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ABSTRACT

A feasibility study has been done on the measurement of noise generated
by a gas-liquid flow as an indicator for the flowrate.

Usually the production of several oil-gas wells is fed through a bulk
separator and the gas and liquid phases are measured separately. About once
a month each well is tested individually with a test separator. To monitor

the well-production between two well tests a production surveillance

monitor, (PSM) is commercially available. Its operation is based on the

relation between the pressure fluctuation in the gas-liquid flow and the
liquid flowrate. The purpose of the present study was to carry out a
feasibility study on a clamp-on version of the PSM.

Tests have been done with two-phase flow test loops to investigate the
relation between the flow variables and the flow-noise acquired with a
clamp-on accelerometer.

In gas-liquid flow, bubbles act as sound scatterers of the turbulent
pressure fluctuations in a wide frequency band (up to 25kHZ). Therefore the
pressure fluctuations related to the flowrate can be detected hy a clamp-on
accelerometer. .

It has been found that under certain conditions the average Root Mean
Square (RMS) value of the flow noise gives a good indication of the liquid
flowrate. Unfortunately the mechanical structure of the test-loop and the
line pressure regulation were found to be of influence as well. It was found
to be possible to determine slug speeds and slug frequencies with the clamp-
on accelerometer. In general the flow-noise is found to be related only to a

limited volume of gas-liquid flow. Because the flow-noise is generated

locally the signals are similar to signals obtained with intrusive

transducers such as differential pressure signals. As those signals are
reported in literature to be used for flow-pattern recognition and possibly
in the near future as flowrate indicator as well, this resemblance
encourages further efforts on the statistical processing of the RMS value of

clamp-on acquired gas-liquid flow-noise.
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1. INTRODUCTION

As a graduation project for a degree in applied physics (Technical
University Delft) a feasibility study has been done on the clamp-on
measurement of noise generated by a gas-liquid flow as an indicator of the
flow-rate. The project lasted ten months and was conducted at the
Royal/Shell Exploration and Production Laboratory in Rijswijk in the Section
Measurement and Control. The laboratory with its ca 700 employees covers
most of the Shell Group's research on exploration and production. Most of
the projects are carried out for Groﬁp Operating Companies, usually
coordinated by the Central Office in The Hague.

The initial purpose of the project was to study and improve the operation
of the PSM (Production Surveillance Monitor). This instrument is basically a
pressure transducer and it derives the liquid volume flowrate in a liquid-
gas mixture in a pipe-line from a measurement of the pressure fluctuations.
One of the aims of the present study was to investigate the possibility to
measure these pressure fluctuations outside the pipe with a clamp-on
transducer. As the clamp-on approach soon proved to be hopeful, this was
given priority.

In this report the use of production surveillance and a comparison with
the existing multi-phase flow-meters is explained. After the explanation of
the principle of operatipn of the PSM, the test facilities are described. In
chapter five the development of the idea behind clamp-on flow-noise
measurement is related, followed by a selection of the results of the many
tests and a paragraph on the statistical analysis of the flow-noise. Chapter
six gives the theoretical background of flow-noise generation. The report
finally deals with the conclusions and suggestions for further work on

clamp-on two-phase flow-noise analysis.
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2. OBJECTIVE

In the 0il industry a major problem in measuring the production of a well
is the fact that one often encounters two-phase flow systems. Even if the
reservoir is free of gas, the well will produce a gas-oil mixture, because
gas comes out of solution at the lower pressure at the surface. As accurate
measurements in gas-liquid flow aré extremely difficult, the liquid and the
gas phase are separated and measured individually. The importance of multi-
phase flow measurement in the oil-producing industry is discussed in detail
by Jamieson ea (2).

In general the production of several wells is combined and fed into a
bulk separator. In this way the gas and o0il production of the total fielé
can be measured. To obtain information about an individual well, that well
can be produced over a second separator, the test separator. This procedure
is called a well test. As such a well test usually takes a day and as there
may be thirty wells producing through one production separator, the period
between two well tests of a single well can be a month. The behaviour of the
well in the interval time remains uncertain. When the production of a single
well changes drastically, the change in the output of the production
separator will be minor due to the dilution with the production of all the
other wells. So when a small change in the total production is noticed it is
unknown whether the total field or only one of the wells has changed its
production. This uncertainty is an incentive for the development of an
instrument monitoring each individual well. As a separator for each well is
much too expensive such an instrument has to cope with two-phase flow. The
required accuracy has to be something between a flow/no-flow detector and a
normal flowmeter. In other words it has to be able to detect more than
marginal production changes (say 10-20%) to give warning that some action
has to be taken

As there are many wells to monitor the device has to be cheap, free of
maintenance, easy to install, preferably clamp-on so there is no need to
stop production while installing the instrument. Besides that it should be

safe and it should not protrude into the flow.
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SYSTEM PHYSICAL QUANTITY FLOW VAR LIT PROBLEMS
separators single-phase Usl' 58 E, L, F

liquid and gas

B-+ v-, X-ray absorption coeff. a, c 89 R
absorption
capacitance spec. capacitance a, c 42, 52 L, F
conductance spec. conductance a, c 52 L, F
hot wire anemometry heat transfer @y C 12 L, F, S
optical fibres refractive index a, c 121 L, F,
acoustic sounding sound scatter a, c 99 L, F, A
tracers time delay c R, L '
vibrating tube coriolis force ¢mass 1.2.2 L, A
orifice pressure drop Umix 124 L, F, A
venturi pressure drop Umix 125 L, F,
Production Sur- pressure fluct. Umix' c 8 L

veillance Monitor

Table 2.1. Gas-liquid measurement techniques. For a full explanation

introduction.

Symbols:

a gas fraction

(o correlation for determination of U
¢mass mass flow

Umix velocity of the gas-liquid mixture
USg superficial gas velocity

Usl superficial liquid velocity

A inaccurate

E expensive

F intruding in the flow

L to be installed in-line

R radiation

S not strong enough

mixture

see the

possible
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In table 2.1. a list of measurement techniques suitable to determine
certain parameters of a gas-liquid flow are listed. The second column of the
table lists the physical quantity which is measured and the third column
lists the flow variable determined from this quantity. In the column
"problems" the disadvantages of the technique are specified. In the last
column a literature reference to the particular system is given. When a "c"
is stated for a system it is suitable for transit time correlations using
two transducers. From this correlation the velocity of the gas-liquid
mixture can be derived, using techniques described by Peters ea (100) and
Kipphan ea (104). A combination of two or more of these techniques is not
unusual as for instance a combination of a separating device and a -
absorption system as described by Arnaudeau (37). More elaborate and
complete reviews of multi-phase measurement techniques have been published
by Hewitt (88), Jones (93), and Banerjee ea (69).

As a test-separator per well is too expensive, the R marked instruments
are not preferred in many operations, and the a-marked systems need two
probes plus a correlation algorithm while some of them intrude in the flow
as well, the two instruments left are the vibrating-tube and the PSM
(Production Surveillance Monitor). The vibrating tube instrument is still
too inaccurate for gas-liquid flow, so the most suitable instrument at the
moment is the PSM. This system is based on the relation between pressure
fluctuations and liquid velocity and is commercially available since 1978 .
In chapter 3 its principle of operation will be explained.

The purpose of the present study is to investigate the feasibility of a

clamp-on version of the PSM.
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3. THE PRODUCTION SURVEILLANCE MONITOR

Since 1971 work has been done on the Production-Surveillance-Monitor
(PSM) at the various Shell research centres. The most important aspects of
the PSM are published by Alford e.a. (8). As the principles of operation are
of primary importance to the Clamp-On-Production-Surveillance-monitor
(COPS), they will be discussed here.

Consider a single-phase turbulent flow through a pipe-line with an
instantaneous velocity U, an average velocity Ua’ and an instantaneous

variation of velocity from the average, u, such that

U = Ua + u 3.l
A measure for the velocity fluctuation is u', defined by
u' = /(uz) 3.2,

For the instantaneous pressure P, the average pressure Pa' and the
instantaneous variation of pressure from the average p, a similar equation
exists:
P=P + s Js

i ] 3s3
A measure for the pressure fluctuation is p', defined by

2
p' = vV(p") it
Hinze (28) empirically found that for 0.01 m/s £ Ua <10 m/s
u' = 0.1 0 3.5
a

Although the Bernoulli relation between hydrodynamic pressure and kinetic
energy is not valid in this turbulent flow, Hinze found an empirical

relation between the pressure fluctuation and the velocity fluctuation:

p' =0.7 p (u')2 365
Combining equations 3.3. to 3.6. results in

2 2
V(P By = 0.007 p u, 375

In other words the root-mean-square (RMS) value of the dynamic pressure is
proportional to the density of the fluid times the square of the fluid

velocity.
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Figure 3.1. The square root of the average RMS value of the pressure
fluctuations as a function of the superficial air and water velocity as

determined by the Production Surveillance Monitor.
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In gas-liquid flow the liquid density has to be replaced by the mixture
density Prix and the average fluid velocity by the average mixture velocity
Umix,a' As in the last two parameters the averaging is with respect to time
the space specifications will have to be given as well. Sami (34) uses the
overall time average mixture density and the time averaged centreline
mixture velocity. '

In low-pressure gas-liquid flow the pressure fluctuations will be mainly
caused by the velocity fluctuations of the liquid because the density of the
gas is much less than the density of the liquid. So the pressure
fluctuations are mainly related to the liquid production. The relationship )
between the pressure fluctuation intensity and the liquid production is then
calibrated per well. Because the gas-liquid ratio is usually more stable
than flowrate of the well this proved to be a useful approach.

