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Abstract 

In this paper, by considering the absorbed energy in the fracture process zone and extension of the 

minimum strain energy density theory for orthotropic materials, a new mixed mode I/II failure 

criterion was proposed. The applicability of the new criterion, to predict the crack growth in both 

laminated composites and wood species, was investigated. By defining a suitable damage factor 

and using the mixed mode I/II micromechanical bridging model, the absorbed energy in the 

fracture process zone was considered. It caused the new criterion to be more compatible with the 

nature of the failure phenomena in orthotropic materials unlike available ones that were 

conservative. A good agreement was obtained between the fracture limit curves extracted by the 

present criterion and the available experimental data. The theoretical results were also compared 

with those of the minimum strain energy density criterion to show superiority of the newly 

https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:Shokrieh@iust.ac.ir


proposed criterion. 
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Nomenclature 

FPZ Fracture process zone 

SED Strain energy density 

MTS 

SER 

Maximum tangential stress 

Strain energy release 

MSS Maximum shear stress 

SIF Stress intensity factor 

DCB Double cantilever beam 

MMB Mixed mode bending 

ENF End notched flexure  
w  Strain energy density function 

cw  Critical strain energy density 

FPZw
 

Strain energy density of fracture process zone 

IFPZw , 
IIFPZw

 
Strain energy density of FPZ under pure mode I and pure mode II 

W  Strain energy 

ij  Stress field around the crack tip 

ij  Strain field around the crack tip 

IK , IIK  Mode I and mode II stress intensity factor 

IcK , IIcK  Mode I and mode II fracture toughness 

IFPZK , 
IIFPZK

 
Stress intensity factor of FPZ under pure mode I and pure mode II 

r
 

Distance from the crack tip 

  Angle from the crack tip 

0  Crack initiation angle 

0I
 , 0II

  Crack initiation angle under mode I and mode II loading 

ijC  Components of compliance matrix for the plane stress conditions 

ijC  Components of compliance matrix for the plane strain conditions 

S
 

Strain energy density factor 

crS  Critical strain energy density factor 

  Damage factor 
  Modified damage factor 

  Toughening damage factor 

FPZ  
FPZ damage factor  



, 1,2,3i i 
 

Inverse of defined damage factors 

G
 

Strain energy release rate 

FPZG  Energy absorbed by the fracture process  zone 

IFPZG , 
IIFPZG

 
Absorbed energy of FPZ under pure mode I and pure mode II 

PeG  Energy absorbed by the fiber peel-off 

DebondingG  Energy absorbed by the fiber-matrix debonding  

nG , tG  Normal and tangential components of energy contribution of bridging 

fiber analyzed as a beam  

IE , IIE
 

Generalized elastic moduli  

PeL  Fiber peel-off length 

d  Fiber diameter 

fE  Young's modulus of the fiber  

PuL  Fiber pull-out length 

dL
 

Length of debonding zone 

bf  Fiber tensile strength 

n , t  Normal and tangential crack opening displacement 

nT , tT  Normal and tangential traction of the bridging zone 

nf , tf  Force per fiber in normal and tangential directions 

0n  Initial number of bridging fibers per unit area 

n  Number of bridging fibers per unit area 
a  Dimensionless coefficient 

0l  Initial bridging length 

i  
Interface frictional shear resistance 

fA  The cross-sectional area of the bridging fiber 


 The angle between the bridging fiber and crack surface 

ref  Weibull reference strength 

refl  Weibull reference length 

m  Weibull modulus of the fiber 

bc  Dimensionless correction factor 


 

Stress in the bridging fiber 

icG  Interfacial debonding energy 

1, 2,3
,

, ,
i

i
E

i L R T



  

Young’s moduli in the i direction 

L, R, T

 

Wood Longitudinal, Radial, Tangential direction 

ijG
 

Shear modulus 

ij
 

Poisson’s ratio 



 

1. Introduction 

Delamination is one of the most important failure modes in laminated composites and commonly 

happens under mixed mode I/II loading. The quasi-brittle delamination failure of orthotropic 

composite materials is generally associated with the creation of a fracture process zone (FPZ) 

around the delamination tip. This zone contains toughening mechanisms such as fiber bridging 

and micro-cracking that delay the fracture phenomenon by the energy absorption [1-3]. Therefore, 

a failure criterion, capable of considering the fracture process zone effects, presents a more 

accurate estimation of the failure in orthotropic composite materials. Various failure criteria [4-6] 

are available for predicting delamination growth in laminated composites under the mixed mode 

I/II loading. The delamination behavior of laminated composites is a complex phenomenon due to 

the formation of FPZ at the crack tip, especially in the mixed mode I/II loading. Due to these 

complications, the first criteria presented in this field were based on curve fitting of experimental 

data [7-10]. Most of these empirical criteria are old, and there is some material constant in these 

criteria that must be obtained by experiments for each crack configuration. 

