
Exploring Code Coverage in
Open-Source Development

Master’s Thesis

Alexander Sterk

Exploring Code Coverage in
Open-Source Development

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Alexander Sterk
born in Rijswijk, the Netherlands

Software Engineering Research Group
Department of Software Technology
Faculty EEMCS, Delft University of Technology
Delft, the Netherlands
www.ewi.tudelft.nl

Codecov
45 Fremont St San Francisco, CA 94105

https://about.codecov.io/

www.ewi.tudelft.nl
https://about.codecov.io/

© 2023 Alexander Sterk.

Exploring Code Coverage in
Open-Source Development

Author: Alexander Sterk
Student id: 4542800

Abstract

Software development has increasingly become an activity that is (partially) done
online on open-source platforms such as GitHub, and with it, so have the tools devel-
opers typically use. One such category of tools is that of code coverage tools. These
tools track and report coverage data generated during CI tests. As the adoption of these
tools has grown, so does the amount of available coverage data. In this thesis we ex-
plore a large database of coverage data from Codecov, a popular coverage tool. What
sets our work apart from existing research is that it spans a large number of projects
which vary in size, language, and domain. Furthermore, we conduct a survey, which
was disseminated among a wide variety of open-source developers, instead of at a sin-
gle company or in an enterprise setting. Our research consists of three parts. Firstly,
we assess whether there is a relationship between the time to merge a PR and its cov-
erage levels. We find that such a relationship does exist in certain projects. Secondly,
we look at the impact of PR comments mentioning coverage on the odds of said cov-
erage improving. Using the odds ratio test, we conclude that there are greater odds
of coverage improving when it is mentioned than when it is not. Thirdly, we conduct
a survey to ask developers their reasons for ignoring a failing status check related to
code coverage. Some reasons they give are the complexity of testing, the triviality of
the proposed changes, or the pull request being too important to wait for proper test-
ing. Furthermore, respondents who identify as code contributors find themselves twice
more likely to find fixing coverage a waste of their time than those who identify as
code maintainers, while code maintainers are more concerned with not scaring away
new contributors with strict coverage guidelines.

ajhsterk@gmail.com

Thesis Committee:

Chair: Prof. Dr. A. Zaidman, Faculty EEMCS, TU Delft
Daily supervisor: Dr. M. Wessel, Radboud University
Company supervisor: E. Hooten, Codecov
Committee Member: Dr. R. Hai, Faculty EEMCS, TU Delft

ii

Preface

As I am sitting now, writing this preface, I realize this is the last part of my thesis that I still
have to write. Like most things, I thought writing it would be easy and come naturally to
me. However, I once again find myself struggling with finding the right words.

Over the last two years of working on my thesis, I have grown more accustomed to this
feeling. But it still feels strange. I can honestly say there has never been a project I have
worked as hard on, or worried about as much, as this one.

Whilst writing this thesis, I’ve learnt a lot about myself. I procrastinate, I worry, and
when I procrastinate, I worry, and when I worry, I procrastinate. Breaking this cycle has
been difficult. It took me two years... Needless to say, I am very thankful that I am nearly
done, and proud of the work I have done so far.

In particular, I am thankful to a few people. Mainly, I’d like to thank my friends and
family for their support. They’ve had to endure a lot of (needless) worrying from my end,
and I am grateful for the listening ears they provided. I am also grateful for my colleagues,
who have been patient with me while I finished up this project.

I’d also like to thank Mauricio Aniche, for introducing me to Codecov and this thesis
topic, and for supervising me for the first research questions. I’d like to thank Andy Zaid-
man, for taking over as my supervisor, and for all his feedback in the final stages. I’d like
to thank Codecov, for providing me with this opportunity and allowing me access to their
database. I’d especially like to thank Eli Hooten from Codecov, for his supervision, his
insight into academic writing, and our biweekly1 meetings. And last but not least, I’d like
to thank Mairieli Wessel for being my daily supervisor, answering each of my questions,
verifying all my work, and for helping me, even after moving to another university.

And finally, I’d like to thank you, dear reader, for taking an interest in my work. May
you find it useful, and of course, enjoyable to read.

Alexander Sterk
Delft, the Netherlands

June 19, 2023

1every two weeks

iii

Contents

Preface iii

Contents v

List of Figures vii

List of Tables viii

1 Introduction 1

2 Background 3
2.1 Background information . 3
2.2 Related work . 7

3 RQ1: Is there a relationship between code coverage and the time to merge a
pull request? 11
3.1 Methodology . 11
3.2 Results . 14
3.3 Threats to Validity . 18
3.4 Conclusion . 20

4 RQ2: To what extent do comments and status checks lead to improved cov-
erage? 21
4.1 Methodology . 21
4.2 Results . 23
4.3 Threats to Validity . 24
4.4 Conclusion . 25

5 RQ3: Why are coverage checks ignored? 27
5.1 Methodology . 27
5.2 Results . 32

v

CONTENTS

5.3 Threats to validity . 49
5.4 Conclusion . 49

6 Discussion 51
6.1 RQ1: Is there a relationship between code coverage and the time to merge

a pull request? . 51
6.2 RQ2: To what extent do comments and status checks lead to improved cov-

erage? . 52
6.3 RQ3: Why are coverage checks ignored? 53
6.4 Implications . 55
6.5 Future work . 57

7 Conclusion 59

Bibliography 61

A List of projects 65

B Survey 69

vi

List of Figures

2.1 Example of a pull request . 4
2.2 Example of a Codecov comment and status checks 6

3.1 Plots for the coefficients for coverage before hits 14
3.2 The coefficients for hits and misses of coverage after 16
3.3 The coefficients corresponding with various control variables 19

5.1 General experience with software development 34
5.2 Word cloud of job titles of participants . 34
5.3 Distribution of participants’ occupations . 34
5.4 Experience with and frequency of open-source development 35
5.5 Maintainers and Contributors . 35
5.6 Code coverage tool frequency . 36
5.7 Code coverage tool usage outside of GitHub 37
5.8 Importance of testing and code coverage . 37
5.9 Frequency of writing tests . 37
5.10 Incentive to improve coverage . 38
5.11 Beliefs about pull request acceptance and code coverage 39
5.12 Ranking the most incentivising feature of code coverage tools 39
5.13 Frequency of ignoring a coverage check . 39
5.14 Frequency of asking to improve coverage . 40

6.1 Significant coverage metrics per project . 52

vii

List of Tables

3.1 Metrics used in the linear regressions to answer RQ1. 13
3.2 A table summarizing the results . 15

4.1 Results for mentions of coverage in PR comments 23
4.2 Results for mentions of coverage in PR commit messages 23
4.3 Results of qualitative analysis . 24

5.1 Summary of the survey questions . 29
5.2 What is a good coverage goal? . 42
5.3 For contributors: Do you remember a particularly interesting instance where

you were asked to improve coverage? . 43
5.4 For maintainers: Do you remember a particularly interesting instance where

you had to ask to improve coverage? . 44
5.5 What is the best way to incentivize improving coverage? 45
5.6 Two things you like about coverage tools? . 46
5.7 Two things you dislike about coverage tools? 47
5.8 When would you ignore a failing coverage check? 48

viii

Chapter 1

Introduction

Software is a critical aspect of modern society and ensuring that code is well-tested and
reliable is a crucial part of the development process. One way to make this process easier is
by using code coverage.

Code coverage refers to the percentage of code that is executed by a test suite, and it is
an important metric in assessing the quality of tests and identifying areas of code that may
need further testing [31]. One of the most popular ways to measure code coverage in the
development process is using code coverage tools or bots, which are integrated into popular
open-source development platforms, such as GitHub, GitLab or Bitbucket. These tools
collect coverage data from running tests, calculate various coverage metrics, and report the
results back to the developers [27, 4].

There are a number of existing studies in the field of code coverage, but they typically
are based on a few projects, based in a single language [20, 10, 8] or at a single corporate
entity [17, 12]. The results of these kinds of studies therefore do not necessarily generalize
well to open-source development. Furthermore, most existing studies measure the impact of
code coverage on the development or testing processes, but not the impact on the developers
themselves.

In this thesis, we aim to address both these concerns by conducting several consecutive
studies, starting off with empirical research based on a large set of existing coverage data,
and ending with a survey disseminated among open-source software developers.

To better understand the working relationship of software engineers and their code cov-
erage tools, we set out to investigate the following research questions:

RQ1. Is there a relationship between code coverage and the time to merge a pull request?

RQ2. To what extent do comments and status checks lead to improved coverage?

RQ3. Why are coverage checks ignored?

By doing so, we aim to contribute to a better understanding of the challenges and best
practices in using code coverage on open-source development platforms.

Our empirical research is based on a large-scale data set sourced from a wide variety of
projects independent of programming languages, frameworks, and project types. The sur-
vey is also conducted among a large and highly varied sample of open-source developers.

1

1. INTRODUCTION

The data for our research as well as the list of potential survey candidates, are a combination
of public data from GitHub, and data that was made available to us by Codecov, a popular
code coverage tool. Overall, 287 projects were initially queried, and 278 developers com-
pleted our survey.

The structure of this thesis is as follows. First, we discuss the related works and relevant
background information in Chapter 2. Then, we discuss each of our research questions
individually in Chapters 3, 4 and 5, respectively. For each research question we conduct a
separate study, and we report on our methodology and results in their chapters.

Finally, we will discuss our collective findings in Chapter 6, and a conclusion is given
in Chapter 7.

2

Chapter 2

Background

In this thesis, we explore the use of code coverage tools on open-source development plat-
forms and seek to answer our three research questions. However, before we start, we need
to address the fact that not every reader is aware and up-to-date on these topics.

Therefore, in this chapter we will present the background information that is necessary
to understand the research questions addressed in this thesis. We will start by explaining
the pull-based development model, which is frequently used on open-source development
platforms, such as GitHub. Then we move on to introducing the concept of code coverage,
which is a metric for measuring the lines of source code in an application that are exe-
cuted by automated tests. Third, we will give an example of a code coverage tool, namely
Codecov. And finally, there will be a discussion of the related work in this field.

2.1 Background information

2.1.1 Pull-Based Development

Code is often written by more than one person. For multiple people to collaborate on code,
there needs to be some kind of method to keep track of, and combine, different versions
of the code. In open-source development, platforms such as GitHub1 exist to facilitate this
collaborative software development. GitHub implements what is known as the pull-based
development model [6]. This practice uses essentially two roles: the contributor and the
integrator2. Nonetheless, it is possible to take up both roles, depending on the project or
situation.

The contributor is a person who creates a new feature or bug fix and wants to have
it included in the code. They do this by creating a ‘fork’ or ‘branch’ of the main code
repository, making their changes, and submitting a ‘pull request’ to the integrator. A pull
request consists of one or more ‘commits’, which are essentially records of the changes
made to the code. Each commit can be seen as its own version of the codebase. Once the
pull request is opened, the integrator is responsible for reviewing the proposed changes,

1But also other platforms such as GitLab, BitBucket, Azure DevOps, etc.
2or maintainer, code owner, etc. In our research, all these names are used interchangeably for this role

3

2. BACKGROUND

ensuring they meet the project’s standards and merging them into the main codebase. An
example of a pull request on GitHub is given in Figure 2.1. In this screenshot, relevant
details are marked with coloured text, and personal details have been blurred.

Figure 2.1: Example of a pull request

To assess whether the standards are met, the integrator can use a variety of tools. For
example: reading the code, manual and/or automatic testing, static analysis tools, code
quality tools, code readability tools and code coverage. This is a process that we refer to as
‘code review’.

2.1.2 What is code coverage?

Code coverage is a metric used to measure the amount of code that is executed during
testing. It is used to assess the quality of a test suite [31], and to identify parts of the code
that are not sufficiently tested. A commonly held belief among development teams is that,
simply put, the more code that is covered by tests, the more likely it is that the code is
correct and free of bugs. Although as we will see later, this belief does not always hold up.

4

2.1. Background information

Code coverage is usually expressed as a percentage, and there are several types of cov-
erage metrics, such as line or statement coverage, branch coverage, and path coverage.
Statement coverage measures the percentage of statements that are executed during testing.
Branch coverage measures the percentage of branches in the code that are executed. Path
coverage measures the percentage of all possible execution paths through the code that are
executed.

Code coverage can be measured by running the code using a code coverage tool. Typ-
ically, this is done while running tests, and keeping track of which parts of the code are
executed, and which are not. The tools can generate a full report, which provides detailed
information on exactly which lines or branches are covered by tests. Furthermore, these
tools provide a summary for the entire codebase, or individual files or modules, which con-
sists of a coverage percentage, and absolute numbers of covered (‘hits’) and uncovered
(‘misses’) code. It is these numbers that we use in our upcoming research.

Code coverage can be calculated locally on a developer’s computer, However, running
all the tests, as well as calculating coverage, can be time-consuming and/or computationally
expensive. As such, tools have been developed to perform these tasks in the cloud instead.
This is called Continuous Integration (CI)[30]. Besides the saved resources, there are a
number of other upsides to this method. For example, developers do not need to install or
set up these tools on their own machines, which saves them time and effort. Furthermore,
the results are collected online, which means they are available to everyone working on the
project, and easy to keep track of over a longer period.

When a contributor opens a pull request to a project that uses CI, this serves as a trigger
to run the CI pipeline, which executes the tests and the code coverage tool. Once the tests
are finished and all the results are collected, they are reported to the integrator, who will use
them to evaluate whether the pull request should be accepted.

2.1.3 What is Codecov?

Codecov is a code coverage tool that we will use as an example throughout our research.
It integrates with many different open-source development platforms and supports a large
number of programming languages.

Codecov generates coverage reports for each commit and in the case of a pull request,
posts a comment to the pull request that provides a summary of the full report. It can provide
a ‘status check’ for pull requests, which can either be a pass or a failure, if the coverage
results of the pull request do not pass the standards of the project. It can also report the
coverage results through email or Slack. An example of a comment and the status checks
is given in Figure 2.2. Furthermore, it stores the reports it generates, so project maintainers
can track the coverage levels over time. Additionally, it not only calculates the coverage
levels for a project, but also for individual pull requests, which they call ‘patch coverage’.
This only measures coverage for the lines that were actually changed in the pull request3.

Of course, it is not necessary to use a third party to collect and provide coverage infor-
mation, but using a code coverage tool can make it significantly easier, since they are easy

3https://docs.codecov.com/docs

5

https://about.codecov.io/
https://docs.codecov.com/docs

2. BACKGROUND

Figure 2.2: Example of a Codecov comment and status checks

6

2.2. Related work

to set up and configure. Due to Codecov being free for students and public projects, and be-
cause it is used by over a million software developers, they have a large amount of available
coverage data, which they made available to us, to use for research purposes. Therefore, we
mainly focus on Codecov in our research. Nevertheless, there exist alternative tools, such
as Coveralls or SonarQube.

2.2 Related work

Previous work on code coverage can largely be categorized into three groups. Namely, the
effects of code coverage on code review, the effects on software testing, and the effects on
code quality. In this section we will highlight these categories, and the related works for
each of them.

2.2.1 Code review practices and tools

A field of study which is closely related to our research is that of code review, and particu-
larly the use of tools or bots that assist with code review. This section explores the related
work in this field. The studies discussed provide insights into the use of tools that assist
with code review and quality control, and the nature of open-source software development.
These studies deal with how contributors and maintainers approach pull requests, and which
methods they use to determine whether they should be accepted.

For example, a study by Gousios et al. aims to predict whether a PR will be merged using
machine learning. Projects were selected based on specific features, and their findings reveal
that most pull requests affect only a few lines of code, and 60% of them are decided upon
(e.g., merged or rejected) within a day. The decision to merge depends mainly on whether
the PR affects code that was modified recently already, and the time to merge depends on
code coverage and developer experience/track record. Furthermore, only 13% of rejected
PRs are rejected for technical reasons [6].

In a study conducted at Microsoft, the authors created a model to predict the processing
time of a pull request. The subsequent results of the model were then used to provide
feedback to developers. As a result, pull requests were merged much more quickly, saving
significant developer time. [17].

In another large-scale study, Yu et al. investigate the effects of adopting Continuous
Integration (CI) on the quality of the developed software. The study’s authors collected a
large number of metrics and deployed various regression models on them to answer their
research questions. These metrics are of various categories, namely: Product, Process,
Churn, Social and CI metrics. Their findings reveal that only a few files typically cause CI
to fail and therefore should be under more scrutiny. Additionally, PRs that at one point failed
the CI, and were subsequently fixed and merged, have a higher chance of introducing bugs
regardless. However, using CI alone does not necessarily indicate high-quality code [30].
The same can typically be said for other metrics, including code coverage. These studies
served as inspiration for Chapter 3, in which we also deploy linear regression to model pull
request completion times, but using code coverage metrics.

7

2. BACKGROUND

Another study, conducted by Mcintosh et al., examines the impact of code review on
software quality. Authors collected a large amount of data on code changes and their re-
views, and found that code review participation is significantly linked to post-release de-
fects, meaning that review participation and discussion is encouraged to lower the chances
of a defect. There is also a link between reviewer expertise and post-release defects, mean-
ing that experts should be included in the review process[18].

Finally, another study by Wessel et al. compares activity indicators from before and after
the adoption of certain code review bots. The study found that the number of merged pull
requests increased, and the number of non-merged pull requests decreased monthly after
adopting these bots. Furthermore, there was less communication on merged pull requests,
and less time taken to reject pull requests [28]. Their study included multiple code review
bots, including Codecov, but also other code coverage tools. In a survey conducted by the
same authors, they found that developers perceived some other positive effects as well, such
as less time to close a PR, and a reduction of workload. But also, negative effects such
as noise and scaring away new contributors [29]. Furthermore, in a survey conducted at
Google, key results were that developers feel positive towards code coverage, and will opt
to use it, even if that is optional [12]. Because of these surveys, we were inspired to conduct
our own survey in Chapter 5. However, in our survey, we do not focus on a single company,
but rather on open-source developers on GitHub.

Overall, these studies suggest that code review is a critical part of software develop-
ment, and that the use of tools can significantly improve its efficiency and effectiveness.
The findings also highlight the importance of review participation and discussion, reviewer
expertise, and the need for ongoing improvement of code review processes. They highlight
that there are multiple factors to how quickly a pull request is processed. In our research we
aim to further explore the specific impact of code coverage.

2.2.2 Software testing

In the field of software testing, several studies have been conducted to understand the factors
that influence the effectiveness of test suites. In this section we will discuss some of these
studies, and how they include code coverage in their methodology.

Firstly, Namin and Andrews explored the separate contributions of test suite size and
code coverage to test suite effectiveness. The study found that both size and coverage inde-
pendently influence effectiveness in a nonlinear relationship. This indicates that a combina-
tion of size and coverage is better at predicting effectiveness than either of them alone [20].
In another study, Mondal et al. explored the goal of selecting tests from a larger test suite to
maximize both code coverage and test diversity while minimizing test execution time. The
study found that optimizing using all three variables was significantly more effective than
optimizing two variables separately [19].

An empirical study was conducted by Kochhar et al. to examine the relationship be-
tween different project metrics and the code coverage achieved in open-source projects.
The study found a negative correlation between project size and coverage, as well as a neg-
ative correlation between cyclomatic complexity and coverage. However, on a file-level,

8

2.2. Related work

these correlations are positive, showing that developers care about ensuring that large and/or
complex files are tested [14].

This is backed up by a case study from Kim that was conducted on code coverage in a
large piece of software. Instrumenting all the code to report code coverage takes too many
resources, so the study aimed to use the available code coverage more efficiently. The study
found that defects follow a Pareto-like distribution, and therefore, a more efficient approach
to code coverage analysis was developed. The approach focused on error-prone modules
and used coarse coverage approaches for error-free modules. The study also found a strong
correlation between block and branch coverage and between complexity and size. The
results showed that coarse coverage methods are a cost-efficient replacement for detailed
methods [13].

Furthermore, in another empirical study by Derezińska, computer science students ex-
amined 50 C/C++ programs to find useful information regarding the coverage of these pro-
grams. The study found that basic tests based on program requirements achieved a high
amount of code coverage on average. Additional tests were written to increase the code
coverage further, and the test suites were optimized by removing tests that did not increase
the coverage. The study concluded that additional tests for coverage were not difficult to
achieve, and that when test suites were optimized, many of them included both the addi-
tional tests and original tests. Lastly, the uncovered code was examined and found to be
mainly related to error handling, inaccessible code, or too costly to cover [5]. Something
we explore further in Chapters 4 and 5.

Finally, in a past study by Schwartz et al., the authors use a number of projects with
high code coverage levels and introduce faults into them. They found that the existing tests
were only able to detect some of the faults, while others went undetected [23]. Therefore,
the authors concluded that high code coverage alone is not necessarily a good indication of
the quality of a test suite.

A similar conclusion was drawn in a study by Inozemtseva and Holmes. In this study,
the authors used large Java projects to determine the relationship between code coverage
and the tests’ fault detection effectiveness, and found that there is a low correlation between
them, and varies between different software. [11] This goes to show that, while low coverage
is useful for determining parts of the code that need extra testing, high coverage does not
mean everything is properly tested. For this reason, it is important to not only write, but
also review test code, to ensure it is of high quality. Unfortunately, Spadini et al. concluded
in their study that test code is reviewed significantly less than production code [24].

