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Non‑affinity in multi‑material 
mechanical metamaterials
M. J. Mirzaali1*, H. Pahlavani1, E. Yarali2 & A. A. Zadpoor1

Non‑affine deformations enable mechanical metamaterials to achieve their unusual properties while 
imposing implications for their structural integrity. The presence of multiple phases with different 
mechanical properties results in additional non‑affinity of the deformations, a phenomenon that has 
never been studied before in the area of extremal mechanical metamaterials. Here, we studied the 
degree of non‑affinity, Ŵ , resulting from the random substitution of a fraction of the struts,ρ

h
 , that 

make up a lattice structure and are printed using a soft material (elastic modulus = E
s
 ) by those printed 

using a hard material ( E
h
 ). Depending on the unit cell angle (i.e., θ = 60°, 90°, or 120°), the lattice 

structures exhibited negative, near‑zero, or positive values of the Poisson’s ratio, respectively. We 
found that the auxetic structures exhibit the highest levels of non‑affinity, followed by the structures 
with positive and near‑zero values of the Poisson’s ratio. We also observed an increase in Ŵ with Eh

E
s

 and 
ρ
h
 until Eh

E
s

 =104 and ρ
h
 = 75%‑90% after which Ŵ saturated. The dependency of Ŵ upon ρ

h
 was therefore 

found to be highly asymmetric. The positive and negative values of the Poisson’s ratio were strongly 
correlated with Ŵ . Interestingly, achieving extremely high or extremely low values of the Poisson’s 
ratio required highly affine deformations. In conclusion, our results clearly show the importance of 
considering non‑affinity when trying to achieve a specific set of mechanical properties and underscore 
the structural integrity implications in multi‑material mechanical metamaterials.

A simple mechanical load (e.g., uniaxial compression, tension, or shear) applied to a geometrically simple (e.g., 
square-shaped) piece of what is traditionally considered a material (e.g., metals, polymers) leads to a simple 
deformation that is highly predictable at large enough length scales and is homogeneously distributed within the 
material. Such a homogenous deformation is formally called an ‘affine’ deformation and can be fully described 
using an affine transformation (i.e., a linear transformation plus a rigid body translation) applied to the coordi-
nates of the points constituting the  material1,2.

All this simplicity, predictability, and homogeneity may be lost when a simple mechanical load is applied to 
an architected material. Architected  materials3, which are sometimes referred to as mechanical  metamaterials4–6, 
possess complex small-scale geometries that are engineered to give rise to unusual mechanical properties at the 
macroscale. In a way, the whole point of rationally  designing7 the small-scale geometry of architected materials, 
may be to break the affinity of the deformations in an exact way so as to achieve unusual macroscale proper-
ties. Non-affine deformations can, for example, be exploited to achieve negative values of the Poisson’s  ratio8,9, 
action-at-a-distance actuation  behaviors10, and independent tailoring of the elastic  properties11. Some other 
functionalities of mechanical metamaterials such as shape  morphing12,13 are ‘per definition’ dependent on the 
non-affinity of the induced deformation. Non-affine deformations can also be observed in other systems. For 
example, random  networks14–17 that are found in biological systems such as the filamentous proteins that make 
up the cytoskeleton and extracellular  matrix18–22, as well as flexible polymer  networks23 and polymer  hydrogels24 
exhibit highly non-affine deformations.

From the structural integrity viewpoint, however, non-affine deformations could be troublesome, as they may 
give rise to stress concentrations and, thus, decreased fatigue lives and premature failures. It is, therefore, crucial 
to understand the non-affinity of deformations in architected materials because both advanced functionalities and 
structural performance of these materials are dependent on the proper management of non-affine deformations. 
Even though non-affine deformations can be studied at different length  scales15,25–27, the most relevant scale in 
the case of mechanical metamaterials is the length scale of the constituting structural elements (i.e., struts)28. 
We will, therefore, be focusing on this length scale.
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Non-affine deformation can be characterized in terms of a degree of non-affinity ( Ŵ ) or non-affine correlation 
 functions14,29,30. The degree of non-affinity is a scalar parameter that depends on the length  scale31 and applied 
 strain15,19,21. There are also other metrics of non-affinity that are based on strain  energy15,19,31,32 or a comparison 
of the local deformations with affine  deformations14,29,30,33–39.