Another approach has been used by some researchers to present a suitable orthotropic mixed mode 

I/II failure criterion by extending the well-known isotropic fracture theories to orthotropic 

materials. Jernkvist in 2001 [11] extended several available isotropic fracture theories, namely 

maximum strain energy release rate (SER) [12], minimum strain energy density (SED) and 

maximum tangential stress (MTS) theories [13], to develop mixed mode I/II failure criteria for 

prediction of the mixed mode I/II fracture of wood specimens as orthotropic materials. The 

introduced criteria by Jernkvist were so conservative and the extracted results were not consistent 

with experimental data [15]. This incompatibility is attributed to linear assumptions during the 



fracture analysis and ignoring the absorbed energy by toughening mechanisms such as micro-

cracks formation in FPZ. In 2013, Fakoor et al. [16] extended the maximum shear stress (MSS) 

criterion to orthotropic materials, which resulted in the well-known ‘Wu’ criterion presented for 

mixed-mode fracture prediction in orthotropic materials. 

The FPZ effects have not been sufficiently considered in the available mixed-mode I/II failure 

criteria. Some other research has considered the effects of FPZ through a damage factor. 

Romanowicz et al. in 2008 [17] correctly understood that the FPZ has an important role in failure 

process of orthotropic materials. They proposed a mixed mode I/II failure criterion employing a 

non-local stress fracture criterion to orthotropic materials based on the damage model of an elastic 

solid containing growing micro-cracks. By defining a damage factor in their model, the effect of 

FPZ was considered. But, because of the dependence of this factor on complicated parameters such 

as the micro-crack density and the actual micro-crack size, they could not calculate the proposed 

damage factor appropriately. In 2010, Anaraki et al. [18] proposed a general mixed mode I/II 

failure criterion applicable to orthotropic materials considering a damage factor for FPZ based on 

calculated damage properties for an elastic solid containing randomly distributed micro-cracks. 

Also, they calculated the introduced damage factor using strength properties of orthotropic 

materials along and perpendicular to fibers with a combination of micro- and macro-approaches 

in another research [19]. Their approach in calculating the damage parameter was completely 

theoretical and was not supported by any experimental evidence. Recently, Fakoor et al. [20] 

extended the concept of the damage factor employing a micromechanical approach together with 

experimental tests. 

As it can be found out from the above literature review, an efficient mixed mode I/II failure 

criterion that can properly consider the effects of FPZ and related toughening mechanisms has not 



been developed yet. Nearly all research conducted so far, has focused on the effects of the micro-

cracks formation in the FPZ by defining a damage factor based on the properties of this zone. 

Despite the fiber bridging as a toughening mechanism plays a significant role in delamination 

failure of laminated composites, but till now in the proposed criteria, the fiber bridging effects 

have not been taken into account. 

The main objective of the present study is to propose a mixed mode I/II failure criterion to consider 

effects of energy absorbed in the FPZ due to the formation of toughening mechanisms, such as 

fiber bridging and micro-cracking. In the present work, the minimum strain energy density theory 

available for isotropic materials [13, 14] was extended to orthotropic materials and modified in 

two steps. First, the crack initiation angles under mode I and mode II loading were calculated 

different from zero. The second modification was done by adding a term of the strain energy 

density of FPZ to the equations for considering the effects of this zone. According to this approach, 

a new mixed mode I/II failure criterion expressed in terms of the mixed mode stress intensity 

factors for orthotropic materials is proposed. This new criterion takes into account the effects of 

absorbed energy in the FPZ by defining a suitable damage factor. Implementation of the proposed 

criterion for prediction of mixed mode I/II crack growth is straightforwardly possible by 

considering the mode I fracture toughness, elastic properties of the material and the energy 

absorbed by the FPZ. This absorbed energy is obtained from the mixed mode I/II micromechanical 

bridging model based on breakdown of the failure micro-mechanisms involved in the fiber 

bridging phenomenon. Some verifications have been done with several available experimental data 

for both laminated composites and wood species. 

 

2. Theoretical background 



In order to derive a mixed mode I/II failure criterion for orthotropic materials we first briefly 

review the minimum strain energy density theory of this kind of materials. Sih [13] has proposed 

a fracture theory based on the local strain energy density at the crack tip. Consider a structure with 

a through-crack that extends on the x1-x3 plane in a linear-elastic orthotropic material. In this case, 

the strain energy stored in a volume element dV is defined as the strain energy density, w , around 

the crack tip: 

1

2
ij ij

dW
w

dV
    (1) 

The stress field around the crack tip of an orthotropic cracked body is given by [21]: 

1
( ( ) ( )), ( , 1,2)

2
ij I ij II ijK f K g i j

r
  


    (2) 

where the polar components r  and   are defined in Fig. 1, and the angular functions ( )ijf 
 
and 

( )ijg   depend on the plane strain constitutive matrix and defined in [21] as follows: 

2 2
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 (3) 

where 

1 21 1

2 2
1 2

1 1
,

( ) ( )

F F

Cos x Sin Cos x Sin   

 

 

 
(4) 

1x  and 
2x  are the conjugate pair of roots of the following characteristic equation. 

