

Delft University of Technology

Adaptive slicing based on efficient profile analysis

Mao, Huachao ; Kwok, Tsz-Ho; Chen, Yong; Wang, Charlie C.L.

DOI
10.1016/j.cad.2018.09.006
Publication date
2019
Document Version
Final published version
Published in
CAD Computer Aided Design

Citation (APA)
Mao, H., Kwok, T.-H., Chen, Y., & Wang, C. C. L. (2019). Adaptive slicing based on efficient profile analysis.
CAD Computer Aided Design, 107, 89-101. https://doi.org/10.1016/j.cad.2018.09.006

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.cad.2018.09.006
https://doi.org/10.1016/j.cad.2018.09.006

Computer-Aided Design 107 (2019) 89–101

Contents lists available at ScienceDirect

Computer-Aided Design

journal homepage: www.elsevier.com/locate/cad

Adaptive slicing based on efficient profile analysis
Huachao Mao a, Tsz-Ho Kwok a, Yong Chen a,∗, Charlie C.L. Wang b

a Epstein Department of Industrial and Systems Engineering, University of Southern California, Los Angeles, CA 90089, USA
b Department of Design Engineering, Delft University of Technology, The Netherlands

a r t i c l e i n f o

Article history:
Received 9 July 2016
Accepted 29 September 2018

Keywords:
Additive manufacturing
Adaptive slicing
Geometric profile
Sampling

a b s t r a c t

Adaptive slicing is an important computational task required in the layer-based manufacturing process.
Its purpose is to find an optimal trade-off between the fabrication time (number of layers) and the
surface quality (geometric deviation error). Most of the traditional adaptive slicing algorithms are
computationally expensive or only based on local evaluation of errors. To tackle these problems, we
introduce a method to efficiently generate slicing plans by a new metric profile that can characterize
the distribution of deviation errors along the building direction. By generalizing the conventional error
metrics, the proposed metric profile is a density function of deviation errors, which measures the global
deviation errors rather than the in-plane local geometry errors used in most prior methods. Slicing can
be efficiently evaluated based on metric profiles in contrast to the expensive computation on models in
boundary-representation. An efficient algorithm based on dynamic programming is proposed to find the
best slicing plan. Our adaptive slicing method can also be applied to models with weighted features and
can serve as the inner loop to search the best building direction. The performance of our approach is
demonstrated by experimental tests on different examples.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Over the last thirty years, a new type of manufacturing process,
called additive manufacturing (AM), has been developed using the
principle of layer-based material accumulation [1]. Many novel
AM processes based on different techniques such as laser curing,
nozzle extrusion, jetting, electron beam, and laser cutter, have
been developed [2]. AM is a direct manufacturing process that can
fabricate parts directly from computer-aided design (CAD) models
without part-specific tools or fixtures. Therefore, it can fabricate
highly complex parts effectively. In most of the AM processes, the
digital CADmodel is sliced by intersecting it with a number of hor-
izontal planes. The sliced contours are then transferred to generate
the tool paths for material accumulation. While the uniform layer
thickness is widely used due to its simplicity, it has been theoret-
ically proven that adaptive layer thickness can produce parts with
higher accuracy and shorter building time [3,4]. In adaptive slicing,
the varied thickness of layers is determined by the geometry of
input models. Most of the existing methods [4] evaluate deviation
errors locally by the geometry at particular slicing planes, which
can result in large approximation error when there is complex
geometry between neighboring slices.

To improve the accuracy of geometry error evaluation, different
strategies have been developed, including: (1) slicing the model

∗ Corresponding author.
E-mail address: yongchen@usc.edu (Y. Chen).

using the finest layer thickness [5], (2) direct slicing the designed
CADmodel (like NURBS [6], CSG [7]) rather than the related tessel-
lated model (like STL [3]), and (3) refining the slicing plan if sharp
geometry changes are detected within one layer [8]. However,
these methods are computationally expensive, and the bottleneck
is caused by the process requiring a large number of intersection
operations between the slicing plane and the CAD model.

In this paper, we develop a novel method to overcome this bot-
tleneck by representing a CAD model as a profile of the geometric
error along the building direction. An example is shown in Fig. 1.
The evaluation of the geometric deviation error can be done on
the profile rather than intersecting the CAD model intensively. By
constructing the metric profiles using GPU-accelerated methods,
the whole process of adaptive slicing can be computed in about
one second. In summary, our presented adaptive slicing technique
is accurate and efficient. The main contribution is a new profile-
based framework for adaptive slicing, which shows the following
properties.

1. Global: The profile generalizes the conventional error met-
rics and provides an implicit representation for the shape
of an input model, and it is global information for slicing.
Based on that, we design an optimization algorithm based
on dynamic programming to find the best slicing plan.

2. Efficient: The analysis taken in our algorithm is based on
a metric profile that can be generated by GPU-accelerated
techniques. In our tests, the whole process from profile

https://doi.org/10.1016/j.cad.2018.09.006
0010-4485/© 2018 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.cad.2018.09.006
http://www.elsevier.com/locate/cad
http://www.elsevier.com/locate/cad
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cad.2018.09.006&domain=pdf
mailto:yongchen@usc.edu
https://doi.org/10.1016/j.cad.2018.09.006

90 H. Mao et al. / Computer-Aided Design 107 (2019) 89–101

Fig. 1. Given a mesh model with weights on faces (a), the metric profiles (b) are extracted to describe the surface metric distributions along a building direction. Based on
these profiles and themeshweight, an optimal slicing plan (c) can be computed. The color scale in (c) represents the layer thickness value, and the smaller the layer thickness
is, the color is closer to the red end. And all the figures in this paper share this same color scale for layer thickness. The result of the model fabricated by the optimal slicing
is shown in (d), and the comparisons can be found in Fig. 10 . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

construction to getting the optimal slicing plan can be com-
pleted in around one second. Benefiting from the efficiency,
it can serve as the inner loop to find the best building
direction.

3. General: The formulation can be easily extended to inte-
grate different commonly used error metrics. Moreover, we
also show that it can be further generalized to incorporate
the user specified salience.

The rest of the paper is organized as follows. Section 2 briefly
describes the related work of adaptive slicing in additive man-
ufacturing. After that, the details of our framework are given in
Section 3. Section 4 demonstrates the generality of the presented
framework by considering different factors. Results and statistics
are given in Section 5, and our paper ends with conclusions and
discussions in Section 6.

2. Related work

Layer-based additivemanufacturing fabricates a part by succes-
sively accumulating material layer by layer, in which an essential
computational step is slicing. In the step of slicing, the input CAD
model is intersectedwith a set of horizontal planes, and this results
in a set of closed curves or polygons at different height levels.
Assuming each layer is fabricated by extruding the intersected
contour with a small layer thickness, such an extrusion introduces
the staircase error [9], which is directly related to the surface angle
and the layer thickness [10]. Slicing methods can be classified into
uniform (having an equal thickness in all layers) or adaptive ones
(with unequal layer thicknesses in different layers). While uniform
slicing is simple and fast, adaptive slicing is proven to be able to
fabricate parts with higher accuracy and shorter building time.

2.1. Surface quality

Various slicing procedures have been discussed in previous
surveys of AM technology [11,12], where the resultant quality
is measured by different geometric errors — e.g., cusp height,
surface roughness (Ra), and area or volumetric deviation. Themost
widely used errormeasurement is the cusp height [3]. Kulkarni and
Dutta [4] reduced the staircase effect by controlling the maximum
allowable cusp height using 12 different expressions. The relation-
ship between the maximal allowed cusp height and the normal
vector at any point on the tessellated model is used to find the
thickness of each layer. Yan et al. [13,14] followed this idea and
developed an adaptive slicing method that works directly on point
cloud by using moving least square surfaces. This error measure-
ment has also been used widely in different applications [15–19].
Recently, Wang et al. [20] presented an adaptive slicing method
considering both the cusp height and saliency criterion. The Ra

value [8], which is commonly used in design or manufacturing
practice to specify surface roughness, is a similar measurement
that can be used as well. Differently, Zhao [7] introduced area
deviation by comparing themeasured deviation of the interior area
of the layer contours to check whether the layer becomes thicker
or thinner. However, a staircase effect appears on the layer while
two contours have a similar area but totally different shapes. All of
these errors can be classified as 2D measurements. They become
less suitable when the geometry of an input model between two
neighboring slices becomes more complex. To address the prob-
lem, Kumar and Choudhury [21] presented a volume deviation for
adaptive slicing. This technique is a promising solution for slicing
CAD models with remarkable higher precision. However, since it
works directly with surfaces of the part to mathematically com-
pute the related volumes, the geometric complexity of the surfaces
would need some complicated mathematical computation that
may jeopardize the validity of such system.