The commercially available PSM as manufactured by Sundstrand Data
Corporation has been tested in the KSEPL test-loop DONAU (described in
chapter 4.2.) in 1984. The piezoelectric crystal of the PSM measures the
dynamic pressure. The signal is passed through a low-pass filter with a cut-
off frequency of 1lkHz and converted into a RMS value which is then averaged
for 200 seconds. A second model with a supposedly better performance has a
low-pass cut-off frequency of 30 Hz.

In Fig.3.1l. the square root of this RMS value is plotted against the
superficial liquid and gas velocity. It is clear that the signal is not
independent of the gas flow. This influence is introduced by replacing the
real mixture velocity by the superficial velocity. An increase in the
superficial gas velocity with a constant superficial liquid velocity will
result in a higher void fraction which means that the real liquid velocity
goes up while the cross-section of the liquid flow gets smaller. This
results in a more turbulent flow (higher Reynolds numbers). One is tempted
to try to calculate a correction using e.g. a Lockhart-Martinelli void
fraction prediction. The problem is that the field of operation of the PSM
is mainly slug-flow, in which case calculation of slug speed has to be
involved as well. So after all it appears much more practical to calibrate

the PSM for superficial liquid and gas velocity.
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4. TEST-FACILITIES

For any study concerning two-phase flow, well defined flow conditions
are of primary importance. Essential is the separate measurement of the
individual phases before they are mixed. For this study two such multi-phase

test-loops, Wolga and Donau were available.

4.1. TEST-LOOP WOLGA

The Wolga is a flexible and easy to handle water-air test loop. For one
test series the viscosity of the water was increased with CMC (Carboxy
Methyl Cellulose). The set-up of the WOLGA test-loop is drawn in figure 4.1.
It consists of a 1l m3 tank from which water is circulated through a steel
pipe (internal diameter Di=7'0 cm) by a centrifugal pump. The water volume
flow can be adjusted by two valves, one in the test-loop and another in a
by-pass line. After the liquid flow has been measured by a magnetic
flowmeter, air from a 8-Bar pressure-line is introduced through a T-
junction. Before its introduction the air volume flow is measured by one of
the three parallel rotameters. Downstream of the T-junction the line
pressure is measured by a manometer. The last 4 meters of the horizontal
section and the 2 meters rising to the éop of the tank are made of perspex
to be able to see the two-phase flow pattern. This perspex section cannot
withstand high pressures so no restriction has been built in the outlet.

A 2-meter measurement section with pressure transducer mountings has been
inserted just upstream of the perspex section and ca 100 diameters
downstream of the mixing point.

The maximum water volume flowrate of the pump is 8 1/s. The maximum air
flow is 32 sm3/s (standard cubic meters: OOC, 101 .3 kN/mZ).

In multi-phase systems flow is usually expressed in terms of superficial
velocities. This is the velocity the fluid would have in the absence of the

another fluid. So the superficial liquid velocity , U__is the liquid volume

rate divided by the area of the cross-section of the :ipe. The superficial
gas velocity, USg is the gas volumg rate divided by the same area. As the
gas volume rate is measured in standard cubic meters, one has to divide by
the absolute line pressure, Py as well. The temperature may be as high as
350C, resulting in a systematic error of ca 11%. As the temperature

fluctuations during a measurement series are much smaller, no corrections
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figure 4.2. The limits of the flowrates of the test-loop Wolga and Donau

drawn in the Mandhane (23) two-phase flow-pattern map.
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are made for the temperature. The minimum and maximum superficial velocities
for water and air are drawn in the Mandhane (23) flow-pattern map (fig4.2.).
Visual observations of the flow patterns in the Wolga coincided reasonably
well with this map.

In order to prevent pump vibrations to reach the measurement section, it
was decided after some initial tests to modify the WOLGA into a static—-head-
loop (fig 4.3.). A 1 m3 tank was bolted to the wall and the by-pass line was
replaced by an overflow from the higher tank to the lower. The higher tank
was put up on such level that the maximum water volume flow is the same for
both configurations. The level in the upper tank remains at overflow level
for any flow-rate in the test-loop. As the overflow level is 4.5 meters
above the test-loop level, the pressure in the test-loop can never exceed
the ambient pressure by 0.45 atmosphere. Both tanks are fed by free
outflowing streams so the vibration of the pump cannot reach the test-loop
through the steel or the fluid. The third advantage is that the upper tank
is designed as a separator as well, so the air introduced by the pump

doesn't reach the test-loop.

4.2. TEST-LOOP DONAU

In figure 4.4. a schematic plan of the Donau test-loop is drawn. The
basic lay-out (separator, pumps, single-phase measurements, and
recirculation through the test-loop) is similar to that of the WOLGA. The
loop is suitable for oil, water, and air. Most of the tests were done with
water and air. To test for the influence of viscosity one measurement series
has been conducted with air and an emulsion of water and Tellus oil.

The maximum flowrates have been drawn in the same Mandhane flow pattern
map as the WOLGA maxima (figure 4.2.). By using the water and oil pump
simultaneously for water a very high superficial water velocity in the three
inch line can be obtained for low air velocities.

The main advantage of the DONAU test-loop is its very good
instrumentation. Turbine flow meters and vibrating tube density meters
measure volume flow and density of the liquid flow. Air flow is measured by

orifice plates. Pressure and temperature are measured in various places of
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the system. The signals from these transducers are collected and processed
by three flow computers (Solartron 7910). The superficial air velocity is
calculated by one of the flow computers using the air volume flow from the
orifice-plate, the cross—-sectional area of the pipe and the line pressure
from the pressure transducer in the elbow of the loop between the 3 and 4
inch line.

Similar to the WOLGA set-up the accelerometer and dynamic pressure
transducer charge-signals are converted into a voltage, amplified, filtered
and pﬁt through a RMS-circuit. The RMS-signals are sampled, digitized, and
processed by a multi channel AD-converter (type uMac 5000). Together with
the test-loop signals processed by the Solartron flow-computer, the flow-
noise results are sampled and stored by a PDP 11/23 computer. In this way
the relevant information about one flow-condition is presented in one screen
of data. In figure 4.5. the layout of the data processing is schematically
presented and an example of the lay-out of such a screen of data is shown in
figure 4.6.

After a measurement series the data fields can be converted into a
standardised print file to be printed locally or plot file to be sent to

the VAX cluster for further editing and plofting.

Date: 14-AFR-37 Time: ld:z2:02
SOLARTRON CHANNEL nIL WATER /W GAS
Large turbine Hz +0.000 +109.442 +0.000 N(C
Small turbine Hz +0.000 4+0.000 +0.000 N/C
Line density kgsm3 +926.417 +909.041 +995.642 N/C
Base density kg/m3 +314.676 +903.868 +988.193 N/C
Ualume flow m3/h +0.000 +24.625 +0.000 N/C
Mass  flow ka/h +0.000 +22384.701 +0.000 N/C
Watercut T % +5.39560E+01 +4.71002E+01 +9.67389E+01 N/C
Temperature aC +10.449 +24.854 +8.691 N/C
DONAU Pibar) & T(cC) A/D VALUES (Yolts) FUTURE OPTIONS
Plab +7.595 ADCO  .0199 N/C
Fbeqg +2.82¢8 ADC1  .0185 N/C
Felb +2.190 ADCZ  .0826 N/C
Fend +1.28544E+00 ADCE Nfc
Dair +63.608 ADC4 N/C
Qair -4 .89600E-03 ADCS NCC
sl +7.41040E-01 ADCE N/C
Weq +3.775S0E-01 ADC7 128 N/C

figure 4.6. An example of a screen of data from the test-loop Donau as
gathered by the PDP 11/23 computer. The values marked A/D are copied from

the pu-Mac computer, the others from the Solartron flow-computers.
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In a later stage a specially designed 8-band RMS meter replaced the
individual filters and RMS converters for the processing of the
accelerometer signal. This device splits one signal into eight frequency
bands which are put through eight separate RMS circuits. The eight filter
characteristics are shown in figure 4.7. The time constant of the RMS
converters is three seconds. This time constant is as small as possible for
time resolution but larger than the time constant of the sampling wu-Mac.

