
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

A Cache-Efficient
Iterative Sparse
Triangular Solver
Speeding Up Solving
Sparse Triangular Systems

AM3001 Bachelor Project
I.W.D.H. Rehorst

A Cache-Efficient
Iterative Sparse

Triangular Solver
Speeding Up Solving

Sparse Triangular Systems

by

I.W.D.H. Rehorst

to obtain the degree of Bachelor of Science

at the Delft University of Technology,

to be defended publicly on 10/07/2025

Thesis Committee: Dr. J. Thies, TU Delft, Supervisor

Dr. D.J.P. Lahaye, TU Delft

Project Duration: March, 2025 - Juli, 2025

Faculty: Faculty of Electrical Engineering, Mathematics and Computer Science, Delft

Cover: DelftBlue Supercomputer by Sam Rentmeester (Modified)

Abstract

Sparse triangular solves (SpTRSV) form the latency–critical inner loop of many direct and iterative

solvers, but strong data dependencies limit thread–level parallelism and make the kernel dominated by

memory–latency. This thesis explores whether redundant computation can be exchanged for improved

data locality to accelerate SpTRSV on cache-based multi-core CPUs.

The proposed two-phase algorithm first uses the Recursive Algebraic Colouring Engine (RACE) to

permute an arbitrary sparse triangular factor into a block-lower–bidiagonal form whose diagonal blocks

fit into a private L2 cache. Each block is then solved twice: an independent provisional pass followed by

a lightweight correction that re-uses the still-resident data. The resulting task graph halves the critical

path, exposes ample parallelism, and leaves total memory traffic unchanged.

An OpenMP5.0 implementation in C++17 employs the new affinity clause so that producer–consumer

task pairs are likely to run on the same core. Performance is compared against IntelMKL’s sparse

triangular routine and the Kokkos-Kernels sptrsv, while LIKWID counters validate cache behaviour.

On a 24-core Cascade Lake node of the DelftBlue supercomputer the task graph achieves a strong-scaling

speed-up between 1.25 and 1.45 that saturates after roughly six threads; Kokkos attains similar absolute

time only beyond sixteen threads. With 24 threads the solver is up to an order of magnitude faster than

single-threaded MKL, and the affinity hint alone accelerates execution by 1.1–2×, confirming the

importance of cache reuse. MKL remains preferable for small or highly structured SPD matrices, but

on irregular, memory-bound factors the new solver rivals state-of-the-art libraries despite its simple

prototype status.

i

Contents

Abstract i

1 Introduction 1
1.1 Problem Formulation . 1

1.2 Objectives . 2

1.3 Thesis Outline . 2

2 Literature Review 3
2.1 Key Concepts . 3

2.1.1 Sparse Matrix . 3

2.1.2 Cache Hierarchy and Locality . 3

2.1.3 Thread-level Parallelism (TLP) . 3

2.2 Background and Challenges in Sparse Triangular Solvers 4

2.2.1 Forward Substitution . 4

2.2.2 Challenges Arising from Dependency Graphs . 4

2.3 Parallelization . 5

2.3.1 Memory Hierarchy and Cache Efficiency . 5

2.3.2 Instruction-Level and Thread-Level Parallelism 5

2.3.3 Task Parallelism and Dependency Management 6

2.4 Existing Methods . 6

2.4.1 Level Scheduling . 6

2.4.2 Blocked and Supernodal Methods . 6

2.4.3 Dependency Graph Approaches and Task Parallelism 6

2.4.4 Specialized Sparse Triangular Solvers in Libraries 7

2.5 Motivation for Our Approach . 7

3 Methodology 8
3.1 Problem Simplification and Reordering . 8

3.1.1 Matrix Reordering with RACE . 8

3.2 Solving the Block-Bidiagonal System . 9

3.3 The 2 × 2 Case . 9

3.3.1 Key Observations . 10

3.4 Extension to a General k-block System . 10

3.4.1 Two-Phase Redundant Strategy . 10

3.4.2 Task Schedule . 11

3.5 Cost Analysis of the Proposed Solver . 12

3.5.1 Baseline Cost . 12

3.5.2 Overlapping Two-Block Algorithm . 12

3.5.3 Pre–processing Overhead Due to RACE Reordering 13

3.5.4 Cost Overview . 14

4 Implementation 15
4.1 Sparse Storage and Matrix Preparation . 15

4.1.1 Compressed Sparse Row (CSR) . 15

4.1.2 Matrix Ingestion . 15

4.1.3 Synthetic Fill-In (Densification) . 16

4.2 Pre-Processing by RACE . 16

4.3 Task-Based OpenMP Kernel . 16

4.4 Task-Based OpenMP Kernel with Affinity . 17

4.5 Reference Implementation with Intel MKL . 18

ii

Contents iii

4.6 Reference Implementation with Kokkos-Kernels . 19

4.7 Performance Instrumentation with LIKWID . 20

4.8 Build Integration and Software Dependencies . 20

4.9 Summary . 21

5 Results 22
5.1 Benchmark Platforms . 22

5.2 Test Matrices . 22

5.3 Methodology . 23

5.4 Results . 23

5.4.1 Parallel Strong Scaling . 23

5.4.2 Run-Time Versus Problem Size . 24

5.4.3 Cross–Solver Comparison . 25

5.4.4 LIKWID Results . 27

5.5 Reproducibility and Data Availability . 29

6 Conclusion and Recommendations 30
6.1 Conclusions . 30

6.2 Recommendations . 30

References 32

A Block Bidiagonal Task Based Solver 34

B Parallel SpTRSV implementation with Kokkos 36

C SpTRSV Implementation with Intel MKL 38

1
Introduction

Solving triangular linear systems is an operation that appears in a broad spectrum of scientific and

engineering applications. Sparse triangular systems emerge naturally from LU decompositions, from

incomplete-factorization preconditioners, and within sub-domain solvers in domain-decomposition

schemes; Consequently, they are fundamental to finding the numerical solution of many partial

differential equations. Although forward and backward substitution needed to solve such a triangular

system define a strictly sequential data dependency, the sparsity makes parallelization possible.

Unfortunately, prevailing methods often buys this parallelism at the expense of regular data accesses

(which leads to poor spatial cache locality) so the CPU ends up starved by cache misses or stalled by

insufficient parallel work, leading to sub-optimal performance on modern hardware architectures.

In this report a method is introduced that tries to increase parallelism by introducing redundant

computations, mitigating the effect of that redundancy by temporal cache locality.

The next section begins with formally defining the problem and its mathematical formulation in Section

1.1. Following this in Section 1.2, the goals of this project are given. Section 1.3 gives a brief overview of

the material covered in this report.

1.1. Problem Formulation
The efficient numerical solution of sparse triangular linear systems is a fundamental problem in scientific

computing, arising in a wide range of applications, including sparse direct solvers and preconditioners

for iterative methods. Specifically, we are concerned with solving linear systems of the form:

𝐿𝑥 = 𝑏, (1.1)

where 𝐿 ∈ R𝑛×𝑛
is a sparse lower triangular matrix, 𝑏 ∈ R𝑛

is a given right-hand side vector, and 𝑥 ∈ R𝑛

is the unknown solution vector to be computed. A matrix A ∈ R𝑁×𝑁
is called sparse when the vast

majority of its 𝑁2
entries are exactly zero. This operation is commonly referred to as Sparse Triangular

Solve (SpTRSV). Note that 𝐿 could also be a sparse upper triangular matrix, and the method that will be

implemented in this report also works for upper triangular matrices, but for the sake of simplicity 𝐿 is

assumed to be a lower triangular matrix throughout this report unless noted otherwise.

In the context of modern high-performance computing, the development of efficient parallel algorithms

for SpTRSV has become increasingly important. As hardware architectures continue to evolve towards

manycore and heterogeneous designs, exploiting parallelism at multiple levels is essential to achieve

high throughput. However, the inherently sequential nature of triangular solves poses a significant

challenge for parallel execution, limiting scalability and performance on such architectures. These

challenges will be further discussed in the next section.

The primary objective of this work is to develop and analyse a SpTRSV method that is optimized

specifically for modern multi-core processors with large caches. In particular, we are interested in

approaches that leverage task-based parallelism and exploit the structure of the problem to expose

1

1.2. Objectives 2

concurrency, while mitigating the negative impact of data dependencies and irregular memory access

patterns. A full overview of goals for this project are given in Section 1.2.

It is important to emphasize that the focus lies on the solution of very large sparse linear systems, where

the problem size is sufficiently large to amortize any algorithmic overhead introduced by parallelization

strategies. Techniques such as structural reordering, redundant computations, and task scheduling

inherently involve additional computations and management costs. For small problem sizes, these

overheads may outweigh the performance gains. However, for large-scale systems, as encountered

in applications like finite element simulations, computational fluid dynamics, or large-scale graph

analytics, such methods become increasingly effective and necessary to fully utilize modern hardware

capabilities. Throughout this report, we thus primarily consider scenarios where the size and sparsity

of the matrix 𝐿 justify the introduction of these techniques.

1.2. Objectives
The thesis is motivated by the broad ambition to answer: Can SpTRSV be sped up by using redundant

computations to improve data locality?

From that question three concrete objectives are derived:

1. Identify and exploit parallelism in SpTRSV

Show that a task- or block-based schedule lets many CPU cores advance simultaneously without

data hazards. Any clear acceleration on multi-core hardware is considered a successful indication.

2. Maximise cache reuse

Reorder computations so that data already loaded into cache is reused more frequently than in a

naïve row-wise solve. Lower cache-miss activity or higher arithmetic intensity, as measured with

hardware counters, would signal improvement.

3. Quantify the benefit over existing methods

Benchmark the prototype against a well-known vendor libraries. The aim is to find out in which

cases our approach is favourable.

1.3. Thesis Outline
The remainder of this report is organised as follows. Chapter 2 surveys the state of the art in

sparse–triangular solves, tracing the evolution from thread-level parallelism to modern task-based,

cache-aware strategies and exposing the performance gap this project targets, while also giving an

introduction to the most important concepts needed to understand this thesis. Chapter 3 then shows

the solution method used to solve sparse triangular linear systems introduced in this report. Building

on this foundation, Chapter 4 details the implementation of our task-based block bi-diagonal solver.

The quantitative impact of these design decisions is presented in Chapter 5, which compares our solver

against other methods for SpTRSV across a suite of real-world matrices. Finally, Chapter 6 summarises

the main findings, reflects on current limitations, and outlines avenues for future research.

2
Literature Review

This chapter presents a review of the literature related to efficiently solving sparse lower triangular

systems. An overview of modern CPU architectures is then provided in Section 2.3 to highlight

the importance of memory hierarchy and parallelization strategies in overcoming these challenges.

Subsequently, the chapter surveys existing solution methods in Section 2.4, examining the evolution of

algorithmic approaches, from classical techniques to highly optimized vendor libraries and task-parallel

algorithms. Finally, in Section 2.5 the motivation for the research presented in this thesis is given.

2.1. Key Concepts
Before surveying existing work, we briefly recall the notions that occur throughout this report.

2.1.1. Sparse Matrix
A matrix is called sparse when only a small fraction of its 𝑁2

entries is non-zero. Storing such matrices

in compressed formats (e.g. compressed-row storage, CSR) avoids both the memory requirement and

the memory traffic (i.e. the bytes that must travel between main memory and the CPU) associated with

zero elements.

2.1.2. Cache Hierarchy and Locality
Modern CPUs bridge the ≈ 100× latency gap between main memory and the core by staging data in

one or more on-chip caches. Two complementary access patterns decide whether an algorithm makes

good use of these caches [13]:

• Spatial locality. Data are moved in fixed quanta called cache lines (typically 64 B = 8 doubles).

Accessing 𝑥[𝑖] therefore brings 𝑥[𝑖 + 1]–𝑥[𝑖 + 7] into the cache “for free”, so linear or small-stride

loops reuse bytes that are already resident. (Very large strides that are exact powers of two can

map the same cache set and cause cache thrashing but this is rare in sparse solvers and not pursued

further here.)

• Temporal locality. Once a datum is in cache, any access before it is evicted avoids a full round-trip

to DRAM and is effectively “free” compared with the ≈ 100× slower memory access. The

task-based solver in this thesis is designed to maximise such short-lived re-uses, for instance by

scheduling the two consecutive triangular solves that touch the same block on the same core.

2.1.3. Thread-level Parallelism (TLP)
On multi-core processors several hardware threads can execute simultaneously. Exploiting TLP means

decomposing a computation into independent chunks that progress in parallel without violating data

dependencies.

3

2.2. Background and Challenges in Sparse Triangular Solvers 4

(a) (b)

Figure 2.1: (a) Non-zero pattern of a lower triangular sparse matrix and (b) its corresponding task dependency graph of forward

solver with level annotations [11]

2.2. Background and Challenges in Sparse Triangular Solvers
In this section, first a simple method for solving triangular linear systems is introduced, its sequential

nature will be shown, as well as possible opportunities and challenges for parallelization of this method.