2.2. Global slicing

Most of the previous work (e.g., [22]) first cuts the entire part
from the bottom-most to the top-most position at the maximal
thickness that is allowed by the AM process, and then applied the
specific error to decide if some thicker layers need to be further
sliced into thinner ones. However, the presence of any concave or
convex areamay yield a significant geometry deviation error when
no staircase effect is identified at either slicing layers. In contrast,
Hayasi and Asiabanpour [5] started slicing at the minimal allowed
thickness, then allowed the current layer becomes thicker or thin-
ner while comparing the obtained error with the given tolerance.
Singhal et al. [8] presented a comprehensive and more accurate
direct slicing procedure by detecting the sharp concave/convex
vertices and then subdividing a large layer into a number of thin-
ner layers if sharp concave/convex vertices are detected. Wang
et al. [20] proposed an iterative method to refine the slicing plan
obtained by previous greedy methods. All these slicing procedures
are trying to obtain the geometry’s sharp changes as accurately as
possible, either by cutting at minimum thickness or by checking
the sharp vertices. However, the expensive computation prevents
to applying this methodology at very high resolution. To solve
this dilemma, we introduce a slicing algorithm that optimizes the
slicing plan on a profile, which can be efficiently constructed from
the CAD model.

3. Adaptive slicing based on metric profiles

The complexity of the slicing optimization problem mainly
arises from the evaluation of geometry error. This geometry error
calculation is time consuming because most slicing algorithms are
based on NURBS [6], STL [3] or point cloud set [14], and slicing

H. Mao et al. / Computer-Aided Design 107 (2019) 89–101 91

Fig. 2. Comparison between the traditional and our newly proposed adaptive slicing pipelines.

one 3D model based on these representations is computationally
expensive. Instead of directly evaluating the deviation error on
input CAD models, we propose an intermediate metric profile to
evaluate the deviation error distribution along the z axis (the
printing direction). The value of metric profile φ(z) is a measure
of geometric error density with reference to the height z. Based
on the definition of metric profile φ(z), we can evaluate both the
error metric of each layer and the total error with trivial effort.
Specifically, themetric error εk of a layer k is defined as the integral
of ametric profile function along that layer’s height range [zk−1, zk]
as

εk =

∫ zk

zk−1

φ(z)dz, (1)

Problem Definition: Based on the metric profile (error density
function)φ(z) and given the allowedmaximal error ϵ of a layer, the
optimization objective is to minimize the total number of layers
while assuring each layer’s integral error εk is within the given
tolerance ϵ, i.e.

min K
s.t. εk =

∫ zk
zk−1

φ(z)dz ≤ ϵ, k = 1, . . . , K (C1)
zk = zk−1 + tk, k = 1, . . . , K (C2)
tmin ≤ tk ≤ tmax, k = 1, . . . , K (C3)
z0 = 0, zK = H, (C4)

(2)

where φ(z) is the metric profile function, the unknown variable K
is the number of layers, the unknown variable tk is the thickness
of layer k, tmin and tmax are the manufacturing constraints of the
minimal and maximal layer thickness, and H is the height of the
input model.

To solve this slicing problem, we propose a novel adaptive
slicing pipeline as shown in Fig. 2. Different from the traditional
adaptive slicing pipeline that directly performs the slicing on the
CAD model (refer to the bottom row of Fig. 2), our new pipeline
first efficiently samples the input 3D model into structured points
and then constructs the metric profile from the sampled points.
Using the metric profile, we can efficiently obtain the optimal
slicing plan, and eventually export the tool paths for 3D printers
such as Fused DepositionModeling (FDM) [23] or projection-based
Stereolithography (SLA) [24]). The details of each step in our new
framework will be discussed as follows.

3.1. Metric profile

We introduce ‘‘metric profile’’ φ(z) to describe the geometry
error distribution along the z direction (the printing direction). The

metric profile is a function to measure the geometry error density
at height z. There are different error metrics that can be used to
construct the profile as discussed in Section 2.1, e.g., cusp height,
surface roughness, area deviation and volume deviation. The pro-
posed framework is compatible and useful for all these errors and
other applications as long as a metric profile can be defined. In this
section, as a widely usedmetric since its development [3], the cusp
height is picked to explain the algorithm. In Section 4.1, we will
demonstrate that a similar setting can be developed for other error
metrics, as well as the weighted saliency ω(z) in Section 4.2.

The error metric ‘‘cusp height’’ is to measure geometry error
due to the lack or surplus of materials caused by slicing. The cusp
height c of the ith layer is calculated by its thickness ti and the
normal of the points in the layer. Assume the slicing is along the
z direction and the maximum value of normal in z-axis is nz (from
a normal vector n = (nx, ny, nz)), the cusp height of the layer can
be approximated by

c = ∥ti · nz∥∞. (3)

As there aremany pointswith different normal values in a layer,
the infinity norm is used (i.e., themaximum value of nz is picked as
the error density) to conservatively preserve the sharpest feature.
Remarked that, the metric of cusp height is used here just for the
sake of explaining the algorithm, but same concepts can be applied
to other metrics.

By definition, the thickness ti is always along the printing direc-
tion z, so a change in the value of ti can be denoted as ∆z. Thus the
corresponding change in cusp height is∆c = ∆z∥nz∥∞. Therefore,
the metric profile for cusp height is defined as the derivative of c
w.r.t. the height z:

φcusp(z) =
dc
dz

= lim
∆z→0

∆c
∆z

≈ max{nz}. (4)

Based on the above-defined error metric profile, we can easily
calculate the metric error εk of a layer k within the height range
[zk−1, zk] as the integral of metric profile εk =

∫ zk
zk−1

φ(z)dz. Noted
that, this proposed integral error metric is a generalization of the
conventional slicing algorithm using cusp height. The illustration
and comparison of the approximation errors between the conven-
tional and the proposed methods are given in the Appendix. In
Section 4.1, we will see the concept of ‘‘metric profile" could be
extended to other commonly used geometry error metrics, such as
surface roughness, area deviation and volume deviation.

3.2. Sampling for profile construction

To improve the efficiency of the implementation, the entire
range of the metric profile φ(z) is divided into a series of intervals.

92 H. Mao et al. / Computer-Aided Design 107 (2019) 89–101

The bins (intervals) are consecutive and non-overlapping inter-
vals of the height z, and they have equal size of b, i.e., φ(z) =

{φ̃(1), . . . , φ̃(N)} where N = ⌈model height(H)/interval size(b)⌉
is the number of bins, and the size of each interval b is set as
a small value (2 µm in our test cases; in comparison, the layer
thickness typically used in SLA is 100 µm, and the choice of b will
be discussed in Section 5). We employ the sampling techniques
to facilitate the computation of the metric profile value in each
interval. It can be well-structured points, voxels, or rays, and the
geometric error could be easily evaluated by checking all the sam-
pled points falling into the corresponding interval. This process is
efficient compared to the expensive intersection operation based
on the original CAD model.