Like the PSM-signal processing the wildly (especially for slug flow)
varying flow-noise has to be converted into a reasonably stable indication
of the flow. Therefore the u-Mac program samples and averages the RMS-
signals. Initially three RMS-signals were sampled sequentially with a
sampling time of 0.1 s. Later sampling the eight channels of the 8-band RMS
meter the sampling time was changed into .0l s. The program in the u-Mac
consists of the main averaging program with an interrupt procedure taking
care of the communication with the u-pdp.

After a pre-—averaging routine the averaging is continuous:

Average = ( (T-1l)xAverage + sample )/T 4.1,

with T the numerical time constant. The real time constant depends on the
sampling time and unfortunately on the execu;ion time as well. Changing the
number of statements in the program as in case of sampling eight instead of
three channels is always compensated by adjusting the numerical constant T.
In this way the averaging time constant was kept in the order of 30 s.

For the Donau results the averaged RMS-signal is plotted as a function of
the superficial water velocity without taking the square root. As the
electronic configuration was changed a few times the amplification is not
the same for all the tests. So the absolute RMS-value is of no interest, and
one should focus the attention on the change in the RMS-signal as a function

of varying certain flow parameters.
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5. EXPERIMENTAL RESULTS

5.1. INTRODUCTORY TESTS WITH THE WOLGA

This chapter describes the introductory tests necessary for the
understanding of gas-liquid flow induced noise. These tests have been
conducted using the test-loop Wolga either in the straight configuration

(fig 4.1.) or the static-head pressure configuration (fig 4.3.).

5.1.1. STETHOSCOPE

The first exploration in the field of flow-noise has been done with a
stethoscope pressed on the steel of the measurement section. The first days
a lot of time has been spent listening to the noise of the water-air mixture
flowing through the WOLGA. After some practice comparing the flow-noise
with visual observations of the flow in the perspex section, one can easily
identify the various flow-regimes just by listening to the flow-noise. This
means that flow-related information is passed through the steel pipe. So it
might be possible that this information contains more than just an

indication of, the flow-regime.

5.1.2. ACCELEROMETER

To convert the flow noise into an electronic signal a piezoelectric
accelerometer was mounted on the pipe with a magnet and some "Weimaplast"
coupling compound. The accelerometer produces a charge proportional to
acceleration which is converted into a voltage by a charge amplifier. As we
are trying to adapt the PSM-principle of operation to a clamp-on version, a
comparison with a PSM-like signal is necessary. Therefore a piezoelectric
pressure transducer has been placed on the measurement section. A charge
amplifier converts the charge into a voltage. For extra flow-noise
recognition training, electronic circuit check, and for demonstration
purpose the accelerometer signal was fed through a power amplifier to a
loudspeaker. Besides that the signals are visualised with an oscilloscope.
By varying the superficial air and water velocities, one tries to get an
idea from loudspeaker and scope which frequency band has the most flow-
related signal. To become more quantitative a frequency analyser (Data 6000)

has been used to sample and process the signals.
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Figure 5.1. The ratio of the accelerometer and the pressure transducer
signal as a function of frequency. The transducers were mounted on the
measurement section of the Wolga test-loop and the water in the pipe was put

to motion through a membrane by an exitator.
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5.1.3. FILTERING BY STEEL PIPE

As one suspects that the low frequency pressure fluctuations will not
pass the steel of the pipe, a test has been set up to compare the pressure-
signal with the acceleration signal as a function of the frequency with the
test-loop completely filled with water. A membrane fitted to a pressure
mounting, so in direct contact with the water, is put to motion by an
exitator fed by a lock-in amplifier. Sweeping from 1 Hz to 4 kHz the ratio
of the signals of the accelerometer and the pressure transducer is
determined'by the lock-in amplifier. The results are shown in figure 5.1.
Apart from mechanically determined resonance peaks there is an up-going

trend in the ratio as a function of the frequency.

5.1.4. PIPE VIBRATIONS

To distinguish between vibrations of the pipe and flow-noise a second
accelerometer has been positioned opposite the first one and later on next
to the first one. Both signals are filtered by a variable electronic filter
and fed into the oscilloscope, the first to the X-channel and the second to

the Y-channel. The superficial velocities were US =2 m/s, and Usg=l.4 m/s,

resulting in slug flow. The results have been schimatically drawn in figure
5.2. The first configuration (accelerometers opposite each other) and a 100
Hz or 200 Hz low-pass filter for both channels results in the line ¥Y=-X on
the scope. This means that for frequencies below 200 Hz the acceleration is
caused by vibration of the pipe. This vibration is determined by the
mechanical structure of the pipe and the supports, and therefore not a
reliable source of information about the flow-system. The second
configuration (accelerometers next to each other) and a 100 Hz low pass
filter result in a narrow elliptical fiqure around the line ¥Y=X. The same
configuration but with a 200 Hz low-pass filter produces a slightly wilder
movement around the line Y=X. This also implicates a vibration of the tube.
In this case however the separation of the accelerometers create a phase-
shift. For both configurations high pass (200 Hz) filtering results in
spirals, and ellipses in all directions, indicating signals only different
in phase. The variation of the phase-shift proves that these signals are not
caused by vibrations of the pipe and implicates randomly located sources of

sound.
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ACCELEROMETER FILTERING SCOPE
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Figure 5.2. Schematic copies of the scope-display with one accelerometer fed
to the X channel and another to the Y channel, for different accelerometer

positions and various filtering.
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other, for Usl=2 m/s and ng=l.4 m/s. The PSD is given for the sum of the
signals (first PSD) and for the difference (second PSD).
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pressure transducer signal (bottom) for single-phase flow (Usl=l°45 m/s).
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This explains Wolga test-results where the signals from two opposite
accelerometers are added and subtracted (see figure 5.3.).
By adding the signals the low frequency signal disapears and the high
frequency noise has information about the flow. In the Power Spectral
Densities of the added and the subtracted signals the filtering effect of
adding the signals is clearly seen. So discerning flbw—related noise from
vibration induced signals can be attained by a high-pass filter and by a
combination of two opposite transducers. As long as the vibrations do not
cause the electronics to overflow, the filtering method is much easier to

use.

5.1.5. LOW-FREQUENCY SIGNALS

To make sure no flow-related information in the PSM frequency band is
passed through the pipe, the accelerometer signal is amplified and passed
through two low pass filters (30 Hz). The amplification is such that the
amplitude of the accelerometer is of the same order of magnitude as the
unfiltered pressure transducer. The signals simultaneously sampled during a
singlg-phase water flow (Usl=l.45 m/s) are shown in figure 5.4. From the
absence of a clear correlation it is concluded that no future work should be
done to try to obtain the low frequency pressure fluctuations by means of a

clamp-on transducer.

5.1.6. HIGH-FREQUENCY SIGNALS

From the previous tests, listening to the flow-noise and watching the
flow structure, the following idea has been born:

The two-phase flow pressure fluctuations related to the liquid flow are
modulated by resonating bubbles. The resonance frequency of the bubbles is
high enough to detect the modulated signal outside the steel pipe.

To check this idea the accelerometer signal has been sampled and
processed into power-spectral-densities (PSD) for various superficial air
and water velocities, while pictures of the flow were taken at the same
time. To check for repeatability for each case six spectra'are collected
sampling 143 ms using 7168 points (for this purpose the limit of the
frequency analyser). In figure 5.5 two out of six spectra are shown for four
cases. The corresponding photo's are schematically copied (figure 5.6).In

each case the superficial water velocity Us =1.7 m/s. The superficial

1



- 8E - P814

0.08 -
V-i.qu_‘w‘ ot
~0.08 4=
oK HEATZ 20k
PR o PP o |
A N . Fowe
HERTZ 2ok

LA HEATZ 20K

lok HERTZ

20K

Figure 5.5. Two PSD's of the accelerometer signal for Us =1.7 m/s and four

1
different air velocities, increasing from top to bottom. For the third PSD:

U =2 m/s and for the fourth: U_ =4 m/s.
sg sg



P814

_29_

o®
g.
® oo
°

w%rde
XY

4,

Schematic copies of pictures of gas-liquid flow in the test-loop

Figure 5.6.

(]
oo “
[ 3
n o w
M ©
6] [J]
E
o]
¥ o
o O
L D
]
—
s~
E
o E
FERENT
ES}
] o
¥o] (@)
2
o
Fi) oe
o
Q =
o v
HE ]
L
1= 0]
0O u
oA
W
o °
c wn
o /
n E
(1]
Qo <
(I
o b
=
-
(1]
o 0
u o
= N ¢
o O
n L
NN
E B
o
©~ 4
~
[
L} L]
—
v wn
20\
=
[ ]
o
— o
(®] 0]
= B



- 30 - P814

0.8

4.l~‘—

10 ~do

SECONDS

.0
10 r
SECONDS

Figure 5.7. Square root of the RMS value of the accelerometer signal (top)
and the dynamic pressure transducer (bottom) for slug flow (Usl=0.25 m/s,

Usg=3 m/s).
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air velocity Usg is 2m/s in the fourth case and 1lm/s in the third case. As
the rotameters have a lower limit much higher than necessary to show the
signal dependence on air flow, the air supply in the first two cases is
caused by the pump introducing a little air into the system. This is caused
by the low-pressure in the upstream line of the pump, resulting in
cavitation. Not using the static-head pressure configuration, the air
introduced by the pump flows directly into the measurement section. By
putting a water-tap line on the upstream part of the pump the pressure is
increased and the introduction of air is greatly reduced, as is shown in the
first case.

