
Global Grasp Planning
for On-Orbit Robotic
Manipulation

Design of an analytic
grasp planning engine for
autonomous capture of
novel objects

M. Vilella Ramisa

Global Grasp
Planning for

On-Orbit Robotic
Manipulation

Design of an analytic grasp planning engine
for autonomous capture of novel objects

by

M. Vilella Ramisa

to obtain the degree of Master of Science
at the Delft University of Technology,

to be defended publicly on Monday August 30, 2021 at 2:00 PM.

Student number: 4447301

Project duration: September 1, 2020 — August 13, 2021

Thesis committee: Dr. A. Cervone, TU Delft, chair

Dr. A. Menicucci, TU Delft, supervisor

M. Zwick, M.Eng., European Space Agency, supervisor

Dr. M.J. Heiligers, TU Delft, examiner

An electronic version of this thesis is available at
http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Abstract

To manage the increasing amount of satellite traffic in orbit and renewed operational
ambitions, it is crucial to advance the capabilities of space robotic systems to enable
complex manipulability tasks. These abilities will provide the necessary components
to perform satellite de-orbiting, servicing of important assets, and assistance in on-
orbit operations.

With knowledge transfer from the terrestrial domain, the Aut-O-MAGIC research
project proposes global graspability maps based on analytic grasp quality metrics
to enable robust gripper operations without external intervention. Global graspabil-
ity maps draw parallels from terrain traversability maps in robotic navigation, which
use cost maps to plan optimised traverses ahead of time. Until now, grasping tasks
in space have only had sufficient target surface information to plan the next action,
disregarding optimisation or complex tasks that require multiple actions. The Aut-O-
MAGIC grasp planning engine provides promising graspability cost maps that indicate
populous sets of satisfactory grasps on the target object surface.

iii

Preface

This thesis marks the end of my period as a student at TU Delft, which has been a
great privilege. I would have never expected to become as integrated in Dutch culture
and life as I have, and I will look back at this student period fondly.

I would like to thank my supervisors: Martin Zwick and Alessandra Menicucci. Martin
Zwick believed in me, which was evident when he arranged for me to have a second
internship opportunity at ESTEC, and I greatly appreciate that. I feel grateful of both
Martin and Alessandra, who provided me invaluable guidance and feedback.

I would also like to thank all my colleagues at the ESA Robotics section, TEC-MMA.
My time shared with them was very fun and enriching. My experiences there are what
made me the engineer I am (about) to become.

Last, but certainly not least, I would like to thank Solenn Walstra and my family for
their unwavering support, it would have not been possible without them.

M. Vilella Ramisa
Delft, August 2021

v

Contents

List of Figures xi

List of Tables xvii

List of Acronyms xix

List of Scripts xxi

I Introduction and Overview 1

1 Introduction 3
1.1 Motivation. 3
1.2 Overview . 3
1.3 Research Objective and Scope . 4

2 Grasp Planning Pipeline Overview 7
2.1 Space Proximity Operations . 7

2.1.1 Rendezvous and Docking . 7
2.1.2 3D Imaging for Relative Navigation 11
2.1.3 Opportunities and Challenges . 13

2.2 Data Structure . 14
2.2.1 Point Cloud . 14
2.2.2 Octree . 16

2.3 Grasp Planning . 18
2.3.1 Preprocessing . 19
2.3.2 Grasp Quality Metrics . 22
2.3.3 Grasp Candidate Generation . 28

2.4 Improvement Gaps for Space Applications 28

II Framework Design 31

3 Concepts and Architecture 33
3.1 Mission Needs and System Environments. 34

3.1.1 Need and Mission statement. 34
3.1.2 System Environments . 34

3.2 Stakeholder Requirements. 35
3.2.1 The Legacy Context for Validation Tests 35
3.2.2 Stakeholder Requirements . 40

3.3 Key Performance Parameters and Acceptance Criteria 40
3.4 Concept of Operations . 42
3.5 Conclusions . 42

vii

viii Contents

4 System Design 45
4.1 Technical Requirements Definition . 45
4.2 Trade Studies . 47

4.2.1 3D Imaging Hardware . 47
4.2.2 Software Programming Framework 49

4.3 Hardware Component Selection . 51
4.4 Software Component Decomposition . 52

4.4.1 System Architecture Model . 52
4.4.2 Derived Technical Requirements . 52

4.5 Design Solution Definition . 55
4.5.1 OctoMap Grasping . 55
4.5.2 Grasp Planning Engine . 55
4.5.3 3D Model Voxelisation . 56
4.5.4 3D Model to Depth Map . 58
4.5.5 Scene Reconstruction . 58

4.6 Conclusions . 59

5 System Implementation 61
5.1 OctoMap Grasping . 61
5.2 Grasp Planning Engine . 63
5.3 3D Model to Depth Map. 66

III Framework Evaluation 67

6 System Verification 69
6.1 Envisat . 69
6.2 Dex-Net Simulations . 73
6.3 Conclusions . 79

7 System Validation 81
7.1 Experimental Setup . 81

7.1.1 The Orbital Robotics and GNC Laboratory and GRALS 82
7.1.2 Payload . 84
7.1.3 Target . 84

7.2 Trajectory . 84
7.3 Data Collection . 86
7.4 Graspability Analysis . 87
7.5 Conclusions . 91

IV Conclusions and Recommendations 95

8 Requirements Compliance 97

9 Conclusions 99

10 Recommendations for Future Work 103

Contents ix

V Appendices 105

A System Operation 107
A.1 Grasp Planning Engine . 107
A.2 3D Model Voxelisation. 109
A.3 3D Model to Depth Map. 111

B Grasp Methods Sensitivity Analysis Visualisations 113

List of Figures

1.1 Mind map illustration of uncooperative Rendezvous and Capture re-
search context . 5

1.2 Research framework ‘Autonomous Grasp Planning for Robotic Capture
of Space Objects’. 5

2.1 Gemini VIII docking to the Agena target vehicle 8
2.2 MEV-2 IR WFOV camera view at 15m away from Intelsat 10-02 in 2021 8
2.3 Operational range andmeasurement accuracies of common rendezvous

sensors, from Fehse [2]. 11
2.4 Simulation of relative pose between MEV-1 and target Intelsat 901 com-

pared with image taken by IR WFOV proximity camera 13
2.5 K4A colour image. 15
2.6 K4A IR image. 15
2.7 Computed 2D depth image form colour and IR image. 15
2.8 3D depth point cloud projected from depth image depicted in Figure 2.7. 15
2.9 A torus represented by 100, 1k, and 10k voxels. 16
2.10 Gridded voxel representation, from Gebhardt, Payzer, Salemann, et

al. [25]. 17
2.11 Sparse voxel representation, fromGebhardt, Payzer, Salemann, et al. [25]. 17
2.12 Octree voxel representation, fromGebhardt, Payzer, Salemann, et al. [25]. 18
2.13 Mind map of the aspects that play a role in the problem of grasp plan-

ning, with the aspects within the scope of this thesis work in blue back-
ground. 19

2.14 Example 2-D k-Nearest Neighbours analysis 20
2.15 The 15 unique isosurface cases in the Marching Cubes algorithm. . . . 21
2.16 Example grasp assessment ith voxel grid representation, from Hege-

dus, Gupta, and Mehrandezh [60] . 26
2.17 Three form closure grasp proposals with the rightmost not achieving

form closure, from Siciliano and Khatib [55] 27
2.18 Examples of grasps generated from four different grasp primitive shapes,

from Miller, Knoop, Christensen, et al. [34]. 27

3.1 Systems Engineering V-Model for Autonomous On-Orbit Manipulability
Analyser for Gripper Interaction Capabilities, emphasising the dual com-
ponents of decomposition and integration in the product development
process. 33

3.2 Workflow on how to run an experiment with the GRALS facility 36
3.3 Simplified topology of the considered systems in GRALS 37
3.4 GRALS hardware connectivity (communications) diagram 38
3.5 Mounting flange taken from the KR10 R1100 sixx C operating instructions 39

xi

xii List of Figures

3.6 Functional principle of GRALS operation using a remote PC 39
3.7 Maximum mass of payload, depending on its inertial distribution 39
3.8 Figures including the traversability cost maps for rover navigation in

different terrains . 43
3.9 The ‘as-is’ Environment to be addressed by the Aut-O-MAGIC system,

in red are the elements to be replaced. 44
3.10 The envisioned Aut-O-MAGIC system environment, with the green ele-

ments substituting the cooperative navigation system block. 44

4.1 Pointclouds in Intel RealSense L515 vs Microsoft Azure Kinect DK . . . 48
4.2 2D depth map and RGB image in Intel RealSense D455 48
4.3 Pugh Matrix for the software communication framework. 50
4.4 The Microsoft Azure Kinect DK time-of-flight camera 51
4.5 Software system architecture model for the Aut-O-MAGIC project. . . . 53
4.6 Gripper object displaying positively-interacting target voxels in solid green,

and negatively-interacting target voxels in red. 56
4.7 Gripper object with rays cast from its antipodal plates, as done in meth-

ods #2, #4, and #5. 56
4.8 Origin of coordinates of a gripper tree in loaded state is at the center of

the graspable region. 58

5.1 UML Class Diagram for Octomap-Grasping package. 62
5.2 Dependency graph for OcTreeGraspQuality.cpp source file. 63
5.3 Dependency graph for OcTreeGripper.cpp source file. 63
5.4 UML Class Diagram for Grasp Planning Engine package. 64
5.5 Dependency graph for gp_node.cpp source file. 65
5.6 Robotiq 2F85 gripper with graspable region between the antipodal grasp-

ing plates. 65
5.7 Simple gripper with graspable region between the antipodal grasping

plates. 65
5.8 Small frog 3D model used to generate sample outputs. 66
5.9 Example depth map output. 66
5.10 Example segmentation mask output. 66

6.1 Envisat graspability as analysed by voxel superimposition method (#1)
with Reward = 1, and Penalty = 50. 71

6.2 Local view of best grasp candidate for method #1 analysis. Grasp qual-
ity = 0.833333. 71

6.3 Envisat graspability as analysed by coplanarity of contact pointsmethod
(#5) with Bin saturation = 50 and Bin steps = 100 72

6.4 Envisat graspability as analysed by voxel superimposition + coplanarity
of contact points (#7) with Reward = 1, Penalty = 10, Bin saturation =
50, and Bin steps = 100. 72

6.5 Custom ABB YuMi Gripper used by UC Berkeley for its GQCNN and
Dex-Net projects. Graspable region (only area with padding) is approx-
imately 5 × 3 × 2 cm. 74

List of Figures xiii

6.6 Representation of the custom ABB YuMi Gripper used by UC Berkeley
for its GQCNN and Dex-Net projects. Graspable region is 5 × 3 × 2 cm. 74

6.7 Overview of the adversarial pyramid object. Its length is 0.5 m, while
the diameter ranges from 0.02 m to 0.2 m. 75

6.8 Best grasping candidate of the adversarial pyramid using the custom
ABB YuMi gripper model and grasp planning algorithm #1. Right im-
age is isolated view of target voxels (green) interacting with the gripper.
Grasp quality score = 0.608333. 75

6.9 Best grasping candidate of the adversarial pyramid using the custom
ABB YuMi gripper model and grasp planning algorithm #5. Right im-
age is isolated view of target voxels (green) interacting with the gripper.
Grasp quality score = 0.9. 76

6.10 Best grasping candidate of the adversarial pyramid using the custom
ABB YuMi gripper model and grasp planning algorithm #7. Right im-
age is isolated view of target voxels (green) interacting with the gripper.
Grasp quality score = 0.691667. 76

6.11 Global graspability map of the adversarial pyramid using the custom
ABB YuMi gripper model and grasp planning algorithm #1. 77

6.12 Global graspability map of the adversarial pyramid using the custom
ABB YuMi gripper model and grasp planning algorithm #5. 77

6.13 Global graspability map of the adversarial pyramid using the custom
ABB YuMi gripper model and grasp planning algorithm #7. 78

6.14 Best grasping candidate of the adversarial pyramid using the custom
ABB YuMi gripper model ran on the Dex-Net 4.0 GQCNN-4.0-PJ deep
learning model from UC Berkeley. Grasp quality score = 0.882. 78

6.15 Illustrated best grasping candidate of the vase object using the custom
ABB YuMi gripper model and grasp planning algorithm #7. Grasp qual-
ity score = 0.8 . 79

6.16 Best grasping candidate of the vase object using the custom ABB YuMi
gripper model ran on the Dex-Net 4.0 GQCNN-4.0-PJ deep learning
model from UC Berkeley. Grasp quality score = 0.905. 79

7.1 Overview of the test environment in GRALS, with the components la-
belled (computing equipment not in view). 82

7.2 GNC Rendezvous, Approach and Landing Simulator overview. 83
7.3 Validation test payload. 84
7.4 1:10 scaled model of Envisat used in the SIL test campaign. 85
7.5 Short-range spherical trajectory executed during the SIL tests, all units

in mm. 85
7.6 Global reconstructed point cloud complied with the K-NN outlier removal

method using the 5 and 30 nearest neighbours 86
7.7 Voxel models from single point cloud snapshots of Envisat taken at a

distance of 1.29 m, voxel leaf sizes of 0.002 m (left) and 0.005 m (right). 87
7.8 Envisat (1:10 model) reconstruction at a distance of 15.48–13.16 m,

voxel leaf size of 0.005 m . 88
7.9 Envisat (1:10 model) reconstruction at a distance of 8.39–6.07 m (left),

and 6.02–3.70 m (right), voxel leaf size of 0.005 m. 89

xiv List of Figures

7.10 Envisat (1:10 model) reconstruction at a distance of 3.66–1.34 m (left),
and 1.29–0.82 m (right), voxel leaf size of 0.005 m. 89

7.11 Global grasp planning of Envisat (1:10 model) reconstructed from a sin-
gle point cloud snapshot at a distance of 1.29 m (left) and 10 snapshots
at a distance of 1.29–0.82 m (right), voxel leaf size of 0.002 m. 91

7.12 Global grasp planning of Envisat (1:10 model) reconstructed from a sin-
gle point cloud snapshot at a distance of 1.29 m (left) and 10 snapshots
at a distance of 1.29–0.82 m (right), voxel leaf size of 0.003 m. 92

7.13 Global grasp planning of Envisat (1:10 model) reconstructed from a sin-
gle point cloud snapshot at a distance of 1.29m (left) and 10 snapshots
at a distance of 1.29–0.82m (right), voxel leaf size of 0.004m 92

7.14 Global grasp planning of Envisat (1:10 model) reconstructed from a sin-
gle point cloud snapshot at a distance of 1.29 m (left) and 10 snapshots
at a distance of 1.29–0.82 m (right), voxel leaf size of 0.005 m. 93

7.15 Global grasp planning and best grasp candidate of Envisat without up-
scaling and maintaining the standard gripper width of 8.4 cm. Recon-
structed from 10 snapshots at a distance of 1.29–0.82 m, voxel leaf size
of 0.005 m. 93

7.16 Most graspable region of the unscaled Envisat model analysis (view-
point 1). 94

7.17 Most graspable region of the unscaled Envisat model analysis (view-
point 2). 94

A.1 UML State Diagram for the Global Grasp Planner in the case of a global
grasp analysis. 109

A.2 Envisat 3D Wavefront model. 110
A.3 Envisat binary tree (voxel) model with a leaf size of 0.0196043 m. . . . 110
A.4 UML Sequence Diagram for 3D to depth map utility. 112

B.1 R61 Mk0 viewpoint 1. 114
B.2 R61 Mk0 viewpoint 2. 114
B.3 R61 Mk1 viewpoint 1. 115
B.4 R61 Mk1 viewpoint 2. 115
B.5 R61 Mk2 viewpoint 1. 116
B.6 R61 Mk2 viewpoint 2. 116
B.7 R61 Mk3 viewpoint 1. 117
B.8 R61 Mk3 viewpoint 2. 117
B.9 R82 Mk0 viewpoint 1. 118
B.10 R82 Mk0 viewpoint 2. 118
B.11 R82 Mk1 viewpoint 1. 119
B.12 R82 Mk1 viewpoint 2. 119
B.13 R83 Mk0 viewpoint 1. 120
B.14 R83 Mk0 viewpoint 2. 120
B.15 R83 Mk1 viewpoint 1. 121
B.16 R83 Mk1 viewpoint 2. 121
B.17 R84 Mk0 viewpoint 1. 122
B.18 R84 Mk0 viewpoint 2. 122

List of Figures xv

B.19 R84 Mk1 viewpoint 1. 123
B.20 R84 Mk1 viewpoint 2. 123
B.21 R85 Mk0 viewpoint 1. 124
B.22 R85 Mk0 viewpoint 2. 124
B.23 R85 Mk1 viewpoint 1. 125
B.24 R85 Mk1 viewpoint 2. 125
B.25 R86 Mk0 viewpoint 1. 126
B.26 R86 Mk0 viewpoint 2. 126
B.27 R86 Mk1 viewpoint 1. 127
B.28 R86 Mk1 viewpoint 2. 127
B.29 R87 Mk0 viewpoint 1. 128
B.30 R87 Mk0 viewpoint 2. 128
B.31 R87 Mk1 viewpoint 1. 129
B.32 R87 Mk1 viewpoint 2. 129

List of Tables

2.1 Historical comparison of uncooperative autonomous capture of generic
space objects missions . 10

2.2 Overview of the characteristics of close range 3D imaging sensor tech-
nologies. 12

2.3 Typical close proximity rendezvous sensor accuracy requirements . . . 13
2.4 Comparison of storage size required inmultiple representations for high-

fidelity terrain reproduction, from Gebhardt, Payzer, Salemann, et al. [25] 17
2.5 Most influential proposals in the field of grasp planning. Extracted from

academic.microsoft.com in August 2020. 22
2.6 Most influential publications using empirical approaches for grasping

unknown objects . 23
2.7 Collection of linear and non-linear features relevant to spatial histogram

grasp quality analysis. 26

3.1 Stakeholders and their roles for the Aut-O-MAGIC project. 35
3.2 Aut-O-MAGIC Key Performance Parameters and Performance Drivers. 41
3.3 Aut-O-MAGIC Acceptance Criteria. 41

4.1 State-of-the-art camera-type 3D sensors specification trade-off 47
4.3 Overview of grasp quality methods proposed for the Aut-O-MAGIC project. 57

6.1 Parameter matrix of the parameters used for the qualitative analysis of
Envisat. 70

7.1 Trajectory segments used for surface reconstruction. 87
7.2 Reconstructed voxel models from point cloud data at different distances

from the target. 88
7.3 Results of the validation analyses of Envisat at different leaf sizes (reso-

lutions). Envisat was reconstructed from a single point cloud snapshot
at 1.29 m distance and a set of point cloud snapshots at 1.29–0.82 m
distance. 90

8.1 Technical requirements compliance list. 97

A.1 Command-Line Interface arguments for the Grasp Planning Engine en-
try point. 108

xvii

List of Acronyms

Aut-O-MAGIC Autonomous On-Orbit Manipulability Analyser for Gripper Interaction
Capabilities.

BBX Bounding Box.

CLI Command-Line Interface.

COTS Commercial Off-The-Shelf.

ESA European Space Agency.

FOV Field Of View.

FPS Frames Per Second.

GDB GNU Debugger.

GNC Guidance Navigation and Control.

GPS Global Positioning System.

GRALS GNC Rendezvous, Approach and Landing Simulator.

GUI Graphical User Interface.

I/O Input/Output.

ICP Iterative Closest Point.

IMU Inertial Measurement Unit.

IR Infra-red.

K-NN k-Nearest Neighbours.

K4A Azure Kinect DK.

KPP Key Performance Parameters.

LIDAR Laser Imaging, Detection, and Ranging.

MEV-1 Mission Extension Vehicle 1.

MEV-2 Mission Extension Vehicle 2.

xix

xx List of Acronyms

NFOV Narrow Field of View.

OOD Object-Oriented Design.

ORGL Orbital Robotics and GNC Laboratory.

PCL PointCloud Library.

PLC Programmable Logic Controller.

RGB Red Green Blue additive color model.

RGB-D RGB-Depth (Time-of-flight).

ROS2 Robot Operating System 2.

RvD Rendezvous and Docking.

RvD/B Rendezvous and Docking/Berthing.

RvD/C Rendezvous and Docking/Capture.

SIL Software-In-the-Loop.

SLAM Simultaneous Localisation and Mapping.

UML Unified Modelling Language.

WFOV Wide Field of View.

List of Scripts

5.1 Contents of intrinsic camera parameters output file virtualcam.intr 66
6.1 Intrinsic camera parameters for the PhotoNeo Phoxi S. camera used to

train the CQCNN-4.0-PJ model . 73
A.1 3D model voxeliser pipeline (pseudo-Bash commands) 110

xxi

I
Introduction and Overview

1

1
Introduction

1.1. Motivation
In the present day, it has become increasingly common to perform space Rendezvous
and Docking/Berthing (RvD/B) manoeuvres using either manual control or through
discrete-event controllers. Nevertheless, manual control exposes the operators to
danger; while sequenced controllers require either well-defined environments or a
cooperative target. Examples of sequenced controllers with well-defined environ-
ments are the Space Shuttle’s Rendezvous and Docking capabilities, that used the
TriDAR 3D sensor, and ESA’s CX-OLEV mission extension vehicle concept. Mean-
while, the Soyuz/Progress Kurs docking navigation system relies on docking to coop-
erative targets. Platform independence from the target spacecraft’s architecture can
be achieved by using a gripper to grasp the target from a convenient point (i.e. the
nozzle) in so-called capture manoeuvres. This allows using a range of non purpose-
built surface features as contact locations such that a successful mating of the two
objects is not constrained by docking interface compatibility. The increasing interest
in satellite robotic operations clearly shows that a system capable of performing an
autonomous rendezvous and capture of a novel (never-seen-before) space object can
prove advantageous in terms of cost, schedule, and reliability.

Current methods for autonomous RvD/C used by industry rely on preprogrammed
instructions by the engineers. These instructions determine the gripping point on the
target vehicle, as well as an approach strategy that meets a series of preconceived
requirements tailored to a specific target vehicle. Evidently, this requires prior knowl-
edge of the target spacecraft. To achieve unsupervised rendezvous and capture with-
out any prior knowledge of the targets geometric characteristics, it becomes important
to develop cognitive systems capable of systematically perceiving relevant features
from the target body that can be used as gripping points. This is the main goal of this
project.

1.2. Overview
Consider a servicing spacecraft that is to perform maintenance on a malfunctioning
satellite. To rendezvous and successfully capture the target satellite as a preparation
for the repair work, it requires knowledge of its relative pose and target contact location

3

4 1. Introduction

for capture. While the relative pose can be obtained by multiple means, such as with
GPS transceivers on both satellites in the case of a cooperative target satellite, it must
be determined without relying on any instruments on the other satellite when dealing
with a uncooperative (unresponsive) satellite. Similarly, the contact location for cap-
ture on the target can normally be determined a-priori by using production 3D models
of the satellite or analytically by the mission control team using images from the servic-
ing spacecraft. These methods, however, require up to date knowledge of the surface
geometric characteristics of the target or continuous communication with the mission
control team. These limitations justify the development of a solution that enables lo-
cal grasp planning of satellites for which we do no longer possess accurate surface
geometric information. The solution proposed in this thesis is named Autonomous
On-Orbit Manipulability Analyser for Gripper Interaction Capabilities (Aut-O-MAGIC).