From these papers it shows that code coverage and software testing are two closely
related topics. And while coverage is a good starting point for writing tests, it does not imply
the tests will be of high quality. Which is a sentiment that is shared among developers, as
we have concluded in Chapter 5.

2.2.3 Code coverage

In the previous subsection we mainly discussed the relationship between code coverage and
the testing effectiveness. In this subsection we will discuss different studies relating to the
direct relationship between code coverage and code quality.

9

2. BACKGROUND

In a past study, Hutchins et al. aimed to investigate the value of setting up code cov-
erage monitoring to increase coverage and detect more faulty behaviour in code [10]. The
experiment concluded that even 100% coverage does not guarantee fault detection, but low
coverage levels are a good indicator of test inadequacy. This study, however, is nearly 30
years old, but arguably the results are still relevant today.

In a more recent study, Hemmati examined whether code coverage is an effective way of
finding bugs. The study found that control-flow forms of code coverage were largely inef-
fective in finding bugs and recommended using a combination of different control- and data-
flow coverage, as well as some tests based on the specification, and not coverage alone [8].

A similar conclusion was reached in another study. Here the researchers investigated
the correlation between code coverage and the number of bugs found in a system once it is
released. The study found insignificant or no correlation between the two factors [15].

Finally, in a large-scale study Hilton et al. analyze patch coverage for commits to inves-
tigate how code coverage evolves over time. Their key findings are that patch coverage is
not correlated with project coverage, patches often affect coverage of code not in the patch,
and patches which appear to not change the coverage can contain a large number of changed
statements. Especially for very large projects, patch coverage is a more useful metric than
project coverage, but it is not the sole metric you should focus on during a code review [9].

These papers present a somewhat negative view of code coverage. However, in Sec-
tion 2.2.1, developers seem to be mainly positive about code coverage. This therefore serves
as a great opportunity to explore both of these facets further in our own research, by con-
ducting empirical research in Chapters 3 and 4, and by conducting a survey with developers
in Chapter 5.

10

Chapter 3

RQ1: Is there a relationship between
code coverage and the time to merge

a pull request?

As previously mentioned, tools like Codecov generate coverage reports, that inform devel-
opers of the coverage levels of their projects or contributions. In this chapter we aim to
determine in what way having these coverage reports affects how the PR is merged. For
example, do pull requests with fully covered changes get merged quicker than others? And
do pull requests which lower the overall coverage get merged slower? Such a relationship
could motivate a developer to write better and more tests for their pull requests, and improve
its coverage.

In our study, we therefore focus on establishing a relationship between the coverage
levels reported on a pull request, and the time it takes to merge that pull request. We do
this by combining the coverage data from open-source repositories on GitHub from Code-
cov’s database, and public information about the repository gathered by GHTorrent [7], to
build individual linear regression models for a selection of popular and/or big open-source
projects. Using these models, we can evaluate the impact of different code coverage mea-
sures on the pull requests’ merge time. We use coverage levels from before the pull request
was merged, the coverage levels achieved in the pull request, the difference between these,
and Codecov’s own measure of ”patch coverage” as various coverage metrics in our models.

The full methodology of our study is described further down, in Section 3.1, while the
results can be found in Section 3.2.

3.1 Methodology

In this section we explain how we performed this research. We will discuss how we col-
lected and processed our data, used it to create our models, and how we then analysed those
models.

Data collection We gathered data on public, merged pull requests on GitHub from Code-
cov’s own database of coverage information and pull requests, and appended it with addi-

11

3. RQ1: IS THERE A RELATIONSHIP BETWEEN CODE COVERAGE AND THE TIME TO

MERGE A PULL REQUEST?

tional information from GitHub using the March 2021 database dump of the GHTorrent
project [7]. We originally searched for PRs from 287 popular open-source projects on
GitHub, which also use Codecov in their repositories. These open-source projects were
provided by Codecov as a starting point for our research. The period during which the PRs
were merged range from 2017 to 2021, and we included only projects with over 100 merged
PRs. The full list of projects can be found in Appendix A.

The information we gathered from Codecov includes the coverage information from
base and head of the merged PR. This information adheres to the same format as the cover-
age information returned by Codecov’s API [1], and this API could therefore, in combina-
tion with GHTorrent, be used to replicate this experiment. The data from GitHub/GHTorrent
includes some basic information of the PR and the repository at the time of opening the PR.
The coverage information is provided in two ways. One is a number between 0 and 100,
which represents the coverage percentage. The other consists of absolute values for the
number of coverage hits, misses and partials1.

The data was queried from a Google BigQuery Database and subsequently around 11GB
of JSON files were downloaded to a machine for further processing. Ultimately only 123
repositories with over 100 PRs were found from the original list of 287.

Data processing After collecting the data, we processed it by calculating the various met-
rics shown in Table 3.1. We also removed duplicate entries which are a result from duplicate
rows in the databases. The data was downloaded as nested JSON files, which were then pro-
cessed into flat JSON objects. During this process, many of the metrics were calculated.

• Not only were the raw coverage metrics used, the difference between the coverage
metrics of the head and base commit of the PR were also calculated and used as
separate features.

• The difference between the time the PR was opened and the time it was merged was
used to calculate the time to merge, given in hours.

• The authors of the commits in the PR were used to get the number of commits in the
PR, as well as the unique authors in the PR.

• The authors of the comments left on the PR were used to get the number of comments,
as well as the number of reviewers (excluding the authors of the PR, who might have
left comments as well).

• The authors of the previous commits in the repository were used to calculate the num-
ber of previous commits, as well as the number of past contributors in the repository.

• Whether the PR originated from a fork or not was used as-is.

After this step, one large flat JSON file remained, which was converted into a CSV file
using json2csv. Subsequently, duplicate rows, which were the result of duplicate rows in
the original databases, were removed.

1branches for which only some parts are covered

12

3.1. Methodology

Metric Gathered from Name in model
Independent variables

Time to merge PR, given in hours GHTorrent timeToMerge

Variables we are interested in

Project coverage before PR Codecov coverage before
{hits,misses,partials,coverage}

Project coverage achieved in PR coverage after *

Patch coverage achieved in PR patch coverage *

∆Coverage before and after the PR diff coverage *

Control variables

#Commits in PR GHTorrent commitsInPr

#Authors in PR authorsInPr

#Commits in project before PR commitsInProject

#Contributors before PR contributorsInProject

#Comments left on PR comments

#Reviewers reviewers

PR opened from a fork or not intraBranch

#Files included in the patch coverage of the PR Codecov patch coverage files

#Lines of code included in the patch coverage of the PR patch coverage lines

#Files included in the coverage report before PR coverage before files

#Files included in the coverage report after PR coverage after files

∆Files in the before and after reports diff coverage files

#Lines of code in the coverage report before PR coverage before lines

#Lines of code in the coverage report after PR coverage after lines

∆Lines of code in the before and after reports diff coverage lines

Table 3.1: Metrics used in the linear regressions to answer RQ1.

Modelling In this step, we group all the gathered PRs by the repository they belong to.
Using the statsmodels module for Python, we create an Ordinary Least Squares (OLS)
model for each of the projects. These models include all the metrics given in table 3.1, as
well as a constant to serve as an intercept. For our models, we’ve set the dependent variable
to the time to merge the pull request. The full results from these models can be found on
GitHub: https://doi.org/10.5281/zenodo.8044949.

The point of doing this, is to model our dependent variable as the outcome of a function
with the independent variables as parameters. In this case it would be a linear function,
where the outcome is the sum of the independent variables, and each independent variable
has a weight associated with it. By using the OLS algorithm, we can adjust those weights
to get the function that fits the weights the best.

Analysis Here we rank the models from the previous step based on their R-squared score
as reported by statsmodels. In this case, this score indicates how well the model explains
the given data for a project. This suits our use-case, since we are not looking to predict the

13

https://doi.org/10.5281/zenodo.8044949

3. RQ1: IS THERE A RELATIONSHIP BETWEEN CODE COVERAGE AND THE TIME TO

MERGE A PULL REQUEST?

Figure 3.1: Plots for the coefficients for coverage before hits

time it takes to merge a PR, but simply to explain whether there is a significant relationship
between this variable, and the coverage variables.

We filter out the models with an R-squared less than 0.7, since we believe them to not
be performing well enough. A list of the projects belonging to these models can be found
in A. For the remaining 18 models, we collect each metric for which statsmodels indicates
it has a p-value of less than 0.05. These metrics are then considered to have a significant
relationship with the dependent variable (the time to merge) in that particular model.

The results of this analysis can be found in the next section.

3.2 Results

For each metric, we collect the corresponding coefficients from only the models where that
metric is considered significant (i.e., its p-value is less than 0.05). A quick summary of
these coefficients per metric is given in Table 3.2. From these results, we see the following
interesting things:

Firstly, out of all the coverage metrics, the project’s coverage before the PR appears
to be the most often significant of all the coverage metrics. In 9 out of the 18 projects
(50%), this variable has a significant relationship with the time to merge a PR. Interestingly,
this metric says something about the state of the repository before the merge of the PR. This
could imply that the coverage levels at the time a PR was opened are important more often
than the coverage levels achieved by the PR itself. Especially since coverage levels after the
PR are significant slightly less often. Namely, only in 7 out of 18 projects. Admittedly this
is not a huge difference, but still noteworthy enough to deserve a mention.

14

3.2. Results

#Times coefficient

metric significant mean std min max

commitsInProject 13 -0,55 11,80 -32,90 22,68
contributorsInProject 12 -46,20 213,35 -257,81 566,91
comments 10 29,13 32,38 -16,49 74,99
const 10 -2027653,74 6043836,16 -18798268,25 2351660,60
coverage before lines 9 131,28 381,17 -1,53 1147,50
coverage before files 9 10,94 99,06 -102,62 235,70
coverage before hits 9 -131,72 383,47 -1154,03 2,59
coverage after files 8 105,10 225,60 -59,63 552,50
commitsInPr 7 27,47 34,07 4,64 102,28
coverage after hits 7 -20,64 49,22 -131,41 4,00
coverage after lines 7 16,00 37,13 -1,66 99,36
coverage before missed 7 334,47 867,48 -2,86 2301,53
coverage before coverage 7 14783,16 35481,25 -259,55 95096,54
diff coverage coverage 6 -1572,07 5105,39 -11748,33 2541,43
coverage before partials 6 2,35 5,49 -4,41 9,69
reviewers 6 114,19 164,04 -161,08 291,99
coverage after missed 6 16,72 55,66 -41,41 120,71
coverage after partials 5 22,56 48,92 0,00 110,06
coverage after coverage 5 4617,87 11772,01 -6037,16 24453,06
authorsInPr 5 138,66 431,76 -314,93 640,26
diff coverage files 4 98,51 268,25 -86,27 494,97
diff coverage hits 4 8,98 25,47 -8,08 46,83
diff coverage missed 4 -14,53 38,43 -71,25 14,08
patch coverage files 4 16,00 27,41 -16,43 48,71
patch coverage partials 4 -2,03 4,06 -8,11 0,00
diff coverage lines 3 -12,66 27,15 -43,81 6,00
intraBranch 3 2458,59 4500,31 -563,99 7630,59
patch coverage coverage 2 -5,64 3,07 -7,81 -3,47
patch coverage lines 2 0,02 3,81 -2,68 2,71
patch coverage misses 2 4,02 2,08 2,55 5,49
patch coverage hits 1 -2,77 -2,77 -2,77

Table 3.2: A table summarizing the results

From the data we can tell that the coefficient for this metric is typically negative or very
slightly positive, with a maximum of 2.59 according to Table 3.2. One theory for why most
coefficients are negative is that hits are a positive coverage metric. The more hits you have,
the better your code is tested. This in turn could lower the time to review (and therefore
merge) a pull request.

When we look at the coefficients for this metric (coverage before hits), which are given
in Figure 3.1, we see one outlier, with a very negative value. This outlier belongs to a
single project that already has a very high level of coverage (roughly 99%) in all of its data
points, namely Semantic-Org/Semantic-UI-React. This is on average the highest level
of coverage we were able to find in our database. While the number of hits does vary a
bit, the actual coverage percentage changes almost nothing for each PR. This could cause
the number of hits to weigh more in the model than, for example, the percentage-based

15

3. RQ1: IS THERE A RELATIONSHIP BETWEEN CODE COVERAGE AND THE TIME TO

MERGE A PULL REQUEST?

coverage metrics.

Secondly, when looking at both the coverage before (Figure 3.1) and coverage after met-
rics (Figure 3.2), hits are significant more often than misses. However, the difference is
not that big: 9/18 vs 7/18 for before [the pull request], and 7/18 vs 6/18 for after. It should
be noted that not every project where misses are significant, has hits significant as well and
vice versa. In general, we also find that hits have a more negative relationship/coefficient
with the time to merge, and misses a more positive one.

Figure 3.2: The coefficients for hits and misses of coverage after

One interesting project to look at though, when we look at Figure 3.2, is scrapy/scrapy.
Here we see that for the hits, there is a very strong negative relationship, while for the
misses, there is a very strong positive relationship. There seems to be some kind of balance

16

3.2. Results

between the weight of hits and misses. The more hits implies a lower time to merge, while
the more misses implies a higher time to merge. This is, of course, not a groundbreaking
conclusion, considering that the existence of more misses automatically implies a lack of
hits and vice versa, and the fact that hits are favoured over misses when developing and re-
viewing code. However, it is interesting to see this principle reflected in the data so strongly
and so clearly.

The third interesting thing we find, is that patch coverage metrics are the least signifi-
cant coverage metrics. These metrics represent how well the code in the diff of the PR is
covered. Just like the other coverage levels, Codecov provides a report of the patch coverage
on the PR itself, in the form of a comment. However, according to our results, these metrics
rarely have some kind of significant relationship with the time to merge a PR. Looking at
Table 3.2, we see that the coverage percentage, number of hits and number of misses are
significant only 2, 2, and 1 time, respectively.

One final thing to note here is that even here it holds that for the projects where these
metrics are significant, misses increase the time to merge, while hits decrease it. This lines
up with the same conclusion made in the previous paragraph.

Furthermore, something that may appear odd at first, when looking at Table 3.2, is the
high variability of the ‘const’ metric, also known as the intercept value. This is the value
the time to merge would take if all other metrics would be 0. While that is a completely
unrealistic case, since a PR or project will always have commits or contributors, etc, it is
worthwhile to theorise a bit more on why this metric has such extreme values and high
variance.

One theory is that certain metrics are simply always very large. Especially in these
particularly popular projects. These projects can have hundreds if not thousands commits
and/or contributors. Furthermore, hits or misses can occur in almost every line of code.
When you think of a model as a formula, with our metrics on one side and time to merge
on the other, it could mean that a high intercept value is necessary to offset the sum of all
the other metrics, to get a reasonable result.

Of course, each project is also inherently different. They are all set up differently and
are managed differently as well. There are a lot of more human factors, that we, in this
study, were not able to capture in metrics. As such, the intercept variable could represent
all these ‘hidden’ metrics. For example, it is possible for a team to only review PRs on a
particular moment every week. In this made-up scenario, PRs will take longer to merge, not
due to any of the metrics we collected, but due to the structure set up by the developers.

Lastly, the final thing we see is that some of the control variables, and not the coverage
variables, are the most significant overall. Specifically, commitsInProject, contributorsInProject
and comments. These metrics have a relationship that can be considered significant with the
time to merge a PR 13, 12 and 10 times, respectively. Our theory is that if a pull request
has a lot of comments, there is a high chance that it was open for a relatively long time.
Similarly, a bigger project with a large number of maintainers who merge pull requests, can

17

3. RQ1: IS THERE A RELATIONSHIP BETWEEN CODE COVERAGE AND THE TIME TO

MERGE A PULL REQUEST?

also have a quicker time to merge, since more maintainers are available. Nevertheless, we
did not perform additional research to confirm these theories.

This is also shown in Figure 3.3. With a single exception, comments only see a positive
relationship with the time to merge. However, the other two metrics see more of a mix
between positive and negative relationships. Looking at the raw data (https://doi.org/
10.5281/zenodo.8044949) of the projects these coefficients belong to, there is no clear
indication of whether a high number of commits or contributors corresponds to either a
positive or negative relationship. There seems to be some further hidden complexity that
cannot be captured by our models.

Another interesting thing to note is that the coefficients for the number of contributors
are more varied than those for the number of commits or the comments. This can be seen
in table 3.2 and Figure 3.3.

Additionally, we did consider the possibility that a large number of commits and com-
ments can have an impact on the coverage level of the PR, as well as the time to merge. We
look further into this first relationship in our next chapter.

3.3 Threats to Validity

We have come up with a number of threats to the validity of our results.
Firstly, we made a clear effort to only look at a small list of large projects. Not only were

we constrained to using projects that use Codecov specifically, but we also believed that for
our models to be meaningful, we needed a lot of data per project. We therefore only looked
at large, popular projects, because we believed they would have the most data. Also, we
only included projects that use Codecov, and not any other coverage tools. Consequently,
our research here might not be as generalisable to any open-source project. However, the
projects we chose did span multiple fields and programming languages, so we still believe
that it is diverse enough. Similarly, in hindsight we could have included more metrics. One
that immediately comes to mind is the number of pull requests the project had, as well as
how many of those were merged, closed or remained open.

Secondly, we combined data from Codecov with data from GHTorrent. This means we
used only a subset of GitHub’s data, while we could have used GitHub’s API instead, and
be closer to the source. The GHTorrent data was already somewhat outdated at the time of
the research, spanning up to March 2021, but not going beyond that. If we had found a way
to use the GitHub API instead, we might have had more data to work with. Nevertheless,
the use of GHTorrent hugely simplified our process of linking Codecov data to GitHub data,
since we could both query them together using Google BigQuery. Furthermore, we tried to
mitigate any problems with extra efforts on removing duplicates from our final dataset.

Lastly, we used a rather simple model to look at the data. We tried a variety of different
models to fit the data, but we found that linear regression simply gave us the best results. You
can argue whether that makes it the best model for our purposes, or whether we just picked
the one that gave us the nicest looking results. However, we believe the linear regression
model we used is suitable, because we are only aiming to explain a certain behaviour and
look for possible relations. We are not interested in predicting anything, so therefore a

18

https://doi.org/10.5281/zenodo.8044949
https://doi.org/10.5281/zenodo.8044949

3.3. Threats to Validity

Figure 3.3: The coefficients corresponding with various control variables 19

3. RQ1: IS THERE A RELATIONSHIP BETWEEN CODE COVERAGE AND THE TIME TO

MERGE A PULL REQUEST?

perfect fit is not necessary. In any case, the results it gave us led us to come up with many
interesting theories regarding the relation between the time to merge and code coverage.

3.4 Conclusion

In this chapter we investigated the relationship between code coverage of a pull request,
and the time it takes to get merged. To collect our data, we combined data from Codecov’s
own database, and GitHub (using GHTorrent). We focused on larger, high-ranking projects
on GitHub, with over 100 merged PRs only. The metrics we collected included coverage
levels at the base and head of the PRs, as well as how many commits, files, lines, comments,
reviewers and contributors the PR had.

For each individual project, we created a linear regression model, where the time to
merge the PR was the dependent variable, and the other collected metrics the independent
variables. We then filtered these models on how well they performed, and from the remain-
ing ones we collected all the independent metrics that were considered to have a significant
relationship with the time to merge.

We then grouped these significant metrics into metrics related to code coverage, and
other metrics, to answer the question whether there is a relationship between code coverage
and the time to merge of a pull request. In our results we find that in 50% of the models,
there is a significant relationship between the project’s coverage levels and the time to merge
a PR. Furthermore, we also find that coverage hits are considered to have a more negative
relationship with the time to merge, while misses have a positive relationship. Meaning that
more hits lead to a faster time to merge, and more misses lead to a slower time to merge.

We also find that patch coverage metrics are the metrics that are the least often signifi-
cant of all the metrics we collected. This implies that project coverage plays a bigger role
in determining the time to merge in our models.

In conclusion, in some projects there exists a significant relationship between the time
to merge a pull request, and code coverage.

20

Chapter 4

RQ2: To what extent do comments
and status checks lead to improved

coverage?

As part of their services Codecov provides developers on GitHub (and other platforms) with
updates on their coverage. These updates are typically in the form of a comment left on a
pull request, or a status check submitted for individual commits. They also provide other
forms of notifications, for example through a Slack bot, which notifies you directly if there
are any problems.

In our previous research we found that the number of comments and commits are the
metrics that we found to have a significant relationship with the time to merge a pull request
the most often. Therefore, in this chapter, we will now focus on the comments and commit
messages of PRs, to find out to what extent they are about the coverage levels and/or tests
of the PR.

We explore this by looking for commits for which the Codecov status check reported a
failure, implying that the PR, at some point, did not adhere to the coverage targets set by
the maintainers. We then look at the subsequent comments and commit messages to look
for mentions of coverage and/or tests.

4.1 Methodology

Codecov keeps track of all the notifications it sends to its users in a database. Using this
data, we find commits for which users were notified of a failing status. Here we only
focus on notifications in the form of comments left on the PRs, and status checks left on
commits belonging to PRs. We use the GitHub API to check for the failing statuses, as this
information is not actually stored by Codecov1.

