
Towards Real-time SAR

Georgios Pinitas





Towards Real-time SAR

Master’s Thesis in Embedded Systems

Parallel and Distributed Systems group
Faculty of Electrical Engineering, Mathematics, and Computer Science

Delft University of Technology

Georgios Pinitas

1st July 2014



Author
Georgios Pinitas

Title
Towards Real-time SAR

MSc presentation
July 10th, 2014

Graduation Committee
Prof. Dr. Ir. H. J. Sips (Chair) Delft University of Technology
Dr. Ir. Ana Lucia Varbanescu (Supervisor) Vrije Universiteit Amsterdam
M.P.G. (Mattern) Otten MSc TNO
Dr. Przemyslaw Pawelczak Delft University of Technology



Abstract

Nowadays, multiple different architectures exist, each one offering a performance
boost on applications of different nature. Specialized and multicore computing is
clearly mainstream, most application are ported or redesigned in order to expose
any level of parallelism. Thus, new software and programming infrastructures have
been introduced to help programmers exploit the benefits mutli-core and special-
ized computing have to offer.

Radars are widely used for a variety of reasons. Their ability to operate in al-
most every weather condition, day and night, makes them an attractive solution.
Synthetic Aperture Radar (SAR) is a radar infrastructure capable of creating high
resolution spatial images. Most SAR processing chains operate on the frequency
domain for lower computational demands, but the multi-core era has made time-
domain processing feasible. Time-domain SAR processing can be quite demanding
in terms of computational power for large problem sizes but overcomes formula-
tion problems that frequency-domain algorithms face.

In this thesis, we investigated the possibility of achieving real-time performance
on a SAR system, operating on the time-domain. For these purposes, the basic
processing chain of such a system is analysed, implemented and optimized.

Overall, we manage to achieve real-time performance for different output dimen-
sions mainly targeting Unmanned Aerial Vehicles (UAVs) and airborne solutions
that operate under computational and power constraints. Furthermore, a hardware
mapping of the computational components is proposed for their efficient execu-
tion. Moreover, we observe that multiple data rate reduction operations can be
performed and still retain an acceptable Quality of System (QoS). Finally, the
back-projection algorithm is optimized achieving a peak performance of 40 Giga
Back-projections per second using a single hardware accelerator.



iv



Preface

From the very beginning of my postgraduate studies I was particularly intrigued by
High Performance and Heterogeneous Computing. I am really glad that I had the
opportunity to do my thesis in a relevant topic which also included some aspects
of Embedded Systems. Doing something that you really like can only be followed
by joy, independent of the difficulties that may emerge. This thesis was performed
in collaboration with TNO. I hope that this work will help radar engineers and
researchers by giving insights for future radar designs.

The completion of this undertaking could not have been possible without the sup-
port of so many people. Foremost, I would like to express my deepest thanks to my
supervisor and mentor Dr. Ana Lucia Varbanescu, for her continuous support and
help. Her patience, guidance and knowledge helped me throughout my postgradu-
ate studies and my thesis. One could not have imagined having a better advisor.
Further, I wish to express my gratitude to Mr. Matern Otten from TNO, for his
help on topics I had no relevant experience. Without his help and immense know-
ledge this thesis would not have been feasible. Moreover, I would like to thank Mr.
Miguel Caro Cuenca and Mr. Wouter Vlothuizen for their insightful conversations
and their every day support. I would like also to acknowledge Dr. Henk Sips and
Dr. Przemyslaw Pawelczak for being part of my graduation committee. Finally, I
would like to thank my family and friends, I feel really blessed to have them in my
life. Needless to say that this thesis is dedicated to them.

Georgios Pinitas

Delft, The Netherlands
1st July 2014

v



vi



Contents

Preface v

1 Introduction 1
1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background 5
2.1 Parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Amdhal’s Law . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Models of Parallel Computation . . . . . . . . . . . . . . 6

2.2 Heterogeneous Computing: A Hardware Approach . . . . . . . . 7
2.2.1 General Purpose Processors (GPP) . . . . . . . . . . . . . 8
2.2.2 Digital Signal Processor (DSP) . . . . . . . . . . . . . . . 9
2.2.3 General-purpose computing on Graphics Processing Unit

(GPGPU) . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.4 Field-programmable Gate Array (FPGA) . . . . . . . . . 12

