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0. Introduction

A graph product of groups, first introduced in [32], is a group theoretic construction 
that generalizes both free products and Cartesian products of groups. It associates to a 
simplicial graph with discrete groups as vertices a new group by taking the free product 
of the vertex groups, with added relations depending on the graph. The construction 
preserves many important group theoretical properties (see [2], [3], [13], [17], [18], [19], 
[32], [34], [44]) and covers for instance right-angled Coxeter groups and right-angled 
Artin groups.

In [14] Fima and the first-named author explored the operator algebraic counterpart 
of graph products and developed the theory of reduced and universal graph products of 
C∗-algebras as well as graph products of von Neumann algebras and quantum groups. 
The construction generalizes operator algebraic free products and - just as for groups 
- preserves properties like exactness for reduced graph products of C∗-algebras and the 
Haagerup property for von Neumann algebras. Important examples of graph products 
are right-angled Hecke algebras (see below), special cases of mixed q-Gaussian algebras 
[8] as well as several group C∗-algebras that have been studied in the literature, see in 
particular [28] and Section 5.4. In a different direction, C∗-algebras associated to graph 
products of groups with distinguished positive cones were studied in [21].

In this paper we prove a Khintchine inequality for general C∗-algebraic graph prod-
ucts. These are inequalities which estimate the operator norm of a reduced operator of 
a given length with the norm of certain Haagerup tensor products of column and row 
Hilbert spaces. In the case of free groups and words of length 1 these inequalities go back 
to Haagerup’s fundamental paper [33]. In the case of general free products and arbitrary 
length a Khintchine type inequality has been proven by Ricard and Xu in [50, Section 
2]. In the current paper we obtain a Khintchine inequality for general graph products. 
We do this by introducing an intertwining technique between graph products and free 
products.

Theorem 0.1. Let Γ be a finite simplicial graph. Consider a graph product (A,ϕ) =
∗v,Γ (Av, ϕv) of unital C∗-algebras with GNS-faithful states ϕv. Denote by χd the word 
length projection of length d. Then for every d ∈ N≥1 there exists some operator space 
Xd and maps

jd: χd (A) → Xd, πd: Dom (πd) ⊆ Xd → χd (A) ,

with Dom (πd) = jd (χd (A)) such that the following statements hold:

(i) Xd is a direct sum of Haagerup tensor products of column and row Hilbert spaces 
and is defined in (2.14);

(ii) πd ◦ jd is the identity on χd (A);
(iii) ‖πd: Dom (πd) → A‖cb ≤ Cd for some (explicit) constant C, depending only on the 

graph Γ.
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In Theorem 0.1 the bound on πd in property (iii) should be regarded as the Khint-
chine inequality. Inequalities of this kind have a wide range of applications. We refer in 
particular to the weak amenability results by Ricard and Xu [50], the early connections 
to Coxeter groups by Bożejko and Speicher [8] and Nou’s result on non-injectivity of 
q-Gaussians [41]. The second half of this paper gives further applications in the case of 
(right-angled) Hecke C∗-algebras.

Hecke algebras are deformations of group algebras of a Coxeter group W depending 
on a multi-parameter q and have been studied since the 1950s. Their development played 
an important role in representation theory of algebraic groups (see e.g. [35], [5]). Hecke 
algebras naturally act on the Hilbert space �2 (W ) and thus complete to C∗-algebras 
(resp. von Neumann algebras) denoted by C∗

r,q (W ) (resp. Nq (W )) which carry a canon-
ical tracial state. In the case of spherical or affine Coxeter groups these operator algebras 
have been studied early in [39], [38], [36]. Much later, motivated by the study of weighted 
L2-cohomology of Coxeter groups, the study of general (non-affine) Hecke von Neumann 
algebras was initiated by Dymara in [26] (see also [22]). Other relevant references are 
[23], [31], [12], [15] and [45].

As observed in [12], Hecke C∗-algebras (resp. Hecke-von Neumann algebras) of right-
angled Coxeter systems (W,S) can be realized as graph products of finite-dimensional 
abelian C∗-algebras (resp. von Neumann algebras). Applying Theorem 0.1 we deduce a 
Haagerup inequality for right-angled Hecke algebras that generalizes Haagerup’s inequa-
lity for free groups, see [33] and [43, Section 9.6]. These are inequalities that estimate 
the operator norm of an operator of length d with the L2-norm up to some polynomial 
bound.

Theorem 0.2. Let (W,S) be a right-angled Coxeter group with finite generating set S. 
Then for every multi-parameter q and x ∈ χd

(
C∗

r,q (W )
)
, d ∈ N≥1 we have

‖x‖ ≤ Cd ‖x‖2

for some (explicit) constant depending only on q and the graph Γ.

The main motivation for the second part of this paper is the main result in [31] where 
it was shown that single parameter Hecke-von Neumann algebras of irreducible right-
angled Coxeter systems (W,S) with |S| ≥ 3 are factors, up to a 1-dimensional direct 
summand.

Theorem 0.3. ([31, Garncarek]) Let (W,S) be an irreducible right-angled Coxeter system 
with |S| ≥ 3. Then the single parameter Hecke-von Neumann algebra Nq (W ) is a factor 
if and only if q ∈

[
ρ, ρ−1] where ρ is the radius of convergence of the spherical growth 

series 
∑

w∈W z|w| of W . Moreover, for q outside this interval, Nq (W ) is a direct sum of 
a factor and C.
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We take this theorem as a motivation to study the simplicity and the uniqueness 
of the tracial state of (right-angled) Hecke C∗-algebras. By applying Theorem 0.2 in 
combination with an averaging argument inspired by [47] we are able to give some partial 
answers. Note that in the single parameter case q = 1 this has been done in [24] (see also 
[30] and [20]).

Theorem 0.4. Let (W,S) be an irreducible Coxeter system and q some multi-parameter.

(1) If (W,S) is of spherical or affine type, then C∗
r,q (W ) is not simple and does not have 

a unique tracial state for any choice of the parameter q;
(2) If (W,S) is of non-affine type and the multi-parameter (qεss )s∈S with

εs :=
{

+1, if qs ≤ 1
−1, if qs > 1

lies in the closure of the region of convergence of the multivariate growth series of 
W , then C∗

r,q (W ) is not simple and does not have unique tracial state;
(3) If (W,S) is right-angled with |S| ≥ 3, then there exists an open neighborhood U of 

the multi-parameter 1 ∈ RS
>0 such that C∗

r,q (W ) is simple for all q ∈ U .

In the case of free products of abelian Coxeter groups we further give a full answer to 
the simplicity question by making use of Dykema’s results [28] on the simplicity of free 
products of finite dimensional abelian C∗-algebras. If the Hecke C∗-algebra has a unique 
trace then these simplicity results imply factoriality of the Hecke-von Neumann algebra, 
see the Remarks 5.8 and 5.11. We thus extend the range of q for which factoriality of 
Nq(W ) holds. In particular we obtain first results in the multi-parameter case which gives 
a partial answer to Question 2 in [31]. In the case of free products of abelian Coxeter 
groups our answer fully settles this question.

In the final part of this paper, we prove that Hecke C∗-algebras are exact and charac-
terize their nuclearity in terms of the properties of the underlying group. In particular, 
we show the following.

Theorem 0.5. Let (W,S) be a Coxeter system and q some multi-parameter. Then 
C∗

r,q (W ) is exact. Further, C∗
r,q (W ) is nuclear if and only if (W, S) is of spherical or 

affine type.

Structure. In Section 1 we recall the general theory of graph products, Coxeter groups and 
introduce multi-parameter Hecke algebras (resp. their operator algebras). In Section 2
we obtain the Khintchine inequality from Theorem 0.1. The consequences of this will be 
collected in Section 3 where we reformulate this Khintchine inequality in the setting of 
right-angled Hecke C∗-algebras and deduce the Haagerup inequality from Theorem 0.2. 
Section 4 discusses isomorphism properties of Hecke algebras which are known to experts, 
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see for instance [39], [42]. In Section 5 we will then study the simplicity and the uniqueness 
of the tracial state of Hecke C∗-algebras. In the case of spherical and affine type Coxeter 
systems and for free products of abelian groups we give full answers, whereas in the case 
of irreducible right-angled Coxeter systems we give partial answers (see Theorem 0.4) 
by making use of the results in Section 3. Finally, Section 6 characterizes exactness 
and nuclearity of Hecke C∗-algebras (see Theorem 0.5) and we give (counter)examples 
regarding the isomorphism properties from Section 4.

Acknowledgments. The authors thank Erik Opdam and Maarten Solleveld for very useful 
communication on isomorphisms of Hecke algebras.

1. Preliminaries and notation

1.1. General notation

We use the notation N≥1 := {1, 2, . . .} and N≥0 := {0, 1, 2, . . .}. By Mk,l(C) we denote 
the k times l matrices and we let Mk(C) := Mk,k(C). We let Z2 be the group with two 
elements. We write δ(P) for the function that is 1 if a statement P is true and which is 
0 otherwise. We write B(H) for the bounded operators on a Hilbert space H.

For standard results on von Neumann algebras we refer to [51]. For a tracial von 
Neumann algebra (M, τ) with faithful τ we denote the norm induced by the tracial state 
by ‖x‖2 := τ(x∗x) 1

2 . The following lemma is standard and shall be used several times.

Lemma 1.1. Let A and B be unital C∗-algebras with respective faithful traces τA and τB. 
Let A0 ⊆ A and B0 ⊆ B be dense ∗-subalgebras of A and B and let π : A0 → B0 be a 
∗-isomorphism such that τB ◦ π = τA. Then π extends to a ∗-isomorphism A → B as 
well as πτA(A)′′ → πτB (B)′′ where πτA and πτB are the GNS-representations.

Proof. This is essentially [40, Theorem 5.1.4]. Without loss of generality we may assume 
that A and B are represented on their GNS-spaces L2(A, τA) and L2(B, τB) with cyclic 
vectors ΩA and ΩB. Then U : L2(A, τA) → L2(B, τB) : aΩA 
→ π(a)ΩB , a ∈ A0 is unitary 
and π(a) = UaU∗. Therefore π extends to a map A → B as well as A′′ → B′′. �

We use the symbol ⊗ for the reduced tensor product of C∗-algebras (through Take-
saki’s theorem [40, Section 6.4] also known as the spatial or minimal tensor product) 
and ⊗ for the tensor product of von Neumann algebras. We denote the Haagerup tensor 
product of operator spaces by ⊗h (see below).

1.2. Column and row Hilbert spaces

For the theory of operator spaces we refer to [29] and [43]. The column Hilbert space 
of dimension k will be denoted by Ck and the row Hilbert space of dimension k will be 
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denoted by Rk. Ck is the operator space spanned by the matrix units ei,0, i = 1, . . . , k
in Mk(C). Its operator space structure is the restriction of the operator space structure 
of Mk(C) as a C∗-algebra. Concretely,

‖
k∑

i=1
xi ⊗ ei,0‖Ml(C)⊗Ck

= ‖
k∑

i=1
x∗
i xi‖

1
2 , xi ∈ Ml(C), l ∈ N≥1.

Similarly, Rk is the operator space spanned by matrix units e0,i, i = 1, . . . , k in Mk(C)
and it inherits the operator space structure of Mk(C). We have,

‖
k∑

i=1
xi ⊗ e0,i‖Ml(C)⊗Rk

= ‖
k∑

i=1
xix

∗
i ‖

1
2 , xi ∈ Ml(C), l ∈ N≥1.

For the Haagerup tensor product of operator spaces we refer to [29, Section 9]. We 
shall mainly need the completely isometric identifications (see [29, Proposition 3.9.4 and 
3.9.5]) for k, l ∈ N≥1,

Ck ⊗h Cl � Ck+l, Rk ⊗h Rl � Rk+l, Ck ⊗h Rl � Mk,l(C).

1.3. Graphs

Let Γ be a simplicial graph with vertex set V Γ and edge set EΓ ⊆ V Γ ×V Γ. Simplicial 
means that Γ has no double edges and that (v, v) /∈ EΓ for any v ∈ V Γ. We will always 
assume that Γ is finite and undirected. For v ∈ V Γ we denote by Link (v) the set of all 
w ∈ V Γ such that (v, w) ∈ EΓ. For X ⊆ V Γ we shall write Link(X) := ∩v∈XLink(v) for 
the common link. Further, we define Link(∅) := V Γ (all points). We may view Link(X) as 
a subgraph of Γ by declaring the edge set of Link(X) to be {(v, w) ∈ Link(X) ×Link(X) |
(v, w) ∈ EΓ}, so that it inherits precisely the edges of Γ.

A clique in the graph Γ is a subgraph Γ0 ⊆ Γ in which every two vertices share an 
edge. We write Cliq or Cliq(Γ) for the set of cliques in Γ and Cliq(l) or Cliq(Γ, l) for the 
set of cliques with l vertices. We will always assume that the empty graph is in Cliq. 
Comm (Γ0) is the set of pairs (Γ1,Γ2) ∈ Link (Γ0) × Link (Γ0) such that Γ1, Γ2 ∈ Cliq
and Γ1 ∩ Γ2 = ∅.

