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ABSTRACT:  Local geometrical perturbations of alluvial channels can generate a pattern of 

non-migrating bars and pools. This phenomenon is known as “overdeepening”, because the pools locally 

enhance the scour in river bends. Overdeepening occurs only downstream of a perturbation if the channel 

is in the subresonant and subcritically damped regime, which corresponds to channels with moderate 

width-to-depth ratios. Previous theoretical analyses and laboratory experiments show that overdeepening 

occurs also upstream of geometrical perturbations in the relatively wide channels of the superresonant 

regime (Zolezzi & Seminara, 2001; Zolezzi et al, 2005; Mosselman et al, 2006). We use a 

two-dimensional depth-averaged morphological model to explore the occurrence of upstream and 

downstream overdeepening numerically. The simulations reproduce the overall picture arising from 

previous theoretical and experimental findings. Non-migrating bars and pools appear downstream of 

perturbations if the regime is subresonant. The bar pattern appears both upstream and downstream if the 

regime is superresonant. However, two findings in the computational results differ from linear theory. 

First, the threshold between subresonant and superresonant regimes is higher in the numerical 

computations than predicted by linear theory. Second, at very high width-to-depth ratios in the 

superresonant regime, the computed non-migrating bars are shorter than predicted by linear theory (and 

observed experimentally). We explain the higher threshold from numerical diffusion, and the shorter bars 

from limited simulation duration, numerical diffusion and the non-linear effects suggested by Siviglia et 

al (2011). 

 

 

1 INTRODUCTION 

 

Alluvial river beds often display typical patterns of shallow bars that occur alternately at the left and the 

right bank. Early work by Hansen (1967) and Callender (1969) showed that these alternate bars can be 

explained by a stability analysis of the mathematical equations for flow and sediment transport. 

Subsequent work led to the classical linear theories by Blondeaux & Seminara (1985) and Struiksma et al 

(1985). Hereafter we refer to these theories as “BS” and “SOFD”, respectively. BS considers the general 

case of migrating bars in straight channels without geometrical perturbations and reveals that 

non-migrating bars arise as a special case of migrating bars under resonant conditions, i.e. conditions of 

vanishing damping. SOFD considers the case of non-migrating bars generated by a local geometrical 
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perturbation, such as a cross-dam closing part of the cross-section, or a discontinuity in channel curvature, 

such as the entrance or exit of a circular bend. Parker & Johanneson (1989) call the non-migrating bars of 

SOFD “overdeepening”, because the associated non-migrating pools enhance the outer-bend scour that 

would occur in infinitely long bends where the system of flow and sediment transport is fully developed 

(axisymmetric case). Mosselman et al (2006) call these SOFD non-migrating bars “spatial bars”. At the 

width-to-depth ratio of zero damping, these spatial bars are equal to the BS non-migrating bars arising at 

resonant conditions. Zolezzi & Seminara (2001) show that overdeepening occurs downstream of 

geometrical perturbations if the width-to-depth ratio is smaller than the resonant value (subresonant 

regime), but upstream of geometrical perturbations if the width-to-depth ratio is larger (superresonant 

regime). Laboratory experiments by Zolezzi et al (2005) showed that, indeed, overdeepening occurred 

only downstream under subresonant conditions, but both upstream and downstream under superresonant 

conditions. Here we present a numerical exploration of upstream and downstream overdeepening by 

using a fully nonlinear two-dimensional depth-averaged morphological model. 

 

2 THEORY 

 
The models for alternate bars by BS and SOFD are based on physics-based depth-averaged equations for 

conservation of sediment mass, water mass and water flow momentum, along with a parameterization of 

3D effects from curvature-induced helical flow and empirical closure relations linking hydraulic 

roughness and sediment transport to flow parameters and sediment properties. BS and SOFD both yield 

fourth-order linear models, but Struiksma et al (1985) also compare their fourth-order model with a 

strongly simplified second-order model, a comparison later revisited by Camporeale et al (2007). The 

second-order model appears to be a good approximation of the complete fourth-order model for 

(subcritically damped) subresonant conditions and the lower width-to-depth range of superresonant 

conditions. This justified the adoption of the second-order model in Crosato’s (1989, 2008) meander 

model. BS uses a sediment transport formula of the type of Meyer-Peter & Müller (1948), whereas SOFD 

uses a formula of the type of Engelund & Hansen (1967). Furthermore, SOFD simplifies the relation for 

hydraulic roughness to a constant value independent of flow parameters and sediment properties. The 

closure relations for sediment transport regard not only the magnitude but also the direction of sediment 

transport. This direction can be given by 
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where 
s  is the direction of sediment transport, 

  is the direction of bed shear stress, bz  is the bed 

level, x and y are longitudinal and transverse co-ordinates, respectively, and f is a non-dimensional 

parameter weighing the effect of gravity on the motion of sediment particles on sloping beds. The latter 

has been found to be proportional to the Shields mobility parameter,  : 
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where the non-dimensional coefficient, r , usually assumes a constant value through calibration, 

although it weakly depends on the ratio of sediment grain size to flow depth (Talmon et al, 1995). 