Although grasp planning could be performed using two-dimensional images, 3D re-
construction of the scene is necessary to determine relative pose between the chaser
and the target satellite. Relative pose estimation is crucial to effectively rendezvous
and capture an uncooperative satellite, as there is no communication that can other-
wise provide the missing relative positioning information. Therefore, in this thesis only
3D imaging techniques are considered.

1.3. Research Objective and Scope
The research context, illustrated in Figure 1.1, covers all the elements that comprise
the topic of uncooperative rendezvous and capture. In short, an autonomous, unco-
operative, RvC can be envisioned as a system that is capable of sensing the envi-
ronment (using sensors), and acting upon it (via actuators) with the goal of mating
a chaser space vehicle with its target. To act on the environment based on the sen-
sor input, it is necessary to process said input and then fit it into a control strategy
that converts it into actuator commands. The processing step consists on building a
3D model of the target using sensor data. This model enables grasp location plan-
ning and relative pose estimation, which are used as inputs to the control strategy.
This control strategy comes in the form of Guidance Navigation and Control (GNC)
functions. These GNC functions are normally designed as discrete-event controllers,
which translate the processed input into actuator commands differently depending on
the current event. These events are categorised depending on the approach con-
straints and the phase of the RvC the chaser vehicle is currently in (dependant on the
relative distance).

In this context, research questions were devised that are to be answered in reach-
ing the project goal using a systematic approach based on procedural discovery of
the research framework of the project and using the SMART principle. The resulting
research framework is depicted in Figure 1.2 and defined as follows:

A study of the various aspects of the research project, from empirical data
of previous robotic missions and the consultation of scientific knowledge,
yields the list of requirements and the validation procedures, by means of
which the novel autonomous grasp planning algorithmwill be evaluated. A
confrontation of the results of these evaluations conclude with recommen-
dations for developing a capture system with autonomous grasp planning.

1.3. Research Objective and Scope 5

Uncooperative
Rendezvous
and Capture

Approach
constraints

Target contact
location

Disturbances

Collision
avoidance

Sensors

Close range
(<5m)

Mid range
(5-200m)

Far range
(>200m)

GNC functions

CaptureRendezvous

Phases

Close range
rendezvous

Far range
rendezvous

Phasing

Launch

Capture

Actuators

Thrusters

Reaction
wheels

Capture
mechanism

Computer
vision

Pose
estimation

Grasp planning

Contact

Fuel cost

Figure 1.1: Mind map illustration of uncooperative Rendezvous and Capture research context. In blue
are the elements treated in this thesis.

Theory on 3D pose
estimation

Theory on spacecraft
proximity operations

Study of historic
robotic RvD missions

Preliminary research

List of requirements

Results of analysis

Novel autonomous
grasp planning

algorithm

Theory on grasp
planning

Recommendations

Results of tests

Validation procedures

Figure 1.2: Research framework ‘Autonomous Grasp Planning for Robotic Capture of Space Objects’.

6 1. Introduction

From the identified knowledge gaps in literature and the research framework, the
central question to be solved with the completion of this thesis project is:

Howcan theperformanceof current analytic autonomousgrasp
planning methods for terrestrial applications be improved to
enable robust on-orbit grasp planning of uncooperative novel
satellites?

This is then broken down into parts and sub-parts, which correlate to the divisions
depicted in the research framework:

1. What requirements are relevant for evaluating the performance of an autonomous
space grasp planning system?

(a) Which resolution is required to achieve good results?
(b) What noise levels does the system need to reliably operate under?
(c) What constitutes a successful grasp?

2. Which validation procedures most truthfully recreate the operating conditions of
the system in space?

3. How can geometric matching using 3D maps provide a performance advantage
compared to image-based analyses?

(a) What are the limitations of image-based grasp planning?
(b) How does the computational efficiency of both methods compare?
(c) Do less-occluded 3D maps provide a robust knowledge advantage over

single-view depth images?

2
Grasp Planning Pipeline Overview

To justify the design effort of this thesis, this chapter treats the background and current
state-of-the-art in space proximity operations and grasp planning. On the closing sec-
tion, a conclusion on the improvement gaps available for on-orbit grasping operations
is presented.

2.1. Space Proximity Operations
Space proximity operations encompass sensing, control, and actuation technologies
to enable the overall activity. Because of the contents and scope of this thesis, we
focus on the final phase of the rendezvous and its associated short-range sensors.
Space proximity operations have historically not attempted to perform all the aspects
involved in uncooperative autonomous capture of generic space objects, which war-
rants a discussion on the opportunities and challenges associated with performing all
those aspects.

2.1.1. Rendezvous and Docking
Space rendezvous and docking operations are a key technology necessary for most
missions that require interaction of multiple space objects. The first operation of this
type was performed on the 16th of March 1966 during the Gemini VIII mission by
successfully docking an active vehicle, commonly called the chaser, with a stabilised
passive target (Figure 2.1). Since then, this technique has been used by numerous
programs, including other Gemini missions (1966), Apollo (1968–1972), Salyut (1971–
1986), Skylab (1973–1974), Apollo/Soyuz (1975), Mir (1986–2000), ISS (2000–), and
Tiangong (2012–2019) programs [1]–[4]. In the topic of uncooperative rendezvous
and capture, missions that either achieved an uncooperative docking, or performed
capture without a docking interface are considered to be of relevance. An uncoop-
erative docking is defined as a docking without visual aids, communication, or active
attitude control of the target spacecraft.

Unlike the United States, which usedmanual piloted docking throughout the Apollo,
Skylab, and Space Shuttle programs, the Soviet Union employed automated docking
systems from the beginning of its docking attempts. An exception to this practice
was the mission Soyuz-T 13, where the crew manually docked with the inert Salyut 7

7

8 2. Grasp Planning Pipeline Overview

Figure 2.1: View from the nose of Gemini VIII as it approaches the docking collar of the Agena target
vehicle as Neil Armstrong and David Scott complete the world’s first Rendezvous and Docking between
two spacecraft in orbit. Credits: NASA/David Scott.

Figure 2.2: MEV-2 IR WFOV camera view at 15m away from Intelsat 10-02 in 2021 [5].

2.1. Space Proximity Operations 9

space station with the goal of repairing it [6]. This is the first time an uncooperative
RvD was ever performed. Since then, only one other mission ever performed an
uncooperative docking with another spacecraft. The Orbital Express mission was
executed in 2007 by the United States and DARPA with the goal of demonstrating the
technology necessary for on-orbit servicing. This included autonomous rendezvous
and capture, subsystem replacement, refuelling, and an autonomous fly-around visual
inspection [7]. The only pitfall of this mission compared to an complete implementation
of on-orbit servicing is that the target satellite used was specifically designed for this
mission and therefore was optimised for robotic capture.

Meanwhile, there is a higher number of missions that conceptualised or executed
a robotic capture of a cooperative target. The first ever series of cooperative robotic
captures were executed by Space Shuttle crews, starting with the repair of the So-
larMax satellite in 1984 and, subsequently, the Hubble Servicing missions, performed
between 1993 and 2009 [2]. Since then, only the Mission Extension Vehicle 1 (MEV-1)
and MEV-2 from Northrop Grumman have carried out a cooperative robotic capture.
In February 2020 MEV-1 successfully docked with a telecommunications satellite tak-
ing over its attitude control and orbit maintenance functions [8]. In April 2021, MEV-2
also accomplished docking (Figure 2.2). In contrast with the 2007 Orbital Express
mission, this was the first time a satellite robotic capture was performed with a satel-
lite that was not designed with docking in mind. Further conceptual robotic capture
vehicles that never made it to orbit or are still in the development phase include the
ESA co-funded ConeXpress orbital life extension vehicle and its subsequent adapta-
tion as SMART-OLEV, and the Swiss ClearSpace One debris removal vehicle (to be
launched by 2025). In Table 2.1, these missions are tabulated with an overview of
their similarity to this thesis goal and their relevant system architecture.

In practical terms, a rendezvous and capture mission can be divided into a num-
ber of phases. These are: launch, phasing, far range rendezvous, close range ren-
dezvous, and capture [2]. Up to the completion of far range rendezvous, the goal
effectively lies on transferring the chaser vehicle to the vicinity of the target spacecraft
using absolute navigation and far range relative navigation sensors. The transfer tra-
jectory must also take into consideration the approach strategy chosen for close range
rendezvous. The two most common approaches are to begin proximity operations
from a stable point on V-bar (along the target velocity vector) or to perform a double
co-elliptic approach. These approaches have different advantages: the first gives the
opportunity to pause the approach without fuel consumption and reassess the situa-
tion before close range rendezvous, while the double co-elliptic approach transfers
the chaser to a Natural Motion Circumnavigation relative orbit around the target that
permits inspecting the satellite from a 360° perspective [15].

Once the chaser reaches a relative distance of 100–200m proximity operations
can begin. In the proposed scenario of uncooperative rendezvous and capture, this
results in using the 3D imaging sensors to perform accurate pose estimation as well
as to develop the model of the target vehicle required for grasp planning.

When the contact location has been decided and the rendezvous conditions are

1It is important to note that although the ClearSpace One system does capture the target object, it
does so in a rudimentary way that would not allow for servicing or interaction with said vehicle beyond
towing

10 2. Grasp Planning Pipeline Overview

Table 2.1: Comparison of relevant missions in the research context of uncooperative autonomous
capture of generic space objects. The generic target qualifier conveys that the approaching spacecraft
can perform capture independently of the surface characteristics of the target vehicle (i.e. the gripping
interface is not tailored to the target).

Vehicle Launch
date

U
nc
oo
pe
ra
tiv
e

Au
to
m
at
ed

R
ob
ot
ic
C
ap
tu
re

G
en
er
ic
ta
rg
et

System architecture Ref.

Space
Shuttle

1984–
2009 X X 6-DOF robotic arm; elbow, wrist

and side-viewmonocular cameras [9]

Soyuz-T 13 1985 X Manual control levers, axial video
camera, and docking periscope [6]

Orbital
Express 2007 X X X

6-DOF robotic arm, force/torque
sensor, monocular camera at end
effector, and grapple fixture on the
target

[10]

ConeXpress
N/A
(2007
study)

X X

Purpose-designed gripping sys-
tem, close+mid+far range monoc-
ular camera set, and ground-
based image processing

[11]

SMART-
OLEV

N/A
(2008
study)

X X

Purpose-designed gripping sys-
tem, near field stereo camera, illu-
mination system, laser and induc-
tive capture sensors, and ground-
based image processing

[12]

MEV-1,
MEV-2

2019,
2020 X X

Purpose-designed gripping sys-
tem with WFOV IR and NFOV vi-
sual optical sensors

[5],
[8]

ClearSpace
One ≈2025 X X X1 X Conical collapsible net and un-

specified optical RvC sensor
[13],
[14]

2.1. Space Proximity Operations 11

favourable (Sun illumination vector, relative pose) close range rendezvous can con-
tinue. Through a closed-loop GNC algorithm, the spacecraft approaches the target
until capture. Depending on the approach strategy, this can be performed through a
straight line motion or by gradually decaying the circumnavigating relative orbit. Both
strategies are possible because the commonly applicable approach corridors (manda-
tory straight line final approaches for safety) are not required when docking a robotic
spacecraft with an unmanned uncooperative target. However, as the field of view of
the rendezvous sensor is also limited (usually ±15 deg), it puts a comparable con-
straint on the trajectory design [2]. Final approach and capture is typically performed
at speeds of 30-60mm/s such that potential plume impingement and momentum ex-
change at contact is minimised [16].

2.1.2. 3D Imaging for Relative Navigation
Proximity relative navigation in space has been historically performed with monocular
and stereo cameras in the IR and visual spectrum (Table 2.1). This is reasonable,
because optical sensors are advantageous compared to laser rangers or radars due
to their higher accuracy at close ranges. In Figure 2.3, the suitability of the different
rendezvous sensors available is clearly illustrated and shows how only optical sensors
provide sub-centimetre accuracy at close range.

Figure 2.3: Operational range and measurement accuracies of common rendezvous sensors, from
Fehse [2].

Camera-type sensors can be further divided into three solutions: monocular cam-
eras, stereoscopic cameras, and time-of-flight cameras. Monocular cameras are in-
herently two dimensional sensors, but the 3D shapes in the scene can be recovered
using multiple images via photometric stereo recovery or through a single image via
silhouette techniques such as shading analysis. An overview of the fitness for purpose
of each camera-type sensor is provided in Table 2.2. The criteria for comparison are:

12 2. Grasp Planning Pipeline Overview

• The system type: active systems emit energy in order to scan objects and are
therefore more sensitive to high background noise levels;

• The state observability: whether the sensor allows for a direct determination of
the state of a target;

• The point cloud density: dense methods versus point-based “sparse” density;

• The accuracy: precision on the determination of the state of the target;

• The observable range: distance from which depth can be determined.

Table 2.2: Overview of the characteristics of close range 3D imaging sensor technologies.

Sensor technol-
ogy Type

State
observ-
ability

Point-
cloud
density

Accuracy Observable
distance Ref.

Monocular vision Passive Partial Dense Low Medium [17]

Stereoscopic
vision Passive Full Dense Medium Medium [18]

Time of flight cam-
era (RGB-D) Active Full Dense Medium Short [19],

[20]

LiDAR Active Full Sparse High Long [21]

In Table 2.3, the typical pose determination requirements for a RvD mission are
tabulated. These are obtained from the (1 − 𝜎) requirements of the Orbital Express
Advanced Video Guidance Sensor [22] and largely match the generic (3 − 𝜎) RvD
accuracy guidelines presented by Mitchell [15]. Other sensors in automated RvD ve-
hicles, such as the Videometer in the European ATV, are shown to easily meet and
surpass these requirements [23]. It is worth noting, however, that these requirements
stem from missions that had knowledge of the target’s geometric characteristics and
had visual aids on the target to assist with the relative pose estimation. In the case
of an uncooperative rendezvous of a target without pre-existing geometric information
these requirements may be more difficult to achieve.

2.1. Space Proximity Operations 13

Table 2.3: Typical close proximity rendezvous sensor accuracy requirements. A single sensor is not ex-
pected to cover the entire operational envelope. Obtained from the requirements of the Orbital Express
Advanced Video Guidance Sensor [22] and validated against the guidelines proposed by Mitchell [15].

Range [m] Distance Accuracy [m] Roll [deg] Pitch, Yaw [deg]

[1, 3)2 ±0.012 ±0.13 ±0.20
[3, 5) ±0.035 ±0.25 ±0.33
[5, 10) ±0.150 ±0.45 ±0.70
[10, 30) ±0.150 ±0.45 ±0.70
[30, 50) ±0.400 ±0.45 ±1.20
[50, 100) ±1.666 ±0.50 ±2.40
[100, 300) ±15.000 ±1.40 ±7.00

Figure 2.4: Simulation of relative pose between MEV-1 and target Intelsat 901 compared with image
taken by IR WFOV proximity camera [8].

2.1.3. Opportunities and Challenges
Grasp planning for space applications has a set of distinct opportunities and chal-
lenges compared to grasp planning applied to terrestrial applications. In space, we
are able to obtain dense geometric surface information of the grasping target. This
is distinctively possible due to the free-floating dynamics of space which gives the
chaser the ability to circle around the target and obtain a complete 3D model. Never-
theless, grasping also requires accurate surface mapping, matching a resolution of at
2[first, last) Is used to indicate whether the range includes or excludes the number, respectively. I.e.
[1,5) = 1, 2, 3, 4

14 2. Grasp Planning Pipeline Overview

least 10cm to enable grasping of primitive shapes (given a standard grasping width of
20cm), and a higher resolution for thin graspable structures. Satisfactory resolution is
more challenging to obtain in the space environment than in terrestrial applications due
to the changing environmental conditions, such as lighting conditions, availability of
suitable sensors for space applications, and very high reflectivity of some surfaces in
satellites—which decrease performance of some sensors such as time-of-flight cam-
eras. Lastly, because satellites are highly valuable, careful selection of grasping point
is warranted to avoid damaging sensitive surfaces or instruments. This imposes a
challenge that is material recognition and/or sub-system segmentation to filter out
grasp candidates in fragile areas.

2.2. Data Structure
When obtaining 3D measurements from the on-board sensors, it is often advanta-
geous to compile them into a 3D map. This allows for analyses that require more than
just what the sensors see at that immediate instance. Some examples are volumetric
analyses, global grasp planning, and Simultaneous Localisation and Mapping (SLAM)
algorithms.

There are two common ways of representing data in 3D space: 3D points in a
point cloud, and voxels on a regular grid in 3D space. Sometimes polygons can also
be used to describe 3D shapes, but they are only worthwhile for simple homogenous
structures and they have to be generated through computationally expensive surface
reconstruction algorithms. This work focuses on 3D mapping for space applications,
where shapes are large and complex. Therefore, polygon representations can be
safely disregarded.

2.2.1. Point Cloud

Point clouds are discrete 3D measurement points that can be collected from a variety
of sensors, such as laser range scanners, stereo cameras, or depth cameras. De-
pending on the sensor used these points may possess more or less attributes. In
the case of laser range scanners, their only properties are X, Y, and Z position. With
camera-based sensors, it is possible for them to also contain colour information. Fig-
ure 2.8 depicts a point cloud generated in the Orbital Robotics and GNC Laboratory
at ESA/ESTEC using the Azure Kinect DK (K4A) depth camera (see Figure 2.5 to
Figure 2.7). It can be observed how there are occlusions caused by the viewpoint
used and low reflectivity of some materials. These shortcomings can be remedied
by capturing multiple snapshots and stitching them together, which is be described
in subsection 4.5.5. Point clouds are the data that can be directly obtained from 3D
sensors. Other 3D representations require processing to convert them from the point
cloud representation. Point clouds are unorganised, discrete, non-equidistant, 3D
representations. However, they store the raw observation from the sensors. As such,
they can never be disregarded and for some applications they may be the optimal
data representation.

2.2. Data Structure 15

Figure 2.5: K4A colour image.
Figure 2.6: K4A IR image. Figure 2.7: Computed 2D depth

image form colour and IR image.

Figure 2.8: 3D depth point cloud projected from depth image depicted in Figure 2.7.

16 2. Grasp Planning Pipeline Overview

2.2.2. Octree
Voxels can be envisioned as volumetric (3D) pixels. They occupy a cubical space
of a certain size, and can encode any information within them, physical or otherwise
(colour, opacity, density, location, etc). They are usually generated from point clouds,
and their utility is threefold:

1. Provide ability to adapt 3D map resolution to performance/cost requirements
through down-sampling.

2. Rasterise3 3D map representation to simplify the dataset and obtain equidistant
sampling (point clouds may have uneven point set density) [24].

3. Organise the data by indexing the un-organised point set into the generated
voxels in a tree structure [24].

Figure 2.9 illustrates how the resolution affects the details observable in a curved
object, such as a torus. As it can be observed, the characteristics of the object are
greatly disturbed by low resolution representations. For this reason, different voxel
models exist [24]:

• Gridded voxel model: depicted in Figure 2.10, this model slices the workspace
into voxels of equal sizes, regardless of their internal properties (or lack of).

• Sparse voxel model: depicted in Figure 2.11, this model only generates voxels
of a predefined size for regions that contain information.

• Octree voxel model: depicted in Figure 2.12, this model combines neighbouring
voxels of identical properties into a single, larger, voxel. It is generated procedu-
rally top-down, with each large voxel dividing into eight children voxels if certain
conditions are met (such as number of data points within the voxel volume).

Figure 2.9: A torus represented by 100, 1k, and 10k voxels.

These voxel models have different storage size constraints, described in Table 2.4,
which are part of the trade-off to perform in the selection of the optimal voxel model
for a given application.

3Rasterisation in this context is the process of computing the mapping from scene geometry with irreg-
ular density distributions to regularly-spaced measurements

2.2. Data Structure 17

Table 2.4: Comparison of storage size required in multiple representations for high-fidelity terrain re-
production, from Gebhardt, Payzer, Salemann, et al. [25]. UPC Points are the packaged point cloud
files that needs to be imported into the algorithm.

Terrain Model Storage size [MB]

UPC Points 184

ASCII Point cloud 267

Polygonal/TIN 126

Gridded Voxel 1,600

Sparse Voxel 3.0

Octree Voxel 6.8

Figure 2.10: Gridded voxel representation, from Gebhardt, Payzer, Salemann, et al. [25].

Figure 2.11: Sparse voxel representation, from Gebhardt, Payzer, Salemann, et al. [25].

18 2. Grasp Planning Pipeline Overview

Figure 2.12: Octree voxel representation, from Gebhardt, Payzer, Salemann, et al. [25].

2.3. Grasp Planning
Grasp planning is a fundamental problem in autonomous systems that intend to ma-
nipulate external objects in a dexterous way. It is considered to be a difficult problem
due to the large amount of possible hand configurations as well as the limited and
likely imperfect knowledge of target object properties such as shape, pose, material,
and mass. The mind map depicted in Figure 2.13 presents all the aspects that play a
role in grasp planning. These are:

• Grasp quality metrics: metrics that quantify the probability of success of a certain
candidate grasp.

• Grasp quality attributes: distinction between quality metrics that are attributed
to the object as a whole (i.e. center of mass) and local ones that only depend on
a part of the object (i.e. shape of the surface).

• Grasp candidate generation: way used to instantiate the grasp candidates. It
can influence the speed and quality of the grasp planning.

• Preprocessing: techniques to increase the robustness of the grasp planner.

• Object features: information used to determine the quality of a certain grasp
candidate. Multiple sources of information can also be combined to yield a multi-
modal analysis.

• Prior object properties knowledge: the availability of an a priori model of the tar-
get object can greatly influence the methodology used in grasp quality analyses.

Of the aspects presented above, the grasp quality metrics are themost critical. The
other aspects can largely be seen as characteristics of these grasp quality metrics or
requirements for the system. These grasp quality metrics can be classified depending
on their design approach. Quality metrics determined through empirical (experience-
based) methods require large amounts of training data and significant training time,
while analytic (rule-based) methods are dependent on the quality of the hand-crafted
success metrics and can become computationally expensive due to iteration over nu-
merous grasp candidates. Due to the vast problem space present in grasp planning,

2.3. Grasp Planning 19

this thesis work does not try to treat all the aspects mentioned, but focus on the one
with the largest improvement gap for space robotics: grasp quality metrics. The as-
pects treating grasp candidate generation and preprocessing are also touched upon
to a lesser degree as they will contain design decisions for the grasp planning algo-
rithm to be developed. The remaining aspects are merely the selected approaches to
solve the problem, as described in previous sections, and do not impose restrictions
on the design itself.