In this paper a word refers to an expression v = v1v2 · · · vn with vi ∈ V Γ, i.e. a 
concatenation of elements in V Γ which we call the letters. Words will be denoted by 
bold face. We say that two words are shuffle equivalent (also known as II-equivalent) if 
they are in the same equivalence class of the equivalence relation generated by

• v1 · · · vi−1vivi+1vi+2 · · · vn ∼ v1 · · · vi−1vi+1vivi+2 · · · vn if (vi, vi+1) ∈ EΓ.

We say that two words are equivalent, denoted by the symbol �, if they are equivalent 
through shuffle equivalence and the additional relation:
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• v1 · · · vivi+1vi+2 · · · vn ∼ v1 · · · vivi+2 · · · vn if vi = vi+1.

A word v1 · · · vn is called reduced if whenever vi = vj , i < j then there is i < k < j such 
that (vi, vk), (vj , vk) /∈ EΓ. If v and w are reduced words and v � w then necessarily 
v and w are shuffle equivalent. For a word w we define its length |w| as the number of 
letters in the shortest representative of w up to equivalence. We say that a word v starts 
with v ∈ V Γ if it is equivalent to a reduced word vv1 · · · vn, vi ∈ V Γ. Similarly we say 
that a word v ends with v ∈ V Γ if it is equivalent to a reduced word v1 · · · vnv, vi ∈ V Γ.

1.4. Graph products of groups

As before let Γ be a simplicial graph. The following construction goes back to Green’s 
thesis [32]. For each v ∈ V Γ let Gv be a discrete group. Then the graph product group
∗v,ΓGv is the discrete group obtained from the free product of Gv, v ∈ V Γ by adding 
additional relations [s, t] = 1 for all s ∈ Gv, t ∈ Gw with (v, w) ∈ EΓ. Special (extremal) 
cases of graph products are free products (graph with no edges) and Cartesian products 
(complete graphs). Right-angled Coxeter and right-angled Artin groups are natural ex-
amples of graph products. A right-angled Coxeter group can be seen as a graph product 
where all groups Gv, v ∈ V Γ are equal to Z2. A right-angled Artin group is a graph 
product with Gv = Z, v ∈ V Γ.

1.5. Graph products of operator algebras

In [14] the concept of graph products has been translated to the operator algebraic 
setting. The construction is a generalization of free products by adding commutation 
relations depending on the underlying graph. We present a slightly different viewpoint 
of [14] by identifying Hilbert spaces up to shuffle equivalence. This makes the notation 
much shorter and yields the same construction.

Let Γ be a finite simplicial graph. For v ∈ V Γ let Av be a unital C∗-algebra. Let ϕv

be a GNS-faithful state on Av, meaning that the GNS-representation of ϕv is faithful. 
Set A◦

v as the space of a ∈ Av with ϕv(a) = 0. For a ∈ Av set

a◦ = a− ϕv(a)1 ∈ A◦
v.

Let L2(A◦
v, ϕv) be the closure of A◦

v in the GNS-space L2(Av, ϕv) of ϕv. We let Ωv ∈
L2(Av, ϕv) be the unit of Av. For a reduced word v = v1 · · · vn let

Hv = L2(A◦
v1
, ϕv1) ⊗ · · · ⊗ L2(A◦

vn , ϕvn).

We have the convention H∅ := CΩ where Ω is a unit vector called the vacuum vector. If 
v = v1 · · · vn and w = w1 · · ·wn are reduced equivalent (hence shuffle equivalent) words 
then Hv � Hw naturally by applying flip maps to the vectors dictated by the shuffle 
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equivalence. More precisely, by [14, Lemma 1.3] if v and w are equivalent reduced words, 
there exists a unique permutation σ of the numbers 1, . . . , n such that vσ(i) = wi and 
such that if i < j and vi = vj then also σ(i) < σ(j). Then there exists a unitary map 
Qv,w : Hv → Hw which sends ξ1 ⊗ · · · ⊗ ξn to ξσ(1) ⊗ · · · ⊗ ξσ(n). From now on, we 
will omit Qv,w in the notation and identify the spaces Hv and Hw through Qv,w. This 
significantly simplifies our notation compared to [14] and it is directly verifyable that 
our constructions below agree with [14].

Let I be a set of representatives of all reduced words modulo shuffle equivalence. 
Set H = ⊕v∈IHv. We represent each Av, v ∈ V Γ on H as follows. Take x ∈ Av. Take 
ξ1 ⊗ · · · ⊗ ξd ∈ Hw with w = w1 . . . wd a reduced word. If w does not start with v then 
we set

x · (ξ1 ⊗ · · · ⊗ ξd) = x◦Ωv ⊗ ξ1 ⊗ · · · ⊗ ξd + ϕv(x)ξ1 ⊗ · · · ⊗ ξd.

If w starts with v we may assume w.l.o.g. (by shuffling the letters if necessary and 
identifying corresponding Hilbert spaces as described above) that w1 = v and we set

x · (ξ1 ⊗ · · · ⊗ ξd) = (xξ1 − 〈xξ1,Ωv〉Ωv) ⊗ ξ2 ⊗ · · · ⊗ ξd + 〈xξ1,Ωv〉ξ2 ⊗ · · · ⊗ ξd.

This defines a faithful ∗-representation of Av on H. We set the (reduced) graph product 
C∗-algebra,

(A,ϕ) := ∗v,Γ(Av, ϕv)

as the C∗-algebra generated by all Av, v ∈ V Γ acting on H, with faithful graph product 
state

ϕ(x) := 〈xΩ,Ω〉.

If for every v ∈ V Γ, Av is a von Neumann algebra and ϕv is moreover faithful then we 
define the graph product von Neumann algebra as (∗v,Γ(Av, ϕv))′′. We will usually write

L2(A,ϕ) := H,

and call this the (graph product) Fock space. The notation is justified as in [14] it is 
shown that H is the Hilbert space of the standard form of the von Neumann algebraic 
graph product. An operator a1 · · · an with ai ∈ A◦

vi and v = v1 · · · vn a reduced word 
is called a reduced operator of type v. We refer to n as the length of the operator. We 
define Pv as the orthogonal projection of H onto ⊕v∈IvHv where Iv are representatives 
of all words that start with v up to shuffle equivalence. For d ∈ N≥0, let

χd : A → A : a1 · · · ar 
→ δ(r = d)a1 · · · ar, (1.1)

where a1 · · · ar is a reduced operator. So χd is the word length projection of length d.
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1.6. Coxeter groups

A Coxeter group W is a group that is freely generated by a set S subject to relations 
(st)ms,t = 1 for exponents ms,t ∈ {1, 2, . . . ,∞} where ms,s = 1, ms,t ≥ 2 for all s �= t

and ms,t = mt,s. The condition ms,t = ∞ means that no relation of the form (st)m =
1, m ∈ N≥1 is imposed. The pair (W,S) is called a Coxeter system. The data of (W,S)
can be encoded in its Coxeter diagram1 with vertex set S and edge set {(s, t) | ms,t ≥ 3}
where every edge between two vertices s, t ∈ S is labeled by the corresponding exponent 
ms,t.

A special subgroup of W is one that is generated by a subset S0 of S and which will 
be denoted by WS0 . Special subgroups are also Coxeter groups with the same exponents 
as W [22, Theorem 4.1.6]. We briefly write Ws = W{s} for s ∈ S and note that by 
the relation s2 = e we have Ws = Z2, the group of two elements. We call the Coxeter 
system (W,S) irreducible if its Coxeter diagram is connected. This is equivalent to W not 
having a non-trivial decomposition into a direct product of special subgroups. Irreducible 
Coxeter groups fall into three classes.

Definition 1.2. Let (W,S) be an irreducible Coxeter system.

• It is of spherical type if it is locally finite, i.e. every finitely generated subgroup of 
W is finite.

• It is of affine type if it is finitely generated, infinite and virtually abelian.
• It is of non-affine type if it is neither spherical nor affine.

An irreducible Coxeter group is non-amenable if and only if it is of non-affine type, 
see [22, Theorem 14.1.2 and Proposition 17.2.1].

1.7. Right-angled Coxeter groups as graph products

A Coxeter group (or Coxeter system) is called right-angled if ms,t ∈ {1, 2, ∞} for 
all s, t ∈ S. So we have that for s ∈ S, s2 = e and two letters s, t ∈ S, s �= t either 
commute (case ms,t = 2) or they are free (case ms,t = ∞). Suppose that (W, S) is a 
right-angled Coxeter system. Set Γ as the graph with vertices V Γ = S and edge set 
EΓ = {(s, t) | ms,t = 2}. Then we find an isomorphism of groups

W � ∗s,ΓWs � ∗s,ΓZ2, (1.2)

sending s1 · · · sn ∈ W, si ∈ S to s1 · · · sn ∈ ∗s,ΓWs (i.e. our notation coincides). Indeed, 
this follows from the fact that the defining (universal) properties of a right-angled Coxeter 
group and a graph product over the special subgroups Ws � Z2 are the same.

1 We emphasize that we refer to this as the diagram of the Coxeter group, which is different from the 
graph defined in Section 1.7.
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1.8. Words in Coxeter groups

Let w ∈ W with w = s1 · · · sn where s1, . . . , sn ∈ S. We call this expression reduced if 
it has minimal length, i.e. n ≤ m for every other representation w = t1 · · · tm, t1, . . . , tm ∈
S. The set of letters that can occur in a reduced expression is independent of the choice 
of the reduced expression, [22, Proposition 4.1.1]. By |w| := n we define a word-length
on W . If 

∣∣v−1w
∣∣ = |w| − |v| (resp. 

∣∣wv−1
∣∣ = |w| − |v|) for v ∈ W we say that w starts

(resp. ends) with v. Note that in the right-angled case these definitions agree with the 
definitions for words and lengths on graphs under the isomorphism (1.2).

Coxeter groups satisfy three important conditions on words in S of which we will 
make use implicitly. We use the usual convention that ŝ means that s is removed from 
an expression.

Theorem 1.3 ([22], Theorem 3.2.16 and Theorem 3.3.4). Let (W,S) be a Coxeter system, 
w = s1 · · · sn an expression for an element w ∈ W and s, t ∈ S. Then the following 
(equivalent) conditions hold:

• Deletion condition: If s1 · · · sn is not a reduced expression for w, then there exist 
i < j such that s1 · · · ŝi · · · ŝj · · · sn is also an expression for w.

• Exchange condition: If w = s1 · · · sn is reduced, then either |sw| = n + 1 or there 
exists 1 ≤ i ≤ n with sw = s1 · · · ŝi · · · sn.

• Folding condition: If |sw| = |w| + 1 and |wt| = |w| + 1, then either |swt| = |w| + 2
or |swt| = |w|.

In the right-angled case, if we have cancellation of the form s1 · · · sn = s1 · · · ŝi · · ·
ŝj · · · sn for s1, . . . , sn ∈ S, then si = sj and si commutes with si+1, . . . , sj−1.

1.9. Multi-parameter Hecke algebras

Von Neumann algebraic closures of Hecke algebras were first studied in [26], [23], see 
also [22, Section 19]. Note that we use a different normalization of the generators so that 
our notation coincides with Garncarek’s [31] (as well as [12] and [15]).

Let (W,S) be a Coxeter system and let R(W,S)
>0 (resp. C(W,S) and {−1, 1}(W,S)) be the 

set of tuples q := (qs)s∈S in RS
>0 (resp. in CS and {−1, 1}S) of positive real numbers 

(resp. complex numbers and numbers −1 or 1) with the property that qs = qt whenever 
s and t are conjugate in W .

Take q := (qs)s∈S ∈ R(W,S)
>0 . For every reduced expression w = s1 · · · sn of w ∈ W

define

qw := qs1 · · · qsn , ps(q) := q
− 1

2
s (qs − 1) .
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It follows from [22, Proposition 19.1.1]2 that there exists a unique ∗-algebra Cq [W ] that 
is spanned by a linear basis {T (q)

w | w ∈ W} and such that for every s ∈ S and w ∈ W

we have,

T (q)
s T (q)

w =
{
T

(q)
sw if |sw| > |w| ,

T
(q)
sw + ps(q)T (q)

w if |sw| < |w| ,
(1.3)

and (
T (q)
w

)∗
= T

(q)
w−1 . (1.4)

Denote by �2(W ) the Hilbert space of square-summable functions on W with canonical 
orthonormal basis (δw)w∈W . For every s ∈ S the element T (q)

s acts boundedly on �2(W )
by

T
(q)
s δw :=

{
δsw if |sw| > |w|
δsw + ps(q)δw if |sw| < |w|

. (1.5)

Moreover, this action extends to a faithful ∗-representation Cq [W ] → B(�2(W )). We will 
usually identify Cq [W ] with its image in B(�2(W )).