2.2.1. Forward Substitution
To solve a lower triangular linear system 𝐿𝑥 = 𝑏 the standard method used is forward substitution. This

procedure computes the unknowns sequentially from top to bottom, exploiting the triangular structure

of the matrix. The 𝑖-th unknown is computed using:

𝑥𝑖 =
1

𝐿𝑖𝑖

©«𝑏𝑖 −
𝑖−1∑
𝑗=1

𝐿𝑖 𝑗𝑥 𝑗
ª®¬ (2.1)

where it is assumed that 𝐿𝑖𝑖 ≠ 0 for all 𝑖. Since each 𝑥𝑖 depends on 𝑥1 , . . . , 𝑥𝑖−1 the algorithm proceeds

row-by-row, computing one unknown at a time.

Forward substitution is both simple and numerically stable for well-posed problems, and forms the

computational core of many direct and iterative solvers in numerical linear algebra [8]. The major

limitation of forward substitution is its strict data dependency: to compute 𝑥𝑖 , all the dependent 𝑥 𝑗
terms (with 𝑗 < 𝑖) must already be computed. This imposes a strong sequential execution order that

hinders parallelization on modern hardware.

However, in the context of sparse matrices, not every entry below the diagonal is non-zero. Consequently,

many of the dependencies in the summation are absent, and some 𝑥𝑖 may only depend on a small subset

of earlier unknowns. This sparsity opens the door to parallelism, as independent or loosely coupled rows

can potentially be solved concurrently. The dependencies of the triangular system can be represented as

a directed acyclic graph, where nodes represent unknowns and edges indicate dependencies. Analysing

this graph reveals the concurrency that can be exploited in the solve phase. An example of this is given

in Figure 2.1 [11].

2.2.2. Challenges Arising from Dependency Graphs
While the DAG view of a sparse triangular system enables the identification of parallelism, it also

highlights several challenges. First, the depth of the dependency graph, which corresponds to the length

of the critical path, ultimately limits the degree of parallelism that can be exploited [11].

Second, the irregularity of the sparsity pattern leads to non-uniform workloads across parallel threads.

Some rows may become ready to compute sooner than others, causing load imbalance. Managing these

dynamic dependencies efficiently requires intelligent scheduling strategies, often using techniques such

as level scheduling, graph colouring, or block-based decomposition [8].

2.3. Parallelization 5

Third, traversing a sparse matrix produces irregular, non-contiguous memory accesses. Besides lowering

cache hit rates, two threads may unknowingly touch different elements that reside in the same 64-byte

cache line. If one of them writes, the line must be passed back and forth between their private caches (a

phenomenon called false sharing), adding extra cache-level synchronisation even in the absence of true

data conflicts [16].

Thus, while sparsity makes parallelism possible, achieving high performance in practice requires

addressing these architectural and algorithmic challenges. The remainder of this thesis focuses on

methods that mitigate these challenges.

2.3. Parallelization
The efficient solution of sparse triangular linear systems is not only a question of numerical methods,

but also heavily depends on the characteristics of modern computer architectures. To understand the

performance challenges and design choices in sparse triangular solvers, it is essential to consider how

data is stored, moved, and processed at the hardware level. This section provides a brief overview of the

relevant concepts in computer organization and parallel computing that are necessary to understand

the techniques explored in this thesis.

2.3.1. Memory Hierarchy and Cache Efficiency
When solving large systems of equations numerically, a common misconception is that the computational

speed of the processor (measured in FLOPs, or floating-point operations per second) is the main limiting

factor. In reality, especially for sparse problems, the primary bottleneck often lies in memory access.

To mitigate this, processors use a hierarchy of caches (L1, L2, L3), which are small but fast memory units

located closer to the CPU cores. Accessing data from L1 cache can be around 100× faster than accessing

it from main memory [7]. Consequently, algorithms that reuse data in cache (temporal locality) and

access data in a way that aligns with cache-friendly patterns (exploiting spatial locality) are significantly

faster in practice.

Sparse triangular solvers, however, face a unique challenge: the matrix data is sparse, meaning it

contains mostly zero entries, and is typically stored in a compressed format. This leads to indirect

memory accesses through index arrays, causing irregular and often unpredictable access patterns. Such

irregularity makes it difficult to exploit cache locality, resulting in frequent cache misses and wasted

computational resources.

For these reasons, improving cache efficiency becomes more important than reducing the number of

arithmetic operations. Techniques like blocking (dividing the matrix into small sub-matrices, or blocks,

that fit into cache) and matrix reordering aim to improve data locality, reducing cache misses during the

solve phase.

2.3.2. Instruction-Level and Thread-Level Parallelism
While individual CPU cores have become only marginally faster over the last decade, overall computa-

tional capacity has increased through parallelism. Modern processors feature multiple cores that can

operate simultaneously, allowing multiple operations to proceed in parallel. Modern CPUs can exploit

multiple forms of parallelism which are discussed here below.

Instruction-Level Parallelism (ILP): Within a single core, multiple instructions can be processed in

parallel through pipelining and superscalar execution. However, ILP is largely automatic and limited

by data dependencies; It does not suffice to accelerate algorithms like sparse triangular solves, where

computations often depend on results from earlier steps [13].

Thread-Level Parallelism (TLP): This refers to running multiple threads of execution across multiple

CPU cores. Threads can operate on independent data or different parts of a problem simultaneously.

For instance, if two parts of a matrix can be processed independently, they can be assigned to different

threads, leveraging the parallelism of the hardware [13].

2.4. Existing Methods 6

2.3.3. Task Parallelism and Dependency Management
Sparse triangular solves require fine-grained and irregular parallelism. Here, the concept of task

parallelism becomes useful.

In task-based parallelism, the problem is divided into discrete units of work called tasks. Tasks can be

thought of as mini-programs that perform a specific computation (e.g., solving for a block of unknowns

in a triangular solve). These tasks can be executed concurrently, as long as data dependencies are

respected.

Modern parallel programming frameworks like OpenMP provide constructs to express such task

dependencies explicitly. For instance, OpenMP 4.5 and later versions allow developers to annotate tasks

with depend clauses, specifying which data is read and written by each task [2]. The runtime system

then schedules tasks dynamically, ensuring correctness while trying to maximize concurrency.

In the context of sparse triangular solvers, we can express the solution process as a Directed Acyclic

Graph (DAG), where nodes represent computational tasks (e.g., solving a block of unknowns) and

edges represent data dependencies between these tasks. The DAG-based task scheduling enables the

solver to overlap independent computations, making effective use of multiple threads. It also allows for

redundant computations where beneficial, trading extra arithmetic for better cache reuse and parallel

efficiency.

2.4. Existing Methods
Over the years, a variety of methods and optimizations have been proposed to address the issues

mentioned in the previous sections. In this section, we provide an overview of the most relevant

approaches and introduce the widely used libraries against which we will benchmark our own method.

2.4.1. Level Scheduling
One of the earliest and most widely adopted strategies for parallel sparse triangular solves is level

scheduling. The idea is to preprocess the matrix to identify sets of unknowns that can be solved

independently because they do not depend on each other. These sets are called levels. Solving proceeds

level by level, with all unknowns within a level computed in parallel, followed by a global barrier that

ensures every thread has finished that level before the next one can begin.

While straightforward, level scheduling is limited in its effectiveness because the number of available

levels often grows logarithmically with the problem size, resulting in limited parallelism for large sparse

systems. Moreover, extracting levels adds preprocessing overhead, and the benefit depends heavily on

the sparsity structure of the matrix [8].

2.4.2. Blocked and Supernodal Methods
A different strand of work targets blocked or supernodal representations. During the factorisation step

these approaches group contiguous columns whose non-zero patterns are identical (supernodes) so

that the expensive updates can be cast as dense matrix–matrix multiplies and handled by highly-tuned

BLAS Level-3 kernels. In the subsequent triangular solve phase each supernode is treated as a dense

triangular block, which reduces indirect indexing and improves cache reuse, although the per-block

operation is now a matrix–vector multiply (BLAS Level-2) and therefore still memory-bound.

Supernodal techniques pay off when the matrix contains large, regular blocks. For matrices that remain

highly irregular the gains taper off, and additional fine-grained parallel strategies become necessary

[18].

2.4.3. Dependency Graph Approaches and Task Parallelism
More recently, methods based on dependency graphs and task-based parallelism have gained prominence.

Instead of grouping unknowns into coarse-grained levels, these approaches represent the triangular solve

as a Directed Acyclic Graph (DAG) of fine-grained tasks, with edges representing data dependencies [8].

Frameworks like OpenMP tasking and Kokkos task DAGs allow expressing these dependencies explicitly.

The runtime system dynamically schedules tasks while respecting data dependencies, enabling finer

granularity of parallelism and better utilization of modern multicore processors.

2.5. Motivation for Our Approach 7

These DAG-based approaches can adapt to highly irregular sparsity patterns and allow advanced

strategies like redundant computations and asynchronous execution, which can improve both cache

locality and load balancing across cores.

2.4.4. Specialized Sparse Triangular Solvers in Libraries
Several mature HPC libraries ship hand-tuned sparse-triangular kernels. On CPUs the best-known

package is the Intel Math Kernel Library (Intel MKL). Its sparse BLAS call mkl_sparse_d_trsv is

aggressively vectorised and cache-aware, yet the actual forward or backward substitution still executes

on a single OpenMP thread. Because the code base is highly optimised, this serial kernel often rivals

or exceeds naïve threaded versions and therefore remains a good baseline for CPU studies [3]. In the

present work MKL serves as a reference for what can be achieved with one core and near-optimal data

locality.

To place the new solver in a genuinely parallel context the experiments also use KokkosKernels, the task-

DAG backend of the Kokkos ecosystem. Its sptrsv_symbolic/solve pair offers several level-scheduling

algorithms that exploit nested parallelism on multicore CPUs and GPUs while remaining fully open

source and architecture agnostic. Kokkos therefore represents the current state of portable, task-parallel

techniques aimed at shared-memory machines.

Packages such as cuSPARSE for NVIDIA GPUs, the Ifpack2/Tpetra modules inside Trilinos, or the

classical Hypre library also provide SpTRSV routines, but they are not benchmarked here. The proposed

algorithm is tailored to cache-based shared-memory CPUs, and Kokkos already embodies the modern

parallel strategies that those other libraries increasingly adopt.

The performance study thus compares three solvers: the serial but highly tuned MKL routine, the fully

parallel implementation from KokkosKernels, and the method introduced in this thesis. In Chapter 4

these libraries will be discussed in greater detail.

2.5. Motivation for Our Approach
While existing SpTRSV methods and libraries offer a range of techniques to address the challenges

posed by sparsity and parallelism, they often involve trade-offs between generality, scalability, and

memory efficiency. Level scheduling is constrained by limited parallelism, supernodal methods require

favourable matrix structures to be effective, and task-based runtimes still face difficulty in balancing

overhead with computational benefit, especially for fine-grained tasks. Moreover, many existing solvers

are designed to perform optimally on matrices with specific sparsity patterns or hardware characteristics,

limiting their general applicability. In contrast, the method proposed in this thesis is motivated by

the need for a sparse triangular solver that is both cache-efficient and well-suited to shared-memory

parallel architectures, especially in the context of very large systems where such considerations have a

measurable impact on performance. By using redundant computation, block decomposition, and task

parallelism, the proposed approach seeks to exploit both structural and hardware-level opportunities

for concurrency that are often underutilized in conventional solvers.

3
Methodology

This chapter develops the complete solution strategy step by step. Section 3.1 begins by transforming the

raw triangular factor with an ordering that exposes an explicit block structure. Once this structure is in

place, Section 3.2 reviews the classical sequential forward–substitution on the resulting block–bidiagonal

matrix, establishing a performance baseline. Section 3.3 introduces the method proposed in this thesis

for the 2 × 2 case. Section 3.4 generalises the same ideas to a chain of 𝑘 blocks and discusses the

scheduling rules that guarantee correctness and parallel efficiency. Finally, Section 3.5 analyses the

computational and memory costs of the proposed method.

3.1. Problem Simplification and Reordering
We begin by recalling the problem that was stated in Section 1.1: solving a sparse lower triangular

system of the form

𝐿𝑥 = 𝑏, (3.1)

where 𝐿 ∈ R𝑛×𝑛
is a sparse lower triangular matrix, 𝑏 ∈ R𝑛

a known right-hand side vector, and 𝑥 ∈ R𝑛

the solution vector to be computed.

Although simple in theory, the structure of 𝐿 imposes a strict partial ordering on the computation of the

unknowns 𝑥𝑖 , as each value 𝑥𝑖 can only be computed once all its dependencies have been resolved, as

was shown in Section 2.2. This sequential nature limits the scalability of classical forward substitution

methods on parallel hardware. To overcome this, we seek to expose and exploit parallelism by reordering

the matrix in a way that groups independent computations into blocks.

3.1.1. Matrix Reordering with RACE
To enable parallelism, a reordering of the matrix 𝐿 is performed using the Recursive Algebraic Colouring

Engine (RACE) library [1]. RACE first builds the row–dependency graph 𝐺(𝑉, 𝐸) from the sparsity

pattern of 𝐿 (𝑖 → 𝑗 ⇔ 𝑥 𝑗 depends on 𝑥𝑖) and then performs a parallel breadth-first search starting from

row 0. Every node reached at distance ℓ from the seed is assigned to level ℓ . Hence a row in level 𝑘 can

only depend on rows in levels 𝑘 or 𝑘 − 1 (for a lower-triangular 𝐿). Dependencies within a level are

allowed and give rise to the triangular blocks on the diagonal in what follows.