Grasp planning

Object features

2D

3D

Multi-modal

Preprocessing

InpaintingTexture filtering

Noise filtering

Grasp quality
metrics

AnalyticEmpirical

Grasp candidate
generation

Model-based
analysis

Image-based
analysis

Optimised
instantiation

Randomised
instantiation

Prior object
properties
knowledge

Unavailable

Not accurate /
Partial

Available

Grasp quality
attributes Local

Global

Surface normal
determination

Figure 2.13: Mind map of the aspects that play a role in the problem of grasp planning, with the aspects
within the scope of this thesis work in blue background.

2.3.1. Preprocessing
Noise filtering is performed to minimise the number of outliers from sensor data incor-
porated into the reconstructed 3D model. Outliers can occur due to multiple reasons,
including dust particles in the observation area, reflections, and sensor inaccuracies.

A common approach to detect and filter outliers is the k-Nearest Neighbours (K-NN)
algorithm, which computes the distances between a certain point and the 𝑘 nearest
neighbouring points. This set of distances is then used to compute the mean 𝜇 and
the standard deviation 𝜎 of the distances. Outliers are then defined as neighbors with
a distance from the center point greater than Equation 2.1.

𝜇 ± 𝛼 ⋅ 𝜎 (2.1)

Where 𝛼 is a factor that depends on the size of the analysed neighbourhood.
In Figure 2.14, an example K-NN analysis of a 2-dimensional point set is depicted.

It can be observed how out of the 5 closest neighbors, one point is classified as an

20 2. Grasp Planning Pipeline Overview

outlier due to its detachment from the other points in the cluster.
Rusu, Marton, Blodow, et al. suggest that setting 𝛼 = 1, 𝑘 = 30 yields good results

with approximately 1% of the points classified as outliers [26].

Figure 2.14: Example 2-D k-Nearest Neighbours analysis with 𝑘 = 5, accepted neighbours in light
green, rejected outliers in dark red, and nodes not within the 5 closest neighbours in white.

Determination of surface normals from a point cloud can be done as part of the sur-
face reconstruction task or trivially obtained from a fully reconstructed surface. When
determined as part of a surface reconstruction task, there are two common robust
approaches to solve the problem of surface normal estimation in ℝ3:
1. Fit a local plane (least squares) using the k-nearest neighbors [27]. The param-

eter k can be determined experimentally, although some approaches are also
proposed by Hoppe, DeRose, Duchamp, et al. on how to determine it automati-
cally. A sensible value, which is the default in Matlab’s Computer Vision Toolbox
function4, is 𝑘 = 6.

2. Fit a local plane (least squares) with all points inside a sphere of radius r, cen-
tred on the point of interest [28]. Mitra and Nguyen describe how the estimation
error cannot be arbitrarily minimised if the point set presents noise and curva-
ture. To minimise the error bound, the radius of the sphere should be defined
as described by Equation 2.2.

𝑟 = (1𝜅 (𝑐1
𝜎𝑛
√𝜖𝜌

+ 𝑐2𝜎2𝑛))
1
3

(2.2)

Where 𝜅 is the surface curvature on the point of interest (reciprocal of the radius,
i.e. 𝜅 = 1

𝑅), 𝜎𝑛 is the noise, 𝜖 is some small positive number complimentary of the
probability that our prediction is within bounds (i.e. probability is at least 1−𝜖), 𝜌 is the
density of the point cloud, and { 𝑐1, 𝑐2 } are some small constants depending only on
the distribution of the point cloud. Below are the conclusions that can be drawn from
the above equation for scenarios with high/low noise, curvature and sampling density:

• Low noise or high curvature: 𝑟 → 0.

• High noise or low curvature: 𝑟 → ∞.

• High point cloud density: 𝑟 ≈ 𝑐2(
𝜎2𝑛
𝜅)

1
3
.

4https://www.mathworks.com/help/vision/ref/pcnormals.html

https://www.mathworks.com/help/vision/ref/pcnormals.html

2.3. Grasp Planning 21

• Low point cloud density: 𝑟 ≈ 𝑐1(
𝜎𝑛
√𝜖𝜌
)
1
3
.

Lastly, as two proposed approaches for determining the surface normals only dif-
fer in the selection of neighbouring points, they can be both formally defined as fol-
lows [28]:

Given a set of k points 𝑝𝑖 , 1 ≤ 𝑖 ≤ 𝑘, let:

M = 1
𝑘

𝑘

∑
𝑖=1
𝑝𝑖𝑝𝑇𝑖 − 𝑝̄𝑝̄𝑇 (2.3)

Where 𝑝̄ = 1
𝑘 ∑

𝑘
𝑖=1 𝑝𝑖. Then, the surface normal to the least squares plane formed by

this set of k points is the eigenvector corresponding to the minimum eigenvalue of M.
When determining the surface normals from a voxelised representation, a choice

must bemade on the breadth of neighbouring voxels to consider. More neighbours will
increase the smoothness of the normal field, which inherently reduces noise. However,
if the resolution of the voxel 3D map is not significantly higher than the resolution
required, this could erroneously determine the normal vector of thin surfaces. In this
work, the resolution available is not abundant, so two methods that only consider the
immediate neighbours are considered:

• Marching Cubes: generate isosurfaces for every neighbouring voxel relative to
the queried point and merge adjacent ones, generating a isosurface normals set
up to 15 (unique) cases long, depicted in Figure 2.15 [29];

• Neighbourhood center of volume: given a voxel is on the surface of the model
(< 26 neighbours), find the pointing vector connecting the center of the queried
voxel to the center of volume of the occupied voxel neighbourhood.

Figure 2.15: The 15 unique isosurface cases in the Marching Cubes algorithm.

22 2. Grasp Planning Pipeline Overview

2.3.2. Grasp Quality Metrics

The current state-of-the-art in grasp planning is tabulated in Table 2.5. It can be ob-
served how popular methodologies span almost all existing methodologies (relating
back to the grasp planning mind map depicted in Figure 2.13). This implies that there
is no globally optimal grasp planning method and the performance of one over another
one is highly dependant on the task at hand. For the purpose of grasp planning of a
novel (generic) object, Bohg, Morales, Asfour, et al. in 2014 performed an exhaustive
survey of the state of the art of empirical methods. The results of the survey are tabu-
lated in Table 2.6 and show an absolute preference for analytic grasp quality metrics
over other empirical solutions5. This further strengthens the hypothesis that optimal
grasp planning method depends on the task at hand.

Table 2.5: Most influential proposals in the field of grasp planning. Extracted from aca-
demic.microsoft.com in August 2020.

Author Year Citation
count Methodology

Nguyen [31] 1988 1253 Analytic → Force closure

Ferrari and Canny [32] 1992 957 Analytic → Force closure

Lenz, Lee, and Saxena [33] 2015 835 Empirical → Human labels

Miller, Knoop, Christensen, et
al. [34] 2003 756

Analytic → Spatial histogram
features + Hill-like 3D sur-
faces

Redmon and Angelova [35] 2015 353 Empirical → Human labels

Jiang, Moseson, and Sax-
ena [36] 2011 277 Analytic → Shape segmenta-

tion with graspability metrics

Mahler, Liang, Niyaz, et
al. [37] 2017 246 Empirical → Human labels

Zeng, Song, Yu, et al. [38] 2018 167 Empirical → Human labels

5Strictly speaking, the methodology used is empirical: it uses simulated trials to encode the analytic
grasp quality metrics into the algorithm. However, encoding the analytic metrics into an empirical
method is merely done to obtain run-time performance improvements, so the unanimous usage of
analytic quality metrics remains an interesting trend

2.3. Grasp Planning 23

Table 2.6: Most influential publications using empirical approaches for grasping unknown objects,
adapted from Bohg, Morales, Asfour, et al. [30] (2014) to match the vocabulary used in this thesis
and include the publication years.

Grasp
quality

attributes

Object
features

Grasp
quality
metrics

Author Year Lo
ca
l

G
lo
ba
l

2D 3D M
ul
ti-
m
od
al

An
al
yt
ic

H
um

an
la
be
ls

Tr
ia
ls

Kraft, Pugeault, Baseski, et al. [39] 2008 X X X

Popovic, Kootstra, Jorgensen, et
al. [40] 2011 X X X

Bone, Lambert, and Edwards [41] 2008 X X X

Richtsfeld and Vincze [42] 2008 X X X

Maitin-Shepard, Cusumano-
Towner, Lei, et al. [43] 2010 X X X

Hsiao, Chitta, Ciocarlie, et al. [44] 2010 X X X X

Brook, Ciocarlie, and Hsiao [45] 2011 X X X X

Bohg, Johnson-Roberson, Leon, et
al. [46] 2011 X X X

Stueckler, Steffens, Holz, et al. [47] 2011 X X X

Klingbeil, Rao, Carpenter, et al. [48] 2011 X X X

Maldonado, Klank, and Beetz [49] 2010 X X X

Marton, Pangercic, Blodow, et
al. [50] 2010 X X X

Lippiello, Ruggiero, Siciliano, et
al. [51] 2013 X X X

Dune, Marchand, Collowet, et
al. [52] 2008 X X X

Kehoe, Berenson, and Gold-
berg [53] 2012 X X X

Morales, Sanz, Pobil, et al. [54] 2006 X X X

In contrast with empirical methods, analytic approaches to determine grasp qual-
ity scores provide traceability of the criteria that determined whether a certain grasp

24 2. Grasp Planning Pipeline Overview

candidate was good or not. Analytic approaches are beneficial in cases like space
robotics, where determinism is important and the consequences of a poorly executed
grasp can be high. Furthermore, these provide a level of generalisation that allows
grasps to be well identified even in the absence of prior knowledge of the target’s
shape. For these reasons, analytical grasp methods are the considered approach for
this thesis work.

There are four primary analytical methods for grasp analysis, namely:

• Spatial histogram features: histograms applied to image recognition tasks
which, instead of evaluating the distribution of the image as a whole, they divide
it and evaluate the patches separately. This division allows for the preserva-
tion of some local information in the images, which can provide insight into the
graspability of a certain area in multiple ways. Popular features for graspability
analysis are tabulated in Table 2.7;

• Geometric shape matching: the grasping candidate can be geometrically eval-
uated by determining whether the bodies are unacceptably colliding against
each other and whether the gripper contact points are in contact with the tar-
get body. This evaluation is depicted in Figure 2.16. To quantitatively assess
the suitability of the grasp candidate, the voxels are assigned a score. For ex-
ample, Vo ∈ [0 → empty, 1 → occupied] and Vg ∈ [−255 → constraint, 0 →
empty, 1 → contact point], where Vo and Vg correspond to the object and
gripper voxel grid, respectively. Then, the graspability score is simply the sum
of the individual scores.

• Probability of force/form closure: force and form closure are the two ways
to perform restraint analysis. Force closure uses friction force to achieve ob-
ject closure, and it is achieved if for any non-contact wrench experienced by
the object, contact wrench intensities exist that satisfy Equation 2.4. In other
words, force closure is satisfied if and only if Equation 2.5 is met [55]. For 3D
objects only two contacts are needed if they are modelled as soft fingers, and
three non-collinear contacts if they are modelled as hard fingers. Form closure
grasps are inherently also force closure and they describe how the object can-
not move at all; always assuming hard fingers. They are formally described by
the implication presented in Equation 2.6, which shows that if and only if a zero
object displacement yields a gap function equal or larger than 0, then the grasp
is first-order form closed [55]. It can be determined that in order to achieve form
closure 7 contacts are required for 3D objects, except when different orders of
form closure exist that leverage the shape of the objects and require a lower
contact point count (Figure 2.17 demonstrates the workings of form closure at
different orders).

• Shape segmentation into primitive formswith pre-defined graspabilitymet-
rics: it is also possible to determine grasp quality by segmenting the object into
primitive shapes. These primitives shapes can be obtained from point clouds by
variousmethods, such as shape segmentation via recurrent neural networks [56].
The segmented shapes commonly consist of boxes, spheres, cylinders, and

2.3. Grasp Planning 25

cones [34]. These primitive shapes possess predetermined grasp poses, as
depicted in Figure 2.18.

M𝑔(𝑞)𝑞̈ + 𝑏𝑔(𝑞, 𝑞̇) + J𝑇𝜆 = 𝜏𝑎𝑝𝑝
M𝑜(𝑢)𝜈̇ + 𝑏𝑜(𝑢, 𝜈) −G𝜆 = 𝑔𝑎𝑝𝑝

(2.4)

𝑟𝑎𝑛𝑘(G) = 𝑛𝜈 ,𝒩(G) ∩𝒩(J𝑇) = 0 (2.5)

Ψ(𝑢̄ + 𝑑𝑢, 𝑞̄) ≤ 0 ⇒ 𝑑𝑢 = 0 (2.6)

Where:

• M{𝑔,𝑜} are symmetric, positive definite inertia matrices of the gripper and object,
respectively.

• 𝜆 is the vector containing the vectors of the contact force and moment compo-
nents transmitted through the contacts and expressed in the contact frames. It
is expressed as 𝜆 = [𝜆𝑇1 …𝜆𝑇𝑛𝑐]

𝑇
where 𝑛𝑐 is the number of contact points, and

𝜆𝑖 = Hi [𝑓𝑖𝑛 𝑓𝑖𝑡 𝑓𝑖𝑜 𝑚𝑖𝑛 𝑚𝑖𝑡 𝑚𝑖𝑜].

• q is the configuration of the gripper contact point.

• b{𝑔,𝑜} is the vector-product term.

• J is the gripper Jacobian.

• 𝜏𝑎𝑝𝑝 is the vector of external loads and actuator actions.

• u is the configuration of the object contact point.

• 𝜈 is the components of the twist.

• G is the grasp matrix that maps the object twist from the normal to the contact
frame.

• g𝑎𝑝𝑝 is all applied wrenches (force and moment).

• Ψ(𝑢̄, 𝑞̄) is the gap function vector that describes the physical contact between the
object and the gripper contact points. It is equal to zero (0) if the contact points
are touching, -1 if the contact is penetrated, and +1 if there is a gap between the
contact points.

26 2. Grasp Planning Pipeline Overview

Table 2.7: Collection of linear and non-linear features relevant to spatial histogram grasp quality anal-
ysis.

Feature Linearity Rationale Approach Ref.

Law’s
Masks Linear Texture recognition for scene seg-

mentation
Mask
(5 × 5𝑝𝑥) [57]

Local binary
pattern Linear Texture-based encoder popular for

object recognition
Mask
(3 × 3𝑝𝑥) [58]

Averaging
colour filters Linear Colour uniformity often infers object

continuity
Mask
(5 × 5𝑝𝑥) [36]

Oriented
edge filters Linear

Edges infer object discontinuities,
which can learn to detect certain
shapes

Mask
(5 × 5𝑝𝑥) [59]

Correlative
depth Non-linear Hill-like depth profile of the grasping

rectangle correlates to grasp quality
̄𝑑1 ̄𝑑3
̄𝑑2
2 ≠ 1 [36]

Figure 2.16: Example grasp assessment with the voxel grid representation. Depicted are gripper con-
tact locations (light green), target object (blue), and Gripper body (red). Image obtained from Hegedus,
Gupta, and Mehrandezh [60].

2.3. Grasp Planning 27

Figure 2.17: Three planar grasps. The rightmost does not achieve form closure and the other two
achieve closure at different orders. Image obtained from Siciliano and Khatib [55].

Figure 2.18: Examples of grasps generated from four different grasp primitive shapes, from Miller,
Knoop, Christensen, et al. [34].

28 2. Grasp Planning Pipeline Overview

2.3.3. Grasp Candidate Generation
To generate candidates from a 3Dmap, an obvious solution would be using brute force:
iterating through every voxel with a number of different orientations. However, this
has a time complexity of 𝑂(𝑛 + 3𝑘) due to the 6D gripper configuration (𝑥, 𝑦, 𝑧, 𝛼, 𝛽, 𝛾).
Furthermore, analysing every possible grasp pose throughout the surface is likely to
be unnecessary as there likely are many regions where a grasp is not possible due to
surface flatness or presence of fragile thermal shielding layer.

For deep learning-based grasp planning engines, the grasp candidates tend to be
generated randomly in a sufficiently dense manner as to guarantee capturing success-
ful grasp candidates (if any exist) [61], [62]. Nevertheless, deep learning works tend
to rely on grasp inference from depth images, so their sampled grasping orientation
is constrained to be aligned with the camera axis.

For the considered application in this thesis work, two optimisations to the instan-
tiation of grasp candidates are contemplated:

• Neglect regions with high flatness and/or presence of thermal shielding layer:
can be achieved by convoluting a broad edge detection mask on the depth chan-
nel to detect depth changes in the broad neighbourhood and with a tuned Laws
mask on the colour channels to flag the space blanket texture;

• Fix the 𝛽 and 𝛾 orientation of the grasp by analysing the surface normal at the
center point such that only a 4D analysis is performed at every voxel. This
reduces the time complexity to 𝑂(𝑛 + 𝑘) while filtering out the least likely grasp
candidates [63].

2.4. Improvement Gaps for Space Applications
Most of the previous works focus on obtaining a high yield of grasped targets over
highest success probability at the expense of additional computational time. They
also tend to use depth images as they are the most convenient representation for
neural networks and also because static robots can only generally observe objects
from a single view point (usually top-down). Creating a point cloud from single view
depth images would be unprofitable as there would be many occlusions.

However, with the possibility of obtaining observations of the target object frommul-
tiple viewpoints in space due to the unconstrained dynamics of the systems, occlusion-
free point clouds can be generated. Complete point cloud representations are advan-
tageous spatial representations as they are well suited for geometric reasoning. With
complete point clouds, for example, antipodal configurations of grasps can be readily
analysed. These are a necessary condition for grasp success, as they provide infor-
mation about scale compatibility. With the addition of extra analyses, such as surface
contact normals, shape compatibility of the grasp can also be assured. A solution pro-
viding scale and shape matching is considered sufficient for achieving a good grasp.

Therefore, in space, analytic grasp planning metrics solely reliant on scale and
shape geometric fitting are hypothesised to be sufficient for determining grasp quality.
Furthermore, such analytic grasp planning metrics are well suited for global graspa-
bility analyses due to their usage of simple local surface properties and convolution
can be applied between the target and gripper models to efficiently determine the

2.4. Improvement Gaps for Space Applications 29

grasp quality of all target surface data points. Ambitiously, it is hypothesised that
including a grasp quality attribute to all target surface data points can enable com-
plex graspability tasks in space, such as crawling with the robotic arms around the
target surface to avoid propellant usage, or performing multiple grasps in different
regions. These applications draw clear parallels to how traversability maps can en-
able autonomously-optimised point-to-point navigation for systems such the upcoming
ESA Rosalind Franklin “ExoMars” rover, where autonomy is advantageous due to the
significant communication delays.

II
Framework Design

31

3
Concepts and Architecture

This chapter focuses on generating concepts and the architecture of the system. It has
a strong focus on systems engineering techniques that enrich the knowledge about the
project, as interfaces are arguably single largest source of innovation in a project—as
well as also being the least forgiving. In Figure 3.1, the classic systems engineering
V-model representation for this thesis work is depicted. Throughout this thesis sys-
tem elements and details will continuously be introduced as we approach the fully
decomposed system state. At every step that is possible, parallels to the rationale
and verification process will be introduced. This chapter begins with a definition of the
mission needs and system environments, followed by stakeholder requirement gen-
eration that takes into account the legacy context of the facility in which the validation
tests will be carried out. Then, the key performance parameters and acceptance crite-
ria for the Aut-O-MAGIC project are presented, followed by the concept of operation,
which presents of how the system is envisioned to interface with existing space tech-
nology and within its own subsystems. Lastly, insights into the system are drawn from
the processes developed in this chapter.

Design
Need & Stakeholder

Requirements

Design
System

Requirements Verification

System Design and
Performance
Description

Validation
Capability

Decomposition
and Requirements

Flowdown

Integration
and Design
Synthesis

Verification and
Validation

Figure 3.1: Systems Engineering V-Model for Autonomous On-Orbit Manipulability Analyser for Gripper
Interaction Capabilities, emphasising the dual components of decomposition and integration in the
product development process.

33

34 3. Concepts and Architecture

3.1. Mission Needs and System Environments
With the intention to define and scope the project expectations and requirements, the
need and mission statement, as well as the system environments are developed.

3.1.1. Need and Mission statement
The customer expectations, which encompass the capability development desired
from this thesis work, are in response to a functional deficiency in space operations.
These expectations can be expressed as a mission statement, which represent what
is to be achieved in opportunity space. Similarily, the research goals presented in
section 1.3 also describe expectations, but do so in the knowledge space. Both ex-
pectation domains are of importance in the development of a novel system like the
one proposed in this thesis.

The mission statement is formulated from a need statement that describes the
functional deficiency that is to be addressed. The need statement for this work is as
follows:

Space missions have a growing need to interact with their environment
without substantial ground support interaction and purpose-designed in-
terfaces.

Then, the mission statement can be derived as follows:

Aut-O-MAGIC will provide an autonomous grasp planning pipeline for
roboticmanipulation of arbitrary space objects,making available the surface-
body understanding necessary for complex interaction of objects in space.

3.1.2. System Environments
The system is to be a technology demonstrator for novel grasp planning capabilities
in space. As such, the most critical environmental elements are the ones that can be
directly measured by the system’s sensors. These include:

• Visual field: the on-board camera operates in the visual-spectrum. This envi-
ronment can be simulated using Software. For validation tests, a space visual
environment can be recreated by room darkening, a single static light source,
and a (scaled) target object surface model.

• Physical space: depth information is obtained from the depth camera. This envi-
ronment can be simulated using Software. Recreating the space physical space
for validation tests requires an empty workspace area and a (scaled) target ob-
ject surface model.

• Kinematics: kinematics are approximated by the state estimator in the system,
which is part of the SLAM algorithm. This is necessary to correctly generate a
3D representation of the environment via the depth camera. For validation tests,
physically recreating the relative motion of a typical target-chaser pair requires
following a close proximity rendezvous trajectory and minimising vibrations intro-
duced in the system as a consequence of the mechanical actuator system that
executes the relative motion.

3.2. Stakeholder Requirements 35

Other environmental elements, such as atmospheric conditions, do not play a sig-
nificant role in the validation of this system as they do not vary considerably. It is worth
noting that the facility presented in subsection 7.1.1, which will be used for system val-
idation, is kept at a temperature of 21°C.

Summarising, the basic technological components of the system being designed
are to be integrated with reasonably realistic supporting elements so they can be
tested in both a simulated and laboratory environment relevant to the true operational
environment.

3.2. Stakeholder Requirements
The project stakeholders are identified in Table 3.1. Their expectations vary depending
on their type of involvement with the project, but can be largely classified as supporters
of the functional need to be achieved with this project, supporters of knowledge to be
gained, and entities influenced by the execution of the design work or future on-orbit
operation. This section is divided in two subsections, that cover the legacy context of
the facility used for the validation tests, and the stakeholder requirements. The legacy
context is relevant to requirement generation because it exposes external constraints
that the system being design must take into account in order to successfully interface
with the validation facility.

