of action of the reaction force at the seal strip 
support does. Therefore a negative moment is present in the rear post which is 
counteracted by a frictional force at the back of the rear post. 

 
 Appearing stresses throughout the joint satisfy design strength values. 
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For notched and tenonned beams the following conclusions relating to today’s standards 
can be made: 
 The Eurocode 5 expression for the strength of notched beams, given in paragraph 

6.5.2 from NEN-EN 1995-1-1 (2005), is specifically derived for notched softwood 
beams and is not applicable for notched Azobé and tenonned Spruce and Azobé 
beams. When the expression is yet applied for these beams, conservative results are 
obtained. 

 
 The shear strength parameter fv,k, present in the Eurocode 5 expression for the 

strength of notched beams, is not related to the strength of notched beams. This 
strength parameter is added to the expression to obtain a practical unity check, 
useful for engineers in practice. 

 
For notched and tenonned beams the following conclusions relating to their strength can be 
made which are subscribed by test results: 
 The strength of a notched beam is described by the theoretical basic expression for 

notched beams (TEN) which is derived by Gustafsson (1988): 
 

𝑉𝑓
𝑏𝛼𝑑

=
�𝐺𝑓,𝑦

𝑑

�0.6(𝛼 − 𝛼2)
G𝑥𝑦

+ 𝛽�
6 �1
𝛼 − 𝛼2�
𝐸𝑥

 

where 𝑉𝑓 [N] is the shear force, 𝑏 [m] is the width of the beam, 𝐺𝑓,𝑦  [N/m] is the 
fracture energy in pure tensile spitting perpendicular to the grain, 𝐺𝑥𝑦 [N/m2] is the 
shear modulus and 𝐸𝑥 [N/m2] is the modulus of elasticity parallel to the grain. In 
Figure 9 𝛼 [-], 𝛽 [-] and 𝑑 [m] are indicated. 

 

αd 

βd
V

d

 
Figure 9: Variables notched beam 

 TEN is not applicable to determine the strength of tenonned beams. 
 
 The strength of a tenonned beam is described by the theoretical basic expression for 

tenonned beams (TET) which is derived within this thesis: 
 

𝑉𝑓
bαd

= √2
�

𝐺𝑓,𝑦

𝑏𝛼2𝑑 �
1.2 � 1

𝑏𝛼 −
1
𝑏�

𝐺 + 2𝑐𝛽𝑑2 +
12𝛽2 � 1

𝛼3 − 1�
𝐸𝑏 �

 

where 𝑉𝑓 [N] is the shear force, 𝑏 [m] is the width of the beam, 𝑐 is a factor which 
introduces the influence of the tenon geometry on stresses and strains near the 
transition from tenon to beam, 𝐺𝑓,𝑦  [N/m] is the fracture energy in pure tensile 
spitting perpendicular to the grain, 𝐺 [N/m2] is the shear modulus and  
𝐸 [N/m2] is the modulus of elasticity parallel to the grain. In Figure 10 𝛼 [-], 𝛽 [-] and 
𝑑 [m] are indicated. 
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Figure 10: Variables tenonned beam 

 The factor 𝑐 depends on α, γ, E and G and introduces the influence of the tenon 
geometry on stresses and strains near the transition from tenon to beam. For a 
tenon it is not managed to obtain an analytical expression. 

 
 TET can determine the influence of tenon cantilever length on the strength but the 

influence of different tenon geometries, present in test results, is not taken into 
account by TET (yet).  

 
The following recommendations are made for continuation of the research: 
 A three dimensional finite element model of the mortise and tenon joint should be 

built to confirm or adapt the statements on the 3D effect. Preferably different joint 
designs, other than only the traditional should also be researched. 

 
 As the Eurocode 5 expression is only valid for notched Spruce beams, firstly the 

paragraph concerned should mention this fact and secondly expressions valid for 
notched hardwood beams and tenonned softwood and hardwood beams should be 
derived and added to a standard. 

 
 Performing more tests is an important requirement to confirm the conclusions on 

the test results on tenonned beams. The test series performed within this research is 
too small to make definite conclusions. Wood species, tenon geometry and tenon 
cantilever length should be varied to research tenon strength fully. 

 
 TET, and especially the factor c, should be researched further to obtain a 

theoretically completely correct expression.  
 
 The fracture energy in pure tensile spitting perpendicular to the grain, in pure 

parallel splitting to the grain and their combination should be researched for 
hardwoods. 
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1 INTRODUCTION 

1.1 OUTLINE OF THE PROBLEM 
The rivers and canals in the Netherlands contain a large number of locks. A significant part 
of these locks contain mitre gates made of wood. These gates are built with real 
craftsmanship and are still build according traditional design. In contrast to common 
perception wooden mitre gates are very durable; it is not uncommon for a gate to function 
well for 40 years in practice. A big advantage is that maintenance costs are low compared 
with e.g. steel mitre gates. 
 
Wooden mitre gates consist of two vertical members (front and rear post) and horizontal 
cross members which are covered by planks. Figure 11 gives an impression of a lock gate in 
function and Figure 12 illustrates a common design for a wooden mitre gate. The 
crossbeams are connected to the posts by a mortise and tenon joint, depicted in Figure 13. 
 

 
 

 
Figure 11: Lock gate Zuid-Willemsvaart   

(Wijma Kampen B.V., 2012b) 

 
Figure 12: Common design wooden mitre gate 

(Van Leusen (1991), fig. 52.3) 

 
Figure 13: Design mortise and tenon joint (Van Leusen (1991), fig. 63.16) 

Recently building authorities imposed construction companies to check more extensively 
than formerly whether new (to be build) lock gates fulfil the limit states set by the Eurocode.  
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It turned out that according to the additional calculations the mortise and tenon joint should 
fail at a much lower load level than which is usual in practice. However in practice the joints 
perform well, thus obviously there is a flaw in the calculation. Recently a BSc thesis 
(Vermeij, 2011) was written about the subject which indicated that the calculation rules 
from Eurocode 5 (NEN-EN 1995-1-1, 2005) are not applicable for this connection. 
Unfortunately the applied solution in practice often is to adapt the traditional design by 
changing its geometry or adding steel reinforcement to the connection. The problem is then 
circumvented instead of dealt with at its root. 
 
Figure 14 illustrates the immediate cause for this master’s thesis. 
 

 
Figure 14: Immediate cause for this master's thesis 

An important question following the outline of the problem is why does the traditional 
design of the mortise and tenon joint not satisfy today’s standards while the joint has 
proven itself the last hundreds of years? 
 
The main goal of this thesis is to obtain the strength of the mortise and tenon joint in a mitre 
gate of hardwood and to provide means to calculate this strength in practice in order to 
keep traditional wooden mitre gates competitive to the use of other materials. 
 

1.2 RESEARCH QUESTIONS 
For this research the following main questions are formulated: 
 How are the forces distributed in a mortise and tenon joint in a hardwood mitre gate 

and does this connection satisfy the demands from standards and regulations? 
 Can the strength of a tenon be expressed in a formula and do the calculation rules 

for the strength of a notch from Eurocode 5 have to be supplemented for 
hardwoods? 

 Could the connection, based on the research results, be optimized? 
 
 



 

3 

 
From the main questions the following sub questions are formulated: 
 What is the actual force distribution in the mortise and tenon joint taking the actual 

loading into account? 
 How can the strength of a mortise and tenon joint be calculated? 
 What are the material properties of hardwoods which are indicative for the 

occurring failure mechanisms of the mortise and tenon joint and for a separate 
tenon/notch? 

 Can a formula be derived that expresses tenon strength depending on the tenon 
height and length which takes account of the material properties of hardwoods? 

 Does the formula for notch strength from Eurocode 5 need to be changed or 
supplemented for hardwoods based on the material properties obtained by 
experiments? 

 Do the results point to an optimized design for the connection between the 
crossbeam and posts in a wooden mitre gate? 

 

1.3 STRUCTURE OF THE REPORT 
Chapter 2 gives an introduction to the ins and outs of traditional design of wooden mitre 
gates and which problem construction companies actually face when constructing wooden 
mitre gates. The main issues concerning the calculation of the mortise and tenon joint are 
identified and the background of calculation rules concerning notched beams are 
elaborately explained. In chapter 3 an indicative analytical analysis of the first main issue, 
the force distribution in a wooden mitre gate and especially within the mortise and tenon 
joint, is performed and already some characteristics of the finite element model are 
determined qualitatively. The design and characteristics of the finite element model are 
explained in chapter 4 and input data for the model is determined quantitatively. Chapter 5 
discusses results from the finite element model on the force distribution. In chapter 6 the 
second main issue is addressed by an analytical analysis of the strength of a tenonned beam, 
analogue to the derivation of the strength of a notched beam. After in chapter 7 the 
experimental program is explained in detail, chapter 8 discusses the test results which are 
compared with formulas derived in chapter 6. In chapter 9 conclusions are drawn and 
recommendations are made. 
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2 COMMON DESIGN AND BUILDING PRACTICE 
The design and building practice of wooden mitre gates is for a large part based on tradition. 
Therefore many gates in practice look very alike qua overall design, dimensions and 
connections. This chapter first describes the traditional design of wooden mitre gates which 
is still common today. Secondly traditional versus recently imposed calculations verifying 
the structure’s safety are exampled and compared. Subsequently the main issues concerning 
the calculation of a mortise and tenon joint are identified and discussed. Finally research to 
the experience with these gates in practice is presented. 
 
Although notch and tenon strength for hardwoods and the indicative material properties in 
case of splitting, such as the fracture energy perpendicular to the grain, are a subject in itself 
the immediate cause for this master’s thesis are the problems encountered in the calculation 
of wooden mitre gates. Common design and building practice of these gates therefore give 
important guidelines to which this thesis should give account for; it determines the 
framework for this thesis. 
 

2.1 TRADITIONAL DESIGN OF WOODEN MITRE GATES 
In previous century’s the design and construction of mitre gates made of wood has become a 
real craftsmanship, using experience to perfect the structure in time.  Ing. B. van Leusen 
describes a mitre gate made of wood as: “Geperfectioneerde, vrijwel volmaakte constructie” 
(Van Leusen, 1991). Translated to English: “Perfected, nearly ideally structure”. Each part of 
the gate and its connections are thoroughly designed through the years. In fact, as Van 
Leusen (1991) describes, most dimensions relative to its thickness are about equal for most 
wooden mitre gates. These dimensions can also be determined by calculations but still they 
are mostly based on experience due to the fact that loads like a ship-collision are difficult to 
calculate.  
 
As was mentioned briefly in the introduction, in contrast to common perception wooden 
mitre gates are very durable; it is not uncommon for a gate to function well for 40 years in 
practice. This has lots to do with good design and detailing but very importantly also with 
the wood species used. Further, maintenance costs are low compared with e.g. steel mitre 
gates. Next to the usual regular normal inspections, during more intensive inspections seal 
strips and steelwork possibly can be replaced. The main drawback of wooden mitre gates 
compared to steel mitre gates is that dimensions are restricted. Wooden gates measuring 9 
by 12 meters are not uncommon, but they do form an upper limit of size. (Van Leusen, 
1991) 
 
Traditionally wooden mitre gates where made of Oak and in most cases treated with a 
mixture of wood tar and carbolineum. Oak was applied until about 1950-1955 after which a 
period followed in which also Greenheart was applied. From 1965-1970 Azobé became the 
main wood species used for wooden mitre gates. Azobé is still mostly used today because of 
its very good strength and durability properties. (Hakkers, 2012) The main parts of a mitre 
gate made of wood are: front and rear post, crossbeams, compression strut, shoes and 
planking. The common design for a wooden mitre gate is illustrated in Figure 15 in which 
the main parts and specialist terms are indicated. For insiders within the branch special 
reference is made to Appendix A where the specialist terms considering wooden mitre gates 
are translated to and from Dutch. 
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Figure 15: Common design wooden mitre gate with specialist terms (Van Leusen (1991), fig. 52.3) 

As in every structure its performance depends largely on the design and construction of the 
connections. A very important connection in the wooden mitre gate design is the mortise 
and tenon joint between the crossbeams and the posts. This connection is depicted in Figure 
16 and is visible in Figure 15 too. Traditionally its dimensions are based on experience: the 
tenon depth is one third the depth of the door and its length is two thirds the width of the 
posts. In the top view it can be seen that the two notches do not have the same length, about 
40 mm difference. Traditionally in this way the bearing surface was increased, but it could 
also be said the ‘effective’ length of the tenon is decreased. 
 

     
Figure 16: Design mortise and tenon joint (Van Leusen (1991), fig. 63.16 and 63.18) 

The doors are still constructed for a large part by hand but using modern tools as is depicted 
in Figure 17. As Figure 18 depicts the door can be very accurately constructed; dimensions 
can be very precise and corners very sharp. Actually the tenon depth is always sawn a bit 
too large; when putting the connection together the tenon is planed so that every tenon fits 
precisely into the mortise. When constructed the door is slightly tilted upwards on the 
cantilevering side, 20 to 30 mm difference in diagonals, to counteract sagging through self-
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weight and time dependent effects. Therefore the crossbeam is slightly off perpendicular 
and in height-direction the tenon fits slightly loose, about 2 mm when just constructed. 
Behind the tenon there is about 20 mm of open space to make sure the crossbeam fits tight 
to the post as is achieved in Figure 18. 
 

 
Figure 17: Work done by hand on posts 

 
Figure 18: Tight fitting of the connection 

To secure the mortise and tenon joint the tenon is pre-tensioned. As is illustrated in Figure 
19, the holes drilled in the post and the tenon are not aligned by about 3 mm for a dowel of 
about ∅40 mm. At this stage the crossbeam cannot be inserted further as the faces of the 
post and the crossbeam already touch. When inserting the wooden dowel the joint is thus 
firmly tightened by pre-tensioning the tenon in length direction. Practice shows that this 
joint remains tight through the years and does not suffer from relaxation or shrinkage much. 
The wooden dowels are mostly made of Greenheart as radial shrinkage is very low for this 
wood species. Besides these pre-tensioning stresses and ‘normal’ stresses due to the 
loading, additional stresses are not present. Although the door is constructed in a dry 
workshop the timber still maintains a high moisture content of 30 – 40 %  during 
construction which is about the same for the timber in application. The time from felling the 
tree to application is too short for the big wooden elements to dry much. However, it is 
common that drying cracks appear during construction due to drying of the outer layer of 
the timber elements. (Hakkers, 2012) and (Van Leusen, 1991). 
  

 
Figure 19: Pre-tensioning mortise and tenon joint (Van Leusen (1991), fig. 63.5)  

The compression strut prevents tilting of the door. The angle of the compression strut is 
designed in such a way that the framed joints in the rear post and upper crossbeam have 
sufficient space to transmit forces. By connecting the compression strut with the rear post 
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and the upper crossbeam instead of connecting it with respectively the lower crossbeam 
and the front post the forces are transmitted to the lock walls through the most direct route. 
It is preferable to end the shore at the height of the upper pivot to transfer the horizontal 
component of the force from the compression strut as directly as possible to the upper 
pivot. The planking is inclined in the same angle as the compression strut. Each plank is 
preferably one piece and is connected to the following watertight by a half-lap joint glued 
together. 
 

   
Figure 20: From left to right: cut-out for pivot shoe, pivot and neck shoes (Van Leusen (1991), fig. 61.6), 

neck and bracket (Van Leusen (1991), fig. 61.8) 

The door’s pivots are placed at the bottom and top of the rear post as illustrated in Figure 
15. Large casted or welded steel shoes are connected with bolts to the rear post and upper 
or lower crossbeam. The shape of this steel shoe is cut into the post and crossbeam to 
provide a tight connection. For applications where large water differences will be present 
the upper pivot is often connected by a bracket which does not fully surround the pivot’s 
neck and the pivot bowl is slightly larger than the pivot. Tolerances can then be somewhat 
relaxed; when the doors close they can settle under influence of the large loading. The front 
posts will then fully seal the opening and forces will be transferred entirely to the lock wall 
via the quoin post instead of partly via the pivots. The lower pivot only carries the dead 
weight of the door itself and any secondary structures as a gangway. When the door is 
opened the upper pivot transmits tension forces from the upper crossbeam to the bracket. 
 
The opening is sealed watertight by the front posts (depicted in Figure 21) and seal strips 
fixed to the lower crossbeam and the rear post. The front posts are pushed firmly together 
while the seal strips are pressed against the rise in the floor of the lock and against the 
quoin post at the corner of the door socket (Figure 22). The seal strips are made from 
relatively soft wood species such as Oak or Douglas to assure good water tightness on the 
irregular stone surface. Although it is possible to construct the sealing edges very 
accurately, especially for older gates, leakage may occur; the application allows this to 
happen though. 
 

 
Figure 21: Vertical section of front posts (Adapted from Wijma Kampen B.V. (2012c)) 

The rise supports the lower crossbeam at the horizontal seal strip. It is made of natural 
stone or precast concrete blocks or steel and runs over the entire width of the door. The 
door is supported by the quoin post at the vertical seal strips and at the back of the rear 
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post. This support is made of natural stone, steel or precast concrete and has a highly 
worked shape. Usually this shape runs over the entire height of the door. In Figure 22 the 
quoin post and door are visible during hanging in the door. 
 

 
Figure 22: Quoin post and door during hanging 

in the door. (Wijma Kampen B.V. (2012a)) 

RC

 
Figure 23: Door rotates clear from concrete wall 

Because the seal strip fixed to the rear post and the rear post itself should not scrape against 
the quoin post the rotation center of the door is not located in the center of the rear post, as 
can be seen in the middle photograph in Figure 20. In Figure 23 it is illustrated that when 
the door opens the seal strip and rear post rotate clear from the quoin post when the 
rotation center is not centered. 
 
Many wooden mitre gates are fitted with a tension bar as is also depicted in Figure 15. It is 
designed to prevent tilting of the door. By turning the swivel the bar can be tensioned. It is 
however debatable if such a bar has any function because the shore-action of the 
compression strut and planking is much greater due to the much larger stiffness of these 
elements. Although sufficiently thick bars will carry a part of the load, e.g. creep of the 
connection with the timber may almost certainly reduce this part fast. As tensioning of the 
bar is dependent on relatively unreliable human intervention it seems safer not to take the 
tension bar into account. In Figure 15 also metal strips are illustrated, these do not resist 
forces. They are not capable of doing so but they fix the connections in place. 
 

2.2 EXPERIENCE FROM PRACTICE WITH WOODEN MITRE GATES 
As part of this thesis some research was done to the experiences of regional water 
authorities and the executive organization of the ministry of transport Rijkswaterstaat with 
timber lock gates. In the Netherlands the water authorities are among other things 
responsible for the management of many locks including its gates. All 25 Dutch regional 
water authorities and Rijkswaterstaat where approached and questioned about the 
performance of the wooden mitre gates under their management. 
 
It was found that the water authorities which responded manage a total of about 72 locks in 
which about 270 wooden mitre gates are applied. From these gates it is known that 140 are 
made from Azobé and 26 gates from Oak. None of the water boards encountered problems 
with the mortise and tenon joint in all these gates; any loss or damage caused by the mortise 
and tenon joint was absent. 
 
As will be exampled in the following paragraph, when determining the safety of wooden 
mitre gates with traditional (relative) dimensions and applying calculation rules from EC5 
on the mortise and tenon joint, unity checks larger than 3.0 or 4.0 are not uncommon. 
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Considering the fact that the regional water authorities report average lifetimes of 30-50 
years and that cases of old Oak doors having a lifetime of 60 years are known, there must 
have been damage or loss caused by failing mortise and tenon joints if the obtained unity 
checks would be correct. 
 
Visuals inspection find place according protocols (inspection framework ‘risicogestuurd 
inspecteren’ from Rijkswaterstaat) for which the exact interpretation differ somewhat per 
water authority. The protocols aim to control the existing risk and verify that the accepted 
risk is met. It implies three types of inspections (Banning, 2012): 
 Operators and users check the structure daily to prevent immediate danger 

(‘schouw’ in Dutch). 
 Once or twice a year (depending on the risk) wooden mitre gates are visually 

inspected to draw up/confirm maintenance routines (‘toestandsinspectie’ in Dutch), 
usually according NEN 2767.  

 About every 8-15 years the wooden doors are removed and inspected on dry 
ground. The state of the structure can then be inspected closely and repairs can be 
performed. During these inspections the seal strips and steel parts can be replaced 
when needed and possible damage to the wood can be repaired. Also cosmetic 
repairs of the wood can be carried out. 

 
Reasons for repair or replacement of a gate reported by the water boards are all from the 
same type: deteriorated wood and/or worn-out steel parts. Namely: 
 As the seal strips are made from softer wood species than used for the remainder of 

the structure, these strips may need to be replaced due to degradation although the 
structure itself is still in good condition. 

 Steel parts like pivots, pivot shoes and sluice valves can be worn out. 
 Deterioration of the wood at the water line eventually takes place (Figure 24). 
 On top of the crossbeams water and eventually sand and overgrowth gathers. After a 

period of time the wood will decay. Good drainage and regular cleaning will slow 
this process considerably though. 

 The planking decays at its ends at the posts and upper and lower crossbeams 
(Figure 25). The end of the planking is susceptible to degradation as the grain is 
exposed. 

It has to be remarked that the first two points can relatively easy be solved when the door is 
removed for inspection. When the last three points have reached an excessive state it is 
often the reason to replace the entire door. 
 

 
Figure 24: Deteriorated wood at the water line 

of an Oak door. Note that the door is being 
renovated and some parts are already replaced. 

 
Figure 25: Deteriorated planking of an Oak door 

(Van Dongen, 2012) 
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To tackle the problem of the joint failing the unity check according calculations two 
solutions are applied in practice: firstly the joint is adapted by changing relative dimensions 
of the mortise and tenon (Figure 26). Then, by employing all calculation possibilities the 
unity check can be brought to a value below 1.0, as will be illustrated in paragraph 2.3. 
Secondly the joint can be reinforced with 
steel brackets or other reinforcing 
structures (Figure 27). The load is then 
transferred (according the calculation 
though) through the steel parts. 
Unfortunately the problem is thus often 
circumvented instead of dealt with at its 
root. 
 

 
Figure 26: Adapted relative dimensions mortise 

and tenon joint 

 

 
Figure 27: Example of steel reinforcement  
mortise and tenon joint (Plokkaar, 2012) 

From (regular inspections in) practice it is clear the traditional mortise and tenon joint 
design functions very well. The calculations which result in unity checks several times 
higher than unity must be incorrect as not a single case of damage or loss is known where 
the mortise and tenon joint is involved during many decades in which a single gate 
functions. The need for a proper calculation or strength verification method is therefore 
obvious. 
 