The degree of non-affinity is an important determinant of the inhomogeneous deformation of metamateri-
als. However, its relationship with the elastic properties (e.g., elastic modulus and Poisson’s ratio) of mechanical 
metamaterials remains elusive. Recent advances in multi-material additive manufacturing (also called 3D print-
ing) techniques have enabled the fabrication of ‘multi-material’ mechanical  metamaterials40–42 whose unusual 
properties and advanced functionalities are as much dependent on the spatial distribution of multiple phases with 
different mechanical properties as they are on the small-scale geometrical design of the constituting unit cells. 
Essentially, the complex distributions of the multiple phases are alternative ways of creating non-affine deforma-
tions so as to expand the range of achievable macroscale  properties41. From the structural integrity viewpoint, 
the presence of multiple phases with highly different mechanical properties creates stress concentrations that 
underscore the importance of studying the non-affinity of the deformations even more. However, non-affine 
deformations in multi-material mechanical metamaterials have never been studied before.

Here, using computational models and experimental tests, we studied the non-affinity of the deformations 
taking place in a special class of multi-material mechanical metamaterials that are made from two distinct phases, 
namely a hard phase and a soft phase. We aimed to separate the non-affinity caused by the presence of multiple 
materials from that of geometrical design.

For this purpose, the degree of non-affinity was determined by comparing the deformations taking place in 
the multi-material mechanical metamaterials (i.e., heterogeneous structures) with those of reference materials 
with monolithic properties (i.e., homogeneous structures) using computational models. The properties of the 
homogeneous structure equivalent to each heterogeneous structure were calculated using the rule-of-mixture, 
the properties of the soft and hard phases, and their ratios. Moreover, three different structures with cell angles 
of 60o , 90o , and 120o and with different mechanical properties were fabricated using an advanced multi-material 
3D printing technique. Finally, the elastic properties of multi-material mechanical metamaterials and the degree 
of non-affinity were quantified and discussed in both quantitive and qualitative terms.

Materials and method
We used already existing geometrical  designs8,43 to create our mechanical metamaterials. The specimens were 
fabricated based on three types of unit cells with negative ( θ = 60◦ ), near-zero ( θ = 90◦ ), and positive ( θ = 120◦ ) 
values of the Poisson’s ratio (Fig. 1a). The dimensions of the unit cells ( w, c) and the overall dimensions of the 
structures ( W ,C) were kept constant in all designs. The angle ( θ ) changed the height ( h ) and length ( l  ) of the 
unit cells. Similar in-plane ( t  ) and out-of-plane ( T ) thicknesses were considered for the unit cells with different 
angles. The design parameters are listed in Table S1 (supplementary document).

The geometry of each lattice structures was created in Matlab (R2017b) and was then used as an input file 
for numerical simulations in a nonlinear finite element solver (Abaqus Standard 6. 14). We used the linear 
Timoshenko beam elements (B21) with a rectangular cross-section because these elements can capture axial 
deformations, bending, and shear. We assumed a plane stress condition in our computational models. The consti-
tutive behavior of the soft phase was described using a hyperelastic material model (Neo-Hookean, C10 = 0.106 
MPa, D1 = 0.03  MPa−1). We also used a hyperelastic material model for the hard phase and adjusted the param-
eters of the model correspondingly. For example, for the hard phase with 100 times stiffer elastic properties the 
Neo-Hookean material parameters were adjusted assuming the following parameters: 100× C10 = 10.6 MPa, 
D1

100
= 0.0003  MPa−1.
The multi-material lattice structures were created by considering multiple levels of the elastic modulus of the 

hard phase, Eh , to that of the soft phase, Es (i.e., EhEs  =  101,  102,103). To spatially distribute the hard phase in the lat-
tice structures, we chose three levels of the ratio of the volume of the hard phase (i.e., ρh = 25%, 50%, and 75%). 
A random process was then used to assign the hard phase to randomly select struts of the unit cells constituting 
the lattice structures. First, a vector containing the random permutation of numbers from 1 to the total number 
of struts of the structure was generated. Then, a percentage of the first elements of the vector, equaling ρh , were 
selected. The selected elements specified to which struts the hard phase was to be assigned.