Table 3.1: Stakeholders and their roles for the Aut-O-MAGIC project.

Stakeholder Type

European Space Agency Sponsor, Active

TU Delft Sponsor, Passive

GRALS facility users Passive

Target spacecraft owner Active

Space community Passive

3.2.1. The Legacy Context for Validation Tests
Due to the anticipated usage of the existing GRALS facility for validation of the system
being designed, we have to understand how to fit in the current operational environ-
ment and existing systems landscape. These influence stakeholder requirements. In
order to successfully interface with the legacy system to perform validation tests, the
legacy processes, resources, and limitations shall be understood.
Legacy Processes
In subsection 7.1.1, use cases for the GRALS facility are described. These use cases
are supported by the following processes:

• Facility usage workflow (Figure 3.2)

• Simplified data exchange of the considered systems (Figure 3.3)

36 3. Concepts and Architecture

Figure 3.2: Workflow on how to run an experiment with the GRALS facility, from Schwendener, Vilella,
and Bänninger [64].

3.2. Stakeholder Requirements 37

Figure 3.3: Simplified topology of the considered systems in GRALS, from Schwendener, Vilella, and
Bänninger [65].

Legacy Resources
The legacy resources, both in terms of hardware and software development tools,
used to perform the legacy processes described in the previous section, are as follows:

• Figure 3.4: facility hardware communication interfaces.

• Figure 3.5: robotic arms mechanical interface.

• Figure 3.6: facility functional principle using the legacy tools on the remote PC.

Limitations
As with anything, there are some limitations to take into account:

• Mechanical limitations

– The payload capacity of the GRALS facility robotic arms is up to 10kg, de-
pending on the payload’s inertial distribution (see Figure 3.7).

• Safety limitations

– The usable workspace volume is approximately 2000 × 32000 × 1500 mm.
– The payload can be transported at a speed of up to 250 mm/s and 30°/s,
or up to 2000 mm/s with strict safety measures, formally trained operator,
and proper justification.

• Electrical limitations

– Power output limited to 24V/3A from robot connector or unlimited power
with independent tether.

• Computational limitations

– The RSI cycle time is 4ms.
– Deploying the solution in Simulink requires that the code is compatible with
code generation; such that it is compiled, instead of interpreted.

– Aggregating all services in a single Simulink solution can lead to poor real-
time performance. Simulink is a single-threaded application.

38 3. Concepts and Architecture

Figure 3.4: GRALS hardware connectivity (communications) diagram, where any device on the GRALS
LAN can interface with the KUKA systems. From Schwendener, Vilella, and Bänninger [64].

3.2. Stakeholder Requirements 39

Figure 3.5: Mounting flange taken from the KR10 R1100 sixx C operating instructions. From KUKA
Robotics Corporation [66].

Figure 3.6: Functional principle of GRALS operation using a remote PC. From Schwendener, Vilella,
and Bänninger [65].

Figure 3.7: Maximum mass of payload, depending on its inertial distribution. From KUKA Robotics
Corporation [66].

40 3. Concepts and Architecture

3.2.2. Stakeholder Requirements
The stakeholder requirements include general System requirements, labelled [STA-
REQ-X]; and GRALS facility requirements to be taken into account for the physical
integration of the system, labelled [STA-REQ-VAL-X].

[STA-REQ-1]
(Capability) The system shall enable autonomous grasp plan-
ning of arbitrary space objects. Rationale: This requirement cap-
tures the primary research objective of the thesis work.

[STA-REQ-2]
(Characteristic) The system shall not require any elements to be
present in the target object. Rationale: The research focuses
on grasp planning on arbitrary objects, which are not purposely
fitted for grasping, so no elements can be expected in the target.

[STA-REQ-3]
(Characteristic) The system shall not generate space debris. Ra-
tionale: Space debris is becoming increasingly concerning and
the stakeholder vision is to contribute to the clean-up of space
debris, and by extension not generate more.

[STA-REQ-4]

(Capability) The system shall provide a global map of the graspa-
bility of the target space object. Rationale: This requirement cap-
tures a research objective of this thesis work, which is to gener-
alise graspability in a way analogous to traversability cost maps
in rover navigation, so a global map is essential.

[STA-REQ-5]
(Characteristic) The system shall use analytic grasp quality met-
rics. Rationale: The methodology decided for this thesis focus
on geometric analyses using 3D maps, which are performed us-
ing analytic methods.

[STA-REQ-VAL-1]
(Characteristic) The system shall have mass properties within
the range described in Figure 3.7. Rationale: The facility used
for validation tests is constrained by this capacity.

[STA-REQ-VAL-2]
(Characteristic) The system shall use a mechanical interface
compatible with the mounting flange of the KUKA KR10 R1100
sixx C. Rationale: The equipment in the facility used for valida-
tion tests requires using this specific mechanical interface.

[STA-REQ-VAL-3]
(Characteristic) The system shall use the RobotSerialInterface
Ethernet-based communication protocol to interface with the
GRALS facility. Rationale: The facility used for validation tests
solely uses this communication protocol for data transport.

3.3. Key Performance Parameters and Acceptance Cri-
teria

Key Performance Parameters (KPP) for the project are tabulated in Table 3.2, together
with its performance drivers. The acceptance criteria, in Table 3.3, are then set based
on the scope of this project and the dependencies of any other performance drivers.

3.3. Key Performance Parameters and Acceptance Criteria 41

Table 3.2: Aut-O-MAGIC Key Performance Parameters and Performance Drivers.

Key Performance Parameters (KPP) Performance Drivers

Resolution — Reconstruct high fidelity 3D maps from the sensor
input Voxel resolution

Range — Operational range of the system Camera resolution

Reliability — Minimise the grasp failure rate Minimum acceptable
grasp quality value

Repeatability — Obtain a high degree of agreement between
results in different iterations Robustness

Table 3.3: Aut-O-MAGIC Acceptance Criteria.

Criterion (KPP) Value Rationale

Resolution 2.5 cm

Given an ordinary gripper graspable area of 5 × 3 ×
2cm [62], a sampling of half the gripper width, 2.5 cm,
would assure observation of sufficiently thin structures
that the gripper could grasp.

Range 0.5–5 m

Given that the scope of this work is accurate, close
range measurements, a camera system covering the
0.5–5 m range is ideal. This will allow precision com-
parisons at different distances to draw conclusions on
the maximum allowable distance to resolve the target
features at the specified acceptance resolution.

Reliability 99%

Qualitative performance driver. Space operations are
safety-critical, and priority must be given to only attempt-
ing grasps that are of highest degree of confidence. In
practise, this criterion is impossible to test without run-
ning extensive physical grasping tests, which are be-
yond the scope of this work.

Repeatability Full Solution shall follow a deterministic approach, which
yields the exact same results every time.

42 3. Concepts and Architecture

3.4. Concept of Operations
As described in subsection 3.1.1, the goal of this work is to provide an autonomous
grasp planning pipeline for robotic manipulation of arbitrary space objects. This pipeline
is envisioned to enable the execution of complex on-orbit manipulation tasks autono-
mously. Drawing parallels to path planning for unmanned vehicles, the grasp planning
pipeline subject to design is to provide a high-level understanding of the graspability
of any surface region in the target object, similar to a traversability cost map for rover
path planning (see Figure 3.8). This high-level understanding of global graspability of
the target object is necessary when considering manipulation tasks1 such as on-orbit
repairs, de-tumbling, and crawling traverses across the target object surface.

Overall, it is envisioned that the capabilities of Aut-O-MAGIC can help enable un-
cooperative rendezvous and docking, removing the need for a cooperative relative
navigation system. In Figure 3.9, the current “as-is” operational environment of rel-
ative navigation is illustrated while, in Figure 3.10, the envisioned environment with
autonomous uncooperative navigation is described.

3.5. Conclusions
This chapter presented the need for a global grasp planning system such as the one
proposed with Aut-O-MAGIC. It investigated the constraints imposed by external fac-
tors such as the validation tests, and devised stakeholder requirements to meet the
mission goals and comply with external constraints. Then, key performance parame-
ters for the system being designed have been elaborated, together with acceptance
criteria that dictate the minimum performance the system shall display in order to per-
form satisfactorily. Lastly, visual representations of the concept of operations of the
system within the space proximity operations environment is depicted, which displays
a substitution of the cooperative relative navigation system in favour of a chaser-only
perception system that compiles a target spacecraft model from sensor data. This en-
visioned concept of operations draws clear parallels with terrain traversability maps,
as it readily provides global graspability information that is required for planning com-
plex manipulability tasks that require more than a single gripper action.

1Manipulation can be loosely defined as grasping over time; grasping multiple times at possibly different
locations

3.5. Conclusions 43

Figure 3.8: Figures including the traversability cost maps for rover navigation in different terrains. The
grasp planning pipeline being designed in the scope of this thesis is envisioned to be able to generate
cost maps similar to figures (c) and (d), from which a global manipulation plan can be devised, similar to
how a global path planning plan is devised from these figures. Figures obtained from Sánchez-Ibánez,
Pérez-del-Pulgar, Azkarate, et al. [67]

44 3. Concepts and Architecture

Approach

known apriori

Rigid link

Chaser satellite

Target satellite

Cooperative
relative
navigation
system

Radio/Visual link

Radio/Visual link

Target
spacecraft

model
Target grasp

point

Manually selected

Robotic arm
+ gripper

Gripper system

Today

Figure 3.9: The ‘as-is’ Environment to be addressed by the Aut-O-MAGIC system, in red are the ele-
ments to be replaced.

Approach

Rigid linkRigid link

Chaser satellite

Target satellite

Visual and depth sensing Robotic arm
+ gripper

Gripper system

Grasp planner

Spatial mapping

Perception system

Automatically selected

Graspability
cost map

Generated in-situ

Target
spacecraft

model

Vision

Figure 3.10: The envisioned Aut-O-MAGIC system environment, with the green elements substituting
the cooperative navigation system block.

4
System Design

This chapter treats the design of the Aut-O-MAGIC system. First, the technical re-
quirements are defined based on research objectives, stakeholder requirements, and
inherited constrains from the acceptance criteria. This is followed by trade studies of
the potential hardware and software programming frameworks to use. These are then
selected, and the software system decomposed into blocks of single-responsibilities.
This decomposition allows the generation of derived technical requirements, which
further direct the system design implementation. Then, the overall design solution is
defined, containing each of the software divisions drawn during decomposition. Lastly,
the chapter is closed with conclusions on the outcomes of the systems design ap-
proach followed in this chapter.

4.1. Technical Requirements Definition

With the research objectives clear, the stakeholder requirements determined, and
clear constrains inherited from the acceptance criteria and legacy context, the top-
level technical requirements can be derived:

45

46 4. System Design

[SYS-REQ-1]

(Functional) The system shall generate a 3D reconstruction of
the scene captured by the 3D sensor. Rationale: The global
grasp planning premise is based on availability of 3D maps,
which require reconstruction from a 3D sensor input. Criticality:
High. Verification method: test.

[SYS-REQ-2]
(Functional) The system shall generate grasp candidates of the
target object. Rationale: Grasp quality analysis requires candi-
dates to analyse. Criticality: High. Verification method: analy-
sis.

[SYS-REQ-3]
(Functional) The system shall rank grasp candidates based on
an established measure of grasp quality. Rationale: Global
grasp planning is based on assigning a score to each grasp can-
didate. Criticality: High. Verification method: test.

[SYS-REQ-4]

(Functional) The system shall generate a 3D reconstruction of a
synthetic 3D model. Rationale: Analysing synthetic noise-free
3D models is a desired step before analysing real-world data, as
it reduces the sources of error in the system. Criticality: Medium.
Verification method: test.

[SYS-REQ-5]

(Functional) The system shall provide a visual representation of
the target object grasp quality. Rationale: Grasp quality analy-
ses are difficult to quantify and benchmark against alternative im-
plementations because of non-standardised graspability scores.
Visualisation methods are essential in verifying the fitness of a
grasp candidate Criticality: High. Verification method: test.

[SYS-REQ-6]

(Functional) The system shall provide an interface for result com-
parison with depth image-based grasp planning solutions. Ratio-
nale: Comparison with other grasp planning methods is a good
practise for establishing that the grasps suggested are sensible
and in-line with current state-of-the-art techniques. Criticality:
Medium. Verification method: test.

[SYS-REQ-7]

(Non-functional) The system must be able to generate a 3D
model with a resolution of 2.5 cm Rationale: This is an accep-
tance criteria. It dictates the minimum resolution required to re-
solve geometric features for grasping Criticality: High. Verifica-
tion method: inspection.

[SYS-REQ-8]

(Non-functional) The validation runs shall cover a range enve-
lope of 0.5–5m. Rationale: This is an acceptance criteria. This
range allows analyses at different distances to draw conclusions
on the maximum possible distance to resolve the required target
features, as well as the constraints in achieving the required res-
olution Criticality: Medium. Verification method: inspection.

[SYS-REQ-9]
(Non-functional) The system shall instantiate grasps in a deter-
ministic fashion. Rationale: It is desirable to instantiate grasps
in a way through which repeatable analyses can be performed.
Criticality: Low. Verification method: analysis.

4.2. Trade Studies 47

4.2. Trade Studies
In the system design, two trade studies are performed to determine the optimal system
configuration for this work. These are:

• 3D imaging hardware component selection for system validation;

• Software programming framework to use.

4.2.1. 3D Imaging Hardware
As described in subsection 2.1.2, different sensors types can provide 3D data. How-
ever, only camera-type sensors provide an accuracy below 0.01 m (Figure 2.3). Under
normal circumstances, a morphological matrix would be developed to find the ideal
camera parameter combination for the task at hand, and then move onto purchase
selection. However, in this work, only consumer COTS products are considered. To-
gether with the preference of hardware that requires minimum time to begin operating,
only a handful of products remain candidates.

For the purpose of the real-world data collection presented in chapter 7, three
state-of-the-art camera-type sensors are considered for this work. Their properties
are tabulated in Table 4.1.

From the specifications table and the provided sensor data samples, it can be seen
how the Microsoft Azure Kinect DK (K4A) is the most versatile 3D imaging solution.
Both the K4A and the Intel RealSense D455 RGB-D cameras provide less noisy cap-
tures than the Intel RealSense L515 LIDAR solution (Figure 4.1, Figure 4.2), while
the K4A also outperforms the D455 in FOV, short-range operation, and RGB camera
resolution.

Table 4.1: State-of-the-art camera-type 3D sensors specification trade-off. Some of the camera param-
eters require a trade-off, i.e. better resolution at lower FPS or FOV; the specifications shown are best
individual values. D stands for depth sensor, and C for colour (RGB) sensor.

Sensor Type Resolution (px) Range (m) FOV (°) FPS Others

Intel
RealSense
L515

LiDAR
+ RGB

D:1024 × 768
C:1920 × 1080

0.25 − 9
D:70 × 55
C:70 × 43

30 Incl.
IMU

Microsoft
Azure
Kinect DK

RGB-D
D:1024 × 1024
C:4096 × 3072

0.2 − 5.5
D:120 × 120
C:90 × 74.3

30

Incl.
IMU, 7
micro-
phone
array

Intel
RealSense
D455

RGB-D
D:1280 × 720
C:1280 × 800

0.4 − 6
D:86 × 57
C:86 × 57

D:90
C:30

Incl.
IMU

1https://youtu.be/RBDfABrNKz8
2https://youtu.be/RtqfdCUIUrM

https://youtu.be/RBDfABrNKz8
https://youtu.be/RtqfdCUIUrM

48 4. System Design

Figure 4.1: Pointclouds in Intel RealSense L515 (left) vs Microsoft Azure Kinect DK (right), from
brekel.com on YouTube1.

Figure 4.2: 2D depth map and RGB image in Intel RealSense D455, from Tegara Corporation on
YouTube2.

4.2. Trade Studies 49

4.2.2. Software Programming Framework
It is beneficial to resort to pre-existing software programming frameworks where ap-
propriate to minimise development effort. In essence, we see two main areas where
some design could be abstracted away to a pre-existing software framework:

• Communication between software components;

• 3D data representation and operation.

Regarding the software communication framework, three options exist: ROS2 (via
either C++ or Python3), pure C++, or pure Python3. Given the modularity of the soft-
ware systems used in this work due to their multi-disciplinary nature, interaction be-
tween them is foreseen to be necessary frequently. OctoMap provides interfaces for
all three communication frameworks, so it largely depends on a trade-off between
overhead and benefits, which is summarised in Figure 4.3, with detailed reasoning
below.

• ROS2 provides a structured development approach with industry in mind, while
C++/Python do not provide any initial structure.

• ROS2 provides extensive documentation in the usage of their framework, while
C++/Python rely on Q/A forums and libraries documentation.

• ROS2 is targeted towards robotic real-time systems, and hence it preferably
works with streams of data that may get dropped or queued if not processed
at speed. On the other hand, C++/Python iteratively process data at their own
pace without additional configuration.

• ROS2 and Python3 are very easy to install and run, being available from the
apt repository and having convenient launch methods. On the other hand, C++
relies on offline compilers that need to be installed and CMake for building the
software, which is a learning curve.

• Lifecycle management: ROS2 provides an interface for state transitions via
launch files, which can prove useful if the program shall be able to selectively
execute different non-related operations. On the other hand, C++ and Python
provide good and simple CLI interface options and arguments that can further
increase the versatility of the solution with a decreased investment.

• Package dependency and build management: ROS2 and Python provide gener-
ally straight-forward methods for package management (ROS2: ament_cmake,
colcon, rosdep; Python: pip), while C++ provides no such package manage-
ment system and requires libraries to be manually linked against the targets via
CMake.

• Debugging: ROS2 and C++ rely on command line debugging methods. ROS2
has some abstracted CLI utilities such as ros2 node and ros2 topic, as
well as rqt tools that make it easier to see running processes. On the other
hand, due to the interpreted nature of (C)Python, it supports breakpoints for
streamlined debugging efforts. The GNU Debugger (GDB) is a practical tool for
debugging code in C++.

50 4. System Design

Criteria Weighting
Factor

ROS2 C++ Python3

Structure 1 1 0 0

Documentation 2 1 0 0

RT constraints 5 -1 1 1

Installation 2 1 -1 1

Lifecycle
management

1 0 1 1

Package
dependency
and build
management

2 1 -1 1

Debugging 3 1 1 1

Speed 4 0 1 -1

Typing
discipline

3 0 1 -1

 Σ (+) 5 5 5
 Σ (0) 3 2 2
 Σ (-) 1 2 2

 Results 5 12 6

Legend: Weighting Factor:

1 positive factor on System 1 Least important
0 no impact to System | |
-1 negative impact on System 5 Most important

Figure 4.3: Pugh Matrix for the software communication framework.

4.3. Hardware Component Selection 51

• Speed: While ROS2 can run using Python or C++ nodes, pure C++ is still faster
due to lack of abstractions in communication. Without a doubt, the slowest is
Python due to its interpreted nature.

• Typing discipline: Statically-typed languages such as C++ allow much more ex-
tensive error-checking at compile-time or at rest. Python, on the other hand,
delegates significant error checking to run-time. Compile-time error checking
aids minimise the bugs in code and time spent debugging.

For 3D data representation, the options are OctoMap, PointCloud Library (PCL),
and Open3D. While they all provide methods for operating on voxels and point clouds,
OctoMap is exceptionally designed for derived class generation.

4.3. Hardware Component Selection
The chosen time-of-flight camera was the Microsoft Azure Kinect DK, depicted in Fig-
ure 4.4, with the below specifications:

• Range: 0.2–5.50 m;

• Up to 30FPS;

• Resolution (at 15FPS): 1024 × 1024px depth, 4096 × 3072px RGB;

• Resolution (at 30FPS): 640 × 576px NFOV 512 × 512px WFOV depth, 3840 ×
2160px RGB;

• FOV:

– Depth sensor: 75° × 65° NFOV, 120° × 120° WFOV;

– RGB sensor: 90° × 74.3° and 90° × 59°;

• Including IMU and 7-microphone array.

Figure 4.4: The Microsoft Azure Kinect DK time-of-flight camera. Credits: Microsoft Corporation.

52 4. System Design

4.4. Software Component Decomposition
The logical software component decomposition is the process for creating detailed
functional software requirements to meet the expectations for this work. A system
architecture model is created that reflects the functional organisation of the system at
element-level. This enables relationships, dependencies, and interfaces to be clearly
defined and used to generate derived technical requirements.

4.4.1. System Architecture Model
The system architecture model for the Aut-O-MAGIC project is depicted in Figure 4.5,
it demonstrates the need to decompose the software solution into the following com-
ponents, in order to meet the single-responsibility principle:

• Sensor model acquisition: to process the data captured by the 3D sensor and
compile it into a global 3D map.

• 3D model voxeliser: to process a synthetic 3D model into a global 3D map.

• Grasp Planning Engine: to analyse the grasp quality of a 3D model.

• 3D model to depth map generator: to project a 3D map into depth images from
a user-defined viewpoint for easy benchmarking against other state-of-the-art
grasp planning solutions that rely on depth images.

One note to make is that throughout this report we refer to voxel trees with a binary
occupancy attribute as binary trees, whereas another common name for them, used by
other work, is bonsai trees. The name octrees is used for trees with arbitrary attributes
such as graspability score, probability-based occupancy, etc.

4.4.2. Derived Technical Requirements
From the system architecture model developed, we are able to further decompose
the software technical requirements with the additions found below. Their addition
is based on pure technical decomposition of the system architecture model devised,
such that their rationale is always in-line with their parent requirements and their crit-
icality coupled with each other’s successful completion. The requirements are ap-
pended with the following identifiers to label each of the subsystems:

• SA: Sensor model acquisition;

• VOX: 3D model voxeliser;

• GP: Grasp planning engine;

• DEPTH: 3D model to depth map.

4.4. Software Component Decomposition 53

Grasp
Planning
Engine

Binary tree

Gripper
octree

Target
octree

3D model to
depth map

Sensor model
acquisition

3D model
voxeliser

Binary to octree
converter

Octree to colour tree
converter

Grasp quality
analyser

Sensor driver

Point cloud
registration

Global point

cloud

Point cloud to binary
tree converter

Sensor

Model visualiser

Adjust camera

viewpoint

Capture depth image,
segmentation mask

Depth array, image,
and segmentation

maskGrasp quality model
output files

3D model

3D model to voxel
tree converter

Camera
intrinsics

Figure 4.5: Software system architecture model for the Aut-O-MAGIC project.

54 4. System Design

[SW-REQ-SA-1]
(Functional) The system shall provide a driver for the sensor
that makes available its observed point cloud. Verification
method: test.

[SW-REQ-SA-2]
(Functional) The system shall be capable of registering sen-
sor point cloud snapshots against an existing map. Verification
method: test.

[SW-REQ-SA-3] (Functional) The system shall compile a time-invariant global
point cloud map. Verification method: test.

[SW-REQ-SA-4] (Functional) The system shall be able to convert a point cloud
to a binary voxel tree. Verification method: test.