2.3 TRADITIONAL AND RECENT STRENGTH VERIFICATION 
For a lock gate it is very important to know its strength is sufficient and the structure meets 
safety standards. Especially for gates which have to resist large water level differences 
and/or are part of the flood defence system. In the past wooden mitre gates were calculated 
very basically. After hundreds of years of development and application the entire design has 
proven to be safe. Today every part and connection of the structure has to be checked by 
calculation to verify its strength and safety. As will be described in the following paragraphs 
for a mortise and tenon joint in a wooden mitre gate no applicable calculations rules are 
available. Construction companies therefore run into trouble when building departments 
demand a complete calculation. 
 
Traditionally most dimensions like the height of the crossbeam or width of the rear post are 
deduced from the thickness of the door which is determined by experience. During the last 
decades the crossbeam was checked for bending and the mortise and tenon joint was taken 
into account sometimes by checking the shear force using the tenon height (thus without 
any reduction factor to take into account splitting) for loading by water level difference and 
waves. Because the traditional design takes account of large loads like e.g. a ship-collision 
the mentioned checks were seldom decisive. Hereby compression in the crossbeam and in 
the joint due to the pointing shape of the two doors was not taken into account. Further the 
compression strut and planking were checked for its ultimate limit state where the planks 
were not taken into account as a strut. 
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Recently building authorities imposed construction companies to perform more limit state 
checks. When taking into account compression in the crossbeam, both for combined 
bending and compression as for compression at the surface of the post, no problems are 
encountered and unity checks are still below 1.0. However, when applying paragraph 6.5.2 
of Eurocode 5 (NEN-EN 1995-1-1, 2005) to consider splitting of the wood at the lower notch 
of the tenon, the tenon does not fulfil the ultimate limit state. This is very remarkable 
because from experience from practice, as described in paragraph 2.2, no failures of the 
mortise and tenon joint are known. 
 
Using the formula for notch strength from Eurocode 5 the maximum shear stress in a notch 
needs to be checked using a reduced shear strength as is indicated below:

𝜏𝑑 =
1.5𝑉
𝑏ℎ𝑒𝑓

≤ 𝑘𝑣𝑓𝑣,𝑑 

 
where: 

𝑘𝑣 =
𝑘𝑛 + [𝑓𝑎𝑐𝑡𝑜𝑟 𝑛𝑜𝑡𝑐ℎ  𝑖𝑛𝑐𝑙𝑖𝑛𝑎𝑡𝑖𝑜𝑛]

√ℎ ��𝛼(1− 𝛼) + 0.8 𝑥ℎ�
1
𝛼 − 𝛼2�

, 

kn depends on the wood product: LVL, 
solid timber or glued laminated timber ,  
α = hef/h and other variables are depicted 
in Figure 28. 

 

 
Figure 28: Variables notch strength formula EC5 

(NEN-EN 1995-1-1 (2005), Figure 6.11) 

 
When the above formula for notch strength is applied to the mortise and tenon joint in 
wooden mitre gates in today’s practice it is assumed that heff is equal to the height of the 
tenon as is described in Ehlbeck and Kromer (1995). The result of this approach is that the 
ultimate limit state check is not fulfiled in most cases. As mentioned one of the possibilities 
to satisfy building regulations is to alter relative dimensions of the mortise and tenon joint. 
In Figure 30 examples of a traditional and adapted design are depicted. Paragraph 2.4.1 
examines the background of the notch strength formula, first a simple calculation will 
illustrate the calculation for two designs. 
 
For the considered designs a distributed load of Qd = 40 kN/m is assumed. The height of the 
beam is h = 410 mm and the width is b = 420 mm. The factor kn is taken as 5 for solid timber. 
The design shear strength is fv,d = fv,k kmod / γM where kmod = 0.70 (short term loading) and γm 
= 1.3. 
 

 

 
Figure 29: Reduction of the load which causes splitting 

 
 
 
 

45° 

Reduction split causing load
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Traditional design and calculation 
For a beam length of L = 6.25 m the shear 
force becomes Vd = ½QdL =  125 kN. 
Further heff = 153 mm, α = heff/h = 0.37 
and x = 250 mm (resultant force left of the 
middle of the seal strip). Then the 
reduction factor becomes kv = 0.20. 
 
For strength class D70 the characteristic 
shear strength is fv,k = 5 N/mm2 (NEN-EN 
338, 2009). Then fv,d = 2.69 N/mm2. 
 
The occurring shear stress in the tenon is 
τd = 2.91 N/mm2. It is remarkable that the 
design shear strength is already lower 
than the occurring shear stress without 
applying the reduction factor. 
 
The unity check becomes: τd / kvfv,d = 5.54 
>> 1.0 
The unity check becomes very high for the 
traditional design according a simple 
calculation. 
 

Adapted design and calculation 
The beam length of L = 6.25 m is reduced 
by 170+120+50 = 340 mm to only take 
into account the shear force which 
contributes to splitting. Then the shear 
force becomes Vd = ½QdLr =  118 kN.  
Further heff = 170 mm, α = heff/h = 0.41 
and x = 75 mm (resultant force at the edge 
of the seal strip). Then the reduction 
factor becomes kv = 0.35. 
 
Using the results from Van de Kuilen and 
Blass (2005) the characteristic shear 
strength is fv,k = 13.5 N/mm2 . Then fv,d = 
7.27 N/mm2. 
 
The occurring shear stress in the tenon is 
τd = 2.48 N/mm2. Then the unity check 
becomes: τd / kvfv,d = 0.98 < 1.0. 
Although the joint passed the strength 
check it is still remarkable that according 
the calculation the strength is only just 
sufficient.

 

 
Figure 30: Example of a more traditional (left) and current (right) design mortise and tenon joint 

(Adapted from Wijma Kampen B.V. (2012c)) 
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2.4 BACKGROUND EC5 EXPRESSION FOR THE STRENGTH REDUCTION OF NOTCHES 
It is important to examine the background of the notch strength reduction formula from 
Eurocode 5 to be able to assess its applicability to hardwood tenonned beams. Gustafsson 
(1988) derived a theoretical basic expression for the reduced strength of a notched beam by 
applying linear fracture mechanics. After an extensive testing project to determine the 
fracture energy perpendicular to the grain of softwoods (Larsen & Gustaffson, 1990) 
Gustafsson proposed a reduction factor on the shear strength to introduce the splitting 
failure mechanism. This shear strength check is later introduced in the EC 5. 
 
Starting the derivation Gustafsson (1988) explains that theoretical analysis of crack 
propagation by developing a maximum stress or strain criterion or by applying Weibull-
theory is difficult due to singularity at the crack tip. Gustafsson further explains for normal 
sized beams and larger the fracture  process region is relatively small and therefore when 
assuming this region concentrated in one point, as is done for linear fracture mechanics, the 
same results are found as for non-linear fracture mechanics. 
 

2.4.1 DERIVATION THEORETICAL BASIC EXPRESSION FOR NOTCH STRENGTH 
According Gustafsson (1988) in the following a theoretical basic expression for the strength 
of notched beams, as depicted in Figure 31, is derived. Units are indicated between straight 
brackets […]. First assumptions are: the material is assumed to be orthotropic and linear 
elastic. When applying fracture mechanics it is assumed that crack initiation is already 
present. For this application where rough handling and shrinkage and swelling due 
moisture differences are to be expected, this assumption is appropriate. 
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Figure 31: Beam with notched ends 

 

αd 

βd
L/2

x

V Δx

d

 
Figure 32: Symmetric half of the notched beam 
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Figure 33: Deflection of a notched beam 
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From the beam depicted in Figure 31 the 
symmetric half (Figure 32) is considered. 
Then, according Figure 33 and Figure 34, 
the system contains a potential energy 
[Nm] of: 

𝑊𝑝 = −
1
2
𝑉𝛿 

where V [N] is the shear force and 𝛿 [m] 
the deflection at midspan. 

δ 

V

W

 
Figure 34: Potential energy for the system 

 
When a crack develops and increases in length with Δ𝑥 [m] while the shear force V remains 
constant the potential energy changes with Δ𝑊𝑝 due to the increased deflection Δ𝛿: 

Δ𝑊𝑝 = −
1
2
𝑉Δ𝛿 = −

1
2
𝑉2Δ �

𝛿
𝑉
� 

 
Next an energy balance can be formed. It is assumed the crack tip is concentrated at one 
point. Crack development occurs when the loss of potential energy −Δ𝑊𝑝 due to a shear 
force 𝑉𝑓 equals the energy needed to extend the crack. When 𝐺𝑐 [N/m] is noted as the 
(material dependent) fracture energy per crack area the energy balance then becomes: 
 1

2
𝑉𝑓2Δ �

𝛿
𝑉
� = 𝐺𝑐𝑏Δ𝑥 [1]  

where b is de width of the beam and Δ𝑥 the length of the crack. 
 
The part of the beam below the crack can be considered inactive, therefore an increase of 
the crack length Δ𝑥 is equivalent to an increase in length of the notch of 𝑑Δ𝛽. By inserting 
this relation into [1], introducing 𝛼2 on both sides of the equation and taking the limit 
Δ𝛽 → 0 it follows that: 

            �
𝑉𝑓
𝛼
�
2 𝑑 �𝛿𝑉�

𝑑𝛽
=

2𝐺𝑐𝑏𝑑
𝛼2

        → 

 𝑉𝑓
𝑏𝛼𝑑

=
�

2𝐺𝑐
𝑏𝛼2𝑑

∗
1 

 
𝑑 �𝛿𝑉�
𝑑𝛽  

 
[2]  

 
The term 𝛿

𝑉
 is the compliance of the symmetric half of the beam. To determine the variation 

of the  compliance with 𝛽 the deflection of the beam needs to be calculated. The beam 
deflection consists of four terms where the total deflection is equal to the summation of 
those terms: 𝛿𝑡𝑜𝑡𝑎𝑙 = 𝛿𝑙 + 𝛿𝑣 + 𝛿𝑟 + 𝛿𝑏. 
 
𝛿𝑙  is the local deformation of the timber at the supports and point of loading. Because 𝛿𝑙  is 
not dependent on 𝛽 it does not need to be calculated. 
 
𝛿𝑣 is the shear deformation of the beam. According linear elastic theory the deflection can be 
determined by the following equation where the result depends among other variables on 
𝛽: 

𝛿𝑣 =
1.2𝑉
𝐺𝑥𝑦

�
𝛽𝑑
𝑏𝛼𝑑

+
𝑙
2 − 𝛽𝑑
𝑏𝑑

� 

where 𝐺𝑥𝑦 [N/m2] is the shear modulus. 
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𝛿𝑟  is an increase in deflection originating at the transition of the notched part of the beam to 
the full-size beam. The notch is “clamped” into the full-size beam, but only after some 
distance from the notch the normal stresses by bending extend over the full height of the 
beam (Figure 35). Close to the change of cross section the full bending capacity of the full-
size beam is therefore not fully activated and some extra deflection develops. It is assumed 
𝛿𝑟  varies linearly with both the moment 𝑉𝛽𝑑 and the length of the cantilever 𝛽𝑑: 

𝛿𝑟 = 𝑉𝛽𝑑 ∙ 𝑐 ∙ 𝛽𝑑 = 𝑉𝑐𝛽2𝑑2 
In fact, by this adding the deflection 𝛿𝑟  a fictive moment spring is placed at the discontinuity: 
multiplying the factor c [(Nm)-1] with the moment, causes a rotation, which results in the 
deflection 𝛿𝑟  when multiplied with the cantilever length. For c the following relation is 
chosen: 

𝑐 =
12

𝑏(𝛼𝑑)2 �
(1− 𝛼)(1− 𝛼3)

10𝐺𝑥𝑦𝐸𝑥
 

where 𝐸𝑥 [N/m2] is the modulus of elasticity parallel to the grain. 
 

 
Figure 35: Simplified normal stress distribution notch close to discontinuity 

𝛿𝑏 is the ordinary bending deformation of the beam. According linear elastic theory the 
following  expression can be derived: 

𝛿𝑏 =
𝑉

 𝐸𝑥
𝑏𝑑3
12  

�
𝑙3

24
+

(𝛽𝑑)3

3
�

1
𝛼3

− 1�� 

 
After some rearranging of terms the total beam deflection can be written in the following 
form: 
 𝛿 = 𝐴(𝐵 + 𝛽𝑑)3 + 𝐶 [3]  
where C is constant with respect to 𝛽, 

𝐴 =
𝑉

3𝐸𝑥
𝑏𝑑3
12

�
1
𝛼3

− 1� 

and 

𝐵 = 𝑑�
𝐸𝑥

10𝐺𝑥𝑦

�1
𝛼 − 1�

� 1
𝛼3 − 1�

  

 
Note the expression for the total beam deflection [3] looks similar to the deflection of a 
cantilevered beam 𝑃𝐿

3

3𝐸𝐼
 where B is the extra deflection caused by shear deformation and 

additional curvature near the change of cross-section. 
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As the deflection is now known only the material dependent fracture energy per crack area 
𝐺𝑐 needs to be defined further. Fracture can occur through different (combined) modes 
(Figure 36). Two distinctive modes are splitting due to perpendicular tensile stresses called 
mode 1 and splitting due to shear 
stresses called mode 2. For a beam for 
which its notches are on the tension 
stress side of the beam it is reasonable to 
assume only mode 1 fracture occurs. 
Therefore 𝐺𝑐 is replaced by the fracture 
energy in pure tensile spitting 
perpendicular to the grain 𝐺𝑓,𝑦  which is 
also material dependent. 

 

 
Figure 36: Fracture modes 

When equation [3] is differentiated with respect to 𝛽 the result can be inserted into the 
energy balance [2]. Replacing the material dependent fracture energy per crack area 𝐺𝑐 with 
fracture energy in pure tensile spitting perpendicular to the grain 𝐺𝑓,𝑦  then results in the 
theoretical basic expression for the reduced strength of a notched beam derived by 
Gustafsson: 
 

𝑉𝑓
𝑏𝛼𝑑

=
�𝐺𝑓,𝑦

𝑑

�0.6(𝛼 − 𝛼2)
G𝑥𝑦

+ 𝛽�
6 �1
𝛼 − 𝛼2�
𝐸𝑥

 
[4]  

where 𝑉𝑓 [N] is the shear force, 𝑏 [m] is the width of the beam, 𝐺𝑓,𝑦  [N/m] is the fracture 
energy in pure tensile spitting perpendicular to the grain (mode 1), 𝐺𝑥𝑦 [N/m2] is the shear 
modulus and 𝐸𝑥 [N/m2] is the modulus of elasticity parallel to the grain. In Figure 31 𝛼 [-], 𝛽 
[-] and 𝑑 [m] are indicated. 
 
Gustafsson (1988) compared the theoretical basic expression with experimental results 
performed for this research and experimental results from literature on notched beams. 
Important conclusions are: 
 Experimental results show a significant size effect in notch strength for varying 

beam depth. Weibull theory cannot explain this size effect as the size of the fracture 
process region is constant and thus the number of possible failure locations do not 
increase for beams with varying depth. The theoretical analysis of above  predicts a 
size effect proportional to 𝑑−0.5. Although literature also presents other 
(comparable) relations which are slightly more accurate, the theoretical relation 
gives sufficiently accurate results for most engineering applications. 

 
 The derived theoretical basic expression for the reduced strength of notched beams 

corresponds well with test results. 
 
 The material properties fracture energy perpendicular to the grain, modulus of 

elasticity along the grain and the shear modulus are decisive for the reduced 
strength of notched beams. 

 
 No statistical correlation between the tensile strength perpendicular to the grain 

and the reduced strength of notched beams could be found. 
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2.4.2 OBTAINING THE FRACTURE ENERGY PERPENDICULAR TO THE GRAIN 
To determine the fracture energy in pure tensile spitting perpendicular to the grain 𝐺𝑓,𝑦  an 
extensive experimental program was set up executed by several research institutes. Larsen 
and Gustaffson (1990) report the results. When all results for European softwoods are 
considered as one population a good relation between the fracture energy in pure tensile 
spitting perpendicular to the grain and density is found: 
 𝐺𝑓,𝑦 = 1.04𝜌 − 146 [5]  
The correlation coefficient for this relation is 0.78, a relatively high value. A graph with the 
results is depicted in Figure 37. For this relation the unit of 𝐺𝑓,𝑦  is [N/m] and of 𝜌 is [kg/m3], 
the relation applies to mean values. 
 
To be able to obtain characteristic values for the fracture energy equation [5] is adapted. For 
𝜌 between 300 en 450 kg/m3 the relation between fracture energy and density can be 
replaced by: 
 𝐺𝑓,𝑦 = 0.65𝜌 [6]  
For 𝜌 = 375 kg/m3 both relations [5] and [6] return the same value for the fracture energy.  
 

 
Figure 37: Fracture energy verses density for European softwoods regarded as one population (Source: 

Larsen and Gustaffson (1990), Fig. 5) 
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2.4.3 DERIVATION OF A DESIGN FORMULA FOR REDUCED NOTCH STRENGTH  
In order to be able to fit the basic theoretical expression [4] to experimental results and 
obtain a design formula for notch strength Larsen and Gustafsson (1992) first reformulated 
expression [4] the following way. By introducing a factor 1.5, a factor 𝑘 [-] and a factor 𝑓𝑣

𝑓𝑣
 

[N/m2 / N/m2] expressions [7] and [8] are derived. Note the shear strength is introduced 
both in the numerator as in the denominator. Theoretically the factor 𝑘 is equal to 1.5 (to 
account for the introduced factor 1.5 on the left side of equation [7]). The shear strength in 
the denominator is then brought within the square root in the numerator. Finally the 
reduction factor 𝑘𝑣 [-] is introduced which contains the largest part of the theoretical 
expression. 
 
 3

2
𝑉𝑓
𝑏𝛼𝑑

= 𝑘𝑣𝑓𝑣  [7]  

where 𝑉𝑓 [N] is the shear force and 𝑏 [m] is the width of the beam. In Figure 31 𝛼 [-], 𝛽 [-] 
and 𝑑 [m] are indicated. 𝑘𝑣 is given by: 

 
 

𝑘𝑣 =

𝑘�
𝐸𝑥𝐺𝑓,𝑦
𝑓𝑣2𝑑

�0.6(𝛼 − 𝛼2)𝐸𝑥
G𝑥𝑦

+ 𝛽�6 �1
𝛼 − 𝛼2�

 [8]  

 
When it is assumed Ex/Gxy = 16 as is done in Eurocode 5 the denominator of 𝑘𝑣 ([8]) can be 
approximated by: 
 

3��𝛼 − 𝛼2 + 0.8𝛽�
1
𝛼
− 𝛼2� [9]  

 
The final approximation of 𝑘𝑣 is to move 𝑑 to the denominator and assuming the numerator 
constant for different strength classes by introducing the factor K: 
 𝑘𝑣 =

𝑘 ∙ 𝐾

√𝑑 �√𝛼 − 𝛼2 + 0.8𝛽�1
𝛼 − 𝛼2�

 
[10]  

where   
 

𝐾 =
1
3
�
𝐸𝑥𝐺𝑓,𝑦

𝑓𝑣2
 [11]  

where 𝑘𝑣 [-] is the reduction factor on the shear strength, K �√𝑚� is a material dependent 
factor to be determined by tests, 𝐺𝑓,𝑦  [N/m] is the fracture energy in pure tensile spitting 
perpendicular to the grain (mode 1), 𝐺𝑥𝑦 [N/m2] is the shear modulus and 𝐸𝑥 [N/m2] is the 
modulus of elasticity parallel to the grain. 
 
By formulating 𝑘𝑣 like equation [10] it is possible to fit this theoretical expression to 
experimental results of tests on notched beams by adjusting k. 
 
Larsen and Gustafsson (1992) determined K ([11]) using material parameter values from 
NEN 384 (1991) and by tests. In Table 1 K is determined where it is assumed the ratio’s 
between the material parameters are the same for mean and characteristic values. 
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Table 1: Determination of K (EN 338, 1991) 

Strength class C14 C22 C27 C30 C35 C40 C70 
𝐸05 N/mm2 4700 6700 8000 8000 8700 9200 16700 
𝑓𝑣,𝑘 N/mm2 1.7 2.4 2.8 3 3.4 3.8 6.2 
𝜌𝑘  kg/m3 290 340 370 380 400 420 900 
𝐺𝑓,𝑦,𝑘 N/mm 0.189 0.221 0.241 0.247 0.260 0.273 0.585 
𝐾 √𝑚𝑚 5.84 5.34 5.22 4.94 4.66 4.40 5.31 

 
For nine test series 𝑘 ∙ 𝐾 was calculated after which for structural timber an average value of 
𝑘 ∙ 𝐾 = 5.18 was found. This value approximately corresponds with K calculated in Table 1. 
Therefore, for structural timber a value of 𝑘 ∙ 𝐾 = 5 is chosen which corresponds with k = 1. 
 
After adding a factor 𝑘𝑖 = 1.1𝑖1.5

√𝑑
 to 𝑘𝑣 to include tapered beam ends Larsen and Gustafsson 

(1992) concluded with an expression for the verification of notched beam strength for 
structural timber which is still part of the Eurocode today: 
 
 𝜏𝑑 =

3
2
𝑉𝑓
𝑏𝛼𝑑

≤ 𝑘𝑣𝑓𝑣,𝑑 [12]  

where 
 

𝑘𝑣 =
5 �1 + 1.1𝑖1.5

√𝑑
�

√𝑑 �√𝛼 − 𝛼2 + 0.8𝛽�1
𝛼 − 𝛼2�

 [13]  

 
In fact with equation [12] a usual unity check on shear strength is performed where 𝑘𝑣 is 
added to reduce the shear strength to take into account possible splitting at the root of the 
notch. As the notch is located at the end of the beam, where a shear strength check is usual, a 
practical strength check is obtained for the engineer. However, the derivation of equation 
[12] includes adding the shear strength in both the numerator as the denominator. 
Therefore the failure mechanism itself has nothing to do with this shear strength value. 
 

2.5 MAIN ISSUES CONCERNING CALCULATION MORTISE AND TENON JOINT STRENGTH 
The remarkable case of the joint not fulfiling the ultimate limit state can be addressed to the 
three main parts of the calculation as exampled in the previous paragraph. These three main 
parts are the assumed force distribution, material properties and use of the formula for the 
reduced strength of a notch from EC5. 
 

2.5.1 FORCE DISTRIBUTION 
As is exampled in paragraph 2.3 calculations common in practice assume a very simple force 
distribution. Bending in the crossbeam caused by water pressure acting normal to the beam 
axis causes shear forces in the beam. The shear force is transmitted through the tenon to the 
post at the location of the seal strip. Compression in the crossbeam due to the pointing 
shape of the two doors is not taken into account. This compression force can however have 
important consequences for the actual force distribution in the joint regarding amongst 
other things that the compression force does not have to work centrically in the crossbeam 
due to the eccentric support at the front post. Different directions of the fibres of the 
crossbeam and post and the use of a different wood species for the seal strip could also 
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influence the force distribution. How the load is actually transferred thus remains unknown 
up to now. 
 