02)2(2 2226

2

6612

3

16

4

11  CxCxCCxCxC  (5) 
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where the coefficients ijC  are derived from the following material constitutive relation 

( )i ij jC  : 
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Only five quantities of ijC  (
11 22 12 21, , ,C C C C  and 

66C ) are relevant to the x1-x2 plane stress 

conditions. For the conditions of plane strain, four of the in-plane compliances need to be replaced 

by ijC  that can be related to ijC  as follows: 

3 3

33

, ( , 1,2)
i j

ij ij

C C
C C i j

C
     (7) 

 

 

Fig. 1. Stress components around the crack tip of a cracked body. 

 

Under plane strain conditions, substituting Eq. (6) into Eq. (1) yields the following form for the 

strain energy density: 



2 2 26611 22
11 22 12 11 22 12

2 2 2

CC C
w C    

 
     (8) 

By substitution of the crack tip singular stress state from Eq. (2) into Eq. (8): 

2 2

1 2 3( ) ( ) 2 ( )I II I IIw K A K A K K A      (9) 

where the coefficients 
iA , for i = 1, 2 and 3, are complicated functions of the orthotropic material 

constants and depend on the angle   and defined by: 

2 2 26611 22 12
1 11 22 11 22 12
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4

C
f f

r
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

 
 

 

 (10) 

Hence, the amplitude or the intensity of the strain energy density field, namely strain energy 

density factor, S , is given by: 

2 2

1 2 3( ) ( ) 2 ( )I II I II

dW S
w S K D K D K K D

dV r
         (11) 

where coefficients ( ) ( )i iD rA  . The minimum strain energy density theory states that: 

(1) Crack initiation occurs in a direction determined by the minimum strain energy density 

factor: 

2

02
0 0

S S
and at  

 

 
  

 
 (12) 

(2) Crack growth occurs when the minimum strain energy density factor reaches its critical 

value: 

min 0crS S at     (13) 

3. Derivation of failure criterion 



The mixed mode I/II failure criterion proposed by Jernkvist [11] was based on a general 

simplifying assumption that the crack propagation direction in wood components is along the 

fibers ( 0 0  ), under any of the loading modes. In his analysis, it was also assumed that the critical 

strain energy density, cw , can be used as an intrinsic material parameter whose value is 

independent of the degree of mode mixity. So, all differences between the toughening mechanisms 

of FPZ under mode I and mode II are ignored. By extending the minimum strain energy density 

theory to wooden structures as orthotropic materials together with these simplifying assumptions, 

he derived a mixed mode I/II failure criterion in terms of the stress intensity factors as follows 

[11]: 

2 2 2

I II IcK K K   (14) 

in which,   is a damage factor and given by: 

2

66 12

2 2

1 11 11 22 22 12 11 22

(0)1

(0) (0) 2 (0) (0)

C g

C f C f C f f




 
   

    
 (15) 

The critical strain energy density approach can be used in order to investigate the delamination 

failure in orthotropic laminated composites. Unlike isotropic materials, in composite materials the 

crack initiation angle 0  is different from zero even under pure mode I loading [22]. So, in order 

to propose a mixed mode I/II failure criterion for prediction of the delamination growth in 

laminated composites, the criterion in Eqs. (14) and (15) has been modified in the following. An 

example of the initial crack initiation angle in delamination of a glass/epoxy laminated composite 

under pure mode I, mixed mode I/II (50%) and pure mode II is shown in Fig. (2). The photographs 

in Fig. (2) were obtained from double cantilever beam (DCB), mixed mode bending (MMB) and 

end notched flexure (ENF) tests performed by the authors and will be fully described in another 

publication. 

Met opmerkingen [RA-L1]: Is it loading mode, or an opening 
mode? 

It is any of the loading modes because Jernkvist in his work assumed 

that the crack propagation direction in wood is given by the fiber 
direction (theta=0), independent of the loading mode. 

Met opmerkingen [RA-L2]: Why the ‘(0)’ in the eq? 

Jernkvist assumed that the crack propagation direction is along the 
wood fibers (theta=0). So, theta equal to zero is substituted in the 

related equations. 



 

 

 

Fig. 2. Crack initiation angle in delamination of a glass/epoxy laminated composite under (a) 

Pure mode I, (b) Mixed mode I/II (50%) and (c) Pure mode II. The tests were performed by the 

authors. 