From this colouring a permutation matrix 𝑃 ∈ R𝑛×𝑛
is extracted, which is used to permute the original

system 𝐿𝑥 = 𝑏. The reordered matrix is given by

�̃� = 𝑃𝐿𝑃𝑇 . (3.2)

Here 𝐿𝑖 collects all rows of level 𝑖 and remains lower triangular, while 𝐵𝑖 contains the non-zeros

that link level 𝑖 to the previous level 𝑖−1. Because no row touches levels further away, the matrix is

8

3.2. Solving the Block-Bidiagonal System 9

block-lower-bidiagonal. The general structure of the reordered matrix �̃� is given below:

�̃� =

𝐿1 0 · · · 0 0

𝐵2 𝐿2

0 𝐵3 𝐿3

... 0

. . .
. . . 0

0 𝐵𝑘 𝐿𝑘

(3.3)

where each 𝐿𝑖 is a square sparse lower triangular block, and 𝐵𝑖 is a sparse rectangular block capturing

dependencies between level 𝑖 − 1 and level 𝑖. Importantly, the blocks 𝐿𝑖 are now independent of one

another and can be solved in parallel, subject only to their dependencies through the 𝐵𝑖 blocks.

RACE can recursively split large levels or merge thin ones, which lets us tune the final block size almost

independently of the original sparsity pattern. In practice we choose the threshold so that the number

of blocks matches (or exceeds) the available hardware threads while keeping each 𝐿𝑘 small enough to fit

into the private cache of a core.

The remainder of this chapter develops an efficient task-based algorithm for solving the resulting

block-lower-bidiagonal system.

3.2. Solving the Block-Bidiagonal System
After reordering with RACE the system 𝐿𝑥 = 𝑏 is transformed into the block-lower-bidiagonal form:

𝐿1 0 · · · 0 0

𝐵2 𝐿2

0 𝐵3 𝐿3

... 0

. . .
. . . 0

0 𝐵𝑘 𝐿𝑘

𝑥1

𝑥2

𝑥3

...
𝑥𝑘

=

𝑏1

𝑏2

𝑏3

...
𝑣𝑘

(3.4)

It is very important to note here that the individual entries 𝑥𝑖 of 𝑥 ∈ R𝑛
and 𝑏𝑖 of 𝑏 ∈ R𝑛

are not scalars,

but are vectors with a size that corresponds to the dimension of the corresponding block 𝐿𝑖 .

The linear system given by equation 3.4 can be solved by a block forward substitution:

𝑥1 = 𝐿−1

1
𝑏1 (3.5)

𝑥𝑖 = 𝐿−1

𝑖 (𝑏𝑖 − 𝐵𝑖𝑥𝑖−1) 𝑖 ∈ {2, 3, . . . , 𝑘} (3.6)

Although the block forward substitution is simple and robust, it is strictly sequential: one must finish 𝑥1

before starting 𝑥2 and so on, leaving no exploitable parallelism for a single right-hand side. In addition,

each triangular block 𝐿𝑖 is fetched from main memory, applied exactly once, and then evicted, so the

memory traffic is dominated by compulsory loads.

Because of the limitations given above, in the next section, a redundant two-block strategy that overlaps

the factor applications of neighbouring blocks and reuses 𝐿𝑖 while it is still resident in cache. First a 2 ×

2 prototype is given, and then the idea is generalized to the complete block-bidiagonal matrix.

3.3. The 2 × 2 Case
To illustrate how redundancy can unlock both parallelism and cache reuse, first the smallest non-trivial

instance of the block-bidiagonal system is considered, namely 𝑘 = 2. After the RACE permutation the

linear system reads: [
𝐿1 0

𝐵2 𝐿2

] [
𝑥1

𝑥2

]
=

[
𝑏1

𝑏2

]
, 𝐿𝑖 ∈ R𝑚𝑖×𝑚𝑖 , 𝑥𝑖 , 𝑏𝑖 ∈ R𝑚𝑖

(3.7)

A direct block forward substitution proceeds

𝑥1 = 𝐿−1

1
𝑏1 , (3.8)

𝑥2 = 𝐿−1

2

(
𝑏2 − 𝐵2𝑥1

)
. (3.9)

3.4. Extension to a General k-block System 10

The two solves form a strict chain, at most one diagonal block can be processed at a time, and each

triangular factor is read from memory only once but is also used only once, resulting in poor cache

utilisation.

We trade redundant work for overlap and locality:

Provisional step (parallel) �̂�1 = 𝐿−1

1
𝑏1 , �̂�2 = 𝐿−1

2
𝑏2 , (3.10)

Correction step 𝑥1 = �̂�1 , 𝑥2 = 𝐿−1

2

(
𝑏2 − 𝐵2 �̂�1

)
. (3.11)

The two provisional solves are independent and can run concurrently. The correction then reuses the

already-fetched factor 𝐿2 while it is still warm in the private L2 cache of the core that computed it,

avoiding a second trip to main memory. The critical-path length (often called the span) drops from two

full triangular solves to
3

2
, at the cost of only one redundant application of 𝐿2.

3.3.1. Key Observations
The redundancy incurs one extra triangular solve with 𝐿2, however, it shortens the critical path because

the first two solves overlap fully, leaving only a single dependent step. At the same time the cache

behaviour improves, since the factor 𝐿2 is loaded from memory only once yet applied twice while it

remains hot.

The same “provisional + correction” idea can be applied recursively to the 𝑘-block bidiagonal system,

yielding a pipeline in which every diagonal block 𝐿𝑖 is reused before it leaves the cache, while task

dependencies preserve correctness.

3.4. Extension to a General k-block System
Consider the reordered system containing 𝑘 ≥ 2 diagonal blocks

𝐿1

𝐵2 𝐿2

𝐵3 𝐿3

. . .
. . .

𝐵𝑘 𝐿𝑘

𝑥1

𝑥2

𝑥3

...
𝑥𝑘

=

𝑏1

𝑏2

𝑏3

...
𝑏𝑘

, 𝐿𝑖 ∈ R𝑚𝑖×𝑚𝑖 , 𝐵𝑖 ∈ R𝑚𝑖×𝑚𝑖−1 . (3.12)

In the previous section it was shown how this system can be solved for the 𝑘 = 2, now this method will

be extended for a 𝑘 ≥ 2 system.

3.4.1. Two-Phase Redundant Strategy
The overlap idea from the 2 × 2 prototype is generalised by splitting the work into two phases.

Phase 1 (provisional solves): Each diagonal block 𝐿𝑖 is solved independently, so up to min(𝑘, 𝑝) blocks can

execute in parallel on a machine with 𝑝 hardware threads. If 𝑘 > 𝑝 the surplus blocks are queued as

additional tasks:

�̂�𝑖 = 𝐿−1

𝑖 𝑏𝑖 , 𝑖 = 1, . . . , 𝑘, (3.13)

ignoring inter-level couplings. All 𝑘 solves run concurrently.

Phase 2 (correction wave): A single forward sweep injects the missing couplings:

𝑥1 = �̂�1 ,

𝑥𝑖 = 𝐿−1

𝑖

(
𝑏𝑖 − 𝐵𝑖𝑥𝑖−1

)
, 𝑖 = 2, . . . , 𝑘. (3.14)

Each 𝐿𝑖 is therefore applied twice, but the interval between applications is only one neighbouring block,

so the factor can remain in the private L2 cache. The application of these phases can essentially be seen

as separate tasks that are applied to solve equation 3.12. A task dependency schedule is what follows

and will be shown in the next section.

3.4. Extension to a General k-block System 11

3.4.2. Task Schedule
Each block 𝐿𝑖 is processed twice: a provisional triangular solve that ignores the sub-diagonal block 𝐵𝑖 ,

followed by a correction that injects the missing contribution 𝐵𝑖𝑥𝑖−1. These two steps can be labelled as:

𝑇
(1)
𝑖

(provisional), 𝑇
(2)
𝑖

(correction), 𝑖 = 1, . . . , 𝑘.

For every block 𝑖 the right-hand side of the provisional system is

𝑏
(1)
𝑖

= 𝑏𝑖 ,

which depends on the original right-hand side only. Consequently no data produced by any other block

are required and the tasks 𝑇
(1)

1
, . . . , 𝑇

(1)
𝑘

are mutually independent. The correction task must re-use the

provisional solution of the same block:

𝑇
(1)
𝑖
−→ 𝑇

(2)
𝑖

, 𝑖 = 1, . . . , 𝑘.

This edge reflects the need to keep 𝐿𝑖 and 𝑥
(1)
𝑖

in cache so that the second application of the factor is

inexpensive in terms of memory traffic.

Before block 𝑖 can apply its correction it needs the fully corrected solution of the (𝑖 − 1)-th block, because

the residual vector is

𝑏
(2)
𝑖

= 𝑏𝑖 − 𝐵𝑖𝑥
(2)
𝑖−1

.

Thus the corrections are linked by a forward chain:

𝑇
(2)
𝑖−1
−→ 𝑇

(2)
𝑖

, 𝑖 = 2, . . . , 𝑘.

After the first two levels have completed their provisional solves the pipeline is full:

time step 1 2 3 . . . 𝑘

concurrent tasks 𝑇
(1)

1
𝑇
(1)

2
, 𝑇
(2)

1
𝑇
(1)

3
, 𝑇
(2)

2
. . . 𝑇

(1)
𝑘

, 𝑇
(2)
𝑘−1

With 𝑝 hardware threads available, all 𝑇
(1)

1
, . . . , 𝑇

(1)
𝑘

can, in principle, start concurrently. As soon as the

first provisional result �̂�1 is ready the correction chain 𝑇
(2)

1
→ 𝑇

(2)
2
→ · · · begins and runs in a pipelined

fashion. During most of the execution time two kinds of work overlap:

𝑇
(1)
𝑖︸︷︷︸

full triangular solve

∥ 𝑇
(2)
𝑖−1︸︷︷︸

cheap correction using cached 𝐿𝑖−1

Once all provisional solves have completed, the remaining 𝑇(2)-pipeline is bandwidth-bound but

substantially cheaper than a full triangular solve because it reuses the already-resident factor 𝐿𝑖 .

Consequently the critical path is no longer the full sequential chain of 𝑘 triangular solves but consists of

one parallel step for the 𝑇(1) tasks, plus roughly (𝑘 − 1) lightweight corrections, which is shorter and

much better parallelised than the baseline algorithm.

In practice the number of hardware threads, 𝑝, is fixed by the node architecture, whereas the number

of logical tasks equals 2𝑘. We therefore let the OpenMP task scheduler assign work dynamically. A

comprehensive discussion of the concrete OpenMP implementation is given in Chapter 4.

In the next section, the cost of this method will be analysed.

3.5. Cost Analysis of the Proposed Solver 12

3.5. Cost Analysis of the Proposed Solver
This section estimates the arithmetic work, data-movement volume, and parallel scalability of the

two-block overlapping algorithm from Section 3.2. All quantities are expressed in terms of the non-zero

counts of the block–bidiagonal matrix

Let the reordered system be partitioned into 𝑘 diagonal blocks 𝐿𝑖 ∈ R𝑚𝑖×𝑚𝑖
and sub-diagonal coupling

blocks 𝐵𝑖 ∈ R𝑚𝑖×𝑚𝑖−1
as discussed in Section 3.1. Denote their non-zero counts by

ℓ𝑖 = nnz(𝐿𝑖), 𝛽𝑖 = nnz(𝐵𝑖), 𝑖 = 1, . . . , 𝑘,

and define

ℓ =

𝑘∑
𝑖=1

ℓ𝑖 , 𝛽 =

𝑘∑
𝑖=2

𝛽𝑖 .

3.5.1. Baseline Cost
With plain block forward substitution the 𝑖-th step performs

flop(𝑖) = 2 ℓ𝑖 (triangular solve) (3.15)

+ 2 𝛽𝑖 (update 𝑏𝑖 − 𝐵𝑖𝑥𝑖−1), (3.16)

so that the total work is

𝑊base = 2(ℓ + 𝛽). (3.17)

Each non-zero of 𝐿𝑖 or 𝐵𝑖 is streamed once from main memory, so the matrix traffic is

𝑄base = (ℓ + 𝛽) sizeof(float64).
The vectors 𝑏 and 𝑥 add only 𝒪(∑𝑖 𝑚𝑖) bytes, which is negligible for the large, highly sparse matrices

considered here where ℓ + 𝛽 ≫ ∑
𝑖 𝑚𝑖 . In practice 𝑏 is read exactly once and 𝑥 is written once.

Because every block depends on the fully computed result of its predecessor, the algorithm is strictly

sequential: the critical path consists of the entire chain of 𝑘 block solves and therefore admits no

speed-up from parallel execution.

3.5.2. Overlapping Two-Block Algorithm
The overlapping schedule executes two triangular solves per diagonal block:

𝑊overlap = 4ℓ + 2𝛽 = 2𝑊base − 2𝛽. (3.18)

Thus the floating-point cost on the 𝐿𝑖 doubles, whereas the work on the 𝐵𝑖 is unchanged.

Because the provisional and correction solves of the same block are consecutive on the same thread

(Section 3.4.2), the factor 𝐿𝑖 is kept in cache and does not incur a second main-memory load:

𝑄overlap = (ℓ + 𝛽) sizeof(float64) = 𝑄base. (3.19)

Consequently the algorithm trades pure compute for a net reduction in bytes per flop and is therefore

more compute-intensive.