Raadschelders (2012) suggested that by assuming the load is transferred by shear at an 
enlarged vertical contact surface around the mortise (without further considering the tenon, 
see Figure 38) higher joint strengths can be obtained. Although the assumed load 
distribution could be correct the question remains which strength value for rolling shear is 
appropriate. In the report the shear strength is used which is increased by 15% to take the 
influence of compression stresses in the connection (interlocking of grains) into account. 
But it may be more appropriate to use the rolling shear strength which is about four times 
lower than shear strength according NEN-EN 338. 
 
It is however not known if, or to which 
extent, the rolling shear strength is 
increased by compression stresses. 
Further, perhaps the friction coefficient 
under compression of timber to timber is 
indicative or could increase the possible 
transferable load. Thus there is 
uncertainty concerning the load transfer 
and the resulting connection strength. 

 
Figure 38: Vertical contact surface around 

mortise (Source: Raadschelders (2012))

 

2.5.2 MATERIAL PROPERTIES OF HARDWOODS 
Material properties for hardwoods are given by NEN-EN 338 (2009). An extra difficulty in 
studying the mortise and tenon joint strength is that important material properties for 
hardwood needed in the calculation are not based on experimental research on hardwoods.  
This applies to shear strength in bending, tensile strength perpendicular to the grain, rolling 
shear strength and fracture energy perpendicular to the grain. Further Eurocode 5 (NEN-EN 
1995-1-1, 2005) states the rolling shear strength is equal to twice the tensile strength 
perpendicular to the grain. Referring to the results from Blass and Görlacher (2000) this is 
correct for European Spruce, but again it remains unknown whether this relation is valid for 
hardwoods too. Thus not only the (characteristic) values for these material properties are 
unknown but also their relations. 
 
The first calculation exampled in paragraph 2.3 showed that using the shear strength value 
from NEN-EN 338 the unity check will easily be larger than 1.0, even without applying the 
reduction factor from EC5. It is therefore also known that the shear strength of hardwoods 
given by EN 338 is not based on proper research on large pieces (Van de Kuilen & Leijten, 
2002). In the second calculation the shear strength value determined by Van de Kuilen and 
Blass (2005) is used. It is however questionable if this shear strength value is applicable in 
this situation because this value is determined for a very different loading situation. Shear 
strength values show variation for different ways of loading because of different secondary 
stresses during loading and volume effects. 
 
As will be explained in the following paragraph the relation between both the shear strength 
and density with the fracture energy perpendicular to the grain is an important part of the 
notch strength reduction formula. As these relations and the fracture energy perpendicular 
to the grain itself are unknown for hardwoods it is important to determine or estimate these 
material properties to be able to assess the applicability of the notch strength reduction 
formula to tenons. 
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2.5.3 APPLICABILITY NOTCH STRENGTH FORMULA 
As described in paragraph 2.3 the design formula for notched beams is used when 
calculating the strength of the mortise and tenon joint. Without further information this 
seems reasonable since the indicative failure mechanism for notches, splitting of the wood 
underneath the notch, is also indicative for tenons. 
 
Yet Vermeij (2011) indicated in a Bachelor thesis that the notch strength formula given by 
Eurocode 5 is not valid for hardwood beams with a notch or tenon. Both the ratio between 
the results for softwood and hardwood beams as the ratio between the results for beams 
with a tenon and notch where significantly lower according the notch strength formula than 
the test results indicated. In this research a shear strength value obtained from research by 
Van de Kuilen and Leijten (2002) and possibility 1 from Figure 39 for α is used. 
 
The background of the Eurocode 5 expression for the strength reduction of notches, 
expounded in paragraph 2.4,  indicates two points of interest when applying the reduction 
formula from EC5 to hardwood tenons instead of to softwood  notches. 
 
 
DIFFERENCE BETWEEN SOFT- AND HARDWOOD 
 
The reformulation of the theoretical basic expression for notched beam strength from 
Gustafsson (1988) to the reduction formula from Eurocode 5 (see paragraph 2.4.3) may be 
the main cause of the notch strength reduction formula not being applicable to a notch in 
hardwood beams. It is the question whether the relation between material properties for 
softwoods, expressed in the factor 𝑘 ∙ 𝐾, is also valid for hardwoods. The use of the 
Eurocode 5 expression, as is done for the example in paragraph 2.3, would then be 
questionable when hardwood is applied. 
 
 
DIFFERENCE BETWEEN A NOTCH AND TENON 
 
When applying the notch strength reduction formula for tenons it first seems uncertain how 
to define the variable 𝛼 for a tenon. The reduction factor kv highly depends on the ratio α.  
 
For a notch with height deff, α is simply defined as deff/d. For a tenon different definitions for 
α are possible as is depicted in Figure 39. When applying the reduction formula for the 
strength of a notch to a tenon the traditional and first possible definition of α is division of 
the tenon height by the beam height. As Figure 39 suggests the assumed geometry does not 
represent the tenon well, susceptibility to splitting is assumed much greater than present in 
reality because a much larger part of the beam is separated when splitting occurs.  The 
resulting reduction factor could however be considered safe. This definition of α is in fact 
prescribed by Ehlbeck and Kromer (1995) in the widely used book Timber Engineering 
STEP 1. A second possible definition of α includes the right position of the tenon, but it is 
unsure which influence the upper part of the beam has on the result. Possibly stresses are 
more spread out in reality and the assumed geometry is too severe. A third possible 
definition of α includes the effect of the upper part of the beam, but the larger stiffness of the 
assumed notch with respect to the tenon can have influence on the strength reduction too. 
Possibly, due to a larger curvature at the root of the notch , reality may be more severe. 
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Figure 39: Possible configurations to define ratio α (α = deff/d, if α1 = 1/3 then α2 = 1/2, α3 = 2/3) 

However, when a closer look is taken at the derivation of the notch strength reduction 
formula in paragraph 2.4.1, the only correct definition of 𝛼 is deff/d according geometry 1 
(Figure 30). To obtain equation [2] in paragraph 2.4.1, 𝛼2 is added on both sides of the 
equation. Therefore 𝛼’s definition is not of importance here. Further, 𝛼 is introduced when 
determining the deflection of the notched beam. The expressions for both the bending and 
shear deformation are only correct for a tenon when geometry 1 according Figure 30 is 
used. An important difference between a notch and tenon lies in the factor ‘c’ which takes 
into account that normal stresses need some distance from the tenon to extend the full 
beam height. The factor ‘c’ will be different for a notch and tenon as Figure 40 illustrates. 
Therefore, to determine the reduction of the strength of a tenon due to splitting, in any case 
the factor c (or equivalent factor) needs to be obtained. 
 

  
Figure 40: Simplified normal stress distribution for a notch and tenon close to the discontinuity 
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3 ANALYTICAL ANALYSIS FORCE DISTRIBUTION 
Before the mortise and tenon joint is analysed in more detail using finite element modelling 
(FEM) a first analysis of the force distribution and stresses in the joint is performed by hand 
to obtain a first insight in the force distribution. 
 

3.1 GLOBAL FORCE DISTRIBUTION 
To analyse the internal forces and stresses in the mortise and tenon joint, first the global 
force distribution needs to be determined. In Figure 41 a wooden mitre gate is depicted 
including the load and reaction forces, where it has to be reminded that the precise angles of 
the reaction forces are assumed conveniently. Qualitative and quantitative considerations 
about the global force distribution are treated respectively. 
 

 
Figure 41: Vertical section of a wooden mitre gate including load and reaction forces (Adapted from 

Wijma Kampen B.V. (2012c)) 

 

3.1.1 QUALITATIVE ANALYSIS 
The gate is loaded by the difference of water pressure on both sides of the gate and by 
waves. The precise value of the distributed load depends on many factors that differ 
significant for each pair of gates. Extreme water levels and the occurring waves depend on 
the position of the lock in the system of canals and rivers. Maximum and minimum lockage 
water levels depend on the characteristics of the canal or river and to the characteristics of 
ship traffic. Therefore different loads and load combinations can be determined (Figure 42) 
from which the indicative combination can be different for equivalent locks on different 
locations. It can for instance occur that the load by water level difference plus wave load 
during extreme conditions is lower than the load by maximum water level difference during 
lockage or when the lock is empty during maintenance. 
 

Extreme water levels Maximum water level differenceWaves

 
Figure 42: Examples of loads on lock gates 

A wooden mitre gate under water level difference loading is depicted in Figure 43 and an 
illustration of a section of a mitre gate is depicted in Figure 41. The distributed load acts on 
the surface of the gate which consists of planking. This planking transfers the load to the 
crossbeams by bending. As the planks are continuous some crossbeams carry more load 
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than the other. In turn the crossbeams transfer the load by bending to the front and rear 
posts. The shear force from the crossbeam is transferred to the lock wall via the rear post, 
seal strip and quoin post. Compression forces from the crossbeam are transferred to the 
lock wall via the rear post and quoin post at the back of the rear post.  
 
At quoin post it could be possible that frictional forces develop; the crossbeam tries to rotate 
the rear post as it bends, due to compression at the plane between the rear post and quoin 
post friction could counteract (a part of) this rotation. The two front posts are in equilibrium 
with each other. Although is possible to assume that the reaction forces on the front posts 
work in the width direction of the lock it cannot be assumed without further research at 
which precise spot on the contact surface this reaction force works. 
 

    
Figure 43: Wooden mitre gate under water level difference loading 

 

3.1.2 QUANTITATIVE ANALYSIS 
Before a first analysis of the internal force distribution in the mortise and tenon joint a 
simplified force diagram for one of the gates is assumed (Figure 44). The load and reaction 
forces are assumed to work in the centre line of the mitre gate. The distributed load q is 
caused by the water level difference on both sides of the gate plus wave load. 
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Figure 44: Simplified force diagram (q: distributed load, FV: reaction force on front post, FA: reaction 

force on seal strip, FD: reaction force on back of rear post, FW: frictional force on back of rear post, 
dimensions are given in meters) 
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In the model the stiffness of the different parts, the full section crossbeam, tenon and posts, 
are illustrated by varying line thicknesses. Because the simplified model is statically 
determinate these stiffness differences have no influence on the force distribution. 
Equilibrium is considered at three points: 
 
Rotational equilibrium at A: 
FA aAB – q L aBE – FW aBD = 0 
FA*(0.150 + 3.0 + 0.240 + 0.120) – q*3.0*(3.0/2 + 0.240 + 0.120)  – FW*(0.320 + 0.150 + 3.0 + 
0.240 + 0.120) = 0 
 

Rotational equilibrium at B: 
– FV aAB sin(α) + q L aAE – FW aAD = 0 
– FV*(0.150 + 3.0 + 0.240 + 0.120)*sin(18.4) + q*3.0*(3.0/2 + 0.150)  – FW*0.320 = 0 
 
Rotational equilibrium at C: 
– FD aAB tan(α) – q L aAE – FW aAD = 0 
– FD*(0.150 + 3.0 + 0.240 + 0.120)*tan(18.4) + q*3.0*(3.0/2 + 0.150)  – FW*0.320 = 0 
 
When the frictional force FW at the back of the rear post is assumed to be equal to zero, these 
three equations are sufficient to obtain the reaction forces. When the frictional force at the 
back of the rear post is assumed to be non-zero a fourth equation is needed. This frictional 
force depends on the compression force at the contact surface and the friction coefficient µ 
linearly. The fourth equation thus becomes: FW = FD µ. 
 
The quoin post at the contact surface between the quoin post and the rear post can either be 
relatively rough (rough concrete) or smooth (steel). The friction coefficient can therefore 
vary significantly for different locks as the friction coefficient for wood to concrete or stone 
is µ = 0.60 and for wet wood to steel is µ = 0.20 (Engineer's Handbook, 2006). The lower 
value of µ is considered to result in the worst situation for the mortise and tenon joint. 
 
When the above equations are solved for both FW = 0 as for FW = FD µ the reaction forces 
listed in Table 2 are obtained. In appendix A.1 the moment, shear and normal force 
diagrams for the two possibilities are given. The internal moments for three cross sections 
are added to Table 2. 
 
Table 2: Reaction forces for simplified model 

 FW = 0 FW = FD µ   
q 32.5 32.5 kN/m Hakkers (2012) 
FA 51.2 80.1 

kN 

 
FD 138 130  
FV 145 137  
    FVl 138 130  
    FVd 45.8 43.4  
FW 0 26.1  
Mmidspan 48.8 44.7 

kNm 
 

Mtenon 7.75 -0.25  
Mrear post 0 -8.35  
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The introduction of the frictional force FW has the following effects on the global force 
distribution: 
 The reaction force at the seal strip FA increases with FW and another few percent;  
 The difference between FA – FW and FVd increases, thus more shear force is 

transferred at the rear of the door; 
 Due to the more stiff reaction at the rear post the compression force FD and contact 

force FV decrease; 
 The maximum bending moment in the crossbeam decreases due to a negative 

bending moment that develops in the rear post. 
 The bending moment in the tenon becomes negative, it is however unsure whether 

in reality the tenon is actually clamped into the post or that the negative moment is 
transferred on the faces of the crossbeam. 

 
For the subsequent calculations it is assumed the frictional force FW does play a role in the 
load transfer. 
 

3.2 2D ANALYSIS OF INTERNAL FORCES JOINT 
Now the reaction forces are known the internal forces and stresses in the mortise and tenon 
joint can be determined. Material properties and other variables needed for the calculation 
are given in Table 3 and Table 4. 
 
Table 3: Variables used in the calculation 

  According NEN-EN 1995-1-1 (2005) 
fd fk kmod / γM Par. 2.4.1 
fv,r,d 2 ft,90,d Par. 6.1.7 
γM 1.3 Table 2.3 for solid timber. 
kmod 0.70 Table 3.1 for solid timber, service class 3 

and short term action. 
 
Table 4: Material properties according Table 3 and NEN-EN 338 (2009) 

 D70 (Azobé) D30 (Oak)  
fm,d 38  

N/mm2 
ft,90,d,V0 0.32  
fc,90,d 7.3 4.3 
fv,d 2.7  
fv,r,d 0.65  
 
Figure 45 depicts two extreme cases for the internal load transfer. Although the real force 
distribution is expected to lie between these two extreme cases, both are calculated to 
obtain some indicative numbers. In the first case friction at the contact planes between the 
crossbeam and the rear post contributes to the transfer of the shear force from the 
crossbeam. The negative bending moment in the rear post is equaled by an increase and 
decrease of the compression forces in the upper and lower part of the post and on the 
contact planes between the crossbeam and the rear post. In the second case the tenon 
completely transfers the shear force. Further the negative bending moment is equaled by an 
internal bending moment in the tenon. The tenon is in fact clamped into the rear post, 
compression forces at the front upper part and back lower part of the tenon develop. First 
some calculations valid for both cases are carried out after which additional case-specific 
calculations are performed. 
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In the rear post a bending moment is present due to the friction force at the quoin post. At 
seal strip height a large tensile force in the upper part and a large compression force in the 
lower part of the rear post is therefore present. For the two cases this bending moment is 
transferred from the rear post to the crossbeam in a different way.  
 
For both cases it is assumed the compression forces Fd caused by the compression force FD 
work symmetrically as indicated. Both planes a and b transfer Fd = ½FD = 130/2 = 65 kN. 
The compression stress on the rear post than becomes: 
σcD,90,a = Fd / dah = 65*103 / 50*300 = 4.33 N/mm2 < fc,90,d (D70) 
The compression stress on plane b is non-uniform as the line of action of the compression 
force is assumed off-centered; assuming σcD,90,b ≤ σcD,90,a is considered to be safe. 
 
As the compression force FD from the crossbeam is transferred to the back of the rear post a 
tensile force Fh behind the tenon is present. The internal moment does not influence this 
tensile force. For Fh it follows:  
Fh = Fd Δd / Δb = 65*75/130 = 37.5 kN 
It is estimated Fh is spread over a width of 40 mm thus for the tensile stress it follows: 
σt,90,h = Fh / h bh = 37.5*103 / 40*300 = 3.13 N/mm2  
ft,90,d = ft,90,d,V0 (V0/V)0.2 = 0.32 * (0.01/(0.040*0.300*2*0.075))0.2 = 0.45 N/mm2 (D70) 
σt,90,h > ft,90,d (D70) 
 
The seal strip is compressed by the reaction force FA. Using 6.1.5 (5) from NEN-EN 1995-1-1 
(2005) to determine the effective height, for the compression stress it follows: 
σc,90,A = FA / bAhef = 80.1*103 / 125*(300+2*100/3) = 1.75 N/mm2 < fc,90,d (D30) 
 
At the back of the rear post FD and FW have to be transferred through a reduced section of 
the post. 
σc,90,D = FD / dDh = 130*103 / 180*300 = 2.41 N/mm2 < fc,90,d (D70) 
τr,W = 1.5FW / dDh = 1.5*26.1*103 / 180*300 = 0.73 N/mm2 > fv,r,d (D70) 
Although the shear stress already exceeds the rolling shear strength, combination with the 
compression stress will definitely result in exceedance of the strength. 
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Figure 45: Two extreme cases for the force distribution in the mortise and tenon joint (dimensions given 

in millimetres) 

 
CASE 1 

The following calculations are applicable to case 1.  
 
Friction at the contact plane between the crossbeam and the rear post contributes to the 
transfer of the shear force from the crossbeam. The negative bending moment in the post 
and at the end of the crossbeam is equaled by an increase and decrease of the compression 
forces in the lower and upper part of the post and at the two contact planes. 
 
The friction coefficient for wood to wood (wet) is µ = 0.20 (Engineer's Handbook, 
2006).Thus the maximum force which can be transmitted by friction: 
Ff,max = FDµ = 130*0.20 = 26.1 kN 
 
The shear force which is transferred through the tenon is: 
Fte = FA – FW – Ff,max = 80.1 – 26.1 – 26.1 = 28 kN 
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Applying the notch strength formula from EC5 where kn = 5, d = 250, α = 100/250 = 0.4 and 
x = 232.5: 
𝑘𝑣 = 𝑘𝑛

√𝑑��𝛼(1−𝛼)+0.8𝑥𝑑�
1
𝛼−𝛼

2�
 = 0.194 

τte = 1.5Fte / deffh = 1.5*28*103 / 100*300 = 1.40 N/mm2 > kv fv,d = 0.52 N/mm2 (D70) 
 
An bending moment in the tenon is present: 
Mte = Fte x = 54*0.2325 = 12.6 kNm 
kh = (150/deff)0.2 = (150/100)0.2 = 1.08 < 1.3 
fm,d,mod = fm,d kh = 37.7*1.08 = 40.9 N/mm2 

σm,d = Mte / Wte = 12.6*106*6 / 300*1002 = 25.2 N/mm2 < fm,d,mod (D70) 
The shear stress τte is equal to about half the shear strength fv,d. Although the combination of 
the bending and shear stress could result in exceeding the strength, EC5 does not state 
bending stresses and shear stresses must to be combined. 
 
The negative bending moment at the end of the crossbeam is equalled by two forces ΔFd at 
the contact planes a and b: 
ΔFd = Mtenon / ad = 0.25 / 0.150 = 1.67 kN 
Then the compression and shear force at plane a and b become: 
Fd,a = Fd – ΔFd = 65 – 1.67 = 63.3 kN 
Fd,b = Fd + ΔFd = 65 + 1.67 = 66.7 kN 
 
The maximum negative bending moment in the rear post is equalled by two forces ΔFd in the 
upper (u) and lower part (l) of the post.  
ΔFd = Mrear post / ad = 8.35 / 0.150 = 55.7 kN 
Than the compression forces in the upper and lower part of the post become: 
Fd,u = Fd – ΔFd = 65 – 55.7 = 9.3 kN 
Fd,l = Fd + ΔFd = 65 + 55.7 = 121 kN 
The compression and rolling shear stress at plane d becomes: 
σc,90,b = Fd,l / ddh = 121*103 / 100*300 = 4.03 N/mm2 < fc,90,d (D70) 
τr,d = 1.5 µ Fd,b / ddh = 1.5*0.20*66.7*103 / 100*300 = 0.67 N/mm2 > fv,r,d (D70) 
Again the shear stress already exceeds the rolling shear strength, but when combining this 
stress with the compression stress will definitely result in exceedance of the strength. 
 
 
CASE 2 

The following calculations are applicable to case 2.  
 
The tenon completely transfers the shear force and the negative bending moment is 
transferred to the crossbeam by the tenon which is clamped into the mortise. Compression 
forces at the front upper part and back lower part of the tenon are therefore present. 
 
The negative bending moment in the rear post is equalled by two forces Fr on the upper and 
lower side of the tenon: 
Fr = Mrear post / ar = 8.35 / 0.2325 = 35.9 kN 
σc,90,rmax = Fr / ½brh = 35.9*103 / ½*150*300 = 1.59 N/mm2  < fc,90,d (D70) 
As Fr is introduced as a shear force in the lower part of the rear post a rolling shear stress 
check at plane d is appropriate: 
τr,d = 1.5*Fr / ddh = 1.5*35.7*103 / 100*300 = 1.79 N/mm2 > fv,r,d (D70) 
This shear stress will also be present in the upper part of the rear post as the force Fr is also 
present there. 
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The shear force which is transferred through the tenon is: 
Fte = FA – FW = 54 kN 
For case 1 it was determined that kv = 0.194. 
τte = 1.5Fte / deffh = 1.5*54*103 / 100*300 = 2.70 N/mm2 > kv fv,d = 0.52 N/mm2 (D70) 
 
An bending moment in the tenon is present: 
Mte = Fte x – Mrear post = 54*0.2325 – 8.35 = 4.25 kNm 
kh = (150/deff)0.2 = (150/100)0.2 = 1.08 < 1.3 
fm,d,mod = fm,d kh = 37.7*1.08 = 40.9 N/mm2 

σm,d = Mte / Wte = 4.25*106*6 / 300*1002 = 8.5 N/mm2 < fm,d,mod (D70) 
The shear stress τte is equal to the shear strength fv,d. Would this stress be combined with 
the bending stress σm,d the unity check will become larger than 1.0. 
 
 
CONCLUSIONS ON INTERNAL STRESSES 

The above calculations show that for many sections stresses are lower than the respective 
strength values. However, at some locations stress values exceed the respective strength 
values. These locations are indicated in Figure 46. 
 
For both cases the tensile strength perpendicular to the grain at the end of the mortise and 
the rolling shear strength at de back of the rear post are exceeded. Although the schematic 
representation is chosen conveniently this region is a point of interest for further research 
by FEM.  
As could be expected for case 2 the tenon does not fulfil the shear stress check using the 
notch strength reduction formula from EC5. However, even for case 1 with a reduced shear 
force, the shear strength is still not sufficient. 
For case 1 the rolling shear strength in the lower part of the rear post is exceeded only just 
with a unity check of 0.67/0.65 = 1.03 while for case 2 the introduction of Fr results in a 
largely exceeded unity check of 1.79/0.65 = 2.75. As Fr is also introduced in the upper part 
of the rear post the strength is exceeded there too for case 2. 
 
