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Abstract. Modeling non-ideal compressible flows in the context of computa-
tional fluid-dynamics (CFD) requires the calculation of thermodynamic state
properties at each step of the iterative solution process. To this purpose, the use of
a built-in fundamental equation of state (EoS) in entropic form, i.e., s = s(e, ρ),
can be particularly cost-effective, as all state properties can be explicitly calcu-
lated from the conservative variables of the flow solver. This approach can be
especially advantageous for massively parallel computations, in which look-up
table (LuT) methods can become prohibitively expensive in terms of memory
usage. The goal of this research is to: i) develop a fundamental relation based on
the entropy potential; ii) create a data-driven model of entropy and its first and
second-order derivatives, expressed as a function of density and internal energy;
iii) test the performance of the data-driven thermodynamic model on a CFD case
study. Notably, two Multi-Layer Perceptron (MLP) models are trained on a syn-
thetic dataset comprising 500k thermodynamic state points, obtained by means
of the Span-Wagner EoS. The thermodynamic properties are calculated by differ-
entiating the fundamental equation, thus ensuring thermodynamic consistency.
Conversely, thermodynamic stability is properly enforced during the regression
process. Albeit the method is applicable to the development of equation of state
models for arbitrary fluids and thermodynamic conditions, the present work only
considers siloxane MM in the single phase region. The MLP model is imple-
mented in the open-source SU2 software [8] and is used for the numerical sim-
ulation of non-ideal compressible flows in a planar converging-diverging nozzle.
Finally, the accuracy and the computational performance of the data-driven ther-
modynamic model are assessed by comparing the resulting flow field, the wall
time and the memory requirements with those obtained with direct calls to a cubic
EoS, and with a LuT method.

Keywords: data-driven modeling · thermodynamic properties · computational
fluid dynamics

1 Introduction

Flows of fluids not obeying to the perfect or the ideal gas law are encountered in
many relevant engineering applications. In the field of propulsion and power, exam-
ples of these applications include unconventional turbines and compressors operating
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with dense vapors for power generation and thermal management systems [10], fuel
injectors of gas turbines and regenerative cooling nozzles of rocket engines [1,2], in
which the fluid is at supercritical conditions, and compact heat-exchangers for waste
heat recovery systems, whereby the fluid can be either a non-ideal compressible liquid
or a supercritical gas [4].

The accurate modeling of the thermodynamic properties of non-ideal fluid flows
is usually obtained by resorting to multi-parameter equations of state (MEoS) in the
Helmholtz free-energy form [5,21]. Models in this form for a variety of pure fluids
and mixtures are implemented in popular thermodynamic software packages like Ref-
Prop [13], FluidProp [6], and CoolProp [3]. However, in the context of CFD, the compu-
tational overhead associated with direct calls to MEoS is typically excessive, especially
if design optimization [19] or high-fidelity analyses [11,17] are involved.

Methods for the efficient calculation of thermodynamic properties can be divided in
two classes: methods based on the interpolation of tabulated property values, commonly
referred to as look-up table methods, and data-driven methods, in which thermodynamic
models are constructed through a proper fitting of the fluid property values obtained
with arbitrarily complex EoS. For instance, in [18], consistent thermodynamic models
in the Helmholtz free-energy form satisfying the Maxwell relations were trained using
an Artificial Neural Network (ANN), showing high-accuracy in the predicted fluid prop-
erties. Similarly, in [22], the authors compared the performance obtained by training a
Multi-Layer Perceptron (MLP) and a Gaussian Process (GP) to replicate the statistical
associating fluid theory (SAFT-VR) EoS for pure fluids, and concluded that the ANN
outperforms the GP model.

