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ABSTRACT 
 

This chapter discusses  the theory of fracture mechanics based on the flat elliptical 

crack; the derivation of the mixed "mode I - II" - interaction equation, with the relations 

between  the mode I and mode II stress intensities and energy release rates, based on an 

orthotropic-isotropic transformation of the Airy stress function; the derivation of the 

softening curve with the explanation of the measurements; the derivation of the power 

law; the energy method of notched beams and of joints loaded perpendicular to the grain; 

and the necessary rejection of the applied crack growth models and fictitious crack 

models. 

 

 

1. INTRODUCTION 
 

The development of the inexact singularity approach of fracture mechanics is at its dead 

end because it is not possible to describe real failure at the crack boundary and to replace the 

real failure criterion by general energy conditions as is applied now, and the method remains 

empirical. Therefore, the theoretical approach based on the elliptical flat crack has to be 

followed, leading to the possibility to derive and explain the empirical mixed "mode I - II" - 

interaction equation.  

As a result of this derivation, the right fracture energy and theoretical relation between 

mode I and II stress intensities, and energy release rates are obtained. Based hereupon, the 

derivation of the orthotropic mode I strain softening curve is possible. It appears that real 

softening does not exist. It is a matter of unloading of the specimen outside the fracture zone 
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where the ultimate stress remains. This ultimate stress on the intact area of the fracture plane 

determines any moment the strength of every point of the softening curve. The area under the 

load-displacement softening curve gives the total external work on the test specimen and not 

the fracture energy. The fracture energy follows from half this area which is equal to the 

critical strain energy release rate at the initial crack extension. For wood, this correctly is 

applied for mode II. For mode I however, as for other materials, wrongly the total area is 

regarded as fracture energy, a factor 2 too high. However, this is compensated at softening by 

the apparent too low specific fracture energy due to a small crack joining mechanism when 

the ultimate state of the ligament of the test-specimen is reached. Post fracture behaviour thus 

is shown to be different from initial macro crack extension. The derivations lead to an 

adaption of the energy approach for fracture of square notched beams and joints loaded 

perpendicular to the grain,providing a simple design method. It further is shown that nearly 

all fracture mechanics models applied to wood, as the Dugdale model, the fictitious crack 

model and the crack growth models (which should follow from exact molecular deformation 

kinetics), are questionable and have to be replaced by the developed theory.  

 

 

2. THE BOUNDARY VALUE PROBLEM OF FRACTURE MECHANICS  
 

2.1. Basic Airy Stress Function  
 

For the solution of the boundary value problem of notches in wood, the orthotropic Airy 

stress function is based on the spreading out of the reinforcement to act as a continuum, 

satisfying the equilibrium, compatibility and strength conditions. This behaviour only is 

possible by interaction of reinforcements through the matrix. Thus also the equilibrium 

conditions and strength criterion of the matrix, as determining element, have to be satisfied. 

This only is possible to solve the Airy stress function for the stresses in the isotropic matrix 

and then to derive the total (orthotropic) stresses from this solution. None of the applied 

solutions (given, e.g., in chapter 2.1 of [6]) satisfies this requirement. This analysis in total 

stresses is as follows: 

The stress-strain relations for the two-dimensional flat crack problem are: 

 

11 12x x yc c    ;   12 22y x yc c    ;   66xy xyc  .  (2.1) 

 

This can be written: 

 

21/ /x x x y yE E     ;   21 / /y x y y yE E      ;   /xy xy xyG   (2.2) 

 

The Airy function follows from: 
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satisfying the equilibrium equations: 
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Substitutions of eq.(2.1): 

2 2

11 122 2x

U U
c c

y x


 
 

 
, etc. in the compatibility condition:  

2 22

2 2

y xyx

y x x y

   
 

   
,  

 (2.5) 

gives: 

 

 
4 4 4

22 66 12 114 2 2 4
2 0

U U U
c c c c

x x y y

  
   

   
 (2.6) 

 

This equation also can given as:  

 

2 2 2 2

1 22 2 2 2
0U

x y x y
 

     
    

     
 (2.7) 

 

where 1 2 11 22/c c    and   1 2 66 12 222 /c c c    . Introducing 3 sets of polar 

coordinates for this case,  
ix iy re   , 1

1/
ix iy re   ,   2

2/
ix iy re   , 

eq.(2.7) has e.g. elementary solutions as: 1 1cos( )mr m
,  1 1sin( )mr m

,   2 2cos( )mr m
,  

2 2sin( )mr m
, leading to: 

 

 
 

      1 2 3, , , ,
2

A
r r m

K
f f f

r
      


  (2.8) 

 

in the vicinity of a notch root as stress singularity at r = 0,  

As solution, always only smaller powers than m = 0.5 are found, showing the (isotropic) 

singularity approach with the power m = 0.5 to be not a real solution for an orthotropic 

material. Thus the singularity approach only may apply for the stresses of the isotropic wood-

matrix. Wood acts as a reinforced material. Lignin is isotropic and hemicellulose and 

cellulose are transversely isotropic, which means that only one stiffness factor in the main 

direction has an n-fold higher stiffness in proportion to the higher stiffness of the 

reinforcement with respect to the matrix. Thus wood material can be treated to contain a 

shear-reinforcement and a tensile reinforcement in the main direction and eq.(2.9) applies for 

equilibrium of the matrix stresses: 

 



T. A. C. M. van der Put 4 

2

2

1

x U

n y

 



;   

2

2y

U

x






;  

2

6

xy U

n x y

 
 

 
,   (2.9) 

 

Instead of using the matrix stresses and the matrix stiffness, the n-fold higher total 

stresses and n-fold higher stiffness can be used to give the same compatibility condition (thus 

the same condition for the matrix and reinforcement). Inserting the total stresses in the 

compatibility equation, eq.(2.5), gives: 

 

 
4 4 4

22 6 66 1 12 1 114 2 2 4
(1 ) 0

U U U
c n c n c n c

x x y y

  
    

   
 

 (2.10) 

 

For the isotropic matrix is: 1 11 22/ 1n c c   and   6 66 1 12 22( 1 ) / 2n c n c c    giving: 

 
4 4 4
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and 
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 (2.12) 

 

This orthotropic-isotropic transformation of the Airy stress function and the calculation 

method based on the matrix stresses is used in the following.  

 

 

2.2. The Elliptical Flat Crack Solution 
 

As shown above, the singularity approach does not apply for the orthotropic case andalso 

prevents the derivation of areal failure criterion. Instead of such a criterion, critical values are 

assumed of, e.g., the strain energy density, or the maximal principal stress, or a non local 

stress function, all at a distance away from the crack tip, thus away from the fracture site. A 

realfailure criterion only can be based on the real ultimate stress in the material which occurs 

near the crack-tip boundary. A real physical possible crack form is the flat elliptical crack. 

When ―flow‖ occurs around the crack tip, the ultimate strain condition at the crack-boundary 

determines the extension of this flow area. The elastic-plastic boundary then acts as an 

enlarged crack boundary with the ―flow‖-stress as ultimate elastic stress for the linear elastic 

fracture mechanics calculation.  

 

2.2.1. The Elliptic Hole in an Infinite Region  

The classical way of analyzing the elliptic crack problem is to use complex variables and 

elliptic coordinates. The Airy stress function can be expressed in terms of two analytic 
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functions [1], of the complex variable z (= x + iy) and the transformation to elliptic 

coordinates in Figure 2.1, gives:  

 

z = x + iy = c ∙ cosh(ξ + iη) or: x = c ∙ cosh(ξ) ∙ cos(η);  y = c ∙ sinh(ξ) ∙ sin(η).  

 

For an elliptic hole, 0  , in an infinite region with uniaxial stress p at infinity in a 

direction inclined at  to the major axis Ox of the ellipse, the Airy stress function U, 

satisfying 
2 2( ) 0U   , and satisfying the conditions at infinity and at the surface 0  , 

showing no discontinuity of displacement, thus being the solution, is given in [2] and applied 

in [1]. Determining for the strengthis the tangential stress t  at the crack surface 0   

due to a stress p at an angle β(of Figure 2.3) to the crack 

 

t  = 0 0

0

(sinh(2 ) cos(2 ) exp(2 ) cos(2( ))

cosh(2 ) cos(2 )

p     

 

   


 (2.13) 

 

eq.(2.13) can be extended for two mutual perpendicular principal stresses 1p  and 2p  

(see Figure2.3) by a simple addition leading to eq.(2.23) below.  

 

Figure 2.1 - Elliptic hole and coordinates. 

2.2.2. The Mathematical Flat Crack Solution  

For stresses in the wood-matrix, the results of the limit case of the elliptical notch with 

0  approaching zero should be comparable with the results of the mathematical flat crack of 

the singularity method. To obtain the singularity equations, new coordinates X, Y with the 

origin in the focus of the ellipse are necessary (see Figure 2.2). Thus:  

 

X = x - c = c(
2 –

2 )/2,    Y = y = cξη (2.14) 

 

or in polar coordinates: 

 

r =  
0.5

2 2X Y ,  X =  r∙cos(θ), Y = r∙sin(θ)  (2.15) 
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and from eq.(2.14): 

 

 
0.5

2 2 2 22 / 2 /X Y c r c      (2.16) 

 

 2 / cos / 2r c   ,  2 / sin / 2r c   ,    / tan / 2 tan    

 (2.17) 

 

To obtain the singularity, 0 0   is inserted in the general solution of the elliptic Airy 

stress function, [1]. Then the tangential stress   along a crack boundary 0r , due to a stress p 

at infinity at an angle β with the notch is: 

 

           
0.5

2 2 3 2

08 / sin / 2 cos / 2 sin 2 2cos / 2 sinr cp       

 (2.18) 

 

for a small value of 0r , so that all terms containing not the factor 
0.5

0r


 are negligible. 

For the, for wood always applied, singularity method, the flat crack in the grain direction is 

supposed to propagate in that direction. Thus θ = 0 and eq.(2.18) becomes: 

 

Figure 2.2. Confocal coordinates. 

   
0.5

2 28 / 2sin r cp  (2.19) 

 

with  r and   r cotg(β). Mode I failure   t  occurs when   / 2 . 

Thus when: 

 

0(2 / ) tp r c  (2.20) 

For pure shear loading, thus for superposition of 1 p S  at β = π/4 and 2  p S  at  β 

= 3π/4 in eq.(18) and in the other equations of the solution is for crack extensionθ = 0: 
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    
0.5

2 2

0
2 / cos( / 2) 3cos ( / 2) 2rr cS 


  


    

 

or : 

 

0(2 / ) rS r c  (2.21) 

 

with now 0  r , leading to an ultimate shear failure criterion.  

Eq.(2.20) and (2.21) are maximum stress conditions for the strengths in the main planes. 

Thus fracture is predicted to occur when the tensile strength is reached perpendicular to the 

grain and/or when the shear strength in this plane is reached. Thus: I IcK K  and 

II IIcK K  for all stress states (without the interaction). This also is predicted for the n-fold 

higher orthotropic stresses and is shown by eq.(2.30) to be not right.Thus also for the 

isotropic matrix, the applied singularity approach gives no right results. The right failure 

condition for combined stresses is derived below. The singularity failure equations are 

applicable as lower bound solution for matrix stresses by a chosen equilibrium system for co-

axial macro-crack propagation as applied below for fracture of joints and beams with square 

end-notches, wherefore the mode I energy release rate is chosen as specific fracture energy.  

 

 

2.3. Derivation of the Mixed I- II- Mode Equation  
 

A general failure criterion [3] follows from the limited ultimate tensile stress which 

occurs at the crack boundary. By an extension of eq.(2.13) (by superposition) to 1 1p   

inclined at  an angle π/2 + β to the Ox-axis and 2 2p   inclined at an angle β, (see 

Figure2.3), eq.(2.13) turns to:  

 

0 0 0

0

2 sinh(2 ) 2 [(1 sinh(2 )) cot(2 ) exp(2 ) cos(2( )) cos (2 )]

cosh(2 ) cos(2 )

y xy

t

ec        


 

     



, (2.22) 

 

where the stresses are given in notch coordinates with the x-axis along the notch. For 

small values of 0  and   (flat notches), this equation becomes:  

 

Figure 2.3. Stresses in the notch plane Ox. 
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 0 y xy

t 2 2
0

2   
 

 
 (2.23) 

 

The maximum (critical) value of the tangential tensile stress t , depending on location 

 , is found by: td / d 0  , giving the critical value of  : 

 

      
2

2 2 2 2
xy 0 0 y xy 02 / 2 2 / 0             , 

 

or: 

 

     2 2 2 2
xy 0 0 y xy t 02             (2.24) 

 

where the second equality sign is due to the substitution of eq.(2.23).  