It can be concluded the tenon strength of hardwoods remains important to research as the 
different force distributions do not lead to the verification of its strength. Further, both the 
tensile strength perpendicular to the grain as the rolling shear strength are indicative 
material parameters. 
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Figure 46: Locations where stresses exceed strength for the indicated cases 
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3.3 ANALYSIS 3D-GEOMETRY JOINT 
In reality the mortise and tenon joint has a 3D geometry. The previous paragraph assumed 
no applied forces are transferred in the out-of-plane direction. When it is reminded that the 
fibre direction in the rear post runs along the out-of-plane direction, and therefore force 
transfer in this direction is relatively stiff, it is obvious that applied forces on the rear post 
can also be transferred in the third direction. In the following paragraph the analysis of the 
force transfer is extended with three dimensional considerations. 
 

3.3.1 QUALITATIVE ANALYSIS 
Figure 47 illustrates an exploded view of the mortise and tenon joint. In previous 
paragraphs only the x-y plane was considered at the mid-plane of the crossbeam. Note the 
fibre direction of the rear post runs along the z-axis and the fibre direction of the crossbeam 
runs along the x-axis. Taking into account the fibre directions of the parts deformations can 
be estimated, as is done in Figure 47. 
 

y

z
x

 
Figure 47: Exploded 3D view of a simplified mortise and tenon joint including magnified deformations. 
Note the fibre direction of the rear post runs along the z-axis and the fibre direction of the crossbeam 

runs along the x-axis. 

As the deformation of the mortise in the rear post indicate, applied forces from the 
crossbeam can be transferred in two directions. Firstly, the load can be transferred in the x-
direction until the line of action meets the line of action of the support at the seal strip. In 
the x-direction the stiffness of the rear post is relatively low and therefore, when the 
analysis is restricted to the x-y plane, most of the load is transferred through the tenon until 
the support’s line of action is reached. 
 
Secondly, the load can be transferred in the relatively stiff  z-direction after which the forces 
need to be transferred to the seal strip support within the full section of the rear post next to 
the mortise. An important condition for the load to be transferred along this route is that the 
rear post needs to resist rotation to make it possible for the applied force, when it is first 
transferred in the z-direction to the full-section rear post, to shift along the x-axis to the seal 
strip support. In fact, a negative moment needs to develop in the rear post if the line of 
action of the load would move in the positive x-direction. As a large compression force is 
present in the crossbeam and friction at the back of the rear post can develop, the rear post 
could be considered to be clamped in for a certain amount. Note that next to the mortise the 
full section of the rear post is very stiff. Figure 48 illustrates the mentioned phenomenon. 
 
Note that when the shear force would be transferred at the contact surface between the 
crossbeam and the rear post, according the suggestion of Raadschelders (2012), a relatively 
large negative moment in the rear post should occur. 
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Figure 48: A negative moment in the rear post must develop when (a part of) the shear force from the 

crossbeam is not transferred from the tenon to the rear post at the line of action of the seal strip support 

Considering the front view of the mortise and assuming the applied load is transferred for at 
least a significant part in the z-direction, it is likely a non-uniform stress distribution like 
illustrated in Figure 49 develops. When the left part of the rear post around the mortise is 
considered separately, it can be seen an ‘internal’ notch is present in the rear post. 
 
When an extreme case of uniform distributed load in the mortise is assumed, for which the 
notch cantilever is largest, and the entire load is assumed to be transferred in the z-
direction, half of the shear force V is transferred through the internal notch with a notch 
cantilever of βd = ¼d. However, the entire shear force V is transferred through the tenon in 
the crossbeam with a tenon cantilever probably larger than βd = ¼d. Whether crack growth 
at this spot is decisive with respect to crack growth in the crossbeam depends on the 
difference between the strength of notched beams with respect to tenonned beams. 
Although it is estimated crack growth in the crossbeam is decisive as notches are not 
expected to be more than twice as weak than tenons, a definite conclusion can only be made 
later on. 
 

q(z)

βd

½V

αd 

dy

z  
Figure 49: Front view of a mortise in the rear post where on the right the left part of the rear post around 

the mortise is considered separately. 

 

3.3.2 MODELLING 3D BEHAVIOUR WITHIN A 2D FE-MODEL 
Because analysis of the force distribution will be investigated using Finite Element 
Modelling, but 2D analysis is preferred, the 3D geometry needs to be taken into account 
applying appropriate modelling. The 3D force transfer in the mortise and tenon joint is 
taken into account by the 2D model by addition of an elastic support with stiffness k to the 
rear post as is depicted in Figure 50. 
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Figure 50: Additional spring support below rear 

post to account for 3D force transfer 
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Figure 51: Additional bearing length seal strip 

The value of the stiffness parameter k is determined by two components: compression of 
the seal strip along an additional bearing length and bending of the lower part of the rear 
post below the mortise. 
 
COMPRESSION OF THE SEAL STRIP 
When (a part of) the load is transferred along the z-axis, it will be brought to the support via 
a part of the seal strip next to the mortise. Analogue to NEN-EN 1995-1-1 (2005) 6.1.5 (4) it 
is assumed the load is spread along the line 1:3. Then the additional length of the seal strip 
along which the load concerned is transferred is ha,add = 2 ∙ ⅓ do. The stiffness of this part of 
the seal strip under compression can be determined according the model illustrated in 
Figure 52. According linear elastic theory this stiffness becomes: 

𝑘𝑎 =
𝐸𝐴
𝐿

 
where 𝐸 = 𝐸90 [N/m2] is the modulus of elasticity perpendicular to the grain, 𝐴 = 𝑏𝑎ℎ𝑎,𝑎𝑑𝑑 
[m2] is the surface of the seal strip through which the force is transferred and 𝐿 = 𝑑𝑎 [m] is 
the thickness of the seal strip. 
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Figure 52: Spring model seal strip 
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Figure 53: Model fictive beam rear post 

 
BENDING OF THE LOWER PART OF THE REAR POST 
The bending deformation of the lower part of the rear post below the mortise can be 
described by a Timoshenko beam as the fictive beam is relatively stocky. This part of the 
rear post can be schematised by a fictive beam clamped at both sides (Figure 53). It is 
chosen to model the load uniformly distributed. The two coupled differential equations 
which define a Timoshenko beam are derived in Appendix B.  
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The fictive beam, as depicted in Figure 53, can be modelled by this set of couples differential 
equations: 
 

𝐸𝐼
𝑑2φ
dx2

+  𝐺𝐴𝑠 �
𝑑𝑣
𝑑𝑥

− φ(x)� = 0 

𝐺𝐴𝑠 �
𝑑2𝑣
𝑑𝑥2

−
𝑑φ
dx
� = −𝑞 

where 𝑣(𝑧) [m] is the deflection along the z-axis, 𝜑(𝑧) [-] is the rotation along the z-axis, 
𝐸 =  𝐸0 [N/m2] is the modulus of elasticity along the grain, 𝐺 [N/m2] is the shear modulus, 
𝐼 = 𝑏𝑑3

12
  [m4] is the second moment of area of the fictive beam and 𝐴𝑠  =  𝑏𝑑 [m2] is the 

cross-sectional area fictive beam 
 
When the set of coupled differential equations is solved using the boundary conditions: 

𝑣(0) = 0,φ(0) = 0,𝑣(𝐿) = 0 and φ(L) = 0 
for the deflection it follows: 

𝑣(𝑧) =
1

24
𝑞𝑧4

𝐸𝐼
−

1
12

𝑞𝐿𝑧3

𝐸𝐼
+

1
24

𝑞(−12𝐸𝐼 + 𝐿2𝐺𝐴𝑠)𝑧2

𝐸𝐼 𝐺𝐴𝑠
+

1
2
𝑞𝐿𝑥
𝐺𝐴𝑠

 

 
The mean deflection can be determined by dividing the integrated deflection depended on z 
by the length of the beam: 

𝑣𝑚𝑒𝑎𝑛 =
1
𝐿 ∙
� 𝑣(𝑧)𝑑𝑧
𝐿

0
 

 
Then the mean bending stiffness parameter can be determined by dividing the load by the 
mean deflection: 

𝑘 𝑏 =
𝑞𝐿

𝑣𝑚𝑒𝑎𝑛
=

𝑞𝐿2

− 1
80

𝑞𝐿5

𝐸𝐼 + 1
72

𝑞(−12𝐸𝐼 + 𝐿2𝐺𝐴𝑠)𝐿3

𝐸𝐼 𝐺𝐴𝑠
+ 1

4
𝑞𝐿3

𝐺𝐴𝑠

 

 
STIFFNESS PARAMETER K 
As the models of compression of the seal strip and bending of the lower part of the rear 
post are coupled as series system a stiffness parameter ks can be determined by: 

𝑘𝑠 =
1

1
𝑘𝑎

+ 1
𝑘𝑏

 

 
The stiffness parameter ks results in a value as if one spring is applied. Therefore to 
determine the stiffness parameter k, ks needs to be divided by the surface at which the 
elastic support is applied: 

𝑘 =
𝑘𝑠

𝐴𝑒𝑙𝑎𝑠𝑡𝑖𝑐 𝑠𝑢𝑝𝑝𝑜𝑟𝑡
 

 
Chapter 4 will include a quantitative analysis of the stiffness parameters above. 
 
NOTES ON THE ASSUMPTIONS MADE 
During the derivation of the stiffness parameter k several assumption are made. It is tried to 
make conservative assumptions which result in a more accurate model than is the case for 
pure 2D analysis, but is still on the conservative side as the 3D force transfer in reality is 
most probably too complicated for a simple analytical model. 
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Firstly it is assumed a frictional force is present at the back of the rear post. Due to this force 
rotation of the rear post is prevented and a shift of the line of action of the shear force in the 
tenon is possible. Due to the large compression force, and in most cases a good fit of the rear 
post into the quoin post, the assumption is judged appropriate. 
 
When (a part of) the load is transferred to the sides of the mortise it is difficult to predict to 
which part of the seal strip the load is transferred. As the load first needs to travel to the 
back of the rear post it is likely the additional bearing length is larger than is assumed 
according the line 1:3. As a smaller additional bearing length leads to a smaller stiffness k 
and therefore the shift of the line of action of the shear force in the tenon is less, the 
assumption is judged conservative. 
 
To calculate the mean stiffness of the fictive beam below the mortise a uniformly distributed 
load within mortise is assumed. With respect to a non-uniformly distributed load a smaller 
mean stiffness is found. As explained in the previous paragraph, the results is thus 
conservative. 
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4 CHARACTERISTICS FINITE ELEMENT MODEL 
In order to determine the actual force distribution in a wooden mitre gate, especially within 
the mortise and tenon joint, finite element modelling (FEM) is applied. This chapter the 
finite element model is presented and the applied approach, made assumptions and used 
parameters are treated. 
 
Abaqus is used for all activities related to finite element calculations. Three stages have to 
be run through, namely: 
 Pre-processing/modelling: Abaqus CAE is used to create the model which includes 

among other things the geometry, material properties and the mesh. 
 Processing/finite element analysis: Abacus Standard is used to solve the numerical 

problem. Its output is stored in an output file and contains displacements, stresses, 
etc. 

 Post-processing: Abaqus Viewer is used to display the results in various ways to 
evaluate the results. Results can also be exported to a text-file after which it can be 
further analysed using Excel and Matlab. 

 
The finite element (FE) model build for this research is characterized by: 
 Linear elastic material within 2 dimensions; 
 Characteristics of the mitre gate’s parts: solid, homogeneous and deformable, where 

the plane strain assumption is applied; 
 The boundary parts are characterised as analytical rigid wires; 
 The lower part of the rear post is supported by an elastic support to take account for 

3D load transfer; 
 Orthotropic material behaviour is assumed where the different fibre directions of 

the mitre gate’s parts are taken into account; 
 Calculation steps are of the general static type: 

□ Equations are solved directly; 
□ The Full Newton solution technique is used; 

 Interaction properties at contact surfaces are characterised by 
□ interaction by surface-to-surface contact; 
□ normal behaviour by “hard” contact, where separation is allowed; 
□ friction is defined by isotropic Coulomb friction; 

 Definition of the mesh: 
□ Parts are meshed separately; 
□ The element type used is a 4 node bilinear plane strain quadrilateral. 

Reduced integration and enhanced hourglass control are applied. 
 
More explanation about the above points is written in the following paragraphs. 
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4.1 DESIGN OF THE MITRE GATE’S MODEL 
The dimensions of the mitre gate including the mortise and tenon joints are determined 
fully according the traditional (relative) dimensions from literature. One parameter, the 
depth of the beam, needs to be chosen after which all other dimensions follow. 
 
Assumed parameters Character Value  
Total depth mitre gate d 300 mm 
Length crossbeam between posts l 3000 mm 
Depth planking s 50 mm 
Angle gate when closed γ 30 degrees 
    
Derived parameters Relation Value  
Width rear post 1.5d 450 mm 
Width front post 1.2d 360 mm 
    
Length rear tenon ⅔ width rear post 300 mm 
Length front tenon ⅔ width front post 240 mm 
    
Length rear mortise tenon length + 20 mm 320 mm 
Length front mortise tenon length + 20 mm 260 mm 
    
Depth lower notch crossbeam ⅓ d 100 mm 
Depth tenon ⅓ d 100 mm 
Depth upper notch crossbeam ⅓ d – s 50 mm 
    
Upper/lower notch length difference  20 mm 
    
Depth bevelled edge front post ⅓ d 100 mm 
    
Size seal strip d x b 75 x 125 mm2 
 
An applied load which would be ‘normal’ for a gate with these dimensions is q = 32.5 kN/m. 
 
An overview of the model and its separate parts are depicted in Figure 54 and Figure 55. 
 

 
Figure 54: Overview model 
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Figure 55: Overview parts front and rear side of the gate with interaction properties indicated         
(green: hard contact & friction, yellow: hard contact, red: fixed) 

 

4.2 CHARACTERISTICS CALCULATION PROCEDURE 
The calculation procedure applied in finite element modelling can have many different 
characteristics. The applied method for this model is presented here.  
 
The main characteristic of the used method is the use of linear elastic materials within 2 
dimensions. On one hand this makes modelling more easy and straightforward. On the other 
hand accurate results can still be obtained as the joint is rather thick, failure behaviour is 
not considered and peak stresses near discontinuities are not used for the analysis. 
 
The model is characterized by six main parts: quoin post, rear post, seal strip, crossbeam, 
front post and the centre line. These parts touch at contact surfaces where appropriate 
interaction properties are defined (paragraph 4.4). In reality in 3D the joint is rather thick 
and therefore, when modelling in 2D, plane strain is an appropriate assumption. The rear 
post, seal strip, crossbeam and front post are modelled as homogeneous deformable parts. 
These parts separately are one solid piece. The quoin post and centre line are modelled as 
rigid analytical wires, which are in fact simple continuous lines that do not deform. 
 
The calculation procedure is split up into several, so called, steps. It is of great importance to 
model the steps in the right sequence and usually ‘in between’ steps are necessary to make 
it possible for the calculation to succeed.  
 
For the calculation steps a relatively straightforward procedure is chosen: within every step 
iterations are used following the Full Newton solution technique until equilibrium is 
reached. Friction results in discontinuous and thus non-linear equations and therefore the 
Full Newton solution technique is applied. 
 
Using the following steps a result is obtained for the model: 

1. Initial step 
In the initial step boundary conditions are applied. The quoin post and centre line are fixed 
for all degrees of freedom. Further the front and rear post are fixed temporarily. 

2. Second step 
During the second step the crossbeam and seal strip are pressed against the front and rear 
post using a pressure load at the contact surfaces. In this way the connection is ‘pre-
compressed’ and the calculation is more likely to succeed during the subsequent steps. 
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3. Third step 
At the start of the third step the boundary conditions on the front and rear post are released. 
Then the entire mitre gate is shifted against the quoin post and centre line as if the load by 
water level difference is already applied. The contact surfaces concerned are thus also pre-
compressed. Meanwhile the pressure load at the contact surfaces between the front and 
rear post and the crossbeam and seal strip is maintained. 

4. Fourth step 
During the fourth step the pressure load within the connection is removed and the load by 
water level difference is applied. Due to the pre-compression applied in the previous steps 
and the linear decrease of the pressure load and linear increase of the global load a result is 
obtained without much difficulty. 
 

4.3 MATERIAL DEFINITION 
For the FE model orthotropic material behaviour is assumed where the different orientation 
of the fibres of the crossbeam and posts/seal strip have been taken into account. The 
material properties used are listed in Table 5. 
 
To obtain the rolling shear stiffness it is assumed that the ratio between the longitudinal and 
rolling shear stiffness Gv/Groll is equal for different wood species; as is assumed by Sandhaas 
(2012). Thus analogously for Spruce (C24) Gmean/Groll,mean = 690/50 = 13.8. Then for Azobé 
(D70) Groll,mean = Gmean/13.8 = 1250/13.8 = 91 MPa and for Oak (D30) Groll,mean = Gmean/13.8 = 
690/13.8 = 50 MPa. 
 
Due to the microstructure of tropical hardwoods, with its relatively large rays, material 
parameters depend on the considered direction, longitudinal, radial or tangential. The radial 
rays make that material parameters differ between radial and tangential directions. As it is 
not possible to take the ray orientation into account on the construction site, NEN-EN 338 
does not differentiate between the modulus of elasticity in radial direction ER and in 
tangential direction ET, but prescribes one value E90. As the rays obviously influence the 
Poisson ratio’s for the different planes a choice needs to be made which value should be 
used within the FE model. Forest Products Laboratory (2010) reports Poisson ratio’s for 
several wood species, obtained by tests on small clear specimens. It can be seen νLR ≠ νLT ≠ 
νRL ≠ νTL and νRT ≠ νTR.1  
 
The assumed values appropriate for Azobé are (Forest Products Laboratory, 2010): 
 
νLR νRL νLT νTL νRT νTR 
0.35 0.060 0.60 0.030 0.60 0.35 
 
The variation of Poisson ratio values results in a problem when modelling the material 
behaviour. Firstly, orthotropic material behaviour assumes ν12/E1 = ν21/E2, ν13/E1 = ν31/E3, 
ν23/E2 = ν32/E3. Secondly, for the crossbeam ν12 = νLR or νLT or νRL or νTL and for the posts and 
seal strip ν12 = νRT or νTR. It is assumed the Poisson ratio’s do not influence the results too 
much and therefore the values and definitions according Table 5 and Table 6 are assumed. 
 
 
 
 
 
 

                                                             
1 L: longitudinal direction, R: radial direction, T: tangential direction 
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Table 5: Definition material properties 

 Azobé  
 

Oak 
  E0,mean 20000 

MPa  
11000 

MPa NEN-EN 338 (2009) E90,mean 1330 
 

730 
Gmean 1250 

 
690 

Groll,mean 91 
 

50 Sandhaas (2012) 

       νLR 0.35 
- 

  

- 
Assumed using Forest Products 

Laboratory (2010) νRT 0.60  0.60 
 
As the structure is modelled in 2D in the x-y or 1-2 plane according a Cartesian coordinate 
system (Figure 56) material parameters considering the z or 3 direction are not active 
within the model. The material parameters from Table 5 are therefore entered according 
the definitions in Table 6. 
 
Table 6: Material parameters definition 1-2 plane

Crossbeam Posts and seal strip 
E1 = E0 
E2 = E90 
ν12 = νLR 

G12 = G 

E1 = E90 
E2 = E90 
ν12 = νRT 

G12 = Groll  
Figure 56: Cartesian coordinate system 

 

4.4 INTERACTION BETWEEN SURFACES 
Interaction of the separate parts with each other takes place on surfaces for which 
interaction properties and surface ‘pairs’ are defined and which make contact. Dependent 
on the loading and rotation of the parts only some areas of the contact surfaces transfer 
forces. Six contact planes can be distinguished and are listed in Table 7, more explanation on 
the characteristics is given below. 
 
Table 7: Contact surfaces and their properties 

Master surface Slave surface Hard contact Friction Friction coefficient 
Quoin post Rear post Yes Yes 0.20 
Quoin post Seal strip Yes No - 
Rear post Seal strip Yes Yes 1000 
Tenon Rear post Yes Yes 0.20 
Tenon Front post Yes Yes 0.20 
Centre line Front post Yes No - 
 
For every surface pair a master and slave surface must be defined. For the master surface a 
surface is created between the master nodes which cannot be penetrated by the slave nodes. 
For the standard ‘node-to-surface’ discretisation method the slave surface only makes 
contact with the master surface at discrete points at the slave nodes and the master surface 
can therefore penetrate the slave surface, as depicted in Figure 57. Therefore the largest, 
most stiff or the surface with the courser mesh should be chosen as the master surface then. 
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master surface

slave surface slave node

master node

 
Figure 57: Master and slave surfaces. Note the master surface penetrates the slave surface. 

The interaction of surfaces for the model build for this research is characterised by the 
discretisation method ‘surface-to-surface’ contact.  Instead that the nodes on the slave 
surface make contact at discrete points with the master surface, both surfaces are 
considered. Therefore it is much less common that (large) parts of the master surface 
penetrate the slave surface. Especially near corners more accurate stress and pressure 
results are obtained using surface-to-surface contact. 
 
Interaction at the contact surfaces are characterized by two interaction properties: ‘hard 
contact’ and isotropic Coulomb friction. To obtain a fixed connection between the rear post 
and seal strip a very large friction coefficient is applied. 
 
Hard contact implies pressure stresses develops when the gap between surfaces is closed, 
when a gap is present no stresses develop as depicted in Figure 58. Separation after contact 
is allowed.  
 
Friction is modelled according Coulomb friction and works isotropic over the surfaces. 
Coulomb friction is illustrated in Figure 59. In order to reduce numerical problems a small 
amount of elastic slip is allowed, indicated by the dashed line in Figure 59. The maximum 
allowable elastic slip is automatically chosen to be much smaller than the characteristic 
length of the elements used. It is assumed the maximum possible frictional force is not 
reached and therefore no shear stress limit is given. 
 
The friction coefficients used are: (Engineer's Handbook, 2006) 
Stone - wood: μ = 0.20 
Wood - wood (wet): μ = 0.20 
Fixed connection: μ = 1000 
 

Contact 
pressure

Gap

contact

no contact

 
Figure 58: Definition 'hard contact' 

Friction 
stress

Slip

elastic slip
τlim

 
Figure 59: Definition Coulomb friction 

To take into account the relative motion of two surfaces the approach ‘small-sliding’ is 
assumed. This approach assumes very little sliding occurs between the surfaces. The nodes 
which are in contact are identified once and are then fixed throughout the analysis. As linear 
elastic calculation is applied and no large deformations are to be expected the approach 
seems valid in this case. 
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4.5 MESH DESIGN 
The design of a mesh can have large influence on the results en therefore care is taken with 
the design. When designing the mesh two main choices need to be made: which element 
type is used and how is the mesh shaped? 
 