For the special case of EhEs = 1000 , we extended our simulations by considering a wider range of ρh values 
(i.e., ρh = 1%, 5%, 25%, 50%, 75%, 90%, 95%, and 99%). We also performed further numerical simulations for 
Eh
Es

 values of  104,  105, and  106, while keeping ρh constant at 50%. For every above-mentioned combination of the 
design parameters, we performed 1,000 simulations, resulting in a total of 51,000 simulations. This means that, 
for each batch of 1,000 simulations, the geometry, ρh and EhEs  were kept constant among the specimens while the 
distribution of the hard phase within the structure was modified.

A uniaxial displacement-controlled stretch test in the direction 2 (Fig. 1a) was simulated in all models. Two 
reference points were defined on the right and left sides of the lattice structure, which were kinematically cou-
pled with the corresponding nodes of the structure (Figure S3 of the supplementary document). A displacement 
boundary condition (corresponding to 10% strain) was applied to one reference point, while constraining all the 
degrees of freedom of the other reference point (Figure S3 of the supplementary document).

The normal stress, σ =
F
A , was defined as the ratio of the reaction force, F , to the initial cross-section area, 

A = C × T . The longitudinal strain, ε22 = δW
W  , was calculated as the ratio of the displacement along the direc-

tion 2, δW , to the initial length of the structure in that direction, W . The elastic modulus, E , was computed as 
the instantaneous slope of the stress–strain curve. The Poisson’s ratio was calculated as ν = −

ε11
ε22

 , where ε11 is 
the lateral strain measured by the average of the displacements taking place in the direction 1 ( Ui1 ) with respect 
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to the transverse length of the structure ( C = n× c ) (i.e., ε11 =
∑n

i=1 Ui1

C  , where n is the total number of nodes 
at the lateral side of the structure along the direction 1).

The degree of non-affinity was defined  as29,31 Ŵ =
1

ε22
2N

∑N
i=1(u

non−affine
i − u

affine
i )

2

 where N is the total num-
ber of nodes in the structure, unon−affine

i  is the local displacement of the ith node of the multi-material structure, 
and uaffine

i  is the corresponding displacement of the ith node of a corresponding single-material lattice structure 
(Fig. 1d). The elastic modulus of that single material was determined as the rule-of-mixture combination of the 
elastic moduli of the phases constituting the corresponding multi-material lattice structure (i.e., E′

=
ρh×Eh+ρs×Es

ρh+ρs).
For our experimental study, we selected three representative cases for each angle of the unit cells. We manu-

ally segmented their geometry in Solidworks to create different hard and soft phases, which were later converted 
into STL (standard tessellation language) files. The STL files were then inputted into a multi-material 3D printer 
(Object500 Connex3, Stratasys), which works on the basis of material jetting (the Polyjet technology) and were 
directly 3D printed using commercially available materials, namely VeroCyan (hard phase, RGD841, shore hard-
ness (D) = 83–86) and Agilus30 Black (soft phase, FLX985, shore hardness (A) = 30–35) (Fig. 1c). The Young’s 
modulus of the hard and soft phases were respectively 726.36 ± 59.77 MPa and 0.60 ± 0.05  MPa44,45. The selec-
tion of the materials was made to achieve EhEs ≈ 1000 (see Fig. 1 and Table S2 of the supplementary document 
for more information). To attach the specimens to the mechanical testing machine, a gripping system and pins 
were designed and additively manufactured using a fused deposition modeling (FDM) 3D printer (Ultimaker 
2 + , Geldermalsen, The Netherlands) from polylactic acid (PLA) filaments (MakerPoint PLA 750 gr Natural). 
Monotonic uniaxial tensile tests were performed under displacement control (stroke rate = 2 mm/min) using 
a LLOYD instrument (LR5K, load cell = 100 N) mechanical testbench. The time, force, and displacement were 
recorded at a sampling rate of 20 Hz. The stress and strain were obtained correspondingly by dividing the force 
to the initial cross-section area and dividing the displacement to the initial free length of the specimens. The 
stiffness of the structure was measured from the stiffest slope of the stress–strain curve. Using a digital camera, 
the deformations of the specimens were captured, which were then used to calculate the Poisson’s ratio. We 
manually positioned a couple of points at the borders of the specimens in the digital images. We manually posi-
tioned 20 points around the periphery of the specimens captured in the digital images. We developed a Matlab 
code to trace the movement of individual points in those images. The Poisson’s ratio was calculated based on the 
changes in the coordinates of those points during the deformation.We repeated the mechanical tests for each 
specimen three times.