In this paper we choose the Layer Depth Image (LDI) as our
sampling approach. LDI [25–27] is an extension of the ray repre-
sentation (ray-rep) in solid modeling. Based on a well-structured
discrete sampling approach, LDIs can efficiently and robustly
perform a set of complex geometric operations, including off-
setting [28,29], Boolean [30], regulation [31] and overhang area
evaluation [32]. By parallel GPU computing, LDI could achieve
high resolution efficiently (a STL model with 1 million faces can
be sampled into LDI within one second). Comparing to directly
slicing a model with similar complexity in the finest resolution
that takes several minutes, it saves a lot of computation time.
Generally, the resolution of the LDI is dense enough for normal
models. For a bigger size model or a higher accuracy is needed,
a technique called volume tiling [31] can be used. That is, the
bounding box of a model is first split into smaller tiles. Each
tile is then processed independently and we construct their LDI
models respectively. Besides the sampling efficiency, LDI is also
a rich sampling representation (denoting a sampled model as
P = {pj} = {xj, yj, zj, nx

j , n
y
j , n

z
j , fj, rj}), which includes the point

coordinate (xj, yj, zj), normal (nx
j , n

y
j , n

z
j), ID of facet fj where the

point belongs to, and ID of sampling ray rj that has the information
of point adjacency and In/Out specification (i.e., the intersection
point where the ray goes into or gets out from the model).

Among the information, the point coordinate (xj, yj, zj) is always
useful, and the facet ID fj is used to retrieve the weight ωj. In
addition, the normal (nx

j , n
y
j , n

z
j) is used to construct the profiles

of ‘‘cusp height’’ and ‘‘surface roughness’’, while the ID of sam-
pling ray rj is used to build the profiles of ‘‘area deviation’’ and
‘‘volume deviation’’. The ray rj is also useful in the generation of
toolpaths/mask-images for fabrication.

For example, the cusp metric profile in eq.(4) requires the nor-
mal (nx

j , n
y
j , n

z
j). The construction of the metric profile can be per-

formed efficiently by grouping the points into the corresponding
intervals according to their heights. Recall that the metric profile
of cusp height in Eq. (4) is discretized into N intervals, and for each
interval i, themetric value φ̃cusp(i) is themaximal value of nz among
all the points inside the interval, i.e.,

φ̃cusp(i) = max
{
nz
j |⌈zj/b⌉ = i, Pj ∈ P

}
, (5)

Hence, the metric profile value at height z could be approximated
as

φcusp(z) ≈ φ̃cusp(⌈z/b⌉). (6)

This profile construction process can be donewithin 50ms on GPU
for all our tests.

Section 4.1will introduce some othermetric profiles, which can
also be constructed using the LDI information, and the detailed
usage will be discussed there.

3.3. Slicing algorithm

After constructing the metric profile φ(z), we have all the infor-
mation to formulate the slicing optimization problemof Eq. (2).We

Fig. 3. An examplewith the first 8 intervals in themetric profile is used to illustrate
the Dynamic Programming based slicing process. SP# — slice plane number, S[i]
— the resulted optimal slicing plan.

represent the slicing plan (S) as a boolean array with a size equal
to the number of intervals N + 1, where the value of true or false
stands for if there is a slice on that particular height or not. There
are manufacturing constraints of the minimal and maximal layer
thickness [tmin, tmax], and the size of interval b. As the intervals are
used to optimize the location of the slicing planes, if b is a common
factor of tmin and tmax, it is possible for the algorithm to utilize the
whole range of layer thickness. Otherwise, the range of the layer
thickness will be narrowed down, and the minimal and maximal
number of intervals in one layer will be ⌈tmin/b⌉ and ⌊tmax/b⌋.

To find a slicing plan, one may apply a greedy algorithm to
assign as many intervals as possible to a layer until the sum of
metric profile φ̃(i) exceeds the tolerance ϵ. However, a greedy
heuristic may yield locally optimal solutions and fail to satisfy
the constraints while the minimal layer thickness is restricted.
Although it is faster to calculate, we find that this kind of situation
is not rare and appears from time to time. Moreover, such a greedy
algorithm cannot guarantee the result with a minimal number of
layers. It motivated us to design an efficient algorithm based on
Dynamic Programming (DP) [33] to compute a true global opti-
mum. For a bottom-to-topDP algorithm, it starts from thehead and
computes sub-solutions from smaller to bigger problems, and then
stores the intermediate results in the memory. These previously
computed solutions are combined to give the best solution for the
whole problem. Once it has reached the tail, the optimal slicing
plan can be extracted by backtracking.

The process is illustrated using an example of first 8 intervals
{φ̃(1), . . . , φ̃(8)} shown in Fig. 3. Assume the allowable error of
a layer is ϵ = 0.6, and the minimal and maximal number of
intervals in a layer are 2 and 3 to satisfy the constraint C3 in Eq. (2),
i.e., ⌈tmin/b⌉ = 2 and ⌊tmax/b⌋ = 3. Aweight arrayK [0 . . . 8] and an
index array D[0 . . . 8] for the slicing planes, i.e., K [1] is in between
φ̃(1) and φ̃(2). The weight array K [. . .] stores the least number
of layers and the index array D[. . .] records the index of optimal
slicing positions, which will be used in backtracking.

Starting from the head (0th), it is initialized with K [0] = 0
and D[0] = NA as the first slice plane to satisfy C4 in Eq. (2). The
1st-plane is initialized with K [1] = ∞ and D[1] = NA as for the
minimal number of intervals to form a layer is 2, it is not allowed
to put a slice plane here. For the 2nd-plane, it can form a layer only
with 0th-plane including φ̃(1) and φ̃(2), so K [2] = K [0] + 1 = 1,
where the ‘+1′ means one layer, andD[2] = 0,meaning 0th-plane.
In other words, if there is a slice plane on 2nd-plane, this layer is
optimal forming by the 0th-plane and itself. As the minimal and
maximal number of intervals are 2 and 3, there are two possible
positions to forma layerwith the 3rd-plane,which are the 0th- and
1st-plane. A comparison can be made to find the optimal one, and
this sub-solution will be stored in the memory. Specifically, two
cases of forming a layer with the 0th-plane including φ̃(1) to φ̃(3)
and with 1st-plane including φ̃(2) to φ̃(3) are compared, and the
minimum one is picked. For 0th-plane, it is K [0] + 1 = 1; and for
1st-plane, it is K [1] + 1 = ∞ + 1 = ∞. In this case the 0th-plane
wins, and this sub-solution is stored as K [3] = 1 and D[3] = 0.
Similarly, the 4th-plane will store K [4] = 2 and D[4] = 2. For the

H. Mao et al. / Computer-Aided Design 107 (2019) 89–101 93

5th-plane, the two cases are with the 3rd-plane and the 4th-plane.
However, both φ̃(3)+ φ̃(4)+ φ̃(5)=0.9 and φ̃(4)+ φ̃(5)=0.7 exceeds
the allowable error of a layer ϵ = 0.6. Therefore, none of them is
feasible, so theweight is set asK [5] = ∞ andD[5] = NA to prevent
a plane is placed at this position. The iteration continues, and the
rest are K [6] = 3 and D[6] = 4; K [7] = ∞ and D[7] = NA;
K [8] = 4 and D[8] = 6.

The key of the DP algorithm is making use of the stored sub-
solutions (e.g., K [0 . . . 7]) to compute the later ones until the last
(K [8]). Once it has been done, the optimal slice plan can be ex-
tracted by backtracking using the index array D[0 . . . 8]. Starting
from D[8], which records the optimal one to form a layer should
be the 6th-plane, and recursively D[6] returns 4, D[4] returns 2,
and D[2] returns 0, which reaches the head. As a result, the slice
plan S[0] = S[2] = S[4] = S[6] = S[8] = True, and there are
four layers: (φ̃(1) φ̃(2)), (φ̃(3) φ̃(4)), (φ̃(5) φ̃(6)), and (φ̃(7) φ̃(8)).
The slice plan is valid and each of the layers has an error smaller
than the allowable error, so the DP algorithm can find a global
optimum where the greedy algorithm probably will take the first
three intervals (φ̃(1) φ̃(2) φ̃(3)) and get a local optimum for the first
layer, and then being stuck with (φ̃(4) φ̃(5)) as the sum of them
(0.7) is greater than the allowable error ϵ = 0.6.