 



Consider a failure criterion as follows:  

2 2

1 0 2 0 3 0( ) ( ) 2 ( )I II I II cw K A K A K K A w       (16) 

For the cases of the pure mode I and pure mode II, Eq. (16) is in the following simple forms: 
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


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where 0I
  and 0II

  are the crack initiation angle under mode I and mode II loading. In this analysis, 

the critical strain energy density is still considered as a material parameter, independent of the 

loading mode. Since the criterion in Eq. (16) should be applicable for both pure mode I and pure 

mode II loading, we have: 

2
1 0

22

2 0

( )

( )

I

II

IIc

Ic

AK

K A





   (18) 

Using this relation in Eq. (16), a mixed mode failure criterion in terms of stress intensity factors 

can be expressed as: 

2 2 2

I II IcK K K   (19) 

where   as a “modified damage factor” is defined by: 

2 2 2
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 (20) 

It can be seen that Eq. (20), in the case of 0 0 0 0
I II

     , reduces to Eq. (15) which has been 

proposed by Jernkvist [11]. For determination of  , we need to calculate the values of the crack 

initiation angles under pure mode I and pure mode II, 0I
  and 0II

 . To this end, consider the 

delamination under pure mode I and pure mode II loading in a linear-elastic orthotropic composite 

laminate. Using Eq. (11), the strain energy density factors for the pure mode I and II are given by: 

https://www.sciencedirect.com/science/article/pii/S0013794400001272#FD8
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Applying conditions expressed in Eq. (12) to Eq. (21), we have: 

2

1 1
02

2

2 2
02

( ) ( )
0, 0

( ) ( )
0, 0

I

II

Pure Mode I

Pure Mode II

D D
at

D D
at

 
 

 

 
 

 

 
   

 

 
   

 

 (22) 
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(24) 

Since above equations are non-linear and complex, it is too difficult to obtain 0I
  and 0II



theoretically. This is one of the reasons that Jernkvist assumed the crack propagation direction is 

followed by the fiber direction [11]. In the present research, solving the resulting equations (Eqs. 

(22-24)) numerically for the given material properties, it is found that the angle in which the 

function 1D  reaches its minimum is the angle predicted for the first crack propagation under pure 

mode I delamination ( 0I
 ). Similarly, the angle in which the function 2D  achieves its minimum 

value is the angle predicted for the first crack propagation under pure mode II delamination ( 0II
 ). 

The delamination failure phenomenon in laminated composites is accompanied by the formation 

of the FPZ at the crack tip. There are several toughening mechanisms in this zone that delay the 



fracture by absorbing energy. The activation of these mechanisms and the extent of their effects 

depend on the loading mode. For example, fiber bridging which is often activated by the presence 

of mode I loading is more effective in predominantly mode I than the micro-cracking which is 

often due to the presence of mode II loading and therefore more effective in predominantly mode 

II [23]. Photographs and schematic of fracture process zone with related toughening mechanisms 

in delamination of laminated composites are presented in Fig. 3. The photographs in Fig. 3 were 

obtained from mixed mode bending (MMB) test performed by the authors and its results will be 

fully discussed in another publication.  

 



Fig. 3. (a) Schematic of fracture process zone in laminated composites; (b) Photograph of fiber 

bridging behind the crack tip and (c) Optical micrograph of the micro-cracks formation 

around the crack tip. The test was performed by the authors. 

 

As previously stated, assuming the critical strain energy density, cw , as a material property and 

independent of the loading mode, all differences between the effects of FPZ under mode I and 

mode II are neglected. So, to consider FPZ effects and consequently a more precise prediction of 

delamination failure in laminated composites, the failure criterion in Eq. (16) is modified by adding 

the term of the strain energy density of FPZ, FPZw , as follows: 

2 2

1 0 2 0 3 0( ) ( ) 2 ( )I II I II c FPZw K A K A K K A w w        (25) 

For the cases of pure mode I and pure mode II loading, we have: 
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where 
IFPZw  and 

IIFPZw  are the strain energy density of FPZ under pure mode I and pure mode II 

loading, respectively and defined by: 
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where 
IFPZK  and 

IIFPZK  are introduced as mode I and II stress intensity factors (SIFs) of FPZ, 

respectively. Using the relation between SIFs and the strain energy release rate (G ) for orthotropic 

materials under plane strain condition [21], we have: 

I I

II II

FPZ I FPZ

FPZ II FPZ

K E G

K E G




 (28) 