We divide our commits in two groups. Each group consists of 200 commits, which were
randomly selected from the earlier group of projects we used in chapter 3. The first group

1Codecov stores whether setting the status itself was a success or a failure, but not the actual state of the
status

21

4. RQ2: TO WHAT EXTENT DO COMMENTS AND STATUS CHECKS LEAD TO IMPROVED

COVERAGE?

contains PRs for which the project coverage at the head of the PR would go down. The
second group contains PRs for which the project coverage at the head of the PR would go
up or stay the same. Both groups contain PRs with at least one commit which has a failing
status due to Codecov only. This failure is triggered when a project does not adhere to the
coverage target that is configured for the project.

4.1.1 Quantitative analysis

For both groups, we gather the comments and commit messages, and look for certain key-
words such as:

• codecov

• coverage

• test

• testing

• tested

• tests

• retest

We then look at how many of these PRs mention coverage or tests in their discussions and
commit messages, and how many of these PRs actually see their coverage improve. This is
a statistical test that compares the odds of an event happening in one group, to the odds of
the same event in another group. We compare this to the other PRs, which do not mention
coverage, and run the odds ratio test to compare the chances of coverage improving when
it is mentioned.

We run two tests, one for mentioning coverage or tests in the comments left on the PR,
and one for mentioning coverage or tests in the commit messages for the PR. The results
can be found in Section 4.2.

4.1.2 Qualitative analysis

We then manually analyze each PR, to see whether any kind of discussion or mention re-
garding the failing coverage check or missing tests has taken place, or if there were any
commits specifically addressing coverage or adding new testcases. Furthermore, we look at
the reports left by Codecov, to get a sense of how much these play a role in the discussions.
We then categorize the PRs into the following buckets:

1. No kind of discussion has taken place.

2. A discussion/mention was there, but coverage did not get fixed, and the PR was
merged anyway.

22

4.2. Results

Mentions of coverage or testing

Coverage goes up True False

True 79 121
False 55 145

Odds ratio 1.7213
P-value 0.0113
Confidence interval 1.1305 to 2.6207

Table 4.1: Results for mentions of coverage in PR comments

Mentions of coverage or testing

Coverage goes up True False

True 73 127
False 52 148

Odds ratio 1.6360
P-value 0.0240
Confidence interval 1.0669 to 2.5085

Table 4.2: Results for mentions of coverage in PR commit messages

3. A discussion/mention was there, and coverage got fixed or the PR was closed if it was
not.

4. Miscellaneous. A small category for PRs which had some unexpected behaviour.
For example, the coverage check being displayed as passing during a manual review,
despite the GitHub API listing it as a failure during our data collection.

In the results Section 4.2, we will report the distribution of the PRs among these cat-
egories. After this we will also try to dive into each category and see if there are some
commonalities between the PRs within the category.

4.2 Results

4.2.1 Quantitative analysis

The results of the quantitative analysis can be found in Tables 4.1 and 4.2. These tables
show the division of the PRs into four categories, based on the two axes: “coverage of
the PR went up” and “coverage and/or tests were mentioned”. Furthermore, they show the
results of the odds ratio test, as well as P-value (the probability that the data we observe is
likely to occur, given that there is no relation at all (i.e., the lower the better).

From these results we can see that, according to our data, the odds of coverage im-
proving when either tests or coverage are mentioned in the discussion are greater than
the odds of when these things are not discussed. And this effect is considered statistically
significant, as stated by the P-value being lower than 0.05. However, this does not mean that
just mentioning coverage or testing in a discussion will automatically increase the coverage
of a project, since we know that correlation does not imply causation.

A similar conclusion can be drawn regarding coverage improving when coverage or
tests are mentioned in the commit messages. This might seem obvious: creating commits to
address coverage or tests should lead to an increase in coverage. However, from Table 4.2

23

4. RQ2: TO WHAT EXTENT DO COMMENTS AND STATUS CHECKS LEAD TO IMPROVED

COVERAGE?

Coverage goes up

Category True False

No mention 133 168
Mention, no fix 7 7
Mention, fixed or closed 57 16
Miscellaneous 3 9

Table 4.3: Results of qualitative analysis

we can see that in our experiment we had 52 PRs where this was not the case. So maybe
it is not so obvious after all. A possible explanation could be that commit authors mention
that they cannot test or improve coverage in their commit messages. These messages would
still be considered as mentioning coverage or tests, and would therefore be false positives
in our data.

4.2.2 Qualitative analysis

In our qualitative analysis we looked at all 400 PRs manually, and assigned them to one of
four categories mentioned in Section 4.1.2. Table 4.3 shows the distribution of PRs in our
two groups among these categories.

Recall from Section 4.1 that all our PRs contain at least one commit for which Codecov
has reported a failing coverage status check. One of the first interesting things we see in our
table, is that in most PRs we have sampled, there is no mention of this failing check.

Another thing we see when looking at our table, is something that corroborates our
findings in Section 4.2.1. Again, we see that mentioning coverage is more often associ-
ated with coverage going up. While there are 16 PRs where coverage is mentioned and
the coverage does not go up, in our manual analysis we found that most of these (11/16)
haven’t been merged, but either closed or left open for the author to fix. The remaining 5
had some problems with not achieving 100% patch coverage, but the project coverage was
unchanged.

4.3 Threats to Validity

One threat to validity we found is that we used a simple text search to look for mentions
of testing or coverage. We looked for mentions of “coverage”, “test”, and a few other
keywords. This means that it is possible that certain mentions of these keywords could be
taken out of context, and do not actually refer to the current (state of the) pull request.

Furthermore, our list of keywords was quite short, to avoid very common words from
being detected as a mention. In a way, this could also be a threat, because we might miss
other relevant comments or mentions. Especially since our keywords are only in English.
In the end, we opted to be less flexible in the words we accept as a mention, but have more
confidence that the mentions are correct.

24

4.4. Conclusion

We tried to mitigate this problem by going over all the pull requests manually, as part
of the qualitative analysis. However, this in itself is also a threat. Due to the nature of
qualitative analysis, the results are based on very subjective groupings and categories. Only
one person looked at all 400 pull requests. We tried to mitigate this problem, by having a
supervisor from the TU Delft look at the first 40, to detect any bias, which was not detected.

Another threat is that we used the same list of projects we used in Chapter 3. Therefore,
we have the same threat here as we have there, namely that our results might not be as
generalisable. However, we still believe that our initial selection of projects is quite diverse
in terms of fields, programming languages and structure.

Lastly, one thing we missed is sampling for PRs where the drop in coverage was more
significant. We believe that a lot of the PRs we found had failing coverage checks due to
tests or the code coverage tool being flaky. We tried to mitigate this problem using the
qualitative analysis as well.

4.4 Conclusion

In this chapter, we investigated commits that failed the Codecov status check, and see if they
got fixed. From the same list of popular projects from Chapter 3, we sampled pull requests
that each had at least one commit for which Codecov reported a failing status check, using
the GitHub API.

We then divided our samples into two groups. One where the coverage status check
was fixed, and one where it was not. Afterwards, we randomly selected 200 PRs from
both groups, in order to compare the two groups. Specifically, we focused on mentions of
coverage and/or tests in the comments and commit messages of the PR, to see if there would
be a difference in the frequency of these mentions between these groups.

We used a simple text search strategy and verified each mention by hand in a further
qualitative study. We ran an odds ratio test between the two groups and found that the
odds of coverage improving when either tests or coverage are mentioned are greater than
the odds of when they are not. Furthermore, we found that in a large majority of the PRs
in both groups, the failing coverage check is never mentioned, which is something we will
discuss in the next chapter.

25

Chapter 5

RQ3: Why are coverage checks
ignored?

During our research for Chapter 4, we found that mentioning tests and/or code coverage is
related to the code coverage increasing. Furthermore, we found many instances where both
contributors and maintainers opened or merged pull requests, where coverage checks were
ignored.

To find out why that is the case, we conducted a survey with 278 participants, who
were invited based on previous experience with both GitHub and Codecov, a popular code
coverage tool.

This chapter will start off by explaining the goals of the survey, and how the survey
was constructed in order to achieve those goals, in Section 5.1. Then, we will dive into the
results of the survey in Section 5.2. Finally, a conclusion will take place in Section 5.4.

5.1 Methodology

5.1.1 Goals

The goal of our study is to explore how developers use and look towards code coverage
in open-source development projects. Specifically, we aim to come up with reasons why
coverage checks would get ignored, as well as categorize what developers would consider
good coverage practices. We have chosen to conduct a survey to achieve these goals, be-
cause there exists a wide variety of reasons why pull requests with a failing coverage check
could get merged, and because these reasons can be subjective, and based off of people’s
own opinions of code coverage and open-source software development as a whole.

Another thing that is important for us, is to see if there are any significant differences of
opinion between developers who consider themselves ‘maintainers’, and those who more
closely identify with ‘contributors’. For this we have opted to use two different paths in the
survey, based on the participant’s answers.

27

5. RQ3: WHY ARE COVERAGE CHECKS IGNORED?

5.1.2 Constructing the survey

Our survey was built using Qualtrics, with a licence provided by the TU Delft. It consists
of a mix of demographic, quantitative (closed) and qualitative (open) questions. The en-
tire survey can be found in Appendix B, and a summary list of questions can be found in
Table 5.1.

The survey starts with an introductory message clearly stating the purpose of the survey,
and who is conducting it. Furthermore, it provides clear information to the participants on
how they were selected and additional contact information in the case of questions. Lastly, it
informs participants that the survey is anonymous, that the results will possibly be published
as part of academic research, and thanks them for their participation. We followed the
guidelines set by TU Delft’s Human Research Ethics Council and had our study proposal
submitted to them for approval.

The demographic questions consist of open and closed questions regarding the partic-
ipant’s years of experience with (open-source) software development, and familiarity with
code review and software testing processes. Furthermore, it includes a binary choice for
users to assign themselves either a maintainer (or project manager), or a code contributor.
Of course, there are situations where users might feel like they are a little bit of both, or
neither. However, for our use-case, we asked them to select the option they most identi-
fied with. Using their answer to this question, we are able to give them a different set of
questions in the survey. So, it is important that we make a binary distinction here.

For the main part of the survey, i.e., the qualitative and quantitative questions, we first
explain our interpretation of code coverage tools which we will use during the survey, using
screenshots of Codecov as an example. We figured that since it is the leading coverage
solution [4], users will most likely recognize it.

The quantitative questions are closed questions that mainly consist of Likert scale ques-
tions. These include questions on how often they use code coverage tools, and how impor-
tant they would consider them. Should users indicate that they do not use code coverage
tools, the survey immediately ends with the option to provide additional feedback on why
not. Otherwise, the survey continues with the main questions. These are questions about
how often they ignore failing coverage checks, both from the perspective of a contribu-
tor, and a reviewer. Lastly, it also includes questions about how well code coverage tools
incentivize users to keep up coverage and/or testing practices.

The qualitative questions are open questions about in what situations participants would
ignore coverage checks, what their coverage goals/practices are, and what they like and
dislike regarding coverage tools. There is also a question where participants can recount a
memorable situation regarding the use of code coverage during the review process. Lastly,
there is an open question for users to leave additional comments on the survey. We also
provided participants with the option to leave their email address, in order to be contacted
for potential future studies or interviews, yet no participants have been contacted.

28

5.1. Methodology

Table 5.1: Summary of the survey questions

Number Question Type Intended for

Demographic questions
1 For how many years have you been developing software? You can

consider all hobby, study and/or work experience.
Open All

2 For how many years have you been active on open-source devel-
opment platforms, such as GitHub, Gitlab, etc?

Open All

3 How often do you contribute to an open source project? Likert All
3a On average, I make a contribution (e.g. a commit, a pull request,

etc) to somebody else’s project(s) ...
3b On average, I make a contribution to my own project(s) ...
3c On average, I review other people’s contributions ...
4 When contributing to open source projects, I primarily act as a:

(Code contributor OR Maintainer/Project Manager)
Closed All

5 Do you work in software development in a professional capacity?
(Yes OR No)

Closed All

6 What is your job title? Open Q5=“Yes”
7 How long have you been performing the following tasks, in either a

professional or hobby capacity?
Likert All

7a Automatic software testing tasks, such as writing unit tests or
integration tests

7b Manual software testing tasks or performing any sort of manual
quality assurance functions

7c Performing code review of others’ contributions to any project,
either open or closed source.

8 When it comes to automated software testing (e.g. unit testing,
integration testing, etc) and its relationship to overall code quality,
do you believe that automated software testing is: (Likert scale of
importance)

Likert All

Main questions
9 How often do you use code coverage tools outside of GitHub? For

example, on your own machine.
Likert All

10 How often do you utilise the information from code coverage tools
on GitHub?

Likert All

10a I use code coverage tools while developing/contributing ...
10b I use code coverage tools while reviewing ...
11 In the last question you answered you never utilise the information

from code coverage tools on GitHub. Do you have any particular
reason why you do not use code coverage tools on GitHub?1

Open Q10=”Never”

12 In your experience, what is a good coverage goal for a project?
For example, is there a certain set of rules you’d like to follow, or a
certain target you’d like to reach? If it’s possible, please also give
us your reasoning.

Open All

13 Please give your opinions on the following statements: Likert
13a Code coverage is a good metric to consider as part of overall

code quality
All

13b Code coverage tools on open- source platforms provide an in-
centive to improve coverage and/or write tests.

All

13c I am more likely to approve a pull request that improves code
coverage than ones that lower it.

Maintainers

1After this question, the survey ends

29

5. RQ3: WHY ARE COVERAGE CHECKS IGNORED?

Number Question Type Intended for

13d If my pull request improves coverage, it is accepted more quickly,
in my experience.

Contributors

14 How often do you write tests for projects you are contributing to? Likert All
15 How often do you write a test or multiple tests with (just) the intent

to improve the code coverage?
Likert All

16 How often are you asked/encouraged to better test your contribu-
tions, in the comments of a pull request you opened?

Likert Contributors

16a People ask me this ...
16b A coverage tool asks me this ...
17 Do you remember a particularly interesting instance where this (see

Q16) happened? How did the situation get resolved?
Open Contributors

18 How often do you have to tell a contributor to a project you main-
tain that their tests need to be improved, based on the results of a
coverage tool?

Likert Maintainers

19 Do you remember a particularly interesting instance where this (see
Q18) happened? How did that situation get resolved?

Open Maintainers

20 The following actions constitute incentives to improve coverage
and/or write tests, and can also be done by code coverage tools.
Please rank them on how much incentive you think they provide,
from most incentive to least incentive.

Ranking All

20a Leaving a comment on a pull request, summarising the coverage
changes

20b Giving a failing status check for a commit or pull request, pre-
venting automatic merging

20c Annotating uncovered lines in the ”Files changed” overview of a
pull request

20d Notifying users through messaging applications or email, if cov-
erage is lowered

20e Reminding users of contributing guidelines, when opening a pull
request

21 In your experience, what is the best way to provide incentive for
improving code coverage?

Open All

22 Can you come up with situations where you would ignore a failing
coverage check? What are your reasons?

Open All

23 How often do you neglect or ignore a failing coverage check on a
commit or pull request?

Likert All

23a I ignore a failing coverage check when contributing to a project
...

23b I ignore a failing coverage check when reviewing a pull request
...

24 Can you give us 2 things you like about using a code coverage tool
on an open-source platform?

Open All

25 Can you give us 2 things you dislike about using a code coverage
tool on an open-source platform?

Open All

5.1.3 Adjusting the survey

To verify the survey, we ran four trial rounds with PhD students. These students are part
of the Software Engineering Research Group at TU Delft, and therefore were familiar with
(open-source) software development, and tools such as GitHub and code coverage tools.
During these recorded sessions, the students would take the survey whilst thinking aloud.

30

5.1. Methodology

Afterwards, there was an extra moment of reflection and some feedback on the survey. Here
we were able to figure out what works, and what does not. From these students we have
received multiple main points of feedback regarding:

• The length of the survey. Most students would consider the survey to be on the
lengthy side. The main cause of the length was due to the high number of open
questions. As a result of this, some questions were cut from the survey, merged with
others, or changed from an open question to a (slightly rephrased) closed question.

• The occasionally questionable Likert scale options. For example, some questions re-
garding the frequency of code coverage tool usage, had options that were unrelated to
actual development workflow, and more to units of time measurement, or vice versa.
To remedy this, we rephrased the questions and options in between trial sessions, and
made sure to ask the next students to give feedback on them.

• The lack of images and clarity in the survey when describing different functionalities
of code coverage tools. We fixed this by including some clarifying images, along
with textual explanations. We also improved the overall design of the survey and
added different typographic elements to further distinguish questions from context
information or explanations.

Overall, the students were mainly positive towards the survey. After each trial round, we
discussed the feedback on the survey before improving it further. Afterwards, we discarded
the trial rounds from our survey results, so they do not make up a part of the results section.
The trial rounds were only used to improve the survey.

5.1.4 Inviting the participants

The target audience for our survey was developers familiar with using code coverage tools
on open-source development platforms. We chose this target audience for several reasons.
Firstly, this is a diverse group of people. Open source developers work on different projects,
in different languages, performing different tasks, etc. This diversity makes for potentially
generalizable results. For example, will their opinions vary significantly, or is there a kind of
consensus among such a diverse group? Secondly, there are a lot of open-source developers.
With a very large pool of users, there is the potential for a very large sample size, and
thus a large set of result data. The third reason was that, due to the nature of open-source
development, where developers work publicly and online, finding a large set of potential
participants is convenient and relatively simple. Furthermore, since we are trying to explain
why status checks are ignored, it makes sense to ask the developers who ignore them.

To find these participants, a good start would be to look on open-source development
platforms. Here we mainly focused our efforts on GitHub, because it is the largest plat-
form [7]. Our goal was to search for users on GitHub, which have contributed to projects
that use code coverage tools. However, since GitHub provided us with limited resources2 to

2The public GitHub API has a rate limit

31

5. RQ3: WHY ARE COVERAGE CHECKS IGNORED?

find these users quickly, we turned to the large database of coverage information we already
had available from Codecov.

In the Codecov database, we looked for users which had contributed to GitHub projects
that use Codecov. The information we collected was the number of contributions, the time
of the last contribution, usernames and repository names. This dataset consisted of around
260 000 entries (including duplicates).

We then used GitHub’s API to look up these usernames and find user profiles with
public email addresses. This was very important since we did not want to breach any terms
of service or be a nuisance to people. Private accounts were therefore removed from our
dataset.

Subsequently, we were left with roughly 90 000 email addresses. From these we filtered
users based on the number of commits they have made overall, and when their last commit
took place. Only users with over 100 commits, and a last commit between the start of
2019 and the end of 2021 were kept. This was done to prevent absolute newcomers from
taking the survey. While it is okay (and even good) for participants to have varying levels
of experience, we do expect a certain baseline. Also, we did not want people who have
not used these tools in a very long time. Partially because the tools themselves evolve
over time, and partially because we did not want to bother them, in the case they were an
inactive user on the platform. This filtering resulted in a list of 11 000 people, of which we
randomly selected 2000 to send our survey to, by email. We opted for 2000, to account for a
potentially low response rate of 6%, which was a rough estimate based on previous studies
in software engineering [29, 25].

5.1.5 Analysing the results

In December 2021, our survey was sent out to 2000 email addresses. During this time, the
survey was open and able to receive submissions for roughly a month. However, most of
the responses were submitted in the first two weeks.

In total, there were 379 response attempts in total, and 278 complete responses of people
who finished the entire survey. This means our survey had a response rate of ≈ 14%.

The responses were downloaded from Qualtrics and processed in Python using Pandas.
Responses were divided into groups, based on whether the participant considered his/herself
more of a contributor or more of a maintainer. These groups were analyzed individually,
and subsequently compared against each other.

The full results can be found in Section 5.2.

5.2 Results

This section describes the results from the survey. We have downloaded the results for each
survey question, and processed them accordingly, based on the nature of the question, using
Pandas and PyPlot.

The individual subsections will dive deeper into the results for each type of question.
But the process of analysis has been largely the same for all of them. Each question was

32

5.2. Results

processed separately, and we put the answers in the graphs below. There was one demo-
graphic question, which determined which of the two paths the participants would take in
the survey. We have therefore divided these participants into two groups, on which we
report the results for the questions separately, so we can compare and contrast the two.

The groups are ‘contributors’, which are developers which more align themselves with
opening pull requests in projects, and ‘maintainers’, which align themselves more with
reviewing and merging pull requests, and overall maintaining the project. Both groups
received the same questions, although some were written from the perspective that better
aligns with the chosen group.

As previously mentioned, the total number of survey responses was 379, of which 278
were completed entries. We have only used these completed entries for the interpretation of
the results.

5.2.1 Demographic

The demographic results describe the background of the participants for the rest of the
survey. They provide perspective to the rest of the results, aiding their interpretation.

General experience The first demographic questions are about the participant’s experi-
ences with software development overall. In Figure 5.1 we see that a large majority of the
participants have several years of experience with software development. Consequently, we
also find that most participants have more than a little experience with software development
tasks such as testing and code review.