Note that, if there is no feasible solution, the tail will store
invalid values, e.g., K [8] = ∞ and D[8] = NA, and the system
will report and ask for a revision of the constraints. Otherwise, the
backtracking will never reach the head.

A general version of the slicing algorithm is summarized in
Procedure 1. It takes a linear time O(N) to compute and track the
optimal slicing plan, where N is the number of intervals (the worst
case is quadratic time O(N2) for the range of minimal andmaximal
interval number in a layer equals to the total number of intervals).
In all of our test cases, this slicing algorithm takes less than 5 ms.

Procedure 1: Slicing Based on Dynamic Programming.

Input: Metric profile intervals {φ̃(1), ..., φ̃(N)}, interval size b,
allowable error for a layer (ϵ), max/min layer thickness
(tmin, tmax)

Output: Slicing Plan S[0 . . .N]

//initialization
1: S[0 . . .N] = false; K [0 . . .N] = ∞, D[0 . . .N] = NA
2: K [0] = 0; //for the 0th-plane

//bottom-to-top dynamic programming
3: for i = 1 to N do
4: for l = i − ⌊tmax/b⌋ to i − ⌈tmin/b⌉&l ≥ 0 do
5: if

∑i
m=l+1 φ̃(m) ≤ ϵ then

6: if K [i] > K [l] + 1 then
7: K [i] = K [l] + 1; D[i] = l;

//backtracking
8: i = N;
9: while i > 0 do

10: S(i) = true;
11: i = D(i);

The optimization based on the integral of metric profile in
Eq. (1) works very well in the general models as will be shown in
the result section. Moreover, we can optionally insert some must-
slicing plane heuristically. For some special cases that a general
flatmetric profile has some sharp changes, the integrationmay not
exceed the allowable limit even a sharp change is included, because
its neighborhood is very low in value. For instance, the CADmodel
shown in Fig. 4 has two such kind of sharp changes in the profile
(marked as A and B) due to the transitions between the cube and
the cylinder. Fortunately, the sharp changes can be easily detected
in the profile, and thus the special case can be easily handled. We

introduce one more step before applying the optimization, and it
is simply to go through the profile from the bottom to the top and
compute the difference for each consecutive interval. If the differ-
ence is greater than a threshold (i.e., 0.5), a slice is placed in the
upper interval, and the profile is separated into two segments by
the slice. After that, the optimization can be performed separately
in different segments, and they are assembled to a final result. Fig. 4
has shown the detail of this step.

3.4. Tool path/image generation

After obtaining the optimal slicing plan, we can generate the
projection images for SLA printers, or the tool paths for FDM
printers. Traditionally, the contours for the images are directly
computed from the intersection between the z planes and the CAD
model [34], which usually needs triangulation of the contour to
generate the images. On the contrary, because LDI is a kind of ray
representation, we can easily determine whether a certain pixel is
black/white by checking the position of this pixel [35]. Specifically,
given that the resolution of the image is the same as that of LDI in
the z direction, for any height of an image plane, we can go through
every ray of the LDI in each pixel and find the least sampling point
that is greater than the given height. After that, the black/white
of the pixel can be determined by the In/Out specification of the
sampling point. As the sampling point is the next intersection point
along the ray in the z direction, if it is specified as Out, then the
position of the pixel has to be inside themodel and the pixel should
be white, and vice versa. This can generate the images in a very
efficient way. The tool paths are then designed by the sequence for
accumulating material to fill up the whole image.

4. Other factors

Our slicing pipeline is a general slicing framework based on
sampling approach. In this section, we extend our adaptive slicing
framework by considering other factors rather than cusp heights:
(1) other commonly used errormetrics are shown to be compatible
with our framework, (2) the mesh saliency map is integrated into
the metric profile to preserve the salient features, and (3) the
proposed slicing algorithm can be served as a building block in
searching the optimal fabrication direction efficiently.

4.1. Different metric profiles

In physical modeling, the commonly used geometry deviation
error metrics includes cusp height, surface roughness, area devia-
tion, volume deviation. We show that our framework is general to
incorporate these metrics. Fig. 5 shows all the metric profiles and
their corresponding slicing plans. We have already demonstrated
our framework using cusp heights, and wewill briefly describe the
details of formulation for others below.

4.1.1. Surface roughness
Singhal et al. [8] figured out a statistic model for predicting

the surface roughness (Ra), and the overall metric is the averaging
surface roughness of the whole part,

Ra =
t

sin θ
, (7)

where θ is the building angle between the building direction z
and surface normal, and t is the layer thickness. Similar to the
derivation ofmetric profile using cusp height in Section 3.1, surface
roughness metric profile can be expressed as the derivative of
surface roughness error:

φRa(z) =
dRa

dz
= lim

∆z→0

∆Ra

∆z
=

1
sin θ

, (8)

94 H. Mao et al. / Computer-Aided Design 107 (2019) 89–101

Fig. 4. Based on the metric profile of a given CAD model, sharp changes (located at A and B, which are the sharp transitions between the cube and the cylinder) can be
detected. Our algorithm can successfully place slicing planes on these positions.

Fig. 5. Metric Profiles with different geometric error are shown in the top and the corresponding slicing plans are shown in the bottom. The colors in the slicing plan range
from red to blue, indicating from the smallest thickness (50 µm) to the largest thickness (150 µm) . (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

where φRa(z) returns the maximum value of sin−1 θ for all the
points at height z.

In the software implementation, given a sampled model P =

{pj}, we know the point coordinate (xj, yj, zj), and the normal
(nx

j , n
y
j , n

z
j) of each point j, and the angle θ between point normal

and fabrication direction satisfies cosθ = nz
j . Thus, the maximal

surface roughness of the interval i can be computed as

φ̃Ra(i) = max

⎧⎨⎩ 1√
1 − nz

j
2
|⌈zj/b⌉ = i, pj ∈ P

⎫⎬⎭ . (9)

Hence, the metric profile value for surface roughness at height z
could be approximated as

φRa(z) ≈ φ̃Ra(⌈z/b⌉). (10)

4.1.2. Area deviation
Zhao [7] presented area deviation as a new surface quality

metric for their adaptive slicing algorithms. The area deviation is
defined as the relative deviation of top area and bottom area of a
layer,

δA =
|Azk+1 − Azk |

Azk
. (11)

We can obtain the area deviation profile for an infinitesimal layer
thickness as

φarea(z) =
dδA
dz

=

⏐⏐⏐⏐dAz

dz

⏐⏐⏐⏐ 1
Az

=
|A′

z |

Az
, (12)

where Az is the area of slicing at z plane, and A′
z is the derivative of

Az .
The computation of the area in a particular height z is similar to

the image generation described in Section 3.4. The area of a layer
is computed by the number of pixels that are specified as white in
the image plane at the specific height, i.e. assuming there are Nw

pixels are in white, the area is approximated as

Az ≈ Nw · w2, (13)

where w is the size of the pixel.
We have also generated a series of intervals having exactly

the same size of the metric profile’s one for storing the areas in
different heights Az = {Ã(1), . . . , Ã(N)}. The height value used to
compute the area for each interval is taken as the center of the
interval. Thus the area deviation of the interval i can be computed
as

φ̃area(i) =
|Ã′|

Ã(i)
=

|Ã(i + 1) − Ã(i)|

bÃ(i)
. (14)

4.1.3. Volume deviation
Instead of checking only one-dimensional slicing error (cusp

height) or two-dimensional slicing error (area deviation), Kumar
and Choudhury [21] proposed a ‘‘cusp volume’’ metric to quantify
the three-dimensional error, which is the volume error between
the CAD model and the printed part. The volume of the kth layer
with the height range (zk−1, zk) in the CADmodel can be calculated
as VCAD =

∫ zk
zk−1

Azdz. The corresponding layer volume in the

H. Mao et al. / Computer-Aided Design 107 (2019) 89–101 95

printed part is an extrusionwith its bottomarea Azk−1 , i.e.,Vprinted =

Azk−1 · tk. Hence, the volume deviation of the kth layer is

δV = VCAD − Vprinted

=
∫ zk
zk−1

Azdz − Azk−1 · tk.
=

∫ zk
zk−1

(Az − Azk−1)dz.
(15)