From the spectra and the pictures it can be concluded that smaller
bubbles create higher frequency sound (case one and two). And more bubbles
result in a higher power spectral density. More bubbles than in the case of
USg is 1m/s do not result in a higher power spectral density as is clear
from case three and four. Even the spectra of the cases with Usg is 4m/s or
8 m/s (not shown here) have a similar PSD as case three. One is tempted to
believe that in those case the maximum turbulent energy is being converted

already into high frequencies.

5.2. WOLGA TEST SERIES

In order to be able to compare the dynamic pressure transducer and
accelerometer signal both transducers are put next (3 cm) to each other on
the horizontal measurement section of the test-loop. For a few flow regimes
the signals are sampled simultaneously and processed in accordance with the
theory: The signals are put through a bandfilter (0-20 Hz for the pressure
signal, and 100 Hz-10 kHz for the accelerometer) and fed through a RMS
circuit (time constant 35 ms) and finally sampled by a Data 6000 frequency
analyser (2048 points, 10 ms each). The Data 6000 takes the square root of
the sampled RMS signal to comply with the theory (formula 5.8.).

Figure 5.7. shows the square root of the RMS value of both signals for a
slug flow (Usl=0.25 m/s, Usg=3 m/s). The three slugs can be easily
recognised in both signals. The time lag caused by the distance between the
transducers is negligible for these flow speeds and the time scale of figure

5.7.
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Figure 5.8. The average square root of the RMS of the accelerometer signal
as a function of the superfical water velocity with the superficial air

velocity as a parameter. Measured with the Wolga.
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The structure of the signal during a slug is not the same for both
signals. The pressure signal measures all the turbulent pressure
fluctuations, while the accelerometer can only detect them when there are
bubbles near the turbulence (cf. the theory in paragraph 6.l1l.). As the air
bubbles are not homogeneously dispersed in the slug, the RMS value of the
high frequency sound will not have the same structure as the RMS of the
pressure fluctuations. ‘

The front of the slug regularly engulfs an amount of air, which is broken
up into bubbles by the turbulence in the slug. Some of the bubbles rise to
the top of the pipe and because of the lower speed near the pipe-wall they
are transported to the rear of the slug where they collect in the wake of
the slug and finally coalesce with other bubbles and the air behind the
slug. This bubble distribution is the reason that the accelerometer signal
is high at the beginning of a slug and dies out slowly until the end of the
slug. The third slug in figure 5.7. probably had a second slug-front with
many bubbles. For higher slug speeds the bubbles will disperse better in the

slug and the structure.of the RMS signals will probably be more similar.

Similar to the PSM-test, measuring the relation between pressure
fluctuations and the superficial gas and liquid velocities, (figure 3.1.)
the time average of the square root of the RMS value of the accelerometer

signal is recorded as a function of US and Usg' The filtering was changed

into a 2kHz-10kHz band pass filter as iignal under 2kHz showed to be less
dependent on the flow. The Data 6000 sampled 2048 points of 10 ms and
calculated the average of the square root of the RMS value of the signals.
The results are shown in figure 5.8. Striking is the absolute independence
of the signal on the superficial water velocity for Usg=0. Using the static-
head WOLGA configuration, the loop was absolutely free of visible air
bubbles. As soon as a little air is introduced the dependence of the signal

on Us becomes clear. Doubling the superficial air velocity increases the

signai but the increase is less for higher superficial air velocity. Gregory
ea (115) show that the air fraction in slugs increase with the mixture
velocity. So an increase in superficial air velocity will increase the
turbulence because of higher mixture velocities and will produce more

bubbles in the slug.
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Figure 5.9. The average of the square root of the RMS value of the
accelerometer signal as a function of the superficial water velocity with
the position of the accelerometer as a parameter. Measured with the Wolga.
A-on top of the pipe. B-on top of the pipe 15 cm further on. C-on the bottom

of the pipe. D-on the flange.
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According to the theory (chapter 6) this should increase the flow-noise
level. The decrease of the superficial air velocities for higher rates was
found as well in the PSM response (figure 3.1.).

Repeating the tests resulted in discrepancies less than 5%, which is the

same order of magnitude as the accuracy of measuring US and Usg' For a well

with a reasonable constant oil-gas production ratio a fiow—noise behaviour
like displayed in figure 5.8. would result in a production surveillance
system well capable of determining the well production within 10%.

The influence of the position of the accelerometer on the flow-noise was
also looked into. For one superficial air velocity Usg=l.4 m/s the signal

dependency on Us was determined for four positions of the accelerometer.

Two positions weie on top of the pipe with a separation of 15 cm, one on the
other side of the pipe and one on the flange. The results are shown in
figure 5.9. Apart from the line for the position on the flange the lines are
nearly the same. The discrepancies have the same order of magnitude as the
accuracy of the measurement of the superficial velocities.

The method of attaching the accelerometer had little influence as well.
In figure 5.10. the dependency of the signal on Usl for four ways of
attaching the accelerometer is shown. Using a magnet & Weimaplast (a
coupling compound), a tie-wrap & Weimaplast, a tie-wrap & Weimaplast 3
meters upstream, or just a tie-wrap made no appreciable difference.

Because a (clamp-on) production surveillance monitor is calibrated with
respect to the test separator, it can be concluded that the dependency of
the RMS value on the superficial air and water velocities is sufficiently

repeatable and independent of the position and the method of attachment to

constitute a basis for a clamp-on acoustic production surveillance monitor.
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Figure 5.10. The average of the square root of the RMS value of the
accelerometer signal as a function of the superficial water velocity with
the way of attachment as a parameter. Measured with the Wolga. l-magnet &
Weimaplast. 2-tie-wrap & Weimaplast. 3-tie-wrap & Weimaplast 3 meters

upstream. 4-just a tie-wrap.
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figure | positionf{confiqgur.| parameter|filter 'Usg pressure| various
Hz m/s |Bar
5.11 4" hor ‘ filter par 2.5 |25
5.12 4", 3" Ty 2" Usg 2k-10k par |free
5.13a R vert, 2" Usg ‘ 2k-10k par |[free 3" upflow
5.13b 3" vert, 2" Usg 2k-10k par |free 3" downflow
5.14 4" h&v, 2" Py 2k-10k 0.4 [free
5.15 a" hor Usg 2k-10k par |4
5.16 | 3" hor Usg 2k-10k par |4
5«17 4" hor filter par 5*Us14
5.18 4" par config 4k2-8k5 5 + |par
5.19 4" hor flow reg | 2k1l-4k2 par |4
5.20 4" . ? Usg 2k-10k par |free Tellusoil/water
emulsion-air

Table 5.1. Test conditions of the various plots of measurements with the
test-loop Donau. In the column "config.", "hor" means that the vertical
section is by passed by a horizontal section, and "vert." that it is not. A
"?2" means that it is unknown whether the vertical section was bypassed or
not. " 2" " means that 6 meters downstream of the accelerometer a 2-meter 2"
section was inserted. "free" in the column "pressure" means that the
pressure was not controlled (free outflow). The 3" up or down flow means

that the accelerometer was mounted on the vertical section.
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5.3. DONAU TEST SERIES

Of the numerous Donau tests, a selection of the plots has been made.
Unfortunately they are not as convincing as the Wolga test results. In table
5.1. the flow conditions of the Donau-plots are specified. The plots are
presented at the end of this paragraph. The position of the accelerometer
can be on the four-inch pipe (Di=10'82 cm) just upstream of the view-glass
(see figure 4.4.) or on the three—inch pipe (Di=8.28 cm). Three positions
have been used on the three-inch pipe: on the three-inch line opposite the
measurement section of the four-inch line, and the up and down pipe of the
vertical section, ca two meters from the horizontal line level. In
configuration the set-up of the loop is specified. If 'obstruction' is
stated the test has been done with a two meter section of two-inch pipe
(another flow-metering instrument) in the loop eight meters downstream of
the four-inch measurement section. The horizontal configuration means that
the flow is by-passing the vertical section. In the vertical configuration
this horizontal bypass is closed and the vertical section is used.

The pressure in the loop can be regulated with a valve just befofe the
outflow in the separator. When it is .left open (free outflow) the
superficial gas velocity must be kept constant by changing the air volume
flow to compensate the change in pressure caused by varying the superficial
water velocity. When closed partly the pressure can be controlled by an
automatic feedback system. The feedback signal is derived from the pressure
transducer in the beginning of the loop just downstream of the mixing point.
In this way for moderate liquid flows even the pressure in the elbow
(between the three and four inch pipe) is kept sufficiently constant to

result in an unchanging superficial gas velocity.