The linear theories of BS and SOFD are similar and mutually consistent, but they differ in details, such 

as the empirical closure relations, and they have provided different yet complementary interpretations. 

Parker & Johanneson (1989) therefore distinguish a “Genova School” (Blondeaux, Seminara and 

co-workers) and a “Delft School” (Struiksma and co-workers). Another difference lies in the notations. BS 

and later improvements use non-dimensional quantities, thus emphasizing the generic mathematical 

character of the equations and the possible analogies with similar equations for other physical phenomena. 

SOFD and later improvements use dimensional quantities that are more easily recognized in engineering and 

geomorphological practice. Table 1 provides an overview. One of the peculiar consequences is that the BS 
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width-to-depth ratio,  , is half as large as the SOFD width-to-depth ratio, because BS scales horizontal 

co-ordinates with half the channel width. This scaling may be less intuitive for practicing engineers and 

geomorphologists, but leads to mathematically convenient and elegant bank-line locations at values 1  

and 1  of the non-dimensional transverse co-ordinate, n . 

 
Table 1  Conversion table for SOFD and BS notations 

Description 
Dimensional quantities Non-dimensional quantities 

SOFD BS SOFD BS 

longitudinal co-ordinate x  *s  2 /x B  * */s s B  

transverse co-ordinate y  *n  2 /y B  * */n n B  

time t  *t  02 /u t B  * * *

0 /t U t B  

longitudinal flow 

velocity 
u  *U  0/u u  * *

0/U U U  

transverse flow velocity v  *V  0/v v  
* *

0/V V V  

Froude number - - /Fr u gh  /F U gD  

water level wz  *h   2

0 0/wz Fr h   * 2 *

0 0/H h F D  

flow depth h  *D  0/h h  * *

0/D D D  

channel width B  *2B  - - 

width-to-depth ratio - - 0/B h  * *

02 2 /B D   

sediment diameter D  
*

sd  
0/D h  * *

0/s sd d D  

hydraulic roughness C  - 
2/g C  

21/fC C  

longitudinal bed shear 

stress bx  
*

s   2

0/bx u    * *2

0/s s U    

submerged sediment 

mass density s   
s     /s      / 1s    

longitudinal sediment 

transport per unit width 

excluding pores 

 1 xs  *

sQ  
 1 xs

D g D





 

 

*

* */ 1

s
s

s s s

Q
Q

d g d 




 

 

The BS linear theory shows evolution and pattern of alternate bars to be primarily governed by the 

width-to-depth ratio,  , and the non-dimensional bed shear stress (or Shields parameter for sediment 

mobility),  . For the strongly simplified second-order model, the SOFD linear theory combines these two 

main controlling factors into a single interaction parameter, /s w  , defined as 
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where g  is the acceleration due to gravity and C  is the Chézy coefficient for hydraulic roughness. In the 

SOFD second-order model, the spatial damping length, 
DL , and the bar wave length, 

PL , are simple 

functions of the interaction parameter: 
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where  2

0/ 2w C g h  , 
0h  is the reach-averaged flow depth and b  denotes the degree of non-linearity 
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in the dependence of sediment transport on depth-averaged flow velocity (Mosselman, 2005). 

The linear theories reveal key thresholds for   (and, equivalently, /s w   and 
0/B h ) that separate 

different regimes of bar behaviour. Firstly, a critical width-to-depth ratio, 
cr , separates narrower or 

deeper channels where free alternate bars are suppressed from wider or shallower channels where these 

bars can grow (Colombini et al, 1987). We emphasize that this threshold holds for free bars only, because 

spatial bars can occur at width-to-depth ratios both above and below
cr . Secondly, a resonant 

width-to-depth ratio,
res , separates narrower or deeper channels where free alternate bars migrate 

downstream from wider or shallower channels where these bars migrate upstream when their amplitude is 

small, consistent with the linear approximation. Zolezzi & Seminara (2001) predict theoretically that a 

geometrical perturbation produces spatial bars downstream of this perturbation if 
res   (subresonant 

regime) and upstream if 
res   (superresonant regime). Laboratory experiments by Zolezzi et al (2005) 

confirmed this prediction, but resulted in spatial bars both upstream and downstream for 
res  , which 

was expected on the basis of an analysis of characteristics (Mosselman et al, 2006). The present paper 

addresses this upstream and downstream occurrence of spatial bars in subresonant and superresonant 

regimes numerically. 