With the pipeline full, one provisional task 𝑇
(1)
𝑖+1

overlaps with one correction task 𝑇
(2)
𝑖

. The length of the

dependency chain (hence the critical path) shrinks to

depth
overlap

=

⌈
𝑘 + 1

2

⌉
,

3.5. Cost Analysis of the Proposed Solver 13

yielding a theoretical speed-up factor of approximately 2 over the baseline for large 𝑘.

The overlap pattern implies that exactly two dependent tasks are ready at every step of the pipeline:

1. the current correction task 𝑇
(2)
𝑖

2. the next provisional task 𝑇
(1)
𝑖+1

.

Therefore, as soon as 𝑝 ≥ 2 hardware threads are available, the span term 𝑆, where 𝑆 is thus the length

of the critical path, can be executed at full speed and adding further threads cannot shorten 𝑆 any more.

Although the critical path is saturated with two threads, a larger thread pool improves performance

through the work term. All provisional tasks 𝑇
(1)
𝑗

for 𝑗 > 𝑖 + 1 are already free of dependencies and can

be scheduled eagerly. With 𝑝 threads the upper bound for the runtime becomes

𝑇𝑝 ≤
𝑊

𝑝
+ 𝑆 =⇒ speed-up(𝑝) =

𝑊

𝑊/𝑝 + 𝑆
.

For 𝑝 = 2 the span is saturated and the speed-up is ≈ 𝑊
𝑊/2+𝑊/2 = 1 (span-limited). For 2 < 𝑝 ≪ 𝑘 the

work term
𝑊
𝑝 keeps shrinking, so throughput keeps increasing until either memory bandwidth or task

scheduling overhead dominates. In the idealised case 𝑝 ≥ 𝑘 every block obtains a private thread and

the runtime approaches 𝑇𝑝 ≈ max𝑖 (𝐿𝑖), i.e. limited only by the largest individual block.

The overlapping two-block strategy doubles the arithmetic on the diagonal factors, but does not increase

memory traffic and halves the span of dependent work. On modern cache-rich CPUs this trade-off

leads to higher arithmetic intensity and, as demonstrated in Chapter 5, observable speed-ups over other

sparse triangular solvers.

3.5.3. Pre–processing Overhead Due to RACE Reordering
Before any triangular solve can benefit from the overlapping schedule, the original sparse matrix 𝐿 is

permuted into block–bidiagonal form by the RACE library [1]. The pre–processing consists of three

algorithmic stages whose costs are summarised below. Throughout we write

𝑛 = rows(𝐿), nnz = nnz(𝐿).

RACE requires a symmetric graph. Given that 𝐿 is a lower triangular matrix, and is thus not symmetric,

the pattern must first be augmented with its transpose. Let

𝛾 =
nnz(𝐿 ∪ 𝐿T)

nnz

(𝛾 ≥ 1)

quantify this overhead. Because it is assumed that 𝐿 is a lower triangular matrix, it follows that 𝛾 ≤ 2.

From the symmetrised pattern an 𝑛-vertex graph is built in linear time

𝑇graph = 𝒪
(
𝛾 nnz

)
, 𝑄graph = 𝒪

(
𝛾 nnz

)
bytes.

RACE applies a parallel colouring on sub-graphs level by level. The work is again linear in the edge set

[1]:

𝑇colour = 𝒪
(
𝛾 nnz

)
, 𝑆colour = 𝒪

(
log 𝑛

)
.

Finally the permutation vectors are formed and applied once to the matrix as well as to the right-hand

side:

𝑇perm = 𝒪
(
𝛾 nnz

)
, 𝑄perm = 𝒪

(
𝛾 nnz

)
bytes.

3.5. Cost Analysis of the Proposed Solver 14

The lower-triangular part of each diagonal block is then copied into a fresh CSR array, so every block

occupies one contiguous memory segment. The copy is included in the 𝑇perm term above.

Collecting the terms, the one-off pre-processing overhead is

𝑇race = 𝑇graph + 𝑇colour + 𝑇perm = Θ
(
𝛾 nnz

)
, (3.20)

𝑄race = 𝑄graph +𝑄perm = Θ
(
𝛾 nnz

)
bytes, (3.21)

𝑆race = 𝑆colour = 𝒪(log 𝑛). (3.22)

Thus the runtime overhead grows linearly with the size of the input matrix, and its critical path is

negligible compared to the span of a single triangular solve.

In many applications (e.g. time stepping, Newton iterations) the same triangular factor is solved for

numerous right-hand sides 𝑏(𝑗). Let 𝑁rhs be that number. Inserting the results of Sections 3.5.1–3.5.2, the

amortised runtime per solve on 𝑝 threads is bounded by

𝑇amort

𝑝 ≤ 𝛾 nnz

𝑁rhs 𝑝
+

𝑊overlap

𝑝
+ 𝑆.

Hence for moderate 𝑁rhs the RACE overhead becomes insignificant, whereas the benefits of the

overlapping solver remain for every subsequent right-hand side.

3.5.4. Cost Overview
The cost model above highlights a deliberate trade–off:

1. Extra arithmetic. Doubling the work on the diagonal blocks adds 2ℓ flops, but these operations are

both cache–resident and vector–friendly, so their cost on modern CPUs is low.

2. Unchanged data volume. Because every factor 𝐿𝑖 is re-used while still in cache, the traffic 𝑄overlap =

𝑄base remains memory–bound to the same degree as the traditional algorithm.

3. Shortened span. The overlapping schedule cuts the critical path from 𝑘 to ⌈(𝑘 + 1)/2⌉ triangular

solves, enabling a theoretical ≈ 2× speed-up at the task level and exposing ample work parallelism

for any 𝑝 ≥ 2 threads.

When the one-off RACE permutation is amortised over multiple right-hand sides, the dominant costs

are therefore

𝑇amort

𝑝 ≈ 4ℓ + 2𝛽

𝑝
+ 𝒪

(
log 𝑘

)
, 𝑄 = (ℓ + 𝛽) sizeof(float64),

so performance is ultimately limited by memory bandwidth once the span is saturated.

Chapter 4 turns these analytical insights into a concrete OpenMP task implementation, discusses

practical issues, and details how LIKWID counters are used to validate the predicted data traffic.

Experimental results, a comparison with Intel MKL and Kokkos and other baselines follow in Chapter 5,

where the model derived here is confronted with real hardware measurements.

4
Implementation

This chapter translates the algorithmic ideas from Chapter 3 into an efficient, measurable software

prototype. After introducing the sparse data structures (4.1) and preprocessing pipeline (4.2) we detail

the task– based OpenMP implementation of the solver (4.3). The implementation of the reference

methods given by Intel MKL (4.5) and Kokkos (4.6) will be discussed after that. The final sections

discuss build integration (4.8) and the LIKWID–based performance instrumentation (4.7). Hardware

platforms, compiler flags, and test matrices are collected later in Chapter 5.

4.1. Sparse Storage and Matrix Preparation
In order to efficiently solve sparse matrices an efficient storage method must be used, the compressed-row

format has been chosen as mentioned previously, a small overview of this format is given below.

4.1.1. Compressed Sparse Row (CSR)
Every sparse 𝑛 × 𝑛 matrix is stored in classical CSR [15]:

rowPtr︸ ︷︷ ︸
𝑛+1

, col︸︷︷︸
nnz

, val︸︷︷︸
nnz

,

where

rowPtr[𝑖] = offset of first non-zero in row 𝑖 , (4.1)

col[𝑝] = column index of non-zero 𝑝, (4.2)

val[𝑝] = value of non-zero 𝑝. (4.3)

The three arrays are allocated once and reused throughout the pipeline so that no format conversions

occur after load time.

4.1.2. Matrix Ingestion
Matrices are read from .mtx files via a streaming parser that

1. collects triplets (𝑖 , 𝑗 , 𝑎𝑖 𝑗),
2. sorts by (𝑖 , 𝑗) to build CSR in one pass,

3. discards explicit zeros.

An auxiliary routine sparsemat::extract_triangle(bool lower) keeps either the strictly lower or

strictly upper part.

15

4.2. Pre-Processing by RACE 16

4.1.3. Synthetic Fill-In (Densification)
In practice one rarely solves a triangular system with the raw sparsity pattern of the coefficient matrix 𝐴.

A numerical factorisation (e.g. 𝐴 = 𝐿𝑈 or 𝐴 = 𝑅𝑅T
) introduces fill-in, so each factor is much denser

than 𝐴 itself. To mimic this situation without running an actual factoriser we densify the test matrices

offline by replacing 𝐴 with its third power 𝐴3
, which adds many structural non-zeros.

The helper routine

sparsemat::multiply(const sparsemat&)

implements a simple triple loop over rows, columns, and intersection lists. Because this densification is

executed once during data preparation and never inside the timed kernels, its cost does not affect the

performance results presented in Chapter 5.

4.2. Pre-Processing by RACE
The permutation step follows the theory of Section 3.1:

1. Build an undirected graph from rowPtr/col.

2. Invoke RACE::colourGraph(...) to obtain the level colouring.

3. Derive permutation vectors 𝑃, 𝑃−1
and the stage pointer stagePtr[0 . . . 𝑘].

CSR is reordered in-place:

val[𝑝] ← 𝑎𝑃−1(𝑖)𝑃−1(𝑗) , col[𝑝] ← 𝑃(𝑗).

Finally the upper-triangular half is discarded and only the strictly lower part is kept,

�̃� = tril

(
𝑃 𝐴𝑃T) ,

which is stored as one contiguous CSR array, and this is the block-bidiagonal 𝐿 factor that all subsequent

kernels operate on.

4.3. Task-Based OpenMP Kernel
The theoretical schedule of Section 3.4.2 is realised with the OpenMP 4.5 task–dependency mechanism

[2]. Listing 4.1 shows a condensed skeleton and the full routine appears in Appendix A.

Listing 4.1: Skeleton of the blockBiDiagSolveTasks kernel.

1 #pragma omp parallel default(none) shared(B,stagePtr,bp,xp,k)
2 {
3 /* only one thread spawns the tasks */
4 #pragma omp single
5 {
6 /* ---- Phase 1: provisional solves ---- */
7 for (int i=0;i<k;++i) {
8 int r0=stagePtr[i], m=stagePtr[i+1]-r0;
9 #pragma omp task \

10 depend(out: xp[r0:m]) \
11 firstprivate(r0,m)
12 provisional_solve(i);
13 }
14

15 /* ---- Phase 2: correction solves ---- */
16 for (int i=1;i<k;++i) {
17 int r0 = stagePtr[i] , m = stagePtr[i+1]-r0;
18 int r00= stagePtr[i-1] , m0= stagePtr[i]-r00;
19 #pragma omp task \
20 depend(in: xp[r00:m0]) \
21 depend(inout: xp[r0 :m]) \
22 firstprivate(r0,m,r00,m0)
23 correction_solve(i);
24 }
25 /* implicit taskwait */

4.4. Task-Based OpenMP Kernel with Affinity 17

26 }
27 }

The outer #pragma omp parallel creates a permanent thread team that persists for the whole solve.

All shared objects (B, stagePtr, bp, xp, k) are therefore visible to every thread, avoiding repeated

initialisation.

Exactly one thread enters the single region and enqueues all tasks. Every other thread waits for work

in the OpenMP runtime’s task queue.

The depend directives translate the logical edges

𝑇
(1)
𝑖
→ 𝑇

(2)
𝑖

, 𝑇
(2)
𝑖−1
→ 𝑇

(2)
𝑖

into concrete memory-region dependences:

• out: xp[r0:m]: the provisional task writes the slice 𝑥𝑟0:𝑟1−1.

• inout: xp[r0:m]: the correction task both reads and writes the same slice, enforcing the

self–dependence.

• in: xp[r00:m0]: a read-only dependence on block 𝑖−1 realises the pipeline constraint 𝑇
(2)
𝑖−1
→ 𝑇

(2)
𝑖

.

OpenMP guarantees that two tasks whose covered memory regions overlap cannot execute concurrently.

Because the correction task’s inout region is identical to its predecessor’s out region, most runtimes

schedule the pair on the same worker thread, thereby preserving cache residency of 𝐿𝑖 and 𝑥𝑖 . Formally

the standard guarantees mutual exclusion when using the depend clause but it does not prescribe which

worker thread executes either task. Most modern runtimes employ work–stealing queues that favour

child–first scheduling [14]: a thread that finishes a task immediately proceeds with a dependent child

from its local deque before attempting to steal from others. Empirically this heuristic places 𝑇
(2)
𝑖

on the

same core that just produced 𝑇
(1)
𝑖

, so both the factor 𝐿𝑖 and the provisional solution slice 𝑥𝑖 remain in the

private cache hierarchy when they are reused, as was assumed in 3.4.2. However, the behaviour is an

optimisation choice, not a contractual obligation of the OpenMP specification. To ensure that OpenMP

actually handles the tasks as expected, the performance and memory usage will be measured using the

LIKWID library. In the next section we will discuss an extra OpenMP directive that improves cache

reuse.

All loop-invariant variables are shared. Block-local indices (r0,m) are passed firstprivate, which

copies their value into the task’s context to avoid false sharing.