In fiqure 5.11. the RMS-signal is plotted as a function of time for fixed
flow conditions. As the real averaging time constant is about 30 seconds and
the RMS-signal remains constant for more than an hour it can be concluded
that the flow-noise remains constant for unchanging flow parameters.

From the use of the eight-band RMS converter it is found that the flow
noise nearly has a white noise frequency distribution with an upper
frequency limit of ca 25 kHz. Combined with the fact that from visual

observations the bubble size distribution appears to be quite narrow, one
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can conclude that the bubbles scatter the pressure waves of all the
turbulent eddies instead of only the eddies with a frequency equal to the
bubble resonance frequency. The advantage of the near white noise
distribution is that specific acoustic disturbances can be filtered out
without losing too much essential flow-noise. In this way lorries passing
the test-loop within a few meters and seismic tests ca twenty meters away
did not interfere with the measurement series. Kicking the pipe or hitting
it with a wrench however produces too much high frequency sound to separate
it from the essential flow-noise.

In figure 5.12. the average RMS-signal is given as a function of USl with
Usg as parameter. In fact there were only two measurement series but the
response of accelerometer on the the horizontal 3" and 4" pipe were
monitored simultaneously. The results resemble those of the Wolga quite
reasonably.

For vertical flow fig 5.13. shows that the RMS-signal from the rising
pipe has no information about the flow but the flow-noise from the downgoing
pipe gives a clear relationship between the noise level and the superficial
water. velocity even for low air speeds. Like the previous case the signals
from both vertical pipes were recorded simultaneously.

Closing the valve at the end of the loop but without switching to
automatic pressure control results in a pressure higher than with an open
outflow but still increasing with superficial water velocity. From figure
5.14. it is clear that the response increases slightly for higher pressure.
Striking is the fact that the flow-noise decreases for increasing
superficial water velocity above a certain critical water speed. This
critical speed is less for lower air speed.

From 5.15. it can be concluded that the superficial air velocity should
be more than 3 m/s to obtain a useful relationship between Usl and the flow-
noise. The four measurement series of this plot have been monitored by the
horizontal 3" accelerometer as well. Those results are presented in figure
5.16. The dependency of the flow-noise on the water speed is much different
from that in figure 5.15. The high noise level for low water speed is caused
by the fact that the slug interval length is of such a length that the flow

between the mixing point and the position of the accelerometer is
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stratified. Consequently the loud noise from the air flowing into the loop
is not attenuated by the two-phase flow. Even with a small number of slugs
the attenuation is too small to consider the accelerometer signal as local.
The difference between figure 5.16. and 5.12. is most likely to be caused by
the pressure control because the other major change (the 2" section) is too
far from the 3" accelerometer to be of any influence.

In figure 5.17. the results has been plotted for a constant Usl'

U ratio (U = 50 _). As we have seen in figure 5.15. near U =2m/s an
sg s S sg

g 1
increase in air decreases the flow-noise. This effect has more influence

than the increase in flow-noise caused by an increase in water velocity.
This explains the dip in figure 5.17. Although locally the flow-noise level
can be a good indication of the superficial water velocity, the absence of a
monotonous increase in flow-noise as a function of USl means that with this
signal processing there is no basis for a clamp-on production surveillance
monitor for this U _,
sl
The influence of the configuration of the loop and the pressure is shown

U ratio.
sg

in figure 5.18. The horizontal free outflowing configuration produces most
flow-noise bu% for Usg = 5 m/s the horizontal and vertical configuration
both result in a monotonously increasing flow-noise level. '

The flow-regime is of great importance to the flow-noise. In figure 5.19.
the response to various flow-regimes is given. It can be concluded that only
the slug regime can have a useful noise velocity relationship. This
corresponds nicely with the conclusion that USg should be more than 3m/s.

Finally an exotic liquid has been tested in a two-phase flow with air.
The liquid was a stable water/Tellus 0il emulsion with a viscosity of 200
kg/ms and a interfacial tension of 55+15 N/m. The results are shown in
fiéure 5.20. Surprisingly the relationship between the noise-level and the
liquid velocity is a straight line. Together with the dependency on the air

velocity it resembles the Wolga results very closely.
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So the following three cases result in a monotonous increase with
sufficient resolution of flow-noise level as a function of the superficial
water velocity:
= Us > 3 m/s free outflowing horizontal 4" flow
- vertical downflowing 3" flow

- high viscosity liquid horizontal 4" flow

From these results no simple criterion can be derived for flow conditions
that produce flow-noise that can be used as a liquid production indicator.
More tests are necessary and more work will have to be done on the signal
processing to ascertain under which flow conditions a clamp-on acoustic

surveillance monitor can be applied.
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Figure 5.1l. Accelerometer response to a 4 inch horizontal flow in the Donau
test-loop with the filtering as a parameter. The vertical riser section was

by-passed. Usg=2'5 m/s and pl=2.5 Bar.
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Figure 5.12. Accelerometer response to a 4 inch and 3 inch horizontal flow

in the test-loop Donau with the superficial velocity is the parameter. 6

meters

2k-10k

downstream a 2 meter 2 inch section was inserted. The filtering was

Hz and the pressure was not controlled (free outflow).
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Figure 5.13a. Accelerometer response to a 3 inch upward flow in the test-
loop Donau with the superficial air velocity as a parameter. 6 meters
downstream of the 4 inch viewglass a 2 meter 2 inch section was inserted.

The filtering was 2k-10k Hz and the pressure was uncontrolled (free

outflow).
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Figure 5.13b. Accelerometer response to a 3 inch downward flow in the test-
loop Donau with the superficial air velocity as a parameter. 6 meters
downstream of the viewglass a 2 meter 2 inch section was inserted. The

filtering was 2k—-10k Hz and the pressure was uncontrolled (free outflow).
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Figure 5.14. Accelerometer response to a 4 inch horizontal flow in the test-
loop Donau with the line pressure as parameter. 6 meter downstrea_m of the 4
inch viewglass a 2 meter 2 inch section was inserted. The riser section and
the horizontal by-pass were both opened. The filtering was 2k-10k Hz,

Us =0.4 m/s, and the pressure was-uncontrolled (free outflow in the first

case and the valve at the end of the loop partly closed in the second case).
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Figure 5.l5a. Accelerometer response to a 4 inch horizontal flow in the

test-loop Donau with the superficial air velocity as a parameter. The riser

section was bypassed, the filtering was 2k-10k Hz, and the pressure was kept

at 4 Bar.
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Figure 5.15b. Accelerometer response to a 4 inch horizontal flow in the
test—loop Donau with the superficial air velocity as a parameter. The riser

section was bypassed, the filtering was 2k-10k Hz, and the pressure was kept

at 4 Bar.
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Figure 5.16a. Accelerometer response to a 3 inch horizontal flow in the
test-loop Donau with the superficial air velocity as a parameter. The riser

section was bypassed, the filtering was 2k-10k Hz, and the pressure was kept

at 4 Bar.
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Figure 5.16b. Accelerometer response to a 3 inch horizontal flow in the
test-loop Donau with the superficial air velocity as a parameter. The riser

section was bypassed, the filtering was 2k-10k Hz, and the pressure was kept

at 4 Bar.
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Figure 5.17. Accelerometer response to a 4 inch horizontal flow in the test-
lop Donau with the filtering as a parameter. The riser section was bypassed,

U _ =50
s

sg , and the pressure was kept at 4 Bar.
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Figure 5.18. Accelerometer response to a 4 inch horizontal flow in the test-

loop Donau with the test-loop configuration as a parameter (riser

bypassed=hor conf.). The filtering was 4200-8500 Hz and Usg=5 m/s.
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Figure 5.19. Accelerometer response to a 4 inch horizontal flow in the test-
loop Donau with the flow regime as a parameter. The filtering was 2100-4200

Hz and the pressure was 4 Bar.
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Figure 5.20. Accelerometer response to a 4 inch horizontal flow in the test-
loop Donau with the superficial air velocity as a parameter. The liquid was
a Tellus Oil-water emulsion. The filtering was 2k-10k Hz and the pressure

was uncontrolled (free outflow).
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S-time signal of a 4 inch horizontal flow

Figure 5.21. The accelerometer RM
The pressure was kept at 4 Bar.

in the test-loop Donau for three flowrates.
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5.4. STATISTICAL PROCESSING

5.4.1. SLUG FREQUENCY

Averaging the RMS of the flow-noise is the simplest statistical
signal processing. Some time has been spent to look into slug speed and slug
frequency. For that purpose the u-mac program was supplemented with a slug
counter section. It checks every sampled RMS value of a chosen filter
section whether it is above a certain level. This level is a fixed
percentage above the average RMS value at that particular mbment. When the
RMS-value exceeds that level the number of slugs is increased by one and the
detection is disabled. When the sampled RMS value is below a second level,
(a fixed percentage below the average value) the slug detector is activated
again. Combined with a built-in timer the u-mac program can calculate both
slug length and frequency. Unfortunately the sample interval time of the
program is of such a length that it is only capable of detecting slugs with
a very low frequency. It would be much better to detect the slugs with an
analogous level switch fed by a fast RMS—-signal instead of the signal from
the RMS detector with a time constant of three, seconds.