 

3 METHOD 

 

We used the Delft3D modelling system (Lesser et al, 2004) in 2D depth-averaged mode to compute the 

evolution of the bed in the 0.6 m wide laboratory flume of Zolezzi et al (2005). The longitudinal slope 

was 0.011 m/m and the Chézy coefficient 22.5 m
1/2

/s, leading to a Froude number of 0.75 in all 

simulations. The sediment grain size was equal to 1 mm. We varied the width-to-depth ratio and the 

Shields mobility parameter by varying the discharge, Q , imposed at the upstream boundary. For each 

computation, we set the downstream water level to a value which rendered the flow uniform without 

backwater effects. The upstream sediment supply was taken equal to the sediment transport capacity at 

the upstream boundary. We applied the sediment transport formula of Meyer-Peter & Müller (1948) with 

a constant ripple factor equal to 0.7. The effect of transverse bed slopes on the direction of sediment 

transport was represented by Equation (2) with 1/ 1.9f r  . The Delft3D calibration factor, ESPIR, for 

the effect of helical flow on the direction of bed shear stress was set at 0.5. We carried out 25 

computations labelled with letters A to Y. Table 2 provides an overview with the computational settings 

and corresponding analytical parameter values calculated from Chézy’s law and the strongly simplified 

second-order model of SOFD. We also used the fourth-order model, but we present the analytical results 

from the second-order model because they can easily be reproduced by the reader, For this second-order 

model, however, values of 
PL  can be calculated only in a limited range. A more complete fourth-order 

linear model (e.g. Zolezzi & Seminara, 2001) would have provided 
PL  values for other width-to-depth 

ratios in Table 2 too. 

We compared the numerical results mainly with the results from linear analytical theories based on the 

same mathematical relations, in order to investigate the extent to which a fully non-linear model 

reproduces the predictions from linear models. A more thorough comparison with the experimental results 

of Zolezzi et al (2005) would have required more extensive calibration, involving the equifinality problem 

that different combinations of parameter values in the empirical closure relations may yield the same 

values of target quantities. 

 

4 RESULTS 

 

Figure 1 summarizes the results from all computations. The positive horizontal co-ordinates refer to the 

downstream straight reach and represent distances from the exit of the curved section. The negative 

horizontal co-ordinates refer to the upstream straight reach and represent distances from the entrance of 

the curved section. The bar heights plotted vertically have been calculated as half the difference between 

the bed level at the left bank and the right bank. The point of resonance is found to occur at 15  , 

which is higher than the occurrence around 10   predicted by the second-order linear model. 
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Furthermore, the computed bar wavelengths agree well with the values according to the linear model if 

13  , but they remain much shorter than their linear counterparts if 13  . 

 
Table 2  Overview of Delft3D simulations and corresponding analytical parameter values according to the 

SOFD second-order linear model 

 

 

Run 

 

Q  

(ℓ/s) 

 

x  

(m) 

 

y  

(m) 

 

t  

(s) 

Analytical results 

0h  

(m) 

0u  

(m/s) 
  0  /s w   regime PL  

(m) 