The two for loops spawn a total of 2𝑘 − 1 tasks whose dependencies replicate exactly the graph of

Section 3.4.2. After the start-up latency of the first block, the pipeline contains one correction task

𝑇
(2)
𝑖

plus as many provisional tasks 𝑇
(1)
𝑗
(𝑗 > 𝑖) as the thread pool can accommodate, so the sequential

correction chain overlaps with the independent provisional tasks. OpenMP’s dynamic queue ensures

that additional provisional tasks are pulled forward whenever idle threads exist, so the implementation

can exploit thread counts 𝑝 > 2 even though the span is already saturated with two.

4.4. Task-Based OpenMP Kernel with Affinity
Early experiments used exactly the schedule of Section 3.4.2 but without any affinity directives. The

gcc runtime then relied on its default work–stealing policy: after a thread finished a provisional task it

often, but not always, executed the dependent correction task. occasionally the task was stolen by a

different core. The memory traces in Section 5.4.4 show the consequence. Across all matrices the private

L2 caches delivered barely 10% of the required data, while the shared LLC registered gigabytes of traffic

and a miss ratio below 9%, thus the provisional slice left the L2 before the correction step could reuse it.

To enforce cache reuse the implementation now adopts the affinity clause, introduced only in

OpenMP 5.0 [9]. Listing 4.2 shows the relevant lines. Each provisional task specifies its output

slice as affinity(xp[r0]) and the matching correction task repeats the same anchor. The runtime

regards this as a strong hint that both tasks should run close to the physical storage location of that

4.5. Reference Implementation with Intel MKL 18

address, which in practice means the same core when the data reside in its private cache. Because affinity

is a hint rather than a hard constraint the standard still allows the runtime to place tasks differently.

Listing 4.2: Core of blockBiDiagSolveTasksAffinity.

1 #pragma omp parallel default(none) shared(B,stagePtr,bp,xp,k)
2 {
3 #pragma omp single
4 {
5 /* ---- Phase 1 : provisional solves ---- */
6 for(int i=0;i<k;++i){
7 int r0 = stagePtr[i];
8 int m = stagePtr[i+1]-r0;
9 #pragma omp task \

10 depend(out: xp[r0:m]) \
11 affinity(xp[r0]) \
12 firstprivate(r0,m)
13 provisional_solve(i);
14 }
15

16 /* ---- Phase 2 : correction solves ---- */
17 for(int i=1;i<k;++i){
18 int r0 = stagePtr[i] , m = stagePtr[i+1]-r0;
19 int r00 = stagePtr[i-1] , m0 = stagePtr[i]-r00;
20 #pragma omp task \
21 depend(in: xp[r00:m0]) \
22 depend(inout: xp[r0 :m]) \
23 affinity(xp[r0]) \
24 firstprivate(r0,m,r00,m0)
25 correction_solve(i);
26 }
27 /* implicit taskwait */
28 }
29 }

All other implementation details remain unchanged: global data are shared, block-local indices are

firstprivate, and the two loops spawn 2𝑘 − 1 tasks whose dependencies reproduce the pipeline graph

exactly.

4.5. Reference Implementation with Intel MKL
To put the task–based solver into context we benchmark it against Intel’s highly optimised sparse

triangular routine and use the latter as a truth model for numerical validation.

Intel oneMKL exposes two triangular kernels for sparse matrices stored in CSR format [6]:

1. mkl_dcsrtrsv— a single–call BLAS TRSV analogue that performs symbolic analysis and numerical

solve in one go;

2. inspector_exec— the Inspector–Executor interface that separates pattern analysis (mkl_sparse_optimize)
from the repeated numerical solves (mkl_sparse_trsv).

Because the matrices are solved for dozens of right–hand sides, the Inspector–Executor (IE) variant

is chosen: its one–off symbolic phase is amortised just like the RACE permutation. According to the

Intel MKL Developer Reference [6], all Level-3 BLAS and all Sparse BLAS routines except Level-2

sparse triangular solvers are threaded, the sparse triangular solve (sptrsv) kernel is thus inherently

single-threaded. This is important to note when comparing our method to MKL.

For fair comparison the following wall-clock protocol is adopted:

1. allocate and initialise the right–hand side 𝑏 and solution vector 𝑥 once,

2. call the IE inspection phase outside the timed section,

3. repeat the numerical solve 𝑁rep times,

4. record the median time 𝑡MKL.

4.6. Reference Implementation with Kokkos-Kernels 19

The same repetition / cache–flush procedure is applied to the task solver introduced in this report, the

reported speed-up is therefore

speed-up =
𝑡MKL

𝑡tasks

.

After each run the residual

𝑟 = ∥ 𝑏 − 𝐿𝑥∥2

is computed in double precision and compared to the residual produced by MKL. The solutions are

deemed equivalent if

|𝑟tasks − 𝑟MKL|
𝑟MKL

< 10
−12.

This is done to ensure the correctness of the solution found by the implemented solver.

The full function implementation can be found in Appendix C.

4.6. Reference Implementation with Kokkos-Kernels
To compare the proposed method from Chapter 3 with a truly parallel solver we adopted the sparse

triangular routines that ship with Kokkos-Kernels 4.6. Kokkos provides a performance-portable

node–level programming model; its sparse sub-package implements several SpTRSV algorithms that

exploit intra-row parallelism and level scheduling on any back-end supported by Kokkos (OpenMP,

CUDA, etc.) [12].

The SPTRSVAlgorithm::SEQLVLSCHD_TP1 variant was selected because it is available for all execution

spaces, performs one symbolic pass that discovers a level structure very much like the one in Section

3.4.2, and distributes rows of the same level over the OpenMP thread team while respecting data

dependencies within a level by atomic updates [12]. The algorithm therefore represents the state of the

art for OpenMP implementations in Kokkos-Kernels and provides an appropriate comparison for the

task-graph approach of this thesis.

Just like Intel MKL, Kokkos distinguishes symbolic and numeric phases via a kernel handle:

1. Create a kernel handle: A small object kh is instantiated and configured with

kh.create_sptrsv_handle(SPTRSVAlgorithm::SEQLVLSCHD_TP1, nrows, isLower=true);

Here the chosen algorithm (SEQLVLSCHD_TP1) is a parallel level-scheduling variant, nrows is the

matrix dimension, and the Boolean flag declares that the matrix is lower triangular.

2. Symbolic (inspector) phase: sptrsv_symbolic(& kh, rowmap_d, entries_d, values_d); Us-

ing the CSR structure on the device, Kokkos builds the level schedule, detects super-nodes and

computes internal metadata. All results are stored inside the handle and therefore incurred only

once.

3. Numeric (executor) phase: sptrsv_solve(& kh, rowmap_d, entries_d, values_d, rhs_d,
lhs_d); The prepared schedule is applied to solve 𝐿𝑥 = 𝑏 (or 𝑈𝑥 = 𝑏) for the device-resident

right-hand side rhs_d, writing the solution into lhs_d. This step is fully parallel and can be

repeated with different b vectors while re-using the same handle.

Because the symbolic cost is amortised over all subsequent solves, the timing methodology mirrors that

used for MKL and for our RACE-based solver: only the numeric phase is included in the performance

figures, while the one-time inspector is measured separately.

Because Kokkos executes on the same OpenMP back-end as the task kernel, all measurements were taken

with OMP_PROC_BIND=TRUE and OMP_PLACES=cores so that every benchmark sees the same binding. The

wall-clock protocol mirrors MKL:

1. allocate and fill 𝑏 and 𝑥 once and copy them to the device views;

2. run sptrsv_symbolic outside the timed region;

3. repeat sptrsv_solve 𝑁rep times;

4. record the median time 𝑡KK.

4.7. Performance Instrumentation with LIKWID 20

Host-to-device transfers, Kokkos::initialize and Kokkos::finalize are likewise excluded from the

timed section, matching the treatment of MKL’s set-up overhead.

After every repetition the dense residual 𝑟 = ∥𝑏 − 𝐿𝑥∥2 is assembled on the host and compared with the

MKL reference. The solution returned by Kokkos is accepted when

| 𝑟KK − 𝑟MKL |
𝑟MKL

< 10
−12 ,

which is the same tolerance used for the task solver (Section 4.5). All matrices given in Table 5.2 passed.

The full function implementation can be found in Appendix B.

4.7. Performance Instrumentation with LIKWID
The qualitative cache–reuse arguments from Section 3.5 must be backed up by hardware-counter

measurements. For this purpose the LIKWID is integrated into the build and execution workflow of the

solver.

LIKWID is a light-weight suite for low–level performance monitoring on x86 processors [5]. The

component likwid-perfctr programs the on-chip Performance-Monitoring Counters (PMCs) with a

single command–line flag -g <group>, where a performance group is a pre-defined, architecture-specific

set of events such as L3 hits, L3 misses, executed AVX instructions, or DRAM bandwidth. A second flag

-C <corelist> selects the hardware threads to be measured.

The solver is instrumented with the LIKWIDMarker API, which inserts a pair of ultra-low overhead

system calls around the region of interest. Markers are placed inside the OpenMP parallel region so

that each thread reports separate counter values and that makes it possible to specifically measure the

performance of the solver implemented.

A typical run on one socket (cores 0–15) that records cache- and memory-traffic looks like

$ likwid-perfctr -C M0:0-15 -g L3 -m ./tri_solve
$ likwid-perfctr -C M0:0-15 -g MEM -m ./tri_solve

-m activates the marker API, without it the whole process would be measured.

Three groups are sufficient to validate the performance model:

1. L3 : gathers the counters MEM_LOAD_RETIRED_L3_HIT and MEM_LOAD_RETIRED_L3_MISS; the result-

ing hit–to–miss ratio confirms the expected high reuse of 𝐿𝑖 during the correction step.

2. MEM : records the sustained DRAM bandwidth and shows if the overlapping algorithm does

increase the total data volume moved.

3. FLOPS_DP : reports scalar and vector double-precision throughput, capturing the extra 2ℓ
floating-point operations and demonstrating that the kernel is compute-bound on modern CPUs.

4.8. Build Integration and Software Dependencies
The complete solver prototype is written in modern C++17 and is built with CMake which orchestrates

the compilation.

All sources are compiled with GCC 15.1.0. At the time of writing this is the first GCC release whose

OpenMP runtime fully supports the affinity(...) clause introduced in OpenMP 5.0. Earlier versions

ignore the directive silently, thereby defeating the cache–local execution strategy of Section 4.4. Using

15.1.0 is therefore mandatory for the affinity–aware task kernel [10].

Dense BLAS and sparse triangular kernels used for baseline comparisons (3.5.1) are provided by Intel’s

oneAPI Math Kernel Library. The interface variant lp64 is selected for 64-bit integers, and the thread

layer is mapped to the OpenMP runtime already present on the system.

RACE generates the permutation that exposes block–level parallelism (3.1). It is added as an in-tree

ExternalProject so that an unmodified upstream checkout is configured, built, and installed into the

4.9. Summary 21

build directory at configure time. Both RACE and LIKWID query the hardware topology through hwloc.

All components rely on OpenMP for thread-level parallelism.

The resulting artefact is one relocatable binary (tri_solve) that pulls in RACE, MKL, hwloc, LIKWID,

Kokkos-Kernels and OpenMP.

4.9. Summary
The prototype maps the proposed algorithm onto a CSR backend, parallelizes it with OpenMP tasks that

mirror the theoretical dependency graph, and measures all critical kernels with LIKWID. The full source

code, CMake recipes, and benchmarking scripts are archived at https://github.com/IdsRehorst/
Bachelor-Thesis-Ids-Rehorst/tree/main. The next chapter quantifies how these design choices

translate into runtime behaviour and scalability on a HPC platform.

https://github.com/IdsRehorst/Bachelor-Thesis-Ids-Rehorst/tree/main
https://github.com/IdsRehorst/Bachelor-Thesis-Ids-Rehorst/tree/main

5
Results

This chapter validates the cost model of Chapter 3 by measuring the run time, memory traffic and

scaling behaviour of the proposed solver. After describing the test bed and the benchmark protocol,

the observed performance is compared to Intel MKL’s single–threaded d_trsv routine and a parallel

routine based on Kokkos. In Section 5.4.4 cache reuse and the effectiveness of the affinity clause is

measured and discussed.

5.1. Benchmark Platforms
All experiments were performed on two compute nodes of the DelftBlue supercomputer [17], their most

relevant characteristics are summarised in Table 5.1. Each result section states explicitly which platform

was used.

Table 5.1: Hardware and software environment.

DelftBlue (Compute-p1) DelftBlue (Compute-p2)

CPU model Intel Xeon E5-6248R Intel Xeon E5-6448Y

Micro-architecture Cascade Lake Sapphire rapids

Cores / SMT 24C / 48T 32C / 64T T

Nominal clock 3.0 GHz 2.1GHz

L3 cache 36 MiB 60 MiB

Memory 185 GiB DDR4-2933 250 GiB DDR4-2933

Compiler gcc 15.1.0 gcc 15.1.0

MKL oneAPI 2023.2 oneAPI 2023.2

LIKWID 5.4.1 5.4.1

5.2. Test Matrices
The test set comprises ten sparse matrices drawn from the SuiteSparse collection [4]. The full list of

the matrices used for testing is given in Table 5.2. Prior to factorisation each matrix is symmetrised (if

necessary), reordered by RACE, and its lower–triangular part extracted, exactly as described in Section

3.1.