The element type used is a 4 node bilinear plane strain quadrilateral. Reduced integration 
and enhanced hourglass control are applied. The following considerations form the base for 
the choice for this element: 
 For contact analysis’ first order quadrilateral elements are recommended to obtain 

the best results; 
 To prevent shear locking reduced integration is applied; 
 When using reduced integration hourglass modes can appear. Therefore enhanced 

hourglass control is applied. 
The element is characterised by its four nodes. For full integration, where the stiffness 
matrix is integrated exactly, 2 by 2 integration points are necessary. Because reduced 
integration is applied only one integration point is used, located in the middle of the 
element. Subsequently, to prevent hourglass modes, where a deformation mode not 
contributes to energy, enhanced hourglass control is applied. 
 

 
Figure 60: A 4 node bilinear plane strain quadrilateral with fltr;  2 by 2 integration points, reduced 

integration, an hourglass mode appearing. 

 
The mesh used is depicted in Figure 61 to Figure 63. A fine mesh is chosen near the joint to 
obtain accurate results where a complex force distribution is present. A coarse mesh in the 
middle of the beam will reduce the model’s size and is sufficient to determine bending and 
compression stresses at that location. 
 

 
Figure 61: Overview model’s mesh 
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Figure 62: Overview mesh rear side of the gate (Note the different parts are difficult to distinguish but 

are modelled according Figure 55) 

 
Figure 63: Overview mesh front side of the gate (Note the different parts are difficult to distinguish but 

are modelled according Figure 55) 
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4.6 ELASTIC SUPPORT STIFFNESS PARAMETER 
The derivation of the stiffness parameter for the elastic support below the rear post is 
performed in paragraph 3.3.2. Below the value is determined which is used for the FE 
model, Figure 64 depicts the location where the elastic support is applied. 
 

5 155 5
 

Figure 64: Location application elastic support (measures in mm) 

The stiffness of the seal strip along the additional bearing length becomes: 

𝑘𝑎 =
𝐸90𝑏𝑎ℎ𝑎,𝑎𝑑𝑑

𝑑𝑎
= 8.03 ∙ 107 𝑁/𝑚 

 
where 𝐸90 is the modulus of elasticity perpendicular to the grain, 𝑏𝑎ℎ𝑎,𝑎𝑑𝑑 is the surface of 
the seal strip through which the force is transferred and 𝑑𝑎 is the thickness of the seal strip. 
 
The stiffness of the fictive beam below the mortise becomes: 

𝑘 𝑏 =
𝑞𝐿2

− 1
80

𝑞𝐿5

𝐸𝐼 + 1
72

𝑞(−12𝐸𝐼 + 𝐿2𝐺𝐴𝑠)𝐿3

𝐸𝐼 𝐺𝐴𝑠
+ 1

4
𝑞𝐿3

𝐺𝐴𝑠

= 1.3483 ∙ 109 𝑁/𝑚 

where 𝐸 =  𝐸0 is the modulus of elasticity along the grain, 𝐺 is the shear modulus, 𝐼 = 𝑏𝑑3

12
  

is the second moment of area fictive beam, 𝐴𝑠  =  𝑏𝑑 is the cross-sectional area fictive beam 
and 𝐿 is the length of the fictive beam. 
 
The total stiffness can then be calculated: 

𝑘𝑠 =
1

1
𝑘𝑎

+ 1
𝑘𝑏

= 7.5786 ∙ 107 𝑁/𝑚 

 
The surface at which the elastic support works is equal to: 

𝐴𝑒𝑙𝑎𝑠𝑡𝑖𝑐 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 = 0.155 ∙ 0.300 = 0.0465 𝑚2 
 
The stiffness parameter value entered in the model is: 

𝑘 =
𝑘𝑠

𝐴𝑒𝑙𝑎𝑠𝑡𝑖𝑐 𝑠𝑢𝑝𝑝𝑜𝑟𝑡
= 1.6298 ∙ 109 𝑁/𝑚/𝑚2 
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5 FORCE DISTRIBUTION ACCORDING FINITE ELEMENT MODEL 
In this chapter the results obtained by the finite element model, as described in the previous 
chapter, will be analysed and discussed. 
 
The output data can be analysed in two ways. Firstly contour plots can be created by the 
post-processor within Abaqus. The contour plots give an impression of the magnitudes and 
spread of stresses. Secondly, at several sections the sectional forces are determined using 
Excel and stresses along the section are depicted in graphs using Matlab. Peak stresses at 
discontinuities such as at the pit under the tenon are not used for further analysis as the 
way of modelling is not appropriate to determine these stresses. 
 

5.1 AMPLIFICATION OF THE FORCE DISTRIBUTION 
For the analysis of the output of the finite element model three stages are distinguished: 

1. Contour plots are analysed with which a global impression of the appearing stresses 
and the path the forces follow can be obtained. 

2. For a number of sections the sectional forces are determined which indicate where 
the forces are transferred to. 

3. For the same sections where sectional forces where determined for all stress 
components are depicted in graphs. 

 
The sections mentioned under analysis stage 2 and 3 are illustrated in Figure 65. 
 

5

4 3

6

7a
2

1

1

3

2

Rear post Rear tenon Front tenon

Seal strip

1
b c

2

1

Elastic support

 
Figure 65: Analysed sections FE model 

 

5.1.1 GLOBAL ANALYSIS USING CONTOUR PLOTS 
Contour plots can be created by the post-processor within Abaqus. The contour plots for the 
model of the mortise and tenon joint are depicted in Figure 67 to Figure 69. Appendix C 
depicts the contour plots too, both with and without magnified deformations and in a larger 
size. 
 
Within the 1-2 plane three stress components are present which are all included in the 
analysis; normal stress in the x direction S11, normal stress in the y direction S22 and the 
shear stress in the x-y plane S12. For the crossbeam these stress components correspond to 
receptively the normal stress along the grain, normal stress perpendicular to the grain and 
the shear stress. For the posts and seal strip these stress components correspond to twice 
the normal stress perpendicular to the grain and the rolling shear stress. 
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The orientation of the 1-2 coordinate 
system is depicted in Figure 66. Axis 1 
runs parallel and axis 2 runs 
perpendicular to the normal axis of the 
crossbeam.  

2

1  
Figure 66: Coordinate system 1-2 

 

 
Figure 67: Contour plot of the stresses S11 for the mortise and tenon joint at the rear post (Unit is Pa = 

N/mm2 ∙ 106, deformations scaled 10:1) 

Figure 67 depicts a contour plot of the stresses S11 at the rear post. These are the normal 
stresses parallel to the 1-axis. For the crossbeam this stress component corresponds to the 
normal stress along the grain. For the rear post and seal strip these stress components 
correspond to the normal stress perpendicular to the grain. 
 
From Figure 67 the following observations can be made: 
 Both compression stresses parallel and perpendicular to the grain in the different 

parts seem to remain below critical values. 
 The compression force from the crossbeam is transferred through the upper and 

lower parts of the rear post to the back of the rear post according about the ratio of 
sectional surfaces. The two forces are transferred in almost a straight line to the 
quoin post behind the upper and lower part of the rear post. 

 That the compression stresses in the upper and lower part of the rear post are equal 
to each other can be understood by considering the strains are equal, caused by the 
relatively stiff crossbeam which deforms the rear post equally. 

 A negative bending moment is present in the tenon. The tenon is in fact clamped into 
the mortise. 

 
Figure 68 depicts a contour plot of the stresses S22 at the rear post. These are the normal 
stresses parallel to the 2-axis. For the crossbeam this stress component corresponds to the 
normal stress perpendicular to the grain. For the rear post and seal strip these stress 
components correspond to the normal stresses perpendicular to the grain. 
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From Figure 68 the following observations can be made: 
 Behind the mortise high tension stresses have developed as the clamped tenon 

presses upwards on the rear post. 
 Due to the large compression force being transferred on a concave surface, at the 

back of the rear post large compression stresses perpendicular to the grain develop. 
The compressive stresses are slightly higher than design strength, but taking the 
confined stress state into account, strength is estimated to be large enough. 

 The upper end of the tenon is pressed against the mortise on a small surface. 
Therefore also relative high stresses develop here. 

 A large part of the load is transferred via the elastic support and a smaller part via 
the seal strip as the spread of normal stress for the first mentioned part is much 
larger. It is remarkable that the values of the stress at both parts seem to be 
comparable. 

 At the pit of the tenon relatively small tension stresses are visible. 
 

 
Figure 68: Contour plot of the stresses S22 for mortise and tenon joint at the rear post (Unit is Pa = 

N/mm2 ∙ 106, deformations scaled 10:1) 

Figure 69 depicts a contour plot of the stresses S12 at the rear post. These are the shear 
stresses in the 1-2 plane. For the crossbeam this stress component corresponds to the 
normal shear stress. For the rear post and seal strip these stress components correspond to 
the rolling shear stress. 
 
From Figure 69 the following observations can be made: 
 At the pit of the tenon relatively large shear stresses develop. Shear stresses actually 

have to occur, as the lower part of the beam is forced to bend along with the upper 
part of the beam. 

 In the tenon it is clearly visible the shear force changes sign. The line of action of the 
reaction force on the tenon lies at the point where the shear force is equal to zero. 
The sign of the shear force also indicates a negative moment acts in the tenon. 

 Due to the transfer of compression forces on a concave shape, at the lower back side 
of the rear post high shear stresses develop. 

 As the tenon presses onto the top part of the rear post, shear stresses also develop in 
the upper part of the rear post. 

 



Master’s Thesis  |  Final report 

48 

 
Figure 69: Contour plot of the stresses S12 for mortise and tenon joint at the rear post (Unit is Pa = 

N/mm2 ∙ 106, deformations scaled 10:1) 

 

5.1.2 ANALYSIS OF SECTIONAL FORCES 
To further analyse the transfer of forces through the joint, at the sections depicted in Figure 
65 the sectional forces are determined. Within Abaqus an output file is generated with the 
stresses S11, S22 and S12 for the given sections. Excel is then used to obtain sectional forces 
and lines of action. The results for the mortise and tenon joint are depicted in Figure 70. 
Results for some additional sections are listed in Table 8. In the following first some 
observations will be made after which some equilibrium checks are performed. The 
sectional forces subscribe global conclusions made on the contour plots in the previous 
paragraph. 
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47.3

44.7
1.5

85.8

9.8
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60.3
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Figure 70: Sectional forces rear mortise and tenon joint (Forces indicated in kN, measures indicated in 

mm in a smaller font size) 
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Table 8: Sectional forces at additional sections 

Location Force Value Unity 
Rear end crossbeam Normal force 143 kN 
 Shear force 50 kN 
    
Mid-section crossbeam Bending moment 54.5 kNm 
 Normal force 143 kN 
    
Front end crossbeam Normal force 143 kN 
 Shear force 47.5 kN 
    
Front tenon Shear force 38.7 kN 
 
The compression force from the crossbeam is transferred through the upper and lower 
parts of the rear post to the back of the rear post according about the ratio of sectional 
surfaces. The ratio of sectional surfaces (lower / upper part rear post) is 100 mm / 50 mm 
and the compression force’s ratio is 95 kN / 45 kN which corresponds well. It is also striking 
the compression force at section 5 of the rear post only changed height about 2 millimetres 
with respect to section 1 and is thus transferred along an almost straight line. In contrast to 
the assumption made in paragraph 3.2 the compression forces in the upper and lower part 
of the rear post do not bend off to the middle of the back of the rear post. The tension force 
behind the mortise is thus not caused by these compression forces. A part of the 
compression force from the crossbeam is transferred through the tenon and is transferred 
to the lower part of the rear post by friction. 
 
The tension force behind the mortise is caused by the upward acting force the tenon exerts. 
It is however to be expected this tension force reduces when force transfer within 3D 
geometry is considered as the upward acting force can be transferred to a greater area. 
 
Only a small part, about 20%, of the shear force is transferred via friction at the contact 
surfaces between the crossbeam and the rear post. The largest part, about 80%, is 
transferred via the tenon. Apparently transfer via the tenon reacts most stiff. Another 
explanation is that the further the line of action is removed from the seal strip, the greater 
the negative moment in the rear post must be to counteract the shift of the shear force. As a 
test for another model the friction coefficient was raised to 0.7 instead of 0.2. Even then the 
ratio’s did not change significantly. 
 
A large part of the shear force from the crossbeam is transferred through the elastic support 
and thus to the sides of the mortise after which eventually through the additional bearing 
length of the seal strip the load is transferred to the quoin post. A smaller part of the shear 
force is transferred to the quoin post directly via the seal strip. For this to happen the rear 
post needs to be fixed, as depicted in Figure 48, the frictional force at the back of the rear 
post is actually present according the FE-model. Paragraph 3.3.1 explains the resistance to 
rotation of the rear post elaborately. 
 
For the checks of the equilibrium the following abbreviations are used: RP: rear post, SS: 
seal strip, RT: rear tenon, C: crossbeam, FT: front tenon, ES: elastic support and CL: Centre 
line. Further R: external reaction force, F: internal reaction force, V: shear force and N: 
normal force. The forces are numbered according to the section considered (Figure 65) and 
their direction within the 1-2 coordinate system (Figure 66). Example: the vertical force on 
section 4 of the rear post is named 𝐹𝑅𝑃4,2. 
 



Master’s Thesis  |  Final report 

50 

Global equilibrium rear mortise and tenon joint 
For the following calculations it is referred to Figure 70. 
 
Horizontal equilibrium: 

𝑅𝑅𝑃7,1 = 142 𝑘𝑁 ≈ 143 𝑘𝑁 = 𝑁𝐶  
Vertical equilibrium: 

𝑅𝑅𝑃7,2 + 𝑉𝐶 = 25.5 + 50 = 75.5 𝑘𝑁 ≈ 75.4 𝑘𝑁 = 15.1 + 60.3 = 𝑅𝑆𝑆 + 𝑅𝐸𝑆 
 
The maximum frictional force at the back of the rear post is 0.2∙142 = 28.4 kN which is 
higher than the force present. 
 
Rear tenon 
For the following calculations it is referred to Figure 71. 
 
Horizontal equilibrium for the combination of the two parts: 

𝑁𝐶 = 143 𝑘𝑁 ≈ 142 𝑘𝑁 = 44.7 + 2.5 + 9 + 85.8 = 𝐹𝑅𝑃1,1 + 𝐹𝑅𝑇2,1 + 𝐹𝑅𝑇3,1 + 𝐹𝑅𝑃2,1 
Horizontal equilibrium of the middle area: 

𝐹𝑅𝑇2,1 = 2.5 𝑘𝑁 = 2.5 𝑘𝑁 = 11.5− 9 = 𝐹𝑅𝑇1,1 + 𝐹𝑅𝑇3,1 
Horizontal equilibrium of the right part: 

𝑁𝐶 = 143 𝑘𝑁 ≈ 142 𝑘𝑁 = 44.7 + 11.5 + 85.8 = 𝐹𝑅𝑃1,1 + 𝐹𝑅𝑇1,1 + 𝐹𝑅𝑃2,1 
 
Vertical equilibrium for the combination of the two parts: 

𝑉𝐶 = 50 𝑘𝑁 ≈ 48.5 𝑘𝑁 = 1.5 + 50 − 12.8 + 9.8 = 𝐹𝑅𝑃1,2 + 𝐹𝑅𝑇3,2 − 𝐹𝑅𝑇2,2 + 𝐹𝑅𝑃2,2 
Vertical equilibrium of the middle area: 
𝐹𝑅𝑇3,2 − 𝐹𝑅𝑇2,2 = 50 − 12.8 = 37.2 𝑘𝑁 ≈ 38.7 𝑘𝑁 = 50 − 1.5 − 9.8 = 𝑉𝐶 − 𝐹𝑅𝑃1,2 − 𝐹𝑅𝑃2,2 

Vertical equilibrium for the combination of the two parts referring to Figure 70: 
𝐹𝑅𝑇3,2 − 𝐹𝑅𝑇2,2 = 50 − 12.8 = 37.2 𝑘𝑁 ≈ 34.5 𝑘𝑁 = 27.1 + 7.4 = 𝐹𝑅𝑇1,2 + 𝐹𝑅𝑇3,2,𝑟𝑖𝑔ℎ𝑡 

The force 𝐹𝑅𝑇3,2,𝑟𝑖𝑔ℎ𝑡  is transferred at section RT3 between the pit of the tenon and section 
RT1. 
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Figure 71: Force diagram rear tenon 

Back rear post 
For the following calculations it is referred to Figure 70. 
 
Horizontal equilibrium: 

𝑅𝑅𝑃7,1 = 142 𝑘𝑁 ≈ 143 𝑘𝑁 = 47.3 + 95.4 = 𝐹𝑅𝑃5,1 + 𝐹𝑅𝑃4,1 
Vertical equilibrium: 

𝑅𝑅𝑃7,2 = 25.5 𝑘𝑁 ≈ 26.1 𝑘𝑁 = 11.7 + 14.4 = 𝐹𝑅𝑃5,2 + 𝐹𝑅𝑃4,2 
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Lower right part rear post 
For the following calculations it is referred to Figure 70. 
 
Horizontal equilibrium: 

𝐹𝑅𝑃3,1 = 95 𝑘𝑁 ≈ 94.8 𝑘𝑁 = 9 + 85.8 = 𝐹𝑅𝑇3,1 + 𝐹𝑅𝑃2,1 
Vertical equilibrium: 

𝑅𝐸𝑆  = 60.3 𝑘𝑁 ≈ 63.5 𝑘𝑁 =  3.7 +  50 +  9.8 =  𝐹𝑅𝑃3,2 + 𝐹𝑅𝑇3,2 + 𝐹𝑅𝑃2,2 
 
Upper part rear post 
For the following calculations it is referred to Figure 70. 
 
Horizontal equilibrium: 

𝐹𝑅𝑃5,1 = 47.3 𝑘𝑁 ≈ 47.2 𝑘𝑁 = 2.5 + 44.7 = 𝐹𝑅𝑇2,1 + 𝐹𝑅𝑃1,1 
Vertical equilibrium: 

𝐹𝑅𝑃5,2 = 11.5 𝑘𝑁 ≈ 10.6 𝑘𝑁 = 12.1 − 1.5 = 𝐹𝑅𝑇2,2 + 𝐹𝑅𝑃1,2 
 

5.1.3 ANALYSIS OF STRESSES 
For all sections indicated in Figure 65 the normal stresses (perpendicular to the grain) and 
(rolling) shear stresses are determined. For the most interesting sections the graphs are 
shown at convenient size and are explained in this paragraph. All graphs are shown at large 
size in Appendix C. The horizontal axis for each graph indicates the section’s length from left 
to right or from down to up for the respective sections. Tension stresses are positive and 
compressive stresses are negative. 
 
For design strength values of the timber it is referred to Table 4.  
 

 
Figure 72: Stresses at section rear tenon 1 

Figure 72 depicts the stresses on the section rear tenon 1. A common shape for the normal 
and shear stresses can be distinguished for a bending moment. A negative moment is 
present as tension stresses act on the upper part and compression stresses act on the lower 
part of the tenon. As at the location of the section already vertical load is transferred to the 
rear post compression stresses perpendicular to the grain are present too. All values of 
stresses are well below design values. 
 
Figure 73 depicts the stresses on the section rear tenon 2. Only at the very end of the tenon 
(beginning of the axis in the figure) large compressive stresses perpendicular to the grain 
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and shear stresses are present. As the tenon is clamped into the mortise at the upper end 
contact is made here. It can also be seen a negative moment is present for about the whole 
length of the tenon as the normal stress parallel to the grain is positive. All values of stresses 
are well below design values. 
 

 
Figure 73: Stresses at section rear tenon 2 

Figure 74 depicts the stresses on the section rear tenon 3. From the distribution of 
compressive stress perpendicular to the grain is can be seen the vertical load from the tenon 
is transferred quite close to the pit of the tenon. Again it is visible a negative moment is 
present for about the whole length of the tenon as the normal stress parallel to the grain is 
negative. Due to the discontinuity at the pit of the tenon the shear stress becomes 
considerably high. Ignoring the singularity effect of the shear stress again all values of 
stresses are below design values. 
 

 
Figure 74: Stresses at section rear tenon 3 

Figure 75 depicts stresses along the elastic support. As the elastic support is a “trick” to 
include the 3D effect in the 2D analysis the stresses are not actually present. These stresses 
are of interest to check if the result is valid. Along the entire support compressive stresses in 
the 2-direction are present which are relatively high over a significant length. That the rear 
post rotates around the seal strip is well noticeable on the increase of stress further from 
the seal strip. The normal stress in the 1-direction increases as compressive force is 
transferred from the tenon to the lower part of the rear post by friction. 
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Figure 75: Stresses at section elastic support 

Figure 76 depicts stresses along the elastic support. Most of interest is the normal stress 
perpendicular to the grain in the 2-direction. Due to the transfer of compression forces on a 
concave support compressive stresses develop close to the support. Near the mortise high 
tension stresses develop due to the upward pressing tenon in the mortise. As mentioned, it 
is to be expected these tension stresses reduce when force transfer within 3D geometry is 
considered as the upward acting force can then be transferred to a greater area. 
 

 
Figure 76: Stresses at section rear post 6 

Figure 77 depicts stresses along rear post 7c. Very well noticeable is the transfer of the 
compression force via the upper and lower part of the rear post. The compression force 
through the lower part of the rear post is twice as large as through the upper part which can 
also be noticed by the larger and wider stress distribution at the lower part. Compressive 
stresses perpendicular to the grain are well below design values. The rolling shear stress at 
the lower part of the rear post adopts too high values. These peaks are restricted to a small 
length of 30 mm though. 
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Figure 77: Stresses at section rear post 7 

In general from the graphs it can be seen stresses do not exceed design strength values. 
Ignoring singular effects near discontinuities, only the rolling shear strength at the lower 
back side of the rear post and the tension strength perpendicular to the grain behind the 
mortise are exceeded. The areas where these stresses are exceeded are however that small, 
that due to size-effects it is estimated no failure will occur. 
 

5.2 CONCLUSIONS ON FORCE DISTRIBUTION 
For a wooden mitre gate designed according traditional dimensions the following 
conclusions can be drawn from the statements made in the previous paragraphs. 
 
Conclusions relating to the force transfer: 
 A large part of the shear force from the crossbeam, about 80%, is transferred 

through the tenon. About 20% is transferred via friction at the square contact 
surfaces between the crossbeam and the rear post. 

 
 A potentially high friction coefficient between the crossbeam and rear post due to 

interlocking grains does not increase the percentage of shear force transferred via 
friction. 

 
 A 3D effect is present in the joint whereby a part of the load is transferred to the 

sides of the mortise after which the load is transferred to the seal strip through the 
full section of the rear post. 

 
 Due to the 3D effect the line of action of the reaction force on the tenon lies closer to 

the pit of the tenon than the line of action of the reaction force at the seal strip 
support does. At approximately one third of the tenon length the shear force is 
transferred from the tenon to the rear post according the 2D model. 

 
 The reaction force from the tenon introduces a negative moment in the rear post as 

its line of action does not coincide with the line of action of the reaction force at the 
seal strip support. The tenon is clamped into the mortise and at the back of the rear 
post a frictional force at the concave support counteracts the negative moment. 