From the first and last term follows that:  

 

t xy    (2.25) 

 

and from the first 2 terms:  

 

 2 2
0 y y xy xy/ /          (2.26)  

 

or with eq.(2.23):  

 

2 2
0 t y y xy         (2.27)  

and eq.(2.27) can be written:  
2

y xy

2 2
0 t 0 t

1
/ 2

 
 
   

 (2.28) 

 

According to eq.(2.17) is, for small values of θ at the crack tip: 0 02r / c  , giving in 

eq.(2.28):  

 

 

 

2

xyy

2
t 0

t 0

cc
1

2 r / 2 2 r

  
 
   

 (2.29) 
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which is identical to the empirical parabolic interaction equation of Wu [4], measured on 

Balsa and on fiber reinforced plastic plates:  

 

 

 

2

2
1

III

Ic IIc

KK

K K
   (2.30) 

 

The fact that 0 / 2IC y c tK c r      is constant and therefore is regarded as 

material property, shows that failure is always by the same initial small cracks with tip-radius 

0r  by the uniaxial cohesion strength t . This applies for every level down to the molecular 

level. In [7] the estimation method of the relation between engineering macro stresses and 

molecular stresses at the bond breaking sites is given. For Balsa wood with a low density of 

reinforcement, nearly isotropic strength behaviour is found for crack extension. Thus 

IIc IcK 2K  according to eq.(2.28) and (2.30) as verified by the data of Wu of Balsa by: 

0.5
IIcK 140 psi in    and  

0.5
IcK 60 psi in   .  

Eq.(2.30) is generally applicable also when y  is a compression stress as follows from 

the measurements of Figure 2.4. When the compression is high enough to close the small 

notches ( y,cl xy 02G   ), xy  has to be replaced by the effective shear stress: 

 *
xy xy y y,cl       in eq.(2.28) or:  

 

 
2

*
xyy,cl

2 2
0 t 0 t

1
/ 2


 
   

,  (2.31) 

 

what is fully able to explain fracture by compression perpendicular to the notch plane 

(see Figure 2.4). In this equation is   the friction coefficient. 

For species, with denser layers than those of Balsa, a much higher value of IIcK  than 

twice the value of IcK  is measured because due to the reinforcement, η is smaller than the 

isotropic critical value of eq.(2.26). To read the equation in applied total orthotropic stress 

values, the matrix stress iso  has to be replaced by ort 6/ n  and the maximum slope of the 

tangent, slope δ in Figure 2.2 of the location of the failure stress, is:  

 

     m 0 Ic IIc 6tan / K / K 1/ 2n  (2.32) 

 

For small values of η = - |η|, eq.(2.23) can be written, neglecting (η/ξ0)
2
 : 
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   

2
y xy xy

2 2 2
0 t 0 t 0 t

1 1
/ 2 / 2 / 2

  
    

        
 (2.33) 

 

where |η| is the absolute value of negative η. Thus:  

 

I II

Ic IIc

K K
1

K K
   (2.34)  

 

This is a lower bound, with: 

 

 IIc 0 m IcK / K      (2.35) 

 

and the maximal value of m    is found by measuring IcK  and IIcK , giving e.g. a 

value of about 0 m/ 7.7   ,  showing that the disregard of  
2

0/   = 0.017 with respect 

to 1 is right. Measurements between the lines eq.(2.30) and (2.34) thus indicate a strong 

difference between IIcK  and IcK  of the local structure that is crossed by the propagating 

crack.  

Thus far, the equations are given in matrix stresses. To change this in the real applied 

orthotropic stresses, iso ort 6/ n    has to be inserted in eq.(2.28) giving: 

 

 

 

22 2
y y IIiso ort I

2 2 2 2 2 2
0 t 0 t Ic0 t 0 t 6 IIc

KK
1

/ 2 / 2 Kn K

  
     
      

 (2.36) 

 

and it follows that: 

 

IIc 0 t 6
6

Ic 0 t

K n
2n

K / 2

 
 
 

 (2.37) 

 

according to eq.(2.12) is e.g. for small clear specimens: 

 

 6 21 12 xy y2n 2 2 (G / E )      = 2(2 + 0.57)/0.67 = 7.7 for Spruce  

 

and: 2(2 + 0.48)/0.64 = 7.7 for Douglas Fir in TL-direction.  

 

This is in this case independent of the densities of respectively 0.37 and 0.50 at a 

moisture content of 12 %. Thus, for  
1.5

IcK 265 kN/ m   is 
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1.5
IIcK 7.7 265 2041 kN/ m     in the TL-direction. This agrees with measurements [6]. 

In RL-direction this factor is 3.3 to 4.4. Thus, when IIcK is the same as in the TL-direction, 

the strength in RL-direction is predicted to be a factor 1.7 to 2.3 higher with respect to the 

TL-direction. This however applies at high crack velocities (―elastic‖ failure) and is also 

dependent on the site of the notch. At common loading rates a factor lower than 410/260 = 

1.6 is measured [6] and at lower cracking speeds, this strength factor is expected to be about 1 

when fracture is in the ―isotropic‖ middle lamella. It then thus is independent of the TL and 

RL-direction according to the local stiffness and rigidity values. To know the mean influence, 

it is necessary to analyze fracture strength data dependent on the density and the elastic 

constants of 6n . From the rate dependency of the strength follows an influence of viscous 

and viscoelastic processes. This has to be analyzed by Deformation Kinetics [7]. 

 

Figure 2.4. Fracture strength under combined stresses [5], [6]. 

A general problem is further the possible early instability of the mode I-tests. This means 

thatsmall-cracks failure outside the notch-tip region may be determining as e.g. in the tests of 

[6]. In thiscase constants should be compared with the related to mode II data. 

 

 

2.4. Remarks Regarding Crack Propagation  
 

Because the mixed mode failure criterion shows that crackstends to propagates in the 

direction perpendicular to greatest principal tensile stress, the, in literature mentioned, 

empirical principle, that the crack follows the direction that maximises G, the energy release, 

is now explained to be the result of the failure criterion. This maximizing G principle does not 

hold and is opposite principle a compression stress. Then the crack direction tends to become 

parallel to the stress where the crack is not any more affected by this stress. For wood these 

maximizing and minimizing principles don‘t apply, because fracture follows the weak planes 
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along the grain and jumps periodically to the next growth layer in a zigzag way around the 

critical direction, determined by the Wu failure criterion 

 

Figure2.5. a) Crazing at the crack tip and b) Possible crack extension along the fractured zone in glassy 

polymers.  

In Figure2.5-b, it can be seen that mixed mode crack propagation starts at an angle with 

its plane but may bend back along the fractured zone to its original direction where crazing 

and fractured zone formation starts again. Stage b of this crack propagation is due to small-

cracks merging from the fractured zone which extend to the macro-crack tip. For wood stage 

b occurs in a parallel crack plane. Co-axial crack propagation in this case is due to the small-

crack joining mechanism discussed below. If, by the high stress near the macro-crack tip, 

each two adjacent small cracks in the weak main plane propagate towards each other, their 

out of plane directions for crack extension are opposed causing tensile stress interference in 

this weak plane which is sufficient for crack propagation in this plane because of the 

sufficiently close mutual distances in the critical state.  

 

 

2.5. Additional Remarks Regarding the Empirical Confirmation  
 

Measurements are given in Figure2.4. The points are mean values of a series of 6 or 8 

specimens. The theoretical line eq.(2.30) is also the mean value of the extended 

measurements of Wu on balsa plates. Only the Australian sawn notch data deviate from this 

parabolic line and lie between eq.(2.30) and the theoretical lower bound eq.(2.34). This is 

explained by the theory of a too high IIcK / IcK -ratio, indicating a mistake in manufacture. 

The theoretical prediction that IIc IcK 2K , for dominant isotropic behaviour of the matrix, 

is verified for Balsa with its very low fiber density. The prediction that IIcK / IcK

 21 12 xy y2 2 (G / E )      agrees with the measurements, using general mean values 

of the constants. However, precise, local values of the constants at the notches are not 

measurable and there is an influence of the loading rate and cracking speed. Thus safe lower 

bound values have to be used in practice.  

The theory also fully explains the influence of compression perpendicular to the notch 

plane on the shear strength, eq.(2.31) in Figure 2.4. 

The conclusion thus is that all measurements are explained by the theory.  
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3. MODE I SOFTENING BEHAVIOUR AND FRACTURE ENERGY  
 

3.1. Introduction 
 

The derivation of the softening behaviour is discussed and it is shown that the area under 

the load-displacement softening curve of, e.g.,Figure3.3, 3.4, 3.6 or 3.7, divided by the crack 

area,is not the fracture energy, but the total external work of the fracture process. The fracture 

energy ishalf this valueand is equal to the critical strain energy release rate at the top of the 

curve. For wood this correctlyis applied for mode II. For mode I a two times too high value is 

applied as done for other materials. The fracture energy is a function of the Griffith strength 

and, as the strain energy release rate, related to the effective width of the test specimen and 

not to the length of the fracture plane. The strain energy release rate is determined at the top 

of the top of the softening curve as start of macro-crack extension. This top is determined by 

the critical small-crack density. Proceeded small-crack extension also determines the 

softening curve and post fracture behaviour.  

The analysis is based on matrix stresses for mode I failure in the weak planes because of 

the necessary correction of the fracture energy. The analysis, according to the equilibrium 

method, then is the same as for an isotropic material.  

Authors of fracture mechanics of wood call the plane of co-axial crack propagation, in 

the test specimen, the ligament, probably because a crack may extend over a part of the width 

of the specimen, causing the formation of a ligament which has to collapse, for a total crack 

extension. Because of possible misunderstanding this plane is further called ―fracture plain‖. 

 

 

3.2. Compliance and Energy Release Rate 
 

As most materials, wood shows near failure an apparent plastic behaviour and the loading 

curve can be approximated by equivalent elastic-plastic behaviour. Therefore linear elastic 
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fracture mechanics can be applied based on the ultimate stress at the elastic-plastic boundary 

around the crack tip. The dissipation by microcracking, plastic deformation and friction 

within this boundary, called fracture process zone, then is regarded as part of the fracture 

energy of the macro crack extension. Also the equilibrium method is applicable. When a 

specimen is loaded until just before the start of softening and then unloaded and reloaded, the 

behaviour is elastic until failure making the linear elastic derivation of the softening curve 

possible based on the derivation of the compliance of the fractured specimen as follows:  

In Figure 3.1, a mode I, center notched test specimen is given with a length ―l‖, a width 

―b‖ and thickness ―t‖, loaded by a stress σ showing a displacement δ of the loaded boundary 

due to a small crack extension. The work done by the constant external stress σ on this 

specimen, during this crack extension is equal to  

 

σ∙b∙t∙δ= 2W (3.1) 

 

This is twice the increase of the strain energy W of the specimen. Thus the other half of 

the external work, equal to the amount W, is the fracture energy, used for crack extension. 

Thus the fracture energy is equal to half the applied external energy which is equal to the 

strain energy increase W and follows, for the total crack length, from the difference of the 

strain energy of a body containing the crack and of the same body without a crack:  

 
2 2

2 2eff

blt blt W
E E

 
   (3.2) 

 

 

Figure 3.1. Specimen b x l and thickness t, containing a flat crack of 2c. 

The fracture energy is also equal to the strain energy decrease at fixed grips conditions 

when δ = 0:  

 
c

c
W t vda




   = 

2 2 /c t E  (3.3) 
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where the last two terms give the strain energy to open (or to close) the flat elliptical crack of 

length 2c and where ―v‖ is the displacement of the crack surface in the direction of σ. From 

eq.(3.2) and eq.(3.3) follows that:  

 
2 2

2 2eff

blt blt
E E

 
  2 2 /c t E  (3.4) 

 

Thus the effective Young‘s modulus of the specimen of Figure 3.1, containing a crack of 

2c, is:  

 

21 2 /
eff

E
E

c bl



 (3.5) 

 

The equilibrium condition of the critical crack length is: 

 

 2 0cW G ct
c


 


 (3.6) 

 

where cG  is the fracture energy for the formation of the crack surface per unit crack area. 

Eq.(3.6) also can be regarded as the law of energy conservation of Thermodynamics. Because 

cG  = ∂W/∂(2ct), it clearly also is a strain energy release rate when applied to eq.(3.3).  