Results and discussion
A wide range of the elastic moduli (i.e., 0.1–10 MPa) and Poisson’s ratios (i.e., − 1.6 to 1.4) could be obtained 
using the multi-material design approach followed in the current study (Fig. 1b). The duos of the elastic modulus 
and Poisson’s ratio (at 1% strain) corresponding to the auxetic (i.e., θ = 60◦ ) and honeycomb (i.e., θ = 120◦ ) 
structures approached the values resulting from the orthogonal unit cells (i.e., θ = 90◦ ) as ρh increased (Fig. 1b). 
A similar trend was observed for the higher values of the applied strain (i.e., 10%) (Fig. 1b).

The deformation patterns and the elastic properties predicted using our numerical simulations agreed with 
the experimentally observed deformation patterns and experimentally determined values of the elastic modulus 
and Poisson’s ratio (Fig. 1c, and Table S2 in the supplementary document). The small differences between the 
numerical and experimental results could be due to the imperfections induced during the manufacturing process 
as well as the pre-stretching of the soft ligaments when attaching the specimens to the clamps. We also performed 
a mesh sensitivity analysis for the models shown in Fig. 1c. Each strut in our reference computational models 
consisted of one element. For the mesh sensitivity analysis, we doubled the number of elements per strut. Then, 
we compared the values of elastic modulus and Poisson’s ratio obtained from the models with finer mesh and 
reference models. That comparison resulted in less than 3% difference. We also used higher-order 2D elements 
(B22) in our computational models. That resulted in less than 4% difference in the values of the elastic modulus 
and Poisson’s ratios as compared to our reference model.

A number of unit cells showed very clear non-affine deformations as compared to geometrically identical 
lattice structures made from a single material (Fig. 1c, right side). Similar non-affine deformations were observed 
in our experiments and captured by our simulations (Fig. 1c-d).

For the same values of ρh and EhEs  , the auxetic structures (i.e., θ = 60◦ ) always showed the maximum mean 
values of Ŵ , which were up to several times higher than those corresponding to the honeycomb (i.e., θ = 120◦ ) 
and orthogonal (i.e., θ = 90◦ ) lattice structures (Fig. 2a, Table S3 and Figure S1a of the supplementary document). 
Except for the case where the hard phase was not much stiffer than the soft phase (i.e., EhEs = 10 ), the honeycomb 
lattice structures exhibited a higher degree of non-affinity as compared to the orthogonal ones (Fig. 2a, Table S3 
and Figure S1a of the supplementary document). There were significant overlaps between the range of the Ŵ values 
found for the lattice structures with different values of ρh (Fig. 2b, Table S4 and Figure S1b of the supplementary 
document). This observation suggests that the degree of non-affinity is more dependent on how the hard phase 
is distributed in the lattice than on the amount of the hard phase (Fig. 2b, Table S4 and Figure S1b of the supple-
mentary document). Inspecting the deformations exhibited by the different types of the lattice structures clearly 
showed that those based on the re-entrant unit cell were more susceptible to the inhomogeneous deformations 
that result from the presence of high-stiffness struts (Fig. 2c). This is expected given the fact that the deforma-
tion of the re-entrant unit cell is dominated by the high stresses concentrated around its sharp corners, whereas 
stresses are generally more homogeneously distributed in the honeycomb and particularly orthogonal unit cells 
where the stress gradients within one single unit cell are relatively low (see Figure S4 of the supplementary docu-
ment). Moreover, performing thousands of simulations with the random distribution of the hard phase within 
the lattice structure allows for determining the envelope within which the degree of non-affinity could change 
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for a given value of ρh . Therefore, this envelope shows the possible range within which degree of non-affinity 
can change by the different spatial distribution of the hard phases in the lattices.