As the RMS-signal was also recorded on paper, the slug frequencies can
also be determined by hand. Countihg the slugs a system similar to that of
the g-mac program has been used. Consequently two slugs much closer together
than the average slug separation are counted as one slug. The RMS time
constant (3s) is long enough to make counting slugs easy for slug
frequencies less than 0.1 Hz. For higher slug frequencies a RMS converter
with a much shorter time constant is necessary.

Slugs have been counted for the flow conditidns that produced the results
of figure 5.17. The superficial gas velocity was kept five times the
superficial water velocity. For three flow speeds the RMS time signal can be
found in figure 5.21. The slug frequencies of this measurement series have
been plotted as a function of the superficial water velocity in figure 5.22,.
Contrary to the flow-noise (see figure 5.17.) the slug frequency is linearly
dependent of the superficial water velocity. This relation however is not in
agreement with the results of Gregory and Scott (31).

They correlate the slug frequency fs with the superficial liquid and

lug
gas velocities and the internal diameter of the flow-line:
U
sl 1975 L2
52 = 0.0226 ( === ([ ==~—=== + U + U ) ) ¢l
+
slug gDi USl USg sl sg
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Figure 5.22. Slug frequency as a function of superficial water velocity for
a 4 inch horizontal flow in, the test-loop Donau. Usg=5USl and the pressure

was kept at 4 Bar.
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For the above mentioned flow situation this is
2 142

fslug =0.021 ( 3.3 + 6 USl ) 542

Apart from being a near quadratic relationship the calculated frequencies
are ca twice the measured frequencies. This discrepancy is caused by the
fact that Gregory and Scott measured slug frequencies for Di=l'9 cm en
3.5cm. Besides that they only used one dimensionless parameter in the
correlation.

It would be better to compare the results with the theoretical model of
Taitel and Dukler (116) which uses five flow parameters. This model appears
to agree quite well with the results of various authors.

Another aspect is that using a large diameter (D=10.82 cm) flow line it
is likely that the slug structures are determined by the geometry of the
Donau. The two inch section, the vertical section or the three inch line has
probably more influence on the slug formation than the Kelvin-Helmholtz
instability. This phenomenon, called terrain slugging is most recently
studied by Linga (117). As geometry-determined slug frequencies are usually
lower and more regular than those determined by the Kelvin-Helmholtz

instability, the geometry may be held responsible for the relatively low

slug frequencies.

5.4.2. SLUG VELOCITY

Using two accelerometers spaced out six meters the slug velocity has
been determined by correlating the signals with the D6000. This has been
done during the measurement of figure 5.17. Figure 5.23. shows both RMS-time
signals obtained with a RMS converter with a 30 ms time constant for four
flow speeds. The cross—-correlations of the first with the second signal have
been plotted as well. From the first peak in the cross-correlation the
transition time of the slug from the first to the second accelerometer and
the slug velocity is determined. The results have been plotted in figure
5.24.

The correlation between the slug velocity Vs and the superficial water

lug
velocity is
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Figure 5.23a. Fast RMS-time (r=30 ms) signal of two accelerometer spaced out
6 meters for a 4 inch horizontal slug flow in the test-loop Donau for two
flowrates. The third graph in each case is the cross-correlation of the two

signals. The pressure was kept at 4 Bar.
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Figure 5.23b. Fast RMS-time (7=30 ms) signal of two accelerometer spaced out
6 meters for a 4 inch horizontal slug flow in the test-loop Donau for two
flowrates. The third graph in each case is the cross-correlation of the two

signals. The pressure was kept at 4 Bar.
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Figure 5.24. Slug velocity as a function of the superficial water velocity
for a 4 inch horizontal slug flow in the test-loop Donau. Usg=5Usl' and the

pressure was kept at 4 Bar.



- B9 ~ P814

In literature the slug velocity is usually correlated with the no-slip

velocity Uns defined as

ns sl
In this case (U = 50 ) formula 5.3. becomes
sg sl

8] =U + U 5.4.
sg

Vslug = L Uns 5.8
The proportionality constant in 5.5. is not too different from the one found
by Gregory and Scott (31), 1.35 or Hubbard and Dukler (26), 1.25.

For the two highest velocities the measured slug velocities do not agree
with the correlation. This is caused by the fact that the consistency of the
slugs structure over the distance between the two accelerometers declines
with increasing slug velocity. This can be confirmed by looking at the time
signals in figure 5.23.

So determining the optimum distance for measuring the slug velocity is a
compromise between the consistency of the slug structure and the locality of
the accelerometer. In literature a lot work can be found on slug speed and
frequency measurement. They are all performed with an in-line transducer or
a radiation attenuation system. In other words with a transducers
determining a particuwlar flow variable over a definite and very limited
volume, area, or line segment in the flow. The tests performed with the

accelerometer prove that the locality of the measurements can be sufficient

to determine slug speed and frequencies.

5.4.3. OTHER SIGNAL PROCESSING

The signals obtained by the above mentioned transducers have been
used to determine the flow regime by Jain ea (15), éoot ea (118), Annunziato
ea (119), Jones (87), and Vince (ll). As the accelerometer RMS-time signals
resemble those signals there is good reason to believe that the
accelerometer signal can be used for that purpose as well. Stimulated by the
results from the Wolga and Donau measurements it seems worthwhile to extend
the signal processing in such a way that besides the flow pattern a measure
for the superficial liquid and gas velocities can be determined as well.

Considering a fast RMS time signal f(t) of a specific band-width, the
following statistical variables Si to be determined as a function of the

superficial velocities and other flow parameters are proposed:
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g, = % _gf(t)dt 5.6.
S,= RMS ( £(t) - S) 5.7.
S,= RMS ( géésl ) 5.8
$4% £41ug 5.9
8% Vot g 5.10

S_= slug fraction, the percentage of
time with a RMS signal above a

certain level 5

The last three variables should give enough information about the flow to
constitute a basis for production surveillance in the case of low slug
frequencies as encountered with gas-lift wells. The slug fraction SG
together with the slug speed or the slug speed-related frequency gives
enough information to determine the superficial velocities. For very long
slugs gas bubbles are mainly dispersed in the head and the tail of the slug.

In that case the slug fraction S_ will have to be determined by counting the

6
slugs.

For higher slug frequencies the accelerometer signal is not local enough
to allow the accelerometers to be close enough to each other to safegquard
the consistency of the slugs. In that case the first three variables could
be of better use. Next to the normal average Sl' an AC-average 32 could be
of use for instance to distinguish between bubbly flow (in extrema: SZ=O)
and slug flow (in extrema: Sl=Sz). Variable S3 also caries information about
the frequency of the varying.RMS value of the flow-noise.

As in many cases lacking sufficient theoretical predicting knowledge, the
flow-noise signals call for an expert-system automatically selecting the
optimum combination of variables for monitoring the production. Annunziato's
(119) determination of the efficiency of the various statistical variables
with respect to their ability to distinguish the various flow patterns is a

good guide for designing such an expert system.
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6. THEORETICAL BACKGROUND

As a clamp-on Production Surveillance Monitor could only work because of
bubbles in the gas-liquid flow it is necessary to know more about the
acoustic effects of bubbles in turbulent flow. As mainly water-air system
were tested, this theory can determine whether an oil-gas system would yield

the same results.

6.1. A BUBBLE AS SOUND SCATTERER, SINGLE BUBBLE

In "Sound & Sources of Sound" by A.P. Dowling and J.E. ffowcs Williams
(35) the theory of a bubble as a sound scatterer is set out. (§ 2.2., 6.5.,
and 8.4.). In this paragraph the essence of those paragraphs is presented:

The case of one bubble in an infinite volume of liquid is considered. It
is assumed that the gas in the bubble behaves as a perfect gas and is in a
adiabatic state, meaning:
pg a37 = pgO ao37 6.1
In which pg is the pressure in the bubble, a the diameter of the bubble, 7
the ratio of the constant pressure and constant volume specific heats of the
gas in the bubble, and the suffix zero means the average value.

From this assumption the dependencé between an incident harmonic pressure
field and the resultant sound field scattered by the bubble is derived.
Modelling the sound of a real turbulence as one induced by a quadrupole
distribution and using this field as the incident field, the resﬁltant
scattered field is calculated. Assumed is that the distance between the
quadrupole modelling the turbulence and the bubble is much less than the
wavelength of the sound created by the quadrupole. In that case the
amplification of the turbulent field by the bubble can be found: The
intensity of the bubble—scéttered field is bigger than the direct intensity
of the quadrupole by a factor of order A
w02 iwa)l—2

¢ .4
Ab = (wa) |1 - wz (1 +. 5

in which ¢ is the velocity of sound in the liquid, w the angular frequency

b:

6.2.

of the incident turbulent pressure field, and @, the resonance angular
frequency of the bubble:

37p
Wy = ( ———92 + (3y = 1) _ . )l/2 6.3.
oo Po20



= T4 = P814

T T T 1 1 T T T

104 0% 102 100" |1 10 0% 103

Figure 6.1. The factor by which the sound generated by a turbulent eddy is
amplified by an air bubble as a function of the ratio of the incident

frequency and the resonant frequency of the bubble for 1 Bar.
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in which P, is the mean pressure in the liquid, o the interfacial tension,
and pO the average density of the liquid.