The unital ∗-algebra Cq [W ] is called the (Iwahori) Hecke algebra of (W,S) with 
parameter q. We set the reduced Hecke C∗-algebra C∗

r,q (W ) as the norm closure of 
Cq [W ] in B

(
�2(W )

)
using the representation (1.5). Then set the Hecke-von Neumann 

algebra Nq (W ) = C∗
r,q (W )′′. For qs = 1, s ∈ S we get that Cq [W ] = C[W ], C∗

r,q (W ) =
C∗

r (W ) and Nq (W ) = L(W ) are respectively the group algebra, reduced group C∗-
algebra and group von Neumann algebra of W . Hence Hecke algebras are q-deformations 
of group (C∗- and von Neumann) algebras and the deformation (in principle) depends 
on q; we comment on this further in Section 4. For every q the vector state

τ(x) = 〈xδe, δe〉, x ∈ B(�2(W )),

restricts to a tracial state τq on C∗
r,q (W ) and Nq (W ) with τq(T (q)

w ) = 0 for all w ∈
W \ {e}. Finally, define Ps, s ∈ S to be the projection of �2(W ) onto

span {δv | v ∈ W with |sv| < |v|} ⊆ �2(W ). (1.6)

Note that if the Coxeter group is right-angled then under the graph product identification 
(1.2) this notation coincides with the notation of Section 1.5.

2 If T̃ (q)
w

are the generators from [22, Proposition 19.1.1] then take normalized elements T (q)
w

= q−1/2
w

T̃ (q)
w

to get the relations (1.3) and (1.4). This convention is consistent with [12], [15] and [31].
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1.10. Hecke C∗-algebras as graph products

Let (W, S) be a right-angled Coxeter system with graph Γ as defined in Section 1.7. 
In [12, Corollary 3.4]3 it is proved that for every q = (qs)s∈S ∈ R(W,S)

>0 there exists an 
isomorphism,

(C∗
r,q (W ) , τq)

	−→ ∗s,Γ(C∗
r,qs (Ws) , τqs). (1.7)

Moreover, the isomorphism is given by the canonical map T (q)
v → T

(qs1 )
s1 · · ·T (qsd )

sd where 
v = s1 · · · sd is reduced. For q = 1 this coincides with the corresponding result on Coxeter 
groups.

2. A graph product Khintchine inequality

The aim of this section is to prove a Khintchine inequality for general graph products. 
Such a Khintchine inequality estimates the operator norm of a reduced operator of length 
d with the norm of certain Haagerup tensor products of column and row Hilbert spaces. 
This estimate of norms holds up to a bound that is polynomial in d. We make this more 
precise in the current section.

Remark 2.1. In the context of free products a Khintchine inequality was already obtained 
by Ricard and Xu in [50, Section 2]. If in the current paper we would only treat the case 
of free Coxeter systems and their Hecke deformations (i.e. m(s, t) = ∞, s �= t) the results 
from [50] would be sufficient. Here however, we want a more general theorem. One of the 
problems that arises while proving such a theorem is that the analogue of [50, Lemma 
2.3] in its form fails in a general graph product setting. We remedy this problem by using 
maps which intertwine graph products with free products.

Let us now prepare for the proof of the main theorem of this section. We fix notation 
for both a graph product and a free product. As before, let Γ be a finite simplicial graph 
and let I be a set of representatives of equivalence classes of reduced words with letters 
in V Γ. Let Av, v ∈ V Γ be unital C∗-algebras with GNS-faithful states ϕv. Let

(A,ϕ) := ∗v,Γ(Av, ϕv)

be its graph product with vacuum vector Ω. We also set the free product (i.e. the graph 
product over Γ with all edges removed)

(Af , ϕf ) := ∗v(Av, ϕv),

3 The corollary is only stated for a single parameter qs = q but it also holds in the multi-parameter case 
with the same proof.
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with vacuum vector Ωf . We shall view Av, v ∈ V Γ as a C∗-subalgebra of A and Af . We 
let Pv be the graph product projection onto words that start with v (as before) and we 
let P f

v be the free product projection onto words which start with v. Let Γ0 ∈ Cliq(Γ, l)
and let w = w1 · · ·wl ∈ I be the word consisting of all letters in V Γ0. We write

P f
Γ0

(2.1)

for the projection of L2(Af , ϕf ) onto the direct sum of all Hv where v starts with w. 
Recall that A◦

v is the set of a ∈ Av with ϕv(a) = 0.
View Av as a subalgebra of A and then let Σ1 := span{A◦

v | v ∈ V Γ}, and, for 
d ∈ N≥1,

Σd := {a1 ⊗ · · · ⊗ ad | ai ∈ A◦
vi and v1 · · · vd reduced} ⊆ Σ⊗d

1 ,

where the latter is the d-fold algebraic tensor product.
Our first aim is to show that reduced operators in A of length d can be decomposed 

as sums of creation operators, annihilation operators and diagonal operators in a sense 
to be made precise below. Crucial is that first the annihilation operators act, then the 
diagonal operators and then the creation operators. That is, we shall be looking for an 
analogue of the decomposition [50, Fact 2.6].

Remark 2.2. Definition 2.3 below formally defines the following permutation. Let v =
v1 · · · vd for vi ∈ V Γ, be a reduced word. Let d ∈ N≥1, 0 ≤ l ≤ d, 0 ≤ k ≤ d − l, 
Γ0 ∈ Cliq(Γ, l) and (Γ1, Γ2) ∈ Comm(Γ0). Then, if possible, we permute the letters of v
through shuffle equivalence in the form:

(vσ(1) · · · vσ(k))(vσ(k+1) · · · vσ(k+l))(vσ(k+l+1) · · · vσ(d))

�
k letters︷ ︸︸ ︷

(∗ · · · ∗ V Γ1)
l letters︷ ︸︸ ︷
( V Γ0 )

d−l−k letters︷ ︸︸ ︷
(V Γ2 � · · · �),

(2.2)

where ∗ and � are the remaining letters and each of the 3 respective terms in between 
brackets are shuffle equivalent themselves. This means that in between the first brackets 
there is a word of length k that ends on the clique V Γ1, in between the second brackets 
there is the clique of length l given by V Γ0, and at the end there is a word of length 
d − k − l that starts with the clique V Γ2.

Moreover, we want that ∗ · · · ∗ does not end on letters commuting with V Γ0 and V Γ1
and � · · · � does not start with letters commuting with V Γ0 and V Γ2. This means that 
the cliques Γ1 and Γ2 are maximal for the property that a decomposition like (2.2) exists.

If moreover we demand that vσ(1) · · · vσ(k), vσ(k+1) · · · vσ(k+l) and vσ(k+l+1) · · · vσ(d) are 
in I, then there can be at most one such permutation coming from shuffle equivalences.

Of course not for every d, l, k, Γ0, Γ1, Γ2 and v this permutation exists since v cannot 
always be written in the form (2.2).
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Definition 2.3. Let d ∈ N≥1. Suppose that 0 ≤ l ≤ d, 0 ≤ k ≤ d − l, Γ0 ∈ Cliq(Γ, l) and 
(Γ1, Γ2) ∈ Comm(Γ0). So if l = 0 we have that Γ0 is the empty clique, and Condition 
(2) below vanishes. Take a reduced word v = v1 · · · vd, vi ∈ V Γ. If existent, define 
σ(= σv

l,k,Γ0,Γ1,Γ2
) as the permutation of indices 1, . . . , d that satisfies:

(1) v1 · · · vd = vσ(1) · · · vσ(d);
(2) {vσ(k+1), . . . , vσ(k+l)} = V Γ0;
(3) |vσ(1) · · · vσ(k)s| = k − 1 whenever s ∈ V Γ1;
(4) |vσ(1) · · · vσ(k)s| = k + 1 whenever s ∈ Link(Γ0)\V Γ1;
(5) |svσ(k+l+1) · · · vσ(d)| = d − k − l − 1 whenever s ∈ V Γ2;
(6) |svσ(k+l+1) · · · vσ(d)| = d − k − l + 1 whenever s ∈ Link(Γ0)\V Γ2.

We shall assume moreover that vσ(1) · · · vσ(k), vσ(k+1) · · · vσ(k+l) and vσ(k+l+1) · · · vσ(d)
are in I (i.e. they are the representatives of their equivalence class) and if vi = vj , i < j

then σ(i) < σ(j) so that σ comes from a shuffle equivalence. Then σ is unique if it exists.

The permutation σ of Definition 2.3 does not necessarily exist. All expressions below 
in which a non-existing σ occurs need to be interpreted as 0 and we shall recall this at 
the relevant places.

Example 2.4. Consider the following graph:

a

b

c d

e

f

This is the complete graph K5 consisting of vertices a, b, c, d, e together with an extra 
vertex f that is connected only to d and e. Say that a word is in I (i.e. is a representative) 
if it is minimal in alphabetical order amongst all equivalent words. Now suppose that we 
have a reduced word:

abcdef.

• Example 1. Take Γ0 = {a, b, c}, Γ1 = {d, e} and Γ2 = ∅. Set l = 3, k = 2. Then σ as 
in Definition 2.3 exists and it is the permutation moving the word abcdef to

(de)(abc)f
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(since every letter occurs uniquely it is clear what the permutation is). Indeed: abc
forms a clique; de ends on Γ1 and there is no other letter commuting with Γ1 at the 
end of de; f has no letters commuting with abc at the start.

• Example 2. Take Γ0 = {a, b}, Γ1 = {d} and Γ2 = {c}. Set l = 2, k = 2. Then σ
as in Definition 2.3 does not exist. Indeed, by the choice of k, l and Γ0 if σ exists 
there must be a word equivalent to abcdef of the form (∗ and � being undetermined 
letters):

∗ ∗ (ab) � �.

By the choice of Γ1 we see that ∗∗ ends on d and there are no other letters in Link(Γ0)
at the end of ∗∗. So we must have

∗d(ab) � �.

However, there is no choice for the letter ∗ (e is not allowed as it is in Link(Γ0) and 
f cannot be moved past ab).

Now we find the following decomposition.

Lemma 2.5. Let a1 · · · ad be a reduced operator of type v = v1 · · · vd in the graph product 
(A, ϕ). Suppose that we have a non-zero expression of the form

Q(1)
v1

a1Q
(2)
v1

· · ·Q(1)
vd

adQ
(2)
vd

, (2.3)

in B(L2(A, ϕ)), where Q(j)
vi equals either Pvi or P⊥

vi . Then, for some permutation α of 
the indices 1, . . . , d coming from a shuffle equivalence and for some 0 ≤ r ≤ d and 
0 ≤ m ≤ d − r we have that (2.3) equals

(Pvα(1)aα(1)P
⊥
vα(1)

) · · · (Pvα(r)aα(r)P
⊥
vα(r)

)(Pvα(r+1)aα(r+1)Pvα(r+1)) · · · (Pvα(m)aα(m)Pvα(m))

× (P⊥
vα(m+1)

aα(m+1)Pvα(m+1)) · · · (P⊥
vα(d)

aα(d)Pvα(d)).
(2.4)

Further, for a non-zero expression of the form (2.4) we have that vα(r+1) · · · vα(m) is in 
a clique.

Proof. We prove this in a series of claims. To avoid cumbersome notation we shall not 
write the permutation of the shuffle equivalences in the proof.

Claim 1. The expression (2.3) is up to shuffle equivalence equal to:

Q(1)
v a1Q

(2)
v · · ·Q(1)

v amQ(2)
v (P⊥

v am+1Pvm+1) · · · (P⊥
v adPvd). (2.5)
1 1 m m m+1 d
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Moreover, the tail of annihilation operators is maximal in the sense that if for some 
i ≤ m we have Q(2)

vi = Pvi then Q(1)
vi = Pvi .

Proof of Claim 1. Suppose that we are given an expression as in (2.5). Suppose that for 
some i < m we have Q(1)

vi = P⊥
vi , Q

(2)
vi = Pvi . Then we need to show that vi commutes 

with vi+1 · · · vm. To do so we may suppose the index i was chosen maximally. Suppose 
that vi and vi+1 · · · vm do not commute and let vk be the first letter in vi+1 · · · vm that 
does not commute with vi. Our choice of i yields that Q(1)

vk = Pvk . Indeed if Q(1)
vk were to 

be P⊥
vk

then (2.5) is 0 in case Q(2)
vk = P⊥

vk
and in case Q(2)

vk = Pvk this would contradict 
maximality of i. But then (2.5) contains a factor PviPvk = 0 which means that (2.5)
would be zero which in turn is a contradiction.

Claim 2. The expression (2.3) is up to shuffle equivalence equal to:

Q(1)
v1

a1Q
(2)
v1

· · ·Q(1)
vr arQ

(2)
vr (Pvr+1ar+1Pvr+1) · · · (PvmamPvm)

× (P⊥
vm+1

am+1Pvm+1) · · · (P⊥
vd
adPvd).

(2.6)

Moreover, the tail of annihilation and diagonal operators is maximal in the sense that if 
for some i ≤ r we have Q(1)

vi = Pvi then Q(2)
vi = P⊥

vi .

Proof of Claim 2. Suppose that we are given a non-zero expression as in (2.6). Suppose 
that for some i < r we have Q(1)

vi = Pvi , Q
(2)
vi = Pvi . Then we need to show that 

vi commutes with vi+1 · · · vr. To do so we may suppose the index i < r was chosen 
maximally. Suppose that vi and vi+1 · · · vr do not commute and let vk be the first letter 
in vi+1 · · · vr that does not commute with vi. We claim that our choice of i yields that 
Q

(2)
vk = P⊥

vk
. Indeed, suppose that Q(2)

vk = Pvk . Then if Q(1)
vk = Pvk this contradicts 

maximality of i and if Q(1)
vk = P⊥

vk
it would contradict Claim 1. From Q(2)

vk = P⊥
vk

we 

find that Q(1)
vk = Pvk since if Q(1)

vk = P⊥
vk

then P⊥
vk
akP

⊥
vk

= 0. But then (2.6) contains the 
factor PviPvk = 0 with vi and vk non-commuting, which means that (2.6) would be zero. 
As this is a contradiction the claim follows.