With W of eq.(3.2) or of eq.(3.3), eq.(3.6) becomes:  

 

2 2

2 0c

c t
G ct

c E

 
  

  
, 

 

or: 

 

2 2 22
1 2 0

2 2
c

blt c blt
G ct

c E bl E

    
     

   
 (3.7) 

 

giving both the Griffith strength:  

 

c
g

G E

c



  (3.8) 

 

This stress is related to the width b of the specimen of Figure 3.1. The real mean stress in 

the determining weakest cross section with width b – 2c, where fracture occurs, is:  
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1

2 ( / ) (1 2 / )

c c
r

G E G Eb

c b c b c b c b


 
   

  
 (3.9) 

 

and: 

 

   
2

6 / 1
0

( / ) / 1 2 /

cr
G E c b

bc b c b c b





 
  

  
,  (3.10) 

 

when c/b> 1/6, what always is the case for critical crack lengths. Thus the real stress r  

increases monotonically with the increase of the crack length c and no softening behaviour 

exists at the critical site. Softening thus only exists outside the critical cross section and is 

identical to elastic unloading of the specimen outside the fracture zone in order to maintain 

equilibrium. Softening thus is not a material property as is assumed in the existing models for 

wood and other materials.  

 

 

3.3. The Softening Curve  
 

Softening should be described by the damage theory of Deformation Kinetics [1] but a 

simple description of the softening behaviour as a result of former crack propagation alone is 

possible by the Griffith theory. Straining the specimen of Figure 3.1 to the ultimate load at 

which the initial crack will grow, gives, according to eq.(3.5): 

 

 2/ 1 2 / /g g eff gE c bl E        (3.11) 

Substitution of 
2/c gc G E  , according to eq.(3.8), gives:   

 
2 3/ 2 /g g c gE G E bl     (3.12) 

 

This is the equation of critical equilibrium states applying along the softening curve (for a 

not limiting, sufficient long length of the fracture plane of the test specimen). This curve, 

called Griffith locus, has a vertical tangent / 0g gd d   , occurring at a crack length of: 

 

/ 6cc bl  .  (3.13) 

 

Smaller cracks than 2 cc  are unstable because of the positive slope of the locus 

(according to eq.(3.16)). These small cracks, (near the macro-crack tip) extend during the 

loading stage, by the high peak stresses at the notch of the test specimen, to a stable length 

and only higher crack lengths than 2 cc are to be expected at the highest stress before 

softening, giving the stress-strain curve of Figure3.2 with c  as top value.  
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Figure3.2. Softening curve according to eq.(3.12) for the specimen of Figure3.1 or 3.5. 

For a distribution of small cracks, b and l in eq.(3.13) are the crack distances and the 

critical crack distance for extension is about 2.2 times the crack length.Because, when b ≈ 

2.2∙(2 cc ) and l ≈ 2.2∙(2 cc ), thenbl ≈ 19∙
2

cc  ≈ 6 2

cc  according to eq.(3.13). This critical 

distance also is predicted by Deformation Kinetics [1] and is used in Section3.6 to explain 

softening by small-crack propagation in the fracture plane.  

According to eq.(3.13), the softening line eq.(3.12) now can be given as:  

 

4

4
1

3

g c
g

gE

 




 
   

 

,  (3.14) 

 

where 

 

/c c cEG c   (3.15) 

 

is the ultimate load with cc  according to eq.(3.13). The negative slope of the stable part of the 

Griffith locus, being the softening line, is:  

 

4 2

24
11

g

cg

cg

E E

c

c








   




 (3.16) 

 

Vertical yield drop occurs at the top at g c  , and the strain then is: 

( / ) (1 1/ 3)gc c E     and eq.(3.14) becomes: 

 



T. A. C. M. van der Put 18 

3

3
0.75

3

g g c

gc c g

  

  

 
    

 

,  (3.17) 

 

More in general eq.(3.14) can be written, when related to a chosen stress level 1g : 

 
4 4

4 4

1 1 1

1 / 3

1 / 3

g g c g

g g c g

   

   


 


 (3.18) 

 

To control whether c  changes, eq.(3.18) can be written like:  

 

 
0.25

3

1 1 1

3

1 1 1

3 ( / ) ( / ) ( / )

1 ( / ) ( / )

g g g g g gc

g g g g g

     

    

   
 
  
 

 (3.19) 

 

with the measured values at the right hand side of the equation. When the occurring softening 

curve starts to differ from the Griffith locus, c  decreases, causing a steeper decline of the 

curve, due to additional clear wood failure of the fracture plane. This small-crack joining 

mechanism is discussed in Section 3.6.  

 

 

3.4. Fracture Energy as Area Under the Softening Curve  
 

The basic theory of the energy method, leading to eq.(3.1) and (3.2), should be confirmed 

by the loading curve (Figure3.3 and 3.4). This will be discussed in the now following. 

When a test specimen is mechanical conditioned, the effective stiffness is obtained given 

e.g. by the lines OA and OC in Figure 3.3 and 3.4. In Figure3.3, the area OAB, written as 

OABA , is the strain energy of the specimen of Figure3.1 with a central crack (or with two side 

cracksaccording to Figure3.5) with a width ―b‖, length ―l‖ and thickness ―t‖, loaded to the 

stress  . 

During the quasi static crack extension from B to D in Figure3.3, the constant external 

load   does the work on the specimen of: BD BDb t l b t           ABDCA , where 

BD  is the strain increase due to the cracking and BD  the corresponding displacement. 

The strain energy after the crack extension is OCDA  and the strain energy increase by the 

crack extension thus is in Figure3.3: OCDA  - OABA  = OCDA  - OCBA  = CBDA  = / 2ABDCA , 
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Figure3.3. Stress - displacement curve for tension, of the specimen of Figure3.1 or 3.5. 

 

Figure3.4. Descending branch of the stress - displacement curve of Figure3.3. 

Thus half of the external energy: / 2ABDC BDA b t      is the amount of increase of 

the strain energy due to the elongation by  , and the other half thus is the fracture energy 

which is equal to this increase of strain energy.The same follows at unloading at yield drop. 

Because every point of the softening curve gives the Griffith strength, which decreases with 

increasing crack length, unloading is necessary to maintain equilibrium. The fracture with 

unloading step AC in Figure 3.4 is energetic equivalent to the unloading steps AE and FC and 

the fracturing step EF at constant stress EB = FD = (AB +DC)/2. Thus ABDCA  = EBDFA . 

Identical to the first case of Figure3.3, the increase in strain energy due to crack extension is:  

 

0.5 0.5ODF OBE ODF OBF BFD EBDF ABDCA A A A A A A        ,  

 

equal to half the work done by the external stresses during crack propagation and thus also 

equal to the other half, the work of crack extension. It thus is shown that half the area under 

the load-displacement curve represents the fracture energy. For mode II, only line OACO in 



T. A. C. M. van der Put 20 

Figure3.3 is measured and OACA  is regarded to be the fracture energy. Because 

OAC BAC ABDCA A 0.5 A   , thus equal to half the area under the load displacement 

curve, the right value is measured and mode II needs no correction.  

Because eq.(3.2) is based on the total crack length and the strength is a Griffith stress, the 

initial value 2c of the crack length should be accounted and   and cG  should be related to 

the whole crack length, including the initial value, and thus should be related to the whole 

specimen width b and not to the reduced width of the fracture plane: b – 2c as is done now. 

After the correction by a factor 2, this is the second necessary correction of the mode I 

fracture energy cG . A third correction occurs when c  of eq.(3.14) changes. The apparent 

decrease of cG at the end stage of the fracture process is due to an additional reduction of the 

intact area of the fracture plane of the specimen due to an additional clear-wood failure 

mechanism discussed in Section 3.6. 

In [2], not ABDCA /2 is regarded for the fracture energy the totally different amount 

OACOA  of Fig 3.3. This is the irreversible energy of a loading cycle by a crack increment 

when the specimen is regarded as one giant molecule. The elastic unloading-energies outside 

the fracture plane of: OEAA  and OCFA  are now additional measures of the bond reduction for 

the total specimen, representing a decrease of the apparent enthalpy and entropy terms of the 

activation energy. The triangle OACOA  thus represents the activation energy of the process [1] 

which is equal to the reversible work done on the system also represented by OACOA . This is 

the case because this elastic energy is given by the elastic unloading parts, outside the fracture 

plane OEAA  and OCFA together with OEFA , the strain energy increase. As discussed in [3], the 

measurements of [2] indicate the presence of a mechanosorptive process, acting in the whole 

specimen. Thus OACOA  gives no separate information on the fracture process at the fracture 

plane and should not be applied as measure of the fracture energy.  

 

 

3.5. Empirical Confirmation 
 

The measurements of [4] are complete by measuring the whole loading and softening 

curve and using the compact tension tests as control, being a control by the different loading 

case. 

The graphs of [4], Figure3.6 and 3.7, are the result of tension tests on the specimen of 

Figure 3.5. 

The length of the specimen was l = 3 mm, the width and thickness: b = t = 20 mm and the 

notch length 2c = 2x5 = 10 mm with a notch width of 0.5 mm. 
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Figure3.5. Geometry of the specimens [4]. 

In figures 3.6 and 3.7, the measured stress-displacement is given together with the lines 1 

and 2 according to eq.(3.17). The strain g  follows from the displacements at the x-axis of 

the figures divided through 3 mm, the measuring length and length of the specimen. Because 

of the small length of 3 mm, not the whole width b of the specimen is active. Assuming a 

possible spreading of 1.2:1, through the thickness of 1.25 mm above and below the side 

notches, the working width effb  is equal to the length of the fracture plane plus 2 times 1.2 x 

1.25 or 
effb  = 10 + 3 = 13 mm. Thus the notch lengths in Figure 3.5 should be regarded to be 

1.5 mm instead of 5 mm. The stresses in the figures 3.6 and 3.7 of [4], are related to the 

length of the fracture plane and not to effb , according to the Griffith stress. Thus the given 

stresses have to be reduced by a factor 10/13 = 0.77. 

 

 

Figure3.6. Stress - displacement of specimen T 1409 of [4].  

 

Figure3.7. Stress - displacement of specimen T 1509 of [4]. 
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The standard compact tension tests of [4] did show a stress intensity IcK  of 330 

3/ 2kNm
. This result is independent on the chosen stiffness as follows from the calculation 

according to the series solution or according to the energy method. This is verified in [4] by 

comparing the series solution with a finite element compliance calculation using the isotropic 

and theorthotropic stiffness and the quite different orthotropic stiffness of [5]. The value of 

IcK  = 330 
3/ 2kNm

, found in all cases, thus also should follow from the area under the 

softening curve of that compact tension test. When half the area of that diagram is taken to be 

the fracture energy, instead of the total area, then IcK , mentioned in [4], indeed is corrected 

to the right value of: 467/√2 = 330
3/ 2kNm

, giving the first empirical verification of the 

theory. 

Regarding the short double edge notched specimens of Figure3.5, the measured E-

modulus should be related to the effective width of 13 mm instead of the width of 10 mm of 

the fracture plane and therefore is E = 700x10/13 = 700x0.77 = 539 MPa. The critical energy 

release rate then is:  

 
2 2/ 330 / 539 200c IcG K E    N/m (3.20) 

The measured value of cG  from the area under the stress-displacement curve is given in 

[4] to be 515 N/m. But, because half this area should have been taken and this value is 

wrongly related to the length of the fracture plane instead of on effb , the corrected value is:  

 

cG  1/2x515x0.77 = 200 N/m,  (3.21) 

 

as found above, eq.(3.20), giving again an empirical verification of the theory, now by 

the tests on the short double edge notched specimens.  

As shown before, the softening curve of Figure3.6 has a vertical tangent at the top 

/g gd d    . The critical crack length for softening is: / 6cc bl   according to 

eq.(3.13). Thus: 

 

cc  3 313 3
10 1.4 10 1.4

6 6

effb l
 

     
 

mm (3.22) 

 

This confirms the mentioned initial St. Venant crack length of the specimen to be as 

small as about 1.5 mm.  

In Figure3.6, at the Griffith maximal stress of (0.77)∙7 = 5.39 MPa, is: 
IcK c    or: 

 

IcK  = 5.39∙
31.4 10   = 0.36

3/ 2MNm
.  (3.23) 

 

Thus above the mean value of 0.33 
3/ 2MNm

 for this strong specimen. 
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Line 1 of Figure3.6 gives the primary crack extension, eq.(3.17), with c  = (0.77)∙7 = 

5.39 MPa and a displacement of about 0.03 mm, (or a strain of 0.03/3 = 0.01). The strength of 

the fracture plane of 7 to 8 MPa is rather high and only measured 6 times of the 117 tests. The 

crack does not propagate in a free space, but in the limited length of the fracture plane and 

this area will be overloaded. Curve 1 therefore levels off from the measurements at   = 

0.77∙4 MPa. Thus: 

 

3

c
g

c

EG

c



   0.57∙(0.77∙7) = 0.77∙4 MPa  (3.24) 

 

Thus this happens when the crack length has become about 3 times the initial critical 

value c ,0c . The remaining intact length of the fracture plane then is: 4.4 mm or 4.4/13 = 0.34, 

while the remaining intact length is 5 mm for small-crack pattern A (of Section 3.6), or 5/13 = 

0.38. Thus less fracture energy is required for small-crack failure and it thus is probable that 

macro-crack extension is always due to small-crack propagation toward the macro-crack tip. 