Rewriting it as a differential form for a particular height z in the kth
layer gives that

dδV (z)
dz

=
d
dz

∫ z

zk−1

(Az − Azk−1)dz = Az − Azk−1 . (16)

However, as the volume deviation is a height-dependent error
metric, we cannot directly define the above equation as the metric
profile. This is because the term Azk is not an independent term, but
a specific term for a particular layer. Fortunately, our optimization
framework based on dynamic program can handle this nonlinear
problem with only a little modification. By defining the volume
deviation profile as

φvol(z) = Az, (17)

the metric error of the kth layer can be computed as

εk =

∫ zk

zk−1

|φ(z) − φ(zk−1)|dz. (18)

Replacing the error computation in Eq. (2) by this one, the
slicing algorithm presented in Procedure 1 works exactly the same
for the area deviation. The computation of the area Az is the same
as Eq. (13), and thus the discrete form for Eq. (17) is

φ̃vol(i) = Ã(i), (19)

with

ε̃k =

i∑
j=l+1

|φ̃(j) − φ̃(l + 1)| · b. (20)

4.1.4. Comparing different error metric profiles
Fig. 5 compares metric profiles and slicing results of different

error metrics. The metric profiles reflect the features of the users’
interest. For example, the volume deviation metric cares about the
portion that has a large amount of volume error, and the bottom
half part has a large volume and thus the bottom half of error
metric profile is larger than up half part’s. In comparison, the
cusp height metric measures the cusps which is not related to the
contour size, and hence it has relatively balanced metric profile
compared to the volume deviation metric profile.

The exemplary ‘‘hearing aid" model in Fig. 5 has surfaces fac-
ing up around the middle height. These surfaces introduce large
staircase error. We also notice that all these error metric profiles
have the largest error density value at the height of these surfaces.
Accordingly, all the four optimal slicing results have a smaller layer
thickness at the height of these surfaces, i.e. the red lines in the
middle height.

Similar to the ‘‘cusp height’’ in Eq. (4), the error metrics ‘‘sur-
face roughness’’ in Eq. (8) and ‘‘area deviation’’ in Eq. (12) are
formulated as the integral of density function φ(z), which only
depends on the particular height (z). Therefore, all the three error
metrics have the ‘‘additive’’ property: the error for a thick layer
is the sum of the errors evaluated on the thinner layers that are
combined into the thicker layer. However, the formulation Eq. (18)
indicates that this ‘‘additive’’ property does not hold for the volume
deviation, because the error density function depends not only the
information of height (z) but also the base height of that layer
(zk−1). Fortunately, the ‘‘volume deviation" for any layer can be
easily computed using the Eq. (18), with underlying precomputed
profile φvol(z) = Az .

4.2. Slicing of weighted CAD model

In some cases, the features of a CAD model are not equally im-
portant, and a straightforward idea is that themore salient features
will be sliced with a smaller layer thickness. For example, in the
CADmodel of Fig. 6, the face of David model is considered as more
salient than the rest part. By adding a weight (whose value ranges
from 0 to 1) to each face, we can adjust the importance of each
feature (face). In this paper, twomethods of generating theweights
are combined. Lee [36] introduced a multi-scale mesh saliency
computation method, which is the basis of our salient mesh. We
also develop an interactive interface for users to explicitly assign
saliency level to eachmesh facet or region. Then, a combinedmesh
weight mapwill be generated by the per-face product of geometry
and user-specified saliency. An example can be found in Fig. 6.
The saliency map for geometry-based method has high weight for
small features along the z axis, while by specifying the highweight
only in the face of David model, we can further focus our saliency
weight onto the portion that the user prefers.

Recall that the LDI sampled points has the following informa-
tion P = {pj} = {xj, yj, zj, nx

j , n
y
j , n

z
j , fj, rj}. After each face has

been assigned aweight value, each sampled point pj can inherit the
weight value from its belonged face. Denote each point’s weight as
ω(pj). When computing the metric profile, each point’s weight can
be applied point-wisely to modify the metric profile. For example,
the metric profile with ‘‘cusp height’’ considering weights is mod-
ified as

φcuspw (z) = max
{
nz
j · ω(pj)|zj = z

}
, (21)

Similarly, the weightedmetric profile with ‘‘surface roughness’’
is computed as

φRaw (z) = max

⎧⎨⎩ 1√
1 − nz

j
2

· ω(pj)|zj = z

⎫⎬⎭ . (22)

However,metric profileswith ‘‘area deviation’’ and ‘‘volumede-
viation’’ are calculated using the area of the sliced contour at each
height. We cannot apply the weight point-wisely for these two
metric profiles. In this work, we conservatively pick the maximal
weight at each height z to indicate the importance of that height.
Then, the weighted metric profiles are formulated as

φareaw (z) = φarea(z) · max
{
ω(pj)|zj = z

}
, (23)

φvolw (z) = φvol(z) · max
{
ω(pj)|zj = z

}
, (24)

whereφarea(z) andφvol(z) refer to Eq. (12) and Eq. (17) respectively.
In the implementation, we also design a Graphic User Inter-

face (GUI) to directly assign weights to selected faces of the CAD
model in addition to the weights generated using the algorithm in
Lee [36]. As the LDI sampled point provides the face ID it belongs
to, we can retrieve the weight of the face. Thus, a weight map for
all the features can be imported to our slicing algorithm, and the
original metric profile ‘‘cusp height’’ will be adjusted as weighted
metric profile with as shown in Fig. 7. After the weighted profile
is computed, the rest of the slicing algorithm is exactly the same.
Fig. 7 shows the optimal slicing plan of the weighted model.

The fabrication results demonstrate that the slicingwithweight
map has smoother surface on the David’s face than the one with-
out weight map. Comparing with the non-weighted CAD model,
the weighted model has large weight values in the face region.
Correspondingly, the weighted metric profile has a large value at
the height of the face. Therefore, in the optimal slicing plans, the
slicing result of weighted CAD model has smaller layer thickness
(red lines) in the area of David’s face. Eventually, this finer slicing
yields a smoother David’s face with finer layers. i.e. with smaller
cusps and staircases.

96 H. Mao et al. / Computer-Aided Design 107 (2019) 89–101

Fig. 6. CAD model with weighted surface, and the right salient map is a combination of geometry saliency map (left) and user-defined saliency map (middle).

Fig. 7. Slicing comparison between weighted and non-weighted CAD model. The top part of the figure is a general slicing plan, which is almost uniform slicing, and the
slicing in the bottom has small thicknesses in high weight positions. The colors in the slicing plan range from red to blue, indicating from the smallest thickness (50 µm)
to the largest thickness (150 µm). The very right column shows the weighted result in bottom has smaller cusps, and the scale bar is 200 µm . (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

4.3. Building direction

Determining an optimal printing orientation can further im-
prove the printing performance, and it can be based on different
criterion, e.g., visual saliency [20], perceptual model [32], mechan-
ical strength [37], etc. Aswill be demonstrated in the result section,
our proposed slicing algorithm is very efficient that can complete
the slicing plan for all the models within one second. Such effi-
ciency plays an important role in finding the optimal fabrication
orientation, which requires a large number of slicing evaluations
along different orientations (normally about 1000 direction candi-
dates).

In this paper, we present a nested loop to find the optimal
building orientation based on the fabrication time and surface
quality. In the outer loop, we uniformly sample the orientation
space into 1000 directions (Fig. 8(a)). For each orientation, given
the allowable maximum cusp height, we run our adaptive slic-
ing algorithm as the inner loop, and obtain the optimal slicing
plan with the corresponding fabrication time and surface quality.

We use the weighted summation of fabrication time and surface
roughness as the objective energy function:

F (O) = α|K (O)| + (1 − α)|ε(O)| (25)

|K (O)| is the number of layers at orientationO, which is normalized
by dividing the maximum of layer numbers over all orientations.
|ε(O)| is the geometric error at the orientation O, which is also
normalized by dividing the maximum geometric error over all
orientations. The weighted ratio α is set as 0.5.