A small, but interesting find here is that the third graph in the figure shows the rise of
automated testing in the past couple of years: When you look at the bars for 5-10, 10-20
and 20+ years, there appears to be more manual testing than automatic, while the opposite
happens for 1-3 and 3-5 years. For < 1 year we see that manual testing is greater again,
likely due to how much easier it is for a new developer.

Furthermore, while most participants actively work in a software development field,
there is also a substantial number of participants that do not. For the participants that do
work in software development, we also asked them for their job title. Figure 5.2 shows a
word cloud of the different job titles. From this it shows that these participants come from
a number of different fields, such as biology, mathematics, ecology, mobile development,
etc. Some participants work in research, while others work in a more practical setting.
Furthermore, some participants work at a high position, such as CEO, while others have
listed themselves as interns. We also (manually) clustered the different occupations into
larger categories, which are shown in Figure 5.3.

These figures are meant to show the diversity of the participants, which is important to
show how many people will be affected by this study. Furthermore, one could argue that
the results would be more generalizable than in the case where this study would be held in
a single company or department even.

Open source experience The next set of questions pertain to participants’ experience
with open-source software development platforms, and the frequency at which they perform

33

5. RQ3: WHY ARE COVERAGE CHECKS IGNORED?

Figure 5.1: General experience with software development

Figure 5.2: Word cloud of job titles of participants

Field Count
Research/Science/PhD 38
Software Development/Engineering 109
Other 7
Management/Leadership 41
Software architect 10
IT/Infrastructure/DevOps 15
Data Science/Analysis 11

Figure 5.3: Distribution of par-
ticipants’ occupations

34

5.2. Results

Figure 5.4: Experience with and frequency of open-source development

Figure 5.5: Maintainers and Contributors

certain tasks related to those platforms.
In Figure 5.4 we find that most participants have experience with these platforms. How-

ever, we also noticed some inconsistencies, with some participants claiming to have over 20
years of experience while platforms such as GitHub have not been around as long. Nonethe-
less, it is entirely possible that participants have experience with older forms of distributed
version control or source code management.

In the second graph we see that contributing to someone else’s projects is by far the task
that is performed the most frequently, whereas contributing to own projects is considerably
less frequent. Furthermore, we find that some participants rarely or never perform one or
more of these tasks.

Contributor or maintainer The final demographic question we asked was the decision
for whether a participant considers themselves more of a code contributor, or a maintainer.

35

5. RQ3: WHY ARE COVERAGE CHECKS IGNORED?

Figure 5.6: Code coverage tool frequency

As you can see in Figure 5.5, the two groups are almost of equal size. For future work it
would be interesting to see how these group sizes would change on a much larger scale.

The answer to this question determines some of the questions the participants will see
further in the survey.

5.2.2 Quantitative

Since the quantitative questions are all closed/Likert scale questions, their results can all be
interpreted using graphs.

Code coverage tool usage The first set of questions is regarding how often the partici-
pants use code coverage tools. From Figure 5.6 we find that using code coverage tools for
each pull request is the most popular answer, regardless of whether one is contributing to a
pull request, or reviewing one.

In the case that a participant responded to both questions with ‘Never’, this would mean
that they lack the experience that is required for the remainder of the questions in the survey.
Therefore, we would have them skip the rest of the survey, and instead get an alternative
ending. In total, this happened 9 times, causing the number of responses for the remaining
questions to go down to 269.

We also asked participants how often they used code coverage tools outside of GitHub,
for example on their local device while developing. The results can be found in Figure 5.7.

General attitude towards coverage and testing When asked about the general necessity
of automated software testing and code coverage, most participants responded that they
consider testing and code coverage as important, which can be seen in Figure 5.8. However,
as can be seen in the figure, not all respondents feel that way. In fact, there is even one
person who answered that automated software testing is not at all important. We will dive
deeper into this in Section 5.2.3.

36

5.2. Results

Figure 5.7: Code coverage tool usage outside of GitHub

Figure 5.8: Importance of testing and code coverage

Figure 5.9: Frequency of writing tests

37

5. RQ3: WHY ARE COVERAGE CHECKS IGNORED?

Figure 5.10: Incentive to improve coverage

Frequency of writing tests Figure 5.9 shows the results for two questions asking how of-
ten the participants write tests. One finding that immediately strikes us as interesting is that
0 respondents answered that they never write tests. Even the one participant who answered
that automated software testing is not important at all still writes tests. Furthermore, we
also find that again “For each pull request” is the most popular answer for the first question.

Additionally, according to the second graph, almost all participants admit that they write
tests with the sole purpose of improving coverage, with a frequency greater than “Never”.
Some even do this every day.

Coverage and incentive We asked the participants a considerable number of questions
relating to the incentive that code coverage tools provide for writing tests and/or improving
the coverage metric(s) of a code base.

Firstly, when we look at Figure 5.10, we see that almost all participants agree, either
somewhat or strongly, that code coverage tools provide an incentive to improve coverage.
Furthermore, it appears that there is no big difference of opinion between the contributors
and the maintainers. However overall, the contributors lean a bit more towards the “Strongly
agree” than the maintainers.

Secondly, we asked contributors and maintainers near identical questions (See Table 5.1)
regarding the acceptance rate of pull requests, based on their coverage levels. In Figure 5.11
we actually find a big difference of opinion between what contributors believe, versus what
maintainers claim.

Lastly, we also asked participants to rank different features of code coverage tools, from
what they consider giving the most incentive to the least incentive to improve coverage. In
Figure 5.12 we graph both the number of times a feature has been put in first position, as
well as its average rank, with 1 being the highest, and 5 being the lowest.

From the graphs it is clear that status checks are the clear winner. Nevertheless, every
other feature has also been ranked first by one or more participants at some point. Further-
more, we see that contributors and maintainer very much share the same opinion.

38

5.2. Results

Figure 5.11: Beliefs about pull request acceptance and code coverage

Figure 5.12: Ranking the most incentivising feature of code coverage tools

Figure 5.13: Frequency of ignoring a coverage check

39

5. RQ3: WHY ARE COVERAGE CHECKS IGNORED?

Figure 5.14: Frequency of asking to improve coverage

Neglecting the coverage check Figure 5.13 shows the frequency with which the partici-
pants ignore a failing coverage check when both contributing and reviewing. The first thing
that strikes us as interesting, is that both graphs display the same trend, for different (but
related) tasks. Furthermore, we see that maintainers tend to ignore failing coverage checks
slightly more frequently3.

Also interesting, is that there is a non-negligible group of participants, who claim that
they never ignore a failing coverage status.

Pointing out decreasing coverage The final set of quantitative questions consider how
often the respondents are asked to improve coverage, or need to ask other contributors to
improve coverage. The results can be found in Figure 5.14. Here we find a couple of
interesting things.

Firstly, a large group of contributors says that they have never been asked to improve
their coverage by a human, and an even larger group says they have never been asked by a
coverage tool.

Secondly, it appears that overall coverage tools are perceived to ask to improve coverage
more frequently than humans, as the bars for the more frequent options are larger for the
coverage tools.

Thirdly, when we compare the figure for the maintainers, with the figure for the contrib-
utors (specifically the “By a human” bars), we again see very similar bars, with an exception
for the “A few times a month” option. A possible explanation could be that maintainers re-
view many pull requests from different contributors per month, but contributors might not
have their pull requests reviewed by many different reviewers per month. That is, maintain-
ers overall review more varied pull requests, than the contributors open, and therefore must
ask to improve more frequently.

3taking into account the slightly different group sizes

40

5.2. Results

5.2.3 Qualitative

For our analysis of the qualitative (open) questions, we used Axial coding. We wrote a script
that, for each question, allows us to go down the list of responses, and assign them one or
more codes. We could re-use previous codes using an autocomplete function, or assign new
codes. In the case a response was unclear and could not be given a code, it was discarded.
Examples are responses which do not answer the question or answer it with a single word
only.

Afterwards, we grouped the codes into larger categories of responses. For each question,
we listed the codes that were generated from the previous step and assigned them into groups
based on how closely the codes were related to one another or a particular topic. In the case
a code could not be properly categorised, it was added to a “Miscellaneous” category. We
then retrofitted the categories back to the original responses, based on which codes they
had. Finally, we counted how many responses belonged to each category. The work was
also verified by a supervisor from TU Delft, and an advisor from Codecov, to prevent bias
and/or incorrect codes and categories. The full list of responses and codes can be found on
GitHub: https://doi.org/10.5281/zenodo.8044949.

After we labelled each response with its codes and categories, we counted the number
of responses per category, to find how many participants mentioned a specific category in
their responses to each question. It is possible for a response to mention multiple categories,
and therefore count for multiple categories. Furthermore, the results are grouped per par-
ticipants’ roles as either a contributor or a maintainer again. These results can be found in
Tables 5.2 through 5.7. We will now go through them, one question at a time.

Good coverage goal The first open question we asked to the participants, was for them
to describe their own idea of a good coverage goal to set for a project. The results and
categories of responses can be found in Table 5.2.

The first thing that piques our interest when looking at the table, is that for each category
of responses the ratio of participants that mention it is (almost) the same for both contribu-
tors and maintainers. Secondly, nearly 50% of all respondents mention some kind of high
number as a coverage goal in their responses. This is not unsurprising, given that code
coverage can be expressed as a single metric, that we as developers would like to maximise
(with minimal effort). However, for both groups at least 20% of the participants believe that
striving to achieve some arbitrary goal is not the right goal to set.

Interesting merge stories We asked contributors if they could remember any particularly
interesting situations where they were asked to improve the coverage on their pull request.
We asked a similar question to maintainers, but whether they remember a situation where
they had to ask someone to improve their coverage.

According to Table 5.4, 15% of all maintainers mention that after they brought up the
coverage issues, the contributors sorted them out. Furthermore, 6% reports that they oc-
casionally find contributors are (intentionally) avoiding writing tests, which is quite an in-
teresting phenomenon. A possible reason could be that contributors consider some code

41

https://doi.org/10.5281/zenodo.8044949

5. RQ3: WHY ARE COVERAGE CHECKS IGNORED?

Category Summary Example Con-
trib-
utor
men-
tioned

Main-
tainer
men-
tioned

High number Goal is to have high
coverage

“Total coverage should be high, e.g. >
80% Each PR should not have diff
coverage < 85%”

71
(53%)

79
(55%)

Important code only Goal is to cover
important parts of the
code. Trivial code
can be uncovered

“Tests should cover the important code
paths, beyond the “happy path”.
However, 100% coverage is neither
necessary nor particularly desirable”

25
(19%)

25
(17%)

It depends per project Coverage goal
depends on multiple
factors. Lot of
different variables

“Every project would have a different
goal: UI and integration testing is much
harder to test than unit testing core
business logic, and different projects
have different proportions of each”

24
(18%)

23
(16%)

Cover sensibly Goal is to have
everything covered in
a sensible matter,
where uncovered
items are justified
properly

“In general, coverage should not be
allowed to fall without justification.
Coverage of, and benefits from, unit
and int tests should generally be
considered separately”

4
(3%)

3
(2%)

Quality more important Not a lot of focus on
coverage, since it
distracts from
actually writing high
quality code/tests

“A few years ago I spent a lot of time
writing coverage tests. Then I gave up:
the tooling got too much in the way, it
took too much time, and I decided to
focus on real problems instead.”

33
(24%)

34
(24%)

Table 5.2: What is a good coverage goal?

difficult to cover, which is something that 6% of the contributors mention, according to
Table 5.3.

Best way to incentivize for coverage Previously, we asked respondents to rank different
features of coverage tools, based on how much incentive they provide. For this question
however, participants were able to give their own input on the best way to encourage writing
tests and improving coverage. The results can be found in Table 5.5.

In the table, we see that participants most often list negative impacts as the best way to
provide incentive to improve coverage. This typically comes down to blocking the merge
of the pull request or closing it all together.

One caveat with these responses is that the more popular answers (negative impacts,
using pr comments, getting a coverage report) are features that coverage tools already pro-
vide, and as such they easily come to mind. Especially since we already mentioned them
previously in the survey. Therefore, it might be worthwhile to look at other categories. For
example, 10% of participants believe that setting clear expectations, or writing contribution
guidelines, can be a good way to provide incentive. No further explanation for this is given,
but from our own experience we find that better guidelines lower the barrier for contributing,

42

5.2. Results

Category Summary Example Con-
tribu-
tor
men-
tioned

Maintainer interaction Participants reported
they had spoken to a
maintainer and fixed the
problem

“I just added more tests. The requests from
maintainers is typically warranted, and I
honor that request out of respect for those
maintainers.”

13
(10%)

Tool interaction A coverage tool warned
the participant and they
fixed the problem

“whenever my PR got blocked due to
missing Unit Tests, I resolve it by adding
more Tests. But it rarely happens.”

12
(9%)

Unclear interaction The interaction was not
clear in the response,
but the problem got
solved

“I added a commit with the requested unit
tests to cover the additional functions I
added to the software package. Not really a
big deal.”

12
(9%)

Difficulty testing The participant
reported that they had
difficulty writing tests in
that situation

“Some time it’s very difficult to cover some
corner case code. Then, you have to turn off
diff coverage thresholds.”

8 (6%)

Table 5.3: For contributors: Do you remember a particularly interesting instance where you
were asked to improve coverage?

Likes and dislikes Towards the end of the survey, we asked the participants to give us
two reasons why they like using coverage tools, and two things they dislike about them.
Table 5.6 shows the likes, and Table 5.7 shows the dislikes.

Firstly, we see in the likes table, that a couple of categories are mentioned quite fre-
quently by both groups. For example, collecting all coverage information into a single
report or online place, or the feeling of safety it gives, to know that the code is properly
tested. One interesting result to see, is the big difference for the “Encourages testing” cat-
egory. Contributors mention this twice as often as the maintainers, in no other category is
the difference between the groups this big.

However, there is a similar big difference in the dislikes table. Namely in the “poor
feedback” category. Some examples given by the participants are that the bigger picture is
unclear, and that the results are hard to interpret, or offer no guidance on what to do next.
Maintainers mention this dislike twice as often. We would expect this, since maintain-
ers might be more involved with and interested in the overall state of a project’s coverage
throughout its development. Similarly, this would also hold true for the “third-party host
concerns”.

Another interesting dislike is that a decent percentage of contributors mention the diffi-
cult setup as something they dislike. This is something we would expect from maintainers,
but not from contributors, since the whole point of code coverage tools is to have them on
something like GitHub, running during the CI pipeline. This means that contributors would
not have to set them up themselves. Moreover, in the likes table we find that 10% of both
groups enjoy the low entry barrier and easy set-up for coverage tools, while in the dislikes
table we find that there is another set of respondents that claim the exact opposite. These

43

5. RQ3: WHY ARE COVERAGE CHECKS IGNORED?

Category Summary Example Main-
tainer
men-
tioned

Blocked merge Participants mention
either ignoring or
blocking a pull request
until it is fixed

“If the contributor doesn’t improve the tests,
the PR gets closed or suffer from starvation
until I can fix it on my own”

6
(4%)

Problem fixed The contributor fixed the
problem after being
asked

“new code is not well tested, then contributor
must test all cases, then new code is 95%
coverage”

21
(15%)

Coverage bad The coverage tool was
not behaving properly

“In one repository, the code coverage tools
were broken. I correctly set it up again, and
then made some improvements to make it
from 50% to 63% coverage”

4
(3%)

Contributors lacking Participants report that
they found the
contributors to be
(intentionally) lacking
with writing tests

“Some developers consider test coverage a
mundane task and use creative ways to get
around it.”

9
(6%)

Interaction Maintainers mention
longer discussions with
the contributors

“Some people are not used to write tests, and
tend to disagree and say tests are not
important. It is not always easy to deal with
this kind of developer, but it is not a rare case.”

11
(8%)

Coverage good The coverage tool
helped the maintainer in
this situation

“New code had low coverage rate. Turned out
that a few important branches were not
tested... and had bugs. So code coverage
helped.”

4
(3%)

Table 5.4: For maintainers: Do you remember a particularly interesting instance where you
had to ask to improve coverage?

responses were probably left by different people.
The largest overall expressed dislike by both groups, is that code coverage tools lead

to people treating code coverage as a form of code quality. This is not necessarily the
case, since it is entirely possible to cover all the lines of code in a project, without actually
verifying whether the output is correct. Rightfully this is a concern. The second largest
dislike is that the results of the coverage tool can be incorrect, irrelevant or too small to
really matter.

Why are coverage checks ignored Finally, we move on to one of the most important
questions of the survey. We would like to find out in what situations the participants would
ignore a failing coverage check. We asked this to the participants in the form of an open
question, and the results can be found in Table 5.8.

The categories of responses that were mentioned most often include a trivial or mini-
mal coverage change, a higher priority to merge the changes that ensure they are properly
tested, the difficulty of testing the code changes, and the coverage failure being seemingly
incorrect. We provide a further discussion on these reasons in Section 6.3.

44

5.2. Results

Category Summary Example Con-
trib-
u-
tor
men-
tioned

Main-
tainer
men-
tioned

Interaction w/ comments Interaction
through PR
comments

“Generated comment on PR” 16
(12%)

19
(13%)

Negative impacts Negative
impacts, such as
blocking merge

“Not merging when a PR has no
tests”

36
(27%)

37
(26%)

Clear expectations Setting
expectations or
contributing
guidelines

“Make it normative and expected
for a project.”

15
(11%)

14
(10%)

Coverage tool Generic mention
of using a
coverage tool

“Providing an adequate report of
test coverage that includes
coverage status, changes, and
uncovered lines.”

27
(20%)

30
(21%)

Notifications Notifications “A failing status with notification
about what is unit tests and how
to add them”

3
(2%)

3
(2%)

Focused testing Clear/Focussed
testing efforts.
E.g. making it
easy to write
tests, or
providing a
proper guide to
testing

“Make it easy to test your code. If
it is difficult to write tests, people
will not write them.”

4
(3%)

9
(6%)

Positive reinforcement Positive
reinforcement,
such as using
gamification. Or
general
politeness

“Gamification on getting a high
coverage score”

1
(1%)

6
(4%)

Good feeling Getting feelings
of safety,
security and
trust in the code

“My primary incentive for good
test coverage is more confidence
to deploy changes”

3
(2%)

0
(0%)

Deeper understanding of necessity Understanding
of the necessity
of well-tested
code provides
the incentive

“Demonstrating the improvements
to reliability of tested vs untested
software :) Vanity metrics like %
code coverage don’t convince
people that don’t care about
testing; not getting paged due to
bugs does.”

6
(4%)

8
(6%)

Table 5.5: What is the best way to incentivize improving coverage?

45

5. RQ3: WHY ARE COVERAGE CHECKS IGNORED?

Category Summary Example Con-
tribu-
tor
men-
tioned

Main-
tainer
men-
tioned

Honesty Honesty of
the developer

“The public nature of open-source
software helps keep people honest.”

4 (3%) 2 (1%)

Automation Automated
tool

“I like the automation and the ease
of adding it to new product.”

22
(16%)

21
(15%)

Awareness Awareness of
other people’s
contributions

“Safe teamwork and knowledge of
other people’s code”

0 (0%) 1 (1%)

Finding improvements Finding
weaknesses
or code you
can improve

“Helps you find dead code and
untested code.”

25
(19%)

23
(16%)

Community Community
Support

“the community support available
when things don’t work.”

0 (0%) 1 (1%)

Easier work Easier/faster
contributing,
reviewing, etc.

“Quickly discovering if new code has
tests is really helpful, especially as a
maintainer.”

9 (7%) 10
(7%)

Low entry barrier Low entry
barrier to get
started

“Easy to set up. Easy to maintain.” 13
(10%)

15
(10%)

Encourages testing Encourages
testing

“Code coverage tools incentivise
developers to write test.”

21
(16%)

12
(8%)

Guarantees Safety/security/trust
feelings

“It definitely adds a bit of credibility
to a project.”

30
(22%)

34
(24%)

Gamification Gamification “Gameify’s software testing so that it
is easier to approach and
incentivizes having more thoroughly
tested software.”

1 (1%) 1 (1%)

UI/UX Design Design “GUI for exploring historical code
coverage”

2 (1%) 3 (2%)

Collected information Collection of
coverage
information

“No more “but the coverage is
different on my machine”.”

36
(27%)

29
(20%)

Prevents coverage decrease Prevents
coverage from
going down

“It prevents to add code that lowers
the code coverage”

0 (0%) 1 (1%)

Public Optics are
good for the
outside world

“The results can be viewed by
anyone.”

6 (4%) 8 (6%)

Sets guidelines Guidelines
and/or
protocols

“Creates a culture of test driven
development”

6 (4%) 4 (3%)

Quality control It provides
some kind of
quality control

“It helps keeping project code clean
and fresh although outside
contributes codes are merged.”

10
(7%)

9 (6%)

Educational Can be used
as a learning
tool

“Can be a good bridge to introduce
contributors to automated tests and
QA.”