[SW-REQ-VOX-1] (Functional) The system shall be able to convert a 3D mesh
model to a binary voxel tree. Verification method: test.

[SW-REQ-GP-1]
(Functional) The system shall be able to convert a binary voxel
tree to an octree with custom grasp planning node attributes.
Verification method: test.

[SW-REQ-GP-2]
(Functional) The system shall map the grasp quality of the
octree nodes into attributes within those nodes. Verification
method: test.

[SW-REQ-GP-3] (Functional) The system shall iteratively analyse the grasp qual-
ity of all nodes in the octree. Verification method: analysis.

[SW-REQ-GP-4] (Functional) The system shall provide an octree class definition
for a gripper octree model. Verification method: inspection.

[SW-REQ-GP-5] (Functional) The system shall provide an octree class definition
for a target octree model. Verification method: inspection.

[SW-REQ-GP-6]
(Functional) The system shall convert the processed octrees
into colour trees with the grasp quality mapped into the colours.
Verification method: inspection.

[SW-REQ-GP-7] (Functional) The system shall write to file the processed octree
models at the end of execution. Verification method: test.

[SW-REQ-DEPTH-1]
(Functional) The system shall create a virtual camera of the pro-
vided 3D mesh model based on user-defined camera intrinsics.
Verification method: test.

[SW-REQ-DEPTH-2] (Functional) The system shall create a user interface for adjust-
ing the camera view. Verification method: test.

[SW-REQ-DEPTH-3]
(Functional) The system shall generate depth map of the 3D
model from a defined camera view. Verification method: analy-
sis.

4.5. Design Solution Definition 55

[SW-REQ-DEPTH-4]
(Functional) The system shall generate a segmentation mask of
the 3D model from a defined camera view. Verification method:
analysis.

[SW-REQ-DEPTH-5]
(Functional) The system shall generate a scaleable gray-scale
depth image of the 3D model from a defined camera view. Ver-
ification method: test.

[SW-REQ-DEPTH-6] (Functional) The system shall write to file the generated files at
the end of execution. Verification method: test.

4.5. Design Solution Definition
With the requirements defined and the trade studies performed, the design solution
can be defined. It is chosen to use OctoMap due to its versatility and our requirement
of designing derived octree classes with grasp quality attributes. Also, it is chosen to
utilise pure C++ as software communication layer, due to the Software’s limited dis-
tributed interaction which mainly falls back on text/binary files (see Figure 4.5). Below
are the design solution definitions of the project’s software subsystems.

4.5.1. OctoMap Grasping
There is the need for a set of classes that are capable of storing the properties relevant
to the grasp analysis, as well as providing convenient methods for achieving said
goals.

The responsibilities of this package are:

• Store parametric (voxel) 3D model of targets and grippers;

• Allow the storage of abstract properties the voxels of the model;

• Provide methods for geometric analyses and visualisation;

• Import binary tree models outputted from the 3D model voxelisation pipeline;

• Convert parametric 3D model stored in class to visualisable colourised model,
using the abstract properties of the voxels as variables for the colour selection.

Two derived classes shall be created, one for gripper objects, and one for target
objects (OcTreeGraspQuality). The gripper derived class shall contain a flag tag-
ging voxels that are within the graspable region of the gripper (where interaction with
the target is desirable). The target derived class shall contain nodes embedded with
the grasp quality score associated with a grasp attempt with that node as center of
grasp.

4.5.2. Grasp Planning Engine
The grasp planning engine is responsible for the control and processing of the derived
octree types. It shall provide methods for interacting with the data in full (global anal-
ysis), as well as for partial state-space traversals for debugging and data processing.
The grasp candidate sampling method used is semi-optimised instantiation process

56 4. System Design

that locks the 𝛽 and 𝛾 orientation of the grasp, such that the gripper always approaches
the target surface along the surface’s normal vector. Then, grasps are sampled at 4
roll orientations for every voxel in the target surface.

Themost fundamental aspects of the grasp planning engine that drive performance
are the grasp quality methods definitions, which are tabulated in Table 4.3. All the
methods proposed shall rely on geometric information for grasp quality processing,
which will effectively be abstractions and implementations of the following two funda-
mental model-interaction processing methods:

1. Align the two octrees (target and gripper) by transposing the target tree origin
(see Figure 4.8) to coincide with the target node coordinates. Then iterate over
the trees and consume the information regarding collisions of voxels in both
trees to determine grasp quality.

2. Align the two trees (target and gripper) as before, but then cast rays from every
voxel adjacent to the anti-podal plates of the gripper tree towards the symmetric
voxel at the opposite antipodal plate. When and if a ray hits a target voxel,
record its properties and use its position for contact surface analysis. Figure 4.7
provides a visual representation of rays being cast from both antipodal planes,
which stop at the first target voxel that they hit.

Figure 4.6: Gripper object displaying positively-
interacting target voxels in solid green, and
negatively-interacting target voxels in red.

Figure 4.7: Gripper object with rays cast from its
antipodal plates, as done in methods #2, #4, and
#5.

4.5.3. 3D Model Voxelisation
The 3D model voxeliser shall provide the ability of inputting 3D models, such as Wave-
fronts, and obtaining as output voxelised representations of the model with customis-
able resolution. Given the availability of free tools to accomplish this goal, this func-
tionality shall be a manual pipeline consisting of off-the-shelf tools that ultimately ac-
complish said objective.

4.5. Design Solution Definition 57

Table 4.3: Overview of grasp quality methods proposed for the Aut-O-MAGIC project.

ID Method Description Parameters

#1 Voxel super-
imposition

Count the number of target voxels within the gras-
pable region of the gripper, and subtract the number
of voxels that collide against the body of the gripper

Reward,
Penalty

#2
Surface
normals
histogram

Build histogram of alignment angles between gripper
antipodal plates normal direction and the target sur-
face normal that they touch. Score is a combination
of standard deviation of histogram and mean angle
between the two vectors. Collisions of target body
against the gripper apply a light penalty to the score

Mean/std_dev
fraction,
std_dev
saturation

#3

Voxel super-
imposition
+ surface
normals
histogram

Methods #1 and #2 combined, each with 50% weight #1 + #2

#4

Surface
normals
with discrete
scoring

Cast rays in both directions between both antipodal
gripper planes and note the first target node (in be-
tween the gripper planes) that gets hit by the ray. Sim-
ilar to Method #2 but with discrete (individual scores),
which cross the 0 graspability score at a defined an-
gle value, instead of histogram generation. Collisions
of target body against the gripper apply a light penalty
to the score

Zero-score
crossing

#5
Coplanarity
contact
points

Compute coplanarity of (separate) target surface con-
tact points hit by rays cast from both antipodal gripper
planes, using the disparity between the median and
mean as well as the standard deviation of the height
difference. Collisions of target body against the grip-
per apply a light penalty to the score

disparity/std_dev
fraction,
std_dev
saturation,
discretisa-
tion steps

#6

Voxel super-
imposition
+ surface
normals
with discrete
scoring

Methods #1 and #4 combined, each with 50% weight #1 + #4

#7

Voxel super-
imposition +
coplanarity
contact
points

Methods #1 and #5 combined, each with 50% weight #1 + #5

58 4. System Design

Figure 4.8: Origin of coordinates of a gripper tree in loaded state is at the center of the graspable
region.

4.5.4. 3D Model to Depth Map
The goal of this utility is to provide a simple way to generate depth maps (Z-Buffers)
from 3D models, to be used as synthetic inputs for neural networks and other relevant
tasks. This is required to enable comparison of this thesis work with other works that
use depth images as input. It provides:

• Depth map in [m] as a 3D npy file;

• Depth map in png format with a user-defined scaling factor (default = 1000.0),
so that 255RGB corresponds to 255[mm] depth;

• Segmentation mask in png format;

• Intrinsic camera parameters in format used in the CQCNN package by Berkeley
Automation.

4.5.5. Scene Reconstruction
The scene reconstruction from sensor data is decomposed into three blocks:

• Sensor driver that outputs point clouds captured by depth sensor at each time
step;

• Point cloud scene reconstruction engine that aligns the clouds and merges them
into a singular global point cloud;

• Point cloud to binary tree converter.

The scene reconstruction chain is decomposed into discrete steps to decrease
development time by using the application most fit for each purpose. The sensor

4.6. Conclusions 59

driver is implemented as a ROS2 node, the point cloud scene reconstruction engine
in MATLAB, and the point cloud to binary tree converter in pure C++. Furthermore,
the point cloud scene reconstruction engine is composed of the following processes:

1. K-NN noise filtering;

2. Uniform-distribution downsampling for faster and more accurate ICP point cloud
pair-wise registration [68];

3. Odometry to calculate the rough motion from point to point, using ICP Point-to-
Point pair-wise point cloud registration;

4. Loop closure to detect identical features in non-consecutive snapshots and cre-
ate a connection between them for better transformation estimation than odom-
etry alone. Performed using MATLAB context descriptors for fast filtering of bad
candidates and then, on good candidates, the afore ICP Point-to-Point pair-wise
point cloud registration algorithm is applied again;

5. Final global point cloud alignment of the de-noised, full-size, point clouds.

4.6. Conclusions
This chapter described the details of the system design for this project. It began with
the technical requirements definition, followed by trade studies that led to the system
hardware selection and software decomposition which, in turn, dictated the low-level
derived technical requirements. The system is composed of the Microsoft K4A RGB-
D camera, and four software modules. These modules are divided to comply with the
single-responsibility principle, and together are able to:

1. Integrate sensor data to compile a voxel tree of the target object;

2. Voxelise a synthetic 3D model of a target object;

3. Perform global graspability analyses of a target object via its voxel tree, using a
user-configurable gripper voxel model;

4. Interface with other state-of-the-art grasp planning solutions that rely on depth
images for grasp planning, instead of 3D maps.

5
System Implementation

In this chapter the implementation details of the design subjects defined in section 4.5
are elaborated upon. For each subject, Unified Modelling Language (UML) Class
Diagrams and dependency graphs are provided (if applicable), as well as other details
of the design implementations, such as the standards used for the gripper models
and file types used for I/O. The operation of software is documented in Appendix A to
separate academic design relevant to this thesis work from purely technical system
operation. Because the 3D model voxeliser pipeline is solely composed of external
tools, its usage is documented in Appendix A and the software pipeline is omitted from
this chapter. Similarly, the scene reconstruction engine is composed of the blocks
already explicitly described in subsection 4.5.5, and implemented using off-the-shelf
3D processing functions from MATLAB, so it is also omitted from this chapter.

5.1. OctoMap Grasping
The OctoMap derived classes1 are the OcTreeGraspQuality class, which is intended
for handling a target object (i.e. the satellite to grasp), and the OcTreeGripper class,
intended for the gripper object. They extend the generic functionality provided by
OctoMap’s OcTree and OcTreeNode (voxel object) by enabling:

• Store grasp quality at discretised gripper rotation angles in each voxel;

• Convert objects to colourised octree for visualisation purposes;

• Draw a Bounding Box (BBX) between the gripper antipodal grasping plates to
label them are region where target voxels is desirable;

• Custom single-solution surface normal determination function;

• Import of binary voxel trees into object.

The UML Class Diagram for this package is provided in Figure 5.1, and the de-
pendency graphs for the two classes developed in Figure 5.2 and Figure 5.3 for the
OcTreeGraspQuality class and the OcTreeGripper class, respectively.
1https://github.com/aut-o-magic/octomap-grasping

61

https://github.com/aut-o-magic/octomap-grasping

62 5. System Implementation

OcTreeNode

OcTreeGraspQualityNode

grasp_quality: GraspQuality

+ OcTreeGraspQualityNode()
+ OcTreeGraspQualityNode(rhs: OcTreeGraspQualityNode)
+ operator==(rhs: OcTreeGraspQualityNode): bool
+ copyData(from: OcTreeGraspQualityNode): void
+ getGraspQuality(): GraspQuality
+ setGraspQuality(gq: GraspQuality): void
+ setGraspQuality(angle_quality: Eigen::Matrix): void
+ updateGraspQualityChildren(): void
+ getAverageChildGraspQuality(): GraspQuality
+ isGraspQualitySet(): bool
+ operator ColorOcTreeNode(): ColorOcTreeNode
+ ~OcTreeGraspQualityNode()
+ readData(s: std::istream): std::istream
+ writeData(s: std::ostream): std::ostream

OcTreeGraspQuality

ocTreeGraspQualityMemberInit: StaticMemberInitializer

+ OcTreeGraspQuality(resolution: double)
+ OcTreeGraspQuality(_filename: String)
+ create(): OcTreeGraspQuality
+ getTreeType(): String
+ operator=(rhs: OcTreeGraspQuality): OcTreeGraspQuality
+ operator ColorOcTree(): ColorOcTree
+ importOcTree(octree_in: OcTree): void
+ pruneNode(node: OcTreeGraspQualityNode): bool
+ isNodeCollapsible(node: OcTreeGraspQualityNode): bool
+ setNodeGraspQuality(key: OcTreeKey, _angle_quality: Eigen::Matrix):
 OcTreeGraspQualityNode
+ setNodeGraspQuality(octo_point3d: point3d, _angle_quality: Eigen::Matrix):
 OcTreeGraspQualityNode
+ setNodeGraspQuality(x: float, y: float, z: float, _angle_quality: Eigen::Matrix):
 OcTreeGraspQualityNode
+ getNormal(coords: point3d, normals: std::vector<point3d>, depth: unsigned int = 1U):
 bool
+ updateInnerOccupancy(): void
+ writeGraspQualityHistogram(filename: String): void
+ ~OcTreeGraspQuality()
getOccupiedNeighbors(coords: point3d, depth: unsigned int): point3d_collection
getOccupiedNeighbors(center_key: OcTreeKey, depth: unsigned int): point3d_collect
updateInnerOccupancyRecurs(node: OcTreeGraspQualityNode*, depth: u_int)

OccupancyOcTreeBase

GraspQuality

+ angle_quality: Eigen::Matrix

+ GraspQuality()
+ GraspQuality(angle_quality: Eigen::Matrix)
+ operator==(other: GraspQuality): bool
+ operator!=(other: GraspQuality): bool

1

1

StaticMemberInitializer

+ StaticMemberInitializer()
+ ensureLinking(): void

OcTreeGripper

ocTreeGraspQualityMemberInit: StaticMemberInitializer
 # graspable_voxels: unsigned long
 # grasping_normal: point3d

+ OcTreeGripper(resolution: double)
+ OcTreeGripper(_filename: String)
+ create(): OcTreeGraspQuality
+ getTreeType(): String
+ operator=(rhs: OcTreeGripper): OcTreeGripper
+ operator ColorOcTree(): ColorOcTree
+ importOcTree(octree_in: OcTree): void
+ pruneNode(node: OcTreeGripperNode): bool
+ isNodeCollapsible(node: OcTreeGripperNode): bool
+ setNodeIsGraspingSurface(key: OcTreeKey, grasping_surface_flag: bool):
 OcTreeGripperNode
+ setNodeIsGraspingSurface(octo_point3d: point3d, grasping_surface_flag: bool):
 OcTreeGripperNode
+ setNodeIsGraspingSurface(x: float, y: float, z: float,grasping_surface_flag: bool):
 OcTreeGripperNode
+ updateInnerOccupancy(): void
+ updateNumGraspableVoxels(): void
+ getNumGraspableVoxels: unsigned long
+ getGraspingNormal(): point3d
+ setGraspingNormal(): __grasping_normal: point3d): void
+ setOrigin(translation: point3d): void
+ ~OcTreeGripper()

StaticMemberInitializer

+ StaticMemberInitializer()
+ ensureLinking(): void

OcTreeGripperNode

is_grasping_surface: bool

+ OcTreeGripperNode()
+ OcTreeGripperNode(rhs: OcTreeGripperNode)
+ operator==(rhs: OcTreeGripperNode): bool
+ copyData(from: OcTreeGripperNode): void
+ isGraspingSurface(): bool
+ setIsGraspingSurface(grasping_surface_flag: bool): void
+ updateIsGraspingSurfaceChildren(): void
+ getAverageChildIsGraspingSurface(): bool
+ ~OcTreeGripperNode()
+ readData(s: std::istream): std::istream
+ writeData(s: std::ostream): std::ostream

octomap

Figure 5.1: UML Class Diagram for Octomap-Grasping package.

5.2. Grasp Planning Engine 63

Figure 5.2: Dependency graph for OcTreeGraspQuality.cpp source file.

Figure 5.3: Dependency graph for OcTreeGripper.cpp source file.

5.2. Grasp Planning Engine
The Grasp Planning Engine2 enables grasp planning operations using the OctoMap
Grasping classes defined in section 5.1. It provides the necessary methods for meet-
ing the system architecture model defined in Figure 4.5, as well as having conve-
nience functions for performing individual (“local”) grasp quality analyses instead of
only global ones. In Figure 5.4, the UML Class Diagram for the grasp planning engine
package is provided, while in Figure 5.5 the dependency graph of the grasp planning
engine entry point (gp_node.cpp) and the rest of interacting packages is depicted.
For grasp analyses, the Robotiq 2F85 gripper is used. In Figure 5.6, the gripper is de-
picted with the graspable region (8.4 × 3.6 × 1.9cm) drawn in semi-transparent green,
while the body of the gripper is drawn in red. Because of the significant size of this
gripper model, however, a simplified abstraction of it is used for the global graspability
map. This simplified gripper is depicted in Figure 5.7 and has the identical grasp-
ing region as its larger counterpart. The only difference between the two grippers is
the amount of body voxels attached to the model. In preliminary tests it was observed
how, due to the fact that the gripper approaches the target model following the surface
normal direction, the gripper body voxels below the graspable region rarely interact
with the target body. Eliminating those allows for much faster processing at a minimal
expense.

2https://github.com/aut-o-magic/grasp-planning-engine

https://github.com/aut-o-magic/grasp-planning-engine

64 5. System Implementation

graspQualityMap

- target_tree_: OcTreeGraspQuality
- gripper_tree_: OcTreeGripper
- sensor_origin_: point3d

+ graspQualityMap(double resolution=0.1)
+ set_simple_gripper(grasping_normal: octomap::point3d, min_point3d: octomap::point3d,
 max_point3d: octomap::point3d): void
+ set_target_tree(octree: octomap::OcTree): void
+ set_target_tree(octree: octomap::OcTreeGraspQuality): void
+ set_gripper_tree(octree: octomap::OcTree, gripper_normal: octomap::point3d, min_BBX: octomap::point3d,
 max_BBX: octomap::point3d): void
+ set_gripper_tree(octree: octomap::OcTreeGripper): void
+ set_gripper_tree(octree: octomap::OcTreeGripper, min_BBX: octomap::point3d, max_BBX: octomap::point3d):
 void
+ get_gripper_tree(): octomap::OcTreeGripper
+ get_target_tree(): octomap::OcTreeGraspQuality
+ analyse_local_grasp_quality(it_node: octomap::OcTreeGraspQuality::iterator,
 algorithm_select: graspPlanningAlgorithms): Eigen::Affine3f
+ analyse_global_grasp_quality(algorithm_select: graspPlanningAlgorithms): void
+ write_grasp_visualisations(TF: Eigen::Affine3f): void
- node_gq_analysis(it_node: octomap::OcTreeGraspQuality::leaf_iterator, gq_virtual: gq_method):
 octomap::OcTreeGraspQualityNode::GraspQuality
- node_gq_analysis(it_node: octomap::OcTreeGraspQuality::leaf_iterator, target_tree: octomap::OcTreeGraspQuality,
 gripper_tree: octomap::OcTreeGripper, gq_virtual: gq_method, gq: octomap::OcTreeGraspQualityNode::GraspQuality,
 Tbest: Eigen::Affine3f): void
- add_graspable_region(min: octomap::point3d, max: octomap::point3d): octomap::point3d

<<Utility>>
GraspQualityMethods

+ grasping_pairs: std::vector<std::pair<octomap::OcTreeGripper::iterator,
 octomap::OcTreeGripper::iterator>>

+ gq_voxelsuperimposition(T: Eigen::Affine3f, target_tree_: octomap::OcTreeGraspQuality,
 gripper_tree_: octomap::OcTreeGripper): float
+ gq_surfacenormals(T: Eigen::Affine3f, target_tree_: octomap::OcTreeGraspQuality,
 gripper_tree_: octomap::OcTreeGripper): float
+ gq_voxelsuperimposition_surfacenormals(T: Eigen::Affine3f, target_tree_: octomap::OcTreeGraspQuality,
 gripper_tree_: octomap::OcTreeGripper): float
+ gq_raycasting(T: Eigen::Affine3f, target_tree_: octomap::OcTreeGraspQuality,
 gripper_tree_: octomap::OcTreeGripper): float
+ gq_pairs_coplanarity(T: Eigen::Affine3f, target_tree_: octomap::OcTreeGraspQuality,
 gripper_tree_: octomap::OcTreeGripper): float
+ gq_voxelsuperimposition_raycasting(T: Eigen::Affine3f, target_tree_: octomap::OcTreeGraspQuality,
 gripper_tree_: octomap::OcTreeGripper): float
+ gq_voxelsuperimposition_coplanarity(T: Eigen::Affine3f, target_tree_: octomap::OcTreeGraspQuality,
 gripper_tree_: octomap::OcTreeGripper): float

<<Utility>>
GraspVisualisations

- translated_ColorOcTree(tree: octomap::ColorOcTree, translation: octomap::point3d):
 octomap::ColorOcTree
+ visualise_surface_normals_density(target_tree_: octomap::OcTreeGraspQuality): void
+ visualise_local_grasp(target_tree_: octomap::OcTreeGraspQuality, gripper_tree_: octomap::OcTreeGripper,
 show_target_voxels: bool=false, T: Eigen::Affine3f=Eigen::Affine3f::Identity(), BBX_margin: float=0):
 octomap::ColorOcTree
+ visualise_global_grasp(target_tree_: octomap::OcTreeGraspQuality, gripper_tree_: octomap::OcTreeGripper,
 T: Eigen::Affine3f=Eigen::Affine3f::Identity()): octomap::ColorOcTree

<<Utility>>
GraspPlanningUtils

+ transform_point3d(T: Eigen::Affine3f, point3d: octomap::point3d): octomap::point3d
+ negative_collisions(source: octomap::OccupancyOcTreeBase, target: octomap::OccupancyOcTreeBase,
 T: Eigen::Affine3f): int
+ safe_angleTo(lhs: octomap::point3d, rhs: octomap::point3d): float
+ print_query_info(query: octomap::point3d, node: octomap::OcTreeNode): void
+ max_composite_vector(__vector1: octomap::point3d, __vector2: octomap::point3d): octomap::point3d
+ min_composite_vector(__vector1: octomap::point3d, __vector2: octomap::point3d): octomap::point3d
+ get_filtered_surface_normals(tree: octomap::OccupancyOcTreeBase, point3d: octomap::point3d):
 octomap::point3d_collection
+ searchIterator(coord: octomap::point3d, tree: octomap::OccupancyOcTreeBase):
 octomap::OccupancyOcTreeBase::iterator
+ graspingPairs(axes: String, tree: octomap::OcTreeGripper):
 std::vector<std::pair<octomap::OcTreeGripper::iterator,octomap::OcTreeGripper::iterator>>
+ rescaleTree(tree: octomap::<TREE>, resolution: double): octomap::<TREE>
+ rescaleTree(tree: octomap::<TREE>, resolution: double, min: octomap::point3d, max: octomap::point3d):
 octomap::<TREE>
+ rescaleTreeStructure(tree: octomap::<TREE>, resolution: double): octomap::<TREE>
+ rescaleTreeStructure(tree: octomap::<TREE>, resolution: double, min: octomap::point3d, max: octomap::point3
 octomap::<TREE>

<<Enumeration>>
graspPlanningAlgorithms

GP_ONLYVOXELSUPERIMPOSITION
GP_ONLYSURFACENORMALS
GP_VOXELSUPERIMPOSITIONANDSURFACENORMALS
GP_RAYCASTINGANTIPODALPLANES
GP_COPLANARITYCONTACTPOINTS
GP_VOXELSUPERIMPOSITIONANDRAYCASTING
GP_VOXELSUPERIMPOSITIONANDCOPLANARITY

Figure 5.4: UML Class Diagram for Grasp Planning Engine package.