We use the ‘‘Pig" model as an example to show the usage of
metric profile to find the optimal building orientation. This ‘‘Pig"
model’s height is 58 mm. We uniformly sample the orientation
space into 1000 directions (Fig. 8(a)). For each orientation, given
the allowable maximum cusp height, we run our adaptive slicing
algorithm, and obtain an optimal slicing plan and correspond-
ing fabrication time and surface roughness. And the weighted
objective energy is visualized in a Gaussian sphere as shown in
Fig. 8(b,c), where the front-view and back-view of the Gaussian
sphere are displayed with red and blue color represent large and

H. Mao et al. / Computer-Aided Design 107 (2019) 89–101 97

Fig. 8. (a) We uniformly sample the directions on a Gaussian sphere, and visualize the distribution of energy in a Gaussian sphere. Both the front view (b) and the back view
(c) are displayed. The three best building orientations are shown in (d), (e), and (f).

small energy respectively. Three local best fabrication directions
are identified as (d)(e)(f) in Fig. 8.

5. Result

Our slicing pipeline is implemented in C++, built on the open
source package LDI [38]. All tests are run by a PC with Intel(R)
Core(TM) i5-3450 CPU@3.10 GHz, 12GB RAM, andNVIDIA GeForce
GT 640. The LDI sampling resolution is set as 2048. The heights
of all the tested CAD models range from 17.8 mm to 62.4 mm.
All the fabrication results are built using the SLA process [39].
We modified a Projet 1000 printer from 3D Systems to function
with different layer thickness. The layer thickness is controlled by
a Z-stage, and the practical thickness for a layer is from tmin =

50µm(0.002 inch) to tmax = 150µm(0.006 inch). The photo curing
time of one single layer varies from 1 to 2 s respectively, while the
overhead of transition between layers takes around 14 s.

Our implementation subdivides themetric profile into intervals
with size b. Intuitively, the value of b should not be greater than the
minimum layer thickness tmin that can be printed (i.e., b ≤ tmin),
otherwise the algorithm cannot optimize the position of the layers
with minimum thickness; as an approximation, it is also preferred
that b should be as small as possible to minimize information
loss due to discretization. To determine a practical value of b, we
have conducted an experiment on a ‘‘Hand’’ model with different
b values and listed the results in Table 1. Without surprise, the
computational time increaseswith the number of intervals (i.e., de-
crease in the b value), but the number of layers required to achieve
the same quality is also decreased due to better approximation. For
a balance between quality and speed, b = 2 µm is selected in this
paper.

5.1. Slicing efficiency

Table 2 compares the slicing software time of our adaptive
slicing (Tour) with other slicing methods, including uniform slicing
with both coarsest (Tco.) and finest (Tfine) layer thickness, local
greedy adaptive slicing (Tloc.) introduced in paper [3], and the
global slicing using ultra fine resolution (Tultra), i.e. our sampling

Table 1
Sensitivity test of parameter b (the size of each interval)
b (µm) 50 25 10 5 2 1

⌈tmin/b⌉ 1 2 5 10 25 50
#Intervals 475 950 2377 4754 11885 23771
Time (ms) 0 1 1 2 20 173
#Layers ∞ ∞ 246 239 234 232

Different b values are tested. #Intervals — the number of intervals
that the metric profile is discretized into, ⌈tmin/b⌉ shows how many
intervals theminimum layer thickness contains. ‘‘Time" — the running
time of our algorithm, and the time unit is ms. #Layers — the resulted
number of layers, and ∞ means there is no feasible solution.

Table 2
Slicing efficiency comparison.
Input #Tri #L Tour Tco. Tloc. Tfine Tultra
Glass1 30K 515 0.62 4.8 10.7 14.4 148.2
Glass2 30K 344 0.72 5.2 10.3 15.4 160.3
Knee 39K 625 0.58 10.3 19.1 30.8 328.7
Hand 84K 233 0.53 15.8 24.4 47.6 377.3
HearAid 33K 286 0.81 3.5 7.0 10.4 140.8

The time units are in seconds. #Tri is the number of triangles in each
STL model. #L is the number of layers by our slicing algorithm. Tour ,
Tco. , Tloc. , Tfine , Tultra represent slicing time of our algorithm, coarsest
uniform, local greedy, finest uniform, ultra resolution slicing.

resolution (t = 12.5 µm), is much smaller than the finest layer
thickness (t = 50 µm).

From the slicing results, our new pipeline consumes less than
1 s in total including sampling, constructing profile, generating
and optimizing the slicing plan. In contrast, the direct slicing al-
gorithms need around 5 s for coarsest layer thickness and 15 s
for finest layer thickness. It is worth reminding that the slicing
time for the local greedy adaptive slicing algorithm [3] is only
one single evaluation of a slicing plan, but our adaptive slicing
algorithm evaluates all the possible slicing plans with the ultra
fine resolution and outputs the global optimal one. For comparison,
we have also shown the needed time for slicing plan optimization
that is directly computed on the CAD model using the ultra fine
resolution, denoted as Tultra in Table 2. On average, our algorithm
could achieve 100 times faster than the direct slicing. The effect is
more significant when a large number of slicing will be performed

98 H. Mao et al. / Computer-Aided Design 107 (2019) 89–101

to optimize the fabrication orientation. In our orientation opti-
mization experiment, it takes us less than 15 min to search among
1000 directions,while the slicingmethod directly computed on the
CAD model needs more than 1 day.

5.2. Slicing quality

In Table 3, we compare our method with other slicing algo-
rithms, including slicing methods using uniform layer thickness
and a greedy adaptive slicing method proposed in [3]. The error
metric used in Table 3 is ‘‘Cusp Height". The left part of Table 3
shows the number of layers in the results computed by different
slicing algorithms. It also reflects the printing time as the printing
time is almost proportional to the number of layers. The right part
of Table 3 shows the geometry error computed by the maximum
error among all layers, i.e. max{εk}. Here, the cusp height is used
as the error metric, and thus, this geometric error is also the
maximum cusp height among all layers. Without any surprise,
the coarsest uniform slicing always gives the smallest number of
layers but has the largest geometric error, and the finest one always
has the smallest geometric error but gives the largest number of
layers. They are used as the upper bound and the lower bound for
comparing the adaptive slicing algorithms.

Both of our proposed and the greedy [3] adaptive slicing algo-
rithm have set the allowable geometric error as the cusp height
of ϵ = 65 µm for one layer. From the table, we can see that the
two methods fall right inside the upper and the lower bound in
terms of the layer number and geometric error. The results verify
that both of the methods are effective. However, our algorithm
can achieve a smaller number of layers under the same tolerance,
and thus a smaller printing time (save up to 16% printing time).
Moreover, due to the geometric complexity of the model and the
fabrication constraints, the greedy algorithm fails to distribute the
errors evenly on the layers. Hence their results are not optimal, and
even cannot always satisfy the given tolerance for all the layers. In
contrast, our algorithm has a global information for the planning,
and our results can successfully satisfy the given tolerance in all
cases. Last but not least, it is found that our adaptive slicing can
get very competitive results with the finest slicing, but our results
havemuch fewer number of layers and can save up to 49% printing
time. It validates our proposedmethod is not only efficient but also
promising.

5.3. Other examples and fabrication results

We have applied our adaptive slicing algorithm using ‘‘Cusp
Height" error metric on various models as shown in Fig. 9. These
slicing results reveal an intuition that the layer thickness gets
smaller at the height with increased geometry error density (i.e.
with a larger value in themetric profile). This intuition results from
the error constraint in each layer in Eq. (2), that is the error of each
layer cannot exceed the limit ϵ. Hence, if the error density of a layer
is large, then the layer thickness should be small so that the total
integral error in the layer does not exceed the limit ϵ.