Claim 3. The expression (2.3) is up to shuffle equivalence equal to:

(Pv1a1P
⊥
v1

) · · · (PvrarP
⊥
vr)(Pvr+1ar+1Pvr+1) · · · (PvmamPvm)

× (P⊥
vm+1

am+1Pvm+1) · · · (P⊥
vd
adPvd).

(2.7)

Moreover vr+1 · · · vm forms a clique.

Proof of Claim 3. This is obvious now from Claim 2 and the fact that P⊥
viaviP

⊥
vi = 0. 

As PviPvj is non-zero only if vi and vj commute we must have that vr+1 · · · vm forms a 
clique.
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Proof of the lemma. We may now directly conclude the lemma from Claim 3. The per-
mutation α is then the composition of the shuffle equivalences coming from claims 1, 2 
and 3. �
Proposition 2.6. Let a1 · · · ad be a reduced operator of type v = v1 · · · vd in the graph 
product (A, ϕ). We have the following equality of operators in B(L2(A, ϕ))

a1 · · · ad =
d∑

l=0

d−l∑
k=0

∑
Γ0∈Cliq(Γ,l)

∑
(Γ1,Γ2)∈Comm(Γ0)

(Pvσ(1)aσ(1)P
⊥
vσ(1)

) · · · (Pvσ(k)aσ(k)P
⊥
vσ(k)

)

× (Pvσ(k+1)aσ(k+1)Pvσ(k+1)) · · · (Pvσ(k+l)aσ(k+l)Pvσ(k+l))

× (P⊥
vσ(k+l+1)

aσ(k+l+1)Pvσ(k+l+1)) · · · (P⊥
vσ(d)

aσ(d)Pvσ(d)),
(2.8)

where σ (changing over the summation) is as in Definition 2.3. If such σ does not exist 
then the summand is understood as 0.

Proof. We first note that we may decompose,

a1 · · · ad = (Pv1 + P⊥
v1

)a1(Pv1 + P⊥
v1

) · · · (Pvd + P⊥
vd

)ad(Pvd + P⊥
vd

). (2.9)

What we showed in Lemma 2.5 and (2.9) is that the product a1 · · · ad decomposes as a 
sum of operators of the form (2.4) (where α depends on the summand). The proof is 
finished by arguing that the summation in (2.8) runs exactly over all these summands.

It is clear that each (non-zero) summand in (2.8) is an expression of the form (2.4)
with r = k and l = m − r. Conversely, take an expression of the form (2.4), then the 
letters vα(r+1) · · · vα(m) form a clique Γ0 by Lemma 2.5. Set l = #V Γ0 and k = r. Now 
in vα(1), . . . , vα(r) there may be letters at the end that commute with Γ0. Let Γ1 be 
the clique of letters that appear at the end of vα(1), . . . , vα(r) that commute with Γ0
that is maximal in the following sense: there are no letters s appearing at the end of 
vα(1) · · · vα(r) that commute with Γ0 and Γ1. Such a clique is unique since if both Γ1
and Γ′

1 would be such cliques, then so is Γ1 ∪ Γ′
1 and hence Γ1 = Γ′

1 by maximality. 
Similarly we may let Γ2 be a clique of letters that appear at the start of vα(m+1) · · · vα(d)
that commute with Γ0 and that is maximal. Then for this choice of Γ0, Γ1, Γ2 we have 
that σ satisfying (1) - (6) exists and it is moreover the only choice for which it exists. 
This shows that each non-zero expression (2.4) occurs exactly once in the summation 
(2.8). �

In order to prove our Khintchine inequality we introduce the necessary notation. We 
define as in [50, Section 2] the following subspaces of B(L2(Af , ϕf )),

L1 = span{P f
v avP

f ⊥
v | v ∈ V Γ, a ∈ Av}, K1 = L∗

1.
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It is proved in [50, Lemma 2.3] that

L1 �
(
⊕v∈V ΓL

2(A◦
v, ϕv)

)
C , K1 �

(
⊕v∈V ΓL

2(A◦
v, ϕv)

)
R (2.10)

completely isometrically, where the subscript C (resp. R) denotes the column (resp. 
row) Hilbert space structure. In particular, if each A◦

v is one dimensional (as is the case 
for right-angled Hecke algebras) we have that L1 (resp. K1) is completely isometrically 
isomorphic to the column Hilbert space C#V Γ (resp. row Hilbert space R#V Γ). We set 
k-fold Haagerup tensor products,

Lk = L⊗hk
1 , Kk = K⊗hk

1 .

Fix Γ0 ∈ Cliq(l). For a1, . . . , al with ai ∈ Avi and v = v1 · · · vl a reduced word (for 
the graph product) in I consisting precisely of all letters of Γ0 we define an element of 
B(L2(Af , ϕf )) by setting for r > l,

Diag(a1, . . . , al) : b1 · · · blbl+1 · · · brΩf 
→
◦︷︸︸︷

a1b1 · · ·
◦︷︸︸︷

albl bl+1 · · · brΩf , (2.11)

where bi ∈ A◦
wi

with wi �= wi+1 (so b1 · · · br is a reduced word in the free product). If 
r < l then the image in (2.11) is 0.

Lemma 2.7. The operator defined in (2.11) is bounded.

Proof. Let r ∈ N≥1. Fix a word w = w1 · · ·wr with wi �= wi+1 for all 1 ≤ i < r. Then,

L2(A◦
w1

, ϕw1) ⊗ · · · ⊗ L2(A◦
wr

, ϕwr
)

is an invariant subspace for the action (2.11). Moreover, note that (2.11) is for r ≥ l just 
the tensor product operator

Pw1a1Pw1 ⊗ · · · ⊗ Pwl
alPwl

⊗ 1⊗r−l, (2.12)

where Pwi
aiPwi

acts on L2(A◦
wi
, ϕwi

). Clearly this operator is bounded. �
Set the diagonal space

AΓ0 ⊆ B(L2(Af , ϕf )) (2.13)

to be the linear span of all operators of the form (2.11). AΓ0 inherits the operator space 
structure of Af . Set for d ∈ N≥1,

Xd =
d⊕ d−l⊕ ⊕ ⊕

Lk ⊗h AΓ0 ⊗h Kd−k−l. (2.14)

l=0 k=0 Γ0∈Cliq(Γ,l) (Γ1,Γ2)∈Comm(Γ0)
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In case A◦
v, v ∈ V Γ are all 1-dimensional, the space Xd can also be understood in terms 

of bounded operators on a Hilbert space. Indeed, the remarks after (2.10) and [6, Propo-
sition 3.5] give the first two completely isometric isomorphisms of:

Lk ⊗h AΓ0 ⊗h Kd−k−l �Ck ⊗h AΓ0 ⊗h Rd−k−l

�Mk,d−k−l(AΓ0) � Mk,d−k−l(C) ⊗min AΓ0 .
(2.15)

The third completely isometric isomorphism of (2.15) holds by definition of the oper-
ator space structure on AΓ0 as part of the C∗-algebra Af . Next consider the following 
embedding

jd : Σd → Xd,

where the image of a1⊗· · ·⊗ad is given as follows: Consider a summand of Xd indexed by 
(l, k, Γ0, Γ1, Γ2) with 0 ≤ l ≤ d, 0 ≤ k ≤ d − l and Γ0 ∈ Cliq(Γ, l), (Γ1, Γ2) ∈ Comm(Γ0). 
Then the restriction of the image of jd to this summand is given by

jd(a1 ⊗ · · · ⊗ ad)|Xd
=(P f

vσ(1)
aσ(1)P

f ⊥
vσ(1)

) ⊗ · · · ⊗ (P f
vσ(k)

aσ(k)P
f ⊥
vσ(k)

)

⊗ Diag(aσ(k+1), . . . , aσ(k+l))

⊗ (P f ⊥
vσ(k+l+1)

aσ(k+l+1)P
f
vσ(k+l+1)

) ⊗ · · · ⊗ (P f ⊥
vσ(d)

aσ(d)P
f
vσ(d)

),
(2.16)

with σ given by Definition 2.3; if such σ is non-existent then the image of jd(a1⊗· · ·⊗ad)
in the summand of Xd corresponding to (l, k, Γ0, Γ1, Γ2) is 0. Let

πf
d : Xd → B(L2(Af , ϕf ))

be the direct sums of product maps. For a 5-tuple (l, k, Γ0, Γ1, Γ2) as above, let

πf
d,l,k,Γ0,Γ1,Γ2

: Lk ⊗h AΓ0 ⊗h Kd−k−l → B(L2(Af ), ϕf ) (2.17)

be the product map πf
d restricted to the corresponding summand of Xd. This map is 

completely bounded as follows from the definition of the Haagerup tensor product. Con-
sequently, πf

d : Xd → B(L2(Af , ϕf )) is completely bounded by the number of summands 
of Xd, i.e.

‖πf
d‖cb ≤ (#Cliq(Γ))3d.

Definition of two partial isometries. Given a 5-tuple (l, k, Γ0, Γ1, Γ2) as in the previous 
paragraph, we define two partial isometries.
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• We define a partial isometry,

Ql,k,Γ0,Γ1,Γ2 :L2(A,ϕ) → L2(Af , ϕf ), (2.18)

as follows. Consider a reduced operator b1 · · · bn ∈ A of type w. We need to define 
a permutation σQ = σw

Q,l,k,Γ0,Γ1,Γ2
coming from a shuffle equivalence satisfying (1)

– (4) of Definition 2.3 and the additional relation that |swσQ(k+l+1) · · ·wσQ(n)| =
n −k− l+1 whenever s ∈ V Γ2. Moreover we assume that this σQ is chosen such that 
each of the expressions wσQ(k) · · · wσQ(1) (decreasing indices), wσQ(k+1) · · ·wσQ(k+l)
and wσQ(k+l+1) · · ·wσQ(n) are in I. If σQ exists it is unique and we set

Ql,k,Γ0,Γ1,Γ2b1 · · · bnΩ = bσQ(1) · · · bσQ(n)Ωf .

If σQ does not exist we set Ql,k,Γ0,Γ1,Γ2b1 · · · bnΩ = 0.
• We define the partial isometry,

Rl,k,Γ0,Γ1 :L2(A,ϕ) → L2(Af , ϕf ), (2.19)

as follows. Consider a reduced operator b1 · · · bn ∈ A of type w. We need to define a 
permutation σR = σw

R,l,k,Γ0,Γ1
coming from a shuffle equivalence satisfying (1) – (4)

of Definition 2.3. Moreover we assume that this σR is chosen such that each of the 
expressions wσR(1) · · ·wσR(k), wσR(k+1) · · ·wσR(k+l) and wσR(k+l+1) · · ·wσR(n) are in 
I. If σR exists then it is unique and we set

Rl,k,Γ0,Γ1b1 · · · bnΩ = bσR(1) · · · bσR(n)Ωf .

If σR does not exist we set Rl,k,Γ0,Γ1b1 · · · bnΩ = 0.

The maps Ql,k,Γ0,Γ1,Γ2 and Rl,k,Γ0,Γ1 preserve orthogonality and inner products and are 
therefore partial isometries.

Proposition 2.8. Let x = a1 ⊗ · · · ⊗ ad ∈ Σd be of type v = v1 · · · vd and let xd,l,k,Γ0,Γ1,Γ2

with 0 ≤ l ≤ d, 0 ≤ k ≤ d − l, Γ0 ∈ Cliq(Γ, l) and (Γ1, Γ2) ∈ Comm(Γ0) be the 
corresponding summands of jd(x) in Xd as in (2.16). We have

R∗
l,k,Γ0,Γ1

πf
d,l,k,Γ0,Γ1,Γ2

(xd,l,k,Γ0,Γ1,Γ2)Ql,d−l−k,Γ0,Γ2,Γ1

=(Pvσ(1)aσ(1)P
⊥
vσ(1)

) · · · (Pvσ(k)aσ(k)P
⊥
vσ(k)

)

× (Pvσ(k+1)aσ(k+1)Pvσ(k+1)) · · · (Pvσ(k+l)aσ(k+l)Pvσ(k+l))

× (P⊥
vσ(k+l+1)

aσ(k+l+1)Pvσ(k+l+1)) · · · (P⊥
vσ(d)

aσ(d)Pvσ(d)),

(2.20)

where σ is defined as in (1) – (6) of Definition 2.3 and the right hand side should be 
understood as 0 otherwise.
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Proof. Note that both sides of (2.20) equal 0 if a σ as in the statement of the proposition 
does not exist, cf. the definition of jd. So from now on we assume that σ exists and that the 
right hand side of (2.20) is non-zero for some elementary tensor product a1⊗· · ·⊗ad ∈ Σd

of type v1 · · · vd.
We argue first that without loss of generality we may assume that the permutation σ

on the right hand side of (2.20) is trivial. Indeed, if σ is non-trivial then we may work 
with the element x′ = aσ(1) ⊗ · · ·⊗ aσ(d) ∈ Σd instead of x. Then note that the left hand 
side of (2.20) for x and x′ are the same. Similarly the right hand side of (2.20) is the 
same for x and x′.