The resonant frequency is only marginally influenced by the interfacial
tension. It can be neglected when
g << E?%;Z:_IY po a0 . " 6.4,
Even in the worst case (0=0.07 N/m, p0=10 N/m ) an aberration in the
resonance frequency of 5% or more is only introduced for bubbles smal}er

than 10 um diameter. So equation 6.3. can be simplified to

This is similar to a mass-spring system where the density of the liquid
represents the mass and the compressibility of the gas represents the
spring.

Dowling states that "Low frequency bubble vibration can be subject to
sufficient heat transfer from the gas to the liquid that the gas motion is
effectively isothermal in which case the foregoing analysis can be made to
apply y formally setting ¢ equal to unity in the various.formulae." He does
not specify "low frequency",K but as the motion must be between isothermal
(y?1) and adiabatic (7air=l.4) the maximum error introduced by assuming
v=1.4 is 25% for wo and 13% for Wy r which in this project is not of much
influence.

Now for water and air we arrive at

VP, VP,
w, = 0.06 ——= or £ = 0.01 --- 6.6.
0 a, 0 a,
So for an average pressure of 105 N/m2 the resonance frequency f£. lies at 30

0

kHz for a0=0.l mm and at 3 kHz for a0=l mm.

The amplification factor Ab varies enormously with the ratio of the

incident frequency and the bubble resonant frequency. Figure 6.1. shows this

dependency for p0=lO5 N/mz, and ¢c=1500 m/s (i.e. from formula 6.6. : woao/c

0.014). Three extreme cases can be considered:

w >> W > A =0 67
4 8 c 6 L.
W= W > A = (=== ) =10 6.8.
0 b w. a
8 d 4 7
w << W @ A = (=== ) =10 6.9.
0 b woao

So even for frequencies below the resonance frequency of the bubble the
amplification factor is considerable. This explains the importance of

bubbles as sound scatterers in a turbulent pressure field
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Figure 6.2. The dependence of the velocity of sound as a function of the
void fraction for a slug, stratified, and homogeneous flow as determined by

Nguyen (22).
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6.2. A BUBBLE AS SOUND SCATTERER, DISPERSED BUBBLES

So far only the case of one bubble in an infinite volume of liquid has
been looked into. In a gas-liquid flow this is very rarely the case. If we
consider a single bubble in a homogeneous mixture of air bubbles dispersed
in water, the density and the speed of sound of the surrounding fluid is
less than the density and speed of sound of pure water. For the angular
resonance frequency (formula 6.5.) only the density is of any importance.
According to Gregory ea (115) the gas fraction in a slug is less than 50 %
when the total of the superficial velocities is less than 10 m/s. For
bubbles, 50% by volume dispersed in water the density will only halve and
the resonance frequency will be 40% higher. So the order of magnitude of the
resonance frequency will be similar to that in case of a single bubble in a
pure liquid.

The amplification factor A however will be greatly influenced by the

presence of more bubbles, as Ehe speed of sound decreases sharply with a
small increase of the volumetric air fraction. Figure 6.2. shows the
dependence of the speed of sound as a function of the gas fraction for the
case of stratified flow, slug flow, and dispersed bubble flow, as determined
by Nguyen ea (22). In the case of dispersed bubble flow the speed of sound
may be as low as 20 m/s for atmospheric pressure. Supposing the bubble
amplification factor is still determined by formula 6.2. the amplification
will be unity. This might well be the reason that for a certain void
fraction more air does not create more high frequency sound (cf paragraph
S4lsbis)s

Another effect of the gas entrainment in the liquid is the attenuation of
the sound. As the propagation of sound decreases with a higher gas fraction
so does the transmitted sound energy. Davis (110) has experimentally
confirmed that the attenuation of incident pressure fluctuations along a
two-phase pipe flow increases with increasing void fraction and increasing
frequency. Because of this the signal from the accelerometer is only related
to a certain region of the flow. The dimension of this region depends on the
attenuation of the sound and consequently on the gas fraction and flow-
pattern. As a result sound caused by valves and other disturbances will not
interfere with the flow-noise if not to close to the accelerometer.
Unfortunately sound propagating through the pipe-wall will not be

attenuated, so kicking the pipe will decrease the signal to noise ratio.



%718d

_8/_...



= 19 = P814

The decrease in speed of sound is also important for the mode of sound
propagation through the gas-liquid mixture in the pipe. The wavelength of
the sound is defined as the ratio of the speed of sound in the mixture and
the frequency of the sound-source. Dowling ea (35) shows in chapter 3.2.
that sound with a wavelength larger than twice the diameter propagates only
in the plane-wave mode as the higher modes are evanescent. Therefore those
waves excite two opposed accelerometers identically. Smaller wavelengths
result in higher mode (three dimensional) waves having an uncorrelated

effect on both transducers.

6.3. TURBULENT EDDIES

Until now the sound scattering effect of bubbles has been talked
about. It is also necessary to have turbulent eddies which pressure fields
can be scattered. Well known is Kolmogoroff's theory of local isotropic
turbulence (for a single-phase high Reynolds number flow) as described for
instance by Levich (113).:

The size of the largest eddy is in the order of the diameter of the pipe.
This eddy creates several smaller eddies which break up in turn. This goes
on until such an eddy scale is reached that'the viscous and inertial forces
are in equilibrium, i.e. the corresponding Reynolds number is approximately
equal to unity. For smaller eddies viscous effects will overcome turbulent
effects and the eddies will dissipate their energy.

Taking the superficial velocity as the characteristic velocity the
frequency of the largest eddy is Usl/Di . This compares quite well with the

Wolga pressure signal shown in figure 5.4.: Us =1.45 m/s, Di=7 cm, so the

1
lowest frequency should be ca 20 Hz, which is about the lowest frequency in

the pressure signal. _
According to the Kolmogoroff theory (see Levich (113)) the length scale

of the eddies with their viscous and inertia forces in balance, kk is

determined by

lk = (n/pe)l/4

in which 7 is the dynamic viscosity of the liquid, and ¢ the energy

6.10.

dissipated by the turbulent flow per unit mass and per unit time. This

dissipated power can be calculated from
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Figure 6.3. Sketch of the dependency of the eddie energy as a function of

the eddie caused pressure fluctuation frequency.
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in which Ap is the pressure drop over a length Al, Q the volume rate, and A

the area of the cross section of the pipe. This is equal to

U
_Ap sl
€ = A1 2 612,
Using the Blasius expression for the turbulent friction factor the pressure
drop is
Ap _ -1/4 1 2 -1
AL 0.316 Re 2pUsl Di 6«23
in which Re is the Reynolds number. Now ¢ becomes
3
9]
¢ = 0,158 Re % —gi 6.14.

i
For a water flow of 1 m/s in a 10 cm internal diameter pipe the specific

power consumption will be e€=0.1 W/kg so the Kolmogoroff length scale will be

(formula 6.10) Ak=56um. Again taking Us as the characteristic velocity the

resultant frequency is 18 kHz. As the piessure transducer has an effective
diameter of ca lcm and the pressure amplitude caused by such small eddies
will be very low such small eddies will not be detected by the transducer.
(cf Corcos, (36): resolution of pressure in turbulence).

Figure 6.3. presents a rough sketch of the dependency of tﬁe eddy energy
on the eddy-caused-frequency. The energy between Usl/Di and Usl/)\k is
declining with frequency as the energy is distributed among the smaller and

more numerous eddies. At higher frequency the eddies will start dissipating

-and their energy will decline even more. About the frequency less than

Usl/Di not much can be said as the turbulence responsible for those
frequencies will be determined by the geometry of the total flow-line.

The main relevant conclusion from this discussion about the .energy
distribution is that the turbulent frequency band is broad enough to to
generate pressure fields in the appropriate frequency to be modulated by the
bubbles. In gas-liquid flow the same general conclusion will apply as the

scale of turbulence in the liquid will have the same order of magnitude.