5.2. Grasp Planning Engine 65

Figure 5.5: Dependency graph for gp_node.cpp source file.

Figure 5.6: Robotiq 2F85 gripper with graspable region between the antipodal grasping plates.

Figure 5.7: Simple gripper with graspable region between the antipodal grasping plates.

66 5. System Implementation

5.3. 3D Model to Depth Map
The 3D Model to 2D depth image projection tool3 is used to benchmark the grasp
planning of this thesis work with other state-of-the-art solutions. There are numerous
standards used to express depth data, so the code of this utility is designed to be
modular and easy to edit for custom implementations.

The utility is written as a procedural program in Python 3.8 and uses Open3D
as a backend for mesh processing [69], and PyPNG for image I/O operations. Given
that the utility was not designed following an Object-Oriented Design (OOD) approach
because of its simplicity, no UML Class diagrams are provided in this section. As a
result, the utility generates the items described below. An example processing of the
3D model depicted in Figure 5.8 is performed to visualise the operation.

• Depth map in [m] as a 3D npy file;

• Depth map in png format (depicted in Figure 5.9). By default it scales the metric
scale up by 1000, meaning that a depth of 200mm would depict with a colour
intensity of 200 (out of 255);

• Segmentation mask in png format (Figure 5.10);

• Intrinsic camera parameters in format used in the CQCNN package by Berkeley
Automation listed in Script 5.1.

Figure 5.8: Small frog 3D model used to generate sample outputs.

Figure 5.9: Example depth map output. Figure 5.10: Example segmentation mask output.

Script 5.1: Contents of intrinsic camera parameters output file virtualcam.intr
1 {”_cy”: 499.500000, ”_cx”: 499.500000, ”_fy”: 3000.000000, ”_height”:

1000, ”_fx”: 3000.000000, ”_width”: 1000, ”_skew”: 0.000000, ”_K”: 0, ”
_frame”: ”virtualcam”}

3https://github.com/aut-o-magic/3DtoDepthmap

https://github.com/aut-o-magic/3DtoDepthmap

III
Framework Evaluation

67

6
System Verification

In this chapter, qualitative analyses of the performance of the grasp quality methods
(and the overall grasp planning engine) developed in the scope of this work are exe-
cuted. Due to the geometric nature of the processing, results will contain numerous
illustrations as they are ultimately the most native way to judge and analyse geometric
characteristics.

This chapter is divided in two analysis sequences:

• Envisat satellite grasp quality analysis with qualitative grasp planning method
comparison. The goal is to find the better performing methods.

• Dex-Net comparison, where grasp candidates of this thesis work are compared
against the largely-consensuated state-of-the-art in empirical grasp planning.

Lastly, conclusions are drawn on the performance of the system on the synthetic ver-
ification data.

6.1. Envisat
A qualitative assessment of the graspability of Envisat is performed with each of the
grasp planning methods developed. Envisat is a large passive satellite still in-orbit,
which was used for Earth observation. It has been a candidate for active debris re-
moval in the past, due to its very slow orbit decay and chance of collision with other
debris [70]. This led to it being a well-documented satellite for academic work.

The results of the graspability assessment of Envisat, tabulated in Table 6.1 and
depicted below, show that the properly tuned metrics used for grasp planning are
sensible and suggest reasonable grasp candidates.

The analyses are encoded based on the codebase version number and the grasp
quality method used. Then, a mark “Mk” is added when the parameters of the grasp
quality method are altered. For example, R61 Mk1 corresponds to codebase version
6, grasp planning method 1 (voxel superimposition), mark 1. Although not all of the
tabulated analyses are from codebase version 8, they are fully comparable because
the codebase between version 6 and 8 did not change for analyses made with grasp
planning method 1.

69

70 6. System Verification

Table 6.1: Parameter matrix of the parameters used for the qualitative analysis of Envisat.

Analysis ID Reward Penalty
Angle
satura-
tion (°)

Zero
Cross-
ing (°)

Bin satu-
ration

Bin
steps

R61 Mk0 1 1

R61 Mk1 1 2

R61 Mk2 1 5

R61 Mk3 1 50

R82 Mk0 1

R82 Mk1 10

R83 Mk0 1 1 1

R83 Mk1 1 10 10

R84 Mk0 45

R84 Mk1 30

R85 Mk0 5 100

R85 Mk1 50 100

R86 Mk0 1 1 45

R86 Mk1 1 10 30

R87 Mk0 1 1 5 100

R87 Mk1 1 10 50 100

6.1. Envisat 71

From these analyses, it is observed how, with the right parameter tuning, all grasp
planning methods considered except for method #6 appear to highlight regions that
appear reasonable to grasp. Nevertheless, methods #1, #5, and #7 are the ones
that show particularly good results. In the visualisations of these results below, it can
be easily observed how the grasping regions around thin edges are strongly favoured,
while planar and concave regions floored to negligible grasp quality. Major differences
between the pure voxel superimposition method #1 and the composite methods #5
and #7 is that the former also strongly rejects thin connectors, while the other two
accept grasp candidates on those regions to varying degrees. In essence, method #1
directly measures grasp quality, while method #5 aids in the robustness of the solution
by rewarding highly planar grasping surfaces. Method #7 then, as defined in previous
sections, is a weighted average of #1 and #5. Visualisations for the rejected methods
can be found in Appendix B.

Figure 6.1: Envisat graspability as analysed by voxel superimposition method (#1) with Reward = 1,
and Penalty = 50.

Figure 6.2: Local view of best grasp candidate for method #1 analysis. Grasp quality = 0.833333.

72 6. System Verification

Figure 6.3: Envisat graspability as analysed by coplanarity of contact points method (#5) with Bin
saturation = 50 and Bin steps = 100

Figure 6.4: Envisat graspability as analysed by voxel superimposition + coplanarity of contact points
(#7) with Reward = 1, Penalty = 10, Bin saturation = 50, and Bin steps = 100.

6.2. Dex-Net Simulations 73

6.2. Dex-Net Simulations
In this section, a comparison analysis is performed between the Aut-O-MAGIC solu-
tion and one of the best well-known deep learning grasp planning solutions, Dex-Net.

In the latest Dex-Net version for antipodal grasping, GQCNN-4.0-PJ, the camera
used it is PhotoNeo Phoxi S [62]. The camera parameters are listed in Script 6.1 and
inputted into the 3D model to depth map tool for depth image generation. The ABB
YuMi Gripper used by UC Berkeley is custom designed, but with similar characteristics
as to the default Robotiq 2F-85 gripper used in this thesis. Its maximum grasping
width, however, is 5 cm1, instead of 8cm for the Robotiq 2F85 gripper. Overall, their
custom gripper is 5 × 3 × 2 cm while ours is 8.3 × 3.6 × 1.9 cm, making it somewhat
wider but with negligible contact surface difference. Nevertheless, the gripper model
in our grasp planning algorithm is adapted to match the UiMi custom gripper, by using
the simple gripper model with adapted graspable region. The YuMi custom gripper
model is depicted in Figure 6.5, while its simple gripper model used for benchmarking
in Figure 6.6.

In general, it is good practise to keep in mind that deep learning models (and by
extension the GQ-CNN model below) are sensitive to the parameters used during
dataset generation, specifically, the GQ-CNN was trained under the following condi-
tions:

• Gripper geometry: ABB YuMi Parallel Jaw Gripper;

• Camera intrinsics: PhotoNeo Phoxi S camera;

• Distance between camera and workspace during rendering: 50–70 cm for all
the pre-trained models.

This conditions are accommodated for in this comparison by adjusting the gripper
geometry to the custom ABB YuMi gripper used in Dex-Net, as well as using their
camera model (simulating a PhotoNeo Phoxi S camera) to generate the depth images
for analysis. Finally, the depth images generated are carefully crafted to be rendered
at a distance 50–70cm from the virtual camera.
Script 6.1: Intrinsic camera parameters for the PhotoNeo Phoxi S. camera used to train the CQCNN-
4.0-PJ model

1 {”_cy”: 191.75, ”_cx”: 255.5, ”_fy”: 552.5, ”_height”: 386, ”_fx”:
552.5, ”_width”: 516, ”_skew”: 0.0, ”_K”: 0, ”_frame”: ”phoxi”}

Comparative analyses between our solution and Dex-Net 4.0 are performed in two
different objects, namely:

1. An adversarial pyramid object, depicted in Figure 6.7. This object has been
generated for the purpose of these analyses. It attempts to force the grasp
planner to decide within a range of preference whether it prefers grasping a
thicker structure, or one with more parallel surface areas. The object is a cone
that follows a non-linear slope between its narrower tip and its wider base. Its
length is 0.5m, while the diameter ranges from 0.02m to 0.2m.

1https://github.com/BerkeleyAutomation/dex-net/blob/master/data/grippers/
yumi_metal_spline/params.json

https://github.com/BerkeleyAutomation/dex-net/blob/master/data/grippers/yumi_metal_spline/params.json
https://github.com/BerkeleyAutomation/dex-net/blob/master/data/grippers/yumi_metal_spline/params.json

74 6. System Verification

2. A complex (but easier to grasp) vase, depicted in Figure 6.15. This object was
part of pool of 3D models used to train Dex-Net, so its performance on the Dex-
Net grasp planning method should be sensible.

In the figures below, analyses of the adversarial pyramid using grasp planning
method #1, #5, and #7 are provided. It can be seen how the global graspability maps
clearly highlight a specific region of the pyramid, where the thickness is still fair and the
slope is still reasonably low. The results from Dex-Net 4.0 are depicted in Figure 6.14
and Figure 6.16. The results of our grasp quality analyser for the vase object are
represented following in a similar fashion to the Dex-Net labels to aid readability and
provide an un-occluded view of the region. Surprisingly, for the vase object, the GQ-
CNN deep learningmodel was unable to resolve any grasp candidates when the depth
image was captured using the same orientation as observed in Figure 6.15. Only after
rotating the model slightly it was able to identify a grasp candidate.

Figure 6.5: Custom ABB YuMi Gripper used
by UC Berkeley for its GQCNN and Dex-Net
projects. Graspable region (only area with
padding) is approximately 5 × 3 × 2 cm.

Figure 6.6: Representation of the custom ABB
YuMi Gripper used by UC Berkeley for its
GQCNN and Dex-Net projects. Graspable re-
gion is 5 × 3 × 2 cm.

6.2. Dex-Net Simulations 75

Figure 6.7: Overview of the adversarial pyramid object. Its length is 0.5 m, while the diameter ranges
from 0.02 m to 0.2 m.

Figure 6.8: Best grasping candidate of the adversarial pyramid using the custom ABB YuMi gripper
model and grasp planning algorithm #1. Right image is isolated view of target voxels (green) interacting
with the gripper. Grasp quality score = 0.608333.

76 6. System Verification

Figure 6.9: Best grasping candidate of the adversarial pyramid using the custom ABB YuMi gripper
model and grasp planning algorithm #5. Right image is isolated view of target voxels (green) interacting
with the gripper. Grasp quality score = 0.9.

Figure 6.10: Best grasping candidate of the adversarial pyramid using the custom ABB YuMi gripper
model and grasp planning algorithm #7. Right image is isolated view of target voxels (green) interacting
with the gripper. Grasp quality score = 0.691667.

6.2. Dex-Net Simulations 77

Figure 6.11: Global graspability map of the adversarial pyramid using the custom ABB YuMi gripper
model and grasp planning algorithm #1.

Figure 6.12: Global graspability map of the adversarial pyramid using the custom ABB YuMi gripper
model and grasp planning algorithm #5.

78 6. System Verification

Figure 6.13: Global graspability map of the adversarial pyramid using the custom ABB YuMi gripper
model and grasp planning algorithm #7.

Figure 6.14: Best grasping candidate of the adversarial pyramid using the custom ABB YuMi gripper
model ran on the Dex-Net 4.0 GQCNN-4.0-PJ deep learning model from UC Berkeley. Grasp quality
score = 0.882.

6.3. Conclusions 79

Figure 6.15: Illustrated best grasping candidate
of the vase object using the custom ABB YuMi
gripper model and grasp planning algorithm #7.
Drawn antipodal plates to mimic GQCNN repre-
sentation of the vase object for easier compari-
son. The region being grasped is a hill that cor-
responds to the hill on the right-hand side of Fig-
ure 6.16. Grasp quality score = 0.8.

Figure 6.16: Best grasping candidate of the vase
object using the custom ABB YuMi gripper model
ran on the Dex-Net 4.0 GQCNN-4.0-PJ deep learn-
ing model from UC Berkeley. Grasp quality score
= 0.905.

6.3. Conclusions
The global grasp quality analyses performed on synthetic data in this chapter show
that the geometric grasp quality metrics proposed in this thesis work are valid. Out
of the seven grasp quality methods proposed, it was demonstrated how the metrics
including voxel superimposition scores between the target and gripper objects, as
well as a measure of target surface contact points coplanarity, performed best. With
iterative weight tuning, it was possible to achieve grasp quality candidates that are
verifiable by inspection.

The results of the grasp quality analyses developed in this thesis were compared
against results from the state-of-the-art grasp planning method Dex-Net 4, which uses
deep learning. The comparisons showed agreement in regards to best grasp candi-
date selection, which verifies that the methods proposed in this work are sensible.
Furthermore, comparison with the afore deep learning-based grasp planning method
highlighted one of the shortcomings of deep learning methods that use image-based
inputs, instead of 3D maps. It was observed how the grasp planning method devel-
oped in this thesis work was able to suggest better grasp candidates than the deep
learning-based alternative for a particular adversarial object. This superiority is hypoth-
esised to be due to the neural network being trained on small objects where grasps
that are narrower than the object itself were not sufficiently present.

7
System Validation

To validate the resolution requirements of the system, its robustness to real-world
noise, and its general applicability in real-world scenarios, a test campaign simulating
a rendezvous scenario is performed in the GNC Rendezvous, Approach and Landing
Simulator (GRALS) at ESTEC. This rendezvous scenario will serve as Software-In-the-
Loop (SIL) tests for Aut-O-MAGIC. It consists of image acquisition of a scaled Envisat
model and the recreation of a representative rendezvous trajectory approaching the
model.

7.1. Experimental Setup
An overview of the experimental setup can be seen in Figure 7.1. The following hard-
ware components are required during the test campaign:

• GRALS facility:

– Wall-mounted KUKA robotic arm;
– VICON Motion Tracking System;
– VICON Active Wand;
– VICON PC;
– GRALS PC.

• A 1:10 model of Envisat;

• Light source “stage light”;

• KUKA end-effector interface for camera mount;

• 5V battery pack;

• Azure Kinect DK (K4A) depth camera;

• Host machine for the Azure Kinect DK.

Similarly, the following software components are required:

81

82 7. System Validation

• GRALS software:

– (Simulink @ GRALS PC) VICON multi-object tracker;

– (Simulink @ GRALS PC) KUKA connection block (read telemetry only);

– (KRL @ KR C4) Robot trajectory + Simulink broadcasting script.

• (C @ Host machine K4A) trigger routine to begin and store sensor data record-
ing.

Figure 7.1: Overview of the test environment in GRALS, with the components labelled (computing
equipment not in view).

7.1.1. The Orbital Robotics and GNC Laboratory and GRALS
The laboratory set-up in the Orbital Robotics and GNC Laboratory at ESTEC has mul-
tiple facilities dedicated to the study of free-floating systems. In this project the GNC
Rendezvous, Approach and Landing Simulator (GRALS) facility will be used. GRALS
is a test facility belonging to the GNC Test Facilities, consisting of hardware and soft-
ware elements, making use of gantry robots to hold a GNC system payload and to
simulate its movements for rendezvous and entry, descent, and landing missions in
6 degrees of freedom. The facility consists of two robotic arms (type Agilus KR10
R1100 sixx C) on linear tracks on the wall and ceiling of the Orbital Robotics and GNC
Lab (namely Wall and Ceiling manipulators), with a useful length of 33m and 5.5m,
respectively. The robots are controlled by their respective proprietary KR Controller

7.1. Experimental Setup 83

4 units (using proprietary KRL language), and a KUKA (Control) Cabinet which in-
cludes a safety PLC. An overview of the active components of GRALS is depicted in
Figure 7.2.

Explicitly, GRALS was designed to be able to reproduce:

• Scaled landing trajectories for planetary or small body-missions descent phase,

• Scaled and 1:1 trajectories for planetary or small body-missions landing/touch-
down phase,

• Scaled trajectories for the approach of the rendezvous phase of a mission,

• Scaled and 1:1 trajectories for the final approach and docking/berthing of the
rendezvous phase of a mission.

Figure 7.2: GNC Rendezvous, Approach and Landing Simulator overview.

The GRALS facility can be remotely controlled via a device on the local network
over a UDP (Ethernet) connection with a latency of 4ms. Any device can be used,
including a provided real-time machine to achieve consistent results.

Moreover, the GRALS facility includes a lab-wide VICON motion capture system,
commonly used by industry as ground truth in experiments of this type. In the GRALS
VICON setup, measurement accuracy below 1mm is routinely achieved.

In addition to the laboratory facility, a robotiq 2F-85 two-finger gripper, a Robotiq
FTS-300 force-torque sensor, and one Basler acA1920-48gc GigE 50FPS 2.3MP area
scan camera are available.

84 7. System Validation

In terms of software, a versatile GRALS controller built in Simulink is available for
use as an interface between the rendezvous and docking system being designed and
the GRALS robotic arms. This GRALS controller can be compiled to the real-time
machine for improved responsiveness. It is also possible to compile the rendezvous
and capture controllers in the virtual machine. This requires the work on this thesis to
be done in the C/C++ programming language, as the most common option, Python,
has to run extrinsically and generally cannot be compiled into C.

7.1.2. Payload
The payload is depicted in Figure 7.3, and as previously mentioned consisted of the
Azure Kinect DK (in white), the end-effector interface to mount the camera and the
other items to the KUKA robots (black plate), the 5V battery pack to power the camera,
and the host machine to command and retrieve the camera data (attached to the robot
base).

Figure 7.3: Validation test payload.

7.1.3. Target
The target Envisat 1:10 scale model is depicted in Figure 7.4. It has been assembled
without the largest solar panels that are also omitted in the 3D voxel model of Envisat
used in this thesis work.

7.2. Trajectory
Two trajectories were planned: a long-range (from 29.5 m until 0.1 m) linear trajectory
towards the target, and a short-range orbiting trajectory (Figure 7.5). However, due to
goals of this validation campaign being the determination of resolution requirements
and overall correspondence of the graspable regions with the synthetic model, the
short-range trajectory is ultimately not required.

7.2. Trajectory 85

Figure 7.4: 1:10 scaled model of Envisat used in the SIL test campaign.

Figure 7.5: Short-range spherical trajectory executed during the SIL tests, all units in mm.

86 7. System Validation

7.3. Data Collection
Data were collected following the process described in subsection 4.5.5. The sensor
recorded the data on a mkv file that contained IR, colour, and depth channels. More-
over, telemetry from the KUKA robotic arm and VICON ensured accurate tracking.

Focusing on the analysis of the long-range linear motion to the target, in Fig-
ure 7.6, it can be observed how the settings used in the K-NN outlier removal technique
(𝑘 = 30, 𝜎 = 1) were able to greatly reduce the point cloud data noise. Further noise
reduction is not necessary because region of interest is the Envisat satellite, such that
remaining noise in other areas can safely be disregarded.

Figure 7.6: Global reconstructed point cloud compiled with the K-NN outlier removal method using the
5 nearest neighbours (left) and the 30 nearest neighbours (right). All units are in meters, with the colour
gradient displaying the distance from the origin.

The entire trajectory recording spans a distance of 29.5 meters. Single point cloud
frames are too sparse for grasp determination. With sensibly high resolutions, the
voxel models present many gaps. With a lower resolution some of these gaps are
resolved but it becomes to coarse for grasp planning. Example depictions of voxeli-
sation at reasonable and coarse resolutions is depicted in Figure 7.7. To increase
point density and surface reconstruction quality, filtering, registration, and refinement
of point cloud sets is performed. Through this, 5 segments at different distances from
the target are reconstructed to investigate the resolution requirements of the grasp
planning algorithm on real-world data. The regions are tabulated in Table 7.1.

7.4. Graspability Analysis 87

Table 7.1: Trajectory segments used for surface reconstruction.

Point cloud snapshot range [-] Min distance [m] Max distance [m]

300–349 13.16 15.48

450–499 6.07 8.39

500–549 3.70 6.02

550–599 1.34 3.66

600–6101 0.82 1.29

Other regions were not extracted for analysis as these already cover the entire
operational envelope of the sensing system.

Figure 7.7: Voxel models from single point cloud snapshots of Envisat taken at a distance of 1.29 m,
voxel leaf sizes of 0.002 m (left) and 0.005 m (right).

7.4. Graspability Analysis
The 5 reconstructed point cloud sets are voxelised at leaf sizes of 0.001m to 0.005m,
such that there is a range of resolution models to determine the minimum resolution re-
quirement. The voxelisation results for the different reconstructed regions is tabulated
in Table 7.2.
1The last point cloud segment covers only 10 entries due to Envisat crossing the point where it is no
longer fully observable within the camera’s FOV

88 7. System Validation

Table 7.2: Reconstructed voxel models from point cloud data at different distances from the target.

Distance range [m] Leaf size [m] Figure ref.

13.16–15.48 0.005 7.8

6.07–8.39 0.005 7.9

3.70–6.02 0.005 7.9

1.34–3.66 0.005 7.10

0.82–1.29 0.005 7.10

Figure 7.8: Envisat (1:10 model) reconstruction at a distance of 15.48–13.16 m, voxel leaf size of 0.005
m

7.4. Graspability Analysis 89

Figure 7.9: Envisat (1:10 model) reconstruction at a distance of 8.39–6.07 m (left), and 6.02–3.70 m
(right), voxel leaf size of 0.005 m.