So assume that σ is trivial. Now take a reduced operator b1 · · · br, r ≥ 0 of type 
w = w1 · · ·wr. We first prove the proposition for the case that the permutation σQ :=
σw
Q,l,d−l−k,Γ0,Γ2,Γ1

exists. In that case set,

Ql,d−l−k,Γ0,Γ2,Γ1(b1 · · · brΩ) = b′1 · · · b′rΩf ,

with b′i = bσQ(i), w′
i = wσQ(i). Further,

w′
1 · · ·w′

r �
d−l−k︷ ︸︸ ︷

(∗ · · · ∗ V Γ2)(V Γ0)(� · · · �),

where (� · · · �) has no letters in V Γ1 at the start. We have by definition of πf
d,l,k,Γ0,Γ1,Γ2

,

πf
d,l,k,Γ0,Γ1,Γ2

(xd,l,k,Γ0,Γ1,Γ2)

=(P f
v1
a1P

f ⊥
v1

) · · · (P f
vk
akP

f ⊥
vk

)Diag(ak+1, · · · , ak+l)

× (P f ⊥
vk+l+1

ak+l+1P
f
vk+l+1

) · · · (P f ⊥
vd

adP
f
vd

).

Then, for the left hand side of (2.20),

πf
d,l,k,Γ0,Γ1,Γ2

(xd,l,k,Γ0,Γ1,Γ2)Ql,d−l−k,Γ0,Γ2,Γ1(b1 · · · brΩ)

=〈adb′1Ωf ,Ωf 〉 · · · 〈ak+l+1b
′
d−k−lΩf ,Ωf 〉a1 · · · ak

×
◦︷ ︸︸ ︷

(ak+1b
′
d−k−l+1) · · ·

◦︷ ︸︸ ︷
(ak+lb

′
d−k) b′d−k+1 · · · b′rΩf .

(2.21)

Now, for the right hand side of (2.20) we consider an expression,

(Pv1a1P
⊥
v1

) · · · (PvkakP
⊥
vk

)(Pvk+1ak+1Pvk+1) · · · (Pvk+l
ak+lPvk+l

)

× (P⊥
vk+l+1

ak+l+1Pvk+l+1) · · · (P⊥
vd
adPvd)b1 · · · brΩ.

(2.22)

The assumption that σ is trivial yields that vk+l+1 · · · vd starts with V Γ2, that the letters 
vk, . . ., vk+l exhaust V Γ0 and that the letters at the end of v1 · · · vk that commute with 
Γ0 are precisely given by V Γ1. If (2.22) is non-zero then let us argue that there exists a 
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word w′
1 · · ·w′

r as defined above. Indeed, if (2.22) is non-zero, then we may shuffle b1 · · · br
into an operator b′1 · · · b′r of type w′

1 · · ·w′
r such that: w′

1 · · ·w′
d−k−l equals vd · · · vk+l+1

and ends with V Γ2; the letters w′
d−k−l+1 · · ·w′

d−k exhaust V Γ0; w′
d−k+1 · · ·w′

r does not 
have a letter of V Γ1 up front (because if that happens then applying P⊥

vi , i ≤ k will give 
zero). So we conclude that (2.22) can only be non-zero if there exists w′

1 · · ·w′
r as defined 

above, in which case

(2.22) =(Pv1a1P
⊥
v1

) · · · (PvkakP
⊥
vk

)(Pvk+1ak+1Pvk+1) · · · (Pvk+l
ak+lPvk+l

)

× (P⊥
vk+l+1

ak+l+1Pvk+l+1) · · · (P⊥
vd
adPvd)b′1 · · · b′rΩ

=〈adb′1Ω,Ω〉 · · · 〈ak+l+1b
′
d−k−lΩ,Ω〉a1 · · · ak

◦︷ ︸︸ ︷
(ak+1b

′
d−k−l+1) · · ·

◦︷ ︸︸ ︷
(ak+lb

′
d−k)

× b′d−k+1 · · · b′rΩ.

(2.23)

If one of the terms with a 
◦︷︸︸︷ is zero, then also this term was zero in (2.21) and the 

proposition is proved. If none of these terms are zero, then the image of (2.23) under 
Rl,k,Γ0,Γ1 equals (2.21) and (2.22) is in ker(Rl,k,Γ0,Γ1)⊥. This concludes the proposition 
in case σQ exists.

If σQ does not exist, then

Ql,d−l−k,Γ0,Γ2,Γ1(b1 · · · brΩ) = 0.

On the other hand we already noted that (2.23) can only be nonzero if a permutation 
σQ exists. So if σQ is non-existent then also (2.23) is zero, yielding the proposition. �

Set the product map

ρd : Σd → B(L2(A,ϕ)) : a1 ⊗ · · · ⊗ ad 
→ a1 · · · ad.

We define the map for d ∈ N≥1,

πd : jd(Σd) → B(L2(A,ϕ)) : jd(x) 
→ ρd(x), (2.24)

so that by definition πd ◦ jd = ρd. Now the crucial part is to show that the map πd is 
well-defined and completely bounded with linear bound in d. This is where we use the 
announced intertwining argument between graph products and free products.

Now we are ready for the main theorem of this section. Recall that the word length 
projection χd was defined in (1.1).

Theorem 2.9 (Graph product Khintchine inequality). Let Γ be a finite simplicial graph 
and consider a graph product (A, ϕ) = ∗v,Γ(Av, ϕv) of unital C∗-algebras Av with GNS-
faithful states ϕv. Then for every d ∈ N≥1 there exist maps
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jd : χd(A) → Xd, πd : Dom(πd) ⊆ Xd → χd(A),

with Dom(πd) = jd(χd(A)) and where Xd is defined in (2.14) and (2.15) such that:

(i) πd ◦ jd is the identity on χd(A);
(ii) ‖πd : Dom(πd) → A‖cb ≤ (#Cliq(Γ))3d.

Proof. Part (i) follows from Proposition 2.6. From Proposition 2.8 we see that on the 
domain jd(χd(A)) the map πd is given by the direct sum of the maps

R∗
l,k,Γ0,Γ1

πf
d,l,k,Γ0,Γ1,Γ2

( · )Ql,d−l−k,Γ0,Γ2,Γ1 .

In particular, πd is well-defined. As each of these summands is completely contractive 
and there are at most (#Cliq(Γ))3d summands, we see that πd is completely bounded 
with the desired complete bound. �
Remark 2.10. It is possible that a clever refinement of the present methods or perhaps 
an entirely different proof could yield an improvement of the constant (#Cliq(Γ))3d in 
the Khintchine inequality. For the applications we have in mind, the current method 
cannot be altered without affecting some of the results in the remainder of the paper as 
they depend on the explicit form of the map jd and the space Xd. We leave the question 
of whether an improved constant can be attained to future work.

3. Khintchine and Haagerup inequalities for right-angled Hecke C∗-algebras

In this section we make the Khintchine inequality from Section 2 explicit in the case 
of Hecke algebras. As a consequence we derive a Haagerup inequality for right-angled 
Coxeter groups and their Hecke deformations. Such a Haagerup inequality shows that 
the L∞-norm of an operator of length d can be estimated with the L2-norm up to a 
polynomial bound Q(d). It is a generalization of Haagerup’s inequality for free groups 
Fn, see [33] or also [43, Section 9.6]. It entails that there exists a constant C such that 
for every x ∈ C[Fn] supported on group elements of length d ∈ N≥1 we have

‖x‖ ≤ Cd‖x‖2.

In particular, here Q(d) = d so that we have a linear estimate in the length d. Haagerup 
and Khintchine inequalities have found a wide range of applications in operator theory. 
We will give further applications to C∗-simplicity problems in Section 5.3.

Let (W, S) be a finitely generated right-angled Coxeter system and let q = (qs)s∈S ∈
R(W,S)

>0 be a multi-parameter set. Let Γ be the graph associated to (W, S) defined in 
Section 1.7. From (1.7) we see that we have a canonical isomorphism
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(C∗
r,q(W ), τq) � ∗s,Γ(C∗

r,qs(Ws), τqs).

Furthermore, we may specialize Section 2 to ∗s,Γ(C∗
r,qs(Ws), τqs). In particular this defines 

the space of diagonal operators AΓ0 as in (2.13) and the operator space Xd of (2.14). 
We first observe that AΓ0 simplifies. Recall that Ps, s ∈ S and P f

Γ0
, Γ0 ∈ Cliq(Γ) were 

defined in (1.6) and (2.1).

Lemma 3.1. For a right-angled Coxeter group (W, S) we have AΓ0 = CP f
Γ0

for any Γ0 ∈
Cliq(Γ, l). Moreover, for v = s1 · · · sl, si ∈ S a reduced word in I with {s1, . . . , sl} = V Γ0
we have,

Diag
(
Ps1T

(q)
s1 Ps1 , . . . , PslT

(q)
sl

Psl

)
= (

∏
s∈V Γ0

ps(q))P f
Γ0
.

Proof. For s ∈ S we have that PsT
(q)
s Ps = ps(q)Ps and C∗

r,q(Ws) is a two dimensional 
C∗-algebra spanned by the identity and T (q)

s (see the comments after [12, Corollary 
3.3]). Now let v = s1 · · · sl be as in the lemma. Let As = C∗

r,qs(Ws). For operators 
ai ∈ Asi , 0 ≤ i ≤ l, we then have that PsiaiPsi is a scalar multiple of Psi so that 
Diag(a1, . . . , al) is a scalar multiple of P f

Γ0
, see (2.12). If ai = T

(q)
s the scalar multiple is ∏

s∈V Γ0
ps(q). �

Lemma 3.1 shows that we may identify AΓ0 � C completely isometrically. Then in 
(2.15) note that Mk,d−k−l(C) ⊗hC = Mk,d−k−l(C). So for a right-angled Coxeter system 
we get by Lemma 3.1, (2.14) and (2.15),

Xd =
d⊕

l=0

d−l⊕
k=0

⊕
Γ0∈Cliq(Γ,l)

⊕
(Γ1,Γ2)∈Comm(Γ0)

Mk,d−k−l(C). (3.1)

Let pl,k,Γ0,Γ1,Γ2 be the projection of Xd onto the summand Mk,d−k−l(C) indexed by 
(l, k, Γ0, Γ1, Γ2). We equip Mk,d−k−l(C) with the inner product

〈x, y〉Tr = (Trd−k−l)(y∗x),

where Trd−k−l is the non-normalized trace that takes the value 1 on rank 1 projections. 
We further equip Xd with the direct sum of these inner products. For x ∈ Xd we let

‖x‖2,Tr = 〈x, x〉
1
2
Tr.

Then, as for any finite dimensional type I von Neumann algebra, we have

‖x‖ ≤ ‖x‖2,Tr. (3.2)

By Theorem 2.9 we obtain maps
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jd : χd(C∗
r,q(W )) → Xd, and πd : Dom(πd) ⊆ Xd → χd(C∗

r,q(W )),

with Dom(πd) = jd(χd(C∗
r,q(W ))) such that πd ◦ jd is the identity on C∗

r,q(W ) and

‖πd : Dom(πd) → Xd‖cb ≤ #Cliq(Γ)3d.

We now have the following orthogonality lemma.

Lemma 3.2. Let d ∈ N≥1, 0 ≤ l ≤ d, 0 ≤ k ≤ d − l, Γ0 ∈ Cliq(Γ, l), (Γ1, Γ2) ∈ Comm(Γ0). 
Let v, w ∈ W be reduced of length d. If the permutation σv given in Definition 2.3 exists 
we have

〈pl,k,Γ0,Γ1,Γ2jd(T (q)
v ), jd(T (q)

w )〉Tr = δ(v � w)
∏

s∈V Γ0

ps(q)2. (3.3)

If such σv does not exist then pl,k,Γ0,Γ1,Γ2jd(T
(q)
v ) = 0.

Proof. The final claim of the statement follows from the definition of jd. So it remains 
to prove (3.3) and we assume that σv as in Definition 2.3 exists. Since the right hand 
side of (3.3) has the term δ(v � w) we may assume that also σw exists. Moreover, by 
shuffling the letters of v and w if necessary, which does not change the operators T (q)

v

and T (q)
w , we may assume that σv and σw are the identity permutation.

For s ∈ S set

es = P f
s T

(q)
s P f,⊥

s and e′s = P f,⊥
s T (q)

s P f
s .

These form an orthonormal basis of the respective column Hilbert space L1 and row 
Hilbert space K1. Now write a reduced expression v = s1 · · · sd, si ∈ S. By assumption 
that σv was trivial we see that sk+1, . . . , sk+l commute and form a clique Γ0 in Γ. From 
Lemma 3.1 we find that

Diag
(
Psk+1T

(q)
sk+1

Psk+1 , . . . , Psk+l
T (q)
sk+l

Psk+l

)
= (

∏
s∈V Γ0

ps(q))P f
Γ0
.