2.3 Parallel Programming Languages . . . . . . . . . . . . . . . . . . 13
2.3.1 Open Computing Language (OpenCL) . . . . . . . . . . . 13
2.3.2 Compute Unified Device Architecture (CUDA) . . . . . . 14
2.3.3 Open Multi-Processing (OpenMP) . . . . . . . . . . . . . 16
2.3.4 Message Passing Interface (MPI) . . . . . . . . . . . . . 16

2.4 Real-time Systems . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.1 What Real-time Means . . . . . . . . . . . . . . . . . . . 17
2.4.2 Types of Real-time Tasks . . . . . . . . . . . . . . . . . . 17
2.4.3 Features of Real-time Systems . . . . . . . . . . . . . . . 18

2.5 Synthetic Aperture Radar (SAR) . . . . . . . . . . . . . . . . . . 18
2.5.1 Radar Principles . . . . . . . . . . . . . . . . . . . . . . 19
2.5.2 SAR Principles . . . . . . . . . . . . . . . . . . . . . . . 20

vii



3 Software Architecture 25
3.1 Processing Requirements . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Hardware Platforms . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Multi-channel Back-Projection 29
4.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 Sequential Implementation . . . . . . . . . . . . . . . . . . . . . 30
4.3 Parallel Approaches . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3.1 Input-based parallelization . . . . . . . . . . . . . . . . . 32
4.3.2 Output-based parallelization . . . . . . . . . . . . . . . . 33

4.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.4.1 Complexity Analysis . . . . . . . . . . . . . . . . . . . . 33
4.4.2 Operational Intensity Calculation . . . . . . . . . . . . . 35

4.5 Parallel Implementation . . . . . . . . . . . . . . . . . . . . . . . 37
4.5.1 Naive Implementation . . . . . . . . . . . . . . . . . . . 37
4.5.2 Optimization Steps . . . . . . . . . . . . . . . . . . . . . 38
4.5.3 Task-level parallelism . . . . . . . . . . . . . . . . . . . 46

4.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.6.1 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.6.2 Output Quality . . . . . . . . . . . . . . . . . . . . . . . 47
4.6.3 Why both OpenCL and CUDA? . . . . . . . . . . . . . . 48

4.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5 Multi-node Multi-GPU Back-Projection 51
5.1 Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.1.1 Input-based parallelization . . . . . . . . . . . . . . . . . 52
5.1.2 Output-based parallelization . . . . . . . . . . . . . . . . 52

5.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.2.1 Single Node - Single GPU implementation . . . . . . . . 52
5.2.2 Input-based Multiple Node - Multiple GPU parallelization 53
5.2.3 Output-based Multiple Node - Multiple GPU parallelization 54
5.2.4 Approach Comparison . . . . . . . . . . . . . . . . . . . 56

5.3 Communication Analysis . . . . . . . . . . . . . . . . . . . . . . 56
5.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.5.1 Multi-GPU Evaluation . . . . . . . . . . . . . . . . . . . 57
5.5.2 Multi-node Evaluation . . . . . . . . . . . . . . . . . . . 58

5.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6 Decimation and Channel Reduction 63
6.1 Decimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.1.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . 63
6.1.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 64

viii



6.2 Channel Reduction . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.2.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . 66
6.2.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 66

7 Map Drift Autofocus 69
7.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
7.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
7.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
7.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

8 Proposed System Architecture 75
8.1 System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

8.1.1 Hardware Mapping . . . . . . . . . . . . . . . . . . . . . 75
8.1.2 Custom Hardware Architecture . . . . . . . . . . . . . . 77

8.2 Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
8.2.1 Off-line High-end Processing . . . . . . . . . . . . . . . 78
8.2.2 Off-line Mobile Processing . . . . . . . . . . . . . . . . . 79
8.2.3 On-line processing . . . . . . . . . . . . . . . . . . . . . 80