 
 At the pit of the tenon relatively small tension stresses and relatively large shear 

stresses develop. 
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 The compression force from the crossbeam is transferred through the upper and 

lower parts of the rear post to the support at the back of the rear post according the 
ratio of sectional surfaces of the upper and lower part. The two forces are 
transferred in almost a straight line to the quoin post behind the upper and lower 
part of the rear post. 

 
 Ignoring singular effects near discontinuities within the finite element model’s 

results, appearing stresses throughout the joint satisfy design strength values. 
 
 The following critical areas are identified: 

□ behind the mortise high tension stresses have developed as the clamped 
tenon presses upwards on the rear post. 

□ at the lower back side of the rear post high shear stresses develop due to the 
transfer of compression forces on a concave shape. 

Due to expected 3D effects, the small size of the critical locations and the limited 
extend in which design strength values are exceeded the critical areas are 
determined to satisfy strength requirements. 
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6 ANALYSIS HARDWOOD TENON 
In paragraph 2.4.1 the theoretical background of the expression for the reduced strength of 
notched beams is amplified on. In this chapter a similar theoretical analysis for a tenonned 
beam is performed. First a theoretical basic expression for tenonned beams is derived after 
which some aspects of this expression are researched further and several methods to model 
tenon strength are identified. These expression can then be compared with experimental 
results in chapter 8. 
 

6.1 ADAPTED THEORETICAL BASIC EXPRESSION FOR TENON STRENGTH 
The derivation of a theoretical basic expression for the strength of tenonned beams (TET) is 
for a large part equal to the derivation of the theoretical basic expression for notched beams 
(TEN) from paragraph 2.4.1. This derivation starts after the energy balance for a notched 
beam, equation [2] from paragraph 2.4.1, is formed. This energy balance is obtained in 
precisely the same way for a beam with a tenon on its ends when Figure 32 is replaced by 
Figure 78. The average shear stress at which the change of potential energy for the system is 
equal to the fracture energy per crack area is given by equation [14]. 
 
 𝑉𝑓

𝑏𝛼𝑑
=
�

2𝐺𝑐
𝑏𝛼2𝑑

∙
1 

 
𝑑 �𝛿𝑉�
𝑑𝛽  

 
[14]  

where Vf [N] is the shear force at which a crack will develop, b [m] is the width of the beam, 
d [mm] is the full height of the beam, δ [mm] is the deflection at the line of action of the 
reaction force and Gc [N/m] is the fracture energy per crack area. The ratios α and β are 
defined in Figure 78. For a tenon the variable γ needs to be defined which indicates the 
height at which the tenon is located. 
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Figure 78: Symmetric half of a tenonned beam 

The deflection of a tenonned beam at the line of action of the reaction force is different with 
respect to a notched beam. Therefore to determine the variation of the compliance 𝛿/𝑉 with 
𝛽 the deflection of the beam needs to be calculated again, taking the tenon into account 
instead of a notch. 
 
The beam’s deflection consists of four terms where the total deflection is equal to the 
summation of those terms: 𝛿𝑡𝑜𝑡𝑎𝑙 = 𝛿𝑙 + 𝛿𝑣 + 𝛿𝑟 + 𝛿𝑏. 
 
𝛿𝑙  is the local deformation of the timber at the supports and point of loading. Because 𝛿𝑙  is 
not dependent on 𝛽, it does not need to be calculated. 
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𝛿𝑣 is the shear deformation of the beam. According linear elastic theory the deflection can be 
determined by the following equation where the result depends among other variables on 
𝛽: 

𝛿𝑣 =
1.2𝑉
𝐺𝑥𝑦

�
𝛽𝑑
𝑏𝛼𝑑

+
𝑙
2 − 𝛽𝑑
𝑏𝑑

� 

where 𝐺𝑥𝑦 [N/m2] is the shear modulus. 
 
𝛿𝑏 is the ordinary bending deformation of the beam. According linear elastic theory the 
following  expression can be derived: 

𝛿𝑏 =
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where 𝐸𝑥 [N/m2] is the modulus of elasticity parallel to the grain. 
 
The terms 𝛿𝑙 , 𝛿𝑣 and 𝛿𝑏 are not changed with respect to the notch considered in paragraph 
2.4.1 when the definitions for a tenon from Figure 78 are used. However, an important note 
is that when the crack is growing the formula’s for 𝛿𝑣 and 𝛿𝑏, as mentioned above, are not 
valid anymore. The remaining beam’s height above the crack is larger along the length Δ𝑥 in 
Figure 78 than the tenon’s height alone. However, for a tenon cantilever length of 𝛽𝑑 the 
equations do apply at the moment the crack starts to grow. 
 
The increase of deflection originating at the discontinuity at the end of the notch or tenon is 
referred to as 𝛿𝑟 . For both a notch and a tenon, which are “clamped” into the full-size beam, 
only after some distance from the discontinuity the normal stresses by bending extend over 
the full height of the beam (Figure 40). Close to the change of cross section the full bending 
capacity of the full-size beam is not fully activated and some extra deflection develops than 
when common linear elastic theory is used. 
 
As is depicted in Figure 40 the different geometries of a notched beam and a tenonned beam 
will result in a different normal stress distribution and therefore different values of 𝛿𝑟 . The 
figure depicts designs for which b, d and α have equal values according the definitions of 
Figure 32 and Figure 78. 
 
It is assumed 𝛿𝑟  varies linearly with both the moment 𝑉 ∙ 𝛽𝑑 and the length of the cantilever 
𝛽𝑑: 

𝛿𝑟 = 𝑉𝛽𝑑 ∙ 𝑐 ∙ 𝛽𝑑 = 𝑉𝑐𝛽2𝑑2 
In fact, by this adding the deflection 𝛿𝑟  a fictive moment spring is placed at the discontinuity: 
multiplying the factor c [(Nm)-1] with the moment, causes a rotation, which results in the 
deflection 𝛿𝑟  when multiplied with the cantilever length. Obviously for a tenonned beam a 
different expression for c needs to be chosen than was chosen for a notch in paragraph 2.4.1. 
 

  
Figure 79: Simplified normal stress distribution for a notch and a tenon close to the discontinuity 
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The factor 𝑐 thus introduces the influence of tenon geometry on stresses and strains near 
the transition from tenon to beam. The factor 𝑐 depends on α, γ, the modulus of elasticity 
and the shear modulus. For a tenon no analytical expression could be obtained and the 
background of the chosen expression for c for notched beams could not be retrieved. In 
paragraph 6.3 the phenomenon is investigated further using approximations. 
 
When c is left in the equation the compliance becomes: 
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Taking the derivative of the compliance with 𝛽, simply filling the result into equation [14] 
and replacing the material dependent fracture energy per crack area 𝐺𝑐 with fracture energy 
in pure tensile spitting perpendicular to the grain 𝐺𝑓,𝑦  the result is a theoretical basic 
expression applicable to tenonned beams (TET): 
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[15]  

where 𝑉𝑓 [N] is the shear force, 𝑏 [m] is the width of the beam, 𝐺𝑓,𝑦  [N/m] is the fracture 
energy in pure tensile spitting perpendicular to the grain, 𝐺𝑥𝑦 [N/m2] is the shear modulus 
and 𝐸𝑥 [N/m2] is the modulus of elasticity parallel to the grain. In Figure 78 𝛼 [-], 𝛽 [-] and 𝑑 
[m] are indicated. 
 
The only difference with TEN is that c is left into the expression and the expression is not 
reformulated by moving variables. Indicative material properties for the strength of a 
tenonned beam are the fracture energy, modulus of elasticity and the shear modulus.  
 

6.2 FRACTURE ENERGY FOR HARDWOOD 
The fracture energy for softwoods was researched extensively by Larsen and Gustaffson 
(1990). A similar research project has not (yet) been performed for hardwood. In fact, very 
little, to nothing, is known about the fracture energy of hardwoods. 
 
Figure 80 again depicts the results Larsen and Gustaffson found for the fracture energy of 
softwoods. It can be seen the largest densities lie between 700 and 800 kg/m3. These values 
are large enough to assume with some certainty the indicated regression line accounts for 
densities around a 1000 kg/m3 too. Further the cloud of test results seem to suggest for 
higher densities the fracture energy increases more than linearly. However, two important 
notes need to be made in this respect. Firstly, when a closer look is taken on the distribution 
of the results per individual test series, it is noticeable the scatter of the results is very large. 
The suggested regression line then seems to hold no more. Secondly, the tests are all 
performed on softwoods while hardwood is considered for this research. As the 
microstructure of softwoods and (especially tropical) hardwoods differ in important aspects 
like cell wall thickness and rays it is likely to expect differences in fracture energy value. 
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In the following the fracture energy for hardwood is determined in two ways: 
1. The regression line from Larsen and Gustaffson (1990) is used. It is thus assumed 

this relation holds for tropical hardwood with densities around a 1000 kg/m3. 
2. From the test results from Vermeij (2011) on notched Azobé beams, for which TEN 

is quite reliable, the fracture energy can be calculated. 
 

 
Figure 80: Fracture energy verses density for European softwoods regarded as one population (Source: 

Larsen and Gustaffson (1990), Fig. 5) 

6.3 STRESSES AND DISPLACEMENT NEAR DISCONTINUITY TENON 
To approximate the development of stresses and displacement near the discontinuity in a 
tenonned beam different options are possible: 
 

1. Complete theoretical description 
Analogue to the derivation of TEN a analytically determined factor c could be derived for a 
tenonned beam. This is preferred as the obtained theoretical expression TET then is 
complete and theoretically correct. However, the derivation of the factor c for a notched 
beam is not explained by Gustafsson (1988) and it has not been managed within this 
research to explain the factor c for a notched beam or to derive a factor c for a tenonned 
beam. 
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2. Common linear elastic theory 
It could be decided to ignore the phenomenon of development of stresses near the 
discontinuity of the tenon. Then common linear elastic theory is  used to obtain TET and a 
certain factor could be introduced to account for the phenomenon which will be determined 
by tests on tenonned beams. 

3. Investigation of the development of stresses 
Using FEM the development of stresses near the discontinuity could be investigated. When 
this development is found the reduction of stiffness can be calculated. 

4. Investigation of the development of deflection 
Using FEM the development of deflection of the tenonned beam can be determined. This 
development can then be compared with the deflection calculated according linear elastic 
theory. 
 
Method 2 is performed in chapter 8. Method 3 and 4 will be explained further below. 
 
INVESTIGATION OF THE DEVELOPMENT OF STRESSES 
To investigate the development of stresses a FE-model was constructed according the FEM 
properties explained in paragraph 4.2 to 4.4. The model is designed according the test 
pieces used by Vermeij (2011) which is depicted in Figure 81 and explained further in 
paragraph 7.1. 
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Figure 81: Model for the investigation of the development of stresses after the discontinuity at the tenon 

(dimensions in mm) 

At intervals of 6 and further on 14 mm a section is created where the normal stress normal 
to the beam’s axis is determined. Figure 82 depicts three of those sections at 3, 57 and 145 
mm from the tenon. It can be clearly seen the stresses spread out further away from the 
tenon. In the most left graph it is clear that the bending stresses are only present between 
48 and 96 mm of the section which is the tenon height. In the most right graph a common 
bending stress diagram is obtained. As the bending moment increases until the first point 
load is reached, the surface below the diagrams do not need to be equal to each other. 
 

 
Figure 82: Normal stresses at sections at 3, 57 and 145 mm from the tenon 
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In order to obtain a fictive height of the beam at all sections the following calculations are 
performed, Figure 83 visualizes the variables. First the stress at every FE-element is 
multiplied with the surface of the element for half the section. Summation then gives the 
equivalent force at the lower half of the section: 

𝑑𝐹𝑖 = 𝜎𝑖𝐴𝑖  
𝐹 = �𝑑𝐹𝑖 

The equivalent forces per element are then multiplied with the distance of the element with 
the lower side of the beam. These values are summed up and divided by the equivalent force 
by which the distance of the line of action of the equivalent from the lower side of the beam 
is obtained. 

𝑑𝑀𝑖 = 𝑑𝐹𝑖𝑎𝑖 

𝑎𝑧 =
∑𝑑𝑀𝑖

𝐹
 

Assuming a common linear bending stress diagram the fictive height of the beam for each 
section can be calculated by: 

ℎ𝑓 =
6
4

(ℎ − 2𝑎𝑧) 
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Figure 83: Calculation of the fictive height per section 

When the fictive height for every section is put into a graph, Figure 84 is obtained. The 
fictive height of the beam increases linearly, closer to the range of influence of the point load 
the result start to deviate from the linear relation. A regression line is added to obtain the 
function of the line.  
 
The fictive height of the beam needs to begin at 48 mm, the tenon’s height, and end at 144 
mm, the beam’s height. Using the regression line the length is obtained after which the full 
height of the beam is utilized: 

(144 − 48)
4.8484

= 198 𝑚𝑚 
 
Using the results from above a fictive additional length of the tenon can be calculated. 
Keeping the surface of the beam geometry constant the additional tenon length becomes: 

𝑥𝑎𝑑𝑑 =
1
2 (144 − 48) ∙ 198

2 ∙ 48
= 99 𝑚𝑚 

 
By adding xadd to x the influence of the factor c is approximated within TET. 
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Figure 84: Height fictive beam vs. length along the beam (starting from the discontinuity) 

 
INVESTIGATION OF THE DEVELOPMENT OF DEFLECTION 
Using the same model as for the investigation of the development of stresses, the deflection 
along the beam is researched. The deflection according the FE-model is compared to the 
deflection obtained by solving the differential equation for a Timoshenko beam. The latter 
results does not take the stress distribution near the discontinuity into account. 
 
The differential equation for a Timoshenko beam is derived in Appendix B. To solve the 
differential equation the symmetric half of the beam is cut in three parts, as depicted in 
Figure 85. The boundary conditions used are: 

𝑣1(0) = 0 and EI dφ1
dx

(0) = 0 
 

𝑣1(𝐿1) = 𝑣2(𝐿1), φ1(L1) = φ2(L1), EI dφ1
dx

(𝐿1) = EI dφ2
dx

(𝐿1) and 

 𝐺𝐴𝑠 �
dv1
dx

(𝐿1) − φ1(L1)� = 𝐺𝐴𝑠 �
dv2
dx

(𝐿1) − φ2(L1)� 

 
𝑣2(𝐿2) = 𝑣3(𝐿2), φ2(L2) = φ3(L2), EI dφ2

dx
(𝐿2) = EI dφ3

dx
(𝐿2) and 

 −𝐺𝐴𝑠 �
dv2
dx

(𝐿2) −φ2(L2)� + 𝐺𝐴𝑠 �
dv3
dx

(𝐿2) − φ3(L2)� − 𝐹 = 0 

 
φ3(𝐿𝑚𝑖𝑑) = 0 and 𝐺𝐴𝑠 �

dv3
dx

(𝐿𝑚𝑖𝑑) −φ3(Lmid)� 

 
where 𝑣(𝑧) [m] is the deflection along the z-axis, 𝜑(𝑧) [-] is the rotation along the z-axis, 
𝐸 =  𝐸0 [N/m2] is the modulus of elasticity along the grain, 𝐺 [N/m2] is the shear modulus, 
𝐼 = 𝑏𝑑3

12
  [m4] is the second moment of area of the fictive beam and 𝐴𝑠  =  𝑏𝑑 [m2] is the 

cross-sectional area fictive beam 
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Figure 85: Symmetric half of the beam 

Solving the differential equation using the boundary conditions from above, three 
expressions for the deflection are obtained for the three parts of the beam. These 
expressions are depicted in Figure 86 where the deflection according the FE-model and the 
difference between the two are also depicted. 
 

Part 1 Part 3

Part 2

 
Figure 86: Comparison of the vertical displacement according FE-model and differential equation 

From Figure 86 the following observations can be made: along the tenon the difference 
between the two equations increases approximately linearly. From the discontinuity the 
difference increases after which a constant but small difference increase remains present. 
The difference increase remains constant after about 120 mm. This increase is however that 
small, the two deflection curves can be considered parallel from then on. 
 
The slope of the line “FEM – DE” is depicted in Figure 87. The additional length of the tenon, 
obtained in the investigation of the development of stresses, can be added to the actual 
tenon length after which a total fictive length of the tenon follows of xf = 40 + 99 = 139 mm. 
The value of the slope at this length is equal to the boundary which the slope of the line 
“FEM – DE” approaches. The two investigations to the fictive tenon length, which takes the 
influence of the transition from tenon to beam into account, result in a comparable result. 
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Figure 87: Slope of the line "FEM - DE" 

 

6.4 MODEL FORMULA’S TO BE COMPARED WITH TEST RESULTS 
To be compared with test results following  formulas are listed: 
 
The first and most obvious formula which will be compared with test results is the 
expression stated by paragraph 6.5.2 from Eurocode 5 (NEN-EN 1995-1-1, 2005) for the 
calculation of the strength of notched beams. To be able to compare the obtained values the 
formula is rewritten in the following form: 
 

𝑉
bαd

=
2
3 ∙ 5 ∙ 𝑓𝑣,𝑘

√𝑑 ��𝛼(1 − 𝛼) + 0.8 𝑥𝑑 �
1
𝛼 − 𝛼2�

 

where kn = 5 for solid timber is considered. Note that the obtained shear stress value is a 
characteristic value and in the derivation of this formula material parameter (ratios) for 
softwoods are assumed.  
 
The second formula is the theoretical basic expression for notched beams (TEN), derived in 
paragraph 2.4.1: 
 

𝑉
bαd

=
�𝐺𝑐𝑑

�0.6 (𝛼 − 𝛼2)
𝐺 + 𝛽�6

�1
𝛼 − 𝛼2�
𝐸

 

This formula is not fitted on test results as is done for the Eurocode 5 expression. Therefore 
it can be researched whether notched Azobé beams are described well by this equation and 
which value for the fracture energy would be appropriate for the wood species Azobé as the 
expression is derived for the geometry of a notch and material parameters are not yet 
incorporated. 
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The following theoretical basic expression for tenonned beams (TET) is derived in 
paragraph 6.1 to be applicable for tenon geometries: 
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As for the theoretical basic expression derived for a notch geometry, no material parameters 
are yet incorporated in this formula. Though the factor c can be defined in different ways. 
For the comparison with test results c is set to zero after which TET is compared using both 
the actual tenon length and the fictively extended tenon length. 
 
For the fracture energy different models are used. For both wood species the relation 
determined by Larsen and Gustaffson (1990) is used:  

𝐺𝑓,𝑦 = −146 + 1.04𝜌 
For Spruce the approximation by Larsen and Gustafsson (1992) is used too: 

𝐺𝑓,𝑦 = 0.65𝜌 
For Azobé a relation is determined by using the “Solve” function within Excel. The function 
tries to minimize the sum of the squares of the difference between the modelled value and 
the value according the test. The functions tries to optimize the variables A to E within the 
following linear relation: 

𝐺𝑓,𝑦 = 𝐴 ∙ 𝜌 + 𝐵 ∙ 𝜔 + 𝐶 ∙ 𝐸0 + 𝐷 ∙ 𝐺 + 𝐸 
where 𝐺𝑓,𝑦  [N/m] is the fracture energy in pure tensile spitting perpendicular to the grain, 𝜌 
[kg/m3] is the density, 𝜔 [%] is the moisture content, 𝐸0 is the modulus of elasticity parallel 
to the grain, 𝐺 is the shear modulus and A to E are variables to be determined by Excel’s 
solve function. 
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7 EXPERIMENTAL PROGRAM 
In order to compare en possibly verify the theoretical analysis’ from previous chapters test 
results from Vermeij (2011) were analysed and additional tests were performed. 
Analogously to chapter 20 from NEN-EN 408 (2010) in the following chapter first Vermeij’s 
experimental program is discussed after which the additional experimental program 
performed within this Masters’ Thesis is amplified on. 
 

7.1 EXPERIMENTAL PROGRAM VERMEIJ (2011) 
Within the framework of a Bachelor’s Thesis, Vermeij (2011) researched if the calculation 
rules given by paragraph 6.5.2 from NEN-EN 1995-1-1 (2005) are applicable to hardwood 
tenonned beams. To answer this question Vermeij carried out tests on notched and 
tenonned beams, with and without an inclined lower notch. Within this research the crude 
results from this BSc Thesis were analysed and compared with the theoretical models 
formulated above. The test results from beams with an inclined lower notch where not 
analysed within the framework of this research. 
 
The wood species’ tested were Spruce, originating from Scandinavia, and Azobé, originating 
from Cameroon. Sufficient time before and in between tests the timber was stored in a 
climate chamber where constant humidity and air temperature is maintained. The timber 
was not graded but according non-destructive tests on the modulus of elasticity it was found 
that the Spruce test pieces belong to grade C30 and the Azobé test pieces belong to D70. 
Especially for Azobé it is important to know whether the grains do not deviate too much 
from the beam’s axis. Therefore, when it appears from the journal of the test series the 
grains of a certain piece deviates significantly the result is excluded from the analysis. 
 
The geometry of the test pieces is depicted in Figure 88. Unfortunately the exact sizes per 
test piece were not reported. The intended sizes, also given in the figure, are therefore used 
for the analysis. VNS and ANS indicate respectively a Spruce and Azobé beam, both with a 
sharp notch. VPS and APS indicate respectively a Spruce and Azobé beam, both with a tenon 
without inclination. 
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Figure 88: Geometry test pieces without notch inclination, sizes are given in millimeters, width is 30 mm 

(Vermeij, 2011) 

As depicted in Figure 89 a non-symmetric 4-point-bending test set-up was applied to make 
the beam fail at the desired side of the beam after which a second test could be performed to 
test the other notch/tenon. Most test pieces were indeed tested at both sides of the beam, a 
few though were damaged too much or could not be repaired properly enough to perform a 
second test. From the tests only the failure load is reported by Vermeij. More specific 
information per test piece is given in Appendix D1 
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Figure 89: Test set-up experimental program Vermeij (2011) 

A few notes in relation to the use of these test results need to be made: 
 As mentioned only the failure load per test piece is known. It is not known which 

(sequence of) failure mechanism(s) led to failure. 
 For the beams from which the test pieces are sawn size, weight, moisture content 

and modulus of elasticity is determined. This data is however not know per test 
piece. Experience with the additional experiments performed within this research 
shows that sizes, weight and modulus of elasticity vary between test pieces. The 
analysis of these test results and comparison with the theoretical models could 
therefore be less accurate than would have been possible.  

 The previous note already mentioned sizes per test piece are not determined. 
Further, the specific dimensions of the test set-up per test are not determined as 
well. It is e.g. imaginable per test the notch/tenon cantilever length varied as well. 

 The angle of the grain with the beam’s axis per test piece are not determined. It is 
also difficult to determine this angle from the limited number of picture’s available. 
Therefore only test pieces with excessive deviation of the grain’s angle can be 
identified and excluded. 