Met opmerkingen [RA-L3]: You call in the nomenclature these 

G’s energy absorption, rather than energy release rate. Should you 
more specifically define your terminology? Is energy release the 

same as energy absorption? Is this absorption permanent, or do 

bridging fibre for example release the energy upon unloading? With 

reference to Yao, shielding technically stores energy, it doesn’t 

release or absorb it…  

The energy absorption by FPZ (GFPZ) is a part of strain energy release 
rate at crack propagation (Gss). As you know, Gss is equal to 

summation of strain energy release rate at crack initiation (Gi) and 

GFPZ.  
Energy of the FPZ has been called the absorbed energy by the 

toughening mechanisms (fiber bridging and micro-cracking) that is 

released by crack growth. It just means that the toughening 
mechanisms are as a absorption storage of energy and delay the 

fracture by consuming (releasing) more energy for crack growth. 



where IE  and IIE  are generalized elastic moduli [21] and defined as: 
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It should be noted that coefficients 1A  and 2A  in Eq. (27) and IE  and IIE  in Eq. (28) should be 

expressed in terms of the effective elastic properties of the FPZ as a damaged zone [20, 24, 25]. 

However, in the present study, we considered them equal to properties of the intact material, as a 

simplifying assumption. This part of the theory/criterion can be improved in the future works. 

Substituting Eq. (27) into Eq. (26) and considering that the criterion in Eq. (25) should be 

applicable to the pure mode I and pure mode II loading, we find: 
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Applying this relation in Eq. (25) yields a new mixed mode I/II failure criterion expressed in the 

form of common mixed-mode failure criterion as follows: 

2 2 2

I II IcK K K   (31) 

where   is introduced as a “toughening damage factor” as follows: 

3

1 1 1 1

FPZ


   

    
 

 (32) 

The proposed toughening damage factor,  , includes both the orthotropic damage factor,  , 

given in Eq. (20) and the FPZ damage factor, FPZ , defined as: 

https://www.sciencedirect.com/science/article/pii/S0013794400001272#BIB6
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 (33) 

 

 

Eq. (31) shows a simple mixed mode I/II failure criterion in terms of stress intensity factors IK  

and IIK  with two material parameters ( IcK  and  ). The first parameter, namely the mode I 

fracture toughness, can be simply extracted from available experimental data [8, 9, 15]. The second 

one is a toughening damage factor, demonstrating the toughening effects of the FPZ in the 

delamination tip vicinity due to the fiber bridging and micro-cracks formation. Damage factor 

, depends on IcK , 0I
 , 0II

 , 1A , 2A ,
IFPZK  and 

IIFPZK  parameters. Wherein the crack initiation 

angles under pure mode I and pure mode II ( 0I
  and 0II

 ) are calculated by Eq.(22). The 

coefficients 1A  and 2A
 
are obtained using Eq.(10) having material properties and crack initiation 

angles. According to Eq. (28), in order to calculate the mode I and II stress intensity factors of FPZ 

(
IFPZK  and 

IIFPZK ), the absorbed energy of FPZ under pure mode I and pure mode II loading is 

needed. This approach is briefly discussed in the following section. 

 

4. Calculation of the absorbed energy by the FPZ (GFPZ) 

In delamination of unidirectional laminated composites, fiber bridging is known as the most 

important toughening mechanism absorbing the highest amount of energy in the FPZ. The 

absorbed energy by the fiber bridging toughening mechanism in FPZ is often calculated by 

bridging laws [26, 27]. The bridging laws are defined as a relationship between bridging tractions 

and crack separations. Bridging laws can be extracted from experiments or micromechanical 

models. 

It is well-known that the "crack growth resistance curve" or R-curve, shown in Fig. 4, is an 

Met opmerkingen [RA-L4]: Please don’t refer to these as 

‘laws’, they’re certainly not laws, but mostly empirical relations. 
Exactly, that’s right but in nearly all research studies, the relationship 

between bridging tractions and crack separations has been called 

bridging laws or traction-separation laws. I am so thankful if you let 
me know your suggested word instead of ‘laws’ here. 



appropriate method for quantifying the FPZ effects. The bridging law can be experimentally 

determined by measuring the end-opening displacement of the bridging zone together with the R-

curve [28, 29]. 

 

 

Fig. 4. R-curve for delamination failure in a laminated composite. 

 

Furthermore, there is a number of micromechanical models [30, 31] developed to investigate the 

delamination by considering fiber bridging effects. Sørensen et al. [32] proposed a 

micromechanical model for prediction of the mixed mode I/II bridging laws based on the observed 

bridging mechanism during crack growth in a unidirectional carbon/epoxy composite. In their 

model, it was assumed that the number of bridging fibers per unit crack area is constant. While the 

number of fiber failures is negligible until bending stress at the fiber roots does not exceed the 

mean fiber strength. The bridging fibers start to fail by increasing the bending stress at fiber roots, 

which means that the number of bridging fibers decreases due to the fiber failure [31]. Daneshjoo 

et al. [33] developed a mixed mode I/II micromechanical bridging model based on the breakdown 

of the failure micro-mechanisms involved during the fiber bridging phenomenon such as the fiber 

F
r
a

c
tu

r
e
 r

e
si

st
a

n
c
e
, 
G

R

Crack extension, Δa

lFPZ

Gss

Gi

Met opmerkingen [RA-L5]: Does this graph apply to all 

modes? Or just to mode I? Is the resistance curve increasing through 
development of bridging fibres, or does the micro-cracking in Mode 

II do the same? 