The degree of non-affinity initially increased with EhEs   regardless of the type of the unit cell until EhEs  =104 after 
which it saturated (Fig. 3a-top). A hard phase with a higher stiffness value disrupts the stress flow to a greater 
extent than a hard phase with a lower level of stiffness which explains the initial increasing trend. For large 
enough values of EhEs  , however, the hard phase is so much stiffer than the soft phase that it practically behaves as a 
rigid material. Therefore, a further increase in Eh does not noticeably affect the stress flow in the lattice structure 
and eventually, the degree of non-affinity saturates. In other words, up to a certain value of EhEs  , the deformation 
experienced by heterogeneous structures increasingly deviates from the one experienced by equivalent homo-
geneous structures.

The degree of non-affinity increased with ρh until a maximum value was reached for ρh = 75%− 90% 
(Fig. 3b-top). For the larger values of ρh , the degree of non-affinity is decreased such that it reaches Ŵ = 0 for 
ρh = 100% (i.e., a monolithically hard material), (Fig. 3b-top). The maximum value of Ŵ occurred around the 
same ρh value regardless of the type of the unit cell and the level of the applied strain (Fig. 3b-top). The same 
general trends were also valid for the higher levels of applied strain (e.g., 10%) (Fig. 3b-bottom). The plot of 
Ŵ vs. ρh was therefore highly asymmetric in all cases considered here (Fig. 3b). The initial increase in Ŵ as ρh 
increased is expected given that a higher ρh value translates into a larger number of highly stiff struts that block 
the deformation of their surrounding low-stiffness struts. Moreover, the high stiffness struts can more effectively 
affect the stress flow in the lattice structures made from mostly low stiffness struts than the other way around. 
This explains the asymmetry in the plot of Ŵ vs. ρh.

For both auxetic and honeycomb unit cells, there was a very clear (power-law) relationship between the Pois-
son’s ratio and the degree of non-affinity of the lattice structures (Figure S2 of the supplementary document). 
In general, the degree of non-affinity was up to 2 orders of magnitude lower for the lattice structures with the 
extreme absolute values of the Poisson’s ratio (Fig. 4a-left). This relationship was even stronger (i.e., less scatter 
around the power-law trend line) for the higher levels of applied strain (Fig. 4a-right, and Figure S2 of the sup-
plementary document). No such relationship was, however, observed for the lattice structures with near-zero 
Poisson’s ratios (i.e., θ = 90◦ ) (Fig. 4a). These observations explain that achieving highly negative and highly 
positive values of the Poisson’s ratio requires that all or most of the struts contribute towards the targeted type 
of deformation. A homogenous (i.e., highly affine) distribution of the deformations among the different unit 
cells of the lattice structure is particularly efficient in achieving large lateral deformations that are needed for 
large absolute values of the Poisson’s ratio. That is because similar deformations exhibited by all unit cells add 
up instead of (partially) canceling each other out (Fig. 4c).

The relationship between the elastic modulus and the degree of non-affinity was less clear (Fig. 4b). For each 
type of the unit cells, the degree of non-affinity was generally higher for the stiffer lattice structures (Fig. 4b). 
This, however, attributes to the fact that a higher value of ρh both increases the degree of non-affinity and the 
stiffness of the lattice structure.

In the present study, we excluded the geometrical and topological complexities that are relevant for the design 
of mechanical metamaterials. Those parameters have shown to influence the degree of non-affinity33. In addi-
tion, we used a limited number of unit cells (i.e., 10 × 10) to minimize the effects of boundary conditions on our 
computational models. We believe increasing the number of unit cells will not change the trend of non-affinity 
that we found here. However, the effects of geometrical and topological parameters on non-affinity need to be 
further studied.