 

7.2 ADDITIONAL EXPERIMENTS 
After analysis of the test results from Vermeij (2011) it was decided to perform additional 
experiments. The notes mentioned in the previous paragraph are judged to be of enough 
importance to perform additional tests as the origin of scatter in the results of Vermeij could 
not be identified. A small test series is carried out according the following goals: 
 Gain insight into the (sequence of) failure mechanism(s). 
 Obtain a (small but) complete dataset where data on size, weight, moisture content 

and modulus of elasticity is known per test piece. 
 Accurate measurement of the test set-up per test. 
 Determination of (an indication of) the angle of the grain of the test pieces and angle 

of the crack when failure occurs. 
 Testing different geometries making a broader comparison with the theoretical 

models possible. 
 

7.2.1 TEST PIECES’ WOOD SPECIES AND HISTORY 
The wood species used for the additional tests is Azobé originating from Cameroon. The 
botanical name of the wood is Lophira alata. Besides Azobé the wood is also referred to as 
Ekki or Bongossi. Wijma Kampen B.V. provided the wood with FSC certificate from one of 
their concessions. The wood belongs to the same bathes as the wood used by Vermeij 
(2011). 
 
Before testing the timber was stored for a significant amount of time in a climate chamber 
where a constant humidity of 85% and temperature of 20 degrees Celsius is maintained. 
The beams from which the test pieces are sawn are remainders of bending tests in the past. 
Therefore bending strength values are also available. The timber is classified to strength 
grade D70. Before, during and after testing the angle of the grain is closely examined. 
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7.2.2 NON-DESTRUCTIVE TESTS METHODS 
Before destructive testing was performed the following material parameters were 
determined non-destructively: the dimensions and weight of the timber and dynamic 
modulus of elasticity at various stages of preparation and the moisture content. In the 
following the methods are explained. 
 
At various stages of the preparation process of the test pieces dimensions of the timber are 
determined. For this purpose a flexible steel rule is used with an accuracy of 1 mm. With 
precise measurement dimensions can be estimated fairly good at 0.1 mm. Weight is 
measured with an accuracy of 0.01 kg using a regular scales. 
 
To determine the modulus of elasticity before destructive testing is performed electronic 
devises can be utilized. The Timber Grader MTG is an electronic devise which can measure 
the dynamic modulus of elasticity. 
 

 

 

 
Figure 90: Timber Grader MTG in use 

The Timber Grader MTG works by introducing a vibration in the test piece which travels 
through the test piece back and forth while measuring accelerations at the surface of the 
timber by a receiver. The devise can simply be hold with its receiver onto the end of the test 
piece while on one of the ends a vibration is introduced with a hammer, as is depicted in 
Figure 90. From the measured spectrum of frequencies the eigenfrequency can be 
determined. 
 
Using the eigenfrequency the dynamic modulus of elasticity can be determined using the 
following formulas: 

𝑐 = 2𝑓𝐿 ∙ 10−3 
𝐸𝑑𝑦𝑛 = 𝜌𝑐2 ∙ 10−6 

where: 
c : wave speed [m/s]  
f : first eigen frequency [s-1]  
L : length test piece [mm] 
Edyn : dynamic modulus of elasticity [N/mm2]  
ρ : specific weight [kg/m3] 
 
The moisture content of the test pieces is determined according NEN-EN 13183-1 (2002). 
From the test piece a test slice is sawn2, for which the requirements are illustrated in Figure 
91, after which the weight of the test slices is determined immediately. The test slices are 
then dried in an oven at 103 ± 2 °C until the weight difference between two successive 
weighings is less than 0.1%. The accuracy of the scales used is 0.01 g. 
 

                                                             
2 Note that according paragraph 7.2.3 the requirements illustrated in Figure 91 are not fully met. 



 

69 

Test piece

Test slice
≥ 300

≥ 20
  

Figure 91: Requirements on position test slice (NEN-EN 13183-1, 2002) 

The moisture content is calculated as follows: 
𝜔 =

𝑚1 −𝑚0

𝑚0
∗ 100% 

where 
m1 : mass of the test slice before drying [g]; 
m0 : mass of the oven dry test slice [g]; 
ω : moisture content [%], rounded off to the nearest 0.1 percentage point. 
 

7.2.3 CHARACTERISTICS PREPARATION OF THE TEST PIECES 
The preparation of the test pieces is described in the following paragraph. The design of the 
test pieces is depicted in Figure 92. On both sides of a test piece a tenon is present. The first 
tenon is designed as if the wooden mitre gate is very thick, therefore the thickness of the 
planking can be ignored and the height of the test piece is about equal to the thickness of the 
gate. Then the length of the tenon is equal to the height of the test piece and the upper notch 
- tenon - lower notch ratio is ⅓ - ⅓ - ⅓. The second tenon is designed according the design 
also considered analytically and using FEM. The height of the test piece is ⅚ the thickness of 
the gate. Then the length of the tenon is equal to 1⅕ the height of the test piece and the 
upper notch - tenon - lower notch ratio is ⅕ - ⅖ - ⅖. 
 

150 180470
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A..-..-1 A..-..-2

 
Figure 92: Geometry test pieces, indicated sizes (mm) are approximate. Note the encoding of the two 

distinct tenon geometries. 

First six parent beams where selected from the available stock on the TU Delft. Wood 
species, size and minimal bow distortion where the selection criteria. From these six beams 
dimensions, weight and dynamic modulus of elasticity were then measured. 
 
The test pieces are sawn from the original beam as is depicted in Figure 93 for beam A1. The 
beams where first sawn into two pieces in the length direction and sawn in the specified 
length. Then the side surfaces were planed in order to make the grain and crack 
development during failure clearly visible. For every test piece again dimensions and 
dynamic modulus of elasticity were measured. Unfortunately their weight was not 
measured. 
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A1

A1-2

A1-1

 
Figure 93: Beam A1 from which the test pieces A1-1 and A1-2 are sawn 

Finally the hatched parts illustrated in Figure 93 were removed. To determine the moisture 
content from one of the hatched parts for all test pieces a small block was sawn off as is 
described in paragraph 7.2.2 and is depicted in Figure 94. Note the test slices do not satisfy 
the requirements from NEN-EN 13183-1 (2002) fully. 

 
≈ 122 mm

≈ 25 mm

Test slice

 
Figure 94: Specification location and size test slice 

The test pieces and test results are encoded the following way: the parent beams are 
encoded from A1 (Azobé nr. 1) to A6. The test pieces sawn from e.g. beam A3 are then 
encoded A3-1 and A3-2. As all test pieces will be loaded on both sides test results are 
encoded according the tenon geometry too. Test results for e.g. test pieces A3-1 and A3-2 
are thus encoded A3-1-1, A3-1-2, A3-2-1 and A3-2-2. Therefore 12 test pieces are sawn with 
which 24 tests can be performed. 
 

7.2.4 TEST METHOD 
After the test pieces are prepared and all non-destructive tests are performed destructive 
tests can be performed. The destructive tests are characterised by each test piece being 
tested on both sides and four test set-ups where two different tenon geometries and tenon 
cantilever lengths are combined. Figure 95 depicts the test set-up in the lab. 
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Figure 95: Test set-up 

During destructive testing the following data is gathered: 
 Load values with corresponding crack length and the failure load; 
 The (sequence of) failure mechanism(s); 
 Angle of the crack with the beam axis. 

 
Each test piece needs to be tested twice as both tenons are tested. Therefore the test set-up 
principle depicted in Figure 96 is applied by which the two tenons of every test piece can be 
tested separately without possibly damaging the wrong tenon. Due to limitations of the 
available test bench at the Stevin Laboratory at the TU Delft only a four point bending test 
could be performed. One of the two applied forces is introduced directly above one of the 
supports. Due to the size of the test bench compared to the size of the test pieces it was 
decided to perform a three point bending test as depicted. Checks on maximum bending 
stresses and compression stresses perpendicular to the fibre are reported in Appendix D2. 
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Figure 96: Test set-up principle 

As already briefly mentioned the destructive tests are characterised by four test set-ups 
where two different tenon geometries and tenon cantilever lengths are combined. Both 
tenon geometries are tested with two different tenon cantilever lengths. Test pieces are 
divided according their encoding. Test pieces encoded with the second number being a 1 are 
tested with a short tenon cantilever length. Test pieces encoded with the second number 
being a 2 are tested with a long tenon cantilever length. Furthermore tests encoded with the 
last two numbers being 1-1 are related to tenon geometry 1 with a short tenon cantilever 
length, 2-1 are related to tenon geometry 1 with a long tenon cantilever length, 1-2 are 
related to tenon geometry 2 with a short tenon cantilever length, 2-2 are related to tenon 
geometry 2 with a long tenon cantilever length. Table 9 clarifies the division of tests visually. 
 
Table 9: Four test set-ups 

  Tenon cantilever length 
  Short Long 

Te
no

n 
ge

om
et

ry
 1 

 
A..-1-1 

 

 
A..-2-1 

2 
 

A..-1-2 
 

 
A..-2-2 

 
It is chosen to apply a short tenon cantilever length of ⅓ the tenon length and a long tenon 
cantilever length of ¾ the tenon length. In Figure 97 the mechanical schemes for the four 
combinations of tenon geometry and tenon cantilever length are depicted where the 
designed measures are reported in Table 10. The actual measures during testing deviate 
from the design though, therefore these measures are determined for each test. The forces 
F2 and V are transferred over a length of 50 mm and the whole width of the test piece. The 
forces F1 and R are tried to spread as much as possible. 
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Figure 97: Mechanical schemes for the four combinations of tenon geometry and tenon cantilever length. 

Note the encoding principle for the four distinct test set-ups and the locations of the deflection 
measuring lasers in red. 

The deflection is measured as close to the tenon as possible, as is indicated in Figure 97 in 
red. The laser set-up applied for the tests A..-2-2 is considered most appropriate, but due to 
space limitations other arrangements where necessary. The obtained values of the 
deflection are not used to determine e.g. the global modulus of elasticity, but are only used 
to obtain an indication of the load – deflection diagram which in that way contributes to 
identifying the failure mechanism. The loading speed was 0.2 mm per minute by which a 
failure time of 5 to 10 minutes was realised. The first three tests a slower loading speed was 
used as the failure time was uncertain yet. 
 
Table 10: Characterizing measures mechanical schemes 

 A..-1-1 A..-2-1 A..-1-2 A..-2-2 
Tenon geometry 1 1 2 2 
x [mm] 50 112.5 60 135 
b [mm] 185 247.5 195 270 
a [mm] 295 295 295 295 
 
More specific information regarding the test pieces and each test it is referred to Appendix 
D3 to D6 for e.g. the test journal. 
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8 TENON STRENGTH ACCORDING TESTS 
In this chapter the test results, performed according chapter 7, are analysed and compared 
with the formula’s reported in paragraph 6.4. 
 
Although this research is aimed at Azobé beams with a tenon still the results on notched and 
tenonned Spruce beams and notched Azobé beams are wise to analyse. Results on notched 
Spruce beams are shortly analysed to confirm theory and Eurocode 5. As the material 
parameters of Spruce are relatively well known the effect of the tenon geometry on the 
results can be analysed separately using the results on tenonned Spruce beams. Analogue, 
as the effect of geometry on the results is well described for notched beams the results on 
notched Azobé beams can be used to research the fracture energy of Azobé. The two aspects 
come together in the analysis of the results on tenonned Azobé beams. 
 
It should be realised the test series is of small size. The results should therefore be used as 
indicative and definite conclusions should be drawn after more tests have been performed. 
Further, TET need further developing as the influence of tenon geometry on stresses and 
strains at the transition of tenon to beam is not yet fully researched. It is however of value to 
analyse the results of TET to determine its use. 
 
For the test results and approximating formula’s three values are determined: average, 
coefficient of variation (COV) and the 5th percentile value. The COV is defined as the 
standard deviation divided by the average. The 5th percentile value is determined according 
paragraph 5.3.1 of NEN-EN 384 (2010). 
 
Appendix D reports all data, the test journal and photographs of both the undamaged and 
failed test pieces. 
 

8.1 TEST RESULTS FOR NOTCHED SPRUCE BEAMS 
The rough test data for notched Spruce beams originates from Vermeij (2011) and is 
analysed again for this research. For these beams it is expected the Eurocode 5 expression 
and TEN give well corresponding results. In Figure 98 and Table 11 the results are reported. 
 
From Figure 98 it can be observed all three formulations give good results. In Table 11 a 
rather high COV is reported though. It is striking TEN using the regression line for fracture 
energy corresponds worse than when the simplified expression to determine the fracture 
energy is used. TEN therefore seems too optimistic. The 5th percentile values of the tests, 
and the Eurocode 5 expression correspond very well with a ratio of Eurocode 5 / tests of 
1.10. The ratios TEN without and with modelled Gf,y / test results for average values are 
respectively 1.28 and 1.04. 
 
Table 11: Average shear stress at failure for notched Spruce beams [N/mm2] 

  Average COV 5th percentile 
Tests 1.66 0.29 1.25 
TEN 2.13 0.16  
TEN, modelled Gfy 1.72 0.16  
Eurocode 5 expression     1.37 
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Figure 98 (Test data originates from Vermeij, 2011) 

8.2 TEST RESULTS FOR TENONNED SPRUCE BEAMS 
The rough test data for tenonned Spruce beams originates from Vermeij (2011) and is 
analysed again for this research. For these beams the material parameters are known but 
which effect the tenon geometry has on the results is not. In Figure 99 and Table 12 the 
results are reported. 
 

 
Figure 99 (Test data originates from Vermeij, 2011) 
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From the graph it is clear the Eurocode 5 expression returns conservative results. The 
characteristic value is more than a factor 2 smaller than the 5th percentile value tests 
indicate. The ratio Eurocode 5 / test results for the 5th percentile values tenonned Spruce 
beams is 0.47. TET returns results which correspond better to the test results. However, the 
development of stresses after the discontinuity is still neglected. Approximating this 
phenomenon by fictively extending the tenon results in a worse approximation than the 
Eurocode 5 expression assuming the ratios are constant between 5th percentile and average 
values. 
 
Table 12: Average shear stress at failure for tenonned Spruce beams [N/mm2] 

  Average COV 5th percentile 
Tests 3.46 0.16 2.62 
TEN 2.06 0.14  
TET 2.89 0.14  
TET, modelled Gf,y 2.33 0.14  
TET, additional tenon length 1.26 0.14  
Eurocode 5 expression     1.24 
 
Although TET returns the best results, still a about factor 0.84 separates the average values 
of TET and tests. 
 

8.3 TEST RESULTS FOR NOTCHED AZOBÉ BEAMS 
The rough test data for notched Azobé beams originates from Vermeij (2011) and is 
analysed again for this research. For these beams TEN describes the effect of geometry well, 
but the value of the fracture energy for the material is uncertain. In Figure 100 and Table 13 
the results are reported. 
 

 
Figure 100 (Test data originates from Vermeij, 2011) 
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From the results it is striking the Eurocode 5 expression returns very conservative results. 
The characteristic value is a factor 3 smaller than the 5th percentile value tests indicate. The 
ratio Eurocode 5 / test results for the 5th percentile values is 0.33. TEN, not fitted on 
material parameters of softwoods, but using the regression line to determine the fracture 
energy, delivers much better results. The graph indicates the result is safe, but not too 
conservatively. Notched Azobé beams are therefore better approximated by TEN than by the 
Eurocode 5 expression assuming ratios are constant between 5th percentile and average 
values. The ratio of TEN / test results for average values is 0.76. 
 
Table 13: Average shear stress at failure for notched Azobé beams [N/mm2] 

  Average COV 5th percentile 
Tests 6.39 0.17 5.45 
TEN 4.84 0.07  
TET, modelled Gf,y 5.89 0.08  
Eurocode 5 expression     1.81 
 
The ‘solve’ function within Excel came up with the following formula for the fracture energy: 

𝐺𝑓,𝑦 = 5.36373 ∙ 10−4 ∙ 𝜌 + 4.1504 ∙ 10−5 ∙ 𝐸0 
TEN, using the adapted relation for the fracture energy, returns values closer to the test 
results than when the relation according literature is used. The ratio TEN / test value for 
average values is 0.76, which can be improved by modelling the fracture energy to a ratio of 
0.92. Note 𝜌 and 𝐸0 vary little between test pieces, which influences the utility of the 
relation. The fracture energy of hardwoods needs further research. 
 

8.4 TEST RESULTS FOR TENONNED AZOBÉ BEAMS 
For tenonned Azobé beams both the effect of geometry as the material parameter fracture 
energy is uncertain. In Figure 101 to Figure 105 and Table 14 to Table 15 the results are 
reported. 
 

8.4.1 COMPARISON TEST RESULTS VERMEIJ (2011) WITH MODEL FORMULAS 
The rough test data for tenonned Azobé beams originates from Vermeij (2011) and is 
analysed again for this research. First the test results are analysed by comparing them with 
the result of the model formulas, as is done in the previous paragraphs. 
 
First referring to Figure 101 and Table 14, again the Eurocode 5 expression returns a very 
conservative result. A factor 0.23 separates the two characteristic values. When TET is 
combined with the modelled fracture energy, average values are still separated by a large 
difference with a ratio TET / test results of 0.48. 
 
As can be seen from the graph the scatter of the test results is large with a COV of 0.27 which 
is completely opposite to the resulting COV of the model formulas. Due to the lack of data 
per test piece (more elaborately discussed at the end of paragraph 7.1) it is impossible to 
determine the cause of the scatter. On the one hand the scatter could be caused by material 
related phenomena, on the other hand the lack of specific data per test piece could be the 
cause. The additional tests are therefore viewed as necessary. 
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Figure 101 (Test data originates from Vermeij, 2011. Regression lines are forced through 0,0.) 

Table 14: Average shear stress at failure for tenonned Azobé beams [N/mm2] (Test results from Vermeij, 
2011) 

  Average COV 5th percentile 
Tests 11.91 0.27 7.01 
TEN 4.10 0.04 3.97 
TET 5.77 0.04 5.58 
TET, modelled Gf,y 6.87 0.04 6.61 
TET, additional tenon length 2.51 0.04 2.43 
Eurocode 5 expression     1.64 
 

8.4.2 COMPARISON TEST RESULTS VAN OTTERLOO (2013) WITH MODEL FORMULAS 
For this research additional test on tenonned beams are performed. All data per test piece 
and test is reported in Appendix D. The test results for the additional tests are depicted in 
several graphs to make the results more clear. In the following it is referred to Figure 102 to 
Figure 105 and Table 15 to Table 17. 
 
The first remarkable result is that compared to the results from Figure 101 the stresses are 
much smaller in value, even though the test pieces originate from the same batch of timber 
and geometry 1 is similar to the test pieces from Figure 101. Only the test set-up was 
different, but this should not influence the result at this extend, as the combination of shear 
force and bending moment in the tenon should be equal. 
 
For tenonned Azobé beams again conservative results are obtained when the expression for 
the strength of notched beams from Eurocode 5 is applied. The ratio Eurocode 5 / test 
results for the 5th percentile values averagely 0.24 for the tested geometries. 
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From Figure 102 four clouds can be distinguished which represent the four test set-ups. For 
comparison of the four test set-ups TET is used. Per test set-up the scatter is normal with an 
average COV of 0.14. 
 

 
Figure 102 (From tests within this research (Van Otterloo, 2013)) 

In Table 15 the average results for the four test set-ups and their ratios are reported. Both 
the Eurocode 5 expression as TET return about the same ratios as the test results indicate 
when the tenon cantilever length is varied. The ratio of the test results for short and long 
tenon cantilever length are 1.40 and 1.53 for tenon geometry 1 and 2 which corresponds 
with the ratio which TET returns which is for both tenon geometries 1.67. Varying the tenon 
cantilever length is well described by both the Eurocode as TET.  
 
When geometry is varied the test results indicate the average result changes significantly, 
but for both the Eurocode as TET little change of result is obtained. The ratio of the test 
results for tenon geometry 1 and 2 are 1.21 and 1.32 for short and long tenon cantilever 
length which does not correspond with the ratio which TET returns which is for both tenon 
cantilever lengths 1.04. It is remarkable the formula takes the tenon cantilever length into 
account very well, but tenon geometry does not significantly influence the model formula’s 
values. 
 
The fact that the factor c, which introduces the influence of the tenon geometry on stresses 
and strains near the transition from tenon to beam, is set to a value of zero; most probably is 
the cause of the bad representation of tenon geometry by TET. 
 
When both tenon cantilever lengths are combined for both tenon geometries, its regression 
line fits well, which is depicted in Figure 103. The slope of the regression lines are almost 
equal to one, which means that for both populations a multiplication factor can make the 
average values of tests and formula equal. However, it is again evident the influence of 
geometry is not described well, as the possible multiplication factors will not have the same 
value. 
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Table 15: Ratios average results of the four test set-ups (From tests within this research (Van Otterloo, 
2013)) 

Test results Tenon cantilever length  
  Short Long  
Geometry 1 7.99 5.69 1.40 

2 6.61 4.32 1.53 
  1.21 1.32  
 
Eurocode 5 Tenon cantilever length  
  Short Long  
Geometry 1 1.41 0.92 1.53 

2 1.40 0.86 1.63 
  1.01 1.07  
 
TET Tenon cantilever length  
  Short Long  
Geometry 1 5.32 3.20 1.66 

2 5.10 3.06 1.67 
  1.04 1.05  
 

 
Figure 103 (From tests within this research (Van Otterloo, 2013)) 

Figure 104 shows TET comes closer to the test results and has a better corresponding slope 
than TEN.  However, as the effect of geometry is not taking into account by TET yet, the 
conclusion is uncertain yet. For the test set-ups for tenonned Azobé beams A..1-1, A..-2-1, 
A..-1-2 and A..-2-2 TET returns average values near the test results’. Ratios of TET / test 
results for the respective test set-ups are 0.67, 0.56, 0.77 and 0.71 according Table 16. 
 
In Figure 105 two variations of TET are depicted. Using the fictively extended tenon worse 
results are obtained than when the actual tenon cantilever length is used. Note that the 
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additional length for tenon geometry 2 is estimated to be 60 mm, as the geometry is not 
researched by FEM. Using the modelled fracture energy leads to good results.  
 
According Table 16 the following ratios are found: modelling the fracture energy gives 
ratios of TET / test results for average values of 0.80, 0.68, 0.93 and 0.86 for respectively the 
test set-ups A..1-1, A..-2-1, A..-1-2 and A..-2-2. The approximation thus improves the 
expression. Approximating the development of stresses near the transition of tenon to full-
size beam, ratios of TET / test results for average values of 0.31, 0.32, 0.49 and 0.51 are 
obtained for respectively the test set-ups A..1-1, A..-2-1, A..-1-2 and A..-2-2. The 
approximation thus does not improve the expression. 
 