1 (1%) 1 (1%)

Useful functions It has useful
features
(generic)

“free, useful” 1 (1%) 2 (1%)

Table 5.6: Two things you like about coverage tools?46

5.2. Results

Category Summary Example Con-
tribu-
tor
men-
tioned

Main-
tainer
men-
tioned

Complacency People become
complacent

“Most devs stop if they hit the quality
goals of the repo”

4 (3%) 2 (1%)

Set-up Complex
Set-up

“setting up & maintaining code coverage
CI can be tedious”

20
(15%)

19
(13%)

Mistaken for quality Coverage
metric treated
as quality

“It can encourage developers to write
shoddy tests that don’t properly cover
use cases in order to increase the
coverage metric”

26
(19%)

27
(19%)

Reluctance to use Some people
are reluctant to
use them

“Many developers are still not used to
deal with such tools: overhead to enforce
their use”

2 (1%) 4 (3%)

Unclear/wrong results Unclear, wrong
or insignificant
results

“It is flaky and often gives incorrect
results / misleading information.”

26
(19%)

22
(15%)

Annoying Considered
frustrating or
interrupt
workflow

“Can be annoying during initial
development activities”

3 (2%) 3 (2%)

Not always applicable The tool is hard
to use
depending on
the project

“Hard to introduce after a while (low
coverage), if not introduced early.”

2 (1%) 1 (1%)

Third-party host Third-party
host concerns

“Cloud services can disappear or get
monetized at any moment; you have to
have an offline local way to measure
coverage”

7 (5%) 14
(10%)

Lacking features Respondent
mentioned
features they
miss

“not yet enough AI to provide good
actionable advice”

8 (6%) 10
(7%)

Poor feedback Tool provides
mediocre
feedback

“Doesn’t offer suggestions on how to
write good tests.”

12 (9%) 24
(17%)

Noisy Noisy,
redundant or
verbose

“Adds PR comment / commit status
noise”

10 (7%) 14
(10%)

Takes time Generating
coverage
results takes a
long time

“Steals valuable time from contributors.” 5 (4%) 8 (6%)

Strict Too strict “Communities that use the tool too rigidly
are unpleasant to contribute to.”

10 (7%) 13
(9%)

Crutch Used as a
crutch

“It can be a crutch to write bad tests that
just increase coverage”

0 (0%) 1 (1%)

Table 5.7: Two things you dislike about coverage tools?

47

5. RQ3: WHY ARE COVERAGE CHECKS IGNORED?

Category Summary Example Con-
tribu-
tor
men-
tioned

Main-
tainer
men-
tioned

Trivial change Trivial/negligible
coverage
change

“if the code coverage failures are due to
insignificant (trivial) branches not being
covered.”

32
(24%)

40
(28%)

Failure elsewhere Failure
unrelated to PR

“Unfortunately some of the results can be
odd, not explained. Like a commit that
just touches documentation (without
example code) can change the coverage.”

28
(21%)

34
(24%)

Future fix Assurance that
tests are
added/coverage
will be fixed
later

“The code is good, it is better to have it in
the codebase earlier despite not having
the coverage. Coverage can be
developed later.”

22
(16%)

20
(14%)

Not worth fixing Not worth
time/effort to
improve the
coverage

“Because coverage is not important. And
big coverage is expensive.”

16
(12%)

8
(6%)

Priority Different
priorities such
as hotfixes are
desirable
features

“If the PR clearly solves a primary
problem, I am going to merge it. Lower
coverage is a secondary problem.”

36
(27%)

28
(20%)

Complexity Complexity of
the code

“If the test is very difficult to properly
implement, like having to simulate
external dependencies.”

32
(24%)

31
(22%)

Other means Ensuring
quality is done
through other
means than
coverage

“Code should be well tested, but code
coverage isn’t synonymous to how well
code is tested, it’s just correlated”

12
(9%)

10
(7%)

Not production code Code not
meant for
production (yet)

“The feature added is experimental and
the tests are failing”

9
(7%)

9
(6%)

Not scaring contributors To avoid
scaring away
contributors

“It shouldn’t become prohibitive of
pushing a PR to not discourage people to
contribute”

1
(1%)

8
(6%)

Change justified Change
justified

“instead of merging the PR with a failing
check, we would instruct the user on how
to ignore the line or the file in question if it
was suitably justified.”

0
(0%)

2
(1%)

Table 5.8: When would you ignore a failing coverage check?

48

5.3. Threats to validity

5.3 Threats to validity

One of the main threats to validity is the possible bias we introduced while categorising
the different qualitative responses. In an attempt to mitigate this threat, we used a process
in which the first couple responses for each open question were analysed by the author of
this thesis and a daily supervisor from TU Delft, who then compared their categories. In
this process, no major differences were found. Afterwards, the rest of the responses were
categorised by the author of this thesis, and later verified by the supervisor, as well as by
another advisor from Codecov.

In order for participants to get acquainted with the idea of code coverage tools, we used
some screenshots of functionality provided by Codecov. This could have unintentionally
steered participants to think of Codecov in particular, when we asked them about their
experiences with any tool. We tried to mitigate this threat by also making references to
other possible code coverage tools, and consistently using the term “code coverage tool” in
our questioning.

Furthermore, we were limited by both time constraints and GitHub’s API to search for
all potential users of coverage bots to send the invite of our survey to. As such, we had to
narrow our search by first querying people from Codecov’s database, as it stands to reason
that all of them have used Codecov before. This in turn introduces a bias in our results.
While all our participants have used Codecov before, it does not imply that they have used
other tools before. In hindsight, It could have been worthwhile to include a question on
which tools they were familiar with.

From our dataset of users, we randomly sampled 2000 to invite. And while not all
of them took the survey, we did end up with a pretty even split of 135 contributors and
143 maintainers. This split was also very important for us, because it meant that we could
gather opinions and experiences from different perspectives and developer profiles. This
means that we mainly get generalisable results, and we care less about the intricacies of
individual projects. As such, we will not have identified every possible reason for ignoring
the coverage check, or be able to provide detailed explanations for them. However, we
believe that our strategy is still a good fit for answering this question.

Lastly, we tried to mitigate any inconsistencies and unclear questions in the survey,
by running trial versions with PhD students. These students provided multiple items of
feedback and possible suggestions for improvement, which were used to adjust the ques-
tionnaire. This process is further described in Section 5.1.

5.4 Conclusion

This chapter set out to answer the question of why developers would ignore a failing cover-
age check while opening or reviewing a pull request. We answered this question by setting
up a survey for developers who are familiar with code coverage tools, and thus have encoun-
tered failing coverage checks. The survey consisted of a mix of demographic questions to
gather background information on our participants, and both open and closed questions re-
garding the use of code coverage tools on GitHub. To verify that our survey was clear, we

49

5. RQ3: WHY ARE COVERAGE CHECKS IGNORED?

ran trial sessions with PhD students from TU Delft and used their feedback to improve the
survey.

We used Codecov’s database to find usernames of GitHub users of whom we know that
they have used Codecov (a certain code coverage tool). We then filtered these usernames
based on how many commits they have made, and when their last commits were. After this,
we used the GitHub API to link usernames to public email addresses. From these addresses
we ended up sampling 2000 emails and invited those developers to our survey.

Out of 2000 potential participants, we ended up with 278 responses. These responses
were processed and analysed. For closed questions we used graphs or tables to represent the
data, and for the open questions we used axial coding to assign each response to a question
a certain label. To prevent bias these labels were verified by daily supervisors.

From our results, we conclude that participants reported multiple different reasons for
ignoring a failing coverage check. The most common given reasons were minimal/trivial
coverage decreases, little faith in the correctness of the coverage tool and/or the coverage
information, the priority of merging the pull request due to time constraints or high desir-
ability, or the complexity of testing the code changes. These reasons serve as our answer to
our proposed research question “Why are coverage checks ignored?”. In Chapter 6 we will
further dive into these reasons and propose solutions for them.

50

Chapter 6

Discussion

In this thesis we set out to answer three different research questions regarding the use of
code coverage tools on open-source development platforms. We have gathered data by
querying Codecov’s database, by making use of GitHub’s public API, and by distributing a
survey among open-source developers.

In this chapter, we will look at our results and discuss them in more detail. We will
explain our most interesting findings, relate them to existing scientific work, and talk about
their implications for developers and researchers.

6.1 RQ1: Is there a relationship between code coverage and the
time to merge a pull request?

In Chapter 3 we set out to answer the question “Is there a relationship between code cover-
age and the time to merge a pull request?”. As we can see from the results in Section 3.2,
the short answer to that question is: it depends on the project. While this is not as conclusive
of an answer as we would have liked, it is better than a definitive no. In this section we will
discuss some of our findings.

The relationship between code coverage and time to merge Table 3.2 shows the ag-
gregated statistics for each of the metrics we explored. From it we can see that each of our
code coverage metrics had a significant relationship with the time to merge at least once.
Meaning that for each metric, there exists a project for which this metric holds a significant
relationship with the time to merge. However, there exists no coverage metric that has a sig-
nificant relationship in a majority of the models, with the most frequently significant metric
only being significant in 50% of the models.

However, when looking from the perspective of the projects, instead of the metrics, we
do find that 14/18 projects have at least two significant coverage metrics. This is shown in
Figure 6.1. Therefore, it is definitely possible for there to exist a relationship between code
coverage and the time to merge in an open-source project.

51

6. DISCUSSION

Figure 6.1: Significant coverage metrics per project

The difference between patch coverage and project coverage As shown in Table 3.2,
all the patch related metrics tend to be significant the least often, of all the other metrics.
While project related metrics are concerned with more ‘absolute’ numbers, such as the
overall coverage percentage of a repository before and after a PR, the patch coverage metrics
are about the coverage of only the code that is changed in the pull request.

One possible theory we have for the lack of significant patch coverage metrics, is that
patch coverage tends to either be: 0%, i.e., the changed code was not tested, or 100%,
meaning that the changes were covered. It is relatively rare to find pull requests where the
modified code was partially covered.

Looking at all pull requests of the selected models in our dataset, we find that 3012 out
of 5760 pull requests had a patch coverage percentage of 100%, 1095 had a percentage of
0%, and 1653 had some other value. So, with a large majority of pull requests all having the
same value, it is possible that the metric itself holds little useful information for the models.

6.2 RQ2: To what extent do comments and status checks lead
to improved coverage?

In Chapter 4, we sampled 400 pull requests that, at one point, had a failing coverage status
check. These were then divided into two groups. One where the coverage at the most recent
commit of the PR goes down, and one where the coverage goes up or remains the same.
We then searched the comments and commit messages of these PRs to look for mentions of
testing or code coverage.

Relation between coverage and mentioning coverage From our results in Section 4.2.1
we find that there is a statistically significant relation between the mentions of tests and

52

6.3. RQ3: Why are coverage checks ignored?

coverage, and which group the pull request belongs to. Therefore, we can say that there is
a relation between the mentioning of tests and coverage in a PR, and whether the coverage
goes up or down, after an initial failure.

While this may seem intuitive, our investigation now provides empirical insights into
this relationship.

Ignoring the coverage check We also looked closer at each pull request and tried to find a
specific mention to the failing coverage check. Table 4.3 shows the division of pull requests
into separate categories of whether the failing check is mentioned, as well as whether it is
properly addressed or fixed. According to this table, a large majority of pull requests have
no explicit mention of the failing coverage check. This leads us to believe that it is very
easy for a coverage check to be ignored.

We can come up with several reasons for this. First of all, in most of the PRs, the (initial)
drop in coverage is minimal, usually < 1%. A possible explanation is that the projects these
PRs belong to, have large codebases, and a typical PR only changes relatively few lines of
code. With such a small change in coverage, it makes it easier for people to ignore, as long
as the overall project coverage is still considered good. Secondly, the projects in our sample
happen to be very large, with complicated CI setups. Tests are run across a number of
different system architectures and possibly contain flaky tests. Therefore, it can be difficult
to attribute a failing coverage check to the actual changes made in the PR. These could all
be possible theories as to why the coverage checks are then ignored. We have already listed
our sampling as threat to the validity of our results.

6.3 RQ3: Why are coverage checks ignored?

In Chapter 5 we posed the question “Why are coverage checks ignored?”. To answer this
question, we conducted a survey of various developers and project maintainers on GitHub.
In this survey we asked them a number of questions regarding their experiences with using
code coverage tools on GitHub and in what scenarios they would ignore a failing coverage
check, and what provides the best motivation to improve code coverage. This section will
discuss our findings as reported in Section 5.2.

Ignoring the coverage check The main goal of this survey was to find an explanation
for the large number of merged pull requests, that also had a failing coverage status. As
such, we asked the participants of our survey in what scenarios they would ignore a failing
coverage status. Here we summarise our main findings from Table 5.8, which shows the
different types of responses we received to that question, as well as how often they were
given.

Firstly, coverage failures tend to be ignored when they are minimal. For instance, less
than 1%. Something like this can happen when only a few lines of code are added, or
perhaps deleted, or by introducing an extra branch, or removing a test case, which happens
on occasion [22]. Out of all the reasons, this one is given most often by the maintainers.

53

6. DISCUSSION

Secondly, the coverage failure can be a result of another failure, for example in the CI
pipeline. Another reason that is given is that the coverage information is simply incorrect, or
unrelated to the PR in question. This was also briefly mentioned in the previous paragraph.
Arguably, this situation makes the most sense to ignore the failing check, as the failure is
not anyone’s doing.

The third reason is priority. Some issues need to be merged quickly, as they contain
fixes for critical bugs, or very desirable features. For contributors this is the most frequently
cited reason. Here we might see a small difference of opinion between contributors and
maintainers.

The fourth reason is simply the complexity it takes to write tests and improve the cov-
erage. Not all code is equal and can be tested as easily. For example, code for a GUI is not
the same as some business logic.

A final interesting finding is that contributors mention that they do not find fixing cover-
age worth their efforts, at twice the rate than maintainers do. Overall, it seems that contrib-
utors are slightly more concerned with just getting their code merged, and less with testing.
This can also be said for the results of the “Priority” category. And on the other hand, we
see that for example maintainers are more likely to mention that they do not want to scare
away contributors. That is much more relevant to maintainers than contributors, of course.

Usage of coverage tools When we look at the results from Figure 5.7, we see that many
more respondents claim they rarely or never use code coverage tools outside of GitHub.
What is interesting here is that when we compare these results to those from Figure 5.6,
most participants claim they do use code coverage tools frequently on GitHub.

Our interpretation is that many participants therefore mostly rely on the coverage results
generated on/posted to GitHub, instead of running these tools locally. In turn, this has some
consequences for the overall development process, as this means users will have to wait for
the remote CI pipelines to finish to get coverage information. At the same time, this saves
developers from setting up local coverage tools, which can be difficult to set up correctly.

This lines up with findings from an earlier study, which shows that developers do not
rely on running tests in their local IDEs [2]. Consequently, if developers do not run tests in
their IDE, they also do not run coverage tools in their IDE.

Perceived effects of code coverage tools One interesting finding is that most maintainers
strongly agree that they are more likely to accept a pull request that improves coverage.
However, most contributors do not feel like this is actually the case. This is interesting
because there seems to be a big difference of opinion between maintainers and contributors.

This difference can be seen in Figure 5.11. It shows that contributors do not necessar-
ily agree with the idea that their pull request is accepted quicker if it improves coverage.
However, according to the maintainers, this is in fact the case for a large majority of them.
The claim of the maintainers appears to be an entirely new finding, which influences the
way pull requests are reviewed. This means that even though maintainers are more likely to
accept a certain PR, ultimately this has a low impact from the contributor’s perspective.

At the same time, there exists a related study that has found that adopting code review
bots leads to less time for maintainers to reject a pull request. However, the time to accept

54

6.4. Implications

a pull request does not change [28]. What is intriguing about this study, is that it looks at
the actual data of projects, and not subjective opinions from developers, which is what we
do in our study.

Our theory is that in the case of a PR that lowers coverage, the decision to reject it is
made rather quickly, due to the readily available quality information (including coverage),
whereas in the case of a PR that improves coverage, there can be other factors at play, that
slow down the likely acceptance.

Opinions of code coverage tools Our study highlights many different positive effects
of using code coverage tools, such as an easier workflow and/or higher quality code, as
reported by the participants. However, more interestingly are the perceived negative effects.
The most commonly reported negative effects, for both maintainers and contributors, are
that the results from code coverage tools can be incorrect, and that code coverage tools
encourage writing tests that cover the code, but do very little to encourage writing high-
quality tests.

Some of these mentioned effects were already discovered in an earlier survey performed
with maintainers about code review bots. Like ours, this earlier survey also finds that main-
tainers perceive that there is less effort required, and that the bots lead to a higher code
quality [29]. Furthermore, they also found that code review bots can be noisy and scare
away newcomers. However, what makes our study different is the fact that we interviewed
maintainers as well as contributors. Moreover, we found a lot more negative effects, which
can be found in Section 5.2. For example, the setup of these tools is considered compli-
cated, and the results are often found to be incorrect. The tools can also take a while to run,
which impacts the developers timewise.

6.4 Implications

Now that we have posed answers to our research questions, we can discuss the implications
of our work. This section is divided into practical recommendations for developers, and
theoretical recommendations for the developers of code coverage tools.

6.4.1 Open source developers

In Chapters 4 and 5 we found that failing coverage checks tend to be ignored. We deter-
mined a number of reasons for this and came up with recommendations for open-source
developers to alleviate this problem.

One of the main reasons for ignoring a failing coverage check is that the failure is due
to a minimal decrease in coverage. One way to alleviate this problem is by configuring
their coverage tools with a certain threshold, so only larger decreases trigger an actual fail-
ure1. This way, the check provided by the coverage tool will become meaningful again.
Furthermore, developers can also configure the tools to decrease the noise they create, by
changing settings for the comments left on PRs, or disabling the comments altogether. Or

1For example: https://docs.codecov.com/docs/codecov-yaml

55

https://docs.codecov.com/docs/codecov-yaml

6. DISCUSSION

perhaps a more interesting approach to reduce noise could be grouping the comments from
different bots into a single report, which was demonstrated in a paper by Wessel and Stein-
macher [27].

Another big reason for neglecting fixing the coverage is simply the high complexity of
testing (certain parts of) the code. We can think of a number of ways to make this easier.
Firstly, by improving the structure of the code, preferably in an early stage of the project,
to something that is easily testable2. Secondly, by writing clear documentation for (new)
contributors on how to properly test the code. Another advantage of this is that potentially
less pull requests would be abandoned by newcomers.

Something that ties into this, is writing clear guidelines for contributing, but with a clear
goal for testing and/or coverage targets. While the results from Table 5.2 can provide some
inspiration, it is also important to be agile, and change the goals to suit the current state
of the projects. Tables 4.1 and 4.2 show that a mention of tests or coverage is correlated
with a failing PR getting fixed again, so it would also be a good idea to discuss these while
reviewing PRs and provide assistance with testing when necessary and/or requested.

6.4.2 Code coverage tool developers

Table 5.7 consists of many different aspects in which code coverage tools are perceived to be
lacking. As such, it provides the developers of code coverage tools with many opportunities
for improving them.

Some of the biggest problems that are mentioned by both the maintainers and contribu-
tors are: unclear or wrong results, a difficult setup process, and noise. Some basic ideas here
are: improving the robustness of their tool such that incorrect results occur less frequently,
reducing the complexity of the set-up process, and reducing the noise of the tool.

For the setup of code coverage tools, there tends to be some kind of configuration file
that is committed to the repository. If this file is not present, either the tool cannot work, or
it works with its default settings. To make setting up these tools easier, a nice idea might
be to create an interactive tool, either online or through a CLI, that asks developers for their
preferences, and outputs a configuration file. Additionally, the tool should be able to explain
what each entry in the file means. Another idea is to give users a warning in their console
output, if the default configuration is used, and to provide them with a single command or
URL to create a configuration file.

For the robustness, it might be worthwhile to investigate adding ways to ignore individ-
ual methods or lines that cause problems. Or possibly addressing the problem of flaky tests
by detecting them and adding this to the coverage information [26]. This could provide
extra information to reviewers that lets them know better where the decrease in coverage is
coming from.

Other ideas include providing more actionable information to both contributors and
maintainers, judging the actual quality of tests, instead of just how much code they cover,
and improve the workflow of the users of the tool. For example, by providing a tool that

2While we cannot give specific recommendations for this topic, there exist plenty of good resources on
software testability online [21]

56

6.5. Future work

can report coverage information from the cloud directly to a developer’s IDE, which can
already be done with test failures [3].

A large reason for why failing coverage checks are ignored is because the contributors
and/or maintainers of a project have other priorities, do not have enough time to immedi-
ately address the failure, or because they are working on experimental code, which might
change a lot in the future. Therefore, we think it would be nice if code coverage tools pro-
vided an optional integration with issue tracking systems (i.e., GitHub issues, Jira, Asana,
etc.), to (automatically) open new issues for uncovered, but merged, code changes. From a
developer’s perspective this could reduce the amount of effort needed to keep better track
of which parts of the code still need tests, in a system they are already familiar with and
frequently use.

6.5 Future work

The research we have conducted for each chapter, and the results we have found, present
new opportunities for interesting future work regarding various aspects of code coverage.

Firstly, we think it would be worthwhile to repeat our experiment of Chapter 3, but with
a larger group of projects, PRs, and metrics. We simply did not have the time and resources
to go above and beyond for this research question. We were limited by the scope of GHTor-
rent and BigQuery on how much data we could download. We simplified this process by
only focusing on popular repositories, but in doing so we also excluded a large number of
projects. With more time and physical storage, more data can be collected. We believe there
still is a lot that we can uncover. Not only is it possible to find relationships between code
coverage and other variables, other than the time to merge, but there are also a lot of metrics
that we simply could not include. Like the ‘hidden’ metrics or human factors we described
in Section 3.2 to explain the high variability of the intercept variable. Additionally, different
models can be tried, and their results can be compared.