It now follows from the definition of jd that

pl,k,Γ0,Γ1,Γ2jd(T (q)
v ) =

( ∏
s∈V Γ0

ps(q)
)
es1 ⊗ · · · ⊗ esk ⊗ e′sk+l+1

⊗ · · · ⊗ e′sd .

From this we can directly conclude (3.3). �
Theorem 3.3 (Khintchine inequality for right-angled Hecke C∗-algebras). Let (W, S) be a 
right-angled Coxeter system with finite generating set S and graph Γ. Let q = (qs)s∈S ∈
R(W,S)

>0 be a multi-parameter. Then for every d ∈ N≥1 there exist maps
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jd : χd(C∗
r,q(W )) → Xd, πd : Dom(πd) ⊆ Xd → χd(C∗

r,q(W )),

with jd(χd(C∗
q (W )) = Dom(πd) and Xd defined in (3.1) such that:

(i) πd ◦ jd is the identity on χd(C∗
r,q(W ));

(ii) ‖πd : Dom(πd) → C∗
r,q(W )‖cb ≤ (#Cliq(Γ))3d;

(iii) jd extends to a bounded map

L2(χd(C∗
r,q(W )), τq) → L2(Xd,Tr),

with bound majorized by 
∏

s∈S ps(q).

Proof. Statements (i) and (ii) are immediate from (1.7) and Theorem 2.9. We thus prove 
(iii). Let v ∈ I have length d. Since ‖T (q)

v Ω‖2 = 1 we find from (3.3) that

‖jd : L2(χd(C∗
r,q(W )), τq) → L2(Xd,TrXd

)‖ ≤ sup
v∈W,|v|=d

‖jd(T (q)
v )‖2,Tr ≤

∏
s∈S

ps(q).

This completes the proof. �
Theorem 3.4 (Haagerup inequality for right-angled Hecke C∗-algebras). Let (W, S) be a 
right-angled Coxeter group with finite generating set S. Let q = (qs)s∈S ∈ R(W,S)

>0 be a 
multi-parameter. Then for each d ∈ N≥1 and x ∈ χd(C∗

r,q(W )) we have

‖x‖ ≤ d(#Cliq(Γ))3(
∏
s∈S

ps(q))‖x‖2.

Proof. By respectively Theorem 3.3 (i), (3.2) and Theorem 3.3 (ii), (iii), we get for every 
x ∈ χd(C∗

r,q(W )),

‖x‖ =‖(πd ◦ jd)(x)‖ ≤ ‖πd‖‖jd(x)‖ ≤ ‖πd‖‖jd(x)‖2,Tr

≤d(#Cliq(Γ))3‖jd(x)‖2,Tr ≤ d(#Cliq(Γ))3(
∏
s∈S

ps(q))‖x‖2.

This completes the proof. �
4. On isomorphisms of Hecke algebras and their C∗- and von Neumann algebras

In this section we discuss isomorphism properties of Hecke algebras and in particular 
their dependence on q. These properties are well understood for finite Coxeter systems, 
which we summarize as follows.

Remark 4.1. By Tits’s deformation theorem, the Hecke algebras Cq [W ] of a given finite 
Coxeter system (W,S) are pairwise isomorphic to each other for different q ∈ R(W,S)

>0 , see 
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[11, Proposition 10.11.2]. The argument is based on the classification of finite-dimensional 
semi-simple algebras and the isomorphism is not explicit.

To the knowledge of the authors there is no general statement for arbitrary Coxeter 
systems (W, S) about the dependence on q ∈ R(W,S)

>0 of the isomorphism class of their 
Hecke deformations. However, in the case of right-angled (not necessarily finite) Coxeter 
systems one can still prove that all Hecke deformations are isomorphic; even with an 
explicit isomorphism. See e.g. [39, (2.1.13)], [42, Corollary 9.7] for this result which we 
present in an alternative way and which is suited for the next sections.

Proposition 4.2. Let (W,S) be a right-angled Coxeter system and q = (qs)s∈S ∈ R(W,S)
>0 . 

Then the map πq,1: C1 [W ] → Cq [W ] given by

1 
→ 1 and T (1)
s 
→ 1 − qs

1 + qs
+

2√qs

1 + qs
T (q)
s (4.1)

for s ∈ S defines an isomorphism of ∗-algebras.

Proof. Set αs (q) := (1 − qs) / (1 + qs) and βs (q) := 2√qs/ (1 + qs). Being its own in-
verse, for s ∈ S the expression αs (q) + βs (q)T (q)

s ∈ Cq [W ] is invertible. Hence we get 
a map S → Cq [W ]×, s 
→ αs (q) + βs (q)T (q)

s that uniquely extends to a group homo-
morphism φ on the free group F (S) in S. Since (W,S) is right-angled one easily checks 
that φ (st)ms,t = (φ (s)φ (t))ms,t for all s, t ∈ S. This implies that φ induces a group 
homomorphism φ′ : W → Cq [W ]× with (φ′(w))∗ = φ 

(
w−1) for every w ∈ W . The 

universal property of the group algebra C1 [W ] then implies the existence of the unital 
∗-algebra homomorphism πq,1. It is clearly surjective. The injectivity follows from the 
universal property of the Hecke algebra C1 [W ]. �
Remark 4.3. The homomorphism prescribed by (4.1) does not necessarily exist if (W,S)
is not right-angled. This already fails for the Coxeter system (W,S) with S = {s, t} and 
ms,s = mt,t = 2, ms,t = 3 and points out an inaccuracy in [22, Section 19, Note 19.2 on 
p. 358].

Remark 4.4. For a right-angled Coxeter system (W, S) with |S| ≥ 2 the isomorphism 
of Proposition 4.2 does not extend to an isomorphism C∗

r,1(W ) → C∗
r,q(W ) for all q ∈

R(W,S)
>0 . Indeed, in Example 6.3 we show that this cannot be the case. In the case |S| ≥ 3

this can also be proved through the simplicity of C∗
r,q(W ) in the same way as Remark 4.5, 

see Section 5.

Remark 4.5. Garncarek’s factoriality result of Theorem 0.3 illustrates that the iso-
morphism of Proposition 4.2 does not necessarily extend to an isomorphism of the 
corresponding Hecke-von Neumann algebras. Indeed, for q /∈

[
ρ, ρ−1] the Hecke-von 

Neumann algebra Nq(W ) is not a factor whereas N1(W ) is a factor. Hence there can 
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be no isomorphism at all between Nq(W ) and N1(W ). This was already observed in 
[22, Section 19, Note 19.2 on p. 358]. The situation is even more delicate, see the next 
Remark 4.6.

Remark 4.6 (Free factor problem). Consider the right-angled Coxeter group W =
(Z2)∗l, l ≥ 3. By Theorem 0.3 we see that for the single parameter q ∈ [ 1

l−1 , 1] we have 
that Nq(W ) is a II1-factor. Moreover, [27] together with a calculation in [31, Section 6]
shows that for q ∈ [ 1

l−1 , 1] we have that Nq(W ) � L(F2lq(1+q)−2) where L(Ft), t ∈ R>1 is 
the interpolated free group factor, cf. [27], [49]. By [27], [49], the interpolated free group 
factors are either all isomorphic or they are all non-isomorphic. The problem which of 
the two in this dichotomy is true is known as the famous free factor problem. Hence, 
solving the isomorphism question of Nq(W ) for different q ∈ [ 1

l−1 , 1] is equivalent to 
the free factor problem. In Section 5 we shall show that for q ∈ [ 1

l−1 , 1] we have that 
C∗

r,q(W ) has unique trace; therefore if any two C∗
r,q(W ) with q ∈ [ 1

l−1 , 1] are isomorphic 
we get by Lemma 1.1 that two of the von Neumann algebras Nq(W ), q ∈ [ 1

l−1 , 1] would 
be isomorphic. Since solving the free factor problem using these C∗-algebraic methods 
seems unrealistic4 we believe that all C∗

r,q(W ) with q ∈ [ 1
l−1 , 1] are non-isomorphic.

We finish this section with the following lemma which is well-known on the algebraic 
level, see for instance [42, Section 9]. For convenience of the reader we include the proof 
for the associated C∗- and von Neumann algebras here.

Proposition 4.7. Let (W,S) be a Coxeter system and q = (qs)s∈S ∈ R(W,S)
>0 , ε = (εs)s∈S ∈

{−1, 1}(W,S). Then C∗
r,q (W ) � C∗

r,q′ (W ) via T (q)
s 
→ εsT

(
q′
)

s where q′ := (qεss )s∈S ∈
R(W,S)

>0 .

Proof. Note that εsps(q′) = ps(q). Then from the defining properties of a Hecke algebra 

(1.3) and (1.4) we have that T (q)
s 
→ εsT

(q′)
s , s ∈ S determines a ∗-isomorphism πq′,q :

Cq[W ] → Cq′ [W ]. Moreover,

τq′ ◦ πq′,q(T (q)
w ) = εwτq′(T (q′)

w ) = εwδ(w = ∅) = δ(w = ∅) = τq(T (q)
w ),

so that πq′,q is trace preserving. By Lemma 1.1 πq′,q extends to a ∗-isomorphism 
C∗

r,q(W ) → C∗
r,q′(W ). �

5. Simplicity of Hecke C∗-algebras

A C∗-algebra is called simple if it does not contain any non-trivial closed two-sided 
ideal. In this section we investigate the (non-)simplicity of Hecke C∗-algebras.

4 And solving it in the affirmative using C∗-algebras seems even more unrealistic.
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Remark 5.1. Note that in order to study the simplicity of Hecke C∗-algebras it suf-
fices to consider irreducible Coxeter systems. Indeed, if (W,S) is a Coxeter system 
that is not irreducible, it admits a non-trivial decomposition of the form (W,S) =
(WT ×WT ′ , T ∪ T ′). For every q ∈ R(W,S)

>0 this induces a decomposition of the corre-
sponding Hecke algebra into an algebraic tensor product

Cq [W ] � Cq [WT ] �Cq [WT ′ ] .

By Lemma 1.1 this extends to the C∗- and von Neumann algebraic level

C∗
r,q (W ) � C∗

r,q (WT ) ⊗ C∗
r,q (WT ′) , Nq (W ) � Nq (WT )⊗Nq (WT ′) .

Since the (spatial) tensor product of two C∗-algebras is simple if and only if both C∗-
algebras are simple, it suffices to look at irreducible Coxeter systems.

Recall Garncarek’s characterization of factoriality of the single-parameter Hecke-von 
Neumann algebras of right-angled Coxeter groups, see Theorem 0.3. Another result re-
lated to the simplicity of Hecke C∗-algebras appears in [24] (see also [30] and [20]).

Theorem 5.2. An irreducible Coxeter group which is neither of spherical nor affine type 
is C∗-simple and has unique tracial state.

In the remaining sections we give partial answers to the question for a characterization
of those Hecke C∗-algebras that are simple and have unique tracial state. In the case of 
a free product of abelian Hecke C∗-algebras we obtain a complete answer.

5.1. Non-simplicity of Hecke C∗-algebras

Let (W,S) be a Coxeter system with |S| < ∞ and z := (zs)s∈S ∈ C(W,S). For every 
reduced expression w = s1...sn of w ∈ W define zw := zs1 ...zsn . The growth series of W
is the power series in z defined by

W (z) :=
∑
w∈W

zw.

We denote its region of convergence by R :=
{
z ∈ C(W,S) | W (z) converges

}
. For more 

information on the growth series see [22, Chapter 17]. We further set

R′ :=
{

(qεss )s∈S | q ∈ R ∩R(W,S)
>0 , ε ∈ {−1, 1}(W,S)

}
. (5.1)

Denote the closure of R′ in R(W,S)
>0 by R′.
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Lemma 5.3. Let (W,S) be a Coxeter system with |S| < ∞ and q ∈ R′. Then there exists 
a character on C∗

r,q (W ). In particular C∗
r,q (W ) is not simple and does not have unique 

tracial state.

Proof. First assume that q ∈ R′ with qs ≤ 1 for all s ∈ S. As shown in the proof of 
[31, Theorem 5.3], there exists a central projection Eq ∈ Nq (W ) with EqT

(q)
w = q

1/2
w Eq

for every w ∈ W (compare also with [22, Lemma 19.2.5] but note that our notational 
conventions differ slightly). Hence the map χq( · ) := τq ( · Eq) / ‖Eq‖2 is a character 
on C∗

r,q (W ) with χq(T (q)
w ) = q

1/2
w , w ∈ W . Its kernel is a non-trivial maximal ideal in 

C∗
r,q (W ).
For q ∈ R′ \ R′ with qs ≤ 1 for all s ∈ S choose a sequence (qn)n∈N≥1

⊆ R with 

qn → q. The map χ: T (q)
w 
→ q

1/2
w defines a character on Cq [W ]. For the finite sums 

x :=
∑

w∈W x (w)T (q)
w ∈ Cq [W ] and xn :=

∑
w∈W x (w)T (qn)

w ∈ Cqn [W ] we have 
xn → x in B

(
�2 (W )

)
and χqn (xn) → χ (x) with χqn defined as above. This implies

|χ (x)| = lim
n→∞

|χqn (xn)| ≤ lim
n

‖xn‖ = ‖x‖ ,

so χ extends to a character on C∗
r,q (W ). Hence C∗

r,q (W ) is not simple and does not have 
unique tracial state.