The benchmark uses the lower–triangular part of 𝐴𝑘
. Taking the cubic power is an inexpensive, purely

algebraic way to inject realistic fill. For 𝑘 = 3 these positions mimic the fill pattern created by a incomplete

LU or Cholesky factorisation, so 𝐴3
mimics the sparsity structure of a practical preconditioner application

without having to run the factorisation itself.

22

5.3. Methodology 23

Index Matrix 𝑁𝑟 𝑁𝑛𝑧 𝑁𝑛𝑧𝑟 Size (MiB)

1 spinSZ12.mm 924 20356 22 0.2

2 3elt.mtx 4720 71235 15 0.8

3 crankseg_1.mtx 52804 53282167 1009 610.0

4 ship_003.mtx 121728 28378861 233 325.2

5 pwtk.mtx 217918 26474760 121 303.8

6 offshore.mtx 259789 23977337 92 275.4

7 F1.mtx 343791 149927724 436 1717.1

8 Fault_639.mtx 638802 128081733 200 1468.2

9 thermal2.mtx 1228045 13825147 11 162.9

10 Serena.mtx 1391349 319059987 229 3656.7

11 G3_circuit.mtx 1585478 16354536 11 193.2

12 nlpkkt120.mtx 3542400 50194096 14 587.9

13 delaunay_n22.mtx 4194304 45243280 10 533.8

14 channel-500x100x100-b050.mtx 464954157 183299749 96 2116.0

15 nlpkkt160.mtx 8345600 118931856 14 1392.9

16 delaunay_n23.mtx 8388608 92563506 11 1091.3

17 nlpkkt200.mtx 16240000 232232816 14 2719.6

18 delaunay_n24.mtx 16777216 180920994 10 2134.5

19 Spielman_k500_A_09.mtx 41792002 167983965 4 2081.8

Table 5.2: 𝑁𝑟 is the number of matrix rows, and 𝑁𝑛𝑧 is the number of nonzeros after taking the lower triangular part of 𝐴3
, where

𝐴 is the matrix. 𝑁𝑛𝑧𝑟 = 𝑁𝑛𝑟/𝑁𝑟 is the average number of nonzeros per row. For each matrix the size is given in terms of memory

when stored in the CSR format.

5.3. Methodology
Reliable performance numbers require the measurement protocol itself to be reproducible and to

minimise systematic distortions. All timings in this chapter follow the same two–step procedure.

Before samples are recorded, the solver is executed once on the given matrix. This initial run brings the

binary into the instruction cache, and allocates thread-private buffers inside OpenMP and MKL. The

warm-up therefore eliminates one-off costs that would otherwise inflate the first measurement. After

warm-up the same right-hand side is solved 100 times in immediate succession.

The elapsed time 𝑡 𝑗 is obtained with .omp_get_wtime()

Repeating the kernel masks short-lived perturbations. To prevent noise from other processes, the

benchmarks were run on an exclusive node.

5.4. Results
5.4.1. Parallel Strong Scaling
Parallel efficiency was assessed on a single DelftBlue compute-p1 node for thread counts 𝑝 ∈ {1, 2, . . . , 24}.
For each solver the strong–scaling factor is reported as

𝑆(𝑝) = 𝑡1

𝑡𝑝
, 𝑡𝑝 = median run time with 𝑝 OpenMP threads.

Figures 5.1 and 5.2 show the curves for the five matrices with the largest non-zero counts from Table 5.2.

Restricting the plot to these cases avoids an unreadable forest of lines while still covering the most

demanding workloads, the smaller matrices exhibit the same qualitative trend but saturate earlier due

to their limited concurrency.

For the task–graph solver (Fig. 5.1) the speed-up ranges from 1.28 (Serena) to 1.45 (Spielman_k500_A_09.mtx
). Across all cases the curve flattens once 𝑝 ≳ 6 because Phase 2 (see Section 3.4.2) becomes the critical

path and thus further threads can only steal leftover provisional tasks whose contribution to total run

time is already marginal.

5.4. Results 24

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Number of threads p

1.0

1.1

1.2

1.3

1.4
Sp

ee
d-

up
 t 1

/t p

channel-500x100x100-b050.mtx
Serena.mtx
nlpkkt200.mtx
delaunay_n24.mtx
Spielman_k500_A_09.mtx

Figure 5.1: Strong–scaling of the task-based bi-block solver (five largest matrices, see Table 5.2), executed on the compute-p1 node

of DelftBlue.

Kokkos-Kernels exhibits a larger head-room (Fig. 5.2): 𝑆(24) varies between 1.75 and 2.8 and saturation

is only reached around 𝑝 = 16.

A notable outlier is channel-500x100x100-b050.mtx, whose speed-up curve alternates between two

distinct plateaus, an indication that Kokkos-Kernels may toggle between two internal solve strategies

for this matrix.

Intel MKL is not included in the scaling plots because mkl_sparse_trsv is a sequential kernel and

therefore provides no meaningful parallel speed-up curve. Its single-thread timing will be used as a

performance baseline in the next sections.

5.4.2. Run-Time Versus Problem Size
Figure 5.3 juxtaposes the solve times of the three solvers (Intel MKL, the task–graph implementation,

and the Kokkos–Kernels reference) against the matrix size (measured by the number of non-zeros 𝑁𝑛𝑧).

Each panel fixes the thread count 𝑝 ∈ {1, 6, 12, 24}; the horizontal axis is shared so that slopes can be

compared directly. All measurements were obtained on the compute-p1 node of DelftBlue (Table 5.1).

At 𝑝 = 1 (upper-left panel) MKL unsurprisingly delivers the fastest solves; its algorithmic overhead is

modest and the code is heavily optimised for serial performance. The task solver follows the same trend

but incurs a higher constant cost because symbolic permutation and task management are executed on

the critical path. Kokkos–Kernels is the slowest method for most matrices, showing a larger overhead.

When additional threads become available (𝑝 = 6, 12, 24) the curves of the parallel solvers turn

downwards, while the single–threaded MKL line stays in place. For the task solver the improvement is

noticeable up to about six threads and then flattens, in line with the strong–scaling results discussed

later in Section 5.4.1. Kokkos–Kernels continues to shorten run-time up to 𝑝 ≈ 16 and then levels off

where the turning point depends on the matrix structure.

A final observation from Figure 5.3 is that for small matrices (𝑁𝑛𝑧 ≲ 10
7
) the one-threaded Intel MKL

routine is consistently the fastest of the three solvers even when parallel resources are available. The

higher constant overheads of the task graph (task creation) and of Kokkos-Kernels (kernel-handle

5.4. Results 25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Number of threads p

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75
Sp

ee
d-

up
 t 1

/t p

channel-500x100x100-b050.mtx
Serena.mtx
nlpkkt200.mtx
delaunay_n24.mtx
Spielman_k500_A_09.mtx

Figure 5.2: Strong–scaling of the Kokkos-Kernels sptrsv implementation for the same matrices and hardware as in Fig. 5.1.

initialisation, generic data structures) outweigh their potential to exploit additional threads. Only when

the matrix exceeds roughly ten million non-zeros does the parallel execution of the task solver or Kokkos

become beneficial relative to MKL’s highly tuned serial path.

Because absolute run-times obscure the relative gains, and because the performance of the solvers lie

very close together, the next section converts these measurements into speed-up curves, which better

expose algorithmic scalability.

5.4.3. Cross–Solver Comparison
Figure 5.4 shows the ratio 𝑡MKL/𝑡tasks while Figure 5.5 reports 𝑡Kokkos/𝑡tasks. Each curve corresponds

to a fixed thread count 𝑝 ∈ {1, 6, 12, 24} and is plotted over the non–zero count of the test matrices.

Measurements were once again performed on an exclusive compute-p1 node on DelftBlue (Table 5.1).

Because Intel MKL’s triangular kernel is single-threaded, the ratio 𝑡MKL/𝑡tasks grows with 𝑝 making our

implementation up to an order of magnitude faster at 𝑝 = 24. For 𝑝 = 1 the Intel MKL solver is in almost

all cases the faster method as should be expected.

In Figure 5.4 there is one very notable outlier to the general performance trend, this turns out to be

caused by matrix Ship_003. Ship_003 is the only test matrix that is symmetric positive-definite in

its original form and therefore a direct Cholesky candidate. Its factor 𝐿 develops large, nearly dense

super-nodes and RACE collapses these into just a few bulky diagonal blocks, leaving virtually no

task-level parallelism. Our two–pass task kernel still incurs its bookkeeping overhead, but with little

memory latency to overlap, this cost dominates the run time. Conversely, mkl_sparse_d_trsv detects

the dense structure and switches to a vectorised dense micro-kernel that streams efficiently through

contiguous data, even in a single thread. Hence Ship_003 falls far below the general speed-up trend:

MKL outperforms the task solver and additional threads cannot close the gap. The anomaly delineates

the solver’s scope: it excels on irregular, latency-dominated triangular factors, but its edge disappears

when the factor resembles a dense panel already handled efficiently by a tuned serial routine.

The curves in Figure 5.5 lie much closer to the horizontal axis, staying between 0.75 and 1.5 for almost

the entire size range when more then one thread is used. This confirms that after the strong-scaling

“plateau” of Figure 5.1 is reached both parallel algorithms become memory-bound and therefore deliver

5.4. Results 26

105 106 107 108

Number of non-zeros Nnz

10 1

100

101

102

103

Ru
n-

tim
e

 [m
s]

1 threads
MKL
Tasks
Kokkos

(a) 𝑝 = 1 thread

105 106 107 108

Number of non-zeros Nnz

10 1

100

101

102

103

Ru
n-

tim
e

 [m
s]

6 threads
MKL
Tasks
Kokkos

(b) 𝑝 = 6 threads

105 106 107 108

Number of non-zeros Nnz

10 1

100

101

102

103

Ru
n-

tim
e

 [m
s]

12 threads
MKL
Tasks
Kokkos

(c) 𝑝 = 12 threads

105 106 107 108

Number of non-zeros Nnz

10 1

100

101

102

103

Ru
n-

tim
e

 [m
s]

24 threads
MKL
Tasks
Kokkos

(d) 𝑝 = 24 threads

Figure 5.3: Run-time versus problem size for the three solvers. Each line connects matrices in ascending 𝑁𝑛𝑧 order and both axes

use logarithmic scales. Measurements performed on the compute-p1 node of DelftBlue.

5.4. Results 27

105 106 107 108

non-zeros Nnz

0.2

0.4

0.6

0.8

1.0

1.2

t M
KL

/t t
as

ks
MKL vs. task-based solver

1 threads
6 threads
12 threads
24 threads

Figure 5.4: Relative speed-up

𝑡MKL

𝑡
tasks

. Points above 1 indicate that the task-based solver outperforms Intel MKL and points below 1

indicate the opposite. Results are shown for 𝑝 = 1, 6, 12, and 24 threads, with matrices ordered by increasing nnz.

very similar absolute performance. The apparent advantage of Kokkos at 𝑝 ≥ 12 must therefore be

read with caution: it reflects the fact that our method saturates a few threads earlier and subsequently

shows little change, whereas the Kokkos implementation continues to shorten its run time until about

𝑝 ≈ 16−18. When the arithmetic workload is tiny (leftmost data points) the Kokkos solver is clearly

faster for 𝑝 ≥ 1.

The two ratios underline that speed-up is a relative metric: although Kokkos attains larger strong-scaling

factors (Figure 5.2), its advantage in wall-clock time shrinks once both solvers are limited by memory

bandwidth. Put differently, the task-graph formulation reaches the memory-bound regime earlier, so its

speed-up curve becomes flat before Kokkos has exhausted all available cores. For large matrices and

𝑝 ≥ 12 the two implementations therefore exhibit virtually identical run times.

Across the large-matrix test set no single solver dominates universally: for some inputs the task-based

bi-block method is faster, for others the Kokkos implementation wins. The relative ranking therefore

depends on the individual sparsity pattern rather than on matrix size alone.

5.4.4. LIKWID Results
All LIKWID measurements were taken on the DelftBlue compute-p2 node (5.1). The region of our

solver was instrumented with the L3, L2/L2CACHE and DATA event groups. The MEM group is

unavailable on this platform because current LIKWID versions cannot program the Intel Sapphire

Rapids integrated-memory-controller, so the counters CAS_COUNT_RD/WR return 0. Consequently, the

analysis below focuses on the on-chip hierarchy only.

LIKWID was used to measure the difference in performance of the task-based model implemented with

OpenMP in Section 4.3, before the affinity clause was added to the OpenMP directives. To interpret the

cache behaviour we restrict the discussion to a single matrix that cannot reside in any on-chip cache and

therefore stresses the reuse mechanisms most: nlpkkt200 (see Table 5.2). After the 𝐴3
expansion and

triangular extraction the factor is sure to not fit in the cache memory of DelftBlue.