Additionally, since we found that there are some projects that have a significant rela-
tionship with code coverage, and some that do not, another idea would be to investigate
the similarities and differences between these projects. Furthermore, in previous work we
have seen methods to estimate the amount of effort that is required to complete a pull re-
quest [17]. This model aims to predict how long a PR stays open based on a number of
simple metrics, such as lines of code affected, but also more inventive metrics, such as the
day of the week. We suggest adding code coverage metrics to such a model, and seeing
whether this makes it perform better or worse, and what kind of correlations these metrics
would have.

Another idea we came up with, is to track the progression of code coverage throughout
the lifespan of a pull request or project. We can think of a number of questions that we
could answer with this data. For example: How long does it take from a failing commit to
go to a successful commit? How many commits does it take? Are there conversations in
between these commits? And so on.

57

6. DISCUSSION

Lastly, because we have found that patch coverage tends to be either 100% or 0% most
of the time (see Section 6.1), we should think about what improvements we can make there.
It is believed that software follows a power law distribution [16]. This implies that there
are a few certain parts of the code that are executed very often, while most other parts run
much more rarely. This means that software often depends on a few critical parts of code.
Therefore, changes made to this code should be under more scrutiny and be reflected more
strongly in a metric such as patch coverage.

A possible idea to explore is that of a weighted patch coverage, which depends on the
importance of the code that is (not) covered. What is unclear yet is how that importance
would be measured. For example, it could be the code’s cyclomatic complexity, how often
it is executed during tests, or, in the case of a function or class, how many lines of code it
has, etc. We consider the implementation of such a metric as possible future work.

The results of our survey provide ample possibilities for future studies. Firstly, a more
in-depth study of how code coverage (tools) provide an incentive to keep up code cover-
age and code quality would be beneficial. From our study we found that even though most
participants strongly agree that code coverage tools provide an incentive to improve cover-
age, the contributors do not necessarily believe that it increases the likelihood of their pull
requests getting accepted quicker. Therefore, there must be some other driving factor that
motivates them to improve the coverage.

Another potential subject of a future study is how to assess the actual quality of test code.
As we have seen, a large number of participants mention that they dislike code coverage
being mistaken for quality, since it is possible to write tests that cover the entire code,
without actually verifying its behaviour. As such, it makes sense to have a tool that can
assess the quality of a test, that can also be used during open-source development in the same
way a coverage tool can. I.e., easy to set up and readily available. Of course, there already
exist tools that provide some form of code quality information, such as static analysis tools.
However, the question is whether those tools are also applicable to test code specifically.
Furthermore, research for test quality already exists in mutation testing, for example, but
these procedures are not suitable to run (swiftly) in a CI pipeline, and perhaps costly to set
up for a contributor that just wants to contribute a few lines of code. Therefore, there should
be a more intelligent tool, which can potentially use coverage data to discern meaningful
information regarding the quality of how this coverage came to be.

58

Chapter 7

Conclusion

In this thesis, we investigated the use of code coverage tools on open-source development
platforms and aimed to answer three research questions. We collected data from Codecov’s
database, utilized GitHub’s public API, and distributed a survey among open-source devel-
opers. In this chapter, we will conclude our findings, highlighting their significance and
implications for developers and researchers.

Our work stands out from existing work by exploring a large group of highly varied
projects, in terms of size, language and domain, instead of focusing on a single language.
Furthermore, the participants in our survey belong to different projects and companies,
which provides a wide variety of opinions and perspectives. In turn, we believe this makes
our work generalisable to a larger group of open-source development efforts.

Our research went as follows. Firstly, in Chapter 3 we aimed to answer RQ1: “Is there
a relationship between code coverage and the time to merge a pull request?” And in our
research, we have found multiple projects for which coverage-related metrics, such as hits
and misses, do have a significant relationship with the time to merge using linear regression.
However, we also conclude that this finding does not generalise to every project. Further
research would be necessary to determine the factors that affect these relationships between
code coverage and the time to merge a PR.

The analysis of patch coverage and project coverage metrics revealed that patch-related
metrics were the least frequently significant. We attribute this observation to the nature of
patch coverage, where the modified code is either untested (0% coverage) or fully covered
(100% coverage). Partial coverage of modified code was relatively rare. These findings
suggest that patch coverage metrics may not provide substantial information for the models.

Secondly, in Chapter 4 we asked RQ2: “To what extent do comments and status checks
lead to improved coverage?” By using the odds ratio test on two groups of failing pull
requests, one where the failing coverage status was fixed before merging, and one where it
was not, we determined that the mentions of tests or coverage in the comments and commit
messages of the pull requests are linked to greater odds of the coverage status getting fixed.

Additionally, we found a high number of PRs that were merged despite having a failing
coverage status. As such, we investigated this phenomenon further in Chapter 5 where we
set out to answer RQ3: “Why are coverage checks ignored?”. For this research question
we conducted a survey among developers, which led to insights into why code contribu-

59

7. CONCLUSION

tors or maintainers would disregard fixing coverage. The complexity of writing tests, the
perception of insufficient value in fixing coverage, and the desire to avoid scaring away con-
tributors were among the reasons mentioned. Moreover, our study revealed that developers
predominantly rely on coverage results generated on GitHub rather than running coverage
tools locally, potentially impacting the development process.

The implications of our work are twofold and made concise in Chapter 6. For open-
source developers, we recommend configuring coverage tools with appropriate thresholds
to make the failure meaningful and reduce noise. Improving code structure, providing clear
documentation on testing, setting clear goals for testing and coverage, and discussing tests
and coverage during PR reviews can also contribute to addressing the issue of ignoring cov-
erage. For code coverage tool developers, our findings indicate the need for improvements
in result accuracy, easier setup processes, and noise reduction. Additional suggestions in-
clude providing actionable information, assessing test quality, and enhancing user workflow.

Future research could focus on addressing the limitations identified by our survey, such
as improving the robustness and usability of coverage tools, exploring advanced techniques
for detecting flaky tests, and further investigating the factors influencing code coverage
adoption and perception. Furthermore, we suggest a larger investigation on the effects of
code coverage on different project metrics or PR metrics, in a study with more available time
and data. Additionally, we introduce the idea of a weighted patch coverage, which augments
the existing patch coverage metric with how important the changed code is deemed. Lastly,
our survey results suggest that further investigation in developers’ perception on code cov-
erage, and code coverage tools, is needed. Specifically, on determining whether the use of
code coverage (tools) provides a greater incentive to write tests, and whether those tests
would be of high quality.

In conclusion, our study has shed light on the relationship between code coverage and
time to merge, offering valuable insights into the impact of mentioning code coverage in a
pull request, and the underlying reasons for disregarding coverage checks. The implications
of our findings extend not only to developers seeking to optimise their software develop-
ment processes, but also to code coverage tool developers striving to enhance their tools’
effectiveness. Furthermore, our study has generated a wealth of ideas for future research,
providing a solid foundation for further exploration in this field. Ultimately, our work con-
tributes to the ongoing pursuit of more efficient and reliable software development practices,
fostering innovation and progress in the ever-evolving landscape of open-source software
development.

60

Bibliography

[1] Codecov api. URL https://docs.codecov.com/reference/overview.

[2] Moritz Beller, Georgios Gousios, Annibale Panichella, and Andy Zaidman. When,
how, and why developers (do not) test in their ides. In Proceedings of the 2015
10th Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2015, page
179–190, New York, NY, USA, 2015. Association for Computing Machinery. ISBN
9781450336758. doi: 10.1145/2786805.2786843. URL https://doi.org/10.
1145/2786805.2786843.

[3] Casper Boone, Carolin Brandt, and Andy Zaidman. Fixing continuous integration
tests from within the ide with contextual information. In 2022 IEEE/ACM 30th Inter-
national Conference on Program Comprehension (ICPC), pages 287–297, 2022. doi:
10.1145/3524610.3527908.

[4] Codecov. The leading code coverage solution, May 2022. URL https://about.co
decov.io/.

[5] Anna Derezińska. Experiences from an empirical study of programs code coverage. In
Tarek Sobh, editor, Advances in Computer and Information Sciences and Engineering,
pages 57–62, Dordrecht, 2008. Springer Netherlands. ISBN 978-1-4020-8741-7.

[6] Georgios Gousios, Martin Pinzger, and Arie van Deursen. An exploratory study of
the pull-based software development model. In Proceedings of the 36th Interna-
tional Conference on Software Engineering, ICSE 2014, page 345–355, New York,
NY, USA, 2014. Association for Computing Machinery. ISBN 9781450327565. doi:
10.1145/2568225.2568260. URL https://doi.org/10.1145/2568225.2568260.

[7] Georgios Gousios, Bogdan Vasilescu, Alexander Serebrenik, and Andy Zaidman.
Lean ghtorrent: Github data on demand. In Proceedings of the 11th Working Con-
ference on Mining Software Repositories, MSR 2014, page 384–387, New York, NY,
USA, 2014. Association for Computing Machinery. ISBN 9781450328630. doi:
10.1145/2597073.2597126. URL https://doi.org/10.1145/2597073.2597126.

61

https://docs.codecov.com/reference/overview
https://doi.org/10.1145/2786805.2786843
https://doi.org/10.1145/2786805.2786843
https://about.codecov.io/
https://about.codecov.io/
https://doi.org/10.1145/2568225.2568260
https://doi.org/10.1145/2597073.2597126

BIBLIOGRAPHY

[8] H. Hemmati. How effective are code coverage criteria? In 2015 IEEE International
Conference on Software Quality, Reliability and Security, pages 151–156, 2015. doi:
10.1109/QRS.2015.30.

[9] Michael Hilton, Jonathan Bell, and Darko Marinov. A large-scale study of test
coverage evolution. In Proceedings of the 33rd ACM/IEEE International Confer-
ence on Automated Software Engineering, ASE 2018, page 53–63, New York, NY,
USA, 2018. Association for Computing Machinery. ISBN 9781450359375. doi:
10.1145/3238147.3238183. URL https://doi.org/10.1145/3238147.3238183.

[10] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand. Experiments on the effectiveness
of dataflow- and control-flow-based test adequacy criteria. In Proceedings of 16th
International Conference on Software Engineering, pages 191–200, 1994. doi: 10.
1109/ICSE.1994.296778.

[11] Laura Inozemtseva and Reid Holmes. Coverage is not strongly correlated with test
suite effectiveness. In Proceedings of the 36th International Conference on Software
Engineering, ICSE 2014, page 435–445, New York, NY, USA, 2014. Association for
Computing Machinery. ISBN 9781450327565. doi: 10.1145/2568225.2568271. URL
https://doi.org/10.1145/2568225.2568271.

[12] Marko Ivanković, Goran Petrović, René Just, and Gordon Fraser. Code coverage at
google. In Proceedings of the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering,
ESEC/FSE 2019, page 955–963, New York, NY, USA, 2019. Association for Com-
puting Machinery. ISBN 9781450355728. doi: 10.1145/3338906.3340459. URL
https://doi.org/10.1145/3338906.3340459.

[13] Yong Woo Kim. Efficient use of code coverage in large-scale software development.
In Proceedings of the 2003 Conference of the Centre for Advanced Studies on Collab-
orative Research, CASCON ’03, page 145–155. IBM Press, 2003.

[14] P. S. Kochhar, F. Thung, D. Lo, and J. Lawall. An empirical study on the adequacy
of testing in open source projects. In 2014 21st Asia-Pacific Software Engineering
Conference, volume 1, pages 215–222, 2014. doi: 10.1109/APSEC.2014.42.

[15] P. S. Kochhar, D. Lo, J. Lawall, and N. Nagappan. Code coverage and postrelease de-
fects: A large-scale study on open source projects. IEEE Transactions on Reliability,
66(4):1213–1228, 2017. doi: 10.1109/TR.2017.2727062.

[16] Panagiotis Louridas, Diomidis Spinellis, and Vasileios Vlachos. Power laws
in software. ACM Transactions on Software Engineering and Methodology, 18
(1):1–26, September 2008. ISSN 1049-331X. doi: 10.1145/1391984.1391986.
URL http://www.dmst.aueb.gr/dds/pubs/jrnl/2008-TOSEM-PowerLaws/htm
l/LSV08.html. Article 2.

62

https://doi.org/10.1145/3238147.3238183
https://doi.org/10.1145/2568225.2568271
https://doi.org/10.1145/3338906.3340459
http://www.dmst.aueb.gr/dds/pubs/jrnl/2008-TOSEM-PowerLaws/html/LSV08.html
http://www.dmst.aueb.gr/dds/pubs/jrnl/2008-TOSEM-PowerLaws/html/LSV08.html

Bibliography

[17] Chandra Maddila, Chetan Bansal, and Nachiappan Nagappan. Predicting pull re-
quest completion time: A case study on large scale cloud services. In Proceed-
ings of the 2019 27th ACM Joint Meeting on European Software Engineering Con-
ference and Symposium on the Foundations of Software Engineering, ESEC/FSE
2019, page 874–882, New York, NY, USA, 2019. Association for Computing Ma-
chinery. ISBN 9781450355728. doi: 10.1145/3338906.3340457. URL https:
//doi.org/10.1145/3338906.3340457.

[18] Shane Mcintosh, Yasutaka Kamei, Bram Adams, and Ahmed E. Hassan. An empirical
study of the impact of modern code review practices on software quality. Empiri-
cal Softw. Engg., 21(5):2146–2189, October 2016. ISSN 1382-3256. doi: 10.1007/
s10664-015-9381-9. URL https://doi.org/10.1007/s10664-015-9381-9.

[19] D. Mondal, H. Hemmati, and S. Durocher. Exploring test suite diversification and
code coverage in multi-objective test case selection. In 2015 IEEE 8th International
Conference on Software Testing, Verification and Validation (ICST), pages 1–10, 2015.
doi: 10.1109/ICST.2015.7102588.

[20] Akbar Siami Namin and James H. Andrews. The influence of size and coverage on
test suite effectiveness. In Proceedings of the Eighteenth International Symposium
on Software Testing and Analysis, ISSTA ’09, page 57–68, New York, NY, USA,
2009. Association for Computing Machinery. ISBN 9781605583389. doi: 10.1145/
1572272.1572280. URL https://doi.org/10.1145/1572272.1572280.

[21] Saeed Parsa. Software Testability, pages 3–43. Springer International Publishing,
Cham, 2023. ISBN 978-3-031-22057-9. doi: 10.1007/978-3-031-22057-9 1. URL
https://doi.org/10.1007/978-3-031-22057-9_1.

[22] Leandro Sales Pinto, Saurabh Sinha, and Alessandro Orso. Understanding myths and
realities of test-suite evolution. In Proceedings of the ACM SIGSOFT 20th Interna-
tional Symposium on the Foundations of Software Engineering, FSE ’12, New York,
NY, USA, 2012. Association for Computing Machinery. ISBN 9781450316149. doi:
10.1145/2393596.2393634. URL https://doi.org/10.1145/2393596.2393634.

[23] Amanda Schwartz, Daniel Puckett, Ying Meng, and Gregory Gay. Investigating
faults missed by test suites achieving high code coverage. Journal of Systems and
Software, 144:106 – 120, 2018. ISSN 0164-1212. doi: https://doi.org/10.1016/j.
jss.2018.06.024. URL http://www.sciencedirect.com/science/article/pii/
S0164121218301201.

[24] Davide Spadini, Maurı́cio Aniche, Margaret-Anne Storey, Magiel Bruntink, and Al-
berto Bacchelli. When testing meets code review: Why and how developers review
tests. In Proceedings of the 40th International Conference on Software Engineer-
ing, ICSE ’18, page 677–687, New York, NY, USA, 2018. Association for Com-
puting Machinery. ISBN 9781450356381. doi: 10.1145/3180155.3180192. URL
https://doi.org/10.1145/3180155.3180192.

63

https://doi.org/10.1145/3338906.3340457
https://doi.org/10.1145/3338906.3340457
https://doi.org/10.1007/s10664-015-9381-9
https://doi.org/10.1145/1572272.1572280
https://doi.org/10.1007/978-3-031-22057-9_1
https://doi.org/10.1145/2393596.2393634
http://www.sciencedirect.com/science/article/pii/S0164121218301201
http://www.sciencedirect.com/science/article/pii/S0164121218301201
https://doi.org/10.1145/3180155.3180192

BIBLIOGRAPHY

[25] Igor Steinmacher, Gustavo Pinto, Igor Scaliante Wiese, and Marco A. Gerosa. Al-
most there: A study on quasi-contributors in open source software projects. In
Proceedings of the 40th International Conference on Software Engineering, ICSE
’18, page 256–266, New York, NY, USA, 2018. Association for Computing Ma-
chinery. ISBN 9781450356381. doi: 10.1145/3180155.3180208. URL https:
//doi.org/10.1145/3180155.3180208.

[26] Shivashree Vysali. Enriching Code Coverage with Test Characteristics. Master’s the-
sis, McGill University, 3480 Rue University, Montréal, QC, Canada, December 2020.

[27] Mairieli Wessel and Igor Steinmacher. The Inconvenient Side of Software Bots on
Pull Requests, page 51–55. Association for Computing Machinery, New York, NY,
USA, 2020. ISBN 9781450379632. URL https://doi.org/10.1145/3387940.
3391504.

[28] Mairieli Wessel, Alexander Serebrenik, Igor Scaliante Wiese, Igor Steinmacher, and
Marco Aurelio Gerosa. Effects of adopting code review bots on pull requests to oss
projects. In Proceedings - 2020 IEEE International Conference on Software Mainte-
nance and Evolution, ICSME 2020, pages 1–11, United States, September 2020. IEEE
Computer Society. doi: 10.1109/ICSME46990.2020.00011.

[29] Mairieli Wessel, Alexander Serebrenik, Igor Wiese, Igor Steinmacher, and Marco A.
Gerosa. What to expect from code review bots on github? a survey with oss main-
tainers. In Proceedings of the 34th Brazilian Symposium on Software Engineer-
ing, SBES ’20, page 457–462, New York, NY, USA, 2020. Association for Com-
puting Machinery. ISBN 9781450387538. doi: 10.1145/3422392.3422459. URL
https://doi.org/10.1145/3422392.3422459.

[30] Yue Yu, Bogdan Vasilescu, Huaimin Wang, Vladimir Filkov, and Premkumar T. De-
vanbu. Initial and eventual software quality relating to continuous integration in
github. CoRR, abs/1606.00521, 2016. URL http://arxiv.org/abs/1606.00521.

[31] Hong Zhu, Patrick A. V. Hall, and John H. R. May. Software unit test coverage and
adequacy. ACM Comput. Surv., 29(4):366–427, December 1997. ISSN 0360-0300.
doi: 10.1145/267580.267590. URL https://doi.org/10.1145/267580.267590.

64

https://doi.org/10.1145/3180155.3180208
https://doi.org/10.1145/3180155.3180208
https://doi.org/10.1145/3387940.3391504
https://doi.org/10.1145/3387940.3391504
https://doi.org/10.1145/3422392.3422459
http://arxiv.org/abs/1606.00521
https://doi.org/10.1145/267580.267590

Appendix A

List of projects

This appendix shows the projects that were included in our dataset for research questions
one and two. As you can see, the data was updated around April 2021. As stated in Chap-
ter 3, only projects with over 100 pull requests were considered relevant. Furthermore, from
those projects, only those with an R-Squared value over 0.7 were subsequently discussed in
the results.

You will also see that some projects do not have pull requests listed at all. This is
because there was missing data in either the Codecov database, or the GHTorrent dump.