A 42.80 0.10 0.03 0.03 0.097 0.735 3.1 0.647 0.23 sub -- 

B 20.00 0.20 0.06 1.50 0.058 0.570 5.1 0.390 0.49 sub 8.34 

C 10.50 0.20 0.06 1.50 0.038 0.460 7.9 0.254 0.93 sub 6.17 

D 8.06 0.20 0.06 1.50 0.032 0.421 9.4 0.213 1.22 sub 5.72 

E 7.14 0.10 0.03 1.50 0.029 0.405 10.2 0.196 1.37 super 5.60 

F 7.00 0.20 0.06 1.50 0.029 0.402 10.3 0.193 1.40 super 5.58 

G 6.50 0.10 0.03 1.50 0.028 0.392 10.9 0.184 1.51 super 5.55 

H 6.05 0.20 0.06 1.50 0.026 0.383 11.4 0.176 1.62 super 5.55 

I 5.90 0.20 0.06 1.50 0.026 0.380 11.6 0.173 1.66 super 5.56 

J 5.22 0.20 0.06 1.50 0.024 0.365 12.6 0.159 1.88 super 5.76 

K 4.60 0.20 0.06 1.50 0.022 0.350 13.7 0.146 2.13 super 6.42 

L 4.22 0.20 0.06 1.50 0.021 0.340 14.5 0.138 2.32 super 7.81 

M 4.02 0.20 0.06 1.50 0.020 0.334 15.0 0.134 2.44 super 10.04 

N 3.90 0.20 0.06 1.50 0.020 0.331 15.3 0.131 2.52 super 14.30 

O 3.70 0.20 0.06 1.50 0.019 0.325 15.8 0.126 2.65 super -- 

P 3.47 0.20 0.06 1.50 0.018 0.318 16.5 0.121 2.83 super -- 

Q 3.24 0.20 0.06 1.50 0.017 0.311 17.3 0.116 3.03 super -- 

R 3.02 0.20 0.06 1.50 0.017 0.304 18.1 0.110 3.25 super -- 

S 2.82 0.20 0.06 1.50 0.016 0.297 19.0 0.106 3.48 super -- 

T 2.64 0.20 0.06 1.50 0.015 0.290 19.8 0.101 3.72 super -- 

U 2.45 0.20 0.06 1.50 0.014 0.283 20.8 0.096 4.00 super -- 

V 2.15 0.20 0.06 1.50 0.013 0.271 22.7 0.088 4.56 super -- 

W 1.87 0.10 0.03 1.50 0.012 0.259 24.9 0.080 5.25 super -- 

X 1.75 0.10 0.03 1.50 0.012 0.253 26.0 0.077 5.61 super -- 

Y 1.66 0.10 0.03 1.50 0.011 0.249 27.0 0.074 5.91 super -- 

(“sub” = subresonant, “super” = superresonant) 

 

Figures 2 and 3 show the resulting bed topographies from runs J and X as representative examples from 

the subresonant and the superresonant regime. Non-migrating alternate bars occur only downstream of the 

curved section in the subresonant run J, and both upstream and downstream in the superresonant run X. In 

each run, forced spatial bars appeared at the entrance and exit of the curve almost immediately after the 

start of the simulation. Further away from the curved section, however, the regime was initially 

dominated by migrating bars. The bars in the downstream straight reach stabilized first by gradually 

decreasing their celerity. The upstream bars, if present, took longer to develop and stabilize. Rather than 

developing at the curve first and then expanding further upstream, they formed when migrating bars of a 

higher mode (i.e. with central bars, and even with more bars per cross-section in computations on a finer 
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grid for the highest values of  ) appeared at the upstream boundary, travelled downstream and stopped 

moving upon arrival at the entrance of the curve. They then retained their positions and transformed into a 

lower-mode pattern of alternate bars that gradually increased in length before attaining a final stable 

configuration. 

 
 

Figure 1  Summary of results from all simulations (runs A-Y): computed cross-sectional bed level differences as a 

function of distance from curved section in both upstream (negative co-ordinates) and downstream (positive 

co-ordinates) straight reaches 

 

   
Figure 2  Simulation for subresonant parameter range: non-migrating bars and pools in straight reach only 

downstream of abrupt changes in channel curvature (Run J) 
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Figure 3  Simulation for superresonant parameter range: non-migrating bars and pools in straight reaches both 

upstream and downstream of abrupt changes in channel curvature (Run X) 

 

 

5 DISCUSSION 

 

The results confirm numerically that the subresonant and superresonant morphodynamic regimes are 

markedly different. Non-migrating bars and pools appear downstream of geometrical perturbations if the 

regime is subresonant (Figure 2) and both upstream and downstream if the regime is superresonant 

(Figure 3). However, two findings in the computational results differ from linear theory and hence require 

closer investigation. First, the threshold between subresonant and superresonant regimes is higher in the 

numerical computations: 15res   instead of 10res  . Second, the non-migrating bars are significantly 

shorter than predicted by linear theory (and observed experimentally) if 13  . We discuss possible 

explanations below. 