9 Conclusions and Future Work 83
9.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
9.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

ix



x



List of Figures

2.1 Parallel Computation Models [38, 66] . . . . . . . . . . . . . . . 7
2.2 Haswell system architecture . . . . . . . . . . . . . . . . . . . . 8
2.3 The Haswell micro-architecture [12] (Courtesy of Real World Tech) 9
2.4 DSP C66x [54] (Courtesy of Texas Instruments R©) . . . . . . . . . 10
2.5 GK110 architecture [50] (Courtesy of NVIDIA R©) . . . . . . . . 12
2.6 SMX architecture [50] (Courtesy of NVIDIA R©) . . . . . . . . . 12
2.7 FPGA architecture . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.8 OpenCL Architecture Model (Courtesy of Khronos Group) . . . . 14
2.9 CUDA Thread and Memory Model . . . . . . . . . . . . . . . . . 15
2.10 OpenMP Example [67] (Courtesy of Wikipedia Commons) . . . . 16
2.11 MQ-9 Reaper UAV equipped with SAR (Courtesy of U.S. Air Force) 19
2.12 Radar Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.13 SAR Principle [70] (Courtesy of Radartutorial.eu) . . . . . . . . . 21
2.14 SAR Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.15 SAR Modes [70] (Courtesy of Radartutorial.eu) . . . . . . . . . . 22

3.1 SAR Software Architecture . . . . . . . . . . . . . . . . . . . . 25

4.1 SAR back-projection . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 Data flow diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3 Data Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.4 Roofline model before applying any optimizations . . . . . . . . . 37
4.5 Array-of-Structures (AoS) vs Structure-of-Arrays (SoA) . . . . . 40
4.6 Phase history . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.7 Thread block/workgroup dimensionality . . . . . . . . . . . . . . 42
4.8 Execution time with varying unrolling factor . . . . . . . . . . . . 43
4.9 Kepler cache hierarchy . . . . . . . . . . . . . . . . . . . . . . . 44
4.10 Roofline model after applying optimizations . . . . . . . . . . . . 45
4.12 Optimization impact on execution time . . . . . . . . . . . . . . . 45
4.11 Optimizations efficiency . . . . . . . . . . . . . . . . . . . . . . 46
4.13 Task parallelism on multi-channel back-projection . . . . . . . . . 47
4.14 Overlap impact for different devices (grid size of 100 by 100 m) . 48

5.1 Multi-node Multi-GPU implementation . . . . . . . . . . . . . . 51

xi



5.2 Input-based parallelization . . . . . . . . . . . . . . . . . . . . . 53
5.3 Output-based parallelization . . . . . . . . . . . . . . . . . . . . 55
5.4 Expiremental Results for the input-based multi-GPU approach . . 58
5.5 Expiremental Results for the output-based multi-GPU approach . 59
5.6 Expiremental Results for a 100 by 100 meter voxel grid . . . . . . 60
5.7 Expiremental Results for a 1 by 1 km voxel grid . . . . . . . . . . 60

6.1 Image quality with varying upsampling factor . . . . . . . . . . . 65
6.2 Channel Reduction . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.3 Image quality degradation due to channel reduction . . . . . . . . 67

7.1 Map Drift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
7.2 Map Drift autofocus process chain . . . . . . . . . . . . . . . . . 70
7.3 Line-of-sight displacement . . . . . . . . . . . . . . . . . . . . . 71
7.4 Cross-correlation using FFTs . . . . . . . . . . . . . . . . . . . . 72

8.1 Proposed Module Mapping . . . . . . . . . . . . . . . . . . . . . 76
8.2 Custom Architecture . . . . . . . . . . . . . . . . . . . . . . . . 77
8.3 Real-time Processing . . . . . . . . . . . . . . . . . . . . . . . . 81
8.4 Real-time Grid Dimensions (left NVIDIA Geforce GTX680, right