Fig. 10 displays the physical fabrication results using different
slicing algorithms. From the microscope images (the bottom row
of Fig. 10), we can see that the results from our slicing algorithm
using ‘‘Cusp Height" error metric is very close to the one produced
by the slicing with the finest layer thickness (the very left image
in Fig. 10). Comparing with the results of the uniform slicing and
local adaptive slicing, our result has a better surface finish, i.e. our
result has less noticeable cusps and staircases. Fig. 11 is another
example to validate our slicingmethod. Similar to Fig. 10, the result
using ourmethodhas fewer staircase defects comparingwith other
slicing algorithms like greedy and uniform slicing.

6. Conclusion and discussion

This paper presents a novel adaptive slicing algorithm for the
layer-based additive manufacturing. Traditional adaptive slicing
algorithms suffer from long computation time or yield sub-optimal
slicing result based on local geometry error. To generate the global
optimal slicing plan efficiently, we introduce a novel algorithm
based on a ‘‘metric profile", which is a measure of geometry error
distribution along a given building direction. The efficiency and
effectiveness of our algorithm are enabled by three key ideas in our
paper: (1) the new representation of metric profile provides us the
global geometry deviation along the z direction, rather than only
geometry error on the slicing planes that are used in most tradi-
tionalmethods, (2)we efficiently construct themetric profile using
a GPU-accelerated sampling approach, and (3) an optimization
algorithm based on dynamic programming is proposed to find the
global optimal slicing plan efficiently. Such advantages have been
validated by comparing the computational time and fabrication
quality with other slicing algorithms.

Our slicingmethod is a general adaptive slicing framework, and
we have extended it to consider weighted features of a CADmodel
and to incorporate the commonly used surface quality metrics,
such as cusp height, surface roughness, area deviation, and volume
deviation. Our slicing algorithm can also serve as a building block
for computing the optimal printing direction.

Our future works will be applying this framework to other ge-
ometric computation tasks that are required in the pre-fabrication
pipeline of AM processes, and to speed up the process planning for
AM applications like mass customization.

Acknowledgments

The work is partially supported by National Science Foundation
(NSF) grant number CMMI 1151191 and the Epstein Institute at
University of Southern California.

Appendix. Approximation errors analysis

To determine a new slicing plane efficiently, the conventional
slicing algorithm usually considers the normal of the intersection
points by the previous slicing plane. In other words, it uses the
normal to linearly approximate the surface between the two slicing
planes, and uses the cusp height to determine the slicing error.
When the layer thickness is small or the true surface is close to
linear, such as the one shown in Fig. A.1(a), the cusp height is a
good estimation of the approximation error during slicing and is
widely used. However, such simplification can lead to inaccurate
estimation when the surface is highly curved and a layer of fabri-
cation becomes much thicker.

Before the analysis, the terminologies are defined first for clar-
ification. The ‘‘true geometry" refers to the designed CAD model;
‘‘printed geometry" refers to the physical geometry created by the
printer, shown as the solid blue portion in Fig. A.1.; ‘‘approximated
geometry" indicates the estimated printed-geometry using the er-
ror metric before the physical printing, e.g., the geometry enclosed
by the dashed line in Fig. A.1. Correspondingly, the ‘‘true slicing er-
ror" means the geometry discrepancy between the true geometry
and the printed geometry; and the ‘‘approximated error" means
the geometry discrepancy between the approximated geometry
and the printed geometry.

The idea of our proposed metric profile is illustrated in
Fig. A.1(b) using three smaller layers. The cusp heights are calcu-
lated separately in each small layer, and they are integrated as the
error for the whole layer. In this case, the proposed integral error
metric just recovers the cusp height of the thick layer as the big
layer’ cusp height is the sum of three small layers’ ones.

H. Mao et al. / Computer-Aided Design 107 (2019) 89–101 99

Fig. 9. Adaptive slicing results of various models.

Fig. 10. Fabrication results of hearing aid model by different slicing methods.

100 H. Mao et al. / Computer-Aided Design 107 (2019) 89–101

Table 3
Slicing performance comparison with other slicing algorithms.
Input model Number of layers Geometric error (mm)

Name Height #Tri Coarsest Our Greedy Finest Coarsest Our Greedy Finest

David 17.8 42K 117 237 272 350 0.151 0.065 0.077 0.050
HearAid 22.3 33K 147 286 358 440 0.152 0.065 0.136 0.050
Hand 23.8 84K 156 233 255 468 0.149 0.065 0.084 0.049
Laurana 37.4 51K 245 466 556 736 0.152 0.065 0.114 0.050
Glass2 39.0 30K 256 344 376 768 0.152 0.065 0.082 0.050
Glass1 55.1 30K 362 515 576 1085 0.152 0.065 0.093 0.050
Pig 58.0 729K 382 747 917 1145 0.152 0.065 0.910 0.050
Knee 62.4 39K 410 625 715 1229 0.152 0.065 0.084 0.050

† We compare our method with the finest uniform slicing, greedy adaptive slicing [3], and coarsest uniform slicing,
denoted as ‘‘Finest’’, ‘‘Greedy’’ and ‘‘Coarsest’’ in the table. A set of models with various heights are sliced, and the results
are compared in terms of the number of layers (the middle part of the table) and the geometric error (maximum layer’s
integral error among all layers, unit: mm, the right part of the table). The height unit is mm, #Tri means the number of
triangles in each STL model, and the geometric error uses the metric ‘‘Cusp Height’’.

Fig. 11. Fabrication results of hand model by different slicing methods.

Fig. A.1. (a) and (c) illustrate the conventionalmethod of approximating the printed geometry using cusp height; (b) and (d) are the proposedmethod for the approximation.
The true geometry in the top row is a line, and the bottom row is a concave curve. The printed shapes are the extruded rectangles.

Nevertheless, when the true surface is not linear, simply con-
sidering the normal of the previous plane results in a poor approx-
imated surface and inaccurate error estimation. For example, if the
bottom plane’s normal is used for the curve shown in Fig. A.1(c),
the approximated surface is outlined by the dotted line. The true
slicing error for this curve surface should be similar to (probably

a bit smaller than) the one shown in Fig. A.1(a), because the true
geometry in Fig. A.1(c) is a slightly concave shape of the one in
Fig. A.1(a). Unfortunately, because the approximated geometry is
different from the true geometry and the conventional method
only takes a single normal vector, but the actual curved surface

H. Mao et al. / Computer-Aided Design 107 (2019) 89–101 101

has many different normal vectors, the slicing error is computed
as 0.86, which is much higher than the linear one 0.72.

In comparison, our error metric profile records the normal at
each height, illustrated in Fig. A.1(d) using three small layers again.
The cusp height of each layer is calculated using the normal in its
own height. The sum of three small layer’s cusp height is 0.16 +

0.24+0.29 = 0.69,which is a bit smaller than 0.72 calculated from
the similar linear curve. If we further divide the smaller layers, an
even better approximationwill be obtained.When the small layers
are infinitesimal, this calculation converges to the error obtained
by integrating the error metric profile.

References

[1] Freedman DH. Layer by layer. Technol Rev 2012;115(1):50–3.
[2] Gibson I, Rosen DW, Stucker B. Additive manufacturing technologies: rapid

prototyping to direct digital manufacturing. first edition. Springer; 2009.
[3] Dolenc A, Mäkelä I. Slicing procedures for layered manufacturing techniques.

Comput Aided Des 1994;26(2):119–26.
[4] Kulkarni P, Dutta D. An accurate slicing procedure for layeredmanufacturing.

Comput Aided Des 1996;28(9):683–97.
[5] HayasiMT, Asiabanpour B. A newadaptive slicing approach for the fully dense

freeform fabrication (fdff) process. J Intell Manuf 2013;24(4):683–94.
[6] Ma W, But W, He P. NURBS-based adaptive slicing for efficient rapid proto-

typing. Comput Aided Des 2004;36(13):1309–25.
[7] Zhao Z, Laperriére L. Adaptive direct slicing of the solid model for rapid

prototyping. Int J Prod Res 2000;38(1):69–83.
[8] Singhal S, Jain PK, Pandey PM. Adaptive slicing for SLS prototyping. Comput

Aided Design Appl 2008;5(1–4):412–23.
[9] Li L, Kochhar AK, Liu W. Mathematical modelling of geometrical error trans-

formation process in additive rapid prototyping/manufacturing. In: The 7th
European conference on rapid prototyping andmanufacturing, Aachen; 1998.