For general q ∈ R′ the statement follows from the above in combination with Propo-
sition 4.7 �

It follows from Lemma 5.3 that Hecke C∗-algebras coming from irreducible Coxeter 
systems of spherical or affine type are never simple and never have unique tracial state, 
see Corollary 5.4. We are aware of the fact that affine type Coxeter systems always give 
rise to type I Hecke C∗-algebras (see [39, §4]), which implies non-simplicity. However, the 
proof of this statement makes use of the (non-trivial) characterization of affine Coxeter 
groups in terms of affine Weyl groups and a resulting description of the corresponding 
Hecke algebras. The proof we present here is elementary.

Corollary 5.4. Let (W,S) be an irreducible Coxeter system of spherical or affine type. 
Then for any choice of parameter q ∈ R(W,S)

>0 there exists a character on the corresponding 
Hecke C∗-algebra C∗

r,q(W ). In particular, C∗
r,q(W ) is not simple and does not have unique 

tracial state.

Proof. First assume that |S| < ∞ and let q ∈ R(W,S)
>0 with qs ≤ 1 for every s ∈ S. Being 

of spherical or affine type the Coxeter group W is amenable. Hence by [22, Proposition 
17.2.1] the radius of convergence of the power series W (z) is one. But then q ∈ R∩R(W,S)

>0 , 
so C∗

r,q (W ) admits a character by Lemma 5.3. For general q ∈ R(W,S)
>0 , the statement 

follows with Proposition 4.7.
Next assume that |S| = ∞ and so (W,S) is of spherical type. Again, the map χ: T (q)

w 
→
q
1/2
w , w ∈ W defines a character on Cq [W ]. For every element x :=

∑
w∈W x (w)T (q)

w ∈
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Cq [W ] there exists a finite subset T ⊆ S such that the support {w ∈ W | x (w) �= 0}
of x is contained in the finite subgroup WT of W generated by T . Now WT is also a 
Coxeter group with the same exponents as W, see [22, Theorem 4.1.6 (i), Theorem 3.4.2 
(i)]. As in [22, Lemma 19.2.2] one sees that C∗

r,q (WT ) embeds into C∗
r,q (W ) canonically. 

Under this identification we have x ∈ C∗
r,q (WT ). But the map T (q)

w 
→ q
1/2
w is a character 

on the finite-dimensional C∗-algebra C∗
r,q (WT ), hence ‖χ (x)‖ ≤ ‖x‖. As this holds for 

every x ∈ Cq [W ], χ extends to a character on C∗
r,q (W ). �

5.2. Averaging operators

To show simplicity properties of Hecke C∗-algebras coming from right-angled, irre-
ducible Coxeter systems with at least three generators (see subsection 5.3), we will make 
use of a method inspired by Power’s averaging argument in [47]. This requires the in-
troduction of suitable averaging operators on the corresponding Hecke algebra which 
average over a finite subset of the Coxeter group. The statements of this subsection ap-
ply in greater generality. Therefore we will formulate our approach for arbitrary discrete 
groups.

Let G be a discrete group. Denote the left regular representation of G by λ, let τ be 
the canonical tracial state on C∗

r (G) and fix some finite set F ⊆ G. Every such F defines 
an averaging operator Φ on C∗

r (G) given by

Φ (x) := 1
|F |
∑
g∈F

λg−1xλg.

The map Φ is trace-preserving, unital and completely positive. In particular it induces 
a bounded operator Φ̃ on �2(G) �Cδe given by Φ̃ (xδe) := Φ (x) δe for all x ∈ C [G] with 
τ (x) = 0.

Proposition 5.5. Let G be a discrete group with the property that there exist three elements 
g1, g2, g3 ∈ G and a subset D ⊆ G \ {e} such that D∪ g1Dg−1

1 = G \ {e} and the sets D, 
g2Dg−1

2 and g3Dg−1
3 are pairwise disjoint. Take F := {e, g1, g2, g3}. Then the operator 

Φ̃ on �2(G) �Cδe has norm strictly smaller than one.

The proof of Proposition 5.5 is based on Ching’s following variation of Pukánszky’s 
14ε-argument in [48, Lemma 10].

Lemma 5.6. ([16, Lemma 4]) Let G be a group as in Proposition 5.5. Then

‖x− τ (x)‖2 ≤ 14 max
i=1,2,3

‖x− λg−1
i

xλgi‖2

for every x ∈ C∗
r (G).



32 M. Caspers et al. / Journal of Functional Analysis 280 (2021) 108795
Further, we shall need that for arbitrary vectors ξ0, . . . , ξn in a Hilbert space H we 
have the following equality, which for n = 1 is known as the parallelogram law:

‖
n∑

i=0
ξi‖2 +

∑
0≤i<j≤n

‖ξi − ξj‖2 = (n + 1)
n∑

i=0
‖ξi‖2. (5.2)

Note that (5.2) can be verified directly by writing out all norms as inner products.

Proof of Proposition 5.5. The norm of Φ̃ : �2(G) �Cδe → �2(G) �Cδe is clearly majorized 
by 1. Now suppose that ‖Φ̃‖ = 1. Take a sequence xk ∈ C[G] with τ(xk) = 0 and 
‖xkδe‖ = 1 such that ‖Φ̃(xkδe)‖ ↗ 1. Set ξki = λg−1

i
xkλgiδe with g1, g2, g3 as in the 

proposition and g0 the identity. By (5.2) we have

∑
0≤i<j≤3

‖ξki − ξkj ‖2 = 4
3∑

i=0
‖ξki ‖2 − ‖

3∑
i=0

ξki ‖2 = 42 − ‖4Φ̃(xkδe)‖2 → 42 − 42 = 0.

Therefore each of the individual summands on the left hand side converge to 0 as k → ∞. 
Since ξk0 = xkδe and ‖y‖2 = ‖yδe‖, y ∈ C[G] we see from Lemma 5.6 that ‖xk‖2 =
‖xk − τ(xk)‖2 → 0. This contradicts that ‖xkδe‖ = 1. We conclude that ‖Φ̃‖ < 1. �
5.3. Simplicity in the right-angled case for q close to 1

Let us now bring together the statements from Theorem 3.4 and Section 5.2.

Theorem 5.7. Let (W,S) be a right-angled, irreducible Coxeter system with 3 ≤ |S| < ∞. 
Then there exists an open neighborhood U ⊆ R(W,S)

>0 of 1 = (1s)s∈S such that for all 
q ∈ U the C∗-algebra C∗

r,q (W ) is simple and has unique tracial state.

Proof. As (W, S) is irreducible with |S| ≥ 3 we find elements s, t0, . . . , tn ∈ S with 
n ≥ 1, S = {s, t0, . . . , tn}, ms,t0 = ∞, t1 �= s and mti,ti+1 = ∞ for i = 0, . . . , n − 1. 
Then w1 := t0 · · · tn · · · t0, w2 := s, w3 := t1 and D := {w ∈ W | |t0w| < |w|} satisfy 
the conditions from Proposition 5.5. For every reduced expression w = s1 · · · sm in W
consider the operator

m∏
i=1

(
1 − qsi
1 + qsi

+
2√qsi
1 + qsi

T (q)
si

)
∈ C∗

r,q (W ) .

By the same arguments as in the proof of Proposition 4.2 this operator is unitary and 
does not depend on the reduced expression for w. By abuse of notation we will denote it 
by πq,1

(
T

(1)
w

)
. Choose a positive integer d with |w| ≤ d for all w in F = {e,w1,w2,w3}

and define a deformed averaging operator Φq on C∗
r,q (W ) by
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Φq (x) = 1
|F |

∑
w∈F

πq,1

(
T

(1)
w−1

)
xπq,1

(
T (1)
w

)
.

Again, these maps are trace-preserving, unital, completely positive and they induce con-
tractive linear operators Φ̃q on �2(W ) � Cδe via Φ̃q (xδe) := Φq (x) δe for x ∈ Cq [W ]. 
One easily checks that ‖Φ̃q‖ → ‖Φ̃‖ for q → 1. In particular, Proposition 5.5 implies that 
there exists an open neighborhood U ⊆ R(W,S)

>0 of 1 = (1s)s∈S such that Φ̃q has norm 
strictly smaller than 1 ∈ R for all q ∈ U .

Denote by χd the word length projection on C∗
r,q(W ) from equation (1.1) and put 

χ≤d :=
∑d

r=0 χr. Let l ≥ 1 and x ∈ χ≤d (Cq [W ]). Note that for every w ∈ F we have 

χr(πq,1(T (1)
w )) = 0 for r ≥ d. As Φl

q averages over 
{
πq,1(T (1)

w ) | w ∈ F
}

and χr(x) = 0
for r ≥ d, we get that χr(Φl

q(x)) = 0 for r ≥ (2l + 1)d. In particular

‖Φl
q (x) − τq (x) ‖ ≤

(2l+1)d∑
r=1

‖χr

(
Φl

q (x)
)
‖

by the triangle inequality and with C := (#Cliq(Γ))3(
∏

s∈S ps(q)) we have

‖Φl
q (x) − τq (x) ‖ ≤

(2l+1)d∑
r=1

Cr‖χr

(
Φl

q (x)
)
‖2

by Theorem 3.4. The Cauchy-Schwarz inequality then implies

‖Φl
q (x) − τq (x) ‖ ≤ ((2l + 1)d)

1
2

⎛⎝(2l+1)d∑
r=1

C2r2‖χr

(
Φl

q (x)
)
‖2
2

⎞⎠
1
2

≤ C ((2l + 1)d)
3
2

⎛⎝(2l+1)d∑
r=1

‖χr

(
Φl

q (x)
)
‖2
2

⎞⎠
1
2

= C ((2l + 1)d)
3
2 ‖Φl

q (x) − τq ◦ Φl
q (x) ‖2

≤ C ((2l + 1)d)
3
2 ‖Φ̃q‖l‖x− τq (x) ‖2.

For q ∈ U this converges to 0 as l → ∞. The simplicity and the unique trace property 
of C∗

r,q (W ), q ∈ U now follow by a standard argument (see for instance [47]): Let I
be a non-zero ideal in C∗

r,q (W ). Choose 0 �= x ∈ I positive. For every ε > 0 we find 
xε ∈ Cq [W ] with ‖x− xε‖ < ε/3. For l large enough this implies

‖Φl
q (x) − τq (x) ‖ ≤ ‖Φl

q (x− xε) ‖ + ‖Φl
q (xε) − τq (xε) ‖ + ‖τq (xε) − τq (x) ‖

< ε, (5.3)
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so 0 �= τq (x) ∈ I. Hence I must be trivial and this shows that C∗
r,q (W ) is simple if q ∈ U . 

Further, as Φl
q (x) → τq (x) by (5.3) and τ ′

(
Φl

q (x)
)

= τ ′ (x) for every tracial state τ ′, 
C∗

r,q (W ) has τq as its unique tracial state. �
Remark 5.8. (a) Theorem 5.7 immediately implies that for q ∈ U the Hecke-von Neumann 
algebra Nq (W ) is a II1-factor by uniqueness of the trace and Lemma 1.1. This extends 
results by Garncarek [31] to the multi-parameter case; note that the proof from [31] does 
not trivially extend to the multi-parameter case. Note: After completion of this paper 
the factoriality question in the right-angled multi-parameter case was fully solved by 
Raum and Skalski in [45].
(b) Theorem 5.7 does not give any information about the simplicity of Hecke C∗-algebras 
of infinitely generated Coxeter groups unless q equals 1.

5.4. Free products of Abelian Coxeter groups

In this section we want to investigate the maximum size of the open neighborhood 
U ⊆ R(W,S)

>0 in Theorem 5.7. Though our aim is different, the approach is inspired by 
[31, Section 6] and translates the remarks made there into the C∗-algebraic setting by 
using results from [28].

Let us assume that (W,S) is a Coxeter system where W is of the form W = Zk1
2 ∗ · · · ∗

Zkl
2 with l, k1 ≥ 2 and k2, . . . , kl ∈ N≥1. For each 1 ≤ m ≤ l denote by s(m)

1 , . . . , s(m)
km

the mutually commuting generators corresponding to the component Zkm
2 of W and set 

Sm :=
{
s
(m)
1 , . . . , s

(m)
km

}
, so in particular S =

⋃l
m=1 Sm. Let q ∈ R(W,S)

>0 . The Hecke 

C∗-algebra C∗
r,q (W ) decomposes as a reduced free product

(
C∗

r,q (W ) , τq
)
� ∗lm=1

(
km⊗
i=1

(
C∗

r,q

(
W

s
(m)
i

)
, τq

))

over the canonical traces. In the notation of [28] we get using [31, Lemma 6.2] that

(
C∗

r,q (W ) , τq
)
� ∗lm=1

(
C
(
Zkm

2

)
,

∫
(·) μm

)
, (5.4)

where μm (w) = qw
∏km

i=1

(
1 + q

s
(m)
i

)−1
for w ∈ Zkm

2 .