The level above 4 (to 4.6) MPa is measured in 3 of the 10 specimens of the discussed series 

T1309/2309 of [4] and an example is given in Figure3.7. The other specimens of this series 

did show lower strength values than 4 MPa, indicating that this strength of the fracture plane 

according to crack-pattern A was determining for softening. The same applies for further 

softening. The transition to crack pattern B and to pattern C is according to eq.(3.18), verified 

by eq.(3.19), showing that in Figure3.6, c  is constant and equal to c /0.77 = 7 MPa for 

g /0.77 = 7 down to g /0.77 = 4 MPa and then reduces gradually to c /0.77 = 4.5 at g

/0.77 = 2 and further to c /0.77 = 3 at g /0.77 = 1 MPa. The same applies for Figure3.7, 

c /0.77 = 7 MPa above g /0.77 = 4 MPa and then reduces in the same way. These results 

are given in Table 1. The departure from the Griffith theory by the gradual decrease of c , 

below g /0.77 = 4 MPa, is due to the failure of the high loaded fracture plane what is 

explained in the next section. 

 

 

3.6. Crack Joining Mechanism 
 

The discussed apparent decrease of the fracture energy cG  of the Griffith theory, due to 

reduction of intact area of the fracture plane of the specimen by small crack extensions at the 

fracture plane, can be explained, using the equilibrium method, by the joining of the small 

cracks as follows:. 

In [3] it is shown that the critical intermediate small crack distance of a fracture process 

in ―clear‖ wood, and thus in the fracture plane, is about equal to the crack length, as given in 

scheme A below. In Section 3.3, a crack distance of 2.2 times the crack length is found, what 

for simplicity of the model is rounded down here to 2, giving slightly too high stresses (see 

Table 1). For these small cracks, the critical crack length according to eq.(3.13) then is: 
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  2c    2c    2c    2c    2c    2c    2c    2c    2c    2c    2c    2c    2c    2c    2c  . A 

 

           6c           2c             6c            2c           6c             2c           6c          . B 

 

                        14c                            2c                          14c                         . C 

 

0 0 0/ 6 2 (2 ) 2 (2 ) / (6 ) 0.92cc lb c c c          ≈ 0c , for the specimen with row 

A. 

The distance l between the rows, above each other, is always two times the crack length, 

being the Saint-Venant distance for building up the stress again behind a crack to be able to 

form a new crack. Thus l = 2∙2c for row A, and l = 2∙6c = 12c in row B, and 2∙14c = 28c in 

row C. The crack distance b in row A is b = 4c, and b = 8c in row B, and 16c in row C. Thus 

when crack pairs of row A join together, a crack length of 6c occurs, at a distance 8c, and so 

on. The critical crack length thus is for row B: 

 

2

0 0/ 6 12 8 / (6 ) 2.26cc lb c c         and is  

2

0 0/ 6 28 16 / (6 ) 4.88cc lb c c         for row C. 

 

The critical stress c  is for row A: 

 

0 0

1.04 1.04
0.92

c c
c cm

EG EG

c c
 

 
     ≈ 1.0∙0.77∙7 = 0.77∙7.0 MPa,  

 

and for row B: 

 

c  =  1/ 2.26 0.67cm cm     0.67∙0.77∙7 = 0.77∙4.6 MPa, 

 

and for row C: 

 

c  =  1/ 4.88 0.45cm cm     0.45∙0.77∙7 = 0.77∙3.1 MPa 

 

The determining strength of the intact part of the fracture plane is: 

 

2 / 2 / 4 / 2 4m u u uc b c c         ∙0.77 MPa for case A;  

 

2 / 8 / 4 2m u uc c      ∙0.77 MPa for case B, and  

 

2 /16 / 8 1m u uc c      ∙0.77 MPa for case C.  
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Thus the decrease of the Griffith values c  and cG is fully explained by the strength of 

the intact part of the fracture plane g m   as is verified by the measurements. As 

mentioned before, eq.(3.19) of c , of the softening curve gives the measurement of 

Figure3.6 and 3.7 in the first two columns of Table 1, together with the prediction of the crack 

joining mechanism in column 5 and 6. This mechanism thus precisely explains the decrease 

of c  of the softening curve, which also can be approximated by three equations (3.18) for 

the 3 critical crack densities A, B and C. The strength decrease by a factor 0.5 between these 

crack densities in column 6 causes a decrease of the top-value c  of eq.(3.17) of a factor 

0.657 in column 1 and 5. Thus: 0.657∙7 = 4.6 and 0.657∙4.6 = 3. Thus a simple practical 

approximation of the mean softening curve of all specimens of the series, is possible by 

applying eq.(3.17) twice (or three times for the highest values), according to line 1 and 2 in 

Figure 3.6 and 3.7.  

 

Table 1. Softening by macro crack propagation followed by fracture plane failure 

 

 eq.(3.19), data Figure 3.6 crack joining  

/ 0.77c  

 eq.(3.19) 

/ 0.77g  

 Chosen 

  points 

1/g g   

  data 

1/g g   

  data 

/ 0.77c  

  3 crack   

  densities  

/ 0.77m  

  strength  

  fract.plane 

7 

7 

4.6 

3.0 

7 

4 

2 

1 

 

4/7 

2/7 

1/7 

 

7.5/4 

11.5/4 

16/4 

 

7 

4.6 

3.1 

 

A:  4 

B:  2 

C:  1 

 

The analysis above shows that in general:  

 

1 02 2 2 2n nc c c    , giving 1 02 6c c  and 2 1 0 02 2 2 2 14c c c c    . 

 

The increase of the crack length is: 1 0(2 ) ' 2 2 2 2n n nc c c c c     . Including the 

initial crack length of 2 0c , the increase of the total crack length is: 

 

1 0(2 ) 2 2 2 2n n nc c c c c     . (3.25) 

 

More general for any crack distance this is: 1(2 ) 2c c    and because the strength 

decrease is proportional to the area decrease of the fracture plane area of the test specimen, 

due to the small cracks extension there, the equation becomes: 

 

2 c(2c)/(2c) (G )     (3.26) 
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giving the explanation of the decrease of c .  

Eq.(3.26) also can be expressed in the mean crack velocities by replacing c by     , the 

mean crack velocity c  times time t. Thus:
 

(2 ) / (2 ) ( ) / /c c ct ct c c     . Then 

integration of eq.(3.26) leads to: 

 

,c aG  = , ,1c aG  −γ∙ln(  ),  (3.27) 

 

This is measured in [2] and mentioned in [6] for the irreversible work of loading cycles. 

It is shown in [3] that G is proportional to the activation energy and thus proportional to 

the driving force IK  with reversed sign and Eq.(3.27) can be written relative to a reference 

   :  

 

,

1
1 ln( )t

t m m

c

n c




  = 

,

I

I m

K

K
 (3.28) 

 

This semi log-plot, eq.(3.28), is given, as empirical line, in many publications from 

experiments on, e.g., ceramics, polymers, metals and glasses, and is, e.g., given in [6] for 

wood. Because the slope is small, also the empirical double log-plot is possible.  

The kinetics shows the same behaviour as for clear wood indicating that small-crack 

propagation is always determining. As shown in [1], two coupled processes act, showing the 

same time-temperature and time-stress equivalence. One process, with a very high density of 

sites, provides the sites of the second low site density process, as follows from a very long 

delay time of the second process. The notched specimen discussed here also shows the low 

concentration reaction by the strong softening behaviour. Probably the coupled processes are 

the numerous small-cracks growing towards the macro notch, providing the site for the macro 

crack to grow as second low (crack-) concentration process. This failure mechanism thus 

applies for every bond breaking process at any level.  
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4. DISCUSSION OF THE FRACTURE MECHANICS MODELS  

APPLIED TO WOOD 
 

4.1. Introduction  
 

The always applied singularity approach of fracture mechanics contains no physical 

failure criterion for the ultimate state because stresses go to infinity at the singularity and 

therefore energy methods are necessary and additional models to constitute such failure 

criteria as for instance the J-integral to determine the strain energy release rate and the 

fictitious crack models to obtain finite ultimate stresses etc. The general applicability of these 

models will be discussed in this section while criteria based on a critical energy are discussed 

in the next section. 

 

 

4.2. The Fictitious Crack Models 
 

The high stresses near the crack tip, are replaced by a plastic zone in the Dugdale model 

following from elastic superposition of closing stresses, equal to the yield stress, on the crack 

tip zone of a fictitious enlarged crack of such a length that the stress in the elastic singularity 

point becomes zero. The length of that plastic zone is pr  according to: 

 
2

2 2

28 8

Ic
p

f f

K c
r

  

 

 
    

 

 (4.1) 

 

where f  is the yield stress or is regarded to be a cohesive stress.  

This leads to a maximal crack opening displacement c  at the crack tip of: 

 

8
c f pr

E
 


   = 

2

Ic

f

K

E
 = 

2

f

c

E




 (4.2) 

 

when pr  from eq.(4.1) is substituted. 

According to the theory of Section 2 applies, for Mode I, at the crack tip boundary 0r , at 

the start of flow, the condition:  
2

0 2 / fr c    according to eq.(2.29) for the elliptic crack 

tip and approximately 
2 2

0 / 2 fr c   according to eq.(2.20) for the circular crack tip, 
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showing a difference by a factor 4, depending on the form of the crack tip and thus depending 

on the value of the tangential tensile stress along the crack-tip boundary. The Dugdale 

numerical factor 
2 / 8 1.23   is between the values of 0.5 and 2 but is too far away from the 

elliptic value 2 which applies generally. Also the theoretical elastic elliptic crack opening 

displacement of (2 ) /c c E  is far above the Dugdale value. The Dugdale model thus is a 

model according to the equilibrium method, based on a chosen, allowable equilibrium system, 

providing however a too low and thus rejectable lower bound with respect to the theoretical 

description of Section 2. The same applies for the Hillerborg model which is not based on a 

constant closing stress f , but on closing stresses proportional to the softening curve. This of 

course is not right because there is no softening at the fracture plane. The real stress in the 

intact area is the ultimate yield stress and yield drop thus is a system property indicating how 

much broken area with zero stress there is in the fracture plane (see Section 3). 

For wood it is sufficient to account for apparent plasticity zones around the crack-tip by 

regarding effective crack dimensions and to regard the critical state at these elastic-―plastic‖ 

boundaries. 

 

 

4.3. Crack Growth Models  
 

The acknowledged, in principle identical crack growth models for wood of Williams, 

Nielsen and Schapery, mentioned in [1], are based on linear viscoelasticity and on the 

Dugdale-Barenblatt model in order to try to derive the empirical crack rate equation: 

 

n

I

da
A K

dt
   (4.3) 

 

This procedure is contrary to normal and can not lead to a real solution because the rate 

equations are constitutive and follow from Deformation kinetics theory [2], [3], as applies for 

all materials. Constitutive equations only can follow from the theory and not from general 

thermodynamic considerations. 

 

 

Figure 4.1. Crack growth tests of Mindess (Figure 10 of [1]). 
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In [1] is stated that Fig 4.1 represents eq.(4.3). However, eq.(4.3) is a straight line on a 

double log-plot, while Figure 4.1 gives the semi-log-plot which confirms the applicability of 

the damage equation of Deformation Kinetics [2] in the form: exp( )va C   , or: 

 

ln( ) ln( ) va C    (4.4) 

 

This equation is equal to eq.(3.28), discussed in Section 3. More appropriate forms of 

theexact damage equations and power law forms, with the solutions as e.g. the yield drop in 

the constant strain rate test, are discussed in [2] and the meaning of the power law equation, 

eq.(4.3), is discussed below. 

The impossibility of the derivation of the fracture rate equation from the Dugdale-

Barenblatt equations follows e.g. from the derivation in [6, Section 2.2] of eq.(4.5): 

 

0

n n

Ic c y pK E a r       (4.5) 

 

based on the relations: /y c E   and Ic c cK E  , with 0

nE E t   and 

pr a t  . These four relations thus also can be used now to eliminate 4 parameters, e.g. IcK , 

y  , pr  and 0E  to obtain an equation in E, t,    c  and c . When this is done, eq.(4.5) turns 

to an identity: E = E, and eq.(4.5) thus is not a new derived crack rate equation but an 

alternative writing of the four relations. The same follows for the other models of Section 2.2 

of [1] showing comparable parameter manipulations of many critical parameter values which 

can not be applied independently because they are part of the same failure condition. The 

models further are based on linear viscoelasticitywhich does not exist for polymers. It is 

shown in e.g. [2], page 97, and by the zero creep and relaxation tests at page 119, that a 

spectrum of retardation or relaxation times does not exist. The superposition integral eq.(28) 

or eq.(51) of [1]:  

 

   
( )t d

t C t d
d

 
  


    (4.6) 

 

thus has no physical meaning. This also applies for the power law models of time and 

power law equation, eq.(4.3) making predictions and extrapolations outer the fitted range of 

the data impossible.  