For CFD simulations, LuT methods have been proven to be efficient and accurate,
but data-driven methods provide advantages in terms of robustness and reduction of
memory usage [12], thus making them particularly suitable for massively parallel com-
putations. Longmire and Banuti [14,15] exploited tiny neural networks to compute the
thermodynamic properties of CO2 as a function of temperature, in the supercritical
region. The objective was to perform viscous simulations of non-ideal flows in non-
adiabatic laminary boundary layers, using the incompressible Navier-Stokes solver of
SU2 [7]. Results show that the computational overhead while using the ANN model
was about 20% higher compared to when using constant properties. In [16], the authors
adopted an ANN to compute the thermodynamic and transport properties of multi-
component mixtures for large-eddy simulations of turbulent mixing flows, and one-
dimensional simulations of diffusive flames. As outcome of their study, the authors
measured a speed-up of 1.5 and 2.3 times, respectively, compared to the baseline cases.
Moreover, the authors stated that, for test cases involving many chemical species, the
use of ANNs enables a reduction of memory usage of up to 5 orders of magnitude with
respect to LuT methods. However, the data-driven regression technique described in the
paper heavily relies on the injection of boundary information into the training dataset,
making it application-specific. In addition, the average prediction errors for the prim-
itive variables reported in the paper are in the range of 1–9%. This level of accuracy
could lead to large discrepancies in the prediction of local flow phenomena involving
large spatial gradients, e.g., shock-waves.
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The objective of this work is the development of an accurate data-driven equation
of state, tailored to compressible flow simulations of pure fluids and mixtures of fixed
composition. The model is formulated in terms of entropy potential, i.e., s = s(e, ρ).
The desired level of accuracy and computational efficiency is attained by means of
a semi-consistent formulation: a MLP model is trained on a dataset comprising 500k
values of entropy and its first and second-order derivatives with respect to e and ρ,
calculated with the Span-Wagner multi-parameter EoS implemented in [13]. It follows
that, for a given thermodynamic state, s and its derivatives are computed with the MLP,
while the primary and secondary thermodynamic properties are explicitly computed
using their analytical definition based on the entropy potential. The semi-consistent
MLP model has been implemented within the compressible Navier-Stokes solver of
SU2 [8], and the resulting numerical model has been applied to perform simulations of
non-ideal flows of siloxane MM in a converging-diverging nozzle.

2 Methodology

2.1 Fundamental Relation in Entropic Form

A thermodynamic model based on the entropy potential is highly suited for CFD appli-
cations featuring non-ideal flows, since its natural variables, i.e., e and ρ, are those used
to retrieve the fluid properties in a flow solver. The proposed thermodynamic model is
of general validity, i.e., it is applicable to any pure fluid and mixture of fixed compo-
sition, regardless of the thermodynamic state, both in the single and in the two-phase
region. However, in the present work, its use is restricted to siloxane MM in the sin-
gle phase region. Equations (1) to (4) provide the analytical expressions of the primary
thermodynamic properties used by CFD compressible flow solvers, namely tempera-
ture, T , pressure, p, enthalpy, h, and speed of sound, c. Such relations have been derived
from fundamental thermodynamic equations, by applying mathematical rules of multi-
variable differential calculus.
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Secondary thermodynamic variables, which are needed to compute inviscid

and viscous fluxes, and Jacobians, namely,
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obtained by partial differentiation of Eqs. (1, 2), and are given by Eqs. (5) to (8).
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Therefore, given the values of internal energy and density, all the necessary ther-

modynamic properties can be computed by resorting to the entropy potential and its
first and second-order partial derivatives. Thermodynamic consistency is thus inher-
ently guaranteed. Moreover, at each iteration of the flow solver, the thermodynamic
state can be updated by means of explicit calculations, differently from what happens
with other thermodynamic potentials, e.g., Helmholtz free energy, a = a(T, ρ), for
which the internal energy is retrieved by iteratively solving a non-linear equation.

The correctness of the analytical relations (4)–(8) has been assessed by compar-
ing the thermodynamic property values obtained computing each right-hand side term
of the equations through the CoolProp library [3] against those calculated by directly

computing T , p, h, c2,
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via direct EoS calls. For all

properties, the deviations were, on average, in the order of O(10−13).