Figure 7.10: Envisat (1:10 model) reconstruction at a distance of 3.66–1.34 m (left), and 1.29–0.82 m
(right), voxel leaf size of 0.005 m.

90 7. System Validation

With the Envisat model reconstructed, global grasp analyses are performed to
determine the robustness of the graspability analysis using as comparison the noise-
free Envisat synthetic model used in section 6.1, as well as the minimum resolution
required for meaningful results. During grasping analysis, the observed Envisat ob-
ject is upscaled by a factor of 10 to match the dimensions of the real Envisat satellite
used in the synthetic analyses. With that, observing the 1:10 scale mock-up with a
leaf size of 0.002m roughly corresponds to the leaf size used for synthetic analysis
(0.019m). The grasp analyses are performed using method #7: voxel superimposi-
tion and grasping surface coplanarity, which was shown to deliver good performance
during verification. The results are tabulated in Table 7.3.

Table 7.3: Results of the validation analyses of Envisat at different leaf sizes (resolutions). Envisat was
reconstructed from a single point cloud snapshot at 1.29 m distance and a set of point cloud snapshots
at 1.29–0.82 m distance.

Leaf size [m] Figure ref. Comments

0.001 N/A The decompressed model requires more than 16GB of
RAM, unable to analyse

0.002 7.11 Analysis from singular point cloud is too sparse; analy-
sis from set of clouds too noisy

0.003 7.12

Analysis from singular point cloud is too sparse; analy-
sis from set of clouds shows graspability patters compa-
rable to synthetic analyses, albeit requires further noise
reduction

0.004 7.13

Singular point cloud has acceptable point density and
graspability patters are comparable to synthetic anal-
yses, but clearly displays grainy results; set of point
clouds has less grainy results than single snapshot, low
voxel resolution incorrectly leads to varying graspabil-
ity results along the edges of circular surfaces such as
the antennae

0.005 7.14 Resolution is too coarse for graspability analysis given
the 8.4 × 3.6 × 1.9cm gripper used in this work2

It can be seen how it is difficult to robustly predict grasps in the target Envisat
model with the defined upscaling of the captured model. For illustration purposes,
an analysis is also performed without upscaling the model—keeping the metric scale
as-is. This yields the results depicted in Figure 7.15, which clearly show much better
performance. In Figure 7.16 and Figure 7.17, close-up views of the global graspability
map around the best grasp candidate are depicted.
2The envisat model was scaled up by a factor of 10 during analysis to match the size of the synthetic
model and allow using the same gripper size. This is equivalent to using a 0.84×0.36×0.19cm gripper
with the unscaled model

7.5. Conclusions 91

7.5. Conclusions
This validation campaign demonstrated that grasp planning with analytical methods
is very sensitive to noise. However, clear graspability patters were still observable
which suggest that, with superb noise reduction and model reconstruction pipelines,
reproducible results as the ones obtained in the verification analyses with synthetic
models are possible. This campaign has also shown how generating the global gras-
pability maps using larger grippers proves to be much more robust to noise. These
observations suggest that in order to increase robustness to noise the resolution-to-
gripper-width ratio shall be increased.

It has been observed that in order to perform global grasp analyses of the target
models, the resolution (leaf size) has to be less than half (1/2) the grasping width of the
gripper employed. This draws clear parallels to the characteristic Nyquist frequency
of samplers in signal processing. With a sampling (resolution) wider than half the
grasping width, aliasing is encountered and potential grasping candidates become
scarce and inconsistent.

Lastly, it is worth noting that it can be observed how, using the Microsoft Azure
Kinect DK (K4A), it was possible to obtain an accurate image of the target model at a
resolution of 0.005m from a distance of 3.6m, which largely exceeds the typical close
proximity rendezvous sensor accuracy requirements outlined from a study of previous
missions [15], [22]. This suggests that RGB-D sensors are a promising for accurate
mapping in space. However, these sensors are vulnerable to IR noise due to their
active IR depth sensing technology.

Figure 7.11: Global grasp planning of Envisat (1:10 model) reconstructed from a single point cloud
snapshot at a distance of 1.29 m (left) and 10 snapshots at a distance of 1.29–0.82 m (right), voxel leaf
size of 0.002 m.

92 7. System Validation

Figure 7.12: Global grasp planning of Envisat (1:10 model) reconstructed from a single point cloud
snapshot at a distance of 1.29 m (left) and 10 snapshots at a distance of 1.29–0.82 m (right), voxel leaf
size of 0.003 m.

Figure 7.13: Global grasp planning of Envisat (1:10 model) reconstructed from a single point cloud
snapshot at a distance of 1.29m (left) and 10 snapshots at a distance of 1.29–0.82m (right), voxel leaf
size of 0.004m

7.5. Conclusions 93

Figure 7.14: Global grasp planning of Envisat (1:10 model) reconstructed from a single point cloud
snapshot at a distance of 1.29 m (left) and 10 snapshots at a distance of 1.29–0.82 m (right), voxel leaf
size of 0.005 m.

Figure 7.15: Global grasp planning and best grasp candidate of Envisat without upscaling and maintain-
ing the standard gripper width of 8.4 cm. Reconstructed from 10 snapshots at a distance of 1.29–0.82
m, voxel leaf size of 0.005 m.

94 7. System Validation

Figure 7.16: Most graspable region of the unscaled Envisat model analysis (viewpoint 1).

Figure 7.17: Most graspable region of the unscaled Envisat model analysis (viewpoint 2).

IV
Conclusions and Recommendations

95

8
Requirements Compliance

This chapter describes the compliance of the Aut-O-MAGIC design solution with the
technical requirements defined. In the table below, the technical requirements com-
pliance list is tabulated.

Table 8.1: Technical requirements compliance list.

ID Status Rationale

SYS-REQ-1 OK Verified by test: The system generates a 3D reconstruc-
tion of the scene with acceptable noise reduction.

SYS-REQ-2 OK
Verified by analysis: grasp candidates are generated at
every voxel node, and there is sufficient population of
high-scoring candidates.

SYS-REQ-3 OK
Verified by test: Grasp candidates are quantitatively
ranked by the grasp quality value [0…1] and visually by
their colour-mapping.

SYS-REQ-4 OK Verified by test: 3D voxeliser works and its operation is
documented in section A.2

SYS-REQ-5 OK
Verified by test: Colour-mapping of the grasp quality
value of all nodes is provided and demonstrated to be
working.

SYS-REQ-6 OK Verified by test: 3D model to depth map utility is provided
and utilised successfully.

SYS-REQ-7 OK
Verified by inspection: 3D models with a resolution below
2.5 cm generated successfully for both synthetic data and
sensor data.

SYS-REQ-8 OK Verified by inspection: Validation runs cover envelope
0.1–29.5 m.

97

98 8. Requirements Compliance

SYS-REQ-9 OK

Verified by analysis: Grasp instantiation is performed in
a deterministic fashion, employing semi-optimised instan-
tiation that iterates over all surface nodes, pointing the
gripper along the surface normal vector.

SW-REQ-SA-1 OK Verified by test: Driver correctly outputs point cloud snap-
shots from the sensor recording.

SW-REQ-SA-2 OK Verified by test: The system registers point clouds against
a reconstructed scene with acceptable noise reduction.

SW-REQ-SA-3 OK Verified by test: The system compiles a scene reconstruc-
tion of multiple point cloud snapshots.

SW-REQ-SA-4 OK Verified by test: The system converts a point cloud into a
binary voxel tree with user-defined resolutions.

SW-REQ-VOX-1 OK Verified by test: process and example detailed in sec-
tion A.2.

SW-REQ-GP-1 OK Verified by test: 3D voxel models are imported from .bt
files and successfully analysed.

SW-REQ-GP-2 OK
Verified by analysis: Grasping information is stored back
to the trees, demonstrated by colour mapping in colour
trees, which would otherwise not be possible.

SW-REQ-GP-3 NOK
The system does not iteratively analyse all nodes in the
octree, but all nodes on the surface. This is done for per-
formance considerations.

SW-REQ-GP-4 OK Verified by inspection.

SW-REQ-GP-5 OK Verified by inspection.

SW-REQ-GP-6 OK Verified by inspection.

SW-REQ-GP-7 OK Verified by test: Output files are written with data integrity.

SW-REQ-DEPTH-1 OK Verified by test: 3D model visualisation with custom cam-
era location successfully generates depth image.

SW-REQ-DEPTH-2 OK Verified by test: Camera adjuster GUI is present.

SW-REQ-DEPTH-3 OK Verified by analysis: Depth array is generated and raw
cell values show correct trends.

SW-REQ-DEPTH-4 OK Verified by analysis: Segmentation mask is a binary cast-
ing from the depth array, which was verified to work.

SW-REQ-DEPTH-5 OK Verified by test: Depth image is generated from a user-
defined viewpoint.

SW-REQ-DEPTH-6 OK Verified by test: Output files are written with data integrity.

9
Conclusions

This chapter discusses how the research questions of this thesis have been answered.
On a high level, the performance of current analytic autonomous grasp planning meth-
ods for terrestrial applications can be improved to enable robust on-orbit grasp plan-
ning of uncooperative novel satellites by embracing the unique opportunities of the
space environment with the generation of occlusion-free, time-invariant, global gras-
pability maps of the target novel satellites prior to gripper interaction.

The methods proposed in this thesis span the two primary principles of mass un-
der the gripper grasping plates, and coplanar contact surface on the target object. By
analysing them separately and in a weighed manner, it has been observed how the
method which combines voxel superimposition and target contact surface uniformity
performs satisfactorily. On all the adversarial objects analysed grasp quality scores of
up to 0.9 out of 1 were achieved and, although there is difficulty validating this score
without physical grasping test campaigns, the provided visualisation tools based on
geometric interactivity suggest promising sustainment of simulation performance in
real-world operations. Furthermore, ad-hoc comparison of the grasp planning solu-
tion developed in this thesis against the solutions by the state-of-the-art Dex-Net 4.0
grasp planning algorithm, displayed clear agreement of results. In some cases, it was
also observable how the algorithm designed benefited from the additional informa-
tion available in 3D maps, and was able to translate that information into better grasp
candidates than what was possible with Dex-Net, which relied on depth images.

Successful implementation of global graspability maps as proposed in this work will
provide greatly enhanced on-orbit capabilities. As it has been discussed with rover
traverses, supplying detailed traversability maps can greatly improve the autonomy
of the rover’s traverse and enable globally-optimised sets of manoeuvres minimising
travel time, motor effort, risk, and many more. Global graspability maps for on-orbit
servicers would unlock an exciting set of complex manipulability operations that were
previously not possible.

Below, the central research question is re-stated for clarity, together with the sub-
questions and their outcomes which, overall, answer the central research question.

How can the performance of current analytic autonomous grasp plan-
ning methods for terrestrial applications be improved to enable robust on-
orbit grasp planning of uncooperative novel satellites?

99

100 9. Conclusions

1. What requirements are relevant for evaluating the performance
of an autonomous space grasp planning system?

(a) Which resolution is required to achieve good results?

Analytical grasp planning methods are more susceptible to noise than their em-
pirical counterparts. This sensitivity to noise has been clearly demonstrated in the
validation tests, and can be ameliorated with thorough outlier removal algorithms and
accurate surface reconstruction. It is demonstrated that, with noise mitigation mea-
sures in place, the global grasp quality can be determined reliably if the resolution
(leaf size) is less than half (1/2) the grasping width of the gripper employed. With a
sampling (resolution) wider than half the grasping width, aliasing is encountered and
potential grasping candidates become scarce and inconsistent.

(b) What noise levels does the system need to reliably operate under?

In the validation campaign it was demonstrated that grasp planning with analytical
methods is very sensitive to noise. This campaign has also shown how generating
the global graspability maps using larger grippers proves to be much more robust to
noise. These observations suggest that in order to increase robustness to noise, the
resolution-to-gripper-width ratio shall be increased beyond the minimum half grasping
width previously determined. The specific ratio needed for an application will depend
on the particular noise levels in the environment, and what 3D imaging sensor is used.
In this scenario, using an RGB-D camera, the infrared noise is the constraining factor.

(c) What constitutes a successful grasp?

Grasp quality metrics have been defined in multiple ways in this work, in order to
compare them and realise the most truthful representation of grasp success. It was
observed how the metrics composed of voxel superimposition scores between the
target and gripper objects, together with a measure of target surface contact points
coplanarity, performed best. With iterative weight tuning, it was possible to achieve
grasp quality candidates that are verifiable by inspection. A successful grasp can be
defined to be any candidate that has a grasp quality score above a certain threshold,
computed using those grasp quality metrics. In practise, grasp candidates with a score
of 0.6 or more with the 1/10 reward/penalty tuning and a bin saturation of 50, provided
successful grasps reviewed by inspection.

2. Which validation procedures most truthfully recreate the oper-
ating conditions of the system in space?

Validation procedures that include a rendezvous phase from a distance at which
the chaser can safely map the target object, paired with a light source of different
spectrum as the sun, will render truthful simulations of the operating conditions of the
system in space. Reliability tests can be executed on a frictionless surface (such as
an air-bed) to quantify the grasp reliability of the system.

101

3. How can geometric matching using 3D maps provide a perfor-
mance advantage compared to image-based analyses?

As it has been demonstrated throughout this thesis work, terrestrial grasp planning
sensors frequently rely on target geometric information from a single viewpoint. This
is due to the constrained nature of grasping operations on Earth, where gravity is a
factor and there is a significant trade-off to perform between resolving a larger amount
of the target object surface and saving time and effort and attempting the grasp with
the limited information available from a single viewpoint. In space, however, this is
not the case. The free-floating dynamics of space enable chaser satellites to perform
proximity operations around target vehicles and assess all potential viewpoints for
very limit expense.

(a) What are the limitations of image-based grasp planning?

Image based grasp planning solutions cannot reconstruct surface topology and
hence is limited to analyse the surface graspability in the axial direction. This forgoes
analysis of the contact points of the gripper plates on the target object. These contact
points provide significant insights into the graspability of the surface as can compute
the homogeneity of the surface and accordingly penalise cavities.

(b) How does the computational efficiency of both methods compare?

Image-based grasp planning methods do not require expensive pre-processing
of the sensor data like 3D map-based analyses. For 3D map-based analyses, the
snapshots have to be registered against a global 3D map of the target, while image-
based methods directly interface with the images acquired from the camera sensor.
However, if the goal of performing a global analysis is shared by both methods, image-
based methods impose stricter real-time requirements on the system, as the images
from the sensor instrument cannot be stored against a global 3D map for later anal-
yses. In this work, a full surface analysis of Envisat, analysing 106 candidates, took
between 1675 s (28 min) and 4029 s (67 min), depending on the grasp quality met-
rics used. The analyses were performed on a single-threaded environment running
at 2.8 GHz. Meanwhile, an analysis of a single grasp candidate by Dex-Net took ap-
proximately 5 s to complete, which would mean that Dex-Net could analyse between
335 and 805 images during the execution of the Aut-O-MAGIC algorithm. These exe-
cution times are not comparable, however, due to the initialisation overhead suffered
Dex-Net on every iteration, and the fact that 3Dmap registration was performed ahead-
of-time in Aut-O-MAGIC.

102 9. Conclusions

(c) Do less-occluded 3D maps provide a robust knowledge advantage
over single-view depth images?

It has been observed in the comparison between this thesis’ grasp planning solu-
tion and the depth image-based Dex-Net 4.0 solution how the image-based method
has a preference for grasping locations where the grippers can lie completely outside
of the target object’s bounds (free space). This can be particularly limiting in space,
where the usual size of space objects is large, and an observer is frequently required
to observe grasping points of interest that have further structure behind them. Precise
determination of surface topology using 3D maps allows planning grasps that are fully
within the object bounds with more confidence.

The source code of this thesis work can be found on GitHub, under the Aut-O-MAGIC
organisation1. The voxel tree classes for grippers and targets, the grasp planning
engine, the depth map generator, and the scene reconstruction engine are released
publicly. Other tools such as the Azure Kinect DK driver have not been made public
as they are not generalisable.

1https://github.com/aut-o-magic

https://github.com/aut-o-magic

10
Recommendations for Future Work

This chapter itemises recommendations for future work that emerged during the exe-
cution of this thesis work. It includes suggestions for improving the grasping algorithm
designed in this thesis work, as well as higher level recommendations on other promis-
ing design approaches.

• The current grasp candidate instantiation method is optimised for thick struc-
tures. Without instantiating inner nodes, thin structures are observed to be miss-
ing promising grasp poses. In this work, inner node candidate instantiation was
not performed due to significant performance penalties. A candidate instantia-
tion method that accommodated for this candidacy underperformance without
penalising performance to the degree that was experienced in this work would
further cover the potential envelope of grasp candidates.

• Integrating target object mass properties in the grasp planning algorithm would
provide insight into the torque that can be safely applied on the target contact
points without destabilising the satellite.

• Integration and triage of target surface textures could give additional insight into
surfaces’ toughness. This would avoid grasping fragile elements such as solar
arrays or thin reflective protective layers.

• Physical grasping tests performed on a frictionless surface (air bed) would pro-
vide highly insightful results on the graspability of objects in space.

• An Octree implementation using an SQL database has potential to provide very
high search speed for nodes within the tree, and overall increase the efficiency
of 3D map-based analyses.

• A grasping simulator using the physics-based engine MuJoCo would likely pro-
vide accurate first estimates on the performance of the grasp planning algorithm,
such that quantitative analyses can also be performed.

103

V
Appendices

105

A
System Operation

This appendix describes the operating methodology of the different systems, includ-
ing UML state diagrams, UML sequence diagrams, and sample input/outputs of the
systems. Because this is a tutorial of operation, rather than part of the design process,
this is included as an appendix.

A.1. Grasp Planning Engine
Execution of the grasp planning engine is done through the designed gp_node entry
point. The entry point has the options and accompanying arguments tabulated in Ta-
ble A.1. For ease of understanding, a UML state diagram for the global grasp analysis
option is depicted in Figure A.1. The state diagram shows as entry point the invocation
of the executable in the system, which leads to an uninitialised state that needs to be
populated. Then, gripper and target 3D voxel trees are instantiated and, if no errors
occur during said process (i.e. invalid format, empty tree) the program transitions to a
loaded state. From that point on, it parses the grasp planning algorithm selection that
was supplied to it to determine which method to use, and then proceeds to the global
analyser state where the global grasp quality of the target object is analysed, using
the gripper object as a mold for geometric fitting. Lastly, once it finished, it moves onto
the finished analysis state. There, it writes all outputs generated to file and proceeds
to terminate program execution.

107

108 A. System Operation

Table A.1: Command-Line Interface arguments for the Grasp Planning Engine entry point.

Option <Arguments> Description

—-help
Print this message. Options declared
will be serially executed in the order
listed here

—-target <tree_path> Target tree filepath

—-gripper <tree_path> Gripper tree filepath

—-use_simple_gripper
Use a simple gripper model instead of
importing a gripper tree

—-write_target
<save_path{=target.ot}>

Write target octree to file

—-write_gripper
<save_path{=gripper.ot}>

Write gripper octree to file

—-write_color_target
<save_path{=colortree_target.ot}>

Write to file ColorOcTree version of tar-
get octree

—-write_color_gripper
<save_path{=colortree_gripper.ot}>

Write to file ColorOcTree version of
gripper octree

—-write_surface_normals_density
Visualise the surface normals density
of the target tree

—-gp_algorithm <idx>
Select grasp planning algorithm to use
in idx range [1–7]

—-global_analysis Perform a global graspability analysis

—-local_analysis=<{x,y,z}>

Perform a local analysis at a de-
fined target 3D point. Pass arg with
no spaces and with equal sign (i.e.
–local_analysis={x,y,z}) [m]

A.2. 3D Model Voxelisation 109

Uninitialised object

gripper
target

do set_gripper_tree()
do set_target_tree()

Global grasp
planning

error /
display error message

success

Octrees loaded

grasp planning algorithm

do parse gp_method from
CLI

Global Analyser

target

do
analyse_global_grasp_quality()

success

error /
display error message

Finished Analysis

do write trees to file

do create and write colour
trees to file

Finished

Figure A.1: UML State Diagram for the Global Grasp Planner in the case of a global grasp analysis.

A.2. 3D Model Voxelisation
To convert 3D models (usually .OBJ or .STEP files) into octrees, a series of steps are
necessary. The transformation from 3Dmodel to voxel model for Envisat is depicted in
Figure A.2 and Figure A.3, with the steps documented below and the overall pipeline
listed in Script A.1:

1. Convert 3D model into standard Wavefront .OBJ file: because models can be
provided in a range of formats, it is convenient to hegemonise the input format
to ensure repeatability and quality. The Wavefront 3D model format was chosen
because of its widespread usage and demonstrated ability to perform well in the
pipeline. A good free program to convert 3D models into Wavefront models is
CAD Assistant1.

2. Rasterise Wavefront .OBJ file to binvox .binvox model: binvox is a utility that
reads 3D model files, converts them into a binary 3D voxel grid, and writes them
to a resulting voxel file [71], [72]. It has a series of methods for carving the
resulting voxel grid, and below some tips are provided on its usage.

3. Convert binvox model to Octomap’s binary tree model .bt: the OctoMap pack-
age includes a utility to translate binary voxel trees from the .binvox format to
the .bt format. This last step allows successfully importing the 3D voxel model
into the grasp planning pipeline for analysis.

1https://www.opencascade.com/products/cad-assistant/

https://www.opencascade.com/products/cad-assistant/

110 A. System Operation

Script A.1: 3D model voxeliser pipeline (pseudo-Bash commands)
1 # model.* ---> model.obj
2 ./cad_assistant_1.5.0_2020-12-28_lin64.appimage
3

4 # ---> model.binvox
5 ./binvox -d 1024 -c -v -dc -pb -down -dmin 1 <model.obj>
6

7 # ---> model.binvox.bt
8 binvox2bt <model.binvox>
9

10 # Visualise the final result
11 octovis <model.binvox.bt>

Figure A.2: Envisat 3D Wavefront model.

Figure A.3: Envisat binary tree (voxel) model with a leaf size of 0.0196043 m.

A.3. 3D Model to Depth Map 111

Some useful tips to accomplish a successful rasterisation of the 3D model file are:

• Using the off-screen buffer (-pb): artifacts were frequently encountered when
using the on-screen buffer, but these were remediated with the alternative buffer-
ing method;

• Obtaining the desired voxel leaf size: because the resolution of the voxel tree
depends on the size of the 3D model, it is more convenient to accomplish a set
metric leaf size by iteration:

1. Generate an initial binary tree (.bt) and open it with OctoMap’s visualisa-
tion tool octovis;

2. Using the layer slider in octovis, determine which layer yields the desired
metric leaf size;

3. Then, back in binvox, use the command modifier -down to downscale it by
one layer from the previous maximum layer. The command modifier can be
called multiple times and hence achieve any number of layers downscaling.