Proposition 5.9. Let (W,S) be a Coxeter system of the form W = Zk1
2 ∗ · · · ∗ Zkl

2 where 
l, k1, . . . , kl ∈ N≥1 and q ∈ R(W,S)

>0 . Then the growth series W (z) of W is equal to the 
Taylor expansion of the multivariate function

z 
→
(

l∑ km∏(
1 + z

s
(m)
i

)−1
− (l − 1)

)−1

. (5.5)

m=1 i=1



M. Caspers et al. / Journal of Functional Analysis 280 (2021) 108795 35
The series converges for every element in

Ω :=
{

(zs)s∈S ∈ C(W,S) ∩ [0, 1]S |
l∑

m=1

km∏
i=1

(
1 + z

s
(m)
i

)−1
> l − 1

}
,

i.e. Ω ⊆ R where R is the region of convergence of W (z).

Proof. It is clear that the multivariate function z 
→
∑

w∈W zw converges absolutely 
on a domain U around 0 and that it defines a holomorphic function there. Put Am :={
w ∈ W | w starts in Zkm

2

}
where we assume by convention that e ∈ Am. For every 

z ∈ U and m = 1, . . . , l we have

W (z) = 1 +
∑

w∈Am\{e}
zw +

∑
w∈Ac

m

zw

= 1 +
∑

v∈Zkm
2 \{e}

zv +
∑

v∈Zkm
2 \{e}

zv
∑

w∈Ac
m

zw +
∑

w∈Ac
m

zw

=

⎛⎝ ∑
v∈Zkm

2

zv

⎞⎠⎛⎝1 +
∑

w∈Ac
m

zw

⎞⎠
=

⎛⎝1 +
∑

w∈Ac
m

zw

⎞⎠ km∏
i=1

(
1 + z

s
(m)
i

)
.

We get, by using this in the third line of the next equalities, that

W (z) = 1 +
l∑

m=1

∑
w∈Am\{e}

zw

= 1 +
l∑

m=1

⎛⎝W (z) − 1 −
∑

w∈Ac
m

zw

⎞⎠
= 1 +

l∑
m=1

(
1 −

km∏
i=1

(
1 + z

s
(m)
i

)−1
)
W (z)

and hence

W (z) =
(

l∑
m=1

km∏
i=1

(
1 + z

s
(m)
i

)−1
− (l − 1)

)−1

. (5.6)

This implies that the growth series W (z) of W is equal to the Taylor expansion of (5.5)
in 0. From (5.6) we also find that
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W (z) = (1 −Q (z))−1 ∏
s∈S

(1 + zs) (5.7)

with the polynomial

Q (z) := 1 + (l − 1)
∏
s∈S

(1 + zs) −
l∑

m=1

∏
n �=m

kn∏
j=1

(
1 + z

s
(n)
j

)
.

One has Q (0) = 0. With DαQ denoting the higher order partial derivative of Q with 
respect to 0 �= α ∈ {0, 1}S we have

DαQ|z=0 =

⎡⎣(l − 1)
∏

s∈S: αs=0
(1 + zs) −

∑
m∈J

∏
n �=m

∏
j∈Kn

(
1 + z

s
(n)
j

)⎤⎦
z=0

= (l − 1) −
∑
m∈J

1

≥ 0,

where J := {m | 1 ≤ m ≤ l with αs = 0 for all s ∈ Sm} and

Kn :=
{
j | 1 ≤ j ≤ km with α

s
(n)
j

= 0
}

.

This implies that Q has only positive coefficients. Hence for z ∈ Ω we have Q(z) ≥ 0. 
Moreover, for z ∈ Ω we have W (z) > 0 and so by (5.7) we have 0 ≤ Q (z) < 1.

Further, for any z ∈ C(W,S) with 0 ≤ Q (z) < 1 we can expand and rearrange the 
terms in the series 

∑∞
m=0 (Q (z))m to get the (converging) Taylor series of (1 −Q (z))−1. 

The same is true for the product (1 −Q (z))−1∏
s∈S (1 + zs). Combining this with the 

previous paragraph we get that the Taylor series of the function in (5.5) (which is the 
growth series W (z)) converges on Ω. �

Taking into account [28, Corollary 4.10], Proposition 5.9 implies the following.

Theorem 5.10. Let (W,S) be a Coxeter system of the form W = Zk1
2 ∗ · · · ∗ Zkl

2 where 
l, k1 ≥ 2 and let q ∈ R(W,S)

>0 . Then the following statements are equivalent.

(1) C∗
r,q (W ) is simple and has unique tracial state;

(2) q /∈ R′, where R′ is defined in (5.1).

Proof. (1) ⇒ (2): Assume that q ∈ R′. Then C∗
r,q (W ) is not simple and does not have 

unique tracial state by Lemma 5.3.
(2) ⇒ (1): Assume that C∗

r,q (W ) is not simple and does not have unique tracial 
state. Assume further that 0 < qs ≤ 1 for every s ∈ S. Using [28, Proposition 4.10] in 
combination with (5.4) we get that the set
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{
(w1, ...,wl) ∈

l∏
m=1

Zkm
2 | l − 1 ≤

l∑
m=1

qwm

km∏
i=1

(
1 + q

s
(m)
i

)−1
}

is not empty, so in particular

l − 1 ≤ max
(w1,...,wl)∈

∏l
m=1 Z

km
2

(
l∑

m=1
qwm

km∏
i=1

(
1 + q

s
(m)
i

)−1
)

≤
l∑

m=1

km∏
i=1

(
1 + q

s
(m)
i

)−1
.

Comparing this with Proposition 5.9, we get that q ∈ R′. The general case of q ∈ R(W,S)
>0

follows by an application of Proposition 4.7. �

Remark 5.11. Proposition 5.9 also implies that the reasoning in [31, Section 6] applies to 
the multi-parameter Hecke-von Neumann algebra Nq (W ) with W as in Theorem 5.10. 
In other words, Nq (W ) is a factor if and only if q /∈ R′. Note: After completion of this 
paper this result was extended to arbitrary irreducible right-angled Hecke von Neumann 
algebras with |S| ≥ 3 in [45].

Remark 5.12. In the proof of Theorem 5.10 we only used the simplicity part of [28, 
Corollary 4.10]. For W as above the full statement of the corollary also provides a 
detailed description of the ideal structure of C∗

r,q (W ) for q ∈ R′. Further we conclude 
by [28, Corollary 4.10] that for l ≥ 3 the Hecke C∗-algebra C∗

r,q(W ) has stable rank 1
for every q.

In view of Lemma 5.3, Proposition 4.7, Theorem 5.7 and Theorem 5.10 it is a natural 
question whether or not the characterization above holds for general Coxeter systems.

Question 5.13. Let (W,S) be an irreducible Coxeter system and q ∈ R(W,S)
>0 . Is it true 

that the Hecke C∗-algebra C∗
r,q (W ) is simple and has unique tracial state if and only if 

q /∈ R′ where R′ is defined as in (5.1)?

Remark 5.14. Recently a new approach to C∗-simplicity results was obtained through 
Furstenberg/Hamana boundaries, see [37], [9], [4]. In particular, in [4] the Furstenberg 
boundary of a general unitary representation of a discrete group was defined and in-
vestigated in relation to trace-uniqueness properties. Proposition 4.2 shows that Hecke 
C∗-algebras of a right-angled Coxeter group are C∗-algebras generated by such a unitary 
representation. It would be interesting to exploit this connection. However, in light of 
the results from [4], it is not clear how manageable the Furstenberg-Hamana boundary 
is.
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6. Exactness and nuclearity of Hecke C∗-algebras

The aim of this last section is to have a look at additional properties of Hecke C∗-
algebras such as exactness and nuclearity and give (counter-)examples regarding the 
extension of the isomorphism πq,1 in Proposition 4.2 to the C∗-algebraic level.

Theorem 6.1. Let (W,S) be a Coxeter system and q = (qs)s∈S ∈ R(W,S)
>0 . Then C∗

r,q (W )
is an exact C∗-algebra.

Proof. By [25] (see also [1]) the group W acts amenably on a compact space. Therefore, 
by [10, Theorem 5.1.7] W is exact. With Ps as defined in (1.6), we have T (q)

s = T
(1)
s +

ps(q)Ps for s ∈ S. The Hecke C∗-algebra C∗
r,q (W ) is generated by 

{
T

(q)
s

}
s∈S

and we 

have Ps ∈ �∞(W ) ⊆ B
(
�2(W )

)
. Hence C∗

r,q (W ) is contained in the uniform Roe algebra 
of W which is nuclear by [10, Theorem 5.1.6]. That implies the exactness of C∗

r,q (W ). �
The following theorem generalizes [12, Theorem 3.6].

Theorem 6.2. Let (W,S) be an irreducible Coxeter system and q ∈ R(W,S)
>0 . Then the 

following statements are equivalent:

(1) (W,S) is of spherical or affine type;
(2) C∗

r,q (W ) is nuclear for all q;
(3) C∗

r,q (W ) is nuclear for some q;
(4) Nq (W ) is injective for all q;
(5) Nq (W ) is injective for some q.

Proof. (1) ⇒ (2): If (W,S) is of spherical type, then C∗
r,q (W ) is finite-dimensional or 

an inductive limit over finite-dimensional C∗-algebras, and in either case nuclear. So let 
us assume that (W,S) is of affine type. It is well-known that affine Coxeter systems 
correspond to affine Weyl groups, see for example [7, Chapter VI]. From the discussion 
in [39, §4] it follows that the Hecke C∗-algebra C∗

r,q (W ) must be of type I. In particular 
it is nuclear, see [46].

(2) ⇒ (3): Clear.
(3) ⇒ (5): If C∗

r,q (W ) is nuclear for some q, then the bicommutant Nq (W ) =(
C∗

r,q (W )
)′′ must be injective [10, Exercise 3.6.4, Corollary 3.8.6 and Theorem 9.3.3].

(5) ⇒ (1): Let (W, S) be an irreducible Coxeter system of non-affine type. By [22, 
Proposition 17.2.1], W contains the free group on two generators. Denote the corre-
sponding generators by a1, a2 and let M be the von Neumann subalgebra of Nq (W )
generated by T (q)

a1 and T (q)
a2 . Let further M1 be the von Neumann algebra generated 

by T (q)
a1 and M2 the one generated by T (q)

a2 . Then M is isomorphic to the free product 
(M1, τq,1) ∗ (M2, τq,2) over the canonical traces. The dimensions of M1, M2 are infi-
nite, so M is non-injective by [52, Theorem 4.1 and Remark 4.2 (5)]. But there exists a 
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trace-preserving normal conditional expectation E: Nq (W ) � M (see for example [10, 
Lemma 1.5.11] or [12, Corollary 3.3]), so Nq (W ) must be non-injective as well.

(2) ⇔ (4): Clear from the arguments above. �
We have seen that for spherical type Coxeter systems the corresponding Hecke C∗-

algebras are independent of the choice of q. Further, if the Coxeter system (W,S) is right-
angled and amenable, then the map πq,1 from Proposition 4.2 extends to a surjection 
C∗

r (W ) � C∗
r,q (W ) for every q. It is a natural question whether or not this map is an 

isomorphism as well. This is not always the case as the following example illustrates.

Example 6.3. Let (W,S) be the Coxeter system generated by two elements s, t with 
ms,s = mt,t = 2, ms,t = ∞. This is the infinite dihedral group which is the only irre-
ducible right-angled Coxeter group of affine type. Let C∗

r,0 (W ) ⊆ B
(
�2(W )

)
be the unital 

C∗-algebra generated by Ps and Pt defined in (1.6). Assume that πq,1 of Proposition 4.2
extends to a ∗-isomorphism for every q ∈ R(W,S)

>0 . Then the map Pu 
→ (1 − T
(1)
u )/2, 

u ∈ S extends to a ∗-isomorphism π0,1: C∗
r,0 (W ) � C∗

r (W ) as well. Indeed, using Propo-
sition 4.2 one checks that as q ↓ 0 we have

π−1
q,1 (x) →

∑
w∈W

x (w)π−1
0,1

(
T (1)
w

)
= π−1

0,1 (x)

in B
(
�2(W )

)
for every x :=

∑
w∈W x (w)T (1)

w ∈ C1 [W ]. Hence,

‖π−1
0,1 (x) ‖ = lim

q↓0
‖π−1

q,1 (x) ‖ = ‖x‖

as πq,1 is isometric. Since the C∗-algebra C∗
r,0 (W ) is commutative, we have reached a 

contradiction.

The example illustrates that πq,1 in general does not extend to an isomorphism of 
(reduced) C∗-algebras. In the non-affine case it gets even worse. Here πq,1 and π−1

q,1 never 
extend to the reduced C∗-algebra level for arbitrary choice of q.

Example 6.4. Let (W,S) be an irreducible right-angled Coxeter system of non-affine type. 
By Theorem 5.7 the reduced group C∗-algebra C∗

r (W ) has unique tracial state. The map 
πq,1 is not trace preserving with respect to the canonical trace. Hence it does not extend 
to the reduced C∗-algebraic level. To see that π−1

q,1 does in general not extend, one can 
use the same argument as in Example 6.3 or the trace-uniqueness in Theorem 5.7.
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