No, that’s not the same. This figure schematically shows an example 
of R-curve for delamination failure in a laminated composite. 



peel-off, matrix spalling, fiber-matrix debonding, fiber pull-out and fiber fracture. In their model, 

the bridging fiber was analyzed as a beam under different loading conditions and the energy 

absorption of the fiber bridging in FPZ was obtained as [33]: 
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in which PeG
 
was defined as the energy absorption of the fiber peel-off and given by [33, 34]: 
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 
  (35) 

where 0n  is the initial number of bridging fibers per unit crack area, d  is the fiber diameter, bf  is 

the fiber tensile strength, fE is Young's modulus of the fiber and PeL  is the fiber peel-off length. 

For calculation of the energy contribution of bridging fibers, nG  and tG , the normal and tangential 

tractions of the bridging fiber ( ( , )n n tT    and ( , )t n tT    are dependent on the force per fiber in the 

normal and tangential directions ( ( , )n n tf    and ( , )t n tf   ) and the number of bridging fibers per 

unit crack area ( ( , )n tn   ) as follows [33]: 
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(36) 

where n  and t  are the normal and tangential crack opening displacements, a  is a dimensionless 

coefficient, demonstrating only 1/a number of bridging fibers are involved in the tangential load 

transfer. Considering the stress in the bridging fiber and the stress reduction due to fiber slip, the 

normal and tangential components of the force carried by each of bridging fiber were obtained as 

[33]: 
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where 
fA ,  , 0l , i  and c  are the cross-sectional area of the bridging fiber, the bridging fiber 

angle with the crack surface, the initial bridging length, interface frictional shear resistance and 

the asymptotic distance between the fiber and its axial direction, respectively.  

The number of survived bridging fibers was estimated by the Weibull statistical equation [35] as 

[33]: 
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where refl  and ref  are the Weibull reference length and the strength, respectively. Moreover, m  

is the Weibull modulus and bc  is a dimensionless correction factor comparing the bending and 

tensile stresses, and is smaller than 1. Also, ( , )n t    is the stress in the bridging fiber. The energy 

contribution of bridging fibers was obtained by substitution of Eqs. (37) and (38) into Eq. (34) and 

performing an integration [33]. 

The last term of the energy in Eq. (34) was defined as the energy required for separation of the 

fiber-matrix interface called the debonding energy ( DebondingG ) and obtained as follows [33]:  

0Debonding d icG n dL G  (39) 

where icG  is the interfacial debonding energy and dL  is the length of the debonding zone. Finally, 

the absorbed energy by fiber bridging in the FPZ was calculated using Eq. (34). More details of 



mixed mode I/II micromechanical bridging model are available in [33]. 

 

5. Results and discussion 

5.1. Laminated composite materials 

Experimental data available in [36] have been used to evaluate the proposed criteria (Eqs. (19) and 

(31)) in comparison with the classical criterion (Eq. (14)) in which specimens were made of 

unidirectional E-glass/EPON 826 laminated composites. Table 1 and Table 2 summarize the elastic 

properties of E-glass/EPON 826 and the necessary parameters for extracting coefficients of the 

failure criteria, respectively. The coefficients are given in Table 3. The values of 0I
  and 0II

  in 

Table 2 are calculated by solving Eqs. (22-24). The values of FPZG  for pure mode I and pure mode 

II expressed in Table 2 for this kind of material are calculated using the mixed mode I/II 

micromechanical bridging model briefly described in Section 4. This calculation process is 

presented in detail in [33].  

Table 1. Elastic properties of E-glass/EPON 826 [37] 

Laminated 

composite material 
1E

(GPa) 

2E

(GPa) 

3E

(GPa) 

12G

(GPa) 

13G

(GPa) 

23G

(GPa) 

12  13  23  

E-glass/EPON826 35.25 10.82 10.82 4.28 4.28 3.58 0.27 0.27 0.51 

 

Table 2. Parameters for extracting coefficients of failure criteria for E-glass/EPON 826 

Laminated 

composite material 
IcK a

 
 (MPa.m0.5) 

0I
 b 

(degree) 

0II
 b

 
 (degree) 

IFPZG a

 
 (kJ/m2) 

IIFPZG a

 
 (kJ/m2) 

E-glass/EPON826 1.65  31.76 81.27 0.205  2.40  
a Obtained from Refs. [33, 36]. 
b Calculated in current study. 