[10] Ancau M. The optimization of surface quality in rapid prototyping processes.
The Free Library; 2009.

[11] Kulkarni P, Marsan A, Dutta D. A review of process planning techniques in
layered manufacturing. Rapid Prototyp J 2000;6(1):18–35.

[12] Mohan Pandey P, Venkata Reddy N, Dhande SG. Slicing procedures in layered
manufacturing: a review. Rapid Prototyp J 2003;9(5):274–88.

[13] Yang P, Qian X. Adaptive slicing of moving least squares surfaces: to-
ward direct manufacturing of point set surfaces. J Comput Inf Sci Eng
2008;8(3):031003–11.

[14] Yang P, Li K, Qian X. Topologically enhanced slicing of MLS surfaces. J Comput
Inf Sci Eng 2011;11(3):031003–9.

[15] Xu F, Wong Y, Loh H, Fuh J, Miyazawa T. Optimal orientation with variable
slicing in stereolithography. Rapid Prototyp J 1997;3(3):76–88.

[16] Cormier D, Unnanon K, Sanii E. Specifying non-uniform cusp heights as a
potential aid for adaptive slicing. Rapid Prototyp J 2000;6(3):204–12.

[17] Jung JY, Ahluwalia RS. NC tool path generation for 5-axis machining of free
formed surfaces. J Intell Manuf 2005;16(1):115–27.

[18] S. Pande S, Kumar S. A generative process planning system for parts produced
by rapid prototyping. Int J Prod Res 2008;46(22):6431–60.

[19] Liu S,WangCCL. Duplex fitting of zero-level and offset surfaces. ComputAided
Des 2009;41(4):268–81.

[20] Wang W, Chao H, Tong J, Yang Z, Tong X, Li H, Liu X, Liu L. Saliency-
Preserving slicing optimization for effective 3D printing. Comput Graph Fo-
rum 2015;34(6):148–60.

[21] Kumar C, Choudhury AR. Volume deviation in direct slicing. Rapid Prototyp J
2005;11(3):174–84.

[22] Chang C. Direct slicing and g-code contour for rapid prototyping machine of
uv resin spray using powersolution macro commands. Int. J Adv Manuf Tech
2004;23(5–6):358–65.

[23] Huang P, Wang CC, Chen Y. Intersection-free and topologically faithful slicing
of implicit solid. J Comput Inf Sci Eng 2013;13(2):021009.

[24] Zhou C, Chen Y, Yang Z, Khoshnevis B. Digital material fabrication using mask
image projection based stereolithography. Rapid Prototyp J 2013;19(3):153–
65.

[25] Chen Y, Wang CCL. Layer depth-normal images for complex geometries:
part one–accurate modeling and adaptive sampling. In: ASME international
design engineering technical conferences and computers and information in
engineering conference. ASME; 2008, p. 717–28.

[26] Wang CCL, Chen Y. Layered depth-normal images for complex geometries:
part two manifold preserved adaptive contouring. In: ASME international
design engineering technical conferences and computers and information in
engineering conference. ASME; 2008, p. 729–39.

[27] Kwok T, Chen Y, Wang CCL. Geometric analysis and computation using
layered depth-normal images for three-dimensional microfabrication. In:
Three-dimensional microfabrication using two-photon polymerization. Ox-
ford:WilliamAndrewPublishing; 2016, p. 119–47. http://dx.doi.org/10.1016/
B978-0-323-35321-2.00007-8,

[28] Chen Y, Wang CCL. Uniform offsetting of polygonal model based on layered
depth-normal images. Comput Aided Des 2011;43(1):31–46.

[29] Wang CCL, Manocha D. GPU-based offset surface computation using point
samples. Comput Aided Des 2013;45(2):321–30.

[30] Wang CCL, Leung Y, Chen Y. Solid modeling of polyhedral objects by layered
depth-normal images on the gpu. Comput Aided Des 2010;42(6):535–44.

[31] Chen Y, Wang CCL. Regulating complex geometries using layered depth-
normal images for rapid prototyping and manufacturing. Rapid Prototyp J
2013;19(4):253–68.

[32] Zhang X, Le X, Panotopoulou A, Whiting E, Wang CCL. Perceptual models
of preference in 3D printing direction. ACM Trans Graph 2015;34(6):215:1–
215:12.

[33] Kleinberg J, Tardos É. Algorithm design. Pearson Education India; 2006.
[34] Zhang Z, Joshi S. An improved slicing algorithm with efficient contour con-

struction using stl files. Int J Adv Manuf Tech 2015;80(5–8):1347–62.
[35] Huang P, Wang CCL, Chen Y. Algorithms for layered manufacturing in image

space. ASME Press; 2014.
[36] Lee CH, Varshney A, Jacobs DW. Mesh saliency. ACM Trans Graph

2005;24(3):659–66.
[37] Umetani N, Schmidt R. Cross-sectional structural analysis for 3D printing

optimization. SIGGRAPH Asia 2013;5:1–4.
[38] LDNI-based solid modeling. https://sourceforge.net/projects/

ldnibasedsolidmodeling/. [Accessed 4 September 2016].
[39] Pan Y, Zhou C, Chen Y. A fast mask projection stereolithography process for

fabricating digital models in minutes. J Manuf Sci Eng 2012;134(5):051011.

http://refhub.elsevier.com/S0010-4485(18)30176-3/sb1
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb2
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb2
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb2
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb3
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb3
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb3
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb4
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb4
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb4
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb5
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb5
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb5
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb6
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb6
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb6
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb7
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb7
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb7
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb8
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb8
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb8
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb11
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb11
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb11
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb12
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb12
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb12
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb13
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb13
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb13
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb13
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb13
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb14
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb14
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb14
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb15
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb15
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb15
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb16
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb16
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb16
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb17
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb17
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb17
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb18
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb18
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb18
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb19
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb19
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb19
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb20
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb20
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb20
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb20
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb20
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb21
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb21
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb21
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb22
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb22
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb22
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb22
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb22
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb23
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb23
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb23
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb24
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb24
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb24
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb24
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb24
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb25
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb25
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb25
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb25
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb25
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb25
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb25
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb26
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb26
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb26
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb26
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb26
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb26
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb26
http://dx.doi.org/10.1016/B978-0-323-35321-2.00007-8
http://dx.doi.org/10.1016/B978-0-323-35321-2.00007-8
http://dx.doi.org/10.1016/B978-0-323-35321-2.00007-8
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb28
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb28
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb28
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb29
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb29
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb29
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb30
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb30
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb30
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb31
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb31
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb31
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb31
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb31
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb32
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb32
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb32
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb32
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb32
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb33
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb34
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb34
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb34
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb35
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb35
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb35
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb36
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb36
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb36
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb37
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb37
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb37
https://sourceforge.net/projects/ldnibasedsolidmodeling/
https://sourceforge.net/projects/ldnibasedsolidmodeling/
https://sourceforge.net/projects/ldnibasedsolidmodeling/
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb39
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb39
http://refhub.elsevier.com/S0010-4485(18)30176-3/sb39

	Adaptive slicing based on efficient profile analysis
	Introduction
	Related Work
	Surface quality
	Global slicing

	Adaptive slicing based on metric profiles
	Metric Profile
	Sampling for Profile Construction
	Slicing Algorithm
	Tool Path/Image Generation

	Other Factors
	Different Metric Profiles
	Surface Roughness
	Area Deviation
	Volume Deviation
	Comparing different error metric profiles

	Slicing of weighted CAD model
	Building Direction

	Result
	Slicing Efficiency
	Slicing Quality
	Other Examples and Fabrication Results

	Conclusion and Discussion
	Acknowledgments
	Appendix Approximation Errors Analysis
	References