With the LIKWID L3, L2CACHE and DATA groups the triangular solve of our task kernel (16 threads)

5.4. Results 28

105 106 107 108

non-zeros Nnz

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25
t K

ok
ko

s/t
ta

sk
s

Kokkos vs. task-based solver
1 threads
6 threads
12 threads
24 threads

Figure 5.5: Relative speed-up

𝑡
Kokkos

𝑡
tasks

. Values above 1 mean the task-based solver is faster than the Kokkos-Kernels

implementation, while values below 1 favour Kokkos.

reports

L3 loads = 7.1 GB, L3 miss ratio = 12%, L2 miss ratio = 91%.

The missing MEM group on Sapphire Rapids prevents direct DRAM-traffic measurements; nonetheless

the figures are consistent with an in-LLC working set. Almost every line requested by a core is absent

from its private L2, but nine out of ten are satisfied in the shared LLC, so only ≈ 0.85 GB of the 7.1 GB

finally spill to memory.

A ∼90 % L2 miss rate means that most provisional and correction tasks run on different cores: the

provisional pass of block 𝑖 brings 𝐿𝑖 and 𝑥𝑖 into its private cache, the correction pass is then stolen by

another worker, and the data are fetched again from LLC. This behaviour confirms the suspicion that

the default work-stealing policy weakens the intended producer–consumer affinity. When the same

thread executed both phases in quick succession one would expect up to 50 % L2 hits, because an entire

𝐿𝑖 (≤2 MiB) fits into a single private cache.

In Section 4.4 the affinity clause was added to the OpenMP task directives to keep each correction

task on the same core that had just produced its matching provisional result, thereby preserving the

block data in the private L2 cache. Owing to time constraints in the final week of the project, a second

LIKWID counter study could not be performed; only wall-clock timings were recorded.

Those timings are nevertheless decisive. For every matrix and for all thread counts 𝑝 ∈ {1, 2, 3, 6, 9, 12}
the version with the affinity hint outperforms the earlier non-affine implementation. Figure 5.6 plots

the ratio

speed-up
aff

=
𝑡no-affinity

𝑡affinity

,

so values above 1 indicate a benefit from affinity scheduling. The average improvement ranges from

∼ 1.1× for single-thread runs—where no scheduling decisions are necessary—up to almost ∼ 2× for

nine threads. This confirms the intuition from Section 4.4: suppressing work-stealing along the tightly

5.5. Reproducibility and Data Availability 29

Figure 5.6: Relative speed-up between the task based solver when implemented with and without affinity clause. Speed-up is

given by solve time of implementation without affinity divided by the implementation with affinity for p ∈ {1, 2, 3, 6, 9, 12}
threads.

coupled correction chain leads to markedly better cache-line reuse and shorter overall solve time, even

though the affinity clause is merely a hint and the OpenMP runtime may, in principle, choose a

different mapping.

5.5. Reproducibility and Data Availability
All raw CSV measurements, plotting scripts, and the exact solver sources that produced the figures of this

chapter are publicly available at https://github.com/IdsRehorst/Bachelor-Thesis-Ids-Rehorst.
The repository’s tests/ directory contains benchmark_< 𝑝 >.csv files – one per thread count – that hold

the median run time of every matrix and solver variant, ready for independent analysis or alternative

visualisations.

https://github.com/IdsRehorst/Bachelor-Thesis-Ids-Rehorst

6
Conclusion and Recommendations

6.1. Conclusions
The thesis set out to examine whether redundant computation can accelerate sparse triangular solves by

(i) exposing parallelism, (ii) increasing cache reuse and (iii) delivering tangible benefits over established

vendor libraries. The objectives are now revisited after the results found in Chapter 5.

By recasting the forward substitution into a two-phase block–bidiagonal schedule and mapping that

schedule to OpenMP tasks, the solver sustained concurrent progress on up to six CPU cores before the

critical correction chain became the only bottleneck. On the five largest matrices the strong-scaling

factor reached 1.3 − 1.45 already at 𝑝 = 6 threads (Fig. 5.1). Although this absolute speed-up is modest,

it is achieved with considerably fewer threads than Kokkos-Kernels, which continues to scale until

about 𝑝 = 16 (Fig. 5.2). The experiment therefore confirms that the redundant formulation does indeed

reveal exploitable parallelism in SpTRSV.

Hardware counters taken prior to introducing the affinity clause showed an L2 miss rate above 90 %,

indicating that OpenMP’s default work-stealing repeatedly moved paired tasks onto different cores.

Adding an affinity hint reduced the median run time by up to a factor of two (Fig. 5.6), proving that the

producer–consumer locality envisioned in the cost model can be realised in practice. Although a second

LIKWID study was not possible within the allotted time, the consistent wall-clock improvement across

all matrices substantiates the claim that cache reuse was substantially improved.

Against Intel MKL the task solver is constrained by MKL’s exceptionally fast single-thread path;

nevertheless at 𝑝 = 24 it is up to an order of magnitude faster because MKL is sequential by design

(Fig. 5.4). When compared to the parallel reference in Kokkos-Kernels the picture is more balanced.

Our implementation reaches its memory-bandwidth limit after six to eight threads, whereas Kokkos

continues to shorten run time until the core count approaches sixteen. The resulting speed-ups therefore

hover around unity for large matrices (Fig. 5.5), i.e. both solvers are equally fast once they are bandwidth

bound. The only systematic deviation occurs for Ship_003, whose dense Cholesky-like structure favours

MKL’s dense micro-kernel and offers little block parallelism, underscoring the limits of the approach for

well structured SPD systems.

The study demonstrates that a redundant two-pass algorithm, even in a first implementation, can rival

highly optimised library code while requiring only a handful of threads and no architecture-specific

tuning. Its advantage is most pronounced for large, irregular matrices where memory latency dominates,

and it diminishes for small or Cholesky-friendly factors that fit into cache. Given the simplicity of the

kernel and the conservative thread counts used, the results suggest that further optimisation could

extend the performance range still further.

6.2. Recommendations
While the present study establishes that redundant two-phase scheduling can match the performance

of vendor libraries on contemporary multi-core CPUs, it also exposes several directions in which the

30

6.2. Recommendations 31

prototype could be extended and strengthened.

Inside each diagonal block the prototype still calls a plain row-by-row SpTRSV (serialSpTRSV).
Substituting this routine by a high-performance micro-kernel, e.g. a blocked ICC(0) solve or a small-

BLR triangular kernel, would reduce solve time and improve numerical stability when pivots are

ill-conditioned. A drop-tolerant or mixed-precision variant could trade accuracy for bandwidth on

bandwidth-bound blocks.

Although the affinity hints introduced in Section 4.4 reduce work stealing, the OpenMP standard

still provides no formal guarantee that a producer–consumer task pair will execute on the same core.

Consequently, cache residency remains a heuristic decision of the runtime and can be lost under

load imbalance or NUMA pressure. Future work should therefore explore task–scheduling strategies,

whether via alternative runtimes or custom policies, that treat cache reuse as a hard constraint rather

than a best-effort optimisation.

So far RACE is used in its default distance-1 mode, producing a bi-block diagonal pattern. Allowing

distance-2 or distance-𝑘 colourings would generate wider pipelines and expose additional parallelism

once Phase 2 becomes the critical path.

A more robust code base should shield users from matrices that violate assumptions such as explicit

diagonals, symmetric sparsity or non-singular blocks. Integrating run-time guards, automated unit tests

and continuous integration would harden the solver for production use and ensure that performance

regressions are caught early.

Exploring these avenues would deepen the understanding of redundant triangular solves, extend their

applicability to truly massive problems, and sharpen the performance edge over established vendor

libraries.

References

[1] Christie Alappat et al. “A Recursive Algebraic Coloring Technique for Hardware-efficient Sym-

metric Sparse Matrix-vector Multiplication”. In: ACM Trans. Parallel Comput. 7.3 (June 2020). issn:

2329-4949. doi: 10.1145/3399732. url: https://doi.org/10.1145/3399732.

[2] OpenMP Architecture Review Board. OpenMP Application Programming Interface. Tech. rep.

OpenMP Architecture Review Board, 2015. url: https://www.openmp.org/wp- content/
uploads/openmp-4.5.pdf.

[3] L. M. Carvalho. “A performance comparison of linear algebra libraries for sparse matrix-vector

product”. In: Proceeding Series of the Brazilian Society of Computational and Applied Mathematics (2015).

doi: 10.5540/03.2015.003.01.0116. url: https://doi.org/10.5540/03.2015.003.01.0116.

[4] Timothy A. Davis and Yifan Hu. “The university of Florida sparse matrix collection”. In: ACM
Trans. Math. Softw. 38.1 (Dec. 2011). issn: 0098-3500. doi: 10.1145/2049662.2049663. url: https:
//doi.org/10.1145/2049662.2049663.

[5] Thomas Gruber et al. LIKWID. Version 5.4.1. 2024. doi: 10.5281/zenodo.14364500. url: https:
//doi.org/10.5281/zenodo.14364500.

[6] Intel® Math Kernel Library for Linux* Developer Guide. Revision 068 Intel® MKL 2020. Intel

Corporation. Santa Clara, CA, 2020. url: https://cdrdv2-public.intel.com/671193/mkl-
2020-developer-guide-linux.pdf.

[7] David Levinthal. Performance Analysis Guide for Intel® Core™ i7 Processor and Intel® Xeon™ 5500
processors. Tech. rep. Intel Corporation, 2010. url: https://www.intel.com/content/dam/
develop/external/us/en/documents/performance-analysis-guide-181827.pdf.

[8] Sirine Marrakchi and Heni Kaaniche. “Solving Sparse Triangular Linear Systems: A Review

of Parallel and Distributed Solutions”. In: Intelligent Systems Design and Applications. Ed. by Ajith

Abraham et al. Cham: Springer Nature Switzerland, 2024, pp. 440–449. isbn: 978-3-031-64850-2.

[9] OpenMP Architecture Review Board. OpenMP Application Programming Interface — Version 5.0.

Specification Version 5.0. OpenMP Architecture Review Board. Nov. 2018. url: https://www.
openmp.org/specifications/.

[10] OpenMP Architecture Review Board. OpenMP® Compilers & Tools. https://www.openmp.org/
resources/openmp-compilers-tools/. Accessed 27 June 2025. 2025.

[11] Jongsoo Park et al. “Sparsifying Synchronization for High-Performance Shared-Memory Sparse

Triangular Solver”. In: Supercomputing. Ed. by Julian Martin Kunkel, Thomas Ludwig, and Hans

Werner Meuer. Cham: Springer International Publishing, 2014, pp. 124–140. isbn: 978-3-319-07518-

1.

[12] Sivasankaran Rajamanickam et al. Kokkos Kernels: Performance Portable Sparse/Dense Linear Algebra
and Graph Kernels. 2021. arXiv: 2103.11991 [cs.MS]. url: https://arxiv.org/abs/2103.11991.

[13] Thomas Rauber and Gudula Rünger. Parallel Programming. Cham: Springer International Publish-

ing, 2023. doi: 10.1007/978-3-031-28924-8.

[14] Arch Robison. A Primer on Scheduling Fork-Join Parallelism with Work Stealing. WG21 Technical

Report N3872. Doc. No. N3872. ISO/IEC JTC1/SC22/WG21, Jan. 2014. url: https://www.open-
std.org/jtc1/sc22/wg21/docs/papers/2014/n3872.pdf.

[15] Yousef Saad. Iterative Methods for Sparse Linear Systems. Second. Society for Industrial and Applied

Mathematics, 2003. doi: 10.1137/1.9780898718003. eprint: https://epubs.siam.org/doi/
pdf /10.1137/1.9780898718003. url: https://epubs.siam.org/doi/abs/10.1137/1.
9780898718003.

[16] Barry Smith and Hong Zhang. “Sparse triangular solves for ILU revisited: Data layout crucial to

better performance”. In: ĲHPCA 25 (Nov. 2011), pp. 386–391. doi: 10.1177/1094342010389857.

32

https://doi.org/10.1145/3399732
https://doi.org/10.1145/3399732
https://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
https://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
https://doi.org/10.5540/03.2015.003.01.0116
https://doi.org/10.5540/03.2015.003.01.0116
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.5281/zenodo.14364500
https://doi.org/10.5281/zenodo.14364500
https://doi.org/10.5281/zenodo.14364500
https://cdrdv2-public.intel.com/671193/mkl-2020-developer-guide-linux.pdf
https://cdrdv2-public.intel.com/671193/mkl-2020-developer-guide-linux.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/performance-analysis-guide-181827.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/performance-analysis-guide-181827.pdf
https://www.openmp.org/specifications/
https://www.openmp.org/specifications/
https://www.openmp.org/resources/openmp-compilers-tools/
https://www.openmp.org/resources/openmp-compilers-tools/
https://arxiv.org/abs/2103.11991
https://arxiv.org/abs/2103.11991
https://doi.org/10.1007/978-3-031-28924-8
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3872.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3872.pdf
https://doi.org/10.1137/1.9780898718003
https://epubs.siam.org/doi/pdf/10.1137/1.9780898718003
https://epubs.siam.org/doi/pdf/10.1137/1.9780898718003
https://epubs.siam.org/doi/abs/10.1137/1.9780898718003
https://epubs.siam.org/doi/abs/10.1137/1.9780898718003
https://doi.org/10.1177/1094342010389857

References 33

[17] TU Delft High-Performance Computing Centre (DHPC). Description of the DelftBlue system. Last

updated 2024-09-01, retrieved. Sept. 2024. url: https://doc.dhpc.tudelft.nl/delftblue/DHPC-
hardware/#description-of-the-delftblue-system (visited on 06/12/2024).