The higher value of the threshold, 
res , between subresonant and superresonant regimes may be 

explained from numerical diffusion. This can be understood by realizing that the effect of transverse bed 

slopes on sediment transport direction has a diffusive effect too, which is demonstrated by substitution of 

Equation (1) without helical flow ( 0  ) and without bed slopes in longitudinal direction ( / 0bz x   ) 

into the term for transverse sediment transport gradients in the sediment balance: 

 

  2

2

tansy sx s sx b b sx sx b
q q q z z q q z

y y y f y y y f f y

        
         

         

 
 

(6) 

 

where 
sxq  and 

syq  are the longitudinal and transverse components, respectively, of the sediment 

transport per unit width. The last term represents diffusion with a diffusion coefficient /sxq f . The 
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diffusive character of the bed slope effect in the model implies that, conversely, numerical diffusion in the 

model alters the bed slope effect. Delft3D offers the possibility of using different numerical schemes for 

updating bed levels after erosion and sedimentation. For reasons of numerical stability, we used the 

standard first-order upwind scheme which exhibits numerical diffusion in longitudinal direction, but no 

numerical diffusion in transverse direction. However, as the flow winding around alternate bars has 

components in the directions of both longitudinal and transverse co-ordinates, numerical diffusion enters 

into the transverse components of the transport gradients in the sediment balance as well. Equations (2) 

and (3) show that a stronger effect of gravity pull along transverse slopes (smaller f , larger r ) reduces 

the interaction parameter. A value apparently well above the resonant value can hence effectively be still 

below this value. We note that the fourth-order linear model predicts a higher 
res  value than 10, but 

even that value is smaller than the value of 15 observed in the numerical results. 

At least four explanations are possible for the shorter wavelengths at the highest width-to-depth ratios: (i) 

sediment stalling, (ii) limited simulation duration, (iii) numerical diffusion and (iv) nonlinear effects. We 

review each of these possible explanations below. 

Sediment stalling (i) occurs when the bed shear stress exerted by the flow falls below the critical shear 

stress for incipient sediment motion. Even at the smallest discharges in our computations, however, the 

shear stresses remained well above this threshold. Hence sediment stalling has not played any role. 

The importance of simulation duration (ii) has been demonstrated by the long-duration laboratory 

experiment and numerical computations of Crosato et al (2011). A pattern of non-migrating bars formed 

only after a very long time in straight channels without resonant width-to-depth ratio. Long durations were 

needed only in the absence of a geometrical perturbation. In situations with clear perturbations, the final 

pattern of non-migrating bars developed faster. Nonetheless, we observed in some of our computations 

that the bars were still in a process of becoming longer at the end of the simulation. The limited duration 

of our simulations hence might have contributed to finding shorter wavelengths. 

The effect of numerical diffusion (iii) can be understood in the same way as for the higher value of 
res . 

The effective interaction parameter value is lower than the apparent value, and this corresponds to shorter 

bars. Numerical diffusion thus seems to offer a plausible explanation. 

Evidence for shorter wavelengths due to non-linear effects (iv) is presented in the companion paper by 

Siviglia et al (2011). Their study suggests that an alluvial bed evolves into a non-migrating bar pattern 

with a wavelength that can be closer to that of spatial bars or that of migrating bars according to linear 

theory depending on the values of the half width-to-depth ratio,  , and the relative distance between the 

resonant value of the half width-to-depth ratio, 
res , and the critical value, 

cr , for the formation of free 

migrating bars. The wavelength becomes invariably shorter and closer to that of migrating bars, however, 

if the regime is superresonant, well away from the resonant width-to-depth ratio. The pattern tends to the 

wavelength of free alternate bars if the width-to-depth ratio becomes very large. This explanation seems 

plausible too. 

Another observation in the numerical simulations is that the upstream overdeepening developed from 

free bars that migrated in downstream direction rather than the upstream direction expected for 

superresoant conditions. It is possible, however, that the higher-mode free bars were still in the 

subresonant regime, notwithstanding the superresonant conditions for the first-mode alternate bars. 

Moreover, the theoretically predicted upstream migration of free bars in the superresonant regime applies 

only when their amplitude is small, as the upstream-migrating bars have a much smaller temporal growth 

rate than their downstream-migrating counterparts. 

 

6 CONCLUSIONS 

 

Our numerical computations confirm the essential differences between the subresonant and the 

superresonant regime. However, the threshold between the two regimes is higher than predicted by linear 

theory, and, at high width-to-depth ratios in the superresonant regime, the non-migrating bars and pools 

are shorter than predicted by linear theory (and shorter than observed experimentally too). We explain the 

higher threshold from numerical diffusion, and the shorter bars from limited simulation duration, 

numerical diffusion and non-linear effects. More research is needed to quantify the individual 

contribution of each of the possible causes identified. 
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