 

 

4.4. Derivation of the Power Law 
 

The power law may represent any function f(x) as follows from the following derivation. 

It thus also may represent, in a limited time range, a real damage equation giving then a 

meaning of the power n of the power law eq.(4.3).  

Any function f(x) always can be written in a reduced variable x/x0 
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1 0( ) ( / )f x f x x  (4.7) 

 

and can be given in the power of a function:  

  1/

1 0 1 0( ) ( / ) ( / )
n

n
f x f x x f x x   and expanded into the row:  

2

0 0
0 0 0

( ). .( ) ( ) '( ) ''( ) .......
1! 2!

x x x x
f x f x f x f x

 
     

 

giving:  

   
1/ 1/ 10

1 1 1

0 0

1 . .( ) (1) (1) '(1) ..... (1)

n n

n nx x x
f x f f f f

x n x

   
      
   

 (4.8) 

 

when: 

 

   
1/ 1/ 1 '

1 1

1
(1) (1) (1)

n n
f f f

n


     or: 

'

1 1(1) / (1),n f f  

 

where: 

 

    
 0

'

1 1 0 0 / 1
(1) / / /

x x
f f x x x x


    

 

and 

 

1 0(1) ( )f f x  

 

Thus: 

 

0

0

.( ) ( )

n

x
f x f x

x

 
  

 
 

 

with 

 

01

1 0

'( )'(1)

(1) ( )

f xf
n

f f x
   (4.9) 

 

It is seen from this derivation of the power law, using only the first 2 expandedterms, that 

the equation only applies in a limited range of x around 0x .  

Using this approach on the damage equation: 2 sinh( ) exp( )a C C     gives: 
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0

0

0

. .exp( )a C a







 
   

 
 (4.10) 

 

The power 0n   of the power law equation follows from the slope of the double log-

plot: 

 

0 0ln( ) ln( ) ln( / )a a n      (4.11) 

 

Thus: 0ln( ) / ln( / )n d a d    and n 0  gives a meaning of n as the activation  

volume parameter 0  of the exact equation. The values of ―n‖ and the matching activation 

energies of the different creep and damage processes in wood, with the dependency on stress 

moisture content and temperature, are given in [2]. The constancy of the initial value of the 

parameter 0 , independent of 0  explains the time-temperature and time- stress 

equivalence and explains, by the physical processes, why and when at high stresses, the in [1] 

mentioned value of n + 1 ≈ 60 is measured and at lower stresses, half this value (see [2]).  
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5. ENERGY THEORY OF FRACTURE 
 

5.1. Introduction 
 

The failure criterion of clear wood, i.e. wood with small defects, is the same as the failure 

criterion of notched wood, showing again that the small-crack extension towards the macro-

crack tip is the cause of macro-crack propagation. This small-crack failure criterion thus 

delivers essential information on macro-crack behaviour.  

 

 

5.2. Critical Distortional Energy as Fracture Criterion  
 

The failure criterion of wood consist of an orthotropic third degree tensor polynomial [1], 

which, for the same loading case, is identical to the Wu-mixed mode I-II-equation [2], 

eq.(5.3). The second degree polynomial part of the failure criterion is shown to be the 

orthotropic critical distortional energy principle for initial yield [3] showing the start of 
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dissipation of elastic distortional energy as also confirmed by the orthotropic finite element 

calculation of [4]. By this dissipation according to the incompressibility condition, the 

minimum energy principle is followed providing therefore the exact initial yield criterion as: 

 
22 2

12 2
2 1

' ' ' '

y y yx x x
x yF

XX X X YY Y Y S

     
          (5.1) 

 

where X, Y are the tension strengths and ', 'X Y  the compression strength in the main 

directions and S  is the shear strength and: 
122 1/ ' 'F XX YY  

This value of 12F  is necessary for the elastic state which also applies at the starting point 

of initial stress redistribution and micro-cracking of the matrix. After further straining, 12F  

becomes zero, 12 0F  , at final failure initiation. The absence of this coupling term 12F

between the normal stresses indicates symmetry, thus (possible random oriented) initial 

small-cracks are extended during loading to their critical length in the weak planes, the planes 

of symmetry, only. Then, when these small-cracks arrive at their critical crack-density 

(discussed in Section 3.6) and start to extend further, a type of hardening occurs because the 

reinforcement prevents crack extension in the matrix in the most critical direction. Then, due 

to hardening, 12F  and all third degree coupling terms of the tensor polynomial become 

proportional to the hardening state constants [3] and therefore also dependent on the stability 

of the test and equipment. For the mixed I-II-loading of the crack plane by tension 2  and 

shear 6 , the polynomial failure criterion reduces to:  

 

2 2 2

2 2 22 2 66 6 266 2 63 1F F F F          or: 6 2 2

2

(1 / ) (1 / ')

1 / '

Y Y

S c Y

  



  



 (5.2) 

 

with: c
2

2663 'F Y S   0.9 to 0.99, depending on the stability of the test. When c 

approaches c  1, Eq.(5.2) becomes Eq.(5.3), the in Section 2.3 theoretically explained Wu-

equation, with a cut off by the line: 2 Y  . 

 
2

6 2 1
S Y

  
  

 
   or:    

2

2
1II I

IIc Ic

K K

K K
   (5.3) 

 

This equation contains no hardening constants and thus is the critical distortional energy 

equation for this case. Wrongly for wood and other orthotropic materials, Eq.(5.2) is 

generally replaced in literature by: 

 
2 2

2

2 2
1

Y S

 
  , written as: 

2 2

2 2
1I II

Ic IIc

K K

K K
  ,   (5.4) 
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which surely is not a summation of energies, as is stated, but is identical to eq.(5.1) when 

it wrongly is assumed that the compression and tension strength are equal for wood and 

orthotropic materials.  

 

 

5.3. Revision of the Critical Energy Release Rate Equation 
 

Based on the failure criterion of Section 5.2, adaption of the energy release equation is 

necessary. 

The Griffith strength equation, eq.(3.8) of Section 3:  
2 /y c yG E c  can be extended 

by superposition to: 

 
2 2 /y xy c yG E c     (5.5) 

 

This only is right, when cG  is not constant but depends on /y xy  , because else, for 

y  = 0, Eq.(5.5) predicts a too low shear strength. This already was noticed by Griffith. The 

fracture toughness calculation of Section 2.3 shows a two times higher shear strength of the 

isotropic matrix than according to the energy method. This was explained by supposing that 

there is enough energy for failure, but that the shear stresses are too low for failure. Only the 

energy of high stresses is involved in failure. This however means that fG  also has to satisfy 

the failure condition eq.(5.3). 

In orthotropic stresses, Eq.( 5.5) is:  
2 2 2

6/ /y xy f yn G E c      and when 0xy  , is  

 

fG  = IcG  

 

and Ic y IcK E G  

 

When 0y   is: 
2 2 2

6 64xy IIc y Ic yc n G E n G E    , because  

 

62IIc IcK n K  (eq.(2.37)). Thus: 6 62IIc y IIc y IcK n E G n E G   or: 

 

4IIc IcG G  (5.6) 

 

The failure condition Eq.(5.3) can be written in fracture energies: 
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where: 

 

 1f I II f fG G G G G         (5.8) 

 

Thus: 
 

2

21

f I

f II

G K

G K




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
 or: 

2 2

2 2

1 1

1 1
II xy

I y

K

K






 

 

 (5.9) 

 

and   depends on the stress combination /xy y  in the region of  the macro notch-tipand 

not on the stresses of the fracture energy. This stress combination may follow from a chosen 

stress field according to the equilibrium method as applied in Section 6 and 7.  

With eq.(5.6): / 4IIc IcG G  , eq.(5.7) becomes:  

 

2 24 / (1 ) / (1 )f Ic IIcG G G      (5.10) 

 

The use of fG  according Eq.(5.10) explains the differences in fracture energies 

depending on the notch depth and structure and shear slenderness of the beam by the different 

occurring /xy y  -values according to Eq.(5.9).  

Applications of the theory with the total critical fracture energy fG  are given in Section 

6 and 7. 
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6. ENERGY APPROACH FOR FRACTURE OF NOTCHED BEAMS  
 

6.1. Introduction  
 

The theory of total fracture energy, discussed in Section 5, was initially developed to 

obtain simple general design rules for beams with square end-notches and edge joints, loaded 
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perpendicular to the grain design rules of square notches and joints for the Dutch Building 

Code and later, as modification of the method of [1], published in [2] with the extensions for 

high beams. Horizontal splitting in short, high beams, loaded close to the support, causes no 

failure because the remaining beam isstrong enough to carry the load and vertical transverse 

crack propagation is necessary for total failure. This is not discussed here because it is shown 

that also the standard strength calculation is sufficient. In [3] and [4] the theory is applied to 

explain behaviour, leading to the final proposal for design rules for the Eurocode, given at 

Section 7.5, and to an always reliable simple design method.  

In the following, the theoretical basis and implementation of the new developments of the 

theory of the energy approach for fracture of notched beams are given and it is shown that the 

predictions of the theory are verified by the measurements. The presentation of more data can 

be found in [2].  

 

 

6.2. Energy Balance  
 

When crack-extension occurs over the length Δx, along the grain, then the work done by 

the constant load V is V∙Δδ, where Δδ is the increase of the deformation at V. This work is 

twice the increase of strain energy of the cantilever part: V∙ Δδ/2. Thus half of the external 

work done at cracking is used for crack formation being thus equal to the other half, the strain 

energy increase.  

 

Figure 6.1. Notched beam. 

Thus in general, when the change of the potential energy ΔW = V∙Δδ/2 becomes equal to 

the energy of crack formation, crack propagation occurs. The energy of crack formation is: 

c cG b x G bh    , where cG  is the crack formation energy per unit crack area. Thus crack 

propagation occurs at V = fV  when:  

 
2/ 2 ( / ) / 2        cW V V V G bh , 

 

thus when:  
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2

( / )
c

f

G bh
V

V








 (6.1) 

 

and only the increase of the compliance δ/V has to be known.  

The deflection δ can be calculated from elementary beam theory as chosen allowable 

equilibrium system as a lower bound of the strength. This is close to real behaviour because, 

according to the theory of elasticity, the deflection can be calculated from elementary beam 

theory while the difference from this stress distribution is an internal equilibrium system 

causing no deflection of the beam and also the shear distribution can be taken to be parabolic 

according to this elementary theory, as only component of this polynomial expansion, 

contributing to the deflection.  

According to the Figure 6.2, the notch can be seen as a horizontal split, case: a = a‘, and 

case a can be split in the superposition of case b and c, where b = b‘.  

 

 

Figure 6.2. Equivalent crack problem according to superposition. 

Case c now is the real crack problem by the reversed equal forces that can be analyzed 

for instance by a finite element method, etc. From the principle of energy balance it is also 

possible to find the critical value of case c by calculating the differences in strain energies or 

the differences in deflections δ by V between case: b‘ and case a‘, thus differences in 

deformation of the cracked and un-cracked part to find Δ(δ/V)  for eq.(6.1).  

Deformations due to the normal stresses N of case c, are of lower order in a virtual work 

equation and should not be accounted. It then follows that case c of Figure 6.2 is equal to a 

mode I test and c IcG G . When the beam is turned upside down, or when V is reversed in 

direction, then 'M  and 'V  are reversed closing the crack and fracture only is possible by 

shear,  identical to the mode II test and then c IIcG G  

The change of δ by the increase of shear deformation is, with eh h  :  
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1.2
v

h h
V

G b h bh
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 
 (6.2)  

 

The change of δ by the increase of the deflection is:  
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 (6.3)  

 

Thus: 

 
2

3

( / ) 1.2 1 12 1
1 1

V

Gb Eb
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    
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 (6.4) 

 

The critical value of V thus is according to eq.(6.1):  

 

2
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 (6.5) 

 

or: 

 

 3 4 2 4

/

0.6( ) 6 /

f c
V GG h

b h G E



     


  
 (6.6) 

 

For small values of β eq.(6.6) becomes:  

 

2

/

0.6 ( )

f c
V GG h

b h  


 
 (6.7) 

 

For high values of β, eq.(6.6) becomes:  

 

4

/

6( )

f c
V EG h

b h



   



 (6.8) 
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6.3. Experimental Verification  
 

A verification of the prediction of the theory for high values β, eq.(6.8), when the work 

by shear is negligible, is given by Table 6.1 of an investigation of Murphy, mentioned in [1], 

regarding a notch starting at β = 2.5 and proceeding to β = 5.5. Further also beams were tested 

with a slit at a distance: β = 2.5. Because the exact eq.(6.6) gives a less than 1 % higher value, 

eq.(6.8) applies. ( cGG = 11.1 resp. 10.9 
1.5N/ mm ) and: cEG = 48.8 

1.5N/ mm . This 

value is used in table 6.1 for comparison of eq.(6.8) with the measurements, showing an 

excellent  agreement between theory and measurement. For all specimens was: α = 0.7; η = 

L/h = 10 (L is distance field loading to support) and b = 79 mm. The other values are given in 

table 6.1. The fracture energy is: cG      
2

48.8 / 14000 0.17N / mm 170 N / m , 

which agrees with values of the critical strain energy release rate. The value of IcK  is about: 

0.17 700 10.9IcK    1.5N / mm = 345 
1.5kN / m , as to be expected by the high 

density of Douglas fir. 