2.2 Data-Driven Modeling of Thermodynamic Properties

The development of the data-driven EoS model for the prescribed case study, i.e., silox-
ane MM in the vapor and supercritical regions, is documented in this section. A MLP,
i.e., a feedforward ANN featuring one or multiple fully connected hidden layers, has
been selected to accomplish this task. The reason is twofold. First, the computational
overhead associated with the evaluation of the data-driven model is of primary impor-
tance for the target application. In general terms, the computational cost of a MLP
model scales with the total number of neurons, and is lower than the cost of evaluating,
for instance, a model based on a GP or a Support Vector Machine (SVM). On the other
hand, an MLP model requires a larger amount of training data to reach the same level
of accuracy of a GP or a SVM model. However, in the present work the dataset is syn-
thetically generated by resorting to the MEoS implemented in [13], thus the availability
of data is not a limiting factor.
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Fig. 1. Trends of the entropy potential, its first and its second-order derivatives with respect to
density and internal energy. The white line identifies the saturation curve, while the white dot
corresponds to the critical point. The range of density has been extended up to 405 kg/m3 for
visualization purposes.

The ranges of variation of the input features, i.e., density and internal energy,
selected to create the dataset are ρ = 1.0–295 kgm−3 and e = 350.6–479.8 kJkg−1,
respectively. The trends of the labels, i.e., entropy potential and its first and second-
order derivatives, are displayed in Fig. 1. Two observations can be drawn from such
trends. On the one hand, the first and second-order partial derivatives of s with respect
to ρ are characterized by large gradients at low values of density. As a result, train-
ing a MLP model over a wide range of density requires the use of a deeper network
architecture, featuring a higher neuron count, thus an increased computational cost. To
overcome this issue, while retaining a high level of accuracy, the dataset has been split
in two parts, i.e., ρ ≤ 10 kgm−3, ρ > 10 kgm−3, and a different MLP model has been
trained over each portion of the dataset. On the other hand, the labels do not show large
discontinuities across the saturation curve. As a consequence, training a MLP model
over a dataset comprising both the single and the two-phase region should not involve
additional complexity. Nevertheless, the development of data-driven EoS models for
thermodynamic processes within the two-phase region is out of the scope of the present
work.

As outcome of a sensitivity analysis, a dataset comprising 250k samples for each
portion of the thermodynamic plane, i.e., ρ ≤ 10 kgm−3, ρ > 10 kgm−3, has
been selected as optimal trade-off between prediction accuracy and computational cost
associated to training. To improve the performance of the MLP model, input features
normalization and logarithmic transformation of the labels characterized by a highly
skewed distribution, i.e., ∂s/∂ρ and ∂2s/∂ρ2, has been applied prior to training. Upon
pre-processing, the dataset has been split into training, development, and test sets,
counting 450k, 25k, and 25k samples, respectively.
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In order to enhance the performance of the MLP models, a search for the optimal
set of hyper-parameters was conducted by resorting to the latin-hypercube sampling,
featuring 100 samples for each portion of the dataset. The design space comprises:
the number of layers L, the number of neurons per layer n[l], the activation function,
the learning rate α, and the mini-batch size. The performance of the different MLP
architectures is measured in terms of computational cost at evaluation time C(Θ) and
accuracy, i.e., loss L(Θ) = 1

n

∑n
i=1(ŷi − yi)2 evaluated on the development set at the

last epoch of training. The results are shown in Fig. 2. In the figures, the three different
MLP architectures used for the CFD simulations are highlighted. The code used to train,
test, and optimize the MLP architectures can be downloaded at1.

Fig. 2. Computational cost at evaluation time vs. loss evaluated on the development set for
the MLP architectures selected for the hyper-parameters search. The results obtained for ρ ≤
10 kgm−3 are shown on the left, while the performance of the MLPs trained over the portion of
the dataset featuring ρ > 10 kgm−3 are displayed on the right. The colored points highlight the
MLP models selected for the CFD simulations.

Table 1. Set of hyper-parameters associated to the MLP architectures selected for the CFD anal-
ysis. For each hyper-parameter, the first entry corresponds to the model trained on the ρ ≤
10 kgm−3 dataset, whereas the second entry refers to the model trained on the ρ > 10 kgm−3

dataset.