For each project, we calculated a regression model, and the full models can be found on
GitHub: https://doi.org/10.5281/zenodo.8044949

65

https://doi.org/10.5281/zenodo.8044949

project contributors watchers stargazerCount forkCount primaryLanguage codecov_updated pull_requests R-squared
https://github,com/getsentry/sentry 584 669 27878 3121 Python 26/04/2021 5744 0,076348167
https://github,com/pandas-dev/pandas 2662 1114 29472 12274 Python 26/04/2021 2098 0,27514342
https://github,com/python/cpython 1662 1403 37529 18573 Python 26/04/2021 1427 0,526560006
https://github,com/home-assistant/core 2705 1335 42108 13860 Python 26/04/2021 1417 0,816151843
https://github,com/scikit-learn/scikit-learn 2208 2254 45537 21370 Python 26/04/2021 1118 0,765685998
https://github,com/edx/edx-platform 996 417 5524 3030 Python 26/04/2021 1035 0,685759153
https://github,com/matplotlib/matplotlib 1224 571 13533 5769 Python 26/04/2021 980 0,594803016
https://github,com/PyTorchLightning/pytorch-lightning 435 213 13178 1560 Python 26/04/2021 790 0,337221512
https://github,com/pingcap/tidb 579 1361 27582 4332 Go 26/04/2021 747 0,756251651
https://github,com/pytest-dev/pytest 709 200 7246 1686 Python 26/04/2021 734 0,202016506
https://github,com/numpy/numpy 1311 566 16969 5444 Python 26/04/2021 727 0,346231736
https://github,com/Homebrew/brew 968 690 27730 6163 Ruby 26/04/2021 684 0,443831828
https://github,com/allenai/allennlp 240 293 9943 2047 Python 26/04/2021 632 0,224312075
https://github,com/ampproject/amphtml 1106 683 14600 3800 JavaScript 26/04/2021 597 0,219178671
https://github,com/grpc/grpc-java 247 551 8627 2908 Java 23/04/2021 594 0,247441727
https://github,com/youzan/vant 194 371 17240 8810 TypeScript 26/04/2021 593 0,426960213
https://github,com/go-gitea/gitea 958 482 24562 3010 Go 26/04/2021 578 0,616701086
https://github,com/prettier/prettier 552 399 39498 2766 JavaScript 26/04/2021 572 0,600003956
https://github,com/GoogleContainerTools/skaffold 270 208 11191 1173 Go 24/04/2021 548 0,636274214
https://github,com/bootstrap-vue/bootstrap-vue 323 307 13083 1745 JavaScript 21/04/2021 510 0,221148021
https://github,com/woocommerce/woocommerce 1324 563 6953 8954 PHP 26/04/2021 505 0,190857449
https://github,com/GoogleChrome/lighthouse 282 543 22246 7787 JavaScript 24/04/2021 488 0,451664024
https://github,com/NG-ZORRO/ng-zorro-antd 174 249 7448 2638 TypeScript 26/04/2021 475 0,211459642
https://github,com/webpack/webpack 749 1582 58065 7710 JavaScript 26/04/2021 467 0,352862126
https://github,com/nextcloud/server 940 544 14071 2521 PHP 26/04/2021 463 0,368093123
https://github,com/mirumee/saleor 201 364 10921 3624 Python 26/04/2021 441 0,54724127
https://github,com/apache/airflow 1846 744 21264 8383 Python 26/04/2021 420 0,425495413
https://github,com/vuetifyjs/vuetify 670 605 30278 5560 TypeScript 24/04/2021 418 0,541048998
https://github,com/zulip/zulip 800 378 13421 4477 Python 25/04/2021 411 0,229560732
https://github,com/dotnet/machinelearning 163 621 7477 1622 C# 20/04/2021 382 0,492259093
https://github,com/milvus-io/milvus 134 159 5566 862 Go 26/04/2021 381 0,354570235
https://github,com/ipfs/go-ipfs 307 561 11272 2137 Go 26/04/2021 374 0,60889926
https://github,com/babel/babel 1022 846 38864 4815 JavaScript 26/04/2021 362 0,765843799
https://github,com/nuxt/nuxt,js 309 801 35848 2907 JavaScript 26/04/2021 344 0,52668696
https://github,com/typescript-eslint/typescript-eslint 342 72 9425 1484 TypeScript 26/04/2021 340 0,533669542
https://github,com/hashicorp/terraform 1850 1154 26446 6560 Go 26/04/2021 336 0,624237812
https://github,com/apache/shardingsphere 286 984 13712 4665 Java 26/04/2021 327 0,131170844
https://github,com/hashicorp/packer 1396 501 12781 3128 Go 23/04/2021 323 0,366907605
https://github,com/cakephp/cakephp 754 602 8361 3466 PHP 24/04/2021 317 0,275707154
https://github,com/facebook/jest 1298 540 34951 5050 TypeScript 26/04/2021 307 0,373333749
https://github,com/SpaceVim/SpaceVim 272 341 16528 1316 Vim script 25/04/2021 296 0,300093078
https://github,com/facebookresearch/ParlAI 147 271 7137 1490 Python 26/04/2021 292 0,596177927
https://github,com/storybookjs/storybook 1479 913 60774 6036 TypeScript 26/04/2021 288 0,362125695
https://github,com/seata/seata 209 883 19299 6003 Java 26/04/2021 284 0,614965875
https://github,com/hashicorp/consul 772 991 21954 3689 Go 23/04/2021 272 0,774178506
https://github,com/python-pillow/Pillow 357 215 8459 1623 Python 26/04/2021 272 0,665812011
https://github,com/saltstack/salt 3679 578 11694 5084 Python 22/04/2021 263 0,651241506
https://github,com/apache/skywalking 368 841 16689 4906 Java 26/04/2021 254 0,645379601
https://github,com/argoproj/argo-cd 414 113 5821 1277 Go 25/04/2021 240 0,636945025
https://github,com/pytorch/vision 381 317 8927 4603 Python 26/04/2021 235 0,454660523
https://github,com/ipython/ipython 807 799 14780 4151 Python 22/04/2021 229 0,611375817
https://github,com/ReactiveX/RxJava 313 2310 44515 7407 Java 26/04/2021 225 0,215982489
https://github,com/syncthing/syncthing 266 982 36152 2988 Go 26/04/2021 223 0,889421783
https://github,com/timescale/timescaledb 51 290 10788 574 C 26/04/2021 217 0,254323181
https://github,com/aws/aws-cli 337 569 10931 2602 Python 23/04/2021 203 0,178060623
https://github,com/marko-js/marko 126 230 10211 611 JavaScript 21/04/2021 189 0,293463497
https://github,com/getsentry/sentry-javascript 352 100 5421 1011 TypeScript 26/04/2021 180 0,507964204
https://github,com/goreleaser/goreleaser 216 104 7933 535 Go 25/04/2021 180 0,606603656
https://github,com/cupy/cupy 260 118 5065 465 Python 26/04/2021 178 0,654591334
https://github,com/jaegertracing/jaeger 207 336 13318 1565 Go 26/04/2021 175 0,728598426
https://github,com/serverless/serverless 1003 988 39543 4701 JavaScript 24/04/2021 154 0,927060372
https://github,com/akveo/nebular 107 195 7022 1345 TypeScript 22/04/2021 153 0,521175531
https://github,com/iamkun/dayjs 254 295 34702 1646 JavaScript 25/04/2021 150 0,347423657
https://github,com/parse-community/parse-server 301 629 18548 4480 JavaScript 25/04/2021 149 0,719566905
https://github,com/Semantic-Org/Semantic-UI-React 307 231 12214 3608 JavaScript 23/04/2021 146 0,846693809
https://github,com/phpmyadmin/phpmyadmin 1823 291 5435 2927 PHP 26/04/2021 144 0,299254294
https://github,com/borgbackup/borg 234 155 7211 554 C 20/04/2021 139 0,678787767
https://github,com/graphql/graphql-js 179 410 17563 1794 JavaScript 25/04/2021 137 0,939049867
https://github,com/coredns/coredns 256 226 7514 1311 Go 26/04/2021 136 0,569054538
https://github,com/gin-gonic/gin 315 1351 47551 5421 Go 25/04/2021 136 0,899004198
https://github,com/apereo/cas 301 621 8588 3501 Java 26/04/2021 135 0,455080592
https://github,com/scrapy/scrapy 474 1833 40435 9154 Python 25/04/2021 134 0,72227861
https://github,com/open-mmlab/mmdetection 210 355 14622 5066 Python 26/04/2021 130 0,953426365
https://github,com/celery/celery 1110 490 17133 3981 Python 26/04/2021 128 0,418546604
https://github,com/dmlc/xgboost 513 956 20912 7980 C++ 23/04/2021 122 0,753350298
https://github,com/aio-libs/aiohttp 574 237 11106 1581 Python 26/04/2021 119 0,493990114
https://github,com/pymc-devs/pymc3 312 252 5707 1379 Python 26/04/2021 119 0,308328991
https://github,com/valor-software/ngx-bootstrap 321 224 5283 1657 TypeScript 19/04/2021 119 0,74955351
https://github,com/wagtail/wagtail 564 354 10518 2211 Python 26/04/2021 119 0,472951607
https://github,com/aws-amplify/amplify-js 337 199 7996 1642 TypeScript 26/04/2021 118 0,637112818
https://github,com/goharbor/harbor 250 518 14583 3670 Go 26/04/2021 118 0,438554641
https://github,com/webpack/webpack-dev-server 243 123 6869 1228 JavaScript 26/04/2021 115 0,383781575
https://github,com/doctrine/dbal 515 116 8005 1127 PHP 23/04/2021 114 0,811051933
https://github,com/briannesbitt/Carbon 270 233 15165 1162 PHP 21/04/2021 113 0,348492864
https://github,com/tiangolo/fastapi 214 500 30177 2085 Python 24/04/2021 111 0,439987009
https://github,com/go-swagger/go-swagger 277 122 6334 985 Go 25/04/2021 110 0,36389871
https://github,com/falconry/falcon 172 283 8353 821 Python 25/04/2021 108 0,475067679
https://github,com/sebastianbergmann/phpunit 464 350 17527 1996 PHP 24/04/2021 105 0,866719067
https://github,com/rollup/rollup 274 265 20079 1000 JavaScript 25/04/2021 104 0,522270618
https://github,com/aframevr/aframe 365 535 12678 3044 JavaScript 25/04/2021 102 0,457549778
https://github,com/umijs/umi 294 261 10390 1623 TypeScript 26/04/2021 102 0,48324116
https://github,com/pion/webrtc 143 240 7028 859 Go 25/04/2021 101 0,212205711
https://github,com/swoole/swoole-src 181 883 16801 3139 C++ 26/04/2021 101 0,523552787
https://github,com/ajaxorg/ace 475 645 22951 4934 JavaScript 23/04/2021 100 0,520828888
https://github,com/keras-team/autokeras 129 301 7916 1278 Python 16/04/2021 99 0,573395526
https://github,com/kubernetes/dashboard 278 281 9548 2877 Go 26/04/2021 99 0,568701529
https://github,com/mitmproxy/mitmproxy 391 597 22179 2846 Python 25/04/2021 98 0,232273765
https://github,com/Hacker0x01/react-datepicker 338 78 5673 1702 JavaScript 26/04/2021 96 0,417018604
https://github,com/pyecharts/pyecharts 30 381 10872 2430 Python 08/02/2021 96 0,392490194
https://github,com/SwifterSwift/SwifterSwift 140 283 9680 1256 Swift 19/04/2021 95 0,467062823
https://github,com/apollographql/apollo-server 441 219 11329 1705 TypeScript 25/04/2021 95 0,772114457
https://github,com/buefy/buefy 306 113 8593 988 Vue 22/04/2021 95 0,808289634
https://github,com/dapr/dapr 115 408 12869 841 Go 25/04/2021 95 0,763636139
https://github,com/metabase/metabase 275 632 24668 3289 Clojure 23/04/2021 95 0,823348242
https://github,com/uutils/coreutils 266 175 8316 649 Rust 26/04/2021 94 0,328581932
https://github,com/emotion-js/emotion 256 95 12894 819 JavaScript 26/04/2021 93 0,926791976
https://github,com/beetbox/beets 448 415 10062 1637 Python 19/04/2021 91 0,853250914

A. LIST OF PROJECTS

66

project contributors watchers stargazerCount forkCount primaryLanguage codecov_updated pull_requests R-squared
https://github,com/python-telegram-bot/python-telegram-bot 153 593 14508 3085 Python 25/04/2021 91 0,750139183
https://github,com/encode/django-rest-framework 1205 632 20814 5653 Python 26/04/2021 90 0,624782538
https://github,com/mwaskom/seaborn 152 240 8344 1406 Python 24/04/2021 90 0,421819955
https://github,com/scipy/scipy 1150 329 8164 3656 Python 26/04/2021 89 0,969248667
https://github,com/etcd-io/etcd 743 1369 35655 7607 Go 26/04/2021 87 0,302469191
https://github,com/iterative/dvc 219 122 7771 744 Python 26/04/2021 87 0,455379342
https://github,com/styleguidist/react-styleguidist 240 108 9729 1372 TypeScript 21/04/2021 86 0,60993502
https://github,com/ctripcorp/apollo 99 1316 24426 8927 Java 24/04/2021 85 0,644767417
https://github,com/grafana/loki 357 259 12787 1421 Go 21/04/2021 82 0,632902082
https://github,com/labstack/echo 215 541 19693 1752 Go 25/04/2021 82 0,413784341
https://github,com/jupyter/notebook 552 318 8197 3380 JavaScript 25/04/2021 81 0,469213615
https://github,com/react-bootstrap/react-bootstrap 428 458 19293 3088 JavaScript 26/04/2021 81 0,354803132
https://github,com/mockito/mockito 247 434 11744 2087 Java 23/04/2021 80 0,765148144
https://github,com/react-navigation/react-navigation 102 338 19637 4242 TypeScript 24/04/2021 80 0,38660857
https://github,com/avajs/ava 279 239 18944 1345 JavaScript 26/04/2021 75 0,775318593
https://github,com/aws/aws-sdk-js 174 260 6553 1327 JavaScript 23/04/2021 73 0,848896937
https://github,com/qutebrowser/qutebrowser 393 191 6774 861 Python 26/04/2021 73 0,700224695
https://github,com/spotify/luigi 556 502 14476 2248 Python 22/04/2021 73 0,514004653
https://github,com/VowpalWabbit/vowpal_wabbit 298 377 7527 1733 C++ 23/04/2021 72 0,76325468
https://github,com/google/go-github 408 220 7391 1506 Go 24/04/2021 71 0,745122702
https://github,com/apache/dubbo 414 3222 35103 23448 Java 26/04/2021 70 0,869185673
https://github,com/aws/aws-sdk-php 169 241 5168 1005 PHP 23/04/2021 70 0,878415513
https://github,com/ng-bootstrap/ng-bootstrap 153 271 7738 1422 TypeScript 21/04/2021 69 0,817405378
https://github,com/anuraghazra/github-readme-stats 139 155 22720 4702 JavaScript 21/04/2021 62 0,774634878
https://github,com/catchorg/Catch2 285 457 13324 2254 C++ 16/04/2021 62 0,591493739
https://github,com/rq/rq 234 219 7663 1224 Python 20/04/2021 59 0,451323859
https://github,com/moment/luxon 136 102 11044 492 JavaScript 09/04/2021 58 0,516401006
https://github,com/react-native-elements/react-native-elements 329 382 20501 4164 TypeScript 25/04/2021 57 0,947290235
https://github,com/SDWebImage/SDWebImage 304 832 23500 5702 Objective-C 25/04/2021 56 0,816535754
https://github,com/felangel/bloc 114 148 6968 1821 Dart 26/04/2021 56 0,367928778
https://github,com/kubernetes/ingress-nginx 664 276 10103 4962 Go 24/04/2021 56 0,563542169
https://github,com/tqdm/tqdm 98 199 18134 931 Python 23/04/2021 52 0,91137234
https://github,com/KaTeX/KaTeX 133 289 13572 941 JavaScript 26/04/2021 51 0,863968784
https://github,com/alibaba/fastjson 187 1373 23287 6248 Java 25/04/2021 51 0,719101386
https://github,com/prompt-toolkit/python-prompt-toolkit 177 154 7006 546 Python 09/04/2021 50 0,686481211
https://github,com/RichardKnop/machinery 126 150 5136 650 Go 13/04/2021 49 0,931062573
https://github,com/grpc-ecosystem/grpc-gateway 242 284 10654 1394 Go 23/04/2021 49 0,820751306
https://github,com/apache/superset 607 1446 38201 7242 Python 26/04/2021 47 0,89674382
https://github,com/polybar/polybar 123 125 8458 445 C++ 25/04/2021 47 0,886202278
https://github,com/eggjs/egg 184 487 16924 1671 JavaScript 25/04/2021 45 0,872992491
https://github,com/mkdocs/mkdocs 191 230 12020 1731 Python 25/04/2021 43 0,946816707
https://github,com/actix/actix-web 292 215 11120 1210 Rust 22/04/2021 42 0,414156475
https://github,com/googleapis/google-api-nodejs-client 142 359 9272 1676 TypeScript 26/04/2021 41 0,981610347
https://github,com/backstage/backstage 340 174 11363 1112 TypeScript 26/04/2021 40 0,961540472
https://github,com/validatorjs/validator,js 372 229 17486 1625 JavaScript 26/04/2021 40 0,902976474
https://github,com/pytorch/pytorch 2631 1594 47814 12778 C++ 26/04/2021 36 0,920161597
https://github,com/c3js/c3 169 287 9054 1454 JavaScript 16/04/2021 34 0,428364933
https://github,com/jazzband/django-debug-toolbar 235 114 6448 918 Python 23/04/2021 33 0,903575411
https://github,com/OpenZeppelin/openzeppelin-contracts 262 495 10085 4582 JavaScript 26/04/2021 32 0,947603784
https://github,com/RustPython/RustPython 198 130 7592 503 Python 23/04/2021 32 0,953376959
https://github,com/pinpoint-apm/pinpoint 124 768 11347 3402 Java 23/04/2021 32 0,952656846
https://github,com/doctrine/orm 863 287 8517 2315 PHP 25/04/2021 30 0,61953367
https://github,com/CocoaLumberjack/CocoaLumberjack 201 399 12352 2134 Objective-C 09/04/2021 28 0,747345138
https://github,com/cookiecutter/cookiecutter 249 250 14341 1450 Python 22/04/2021 28 0,940170827
https://github,com/sebastianbergmann/php-code-coverage 103 57 7767 322 PHP 23/04/2021 28 0,677815766
https://github,com/compiler-explorer/compiler-explorer 221 231 8472 979 JavaScript 25/04/2021 27 0,770112749
https://github,com/invertase/react-native-firebase 362 180 8996 1768 JavaScript 24/04/2021 27 0,970343284
https://github,com/zxing/zxing 151 1710 27623 8985 Java 12/04/2021 27 0,978901742
https://github,com/trekhleb/javascript-algorithms 142 4056 104207 17322 JavaScript 21/04/2021 25 0,954147246
https://github,com/springfox/springfox 208 281 5116 1415 Java 26/04/2021 24 0,999963671
https://github,com/uber-go/zap 81 249 12449 937 Go 20/04/2021 24 0,985482882
https://github,com/arrow-py/arrow 239 133 7367 568 Python 25/04/2021 22 0,937679781
https://github,com/graphql/graphiql 187 218 12039 1273 TypeScript 19/04/2021 21 1
https://github,com/mui-org/material-ui 2406 1413 67785 21596 JavaScript 26/04/2021 20 0,997885415
https://github,com/networkx/networkx 508 286 8980 2296 Python 26/04/2021 20 1
https://github,com/urfave/cli 227 300 15691 1374 Go 24/04/2021 20 1
https://github,com/botman/botman 111 196 5407 724 PHP 14/04/2021 19
https://github,com/faif/python-patterns 116 1661 28163 5820 Python 25/01/2021 19
https://github,com/mxcl/PromiseKit 153 269 13338 1363 Swift 02/04/2021 19
https://github,com/the-control-group/voyager 385 444 10386 2486 PHP 22/04/2021 19
https://github,com/ycm-core/YouCompleteMe 173 591 22793 2647 Python 21/04/2021 19
https://github,com/dbcli/pgcli 155 141 9525 438 Python 12/03/2021 18
https://github,com/alibaba/canal 158 1183 18663 5719 Java 23/04/2021 17
https://github,com/graphite-project/graphite-web 425 285 5219 1252 JavaScript 19/04/2021 17
https://github,com/koajs/koa 208 876 31089 2997 JavaScript 12/04/2021 17
https://github,com/nodejs/node 3320 2961 78645 19957 JavaScript 26/04/2021 17
https://github,com/rusty1s/pytorch_geometric 158 239 10845 1872 Python 25/04/2021 17
https://github,com/aquasecurity/trivy 103 98 7074 615 Go 22/04/2021 14
https://github,com/prisma/prisma 125 111 10573 414 TypeScript 26/04/2021 14
https://github,com/shelljs/shelljs 85 174 11852 673 JavaScript 15/04/2021 14
https://github,com/aws/serverless-application-model 219 327 7864 2013 Python 23/04/2021 13
https://github,com/postmanlabs/newman 106 152 5182 875 JavaScript 26/04/2021 13
https://github,com/SBoudrias/Inquirer,js 164 150 14215 935 JavaScript 08/04/2021 12
https://github,com/apache/openwhisk 216 242 5246 1010 Scala 26/04/2021 12
https://github,com/ossrs/srs 60 739 11745 3709 C++ 26/04/2021 11
https://github,com/Tonejs/Tone,js 78 217 10840 828 TypeScript 25/04/2021 10
https://github,com/bvaughn/react-virtualized 210 261 21569 2660 JavaScript 24/04/2021 10
https://github,com/ustbhuangyi/better-scroll 47 264 14303 2473 TypeScript 21/04/2021 10
https://github,com/vueComponent/ant-design-vue 137 305 14200 2367 Vue 25/04/2021 10
https://github,com/brettwooldridge/HikariCP 122 733 14903 2264 Java 06/04/2021 9
https://github,com/davatorium/rofi 116 85 7304 377 C 22/04/2021 9
https://github,com/downshift-js/downshift 195 92 9508 780 JavaScript 20/04/2021 9
https://github,com/phalcon/cphalcon 322 684 10426 1913 PHP 25/04/2021 9
https://github,com/slundberg/shap 156 238 12431 1842 Jupyter Notebook 20/04/2021 9
https://github,com/typeorm/typeorm 696 342 23967 4143 TypeScript 26/04/2021 9
https://github,com/apache/druid 471 632 10789 2905 Java 26/04/2021 8
https://github,com/nfl/react-helmet 64 129 15022 618 JavaScript 30/03/2021 7
https://github,com/Hammerspoon/hammerspoon 127 110 7802 412 Objective-C 25/04/2021 6
https://github,com/beego/beego 433 1242 26265 5175 Go 26/04/2021 6
https://github,com/doctrine/common 213 51 5150 294 PHP 24/04/2021 6
https://github,com/jorgebucaran/hyperapp 102 334 18494 813 JavaScript 24/04/2021 6
https://github,com/reduxjs/react-redux 243 445 20869 3004 JavaScript 24/04/2021 6
https://github,com/sanic-org/sanic 293 431 14887 1342 Python 22/04/2021 6
https://github,com/JuliaLang/julia 1307 993 33438 4406 Julia 25/04/2021 5
https://github,com/PostgREST/postgrest 95 357 16909 779 Haskell 26/04/2021 5
https://github,com/alibaba/spring-cloud-alibaba 109 963 18427 5634 Java 26/04/2021 5
https://github,com/ansible/ansible 6382 2016 47870 20531 Python 26/04/2021 5