 

Table 6.1. Strength of clear laminated Douglas firwith notches in the tensile 

zone in MPa 

 

h mm   number V/αbh tests eq.(6.8) 

305 2.5 2 0.46 0.47 

305 5.5 2 0.24 0.22 

457 2.5 2 0.38 0.38 

457 5.5 1 0.16 0.17 

 

In table 6.2, data are given of Spruce for low values of β, to verify the then predicted 

theoretical behaviour according toeq.(6.7) with energy dissipation by shear stresses only. It 

appears for these data that the difference between the mean values according to eq.(6.7) and 

eq.(6.6) are 10 % and thus not negligible small and also the values of eq.(6.6) are given to 

obtain a possible correction factor.  

It follows from table 6.2 for Spruce that: cGG  1.56.8 N / mm  or: cG 

 26.8 / 500 0.092N / mm 92N / m . 

For Spruce is IcK  ≈ 6.3 to 7.6 according to [5], depending on the grain orientation and 

then also applies: 2E G  and:  2 6.8Ic cK E G   1.5N / mm .  

Although the fracture energy is shear-stress energy, failure still is by mode I (of Figure 

6.2) and not by the shear mode II, as is supposed by other models. Thus the total work 

contributes to failure, whether it is bending stress energy (Table 6.1) or shear stress energy 

(Table 6.2)and 1   (eq.(5.9) for failure of this type of notch by the high tensile stress 

perpendicular to the grain at the notch root.  

In [2] more data are given regarding the strength of square notches. The size influence, or 

the influence of the height of the notched beam on the strength, is tested on beams with notch 
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parameters   = 0.5 and 0.75;   is 0.5 and heights h 50, 100 and 200 mm with b = 45 mm 

at moisture contents of 12, 15 and 18%. The strength fGG  appeared to be independent 

ofthe beam depth as to be expected for macro crack extension along an always sufficient long 

fracture plane. The value of fGG  at moisture contents of resp. 12, 15 and 18% was resp.: 

6.7; 7.7 and 8.0 
1.5Nmm .  

 

Table 6.2. Strength of notched beams, Spruce, Mohler and Mistler 

 

h 

mm 

    η/α b 

mm 

n 

 

V/bαh 

N/mm2 

var. 

coef. 

% 

fGG  

eq.(6.6) eq.(6.7) 

N/mm1.5 

120 .917 .25 3.4 32 6 2.36 11 (5.8) (5.5) 

.833 3.8 27 1.93 15 6,4 6.1 

.75 4.2 43 1.68 19 6.6 6.2 

.667 4.7 14 1.52 18 6.5 6.1 

.583 5.4 10 1.5 18 6.8 6.3 

.5 6.3 49 1.59 18 7.4 6.7 

.333 9.5 10 1.48 16 7.0 5.9 

mean 6.8 6.2 

Testing time more than 1 min., m.c. 11%, ρ = 510 kg/m3 

 

Higher values of fGG  of Spruce, given in [2], are possible for loads close to the 

support. Then horizontal splitting does not cause failure because the remaining beam is strong 

enough to carry the total load and the derivation is given by regarding vertical crack 

propagation necessary for total failure (bending failure of the remaining beam). For this mode 

I,  

mGG   57.5 N/
1.5mm  =  1818 kN/

1.5m  (comparable with 1890 kN/
1.5m  of[5]) 

For still higher values of  , above α = 0.875, compression with shear failure is 

determining by direct force transmission to the support. In [3] is shown that Foschi‘s finite 

element prediction and graphs, given in [5] can be explained and are identical to eq.(6.8).  
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7. ENERGY APPROACH FOR FRACTURE OF JOINTS LOADED 

PERPENDICULAR TO THE GRAIN 
 

7.1. Introduction 
 

As for square end-notches, the analysis can be based on the compliance change by an 

infinitesimal crack increase. Because measurements show no difference in strength and 

fracture energy between joints at the end of a beam (Series G6.1 and G6.2 of [1]) and joints in 

the middle of the beam (the other G-series), and also the calculated clamping effect difference 

by crack extension is of lower order, this clamping effect of the fractured beam at the joint in 

the middle of a beam, has to be disregarded as necessity of the virtual energy equation of 

fracture. This is according to the limit state analysis which is based on the virtual work 

equations. For end-joints, the split off part is unloaded and there is no normal force and no 

vierendeel-girder action at all and the situation and fracture equations are the same as for the 

notched beams of Section 6. For joints in the middle of the beam, splitting goes in the 

direction of lower moments and is stable until the total splitting of the beam. The analysis in 

[1] and [2] shows this stable crack propagation because the terms in the denominator become 

smaller at crack length increase, until the shear term remains, giving the maximal value of V 

according to eq.(7.6), the same value as for end-joints.  

It thus is not true, as is stated in the CIB/W18-discussion of [1], that the analysis and 

theory are incorrect when virtual lower order terms are omitted in the analysis and that 

splitting of joints analysis is not comparable to splitting of notched beam analysis. The proof 

that this neglecting of the vierendeel-action is right is (outer the empirical proof by the 

measurements) given by the complete analysis for this case in [3], where also the influence on 

the strain of normal stresses is accounted, leading to eq.(7.5) containing the negligible 

clamping effect term in the denominator, (based on the assumption that not total splitting of 

the beam is the end state).  

 

 

7.2. Energy Balance  
 

For a simplecalculation of the compliance difference of the cracked and un-cracked state, 

(maintaining the clamping action in the end state) half a beam is regarded, as given in Figure 

7.1, loaded by a constant load V. At the start of cracking, the deflection at V increases with δ 

(see Figure 7.2) and the work done by the force V is: 2ΔW = V∙δ, which is twice the increase 

of the strain energy (ΔW = V∙δ/2) of the beam and therefore the amount ΔW is used to 

increase the strain energy and the other equal amount of ΔW is used as fracture energy. 

Because δ is the difference of the cracked and "un-cracked" state, only the deformation of the 

cracked part βh minus the deformation of that same part βh in the un-cracked state, need to be 
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calculated, because the deformation of all other parts of the beam by load V are the same in 

cracked and un-cracked state. As discussed at 6.2, the deflection δ can be calculated from 

elementary beam theory of elasticity. It thus is not right to regard an additional deformation

r , as is done, due to the non-linearity and clamping effect of the cantilevers βh, formed by 

the crack. The clamping effect change is of lower order at aninfinitesimal crack extension. If 

this effect would have an influence, there should be a difference in notched beams in the 

splitting force for a real square notch of length βh and a vertical saw cut at a distance βh from 

the support, because that slit has at least twice that clamping effect (see Figure 6.2).  

For a connection at the middle of a beam the following applies after splitting (see Figure 

7.1). The part above the crack (stiffness  
3 3

2 1 /12 I b h ) carries a moment 3M  and 

normal force N and the part below the crack (stiffness 
3 3

1 /12I b h ) carries a moment

1M , normal force N and a shear force V. and at the end of the crack a negative moment of 

about: 2 1 M M . Further is 2 1  M M V , thus 1 / 2M V . 

The deformation of beam 2 of the cracked part βh is equal to the un-cracked deformation 

un  of that part and the deformation of beam 1 is un  plus the crack opening   (see Figure 

7.1 and 7.2) and δ is: 

 
22 3 3 3 3

1

3

1 1 1 1 1

1 2 1 1 1 1

2 3 2 3 4 12
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           

MV V V V V

EI EI EI EI EI bE
 (7.1) 

 

The deflection difference of the cracked and un-cracked state is total:  
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 (7.2) 

 

Figure 7.1. Beam with crack by the dowel force of a joint and bending moment. 
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Figure 7.2. Statics of half the crack. 

The condition of equilibrium at crack length β is:  

 / 2 / 0      cV G b h     or:       2/ / / 2     cV V G bh  

 

or:  

 

c
f

2G bh
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( / V)
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 
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 (7.3) 

 

where cG  is the fracture energy. It follows from eq.(7.2) that:  
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and eq.(7.3) becomes: 

 

  2

/

0.6 1 1.5 / ( )
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c
f
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V b h

G E
 (7.5) 

 

giving, for the always relatively small values of β,  the previous found eq.(6.7): 

 

/

0.6 (1 )  


  

f c
V GG h

b h
 (7.6) 

 

which thus also applies for notched beams and for end-joints and verifies the lower bound 

of the strength, predicted by the theory of [1]. This also indicates that only work by shear 

stresses contributes to fracture. The fit of the equation with vierendeel action, eq.(7.5), to the 

data is not better than the fit by eq.(7.6) what shows that the term 1.5β
2
G/αE is small with 

respect to 0.6(1 – α)α and also that β is about proportional to α and is of the same order. 

Comparison of eq.(7.5) and eq.(6.6) shows that the higher value of the end joint is 
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determining for this definition of the strength and the same design rules as for notches are 

possible for joints when not the joint but splitting is determining. However design should be 

based on ―flow ― of the joint before splitting of the beam and the interaction of joint failure 

and beam splitting has to be regarded as follows.  

When crack extension starts of a cantilever beam loaded by a constant load V, giving a 

deflection increase of δ at V, then the applied energy to the beam is V∙δ. The energy balance 

equation then is:  

 

/ 2   cV V E  (7.7) 

 

where / 2V  is the increase of the elastic energy and cE  the energy of crack extension.  

 

Thus: / 2cE V  (7.8) 

 

Thus the energy of crack extension is equal to the increase of elastic energy. 

Eq.(7.8) also can be written with de incremental deflection δ = du: 

 
2

cE V d(u/V)/2 = fG bh d ( )  

 

or: 

 

2

( / ) / 


 

fG bh
V

u V
 (7.9) 

 

where fG is the fracture energy per unit crack surface and ―bhd(β)‖ the crack surface 

increase with ―b‖ as width and ―h‖ the height of the beam with a crack length l = βh. 

When the load on the cantilever beam, mentioned above, is prevented to move, the energy 

balance, eq.(7.7) becomes:  

 

0  e cE E , or: / 2   c eE E V  (7.10) 

 

for the same crack length and now the energy of crack extension is equal to the decrease 

of elastic energy in the beam. 

When the joint at load V becomes determining and just start to flow at 1  when splitting 

of the beam occurs, then eq.(7.7) becomes: 

 

1 1=( ) / 2 ( ) cV V V E         (7.11) 

 

where again 1 / 2V  is the increase of the elastic energy and 1( ) V  the plastic 

energy of the flow of the joint. From eq.(7.11) then follows: 
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1 / 2cE V  (7.12) 

 

the same as eq.(7.8), despite of the plastic deformation.  

For connections, plastic deformation in the last case will not yet occur because it is 

coupled with crack extension. When the dowels of the joint are pressed into the wood, the 

crack opening increases and thus also crack extension. It can be seen in eq.(7.11), that when 

flow occurs, the total applied energy Vδ is used for plastic deformation. This is a comparable 

situation as given by eq.(7.10), and the at the plastic flow coupled crack extension will cause 

a decrease of the elastic energy. eq.(7.11) thus for joints is:  

1 2 1V = (V ) / 2 ( )          sV E  (7.13) 

 

where 2 / 2V  is the decrease of the elastic energy by the part of crack extension due to 

the plastic deformation. From eq.(7.13) now follows:  

 

1 2( ) / 2  sE V  (7.14) 

 

and eq.(7.9) becomes: 
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From eq.(7.12) and (7.14) follows that 1 1 2( )   c cV V , where 1c cV  is the amount 

when the connection is as strong as the beam. Thus: 
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where nV  is the ultimate load of the dowel at flow and n the number of dowels.  

Substitution of eq.(7.16) into eq.(7.15) gives: 

 

1
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( / ) / 
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f

c c

G bh n
V

u V n
 (7.17) 

 

what is equal to / cn n  times the strength according to eq.(7.9) for 1 cu u , thus 

/ cn n  times the splitting strength of the beam as is applied in [1].  