Label L n[1] n[2] n[3] α Activation Mini-batch size

MLP optimal 2–2 90–19 16–51 0–0 10−3.111–10−4.019 swish - tanh 128–32

MLP min(C(Θ)) 2–2 58–49 20–44 0–0 10−4.737–10−3.359 tanh - selu 32–512

MLP min(L(Θ)) 3–3 90–29 50–70 9–66 10−4.072–10−3.844 sigmoid - gelu 32–16

3 Results

The computational performance of the MLP model was evaluated against direct calls
to the MEoS implemented in [13]. The computational cost associated to the evaluation

1 https://github.com/Propulsion-Power-TU-Delft/Deep.

https://github.com/Propulsion-Power-TU-Delft/Deep
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of the thermodynamic state of siloxane MM on 250k samples of density and internal
energy was measured for both the MLP model and the low-level C++ interface of Cool-
Prop [3]. With reference to Fig. 2 and Table 1, the MLP architecture selected for this
analysis was the MLP optimal. The benchmark has been performed on a workstation
equipped with an 11th Gen Intel(R) Core(TM) i7-11700KF processor, featuring 8 cores
and 16 threads, 32 GB of RAM, and a clock speed of 3.60 GHz. The evaluation of the
entire dataset required 3.992 × 103 ms for the MLP, and 1.125 × 103 ms when resort-
ing to the low-level interface of CoolProp. In other words, the data-driven model is
approximately 2.8 times faster than the low-level interface of CoolProp.

3.1 CFD Analysis

In order to further assess the accuracy and the performance of the data-driven thermo-
dynamic model, inviscid simulations of the supersonic flow within a planar De-Laval
nozzle have been carried out. The converging-diverging nozzle has been designed to
operate with siloxane MM as working fluid, at inlet conditions close to the critical point.
At the inlet boundary, the total pressure and temperature have been set to 18.423 bar
and 525 K, respectively. At the outlet boundary, a back-pressure equal to 10 bar has been
prescribed, such to obtain a normal shock-wave in the diverging section of the nozzle.
The computational domain, featuring 108k triangular elements, has been created with
the unstructured mesh generator Gmsh [9]. To improve the resolution at the shock front
and the convergence rate, local mesh refinement has been applied, by reducing the local
cell size by a factor of 3. All simulations have been performed in two steps:

1. A maximum of 10k iterations using the ROE upwind scheme, featuring first-order
spatial accuracy, and a Courant-Friedrichs-Lewy number (CFL) equal to 5;

2. A maximum of 30k iterations using the central scheme JST, featuring second and
fourth order polynomial coefficients equal to 0.5 and 0.02, respectively, and a unitary
CFL number.

Two different thermodynamic models have been used to verify the results obtained
with the data-driven EoS: i) the polytropic Peng-Robinson (PPR) cubic EoS imple-
mented in SU2; ii) an unstructured LuT method [20], resorting to a grid of about 250k
thermodynamic state points, computed with the MEoS implemented in [13]. Figure 3
shows the contour of the Mach number obtained with the optimal MLP architecture,
alongside with the relative percentage deviation computed with respect to the solution
obtained with the LuT method. The maximum and minimum relative deviations are
located at the shock-wave front, and are in the order of 5%, whereas the average rela-
tive deviations computed for the Mach, density, and pressure fields are 0.47%, 0.05%,
and 0.03%, respectively. To further assess the discrepancy between the flow solutions
computed with the different thermodynamic models, the Mach number at the nozzle
center-line is displayed in Fig. 4. The excellent agreement between the Mach trend
obtained with the MLP, the PPR and the LuT methods corroborate the validity of the
novel data-driven thermodynamic model.

The ultimate goal of this study is to assess the suitability of data-driven ther-
modynamic models for massively parallel CFD calculations, both in terms of mem-
ory requirements and computational cost. To this purpose, the memory usage and
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Fig. 3. Nozzle flow field. Upper half: Mach
contours obtained with the optimal MLP
architecture; Lower half: Mach number rela-
tive percentage deviation with respect to the
LuT solution.