NVIDIA Titan) . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

xii



Acronyms

QoS Quality of System

HDL Hardware Description Language

SIMD Single Instruction Multiple Data

SPMD Single Program Multiple Data

CPU Central Processing Unit

GPP General Purpose Processors

DSP Digital Signal Processor

ISA Instruction Set Architecture

MAC Multiply-accumulate

FFT Fast Fourier Transform

GPU Graphics Processing Unit

GPGPU General-purpose computing on Graphics Processing Unit

GPC Graphics Processor Cluster

FPGA Field-programmable Gate Array

ASIC Application Specific Integrated Circuit

API Application Programming Interface

OpenCL Open Computing Language

CUDA Compute Unified Device Architecture

OpenMP Open Multi-Processing

MPI Message Passing Interface

SAR Synthetic Aperture Radar

UAV Unmanned Aerial Vehicle

TDC Time-Domain Correlation

GMTI Ground Moving Target Indication

INS Inertial Navigation System

DBF Digital Beamforming

xiii



GPS Ground Positioning System

PGA Phase Gradient Algorithm

FMCW Frequency-Modulated Continuous-Wave

SRF Signal Repetition Frequency

AoS Array-of-Structures

SoA Structure-of-Arrays

PSNR Peak signal-to-noise ratio

xiv



Chapter 1

Introduction

1.1 Context

For many years, CPU designers used to achieve higher performance by mainly fo-
cusing on increasing the frequency of a system. Exploitation of frequency scaling
became harder over the years due to physical limitations like the dramatical in-
crease in power consumption and thermal dissipation. In order to fulfil the needs
for higher performance out of a system, designers turned into exploiting the small
transistor size by deploying multiple cores with lower frequencies on a single chip.
This led to both an increase in performance but also a relative smaller and more
controllable power consumption.

Applications also used to drive the design of hardware architectures in order to
increase their performance; a glaring example are DSPs and Application Specific
Integrated Circuits (ASICs). But the mutlicore trend gave birth to even more. The
type of parallelism an application could express led to the design of hardware ar-
chitectures with varying core complexity and core number.

Many practical problems emerged by multicore and specialized computing. The
most important one was the dramatic shift that had to take place in the program-
ming area. This led into renovating existing or creating new programming lan-
guages capable of expressing parallelism and as a result exploiting the benefits
multicores have to offer.

Radars are widely used nowadays for a variety of reasons. Their ability to op-
erate in almost every weather condition, day and night, makes them an attractive
solution. SAR is a form of radar deployed on moving platforms like satellites and
aircrafts and is capable of creating high resolution spatial images. The computa-
tional demands of such a radar system are high, thus achieving real-time perform-
ance, at first glance at least, seems impossible.

In this thesis, we focus on analysing the processing steps of a SAR system and
investigating the possibility of achieving real-time performance under multiple
processing scenarios. Our main interest lies in achieving real-time performance
for UAVs and airborne solutions in general, that operate under computational and

1



power constraints.

1.2 Research Questions

This section presents the research questions that this thesis aims to answer. The
main research addressed is:

Can the proposed SAR processing chain achieve real-time performance under
computational and power constraints?

More research questions that this thesis addresses are:

• What are the current hardware and software trends in heterogeneous com-
puting?

• What are the main processing modules of a SAR systems and what are their
requirements in terms of computational power?

• How can multi-channel back-projection be efficiently parallelized and what
are its bottlenecks and limitations?

• Is the performance of different optimisations affected by problem size and
input data variability?

• Can the computational needs of the application be reduced and still retain an
acceptable high QoS?

• Is there an efficient hardware mapping and a custom architecture for the
processing modules of the system?

1.3 Contributions

The main contributions of this thesis are the following:

• We survey current trends in terms of hardware and software.

• We analyse the processing chain of a state of the art SAR system, investigat-
ing in detail all the processing steps and proposing efficient implementations
of each one separately.

• We investigate how the optimisations effect change with problem scalability
and input data variability.

• We propose a module mapping along with a custom hardware architecture
where each module of the processing chain is deployed on the appropriate
hardware architecture to achieve higher performance and lower power con-
sumption.

2



1.4 Thesis Organization

This thesis is organized as follows. Chapter 2 provides all the background inform-
ation required for further understanding the contents of the thesis. It presents the
concept of parallelism along with the models used for expressing parallel computa-
tions. Moreover, a thorough analysis of the current hardware diversity takes place,
along with the parallel programming language trends that exist nowadays. Finally,
an introduction in SAR and radar systems in general takes place.

Chapter 3 lists the distinct processing modules that a SAR system requires nowadays.
In addition, the specifications of the experimental setup that was used are presen-
ted.

Chapters 4 and 5 present and analyse the multi-channel back-projection algorithm,
the most compute intensive component of the the SAR system. Different parallel
implementations are shown along with the optimization steps. In addition, a multi-
node multi-GPU implementation is analysed and a model is proposed.

In Chapter 6 two techniques are analysed specialized in reducing the data rate
of the radar system and as a result the computational requirements of compute
intensive processing steps of the processing chain.

Chapter 7 describes the autofocus algorithm that we used for correcting large
motion errors.

In Chapter 8 we propose a custom architecture, specialized for the presented
software architecture. Moreover, three different possible processing scenarios are
analysed along with their performance and limitations.