According to eq.(7.13), the theoretical lower bound of V according to eq.(7.17) occurs at 

1 2  , Thus when / cn n  = 1/2. In [1], the empirical value of 0.5 to 0.4 is mentioned 

according to the data giving:  
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This requirement for ―flow‖ of the joint at failure: fGG = 0,67∙18 = 12 
1.5Nmm

 is 

included in the Eurocode (see Section 7.5). 

The condition 1 2   means that there is sufficient elastic energy for total unloading 

and thus full crack extension with sufficient external work for plastic dissipation by the joints. 

According to eq.(7.13) is for that case:  

 

1cE V  (7.19) 

 

 

7.3. Experimental Verification  
 

The value of cE  of eq.(7.19) is 12 
1.5Nmm

 as follows from the test data given in [1]. 

In [1], first test-results of 50 beams of [4] with one or two dowel connections are given of 

beams of 40x100 and 40x200 mm with  values between 0.1 and 0.7 and dowel diameters 

of 10 and 24 mm. In all cases 0.5 cn n   and not splitting but flow of the connection is 

determining for failure reaching the in [1] theoretical explained high embedding strength by 

hardening as to be expected for the always sufficient high spreading possibility of one- (or 

two-) dowel joints. The same applies for the 1 and 2 dowel joints of the Karlsruhe 

investigation. Splitting then is not the cause of failure but the result of post-failure behaviour 

due to continued extension by the testing device.  

Table 7.1 of [1] shows that for series B, splitting of the beam is determining. Whether 

there are 10, 15, 20 or 25 nails per shear plane, the strength is the same: cGG 16.7 

1.5Nmm
. This is confirmed by the too low value of the embedding strength of the nails cf  

of series B. A more precise value of cGG  follows from the mean value of 17.1 
1.5Nmm

 

of series B2 to B4. Then the value for 10 nails of series B1 is a factor 15.5/17.1 = 0.9 lower.  

Thus / 10 / 0.9c cn n n  . Thus 12cn   for series B. This means that the number 

of 5 nails of series A is below / 2 6cn   and the measured apparent value of cGG  is the 

minimal value of 0.5 / 17.1 0.5 12.1c c cGG n n    1.5Nmm
. The same value 

should have been measured for series C because the number of 3 nails also is below 

/ 2 6cn  . Measured is 11.7  
1.5Nmm

. For the 53 beams of all the series G of [1] this is 

12.0
1.5Nmm

. As mentioned a mean value of 12 is now the Eurocode requirement.  

The value of 0.5 cn , depends on dimensioning of the joint and thus on amount of 

hardening by the spreading effect of embedding strength. Thin, long nails at larger distances 
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in thick wood members are less dangerous for splitting and show a high value of cn . For 

series G, with b = 100 mm, / 2cn  is at least below 8 nails. For series V of [1] with dowels of 

16 mm, 8.6cn  . For design, cn  need not to be known. But dimensioning of the joint to 

meet also the requirement of cGG = 12 
1.5Nmm

, will lead to the number of nails of 

/ 2cn . This dimensioning also determines the value of cf . The value of cf = 4.4 MPa of 

series A is lower than cf = 6.2 MPa of series C, in proportion to the square root of the 

spreading lengths per nail as expected from theory [1].  

 

Table 7.1. TU-Karlsruhe test data No.1: Joint with nails 

 

Type No  d rows Col a=h ar fc GGc =L /h F/bh 

Test tests  m N   [1] eq.(7)   

  mm   mm mm MPa N/mm1.5  MPa 

 beam: b.h=40.180 mm        

A1 8 3.8 5 1 28 76 3.7 13.9 2.37 7.37 

A2 4 3.8 5 1 47 76 4.3 13.3 2.37 5.82 

A3 3 3.8 5 1 66 76 4.2 11.3 2.37 4.52 

A4 3 3.8 5 1 85 76 4.2 10.2 2.37 3.94 

A5 3 3.8 5 1 104 76 5.5 11.7 2.37 4.54 

 beam: b.h =40.180mm   mean 4.4 12.1   

B1 4 3.8 5 2 47 76 3.5 15.5 2.37 6.77 

B2 3 3.8 5 3 66 76 3.8 17.9 2.37 7.15 

B3 3 3.8 5 4 85 76 3.3 16.1 2.37 6.21 

B4 3 3.8 5 5 104 76 3.6 17.2 2.37 6.69 

 beam: b.h = 40.120 m  mean 3.6 16.7   

C1 3 3.8 2 1 28 76 6.8 15.3 2.18 8.51 

C2 3 3.8 2 1 28 57 6.2 13.0 2.26 7.21 

C3 3 3.8 2 1 28 38 5.6 10.9 2.34 6.07 

C4 3 3.8 2 1 28 19 5.7 10.3 2.42 5.73 

C5 3 3.8 1 1 28 0 6.9 11.2 2.50 6.21 

C6 3 8 1 1 28 0 5.8 9.7 2.50 5.40 

 beam: b.h=40.180 mm  mean 6.2 11.7   

L8 1 8 1 1 28 0 5.0 8.8 2.50 4.64 

 

 

7.4. Design Equation of the Eurocode 5 
 

As discussed in [1], the shear capacity is (for he 0.7 h) 

 

10.3 10.3
(1 ) ( )

u e

e

V h

h hb h




 

 
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where 

 

10.3 (2 / 3) ( / 0.6)cGG  is the characteristic value.  

This can be replaced by the tangent line through this curve at point = 0.5 giving: 

 

1.7u
c

V
GG

b h
 = 1.7∙(2/3)∙12 = 13.6 

1.5Nmm
.  
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CONCLUSION 
 

 Because the failure criterion for ―clear‖ wood and for macro-crack extension is the 

same, fracture mechanics of wood and comparable materials is determined by small-

crack propagation towards the macro-crack tip. The influence of small-crack 

propagation is noticeable by the Weibull volume effect of the strength. There is no 

influence on macro-crack propagation of the geometry of notches and sharpness of 

the macro crack-tip in wood (against orthotropic theory). Thus orthotropic fracture 

mechanics is not determining. This also follows from the nearly same fracture 

toughness and energy release rate for wide and slit notches and the minor influence 

of rounding the notch (again against orthotropic theory). Determining thus is the 

influence of small cracks in the isotropic matrix for the total behaviour, having the 

same influence at the tip of wide as well as slit notches.  

 The always applied singularity approach of fracture mechanics does not satisfy the 

limit analysis requirements for orthotropic materials and prevents the use of the right 

failure criterion at the crack boundary. Instead therefore, the complete solution of the 

Airy stress function, based on the flat elliptical crack, has to be applied.  

 The empirical mixed I-II-mode fracture criterion is explained by the elliptical small-

crack approach, providing the exact theoretical basis of this criterion. This criterion is 

the consequence of the ultimate uniaxial cohesive strength along the micro-crack 

boundary. The theory therefore also explains the relations between IcK  and IIcK  in 

TL- and in RL-direction and the relations between the related fracture energies. This 
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leads to one overall apparent critical energy release rate which may be different for 

different structures but is independent of the stress combinations of the dissipated 

strain energy of fracture. Whether, for a square end-notch, work is done by only 

bending or by only shear deformation, failure is in mode I and not in mode II in the 

last case as predicted by the other models.  

 The orthotropic approach, based on equilibrium of the homogenized reinforcement in 

wood gives incorrect results, because the matrix is not in equilibrium and does not 

satisfy the strength criterion. It therefore is necessary to start with equilibrium, 

compatibility and strength requirements of the isotropic matrix stresses providing a 

simple orthotropic-isotropic transformation of the Airy-stress function. for the total 

solution. 

 Based on this approach is: Ic y IcK E G  ,  IIc 6 y IIcK n E G  and IIc IcG 4G  

2 2
f Ic IIcG 4G /(1 ) G /(1 )        with :  2 2

xy y1/ 1 /      and: 

   6 21 12 xy yn 2 G / E     

 The theoretical value of IIc IcG 4G  is verified by reported measurements where 

ratio 3.5 is found (R
2
 = 0.64) instead of 4. This lower measured ratio is due to the 

applied too high value of IcG  which should be corrected to be equal to the energy 

release rate. 

 It is shown, that the models applied to wood, (as necessary replacement of the 

infinite fracture stresses of the singularity approach), as e.g. the Dugdale model, 

fictitious crack model and crack growth models are incorrect  and have to be replaced 

by the general theory.  

 A derivation of the softening curve is given based on small-crack extensions. The 

softening curve follows at the start the stable part of the Griffith locus. This means 

that every point of the softening curve gives the Griffith strength. This curve depends 

on only one parameter, the maximal critical Griffith stress c  and therefore depends 

on the critical crack density. This applies until half way of unloading. The fracture 

energy is down to this point equal to the critical energy release rate. After that, the 

strength of the fracture plane of the test specimen becomes determining due to a 

crack joining mechanism, changing the crack density and intact area of the fracture 

plane and therefore causing a decrease of c  and an apparent decrease of the 

fracture energy. The strength at every point of the softening curve is fully determined 

by the strength of the intact area of the fracture plane. Softening thus is a matter of 

elastic unloading of the specimen outside the fracture zone and softening thus is not a 

material property. 

 The fracture energy for mode I is stated in literature to be equal to the area under the 

softening curve divided through the crack length. This is not right. It is half this area 

when the fracture plane is not limiting. This is applied and accepted for mode II in 

wood.  

 It also is stated that the area of a loading cycle at softening, divided by the area of the 

crack increment, is equal to the fracture energy. This also is not right. It is shown that 
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this energy is proportional to the apparent activation energy of all processes in the 

whole test specimen.  

 A revision is necessary of all published mode I data of the fracture energy, based on 

the area of the softening curve, because of the dissimilar behaviour of post fracture 

behaviour giving no right prediction of the fracture energy. Therefore this area 

method should not be used anymore. A right simple description follows from the 

derived apparent energy release rate adapted to the measured strength data. 

 The theory shows that the Eurocode design rules for beams with rectangular end 

notches or joints should be corrected to the right real compliance difference and the 

right measured uniaxial stiffness.  

 The verification of the derived theory by measurements shows the excellent 

agreement. The method provides an exact solution and is shown to be generally 

applicable also for joints and provides as simple design equations as wanted. 

 

 

9. APPENDIX: WEIBULL SIZE EFFECT IN FRACTURE MECHANICS OF 

WIDE ANGLE NOTCHED TIMBER BEAMS 
 

Because the Weibull size effect is normally not a fracture mechanics subject, this 

influence is discussed in a separate appendix to the main theory of this chapter.  

 

 

9.1. Summary 
 

A new explanation is given of the strength of wide angled notched timber beams by 

accounting for a Weibull type size effect in fracture mechanics. The strength of wood is 

described by the probability of critical initial small crack lengths. This effect is opposed by 

toughening by the probability of having a less critical crack tip curvature. The toughening 

effect dominates at the different wide angle notched beams showing different high stressed 

areas by the different angles and thus different influences of the volume effect. This is shown 

to explain the other power of the depth in Eq.(9.18) and (9.19) than the sharp notch value of 

0.5 of Eq.(9.17). It further is shown to explain why for very small dimensions, also for sharp 

notches, the volume effect applies. The explanation by the Weibull effect implicates that the 

strength depends on small crack extension, in the neighbourhood of the macro crack tip. This 

initial crack population can be different for full scale members indicating that correction of 

the applied data is necessary and that additional toughness tests have to be done on full scale 

(or semi full scale) test specimens.  

 

 

9.2. Introduction  
 

Fracture mechanics of wood is normally restricted to fracture along the grain. It is e.g. not 

possible to have shear crack propagation across the grain. Also the mixed mode crack follows 

the weak material axes and only may periodically jump to the next growth layer at a weak 

spot. Thus the direction of the collinear crack propagation is known and is not e.g. dependent 



T. A. C. M. van der Put 50 

on a local critical value of a strain energy density. As shown in [1], the singularity approach 

gives no right results in this case and the analysis has to be based on linear elastic flat elliptic 

crack extension by the maximal stress at the elastic-plastic boundary around the small crack. 

This response at randomized stress raisers near weak spots is indicated by the volume effect 

of the strength. There also is no clear influence on macro-crack propagation of the crack 

geometry and notch form and sharpness of the macro crack tip, showing orthotropic fracture 

mechanics to be not decisive. This also is indicated by the not orthotropic, but isotropic 

relation between mode I stress intensity and strain energy release rate of wood. The 

determining small crack behaviour also follows from the failure criterion of common un-

notched wood being of the same form as the theoretical explained fracture mechanics 

criterion for notched wood. 