6.4. BUBBLE FORMATION

Finally the formation of bubbles in the turbulent gas-liquid flow has
to be looked into. Levich (113, chapter 89) derives a criterion for bubble
brake-up in turbulent liquid flow by balancing the capillary pressure of a
bubble with the dynamic pressure difference over the bubble. This pressure

difference is caused by the velocity difference of the turbulent eddies
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surrounding the bubble. Using the Kolmogoroff homogeneous turbulence model

he finds a critical bubble diameter acr above which the bubble will break

up:

- P
2/3 (_9__\3/5 76/5 (;;)1/5 .

fpl g
in which L is the scale of the turbulence, in this case the internal

e T 2B

diameter Di' k. is a constant equal to 0.5, and U is the fluid velocity. For

£

homogeneous flow the no-slip velocity Usn=U is to be used as the fluid

+
‘ sl Usg
velocity. For determining the bubble scale in slugs the fluid speed should
be replaced by slug speed, which is (see chapter 5.4.2.) proportional to the

no slip velocity.

The mechanism opposing the effects of bubble fracture is coalescence.
This is a very complicated mechanism determined by the liquid viscosity, the
interfacial tension and the shear forces. Also the structure of the flow is
of importance, for instance in an undispersed bubbly flow in the Wolga it
has been observed that coalescence rarely occurs. This is probably caused by
the fast rotation of the bubbles between the pipe wall and the fast flowing
liquid. This rotation prevents the liquid layer separating the bubbles to
deplete and coalescence will not take place. Certain additives like salt and
surfactants influence coalescence often without even influencing the static
interfacial tension.

As after coalescence the bubbles will probably immediately break up again
by the turbulent eddies, the largest number of bubbles is expected to have a
diameter in the order of the critical diameter as formulated in 6.15.
Comparing the criterion with the pictures of the bubbles in the Wolga,
(figure 5.6.), the predicted bubble diameter agrees quite nicely with the
=0.5, pl=103 kg/m3,

£
pg=2 kg/m3 (P=180 kN/mz), and U=1.7 m/s the critical diameter works out to

observed bubble diameter. For L=Di=0'07 m, 0=0.05 N/m, k
be 2.5 mm. In the second picture of figure 5.6. corresponding with the flow
conditions as mentioned, the average diameter is ca 3mm. In the first
picture of the same figure the bubbles are three times smaller. This is
caused by the fact that since being introduced into the system no
coalescence has taken place because of the small number of bubbles. So in
that case the bubble is smaller than the critical diameter already and is

consequently not determined by the turbulence but by the initial diameter.
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A second criterion is the balance between turbulent forces and buoyancy
forces determining whether the bubbles will be dispersed or floating on top
of the liquid. This has been modelled by Taitel and Dukler (30). At first
approximation the difference in sound scattering between dispersed and
undispersed bubbles is thought to be of little significance, so this

criterion has not been looked into further.

So if in future flow noise of systems other than water-air will be
investigated the main criterion to look into will probably be 6.15. For oil-

gas mixtures the main difference will be caused by the much lower

3

interfacial tension (down to 10 N/m) resulting in much smaller bubbles.
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6.5. THEORY: CONCLUDING REMARKS

At the start of the project it was planned to devise a scheme to show
the relationship between the flow parameters on the one side and the bubble
formation, turbulence, and bubble resonance and consequently the flow noise
on the other side. From the theory discussed it is clear that the parameters
influencing the flow-noise generation are mutually influential in a complex
way. Unfortunately it is impossible to distill a simple flow—-noise model
from this multitude of influences. So the theory in this chapter does not
pretend to give a complete prediction of the flow-noise as a function of the
various flow-parameters but tries to clarify the mechanism responsible for
the possibility of detecting flow-related noise outside the pipe.

From this theory it can be concluded that an oil-gas system will not
behave fundamentally different with respect to the flow-noise generation

than the tested air-water systems.
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7. CONCLUSIONS AND RECOMMENDATIONS

It has been found that gas—-liquid flow-noise detected with a clamp on
accelerometer contains information about the flow. Under certain
circumstances the average of the RMS value of the high pass (ca 2kHz)
filtered flow-noise is such a function of the superficial gas and liquid
velocities that it can indicate the superficial liquid velocity within 10%.
This has been found for a horizontal flow of water and air, for a horizontal
flow of water-oil emulsion (7=200 kg/ms) with air, and for a vertical down
flow of water and air. Unfortunately the flow-noise is also depehdent on the
geometry of the test-loop and the line-pressure regulation.

The detected flow-noise has been found to be only related to a limited
volume of gas-liquid mixture. For certain conditions this signal locality is
sufficient to measure slug frequencies and slug speeds, which proves to be a
good indication of the superficial velocities if the ratio of the
superficial gas and liquid velocities is known. In general the flow-noise
signal is sufficiently similar to the various in-line transducer signals,
(such as void fraction meters and differential pressure transducers), to be
used as a flow pattern indicator.

As the flow-noise itself has a near white-noise frequency distribution,
the real flow information is found in the RMS value of the flow noise. This
agrees well with the "modulation idea" that the in-line pressure fluctuation
are modulated by bubbles, and that RMS value (a kind of demodulated signal)
caries the same information as the pressure fluctuations.

At present various researchers e.g. Toral (Imperial College, Petroleum
Engineering Multi-phase Flow Laboratories) are working on an improved signal
processing of the in-line measured signals to increase the resolution of the
flow-pattern recognition. In other words the purpose in those studies is to

find an indication of the superficial gas and liquid velocities.
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Putting together: 1. the resemblance of in-line transducer and
accelerometer signals, because of sufficiently
local measurement of the accelerometer,

2. the efforts of various researchers to derive an
indication of the superficial gas and liquid
velocities from those in-line transducer signals,

3. the fact that from the theory no reason has been
found that clamp-on flow-noise measurement of an
oil-gas flow would be fundamentally different from
an air-water flow,

it is concluded that further work on the statistical processing of clamp-on
acquired gas-liquid flow-noise is worth the effort.

So it is recommended to devise a computer program determining certain
statistical parameters (as specified in Chapter 5.4) as a function of the
various flow parameters. For various flow situations a digitized recording
(for instance with the available PDP-Minc-23 computer) should be made of a
fast (r=30 ms) RMS value of the flow-noise, to be analysed by the computer
program. The efficiency of the statistical variables in their ability to
determine the flow pattern and, more specifically the.superficial velocities
should then be assessed.

Initially the flow-noise of the Donau should be recorded and analysed.
When it has been proved that the analysing program is working properly a
recording of a producing pipe-line should be made. It can than be checked
whether the oil-gas system produces sufficient flow-noise. In addition it
gives the opportunity to process flow-noise from low frequency but very long

slugs.
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Figure 8.1. Schematic representation of the literature related to the

subject of this study.
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8. LITERATURE

In literature nothing has been found on the quantitative analysis of
clamp-on acquired gas-liquid flow-noise. Much however has been published on
related subjects. For instance a lot of work has been done on acoustic
boiling detection especially for cooling systems of nuclear reactors (e.g.
De (71). Another example is the work of Sami (34) on the relation between
pressure fluctuation and flow velocity in single-phase flow. In figure 8.1.
other closely related fields of interest are schematically presented.

With the systems Compendex and Inspec a search for literature on, or
closely related to the field of interest of the present study has been
carried out. A selection of the articles found by the computer combined with
literature found by other means was collected and categorised. To facilitate
further work, not only the references used in this report but all the
collected literature is listed below.

Firstly the references are listed by the numbers corresponding to the
references in this report. For cross reference and further work the list is
printed again in alphabetical order with abbreviated titles. And thirdly,

they are presented by topic. The topic abbreviations are:

AC acoustics

BU theory on acoustics of gas bubbles
DE flowmetering device

GE general

MA flow pattern map

OT other literature

PS production surveillance monitor

ST statistics

TH theory
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9. SYMBOLS

Ab amplification of turbulent pressure by a bubble
a diameter of gas bubble

- critical bubble diameter

o speed of sound

Di internal pipe diameter

fo bubble resonant frequency

Eslugslug frequency

f(t) fast RMS value of the flow-noise

g gravitational constant

K empirical constant in formula 5.8.
L scale of turbulence

P instantaneous pressure

Pa average pressure

P instantaneous variation of pressure
pg pressure in gas bubble

Py line pressure

P, average pressure in liquid

p' root mean square value of p

Q volume rate

Re Reynolds number

Si ith statistical variable

T numerical averaging time constant

U instantaneous fluid velocity

Ua average fluid velocity

Uns no-slip velocity

Usg superficial gas velocity

USl superficial liquid velocity

u instantaneous variation of fluid velocity

= 105 =

root mean square value of u

slug velocity
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various
m/s
m/s
m/s
m/s
m/s
m/s
m/s

m/s
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Ap
AL

CMC
COPS
PSD
PSM
RMS

= 107 =

pressure drop over AL

length of pipe-line

ratio of principle specific heats
power consumption in turbulent flow per unit mass
dynamic viscosity

Kolmogoroff length scale

fluid density

gas density

liquid density

average liquid density
interfacial tension

angular frequency of turbulence

resonant angular frequency of bubble

carboxy methyl cellulose

clamp-on production surveillance monitor
power spectral density

production surveillance monitor

root mean square
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N/m

J/s kg
kg/ms

kg/m
kg/m
kg/m
kg/m
N/m
1/s
1/s

w w w w
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