• Dealing with thin structures: there are multiple thickening techniques to encour-
age not carving away voxels from thin structures during rasterisation. It is rec-
ommended to use a water-tight 3D model. Then, the following combination of
program options yield the best results:

– d 1024 (limited to -d 512 in newer versions): render in maximum voxel
grid size possible (will downsample later);

– c: z-buffer based carving method only (keeps interior solid);
– v: z-buffer based parity voting method;
– dc: dilated carving, stop carving 1 voxel before intersection;
– pb: use off-screen pbuffer instead of on-screen window;
– down: downsample voxels by a factor of 2 in each dimension until the de-
sired leaf size (can be used multiple times);

– dmin 1: when downsampling using -down, destination voxel is on if >=
<nr> child voxels are occupied (default 4/8). Using nr=1 allows very-thin
structures to be recognised.

A.3. 3D Model to Depth Map
The utility’s workings are described in the UML Sequence Diagram depicted in Fig-
ure A.4. The user has the responsibilities of:

• Launch the tool, providing as arg the relative path to the 3D model file to load.
Optionally, a second argument can be provided to change the scale of the depth
image. This does not change the values of the depth array in npy format, as
these follow the metric scale and are hence not colour-intensity coded.

• Adjust the camera view from the GUI window that will appear to the location from
which the depth image should be taken.

112 A. System Operation

:Camera :Visualiser

Take snapshot,
generate depth image

:Main

Create out folders

Create segmask

Write outs to file

create_camera(Intrinsics)

User

dispatch(3dmodel)

cam_params

create_visualiser(mesh, cam_params)

Pop visualiser GUI to set camera extrinsics

Translate and rotate visualiser camera as desired

Depth pixel array

Figure A.4: UML Sequence Diagram for 3D to depth map utility.

B
Grasp Methods Sensitivity Analysis

Visualisations

All the visualisations of the qualitative analysis performed in section 6.1 are shown in
Figure B.1 to Figure B.32.

113

114 B. Grasp Methods Sensitivity Analysis Visualisations

Figure B.1: R61 Mk0 viewpoint 1.

Figure B.2: R61 Mk0 viewpoint 2.

115

Figure B.3: R61 Mk1 viewpoint 1.

Figure B.4: R61 Mk1 viewpoint 2.

116 B. Grasp Methods Sensitivity Analysis Visualisations

Figure B.5: R61 Mk2 viewpoint 1.

Figure B.6: R61 Mk2 viewpoint 2.

117

Figure B.7: R61 Mk3 viewpoint 1.

Figure B.8: R61 Mk3 viewpoint 2.

118 B. Grasp Methods Sensitivity Analysis Visualisations

Figure B.9: R82 Mk0 viewpoint 1.

Figure B.10: R82 Mk0 viewpoint 2.

119

Figure B.11: R82 Mk1 viewpoint 1.

Figure B.12: R82 Mk1 viewpoint 2.

120 B. Grasp Methods Sensitivity Analysis Visualisations

Figure B.13: R83 Mk0 viewpoint 1.

Figure B.14: R83 Mk0 viewpoint 2.

121

Figure B.15: R83 Mk1 viewpoint 1.

Figure B.16: R83 Mk1 viewpoint 2.

122 B. Grasp Methods Sensitivity Analysis Visualisations

Figure B.17: R84 Mk0 viewpoint 1.

Figure B.18: R84 Mk0 viewpoint 2.

123

Figure B.19: R84 Mk1 viewpoint 1.

Figure B.20: R84 Mk1 viewpoint 2.

124 B. Grasp Methods Sensitivity Analysis Visualisations

Figure B.21: R85 Mk0 viewpoint 1.

Figure B.22: R85 Mk0 viewpoint 2.

125

Figure B.23: R85 Mk1 viewpoint 1.

Figure B.24: R85 Mk1 viewpoint 2.

126 B. Grasp Methods Sensitivity Analysis Visualisations

Figure B.25: R86 Mk0 viewpoint 1.

Figure B.26: R86 Mk0 viewpoint 2.

127

Figure B.27: R86 Mk1 viewpoint 1.

Figure B.28: R86 Mk1 viewpoint 2.

128 B. Grasp Methods Sensitivity Analysis Visualisations

Figure B.29: R87 Mk0 viewpoint 1.

Figure B.30: R87 Mk0 viewpoint 2.

129

Figure B.31: R87 Mk1 viewpoint 1.

Figure B.32: R87 Mk1 viewpoint 2.

Bibliography

[1] J. Dumoulin. “Project gemini,” NASA. (2000), [Online]. Available: https://
science.ksc.nasa.gov/history/gemini/gemini.html (visited on
06/17/2020).

[2] W. Fehse, Automated rendezvous and docking of spacecraft. Cambridge Uni-
versity Press, 2003, vol. 16.

[3] D. M. Harland, The story of space station MIR. Springer Science & Business
Media, 2007.

[4] P. Baker, The Story of Manned Space Stations: An Introduction. Springer Sci-
ence & Business Media, 2007.

[5] Northrop Grumman Corporation, Spacelogistics/mev-2 multimedia files.
[6] D. S. Portree, Mir hardware heritage. Lyndon B. Johnson Space Center, 1995,

vol. 1357.
[7] R. B. Friend, “Orbital express program summary and mission overview,” in Pro-

ceedings of SPIE, the International Society for Optical Engineering, vol. 6958,
2008, p. 695 803.

[8] Northrop Grumman Corporation, “Northrop grumman successfully completes
historic first docking of mission extension vehicle with intelsat 901 satellite,”
Northrop Grumman Newsroom, Feb. 26, 2020.

[9] G. Jorgensen and E. Bains, “Srms history, evolution and lessons learned,” in
AIAA SPACE 2011 Conference & Exposition, 2011.

[10] A. Ogilvie, J. Allport, M. Hannah, and J. Lymer, “Autonomous satellite servicing
using the orbital express demonstration manipulator system,” in Proc. of the 9th
International Symposium on Artificial Intelligence, Robotics and Automation in
Space (i-SAIRAS’08), 2008, pp. 25–29.

[11] L. Tarabini, J. Gil, F. Gandia, M. Á. Molina, J. M. D. Cura, and G. Ortega, “Ground
guided cx-olev rendez-vous with uncooperative geostationary satellite,” in 57th
International Astronautical Congress, vol. 61, 2006, pp. 312–325.

[12] C. Kaiser, F. Sjöberg, J. M. Delcura, and B. Eilertsen, “Smart-olev—an orbital
life extension vehicle for servicing commercial spacecrafts in geo,” Acta Astro-
nautica, vol. 63, no. 1-4, pp. 400–410, 2008.

[13] M. Richard. “Cleanspace one,” EPFL. (2019), [Online]. Available: https://
www.epfl.ch/research/domains/epfl-space-center/spaceresearch/
cleanspaceone_1/ (visited on 06/25/2020).

[14] M. Richard, L. G. Kronig, F. Belloni, et al., “Uncooperative rendezvous and dock-
ing for microsats,” in 6th International Conference on Recent Advances in Space
Technologies, RAST 2013,, 2013.

131

https://science.ksc.nasa.gov/history/gemini/gemini.html
https://science.ksc.nasa.gov/history/gemini/gemini.html
https://www.epfl.ch/research/domains/epfl-space-center/spaceresearch/cleanspaceone_1/
https://www.epfl.ch/research/domains/epfl-space-center/spaceresearch/cleanspaceone_1/
https://www.epfl.ch/research/domains/epfl-space-center/spaceresearch/cleanspaceone_1/

132 Bibliography

[15] I. T. Mitchell. “Draper laboratory overview of rendezvous and capture opera-
tions,” Draper Laboratory. (2010), [Online]. Available: https://nexis.gsfc.
nasa.gov/workshop_2010/day3/Ian_Mitchell/Rendezvous_and_
ProxOps_IMitchell.pdf (visited on 06/29/2020).

[16] E. Bains, C. Price, and L. Walter, “Track and capture of the orbiter with the space
station remote manipulator system,” Tech. Rep., 1987.

[17] G. Pascoe, W. Maddern, M. Tanner, P. Piniés, and P. Newman, “Nid-slam: Ro-
bust monocular slam using normalised information distance,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, 2017,
pp. 1435–1444.

[18] W. De Jongh, H. Jordaan, and C. Van Daalen, “Experiment for pose estimation
of uncooperative space debris using stereo vision,” Acta Astronautica, vol. 168,
pp. 164–173, 2020.

[19] C. Bergin. “Asc’s 3d flash lidar camera selected for osiris-rex asteroid mission,”
NASASpaceflight.com. (2012), [Online]. Available: https://www.nasaspaceflight.
com/2012/05/ascs-lidar-camera-osiris-rex-asteroid-mission/
(visited on 07/02/2020).

[20] C. S. Bamji, S. Mehta, B. Thompson, et al., “Impixel 65nm bsi 320mhz demod-
ulated tof image sensor with 3µm global shutter pixels and analog binning,” in
2018 IEEE International Solid-State Circuits Conference-(ISSCC), IEEE, 2018,
pp. 94–96.

[21] K. Shahid and G. Okouneva, “Intelligent lidar scanning region selection for satel-
lite pose estimation,”Computer Vision and Image Understanding, vol. 107, no. 3,
pp. 203–209, 2007.

[22] R. Pinson, R. Howard, and A. Heaton, “Orbital express advanced video guid-
ance sensor: Ground testing, flight results and comparisons,” in AIAA guidance,
navigation and control conference and exhibit, 2008, p. 7318.

[23] L. Blarre, N. Perrimon, C.Moussu, P. DaCunha, and S. Strandmoe, “Atv videome-
ter qualification,” in 55th International Astronautical Congress of the Interna-
tional Astronautical Federation, the International Academy of Astronautics, and
the International Institute of Space Law, 2004, A–3.

[24] Y. Xu, S. Tuttas, L. Hoegner, and U. Stilla, “Voxel-based segmentation of 3d
point clouds from construction sites using a probabilistic connectivity model,”
Pattern Recognition Letters, vol. 102, pp. 67–74, 2018.

[25] S. Gebhardt, E. Payzer, L. Salemann, A. Fettinger, E. Rotenberg, and C. Seher,
“Polygons, point-clouds and voxels: A comparison of high-fidelity terrain rep-
resentations,” in Simulation Interoperability Workshop and Special Workshop
on Reuse of Environmental Data for Simulation—Processes, Standards, and
Lessons Learned, 2009, p. 9.

[26] R. B. Rusu, Z. C. Marton, N. Blodow, M. Dolha, and M. Beetz, “Towards 3d
point cloud based object maps for household environments,” Robotics and Au-
tonomous Systems, vol. 56, no. 11, pp. 927–941, 2008.

https://nexis.gsfc.nasa.gov/workshop_2010/day3/Ian_Mitchell/Rendezvous_and_ProxOps_IMitchell.pdf
https://nexis.gsfc.nasa.gov/workshop_2010/day3/Ian_Mitchell/Rendezvous_and_ProxOps_IMitchell.pdf
https://nexis.gsfc.nasa.gov/workshop_2010/day3/Ian_Mitchell/Rendezvous_and_ProxOps_IMitchell.pdf
https://www.nasaspaceflight.com/2012/05/ascs-lidar-camera-osiris-rex-asteroid-mission/
https://www.nasaspaceflight.com/2012/05/ascs-lidar-camera-osiris-rex-asteroid-mission/

Bibliography 133

[27] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle, “Surface
reconstruction from unorganized points,” in Proceedings of the 19th annual con-
ference on Computer graphics and interactive techniques, vol. 26, 1992, pp. 71–
78.

[28] N. J. Mitra and A. Nguyen, “Estimating surface normals in noisy point cloud
data,” in Proceedings of the nineteenth annual symposium on Computational
geometry, 2003, pp. 322–328.

[29] W. E. Lorensen and H. E. Cline, “Marching cubes: A high resolution 3d sur-
face construction algorithm,” ACM siggraph computer graphics, vol. 21, no. 4,
pp. 163–169, 1987.

[30] J. Bohg, A. Morales, T. Asfour, and D. Kragic, “Data-driven grasp synthesis—a
survey,” IEEE Transactions on Robotics, vol. 30, no. 2, pp. 289–309, 2014.

[31] V.-D. Nguyen, “Constructing force-closure grasps,” The International Journal of
Robotics Research, vol. 7, no. 3, pp. 3–16, 1988.

[32] C. Ferrari and J. Canny, “Planning optimal grasps,” in Proceedings 1992 IEEE
International Conference on Robotics and Automation, 1992, pp. 2290–2295.

[33] I. Lenz, H. Lee, and A. Saxena, “Deep learning for detecting robotic grasps,” The
International Journal of Robotics Research, vol. 34, no. 4, pp. 705–724, 2015.

[34] A. Miller, S. Knoop, H. Christensen, and P. Allen, “Automatic grasp planning
using shape primitives,” in 2003 IEEE International Conference on Robotics and
Automation (Cat. No.03CH37422), vol. 2, 2003, pp. 1824–1829.

[35] J. Redmon and A. Angelova, “Real-time grasp detection using convolutional
neural networks,” in 2015 IEEE International Conference on Robotics and Au-
tomation (ICRA), 2015, pp. 1316–1322.

[36] Y. Jiang, S. Moseson, and A. Saxena, “Efficient grasping from rgbd images:
Learning using a new rectangle representation,” in 2011 IEEE International Con-
ference on Robotics and Automation, 2011, pp. 3304–3311.

[37] J. Mahler, J. Liang, S. Niyaz, et al., “Dex-net 2.0: Deep learning to plan robust
grasps with synthetic point clouds and analytic grasp metrics,” in Robotics: Sci-
ence and Systems 2017, vol. 13, 2017.

[38] A. Zeng, S. Song, K.-T. Yu, et al., “Robotic pick-and-place of novel objects in
clutter with multi-affordance grasping and cross-domain image matching,” in
2018 IEEE International Conference on Robotics and Automation (ICRA), 2018,
pp. 3750–3757.

[39] D. Kraft, N. Pugeault, E. Baseski, et al., “Birth of the object: Detection of object-
ness and extraction of object shape through object–action complexes,” Interna-
tional Journal of Humanoid Robotics, vol. 5, no. 2, pp. 247–265, 2008.

[40] M. Popovic, G. Kootstra, J. A. Jorgensen, D. Kragic, and N. Kruger, “Grasping
unknown objects using an early cognitive vision system for general scene un-
derstanding,” in 2011 IEEE/RSJ International Conference on Intelligent Robots
and Systems, 2011, pp. 987–994.

134 Bibliography

[41] G. Bone, A. Lambert, and M. Edwards, “Automated modeling and robotic grasp-
ing of unknown three-dimensional objects,” in 2008 IEEE International Confer-
ence on Robotics and Automation, 2008, pp. 292–298.

[42] M. Richtsfeld and M. Vincze, “Grasping of unknown objects from a table top,”
Workshop on Vision in Action: Efficient strategies for cognitive agents in complex
environments, 2008.

[43] J. Maitin-Shepard, M. Cusumano-Towner, J. Lei, and P. Abbeel, “Cloth grasp
point detection based onmultiple-view geometric cues with application to robotic
towel folding,” in 2010 IEEE International Conference on Robotics and Automa-
tion, 2010, pp. 2308–2315.

[44] K. Hsiao, S. Chitta, M. Ciocarlie, and E. G. Jones, “Contact-reactive grasping of
objects with partial shape information,” in 2010 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, 2010, pp. 1228–1235.

[45] P. Brook, M. Ciocarlie, and K. Hsiao, “Collaborative grasp planning with multiple
object representations,” in 2011 IEEE International Conference on Robotics and
Automation, 2011, pp. 2851–2858.

[46] J. Bohg, M. Johnson-Roberson, B. Leon, et al., “Mind the gap - robotic grasp-
ing under incomplete observation,” in 2011 IEEE International Conference on
Robotics and Automation, 2011, pp. 686–693.

[47] J. Stueckler, R. Steffens, D. Holz, and S. Behnke, “Real-time 3d perception and
efficient grasp planning for everydaymanipulation tasks.,”Proc. of the European
Conf. on Mobile Robots (ECMR), pp. 177–182, 2011.

[48] E. Klingbeil, D. Rao, B. Carpenter, V. Ganapathi, A. Y. Ng, and O. Khatib, “Grasp-
ing with application to an autonomous checkout robot,” in 2011 IEEE Interna-
tional Conference on Robotics and Automation, 2011, pp. 2837–2844.

[49] A. Maldonado, U. Klank, and M. Beetz, “Robotic grasping of unmodeled objects
using time-of-flight range data and finger torque information,” in 2010 IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2010, pp. 2586–
2591.

[50] Z.-C. Marton, D. Pangercic, N. Blodow, J. Kleinehellefort, and M. Beetz, “Gen-
eral 3d modelling of novel objects from a single view,” in 2010 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems, 2010, pp. 3700–3705.

[51] V. Lippiello, F. Ruggiero, B. Siciliano, and L. Villani, “Visual grasp planning for
unknown objects using a multifingered robotic hand,” IEEE-ASME Transactions
on Mechatronics, vol. 18, no. 3, pp. 1050–1059, 2013.

[52] C. Dune, E. Marchand, C. Collowet, and C. Leroux, “Active rough shape es-
timation of unknown objects,” in 2008 IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2008, pp. 3622–3627.

[53] B. Kehoe, D. Berenson, and K. Goldberg, “Toward cloud-based grasping with
uncertainty in shape: Estimating lower bounds on achieving force closure with
zero-slip push grasps,” in 2012 IEEE International Conference on Robotics and
Automation, 2012, pp. 576–583.

Bibliography 135

[54] A. Morales, P. J. Sanz, A. P. del Pobil, and A. H. Fagg, “Vision-based three-
finger grasp synthesis constrained by hand geometry,”Robotics and Autonomous
Systems, vol. 54, no. 6, pp. 496–512, 2006.

[55] B. Siciliano andO. Khatib,Springer handbook of robotics. Springer, 2016, ch. 38.
[56] C. Zou, E. Yumer, J. Yang, D. Ceylan, and D. Hoiem, “3d-prnn: Generating

shape primitives with recurrent neural networks,” in 2017 IEEE International
Conference on Computer Vision (ICCV), 2017, pp. 900–909.

[57] K. I. Laws, “Rapid texture identification,” in Image Processing for Missile Guid-
ance, vol. 238, 1980, pp. 376–381.

[58] H. Zhang, W. Gao, X. Chen, and D. Zhao, “Object detection using spatial his-
togram features,” Image and Vision Computing, vol. 24, no. 4, pp. 327–341,
2006.

[59] A. Saxena, J. Driemeyer, and A. Y. Ng, “Robotic grasping of novel objects using
vision,” The International Journal of Robotics Research, vol. 27, no. 2, pp. 157–
173, 2008.

[60] M. J. Hegedus, K. Gupta, and M. Mehrandezh, “Generalized grasping for me-
chanical grippers for unknown objects with partial point cloud representations.,”
arXiv preprint arXiv:2006.12676, 2020.

[61] J. Mahler, M. Matl, X. Liu, A. Li, D. Gealy, and K. Goldberg, “Dex-net 3.0: Com-
puting robust robot suction grasp targets in point clouds using a new analytic
model and deep learning,” arXiv preprint arXiv:1709.06670, 2017.

[62] J. Mahler, M. Matl, V. Satish, et al., “Learning ambidextrous robot grasping poli-
cies,” Science Robotics, vol. 4, no. 26, eaau4984, 2019.

[63] C. Eppner, A. Mousavian, and D. Fox, “A billion ways to grasp: An evaluation
of grasp sampling schemes on a dense, physics-based grasp data set,” arXiv
preprint arXiv:1912.05604, 2019.

[64] M. Schwendener, M. Vilella, and P. Bänninger, Grals operations manual, Euro-
pean Space Agency, Mar. 2020.

[65] ——, Grals design and configuration document, European Space Agency, Mar.
2020.

[66] KUKA Robotics Corporation, Kr agilus sixx wp with w and c variants, operating
instructions.

[67] J. R. Sánchez-Ibánez, C. J. Pérez-del-Pulgar, M. Azkarate, L. Gerdes, and A.
Garcı́a-Cerezo, “Dynamic path planning for reconfigurable rovers using a multi-
layered grid,” Engineering Applications of Artificial Intelligence, vol. 86, pp. 32–
42, 2019.

[68] S. Rusinkiewicz and M. Levoy, “Efficient variants of the icp algorithm,” in Pro-
ceedings Third International Conference on 3-D Digital Imaging and Modeling,
2001, pp. 145–152. DOI: 10.1109/IM.2001.924423.

[69] Q.-Y. Zhou, J. Park, and V. Koltun, “Open3D: A modern library for 3D data pro-
cessing,” arXiv:1801.09847, 2018.

https://doi.org/10.1109/IM.2001.924423

136 Bibliography

[70] A. Gini, Don kessler on envisat and the kessler syndrome, 2012.
[71] P. Min, Binvox, http://www.patrickmin.com/binvox, 2004 - 2019.
[72] F. S. Nooruddin and G. Turk, “Simplification and repair of polygonal models

using volumetric techniques,” IEEE Transactions on Visualization and Computer
Graphics, vol. 9, no. 2, pp. 191–205, 2003.

	List of Figures
	List of Tables
	List of Acronyms
	List of Scripts
	I Introduction and Overview
	Introduction
	Motivation
	Overview
	Research Objective and Scope

	Grasp Planning Pipeline Overview
	Space Proximity Operations
	Rendezvous and Docking
	3D Imaging for Relative Navigation
	Opportunities and Challenges

	Data Structure
	Point Cloud
	Octree

	Grasp Planning
	Preprocessing
	Grasp Quality Metrics
	Grasp Candidate Generation

	Improvement Gaps for Space Applications

	II Framework Design
	Concepts and Architecture
	Mission Needs and System Environments
	Need and Mission statement
	System Environments

	Stakeholder Requirements
	The Legacy Context for Validation Tests
	Stakeholder Requirements

	Key Performance Parameters and Acceptance Criteria
	Concept of Operations
	Conclusions

	System Design
	Technical Requirements Definition
	Trade Studies
	3D Imaging Hardware
	Software Programming Framework

	Hardware Component Selection
	Software Component Decomposition
	System Architecture Model
	Derived Technical Requirements

	Design Solution Definition
	OctoMap Grasping
	Grasp Planning Engine
	3D Model Voxelisation
	3D Model to Depth Map
	Scene Reconstruction

	Conclusions

	System Implementation
	OctoMap Grasping
	Grasp Planning Engine
	3D Model to Depth Map

	III Framework Evaluation
	System Verification
	Envisat
	Dex-Net Simulations
	Conclusions

	System Validation
	Experimental Setup
	The Orbital Robotics and GNC Laboratory and GRALS
	Payload
	Target

	Trajectory
	Data Collection
	Graspability Analysis
	Conclusions

	IV Conclusions and Recommendations
	Requirements Compliance
	Conclusions
	Recommendations for Future Work

	V Appendices
	System Operation
	Grasp Planning Engine
	3D Model Voxelisation
	3D Model to Depth Map

	Grasp Methods Sensitivity Analysis Visualisations