 



Table 3. Dimensionless coefficients in Eqs. (14), (19) and (31) for E-glass/EPON 826  

Laminated  

composite material 

      

E-glass/EPON826 2.326 0.691 0.0517 

 

Fig. 5 shows the mixed mode I/II delamination failure responses predicted by the failure criteria 

proposed in Section 3. A comparison of the experimental data of E-glass/EPON 826 with the 

predictions reveals that the newly proposed criterion in Eq. (31) is more compatible with the nature 

of delamination phenomena in this kind of laminated composite. This compatibility is attributed 

to the fact that this criterion takes into account the contribution of absorbed energy by fiber 

bridging in FPZ. 

 

 



Fig. 5. Fracture limit curves related to failure criteria in comparison with experimental data 

[36] for E-glass/EPON 826.  

 

As can be seen in Fig. 5, the amount of experimental data of E-glass/Epon 826 especially in the 

case of dominant mode II is not sufficient. So, in order to investigate the validity and accuracy of 

the newly proposed criteria, experimental mixed mode I/II delamination data of three other 

laminated composite materials [9] are utilized. The elastic properties of these laminated composites 

are listed in Table 4. The parameters required for extracting the coefficients of the failure criteria 

and resulting coefficients are given in Tables 5 and 6, respectively. The values of 0I
  and 0II

  in 

Table 5 are calculated by solving Eqs. (26-28). In this case, the values of FPZG  for pure mode I 

and pure mode II expressed in Table 5 are extracted from the experimental R-curves available in 

[38-42]. 

 

Table 4. Elastic properties of laminated composite materials used in the analysis [9] 

Laminated 

composite materials 
1E

(GPa) 

2E

(GPa) 

3E

(GPa) 

12G

(GPa) 

13G

(GPa) 

23G

(GPa) 

12  13  23  

AS4/3501-6 132 9.7 9.7 5.9 5.9 3.19 0.28 0.28 0.52 

AS4/PEEK 129 10.1 10.1 5.5 5.5 3.43 0.315 0.315 0.47 

IM7/977-2 143 9.2 9.2 4.8 4.8 3.067 0.3 0.3 0.5 

 

Table 5. Parameters for extracting coefficients of failure criteria for laminated composite 

materials used in the analysis 

Laminated 

composite materials 
IcK a

 
 (MPa.m0.5) 

0I
 b 

(degree) 

0II
 b

 
 (degree) 

IFPZG a

 
 (kJ/m2) 

IIFPZG a

 
 (kJ/m2) 

AS4/3501-6 1.20  41.81 80.02 0.0561 0.602  

AS4/PEEK 3.55  39.70 80.44 0.655  1.09  

IM7/977-2 2.04  36.92 80.45 0.324  1.45  
a Obtained from Refs. [9, 38-42]. 



b Calculated in current study. 

 

  

Table 6. Dimensionless coefficients in Eqs. (14), (19) and (31) for different laminated 

composite materials used in the analysis 

Laminated 

composite materials 

      

AS4/3501-6  1.303 0.306 0.0424 

AS4/PEEK  1.382 0.313 0.203 

IM7/977-2  1.472 0.305 0.0608 

 

The fracture limit curves extracted by different failure criteria, explained in Section 3 as the mixed 

mode I/II delamination failure response, are plotted in Figs. 6-8 and compared with the available 

experimental data of different laminated composite materials. 

A comparison of results in these figures clearly indicates that the strain energy density criterion in 

Eq. (14) is too conservative for all laminated composites, especially when mode II loading is 

dominant. The first newly proposed failure criterion in Eq. (19), extracted by modifying the crack 

initiation angle, somewhat improves the results, but still shows a conservative prediction. The main 

reason is that absorbing energy mechanisms around the delamination tip are ignored in Eq. (19). 

The simplifying assumption in the extraction of damage factors (  and  ), which considers the 

critical strain energy density as an intrinsic material parameter, implies that all energy absorbed 

by the specimen is consumed for the delamination growth. That is contradictory to the fact that 

part of the absorbed energy is dissipated through FPZ formation. Hence, as shown in Figs. 6-8, 

results obtained with the second newly proposed failure criterion in Eq. (31), including the FPZ 

effects are in good agreement with experimental data. This reveals that this new criterion (unlike 



previous ones) due to the consideration of the FPZ effects is more compatible with the nature of 

delamination phenomena in laminated composite materials. 

According to Figs. 5-8, the magnitude of the mode II fracture toughness ( IIcK ) is greater than that 

the mode I fracture toughness ( IcK ). This can be attributed to the formation of hackles in the 

interlaminar zone, which is mainly created in the presence of mode II and perpendicular to the 

maximum stress direction [23]. This explains why a larger FPZ is created in mode II loading 

compared to mode I loading [43]. It can be also concluded that adding mode II loading to mode I 

makes IK
 
component more than the mode I fracture toughness ( IcK ) at low mixed-mode ratios. 