67

project contributors watchers stargazerCount forkCount primaryLanguage codecov_updated pull_requests R-squared
https://github,com/apache/rocketmq 276 867 14120 7766 Java 23/04/2021 5
https://github,com/josdejong/mathjs 147 233 11070 981 JavaScript 26/04/2021 5
https://github,com/liriliri/eruda 13 285 10190 820 JavaScript 11/03/2021 5
https://github,com/tailwindlabs/tailwindcss 176 528 40668 1845 CSS 23/04/2021 5
https://github,com/willmcgugan/rich 87 499 25429 759 Python 25/04/2021 5
https://github,com/mozilla/nunjucks 153 142 7260 605 JavaScript 23/03/2021 4
https://github,com/request/request 343 450 25121 3053 JavaScript 01/04/2021 4
https://github,com/Alluxio/alluxio 1282 438 5061 2455 Java 26/04/2021 3
https://github,com/MichMich/MagicMirror 300 676 14295 3553 JavaScript 24/04/2021 3
https://github,com/enzymejs/enzyme 395 283 19505 2081 JavaScript 05/04/2021 3
https://github,com/myliang/x-spreadsheet 29 244 11171 1183 JavaScript 22/04/2021 3
https://github,com/processing/p5,js 517 492 15335 2411 JavaScript 24/04/2021 3
https://github,com/redux-form/redux-form 373 180 12535 1663 JavaScript 19/04/2021 3
https://github,com/robotframework/robotframework 139 470 5813 1654 Python 23/04/2021 3
https://github,com/testing-library/react-testing-library 158 139 14349 808 JavaScript 25/04/2021 3
https://github,com/acdlite/recompose 107 190 14716 1287 JavaScript 30/03/2021 2
https://github,com/doctrine/inflector 78 23 10281 106 PHP 11/04/2021 2
https://github,com/go-kit/kit 206 694 20031 2071 Go 19/04/2021 2
https://github,com/guard/guard 185 127 5977 502 Ruby 18/09/2020 2
https://github,com/javve/list,js 56 227 10471 894 JavaScript 26/04/2021 2
https://github,com/koreader/koreader 183 293 8004 854 Lua 26/04/2021 2
https://github,com/Modernizr/Modernizr 307 956 24867 3035 JavaScript 10/04/2021 1
https://github,com/SortableJS/Vue,Draggable 38 225 14843 2258 JavaScript 01/04/2021 1
https://github,com/andymccurdy/redis-py 248 351 9235 1950 Python 21/04/2021 1
https://github,com/doctrine/instantiator 30 24 10069 54 PHP 18/02/2021 1
https://github,com/dvajs/dva 101 464 15571 3069 JavaScript 16/04/2021 1
https://github,com/pavlobu/deskreen 12 238 10405 455 TypeScript 29/03/2021 1
https://github,com/photoprism/photoprism 71 258 12745 667 Go 26/04/2021 1
https://github,com/ramsey/uuid 85 131 11132 415 PHP 23/04/2021 1
https://github,com/redis/jedis 203 719 9807 3429 Java 26/04/2021 1
https://github,com/HelloZeroNet/ZeroNet 129 850 16725 2130 JavaScript 02/03/2021 0
https://github,com/HeroTransitions/Hero 78 385 20005 1621 Swift 11/04/2021 0
https://github,com/LightTable/LightTable 91 453 11514 946 Clojure 08/04/2021 0
https://github,com/MycroftAI/mycroft-core 175 299 5050 1077 Python 26/04/2021 0
https://github,com/Tencent/ncnn 156 549 11450 2817 C++ 26/04/2021 0
https://github,com/airyland/vux 121 717 17424 3856 Vue 13/11/2020 0
https://github,com/alibaba/ice 31 469 16260 1940 TypeScript 26/04/2021 0
https://github,com/apache/arrow 670 331 7799 1883 C++ 22/04/2021 0
https://github,com/apache/dolphinscheduler 222 276 5672 1929 Java 26/04/2021 0
https://github,com/argoproj/argo-workflows 383 178 8345 1477 Go 25/04/2021 0
https://github,com/cdr/code-server 118 667 42301 3357 TypeScript 26/04/2021 0
https://github,com/cesanta/mongoose 124 462 7083 2057 C 22/04/2021 0
https://github,com/codecentric/spring-boot-admin 156 715 9795 2680 Java 23/04/2021 0
https://github,com/commitizen/cz-cli 77 82 11259 443 JavaScript 17/04/2021 0
https://github,com/conventional-changelog/conventional-changelog 114 46 5327 528 JavaScript 26/04/2021 0
https://github,com/cssinjs/jss 123 88 6297 370 JavaScript 26/04/2021 0
https://github,com/cube-js/cube,js 139 141 10215 920 Rust 26/04/2021 0
https://github,com/dask/dask 444 238 8247 1266 Python 23/04/2021 0
https://github,com/doctrine/lexer 27 22 10105 41 PHP 17/03/2021 0
https://github,com/dromara/hutool 147 597 18760 5589 Java 25/04/2021 0
https://github,com/dzenbot/DZNEmptyDataSet 54 262 11998 1725 Objective-C 03/02/2021 0
https://github,com/halfrost/LeetCode-Go 29 504 17199 3037 Go 25/04/2021 0
https://github,com/http-party/node-http-proxy 207 279 12070 1731 JavaScript 26/04/2021 0
https://github,com/jenssegers/laravel-mongodb 158 186 5485 1234 PHP 22/04/2021 0
https://github,com/k6io/k6 92 197 12092 608 Go 26/04/2021 0
https://github,com/koel/koel 59 348 12502 1595 PHP 19/04/2021 0
https://github,com/logaretm/vee-validate 294 122 8411 1009 TypeScript 25/04/2021 0
https://github,com/magic-wormhole/magic-wormhole 51 214 12141 445 Python 20/04/2021 0
https://github,com/nektos/act 80 84 13120 360 Go 23/04/2021 0
https://github,com/open-falcon/falcon-plus 119 414 6478 1454 Go 07/04/2021 0
https://github,com/php/php-src 1244 1505 30512 6631 C 25/04/2021 0
https://github,com/pixijs/pixi,js 409 1060 32566 4292 TypeScript 24/04/2021 0
https://github,com/probot/probot 156 113 6754 785 TypeScript 26/04/2021 0
https://github,com/reduxjs/reselect 92 171 17867 637 JavaScript 11/03/2021 0
https://github,com/sindresorhus/got 142 104 9327 555 TypeScript 15/04/2021 0
https://github,com/strapi/strapi 732 632 36051 4347 JavaScript 26/04/2021 0
https://github,com/substack/tape 101 68 5459 311 JavaScript 03/03/2021 0
https://github,com/tikv/tikv 306 341 9198 1418 Rust 26/04/2021 0
https://github,com/twitter/finagle 480 572 7942 1379 Scala 22/04/2021 0
https://github,com/v2fly/v2ray-core 112 276 8649 1445 Go 26/04/2021 0
https://github,com/vercel/vercel 167 103 7023 915 TypeScript 26/04/2021 0
https://github,com/vim/vim 2 697 23516 3500 Vim script 25/04/2021 0
https://github,com/yannickcr/eslint-plugin-react 439 84 7015 2076 JavaScript 25/04/2021 0

A. LIST OF PROJECTS

68

Appendix B

Survey

This appendix includes the entire survey from Chapter 5. This PDF version of the survey
is a direct export from Qualtrics, and includes the logic that was used to determine which
questions were asked.

69

 Page 1 of 17

Questionnaire

Start of Block: Start

Welcome Opening Statement Hi there, my name is Alexander and I am a student at the TU
Delft, the Netherlands, currently working on my Master's thesis. And I'm inviting you to
participate in a research study regarding the use of code coverage tools and how they interact
with repository providers like GitHub. I am reaching out to you specifically because I found that
you have made several contributions to one or multiple open-source projects that use Codecov
(a code coverage tool) on Github. I was hoping to get your perspective on the use of these
tools.

 The purpose of this research study is to gather personal opinions and experiences
regarding the use of code coverage tools from both open-source contributors and open-
source maintainers and will take you approximately 10 minutes to complete. The data will be
used for a chapter in my Master's thesis and may be submitted for a peer-reviewed
publication. Informed consent
 Your participation in this study is entirely voluntary and you can withdraw at any time. You are
free to omit any question.

 We believe there are no known risks associated with this research study; however, as with any
online-related activity, the risk of a (data) breach is always possible. To the best of our ability,
your answers in this study will remain confidential. We will minimize any risks by not asking you
for any personally identifiable information. Nor will any of this information be stored. Your Github
username and public email address on your Github account were used to contact you, but they
are not part of the survey results in any way.

 The survey is entirely anonymous.

 At the end of this study, the final conclusions will be published as part of my Master's thesis
and may be submitted for peer-reviewed journal publication. If you do not agree with any of the
conditions above, feel free to leave the survey and/or contact me at the address below! You can
also contact me if you wish to stay informed of the results.

 Thank you for your participation!

 Alexander Sterk
 a.j.h.sterk@student.tudelft.nl

End of Block: Start

B. SURVEY

70

 Page 2 of 17

Start of Block: Demographic questions

Q10 Demographic questions
 In order for us to determine your experience with software development, we ask you the
following general questions

Q8 For how many years have you been developing software? You can consider all hobby, study
and/or work experience.

__

Q41 For how many years have you been active on open-source development platforms, such
as Github, Gitlab, etc?

__

71

 Page 3 of 17

Q12 How often do you contribute to an open source project?

 Every day
(1)

A few
times a

week (2)

A few
times a

month (3)

A few
times a
year (4)

Less than
once a
year (5)

Never (6)

On average,
I make a

contribution
(e.g. a

commit, a
pull request,

etc) to
somebody

else's
project(s) (1)

o o o o o o

On average,
I make a

contribution
to my own

project(s) (3)
o o o o o o

On average,
I review

other
people's

contributions
(2)

o o o o o o

B. SURVEY

72

 Page 4 of 17

Dev/Maintain choice
For this survey, we would like to make a distinction between code contributors and project
maintainers on Github. However, we also understand there can be some overlap.
 Code contributors primarily contribute to projects by opening issues or pull requests.
They may or may not be part of the main development team of a project. Project maintainers
primarily review other people's pull requests or issues. They are always a member or owner of a
project.

 Given these descriptions, please select the option that applies to you the most.

When contributing to open source projects, I primarily act as a:

o Code contributor (1)

o Maintainer/Project Manager (2)

Q15 Do you work in software development in a professional capacity?

o Yes (1)

o No (2)

Display This Question:

If Do you work in software development in a professional capacity? = Yes

Q16 What is your job title?

__

73

 Page 5 of 17

Q17 How long have you been performing the following tasks, in either a professional or hobby
capacity?

 <1 year (1) 1-3 years
(2)

3-5 years
(3)

5-10 years
(4)

10-20
years (5)

20+ years
(6)

Automatic
software
testing

tasks, such
as writing

unit tests or
integration
tests (1)

o o o o o o

Manual
software

testing tasks
or

performing
any sort of

manual
quality

assurance
functions (2)

o o o o o o

Performing
code review

of others'
contributions

to any
project,

either open
or closed

source. (3)

o o o o o o

Q18 When it comes to automated software testing (e.g. unit testing, integration testing, etc) and
its relationship to overall code quality, do you believe that automated software testing is:

 Not at all
important (1)

Slightly
important (2)

Moderately
important (3)

Very
important (4)

Extremely
important (5)

 (1) o o o o o

End of Block: Demographic questions

B. SURVEY

74

 Page 6 of 17

Start of Block: Main questions

Q19 Main survey questions

Code analysis tools provide a way of measuring code quality metrics, such as code coverage,
and giving feedback to developers on open source platforms directly. Examples of code quality
tools that can be used on Github for code coverage are Codecov (https://about.codecov.io/),
Coveralls (https://coveralls.io/) and SonarQube (https://www.sonarqube.org/). Below is an
example of a Codecov comment, left on a pull request.

 The following questions are all about the use of code coverage tools on open source platforms.
The platform we will be focussing on is Github.

Q20 How often do you use code coverage tools outside of Github? For example, on your own
machine.

 For each
commit (1)

Every few
commits

(3)

For each
pull request

(2)

Every few
pull

requests
(4)

Rarely (9) Never (5)

I use code
coverage
tools (1) o o o o o o

75

 Page 7 of 17

Q43 How often do you utilise the information from code coverage tools on Github?

For each
commit

(1)

Every few
commits

(3)

For each
pull

request
(2)

Every few
pull

requests
(4)

Rarely
(5)

Never
(9)

I use code coverage
tools while

developing/contributing
(1)

o o o o o o
I use code coverage
tools while reviewing

(2) o o o o o o

End of Block: Main questions

Start of Block: For people who don't use code coverage on github
Display This Question:

If How often do you utilise the information from code coverage tools on Github? [Never] (Count) = 2

Q17
In the last question you answered you never utilise the information from code coverage tools on
Github.Do you have any particular reason why you do not use code coverage tools on Github?

__

__

__

__

__

Skip To: End of Survey If Condition: Do you have any particular ... Is Displayed. Skip To: End of Survey.

End of Block: For people who don't use code coverage on github

Start of Block: Block 4

B. SURVEY

76

 Page 8 of 17

Q20 In your experience, what is a good coverage goal for a project? For example, is there a
certain set of rules you'd like to follow, or a certain target you'd like to reach?
If it's possible, please also give us your reasoning.

__

__

__

__

__

77

 Page 9 of 17

Q30 Please give your opinions on the following statements.

Display This Choice:

If For this survey, we would like to make a distinction between code contributors and project mainta...
= Maintainer/Project Manager

Display This Choice:

If For this survey, we would like to make a distinction between code contributors and project mainta...
= Code contributor

 Strongly
disagree (1)

Somewhat
disagree (2)

Neither
agree nor

disagree (3)

Somewhat
agree (4)

Strongly
agree (5)

Code coverage
is a good metric
to consider as
part of overall

code quality (5)
o o o o o

Code coverage
tools on open-

source
platforms
provide an
incentive to

improve
coverage and/or
write tests. (1)

o o o o o

Display This
Choice:

If For this
survey, we would

like to make a
distinction

between code
contributors and

project mainta... =
Maintainer/Project

Manager

I am more likely
to approve a

pull request that
improves code
coverage than
ones that lower

it. (4)

o o o o o

Display This
Choice:

If For this
o o o o o

B. SURVEY

78

 Page 10 of 17

survey, we would
like to make a

distinction
between code

contributors and
project mainta... =
Code contributor

If my pull
request

improves
coverage, it is
accepted more
quickly, in my

experience. (6)

Q23 How often do you write tests for projects you are contributing to?

 For each
commit (1)

Every few
commits

(2)

For each
pull request

(3)

Every few
pull

requests
(4)

Rarely (5) Never (6)

I write tests
(1) o o o o o o

Q24 How often do you write a test or multiple tests with (just) the intent to improve the code
coverage?

 Every day
(1)

A few times
a week (2)

A few times
a month (3)

A few times
a year (4)

Less than
once a
year (5)

Never (6)

I write tests
with the
intent to
improve
coverage

(1)

o o o o o o

79

 Page 11 of 17

Display This Question:

If For this survey, we would like to make a distinction between code contributors and project mainta...
= Code contributor

Q26
How often are you asked/encouraged to better test your contributions, in the comments of a pull
request you opened?

 Every day
(9)

A few times
a week

(10)

A few times
a month

(11)

A few times
a year (12)

Less than
once a

year (13)
Never (14)

People ask
me this (3) o o o o o o
A coverage
tool asks

me this (8) o o o o o o

Display This Question:

If How often are you asked/encouraged to better test your contributions, in the comments of a pull r...
[Never] (Count) < 2

And If

How often are you asked/encouraged to better test your contributions, in the comments of a pull r... [
A coverage tool asks me this] (Recode) Is Not Empty

Or How often are you asked/encouraged to better test your contributions, in the comments of a pull
r... [People ask me this] (Recode) Is Not Empty

Q27 Do you remember a particularly interesting instance where this happened? How did the
situation get resolved?

__

__

__

__

__

B. SURVEY

80

 Page 12 of 17

Display This Question:

If For this survey, we would like to make a distinction between code contributors and project mainta...
= Maintainer/Project Manager

Q28 How often do you have to tell a contributor to a project you maintain that their tests need to
be improved, based on the results of a coverage tool?

 Every day
(15)

A few times
a week

(16)

A few times
a month

(17)

A few times
a year (18)

Less than
once a

year (19)
Never (20)

I tell people
this (3) o o o o o o

Display This Question:

If How often do you have to tell a contributor to a project you maintain that their tests need to be... [I
tell people this] (Recode) Is Not Empty

And How often do you have to tell a contributor to a project you maintain that their tests need to be...
!= Never

Q29 Do you remember a particularly interesting instance where this happened? How did that
situation get resolved?

__

__

__

__

__

Page Break

81

 Page 13 of 17

Q49 One example of a code coverage tool on Github is Codecov. Codecov processes the code
coverage information it gets from a Continuous Integration pipeline and uses this information to
provide several features, described below.

 Commenting a summary of code coverage changes:

 Setting a passing or failing status check on commits or pull requests:

 Annotating lines of code with coverage information:

 Given these concepts, please answer the following questions.

Q47 The following actions constitute incentives to improve coverage and/or write tests, and can
also be done by code coverage tools.
Please rank them on how much incentive you think they provide, from most incentive to least
incentive.

This question is answered in the form of drag-and-drop answers. Also note that the examples
given above are of a certain tool, but we are not asking you to rate the tool, but instead the
concepts of the functionality it provides
______ Leaving a comment on a pull request, summarising the coverage changes (114)
______ Giving a failing status check for a commit or pull request, preventing automatic merging
(115)
______ Annotating uncovered lines in the "Files changed" overview of a pull request (116)
______ Notifying users through messaging applications or email, if coverage is lowered (118)
______ Reminding users of contributing guidelines, when opening a pull request (119)

Q31 In your experience, what is the best way to provide incentive for improving code
coverage?

__

__

__

__

B. SURVEY

82

 Page 14 of 17

__

End of Block: Block 4

Start of Block: Block 5

Q34 In previous research, we have seen several pull requests with failing code coverage status
checks that were merged anyway. Effectively this means that the check has been ignored.

Q35 Can you come up with situations where you would ignore a failing coverage check? What
are your reasons?

__

__

__

__

__

83

 Page 15 of 17

Q36 How often do you neglect or ignore a failing coverage check on a commit or pull request?

 Every day
(3)

A few times
a week (4)

A few times
a month (5)

A few times
a year (6)

Less than
once a
year (7)

Never (8)

I ignore a
failing

coverage
check
when

contributing
to a project

(3)

o o o o o o

I ignore a
failing

coverage
check
when

reviewing a
pull request

(6)

o o o o o o

End of Block: Block 5

Start of Block: Block 6

Q42 Can you give us 2 things you like about using a code coverage tool on an open-source
platform?

__

__

__

__

__

Q43 Can you give us 2 things you dislike about using a code coverage tool on an open-source
platform?

__

B. SURVEY

84

 Page 16 of 17

__

__

__

__

Page Break

85

 Page 17 of 17

Q44 Thank you for filling out this survey. We have just one more question for you

Was there anything unclear about this survey? Or are there any other comments you would like
to make?

__

__

__

__

__

Q52 If you are open to the idea of a more in-depth interview regarding the survey topic, please
leave us your email address here.
Note that your email address will not be stored with your individual responses, or made public.

__

End of Block: Block 6

B. SURVEY

86

	Preface
	Contents
	List of Figures
	List of Tables
	Introduction
	Background
	Background information
	Related work

	RQ1: Is there a relationship between code coverage and the time to merge a pull request?
	Methodology
	Results
	Threats to Validity
	Conclusion

	RQ2: To what extent do comments and status checks lead to improved coverage?
	Methodology
	Results
	Threats to Validity
	Conclusion

	RQ3: Why are coverage checks ignored?
	Methodology
	Results
	Threats to validity
	Conclusion

	Discussion
	RQ1: Is there a relationship between code coverage and the time to merge a pull request?
	RQ2: To what extent do comments and status checks lead to improved coverage?
	RQ3: Why are coverage checks ignored?
	Implications
	Future work

	Conclusion
	Bibliography
	List of projects
	Survey