Table 16: Average shear stress at failure for tenonned Azobé beams [N/mm2]. Test results per 
combination of geometry and tenon cantilever length from tests within this research. (From tests within 
this research (Van Otterloo, 2013)) 

  A..-1-1 A..-2-1 A..-1-2 A..-2-2 

Tests 
Average 7.99 5.69 6.61 4.32 
COV 0.15 0.13 0.18 0.11 
5th percentile 6.08 4.78 4.59 3.64 

TEN Average 3.77 2.42 3.61 2.31 
COV 0.04 0.05 0.03 0.03 

TET Average 5.32 3.20 5.10 3.06 
COV 0.04 0.06 0.03 0.03 

TET, modelled Gf,y Average 6.40 3.86 6.14 3.70 
COV 0.06 0.06 0.04 0.04 

TET, additional 
tenon length 

Average 2.46 1.82 3.25 2.22 
COV 0.04 0.05 0.03 0.03 

Eurocode 5 
expression 5th percentile 1.41 0.92 1.40 0.86 
 

 
Figure 104 (From tests within this research (Van Otterloo, 2013)) 
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Figure 105 (From tests within this research (Van Otterloo, 2013)) 

In Table 17 the results for all four test set-ups are combined and as the geometry 
parameters vary, the COV is rather high. 
 
Table 17: Average shear stress at failure for tenonned Azobé beams [N/mm2]. All test results combined 
from tests within this research. (From tests within this research (Van Otterloo, 2013)) 

  Average COV 5th percentile 
Tests 6.31 0.26 4.00 
TEN 3.11 0.22  
TET 4.30 0.24  
TET, modelled Gf,y 5.18 0.24  
TET, additional tenon length 2.48 0.22  
 
In the journal of the test series (Appendix D) the angle of the crack with the beam’s axis is 
reported. For all tests the crack was carefully investigated. After analysis of the results no 
correlation between the angle of the grain with the beam’s axis and the test results could be 
found. Tests where cracks with large angles had developed often higher loads were reached 
than small angled cracks and vice versa. The largest angle of the crack with the beam’s axis 
found was 12 degrees and only for 4 of 26 test pieces the angle of the crack with the beam’s 
axis was larger than 5 degrees. The deviation of test pieces’ grains with the beam’s axis thus 
was not very large. 
 

8.4.3 INDICATIVE ANALYSIS OF FAILURE MECHANISMS 
During testing it was observed in all test pieces a crack developed, but not all of them finally 
failed due to the crack. Bending failure of the tenon and of the remaining beam was 
observed in many cases. 
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Four failure mechanisms are distinguished, after a period of stable crack growth: 
 unstable crack growth leads to failure; 
 bending failure of the tenon occurs; 
 bending failure of the remaining beam occurs; 
 shear failure of the tenon occurs. 

Table 18 reports the observed failure mechanism per test piece. Note the indicative analysis 
performed in this paragraph is valid for the test set-up used for this research. 
 
Table 18: Failure mechanism per test piece (From tests within this research (Van Otterloo, 2013)) 

 A..-1-1 A..-2-1 A..-1-2 A..-2-2 
 Failure mechanism / Reaction force  at failure [kN] 

 
A1-..-.. 
 

Cracking 7.4 Bending 
tenon 6.1 

Bending 
remaining 
beam 

11.6 Cracking 6.9 

 
A2-..-.. 
 

Bending 
tenon 12.1 Bending 

tenon 7.6 Cracking 6.3 
Bending 
remaining 
beam 

7.0 

 
A2-..-.. 
 

Bending 
tenon 9.9 Cracking 7.3 Cracking 9.2 Cracking 6.2 

 
A3-..-.. 
 

Bending 
remaining 
beam 

12.0    
Bending 
remaining 
beam 

12.8    

 
A4-..-.. 
 

Bending 
tenon 10.9 Bending 

tenon 6.9 
Bending 
remaining 
beam 

10.7 
Bending 
remaining 
beam 

5.4 

 
A5-..-.. 
 

Bending 
tenon 9.5 Bending 

tenon 5.6 Cracking 10.4 Cracking 6.0 

 
A6-..-.. 
 

Bending 
tenon 8.2 

Shear 
failure 
tenon 

5.8 Cracking 9.8   

 
Average values at which the failure mechanisms occur according theory, are calculated the 
following way: 
 
Assuming a Gaussian distribution, from the characteristic value for the strength class D70 
the mean value can be calculated: 

𝑓𝑚,𝑚𝑒𝑎𝑛 =
𝑓𝑚,𝑘

1 − 𝑎 ∙ 𝐶𝑂𝑉
=

70
1 − 1.645 ∙ 0.25

= 119 𝑁/𝑚𝑚2 
where 𝑓𝑚,𝑚𝑒𝑎𝑛 is the mean bending strength, 𝑓𝑚,𝑘  is the characteristic bending strength, 𝑎 is 
a multiplication factor on the standard deviation with which a 5 to 95 % interval is created 
and 𝐶𝑂𝑉 is the coefficient of variation. 
 
The maximum bending moment is calculated by: 

𝑀𝑚𝑒𝑎𝑛 = 𝑊 ∙ 𝑓𝑚,𝑚𝑒𝑎𝑛 
where 

𝑊 = 1
6
𝑏𝑑𝑡2 for bending failure at the tenon and 

𝑊 = 1
6
𝑏𝑑𝑟𝑏2  for bending failure at the remaining beam (Figure 106). 
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The reaction force at which failure occurs then becomes: 
𝑅𝑡 = 𝑀𝑚𝑒𝑎𝑛/𝑥 for bending failure at the tenon and 

𝑅𝑟𝑏 = 𝑀𝑚𝑒𝑎𝑛/𝑏 for bending failure at the remaining beam (Figure 106). 
 
The reaction force at which cracking develops is calculated with TET where x is taken as a 
variable. In Figure 107 the calculated values are depicted for the four test set-ups. 
  

dt
drb

dlp

x
b

R

F

 
Figure 106: Cracked tenonned beam 

It can be seen from Figure 107 that when the load increases a crack appears at an early 
stage, as was observed during testing. For many of the test pieces a period of stable crack 
growth followed during which the crack increased steadily under increasing load. At some 
point failure occurred, either by unstable crack growth where the crack extended “with a 
bang” or bending failure occurred at the tenon or at the remaining beam. When bending 
failure occurred first plastic compression failure in the upper part developed after which 
tension failure occurred at the lower part of the failing section. 
 
Table 19: Number of failure mechanisms occurring per test set-up 

 A..-1-1 A..-2-1 A..-1-2 A..-2-2 
Cracking  1 1 4 3 
Bending tenon  5 4   
Bending remaining beam  1  3 2 
Shear failure tenon  1   
 
Referring to Table 19, for A..-1-1, A..-2-1 and A..-1-2 when bending failure occurred, the 
location of failure corresponds with the indicative location according Figure 107. For A..-2-2 
the two bending failure mechanisms lie close together and therefore it is not remarkable the 
indicative bending failure mechanism did not occur. It is remarkable however, that all test 
results’ values, when bending failure occurred, are about half the values obtained by 
calculation. 
 
For the tests with short tenon cantilever length A..-1-.. the failure loads, when cracking was 
the final failure mechanism, correspond very well with the result of TET with an average 
ratio of 1.09. For tests with geometry 2 and long tenon cantilever length A..-2-2 the results 
correspond well too with a ratio of 1.33. Only for tests with geometry 1 and long tenon 
cantilever length A..-2-1 the results when cracking was the final failure mechanism deviate 
significantly with a ratio of 1.83. 
 
The following phenomenon is suggested. When the load, and accompanying shear force, 
increases at some point a crack starts to grow. For some test pieces unstable crack growth 
follows quickly due to the specific material parameters of the cracking area concerned. For 
other test pieces the load is able to grow further while the crack length increases 
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proportional to the decline of strength according TET, as illustrated by the dashed line in 
Figure 107. For these test pieces either unstable crack growth still leads to failure or when 
the dashed line would cross the bending failure load, failure is induced by bending. When a 
calculation rule for standards is prepared, it could be considered to note that cracking in the 
ultimate limit state is accepted but it needs to be prevented in the serviceability state. 
 
It is noted the above explained sequence of failure is only estimated on the basis of Figure 
107 and observation during testing. No conclusions can be drawn from the amplification yet. 
For instance, the relative larger stiffness of the remaining beam above the crack need to be 
taken into account in the analysis. 
 

 
 

 
 

 
Figure 107: Reaction force at failure for three failure mechanisms for the four test set-ups. Possible load 

– deflection curve indicated in the first graph with a dashed line. 

In Figure 108 the test results are depicted for the tests where cracking is the final failure 
mechanism. The adapted theoretical expression approximates the test results well and on 
the safe side. A ratio of TET / test results for average values of 0.77 is obtained. 
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Figure 108: Test results for tests with failure mechanism cracking (From tests within this research (Van 

Otterloo, 2013)) 

 

8.5 CONCLUSIONS ON TEST RESULTS 
For notched and tenonned beams the following conclusions relating to today’s standards 
can be made: 
 The Eurocode 5 expression for the strength of notched beams, paragraph 6.5.2 from 

NEN-EN 1995-1-1 (2005), is confirmed for notched Spruce beams by tests. 
 
 For notched Azobé beams and tenonned Spruce or Azobé beams conservative 

results are obtained when the expression for the strength of notched beams from 
Eurocode 5 is applied. The ratio Eurocode 5 / test results for the 5th percentile 
values for notched Azobé beams and tenonned Spruce and Azobé beams are 
respectively 0.33, 0.47 and averagely 0.24 for the tested geometries. 

 
For notched beams the following conclusions relating to their strength can be made: 
 The theoretical basic expression for notched beams (TEN) returns good results for 

notched Spruce beams, the ratio TEN / test results for average values is 1.28. 
Modelling the fracture energy in pure tensile spitting perpendicular to the grain 
according Larsen and Gustafsson (1992) the ratio becomes 1.03. 

 
 Notched Azobé beams are better approximated by TEN than by the Eurocode 5 

expression assuming ratios are constant between 5th percentile and average values. 
The ratio of TEN / test results for average values is 0.76. 

 
 Applying the least squares method to approximate the fracture energy the ratio of 

average values TEN / test results can be improved to 1.08. The resulting fracture 
energy is: 𝐺𝑓,𝑦 [N/mm]  = 5.36373 ∙ 10−4 ∙ 𝜌 [kg/m3]  + 4.1504 ∙ 10−5 ∙ 𝐸0 [N/mm2]. 
Note 𝜌 and 𝐸0 vary little between test pieces, which influences the utility of the 
relation. 
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For tenonned beams the following conclusions relating to their strength can be made: 
 For tenonned Spruce beams the theoretical basic expression for tenonned beams 

(TET) returns better results than TEN. The ratio TEN or TET / test results for 
average values is improved from 0.60 for TEN to 0.84 for TET. 

 
 Approximating the distribution of stresses near the discontinuity in the beam by 

fictively extending the tenon within TET for Spruce beams, the result is a ratio of 
0.36 which is a worse approximation than for the Eurocode 5 expression assuming 
ratios are constant between 5th percentile and average values. 

 
 For the test set-ups for tenonned Azobé beams A..1-1, A..-2-1, A..-1-2 and A..-2-2 TET 

returns average values near the test results’. Ratios of TET / test results for the 
respective test set-ups are 0.67, 0.56, 0.77 and 0.71. 

 
 Approximating the fracture energy with 𝐺𝑓,𝑦 = 5.36373 ∙ 10−4 ∙ 𝜌 + 4.1504 ∙ 10−5 ∙

𝐸0, ratios of TET / test results for average values of 0.80, 0.68, 0.93 and 0.86 are 
obtained for respectively the test set-ups A..1-1, A..-2-1, A..-1-2 and A..-2-2. The 
approximation thus improves the expression. 

 
 Approximating the development of stresses near the transition of tenon to full-size 

beam, ratios of TET / test results for average values of 0.31, 0.32, 0.49 and 0.51 are 
obtained for respectively the test set-ups A..1-1, A..-2-1, A..-1-2 and A..-2-2. The 
approximation thus does not improve the expression. 

 
 The ratio of the test results for short and long tenon cantilever length are 1.40 and 

1.53 for tenon geometry 1 and 2 which corresponds with the ratio which TET 
returns which is for both tenon geometries 1.67. 

 
 The ratio of the test results for tenon geometry 1 and 2 are 1.21 and 1.32 for short 

and long tenon cantilever length which does not correspond with the ratio which 
TET returns which is for both tenon cantilever lengths 1.04. 

 
 Considering the test results for the two tenon geometries separately and 

approximating them with TET, the result are two regression lines with slopes of  
1.12 and 1.06 for tenon geometry 1 and 2. As the slopes are almost equal to 1.0, TET 
does approximate the trend of strength increase well. 

 
 No correlation between the angle of the grain with the beam’s axis and the test 

results could be found. The largest angle of the crack with the beam’s axis found was 
12 degrees and only for 4 of 26 test pieces the angle of the crack with the beam’s axis 
was larger than 5 degrees. 
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9 CONCLUSIONS AND RECOMMENDATIONS 
The strength of the mortise and tenon joint in a wooden mitre gate is much higher than 
formerly assumed in calculations. Not only experience from practice shows this fact, but also 
calculations can confirm this. Former assumptions on the force distribution within the gate 
and joint and the used calculation rules are conservative or even not applicable for this case. 
In the following more detailed conclusions are drawn on the two main issues researched 
within this thesis: the force distribution in the mortise and tenon joint and the strength of a 
hardwood tenon.  
 
CONCLUSIONS RELATING TO THE FORCE DISTRIBUTION 
For a wooden mitre gate designed according traditional design the following conclusions 
relating to the force distribution in the mortise and tenon joint can be made: 
 The shear force from the crossbeam is transferred to the rear post for the largest 

part through the tenon. Friction on the square contact surfaces between the 
crossbeam and the rear post contribute only little, even when a high friction 
coefficient is applied. 

 
 A 3D effect is present in the joint whereby a large part of the shear force from the 

tenon is transferred to the sides of the mortise after which the force is then 
transferred to the seal strip via the full section of the rear post (Figure 109). 
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Figure 109: A negative moment in the rear post must develop when (a part of) the shear force from the 

crossbeam is not transferred from the tenon to the rear post at the line of action of the seal strip support 
(Note this figure is copied from Figure 48) 

 Due to the 3D effect the line of action of the reaction force on the tenon lies closer to 
the pit of the tenon than the line of action of the reaction force at the seal strip 
support does. 

 
 The reaction force from the tenon introduces a negative moment in the rear post as 

its line of action does not coincide with the line of action of the reaction force at the 
seal strip support. The tenon is clamped into the mortise and at the back of the rear 
post a frictional force at the concave support counteracts the negative moment. 

 
 The compression force from the crossbeam is transferred through the upper and 

lower parts of the rear post to the back of the rear post in a straight line. The ratio of 
the magnitudes of the two internal compression forces are equal to the ratio of 
sectional surfaces. Therefore, compression stresses’ values are equal in both parts. 
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 Ignoring singular effects near discontinuities within the finite element model’s 

results, appearing stresses throughout the joint satisfy design strength values. 
 
 The following critical areas are identified: 

□ behind the mortise high tension stresses have developed as the clamped 
tenon presses upwards on the rear post. 

□ at the lower back side of the rear post high shear stresses develop due to the 
transfer of compression forces on a concave shape. 

Due to expected 3D effects, the small size of the critical locations and the limited 
extend in which design strength values are exceeded the critical areas are 
determined to satisfy strength requirements. 

 
CONCLUSIONS RELATING TO THE STRENGTH OF NOTCHED AND TENONNED BEAMS 
For notched and tenonned beams the following conclusions relating to today’s standards 
can be made: 
 The Eurocode 5 expression for the strength of notched beams, given in paragraph 

6.5.2 from NEN-EN 1995-1-1 (2005), is specifically derived for notched softwood 
beams as geometry - and material parameters are included in the factor kn. 

 
 The shear strength parameter fv,k, present in the Eurocode 5 expression for the 

strength of notched beams, is not related to the strength of notched beams. This 
strength parameter is added to the expression to obtain a practical unity check, 
useful for engineers in practise. 

 
 The Eurocode 5 expression for the strength of notched beams, paragraph 6.5.2 from 

NEN-EN 1995-1-1 (2005), is confirmed for notched Spruce beams by tests. 
 
 For notched Azobé beams and tenonned Spruce or Azobé beams conservative 

results are obtained when the expression for the strength of notched beams from 
Eurocode 5 is applied. The ratio Eurocode 5 / test results for the 5th percentile 
values for notched Azobé beams and tenonned Spruce and Azobé beams are 
respectively 0.33, 0.47 and averagely 0.24 for the tested geometries. 

 
For notched beams the following conclusions relating to their strength can be made: 
 The strength of a notched beam is described by the theoretical basic expression for 

notched beams (TEN) which is derived by Gustafsson (1988): 
 

𝑉𝑓
𝑏𝛼𝑑

=
�𝐺𝑓,𝑦

𝑑

�0.6(𝛼 − 𝛼2)
G𝑥𝑦

+ 𝛽�
6 �1
𝛼 − 𝛼2�
𝐸𝑥

 

where 𝑉𝑓 [N] is the shear force, 𝑏 [m] is the width of the beam, 𝐺𝑓,𝑦  [N/m] is the 
fracture energy in pure tensile spitting perpendicular to the grain, 𝐺𝑥𝑦 [N/m2] is the 
shear modulus and 𝐸𝑥 [N/m2] is the modulus of elasticity parallel to the grain. In 
Figure 110 𝛼 [-], 𝛽 [-] and 𝑑 [m] are indicated. 
 



Master’s Thesis  |  Final report 

90 

αd 

βd
V

d

 
Figure 110: Variables notched beams 

 TEN is not applicable to determine the strength of tenonned beams. 
 
 TEN returns good results for notched Spruce beams, the ratio TEN / test results for 

average values is 1.28. Modelling the fracture energy as is done in the derivation of 
the Eurocode 5 expression the ratio becomes 1.03. Reformulating the expression 
and introducing material parameters for softwood the Eurocode 5 expression is 
obtained. 

 
 Notched Azobé beams are better approximated by TEN than by the Eurocode 5 

expression assuming ratios are constant between 5th percentile and average values. 
The ratio of TEN / test results for average values is 0.76. 

 
 Applying the least squares method to approximate the fracture energy, the ratio of 

average values TEN / test results can be improved to 1.08. The resulting fracture 
energy is: 𝐺𝑓,𝑦 [N/mm]  = 5.36373 ∙ 10−4 ∙ 𝜌 [kg/m3]  + 4.1504 ∙ 10−5 ∙ 𝐸0 [N/mm2]. 
Note 𝜌 and 𝐸0 vary little between test pieces, which influences the utility of the 
relation. 

 
For tenonned beams the following conclusions relating to their strength can be made: 
 The strength of a tenonned beam is described by the theoretical basic expression for 

tenonned beams (TEN) which is derived within this thesis: 
 

𝑉𝑓
bαd

= √2
�

𝐺𝑓,𝑦
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1
𝑏�
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where 𝑉𝑓 [N] is the shear force, 𝑏 [m] is the width of the beam, 𝑐 is a factor which 
introduces the influence of the tenon geometry on stresses and strains near the 
transition from tenon to beam, 𝐺𝑓,𝑦  [N/m] is the fracture energy in pure tensile 
spitting perpendicular to the grain, 𝐺 [N/m2] is the shear modulus and  
𝐸 [N/m2] is the modulus of elasticity parallel to the grain. In Figure 111 𝛼 [-], 𝛽 [-] 
and 𝑑 [m] are indicated. 
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Figure 111: Variables tenonned beam 

 Indicative material properties for the strength of a tenonned beam are: 
□ Fracture energy 
□ Modulus of elasticity 
□ Shear modulus 

 



 

91 

 The factor 𝑐 introduces the influence of the tenon geometry on stresses and strains 
near the transition from tenon to beam. The factor 𝑐 depends on α, γ, E and G. For a 
tenon no analytical expression could be obtained. 

 
 For tenonned Spruce beams TET returns better results than TEN. The ratio TEN or 

TET / test results for average values is improved from 0.60 for TEN to 0.84 for TET. 
 
 For four different test set-ups for tenonned Azobé beams TET returns average 

values near the test results’. Ratios of TET / test results obtained are 0.67, 0.56, 0.77 
and 0.71.  

 
 TET can determine the influence of tenon cantilever length on the strength but the 

influence of different tenon geometries, present in test results, is not taken into 
account by TET.  

 
 Considering the test results for the two tenon geometries separately and 

approximating them with TET, two regression lines are obtained with slopes of  1.12 
and 1.06 for tenon geometry 1 and 2. As the slopes are almost equal to 1.0, TET does 
approximate the trend of strength increase well. 

 
 No correlation between the angle of the grain with the beam’s axis and the test 

results could be found. 
 
RECOMMENDATIONS FOR CONTINUATION OF RESEARCH 
The following recommendations are made with relation to the force distribution: 
 Statements on the force distribution and appearing stresses should be confirmed for 

joints designed according traditional design but which have larger thicknesses.  
 
 A three dimensional finite element model of the mortise and tenon joint should be 

built to confirm or adapt the statements on the 3D effect and accompanying negative 
moment in the rear post. 

 
 Using a material model within FEM, as developed by Sandhaas (2012), the failure 

behaviour of tenonned beams could be researched. 
  
 A parameter research should be performed to investigate the influence of 

dimensions and their ratios with each other to be able to answer the main questions 
on the force distribution for a broad set of designs. 

 
The following recommendations are made with relation to notch and tenon strength: 
 As the Eurocode 5 expression is only valid for notched Spruce beams, firstly the 

paragraph concerned should mention this fact and secondly expressions valid for 
notched hardwood beams and tenonned softwood and hardwood beams should be 
added. 

 
 Performing more tests is an important requirement to confirm the conclusions on 

the test results on tenonned beams. The test series performed within this research is 
too small to make definite conclusions. Material, tenon geometry and tenon 
cantilever length should be varied to research tenon strength. 

 
 It would be valuable when an analytical expression is derived for the factor c, which 

introduces the influence of the tenon geometry on stresses and strains near the 
transition from tenon to beam. TET would then theoretically be completely correct. 



Master’s Thesis  |  Final report 

92 

The background of the factor c for notched beams, given by Gustafsson (1988), 
should then also be researched to fully describe the phenomenon. 

 
 In addition to the previous recommendation; another option could be to obtain an 

approximation of the influence of the tenon geometry on stresses and strains near 
the transition from tenon to beam. E.g. an equivalent fictive additional tenon length 
could be determined for common combinations of tenon geometry and tenon 
cantilever length. 

 
 Different failure mechanisms where observed during testing. A theoretical analysis 

of possible (successive) failure mechanisms should be performed for varying tenon 
geometry and tenon cantilever length.  

 
 The fracture energy in pure tensile spitting perpendicular to the grain, in pure 

parallel splitting to the grain and their combination should be researched for 
hardwoods. This material parameter is not only of much importance for the 
resistance to splitting of a tenonned beam, but also for many other applications such 
as for the strength of joints using steel dowels between hardwood parts. 
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