Wood should be regarded as a reinforced material. The commonly applied orthotropic 

Airy stress function is based on spread out of the reinforcement to act as a continuum, 

satisfying the equilibrium, compatibility and strength conditions. This only is possible by 

interaction through the matrix and the solution by the orthotropic plane equilibrium 

methodappears to be not right because thedetermining equilibrium conditions and strength 

criterion of the matrix then are not satisfied. It thus is necessary to solve the Airy stress 

function for the stresses in the isotropic matrix and this appears to give the right solution 

providing the theoretical derivation [1] of the Wu-mixed mode I - II fracture criterion. As a 

result, the right fracture energies and theoretical relations between mode I and II stress 

intensities and energy release rates then are obtained. This also applies for the relations 

between the mode I critical stress intensities of the different main material planes. For wood 

the matrix thus is determining for initial failure and not the reinforcement.Also the failure 

criterion of unnotched wood shows no coupling term between the reinforcements in the main 

directions confirming the orthotropic strength schematization to be not determining. The 

determining small crack dimension follows from the Weibull size effect. The here treated 

strength of wide angle notched beams is an example of a determining size effect in fracture 

mechanics.  

The strength analysis of [2] of wide angle notched beams, given in Figure9.1, was based 

on the orthotropic Airy stress function. However, despite of the dominant mode I loading, 

none of the solutions of this function are close enough to the measurements to be a real 

solution. The reason of this is the absence of the Weibull size effect in the equations as will 

be shown in this article. The in [2] chosen solutions of the biharmonic Airy stress function 

are:  

 

1 1cos( )nr n
, 1 1sin( )nr n

, 2 2cos( )nr n
, 2 2cos( )nr n

 resulting in:  

 

 
 

      1 2 3, , , ,
2

A
r r n

K
f n f n f n

r
      


  (9.1) 

 

where AK  is the stress intensity factor and ―r” the distance from the notch root. In the 

direction of crack extension, along the grain ( 0 ), the tensile strength perpendicular to the 

grain   is determining for fracture. The boundary conditions for the different notch angles 
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a/g provide different values of the power ―n‖and thus different slopes of the lines in Figure 

9.2. However, it is theoretically not possible that these lines intersect trough one point, as is 

measured, because the different boundary conditions by the different notch angles cannot be 

satisfied at the same time and the chosen mathematical solution of [2] thus have to be 

rejected. The fact that these lines cross one point, at the elementary volume, indicates the 

existence of a volume effect of the strength. This has to be introduced in the fracture 

mechanics calculation what simply can be based on the energy method as discussed in section 

9.4.  

 

Figure9.1. Wide angle notched beam element. 

In section 9.3, the derivation of the size effect is given to show the analogous derivation 

of the toughening size effect in section 9.4.  

 

 

9.3. Size Effect 
 

Due to the initial small crack distribution, clear wood shows a brittle like failure for 

tension and shear.According to the Weibull model, the probability of rupture, due to 

propagation of the biggest crack in an elementary volume 0V  is equal to 01 ( )P  , when 0P  

is the probability of survival. For a volume V containing 0/N V V  elementary volumes the 

failure probability is      0 0 0 01 1 1 1 1
N

sP P P P P        . Thus 

   0 0ln 1 ln 1sP N P NP      because 0P << 1. Thus the probability of survival of a 

specimen with volume V, loaded by a constant tensile stress  , as in the standard tensile test, 

is given by: 

 

 0

0 0

( ) exp exp

k

s

V
P V NP

V





  
      
   

 (9.2) 

 

where    0 0/
k

P     is chosen, because the power law of  may represent any 

function of   around a chosen stress value as e.g. the mean failure stress (see Section 9.5 for 

the proof). For a stress distribution, Eq.(9.2) becomes: 
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s
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P V dx dy dz V





  
     
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  (9.3) 

 

This specimen has an equal probability of survival as the standard test specimen Eq.(9.2) 

when the exponents are equal thus when:  
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 (9.4) 

 

For a constant stress ( , , )x y z  , the specimen strength thus will decrease with its 

volume V according to: 

 
1/k

s
s

V

V
 

 
  

 
 (9.5) 

 

where s  is the mean strength of the specimen with volume sV . The power k depends on 

the coefficient of variation /s   according to: 

 

 

 

2

2

1 2 / ks
1

1 1/ k

  
  

   
 (9.6) 

 

From the row-expansion of the Gamma-functions it can be seen that: 

 

1.2
s s

k f
 

 
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 
 (9.7) 

 

where f( /s  ) is normally a little varying function. Thus:1/ / (1.2 )k s    

For a stress distribution, Eq.(9.4) becomes: 

 

 

0 0 0

, ,
kk k k

m m s
ch s

m

x y z
dxdydz V V

  

   

      
       

      
  (9.8) 

 

where m  is the determining maximal stress in volume V and  /
k

ch mV dV   , a 

characteristic volume. Eq.(9.8) thus becomes:  
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 (9.9) 

 

This applies for the strength of common unnotched specimens.  

This strength also is determined by fracture mechanics. The tensile strength is e.g.: 

 

Ic
t

K
f

c
    or   

,
s

t t s

c
f f

c
 .  (9.10)  

 

where IcK  is the stress intensity factor. 

Substitution of the strength according to Eq.(9.5) (or Eq.(9.9)) leads to: 

 
0.5 1/
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 (9.11) 

 

This equation gives the probability of a critical Griffith crack length c leading to fracture. 

Also in this case, a crack toughening mechanism is thinkable,discussed in section 9.4, leading 

to the opposite volume effect with a negative value of the exponent 1/k. This can not be 

distinguished and the resultant value of 1/k then is given by Eq.(9.11). Because for every type 

of wood material the value of c is specific, determining the specimen strength, Eq.(9.9), as 

shortcut of Eq.(9.11), is applied in practice.  

The fracture mechanics derivation for wood can be based on the elastic full ―plastic‖ 

approximation of flow and microcracking at the crack tip. Thus the crack dimensions are 

replaced by the elastic-plastic boundary around the crack and linear elastic fracture mechanics 

is applicable outside this boundary. According to [3], the stress intensity factor of Eq.(9.10) 

is: / 2Ic tK r  where t  is the equivalent cohesion strength at the crack tip boundary 

and r  is the radius of the elastic-plastic boundary of the crack tip zone. A constant stress 

intensity factor IcK means that 
t r  is constant and only the crack length c is a variable as 

for brittle fracture. Toughening means an increase of the plastic zone, thus of r of the small 

cracks, within the characteristic volume. This influence is visible at the different wide angle 

notches as discussed in section 9.4.   

Because fracture across the grain is tough and the lengths of applied beams don‘t vary 

much, the size effect of the length dimension is small and the volume effect for bending is 

replaced by a height effect of the beam only. It is postulated that this absence of a width effect 

is explained by the constant widths of 2 'b of2 planes of weakness adjacent to the sides of the 

beam due to cutting at manufacturing. Then:    
1/ 1/

/ 2 ' / 2 '
k k

s ch sV V b h l b hl 

 
1/

/
k

sh h , becomes the height factor of the Codes. This width effect is applied in section 

9.4.  
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9.4. Size Effect of Wide Notched Beams 
 

The analysis of the strength of the notched beams can be based on the energy method 

where the critical fracture energy is found from the difference of the work done by the 

constant force due to its displacement by a small crack extension minus the increase of the 

strain energy due to this displacement. According to this approach of [3], the bending stress 

m  at the end of the notched beam at l D  in Figure 9.1 is:  

 

 
2

4

6 6 /

( )

f c
m

V D EG D

b D




  
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

 (9.12) 

 

when the notch is not close to the support. In [2] is chosen:  = d/D = 0.5, what means 

that d = a.Further the length is l = 2D when g/a = 0 and 2, while l = 4D for g/a = 4in Figure 

9.1.E is the modulus of elasticity and cG the critical energy release rate, given in [3]. 

Eq.(9.12) applies for the rectangular notch (g = 0). For wide notch angles a more complicated 

expression applies because of the changing stiffness over length l  of the crack extension. 

However, for given dimensions and loading, the basic form of the equation is the same as 

Eq.(9.12), thus: 

 

/m cB EG D   (9.13) 

 

where B is a constant depending on dimensions and notch angle. According to [3] is, as 

mentioned, c c tEG K r  , where t  is the equivalent cohesion strength and the 

crack tip radius r  is the only parameter of the notch strength. The volume effect depending 

on the stress follows from section 9.3 and the analysis thus can be based on the flow stress 

and the characteristic volume around the notch tip, For the probability of a critical value of r, 

of the small initial cracks within the high stressed characteristic volume around the 

notch tip, the probabilistic reasoning of section 9.3 can be repeated as follows. The 

probability of having a critical flaw curvature 1/ r  in an elementary volume 0V  is equal 

to 01 (1/ )P r , when 0P  is the survival probability. For a volume V containing 0/N V V  

elementary volumes the survival probability is in the same way: 
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 (9.14) 

 

where    0 01/ /
k

P r r r , because the power law may represent any function in 1/r. At 

―flow‖, this probability is not a function of  , but of the flow strain, given by critical r 

Equal exponents for the same probability of failure in two cases now lead to:  
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 
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and Eq.(9.13) becomes: 
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For the notch angle of 90°, (g = 0 in Figure 9.1), or smaller angles, the high stressed 

elastic region around the crack tip is, as the fracture process zone itself, independent of the 

beam dimensions. Thus in characteristic dimensions 0' ' 'V b l h V   and Eq.(9.16) 

becomes:  
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independent of a volume effect. For the widest notch angle of 166° (g/a = 4), there is a small 

stress gradient over a large area and V is proportional to the beam dimensions. Thus: V (:) 

b∙d∙l = γD∙δD∙βD = γ∙β·δ
3D  and: V/ 0V  = (γδβ

3D /γδβ
3
0D ) =  

3

0/D D . Thus is, with 1/k = 

0.18:  
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 (9.18) 

For the angle of 153.40°, (g/a = 2), the high stressed region dimensions becomes 

proportional to the dimensions b and D and: 

 

V/ 0V  = (bdl)/( 0 0b d l ) = (
2D /

2
0D ) = (

2D /
2
0D ) and with1/k = 0.18 is: 

 

0.5 2/(2 ) 0.32

0 0

0 0

k

m m m

D D

D D
  

  
   

    
   

 (9.19) 

 

It follows from Figure9.2, that the values of exponents of – 0.5, - 0.32, and -0.23 are the 

same as measured. The coefficient of variation of the tests must have been: 1.2∙0.18 = 0.22, as 

common for wood. According to the incomplete solution of [2], discussed in the Introduction, 

these values of the exponents were respectively - 0.437, - 0.363 and - 0.327, thus too far away 

from the measured values.  

The explanation of no volume effect of sharp notches due to the invariant characteristic 

volume,independent of the beam dimensions, explains also why for very small beams, also 

for sharp notches, there is a volume effect because then the beam dimensions are restrictive 

for the characteristic volume. As shown above, the exponent may change from – 0.5 to -0.23 
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with decrease of the beam dimensions. This is measured and e.g. discussed at pg. 85 of [4] 

and it now is shown that toughening (and not nonlinear behaviour) is the explanation of this 

volume effect. 

 

 

Figure 9.2. Measured bending strengths for different sizes and notch angles. 

The lines in Figure 9.2 intersect at the elementary Weibull volume wherefore the depth 

dimension is 
0.610 4 mm with a material bending strength of 147 MPa. 

 

 

9.5. Derivation of the Power Law Applied in Section 9.3 
 

Any function f(x) always can be written in a reduced variable 0/x x .  
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and can be given in the power of a function:  
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where:      1 1 0 0 ' 1 / / x / xf f x x     for 0x x     and 1 0(1) ( )f f x  
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   

This derivation of the power law, using only the first 2 expanded terms applies in a 

limited range of x around 0x . This is not restrictive for strength problems. and one reference 

value 0x  is sufficient.  

 

 

9.6. Conclusions Regarding the Size Effect 
 

 A explanation is given of the strength of wide angled notched beams of [2] by 

introducing the Weibull type size effectin fracture mechanics based on the critical 

curvature of the initial small cracks near the high stressed notch tip zone.  

 For sharp notch angles, up to 90°, there is no volume effect due to the constant 

volume of the characteristic volume, containing the fracture process zone. For wider 

notch angles, the peak stresses and stress gradients become lower and are divided 

over a larger region and influenced by the dimensions and thus a volume effect 

correction applies.  

 The intersect of the three lines in Figure9.2, with different values of ―n‖ of Eq.(9.1), 

due to different boundary conditions by the different notch angles, can not be 

explainedby the boundary value analysis. This intersect only can be explained to be 

due to the volume effect of the strength indicating failure by small crack extension 

within the high stressed region at the notch tip. 

 Using the Energy approach and the volume effect correction according to Eq.(9.16), 

the measured values of the powers of the depths (or the slopes of the lines of 

Figure9.2) are precisely explained. 
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