Conclusion
We studied here, for the first time in the area of extremal mechanical metamaterials, the non-affinity of the defor-
mations experienced by multi-material mechanical metamaterials with random distributions of a hard phase 
within a lattice structure made of a soft material. We isolated the effects of multi-material design from those of 
geometry by comparing the deformation observed in our lattice structures with those of geometrically identical 
lattice structures that were made from one single material. Our results clearly show that a multi-material design 
approach could lead to both a wide range of elastic properties and a wide range of non-affine deformations. We 
found that the degree of non-affinity is strongly correlated with the design parameters including θ , ρh , and EhEs  . In 
addition, the degree of non-affinity is highly correlated to the mechanical properties particularly the Poisson’s 
ratio. Interestingly, achieving extremely high levels of auxeticity (or highly positive Poisson’s ratios) seems to 
require highly affine deformations in multi-material mechanical metamaterials. On the other hand, achieving 
high values of the elastic modulus with multi-material mechanical metamaterials is associated with high levels 

Figure 1.  The three types of unit cells used in this study that represent negative (re-entrant, θ = 60◦ ), near-
zero (orthogonal, θ = 90◦ ), and positive (honeycomb, θ = 120◦ ) values of the Poisson’s ratio (a). The other 
geometrical parameters of the lattice structures are presented in Table S1 of the supplementary document. The 
duos of the elastic modulus and Poisson’s ratio calculated from the numerical simulations at two levels of the 
applied strain (i.e., 1% and 10%) (b). The multi-material 3D printed specimens were mechanically tested under 
tensile loading and were compared with the finite element simulations (c). The quantitative data pertaining to 
this comparison are presented in Table S2 of the supplementary document. For the specimen with θ = 60◦ , the 
applied strain was 10%, while it was 7% for the specimens with θ = 90◦, 120◦ . The insets in subfigure (c) show 
the maximum strain distribution. Subfigure (c) shows the deformation of a homogenous lattice with an elastic 
modulus equal to the rule-of-mixture combination of the elastic moduli of the hard and soft phases. |ui| in (d) 
stands for the difference between the deformation of the ith node of a homogeneous lattice structure and the 
deformation of the exact same node in a multi-material specimen.

▸
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Figure 2.  The Gaussian (solid lines) and gamma distributions (dashed lines) describing the change in the 
degree of non-affinity as functions of Eh

Es
 with pooled data (i.e., ρh = 25%, 50% and 75%) (a) and ρh with pooled 

data ( Eh
Es

= 10, 100, and 1,000) (b). The parameters of these distributions are listed in Table S3 and S4 of the 
supplementary document. The degree of non-affinity for the representative cases shown in (c) is equal to the 
mean value of the corresponding group with Eh

Es
= 1000 at 10% strain. The design parameters for each of the 

specimens presented in (c) are listed in Table S5 of the suppelementary document. The color bars in subfigure 
(c) show the maximum strain distribution in %.
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of non-affine deformations. This is a new type of incompatibility between the very high values of the elastic 
modulus and very high absolute values of the Poisson’s ratio. It is important to realize that this incompatibility is 
different from the other types of such incompatibilities observed in the past (e.g.,  see46), as this incompatibility 
pertains to the spatial distribution of the mechanical properties within the lattice structure and not to the geo-
metrical design of the unit cells (i.e., bending-dominated vs. stretch-dominated unit cells). The high levels of 
non-affinity observed here for multi-material mechanical metamaterials are expected to have clear implications 
for the structural integrity of the lattice structures. That is due to the high level of stress concentrations that are 
created as a result of such non-affine deformations. The high-stress concentration zones could accelerate crack 
initiation and propagation and ultimately lead to premature structural failure. The use of functional gradients 
may, therefore, be required to mitigate the structural effects of non-affine deformations.

Figure 3.  (a) The changes in the degree of non-affinity for different values of  Eh
Es

 and for the three different 
types of the unit cell geometries (i.e., θ = 60◦, 90◦, 120◦ ) but the same value of ρh = 50%. (b) The change in 
the degree of non-affinity for different hard volume fractions and for three types of unit cell geometries (i.e., 
θ = 60◦, 90◦, 120◦ with Eh

Es
= 1000).
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Figure 4.  The changes in the degree of non-affinity as functions of the Poisson’s ratio (a) and the elastic 
modulus (b) at two levels of the applied strain (1% and 10%). A selected number of cases are depicted in (c), 
representing the lattice structures with the minimum and maximum values of Ŵ with Eh

Es
= 1000 . The design 

parameters for each of the specimens presented in (c) are listed in Table S6 of the supplementary document. The 
color bars in subfigure (c) show the maximum strain distribution in %.
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