[18] Ichitaro Yamazaki, Sivasankaran Rajamanickam, and Nathan Ellingwood. “Performance Portable

Supernode-based Sparse Triangular Solver for Manycore Architectures”. In: Proceedings of the
49th International Conference on Parallel Processing. ICPP ’20. Edmonton, AB, Canada: Association

for Computing Machinery, 2020. isbn: 9781450388160. doi: 10.1145/3404397.3404428. url:

https://doi-org.tudelft.idm.oclc.org/10.1145/3404397.3404428.

https://doc.dhpc.tudelft.nl/delftblue/DHPC-hardware/#description-of-the-delftblue-system
https://doc.dhpc.tudelft.nl/delftblue/DHPC-hardware/#description-of-the-delftblue-system
https://doi.org/10.1145/3404397.3404428
https://doi-org.tudelft.idm.oclc.org/10.1145/3404397.3404428

A
Block Bidiagonal Task Based Solver

The full implementation of the block bidiagonal task based solver used to solve sparse triangular system

is given below.

Listing A.1: Full implementation of the blockBiDiagSolveTasks kernel.

1 void solver::blockBiDiagSolveTasks(const sparsemat& B,
2 const std::vector<int>& stagePtr,
3 const std::vector<double >& b,
4 std::vector<double >& x)
5 {
6 const int k = int(stagePtr.size()) - 1;
7 const int N = B.n;
8 x.assign(N, 0.0);
9

10 /* raw pointers so that OpenMP array-section syntax works */
11 double *xp = x.data();
12 const double *bp = b.data();
13

14 #pragma omp parallel default(none) shared(B,stagePtr,bp,xp,k)
15 {
16 #pragma omp single
17 {
18 /* ---------------- Phase 1 : provisional solves ---------------- */
19 for (int i = 0; i < k; ++i) {
20 const int r0 = stagePtr[i];
21 const int r1 = stagePtr[i+1];
22 const int m = r1 - r0; /* block size */
23

24 /* length in the array-section must be r1-r0, not the last index */
25 #pragma omp task depend(out: xp[r0 : m])
26 affinity(r0)
27 firstprivate(r0,r1,m)
28 {
29 std::vector<double> rhs(m), xi(m);
30

31 /* RHS = b_i */
32 for (int j = 0; j < m; ++j)
33 rhs[j] = bp[r0 + j];
34

35 /* solve L_i * x = rhs */
36 for (int ii = 0; ii < m; ++ii) {
37 int row = r0 + ii;
38 double sum = rhs[ii];
39 double diag = 1.0;
40

41 for (int p = B.rowPtr[row]; p < B.rowPtr[row+1]; ++p) {
42 int c = B.col[p];
43 if (c < r0) continue; /* belongs to B_i */
44 else if (c < row) sum -= B.val[p] * xi[c - r0];

34

35

45 else if (c == row) diag = B.val[p];
46 }
47 assert(std::abs(diag) > 1e-30);
48 xi[ii] = sum / diag;
49 }
50

51 /* write provisional result */
52 for (int j = 0; j < m; ++j) xp[r0 + j] = xi[j];
53 }
54 }
55

56 /* ---------------- Phase 2 : correction solves ----------------- */
57 for (int i = 1; i < k; ++i) {
58 const int r0 = stagePtr[i];
59 const int r1 = stagePtr[i+1];
60 const int m = r1 - r0;
61

62 #pragma omp task depend(in: xp[stagePtr[i-1] : stagePtr[i]-stagePtr[i-1]]) \
63 depend(inout: xp[r0 : m]) \
64 affinity(r0)
65 firstprivate(r0,r1,m)
66 {
67 std::vector<double> rhs(m), xi(m);
68

69 /* RHS = b_i - B_i * x_{i-1} */
70 for (int ii = 0; ii < m; ++ii) {
71 int row = r0 + ii;
72 double sum = bp[row];
73

74 for (int p = B.rowPtr[row]; p < B.rowPtr[row+1]; ++p) {
75 int c = B.col[p];
76 if (c < r0) sum -= B.val[p] * xp[c];
77 }
78 rhs[ii] = sum;
79 }
80

81 /* solve L_i*x = rhs */
82 for (int ii = 0; ii < m; ++ii) {
83 int row = r0 + ii;
84 double sum = rhs[ii];
85 double diag = 1.0;
86

87 for (int p = B.rowPtr[row]; p < B.rowPtr[row+1]; ++p) {
88 int c = B.col[p];
89 if (c < r0) continue; /* already in RHS */
90 else if (c < row) sum -= B.val[p] * xi[c - r0];
91 else if (c == row) diag = B.val[p];
92 }
93 assert(std::abs(diag) > 1e-30);
94 xi[ii] = sum / diag;
95 }
96

97 /* write corrected result */
98 for (int j = 0; j < m; ++j) xp[r0 + j] = xi[j];
99 }

100 }
101 /* implicit taskwait here */
102 } /* single */
103 } /* parallel */
104 }

B
Parallel SpTRSV implementation with

Kokkos

The full implementation of the Kokkos based solver used as a reference to the method presented in

Appendix A is given below.

Listing B.1: Full implementation of the kokkosSpTRSV kernel.

1 #include <Kokkos_Core.hpp>
2 #include <KokkosSparse_sptrsv.hpp>
3 #include <KokkosKernels_Handle.hpp>
4 #include <chrono> // <-- for timing
5

6 double solver::kokkosSpTRSV(const sparsemat& B,
7 const std::vector<double >& b,
8 std::vector<double >& x)
9 {

10 using exec_space = Kokkos::DefaultExecutionSpace; // OpenMP here
11 using mem_space = typename exec_space::memory_space;
12

13 using size_type = int; // match your CSR index types
14 using lno_type = int;
15 using scalar = double;
16

17 const size_type n = B.n;
18 const size_type nnz = static_cast <size_type >(B.val.size());
19

20 /* ------------ host views (build once per call) ---------------- */
21 using RowH = Kokkos::View<size_type*, Kokkos::HostSpace >;
22 using ColH = Kokkos::View<lno_type*, Kokkos::HostSpace >;
23 using ValH = Kokkos::View<scalar*, Kokkos::HostSpace >;
24

25 RowH row_h("row_h", n + 1);
26 ColH col_h("col_h", nnz);
27 ValH val_h("val_h", nnz);
28

29 for (size_type i = 0; i <= n; ++i) row_h(i) = B.rowPtr[i];
30 for (size_type p = 0; p < nnz; ++p) {
31 col_h(p) = B.col[p];
32 val_h(p) = B.val[p];
33 }
34

35 /* ------------ device mirrors ---------------------------------- */
36 using RowD = Kokkos::View<size_type*, mem_space >;
37 using ColD = Kokkos::View<lno_type*, mem_space >;
38 using ValD = Kokkos::View<scalar*, mem_space >;
39 using VecD = Kokkos::View<scalar*, mem_space >;
40

41 RowD row_d("row_d", n + 1); ColD col_d("col_d", nnz);

36

37

42 ValD val_d("val_d", nnz); VecD b_d ("b_d", n);
43 VecD x_d ("x_d", n);
44

45 Kokkos::deep_copy(row_d, row_h);
46 Kokkos::deep_copy(col_d, col_h);
47 Kokkos::deep_copy(val_d, val_h);
48

49 { // copy RHS once
50 auto b_h = Kokkos::create_mirror_view(b_d);
51 for (size_type i = 0; i < n; ++i) b_h(i) = b[i];
52 Kokkos::deep_copy(b_d, b_h);
53 }
54

55 /* ------------ kernel-handle + symbolic ------------------------ */
56 using KH = KokkosKernels::Experimental::KokkosKernelsHandle <
57 size_type , lno_type, scalar,
58 exec_space , mem_space , mem_space >;
59

60 KH kh;
61 kh.create_sptrsv_handle(
62 KokkosSparse::Experimental::SPTRSVAlgorithm::SEQLVLSCHD_TP1 ,
63 n, /*is_lower =*/ true);
64

65 KokkosSparse::Experimental::sptrsv_symbolic(&kh, row_d, col_d, val_d);
66 exec_space().fence(); // done with symbolic part
67

68 /* ------------ NUMERIC solve (timed) --------------------------- */
69 auto t0 = std::chrono::high_resolution_clock::now();
70 KokkosSparse::Experimental::sptrsv_solve(&kh,
71 row_d, col_d, val_d,
72 b_d, x_d);
73

74 exec_space().fence();
75 auto t1 = std::chrono::high_resolution_clock::now();
76 const double t_ms =
77 std::chrono::duration<double, std::milli>(t1 - t0).count();
78

79 /* ------------ copy result back -------------------------------- */
80 auto x_h = Kokkos::create_mirror_view(x_d);
81 Kokkos::deep_copy(x_h, x_d);
82 x.assign(x_h.data(), x_h.data() + n);
83

84 kh.destroy_sptrsv_handle();
85 return t_ms; // <---- numeric time only
86 }

C
SpTRSV Implementation with Intel

MKL

The full implementation of the Intel MKL based solver used as a reference to the method presented in

Appendix A is given below.

Listing C.1: Full implementation of the MKL SpTRSV kernel.

1 void solver::mklTriSolve(const sparsemat &B, bool lower,
2 const std::vector<double> &b,
3 std::vector<double> &x)
4 {
5 int n = B.n;
6

7 // --- check if every row has an explicit diagonal --------------------
8 bool explicitDiag = true;
9 for (int r = 0; r < n && explicitDiag; ++r) {

10 bool found = false;
11 for (int p = B.rowPtr[r]; p < B.rowPtr[r + 1]; ++p)
12 if (B.col[p] == r) { found = true; break; }
13 explicitDiag = found;
14 }
15

16

17 sparse_matrix_t A = nullptr;
18 matrix_descr desc{};
19 desc.type = SPARSE_MATRIX_TYPE_TRIANGULAR;
20 desc.mode = lower ? SPARSE_FILL_MODE_LOWER : SPARSE_FILL_MODE_UPPER;
21 desc.diag = explicitDiag ? SPARSE_DIAG_NON_UNIT : SPARSE_DIAG_UNIT;
22

23 std::vector<MKL_INT> ia(n + 1); std::vector<MKL_INT> ja(B.col.size());
24 for (int i = 0; i <= n; ++i) ia[i] = B.rowPtr[i];
25 for (size_t k = 0; k < B.col.size(); ++k) ja[k] = B.col[k];
26

27 // Init Likwid marker for measuring perfomance
28 LIKWID_MARKER_START("MKL");
29

30 mkl_sparse_d_create_csr(&A, SPARSE_INDEX_BASE_ZERO ,
31 n, n, ia.data(), ia.data() + 1,
32 ja.data(), const_cast <double*>(B.val.data()));
33 mkl_sparse_optimize(A);
34

35 x.assign(n, 0.0);
36 mkl_sparse_d_trsv(SPARSE_OPERATION_NON_TRANSPOSE ,
37 1.0, A, desc,
38 b.data(), x.data());
39 mkl_sparse_destroy(A);
40 LIKWID_MARKER_STOP("MKL");
41 }

38

	Abstract
	Introduction
	Problem Formulation
	Objectives
	Thesis Outline

	Literature Review
	Key Concepts
	Sparse Matrix
	Cache Hierarchy and Locality
	Thread-level Parallelism (TLP)

	Background and Challenges in Sparse Triangular Solvers
	Forward Substitution
	Challenges Arising from Dependency Graphs

	Parallelization
	Memory Hierarchy and Cache Efficiency
	Instruction-Level and Thread-Level Parallelism
	Task Parallelism and Dependency Management

	Existing Methods
	Level Scheduling
	Blocked and Supernodal Methods
	Dependency Graph Approaches and Task Parallelism
	Specialized Sparse Triangular Solvers in Libraries

	Motivation for Our Approach

	Methodology
	Problem Simplification and Reordering
	Matrix Reordering with RACE

	Solving the Block-Bidiagonal System
	The 2 2 Case
	Key Observations

	Extension to a General k-block System
	Two-Phase Redundant Strategy
	Task Schedule

	Cost Analysis of the Proposed Solver
	Baseline Cost
	Overlapping Two-Block Algorithm
	Pre–processing Overhead Due to RACE Reordering
	Cost Overview

	Implementation
	Sparse Storage and Matrix Preparation
	Compressed Sparse Row (CSR)
	Matrix Ingestion
	Synthetic Fill-In (Densification)

	Pre-Processing by RACE
	Task-Based OpenMP Kernel
	Task-Based OpenMP Kernel with Affinity
	Reference Implementation with Intel MKL
	Reference Implementation with Kokkos-Kernels
	Performance Instrumentation with LIKWID
	Build Integration and Software Dependencies
	Summary

	Results
	Benchmark Platforms
	Test Matrices
	Methodology
	Results
	Parallel Strong Scaling
	Run-Time Versus Problem Size
	Cross–Solver Comparison
	LIKWID Results

	Reproducibility and Data Availability

	Conclusion and Recommendations
	Conclusions
	Recommendations

	References
	Block Bidiagonal Task Based Solver
	Parallel SpTRSV implementation with Kokkos
	SpTRSV Implementation with Intel MKL