This can be caused by the activation of mode II toughening mechanisms. The value of IK  reaches 

its maximum value at a critical mode mixity. Then, it reduces gradually when mode II becomes 

more dominant. Due to the common form (elliptical shape) defined for failure criteria, this 

behavior of the laminated composite materials is not predictable by the proposed criterion, and 

there is a little difference between the results in the low mode mixity ratios. 



 

Fig. 6. Fracture limit curves of the failure criteria in comparison with experimental data [9] for 

AS4/3501-6. 

 



Fig. 7. Fracture limit curves of the failure criteria in comparison with experimental data [9] for 

AS4/PEEK. 
 

 

Fig. 8. Fracture limit curves of the failure criteria in comparison with experimental data [9] for 

IM7/977-2. 

 

5.2. Wood material 

Since failure criteria in the present study have been extracted to predict the crack growth in 

orthotropic materials, the capability of these criteria to investigate the fracture of wood as a natural 

orthotropic material with principal axes of orthotropy (R, T, L) given by the radial, tangential and 

longitudinal directions is also evaluated. 

To this end, the fracture limit curves obtained by failure criteria in Section 3 (Eqs. (14), (19) and 

(31)) in comparison with the available experimental data for three wood species, namely Norway 

spruce, Scots pine and Red spruce with a crack along the wood fibers are shown in Figs. 9-11. 



Material properties related to these species are summarized in Table 7. The required parameters 

and the resulting coefficients of failure criteria are listed in Table 8 and Table 9, respectively. 

 

Table 7. Material properties of wood species used in the analysis [11, 15] 

Wood species 
1 LE E  

(GPa) 

2 RE E  

(GPa) 

3 TE E  

(GPa) 

12 RLG G  

(GPa) 

13 TLG G  

(GPa) 

23 RTG G  

(GPa) 

12 LR   13 LT   23 TR   

Norway spruce  11.84 0.81 0.64 0.63 0.61 0.28 0.38 0.56 0.34 

Scots pine  16.3 1.10 0.57 1.74 0.67 0.42 0.47 0.45 0.31 

Red spruce  12.7 0.98 0.63 0.80 0.74 0.38 0.37 0.42 0.30 

 

Table 8. Parameters to extract coefficients of failure criteria for wood species used in the 

analysis 

Wood species 
IcK a

 
 (MPa.m0.5) 

0I
 b 

(degree) 

0II
 b

 
 (degree) 

IFPZG a

 
 (kJ/m2) 

IIFPZG a

 
 (kJ/m2) 

Norway spruce 0.58  34.25 79.19 0.117  0.277  

Scots pine 0.49  44.77 76.70 0.153  0.278  

Red spruce 0.42  37.85 78.36 0.125  0.698  
a Obtained from Refs. [11, 15, 44-47]. 
b Calculated in current study. 

 

Table 9. Dimensionless coefficients in Eqs. (14), (19) and (31) for wood species used in the 

analysis 

Wood species       

Norway spruce 0.829 0.235 0.159 

Scots pine 0.389 0.200 0.146 

Red spruce 0.747 0.239 0.0498 

 

As can be seen from Figs. 9-11, considering the absorbed energy by micro-cracks formation and 

growth in FPZ reduces the difference between the criterion and the experimental data. So, the 

newly proposed criterion (Eq. (31) also has a good correlation with experimental data for wood 

specimens, whereas two other criteria (Eqs. (14) and (19)) are conservative. 



 

 

Fig. 9. Fracture limit curves related to failure criteria in comparison with experimental data 

[11, 15] for Norway spruce. 

 



Fig. 10. Fracture limit curves related to failure criteria in comparison with experimental data 

[11, 15] for Scots pine. 

 

 

Fig. 11. Fracture limit curves related to failure criteria in comparison with experimental data 

[11, 15] for Red spruce. 

 

6. Conclusion 

In the present study, a mixed mode I/II failure criterion, based on the strain energy density concept, 

was presented for prediction of the crack growth in orthotropic materials. First, by eliminating the 

simplifying assumptions, the minimum strain energy density theory was extended to orthotropic 

materials. Then, effects of the strain energy density absorbed in the fracture process zone were 

considered. According to this approach, the newly proposed criterion considers the effects of 

absorbed energy in the FPZ by defining a suitable damage factor. The mode I fracture toughness, 

elastic properties of the material and energy absorbed by the fracture process zone are the only 



input data required for the criterion. The validity of the present criterion was assessed by 

comparing the fracture limit curves obtained for various laminated composite materials with the 

available experimental data. The results are in good agreement with experimental data and show 

that this criterion is able to estimate the mixed mode I/II delamination failure of laminated 

composites accurately. The verification of fracture limit curves extracted from the present criterion 

with the available experimental data of wood species also shows the accuracy of the present 

criterion. 
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