Fig. 4. Comparison of the Mach number
trends computed along the nozzle center-line.
The nozzle geometry is displayed in grey.

Table 2. Overview of the memory usage and the time/iteration obtained with the different fluid
models.

Label Memory [GB] Time/Iteration [s]

LuT 9.0 2.754e−2

PPR 0.4 1.767e−2

MLP optimal 0.4 1.513e−1

MLP min(C(Θ)) 0.4 1.882e−1

MLP min(L(Θ)) 0.4 8.491e−1

the time per iteration of the flow solver have been recorded for each of the method
described above. The benchmark provided in Table 2 has been conducted on a worksta-
tion equipped with an Intel(R) Xeon(R) Gold 5220R, featuring 24 cores, 48 threads, 256
GB of RAM, and a base and maximum clock speed of 2.2 and 4.0 GHz, respectively.
The comparison shows a remarkable difference in terms of memory usage, with the
data-driven model being comparable to the simpler cubic EoS, while the LuT method
requires about 22.5 times more RAM. In terms of computational cost, the fastest of the
MLP models is 5.5 times slower than the LuT method, and more than 8.5 times slower
than the PPR. According to Fig. 2, the architecture labelled as MLP min(C(Θ)) should
have provided the lowest computational cost. However, the model labelled as MLP opti-
mal has been found to be the least computational intensive, when integrated within the
flow solver. This discrepancy can be attributed to the sub-optimal implementation of
the MLP model within SU2, as compared to the one featured in the state-of-the-art plat-
form for machine learning that has been used to create such models, i.e., TensorFlow.
The optimization of the MLP implementation within SU2 will be the objective of future
research, with the purpose of reducing the computational overhead as compared to the
LuT method.
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The CFD simulations performed in this study have been run for a fixed number of
iterations, so as to compare the convergence history obtained with the different fluid
models. The normalized RMS values of the density and energy residuals is displayed in
Fig. 5 for the optimal MLP, LuT and PPR test cases. When focusing on the initial 10k
iterations, corresponding to the 1st order simulations, one can notice that the density
residual of the PPR case drops by 5 orders of magnitude, whereas the decrease is lim-
ited to 3 orders of magnitude for the LuT and the MLP models. On the other hand, the
trend of the energy residual is comparable for all the investigated fluid models. When
examining the convergence history of the 2nd order simulations, i.e., the following 30k
iterations, the LuT test case shows a reduction of the normalized residuals of 1.5 orders
of magnitude, followed by an oscillatory trend. Conversely, both the PPR and the MLP
cases are characterized by a smooth trend of the residuals. Such behavior is expected,
since both fluid models are based on a continuous mathematical function, which does
not involve any interpolation. As a result, the higher computational overhead associ-
ated with the MLP model can be partially compensated by its superior convergence
properties, as compared to LuT methods.

Fig. 5. Normalized density and energy residuals for the 1st and 2nd order simulations performed
with the three investigated fluid models. The case featuring the PPR EoS reached the lowest
absolute density residual.

4 Conclusions and Future Works

The research documented in this paper demonstrated that data-driven equations of state
models based on the entropy potential are a valid alternative over look-up table (LuT)
methods for non-ideal compressible flow simulations. Different artificial neural net-
works of the type of multi-layer perceptron (MLP) have been generated to compute
the thermodynamic properties of siloxane MM in the vapor and supercritical region.
The data-driven models have been implemented in the open-source SU2 software to
perform a simulation of a shock-induced non-ideal flow within a planar converging-
diverging nozzle. Comparisons between simulation results obtained with the MLP and
with the LuT and a polytropic Peng-Robinson model have been made in terms of
accuracy and computational performance. Results computed with MLP and LuT are
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in excellent quantitative agreement, but the CFD simulations carried out with the LuT
are approximately 5 times faster than those run with the MLP. Conversely, the use of
the MLP is 20 times less memory intensive, and shows better convergence properties.
Future work will target the optimization of the MLP implementation within the flow
solver of SU2 for massively parallel computations of non-ideal compressible flows in
turbomachinery applications.
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