Finally, our concluding remarks and future work directions are gathered in Chapter 9

3



4



Chapter 2

Background

In this chapter we present the basic concepts required to ease the understanding
of the more complex material in this thesis. Specifically, we discuss parallelism
models, hardware trends, programming models and the basic principles behind
SAR.

2.1 Parallelism

Due to the the explosive trend of multi-core architectures, the urge of exploration
and exploitation of the benefits that they have to offer is inevitable. Clearly, ex-
ploiting hidden or evident parallelism is one way to do so.

Programs or tasks may have computational workloads that can inherently run in
parallel with one another or be remodelled to do so. The fundamental argument
of parallelism is to run compute intensive tasks, that need rather a long amount of
time, in parallel. More and more legacy application are being ported or remodelled
in order to exploit such a possibility. But still, limitations exist to the level of
parallelism that can be exploited.

2.1.1 Amdhal’s Law

Blindly parallelizing sequential applications may lead to very limited performance
gain. In 1967, G. Amdahl [1] stated that the performance gain of a parallel ap-
plication over its sequential version is limited. This statement is widely known as
Amdahl’s Law.

In more detail, Amdahl’s Law specifies that if s is the sequential part of the
program and 1− s the part of program that can be parallelized, then the maximum
expected improvement S using P number of processors is:

S(P ) =
1

s+ 1−s
P

(2.1)

As a consequence, when P → ∞, then the maximum possible speedup is
bounded by the portion of the sequential part of the program. For this reason,

5



best candidates for parallelization tend to be portions of a program that account for
a significant amount of the total execution time.

Finally, we have to point out that Amdahl’s Law is a generalized argument, which
over the years has been re-evaluated or complemented to adapt to the current multi-
core era [23, 39]. Multiple models have been introduced based on scalable comput-
ing where an increase in computing power can lead to an increase in the problem
size as well.

2.1.2 Models of Parallel Computation

Implementing a parallel version of an algorithm is considered, for many, the ”trivial”
part of the whole paralellization process. The most important part tends to be the
deep understanding of the underlying algorithm along with the modelling of paral-
lelism that can be exposed. For this reason, conceptually at least, we can classify
the way a parallel program can be modelled in one the following categories [38]:

• Farmer-Worker/Master-Slave: In this model the workload can be distrib-
uted among algorithmically identical processes, each one taking different in-
put arguments than the other. Usually, a Farmer thread or process is respons-
ible into splitting and assigning work among the Worker threads/processes.
The idle Worker threads are usually part of a thread pool, where the Farmer
thread checks for available threads to assign work. When a Worker thread
finishes its work, it becomes again part of the thread pool waiting for further
assignments.

• Divide and Conquer: In this model, the problem can be divided recursively
in smaller problems until they become small enough to be fast to solve. Fi-
nally, all the partial solutions are combined to solve the initial problem. It is
important to point out that each sub-problem is theoretically independent of
the others, which makes concurrent or parallel execution feasible.

• Data Parallelism: In this model, computation follows the data. The data
are distributed in different computing nodes each one performing the same
task (executing the same code) on its own data. When finished, the data are
usually gathered on a single node forming the final solution.

• Task Parallelism: In this model the basic tasks/function can be isolated,
each one being responsible for solving a specific sub-problem. Each task acts
on specific arguments providing specific outputs. The dependency between
these tasks can be represented using an acyclic directed graph. The way
these tasks can be mapped onto a structure of processors is not trivial, thus
two types of execution models can be concluded: data-driven and demand-
driven. In the data-driven execution model, a task proceeds to execution
when the input arguments are available, while in the demand-driven, exe-
cution of a task occurs when the provided data are required further in the
pipeline.

6



• Bulk-synchronous [59]: In this model, the problem can be solved though
an iterative process, until solution convergence. Every iteration consists of
three distinct steps: a computation step, a communication step and finally
a synchronisation step. Each process performs the computation steps asyn-
chronously with respect to the other processes. When computations end,
processes can exchange data if required. Finally, for consistency, a syn-
chronisation step follows where all individual processes reach a certain point
before proceeding further.

• Hybdid: Every possible combination of the above models falls in this cat-
egory.

A

B C

D

E

DATA

P1 P2

P4P3

Farmer

W1

W2

W2

W4

Worker Pool

Computation

Communication

Synchronization

Processes

Figure 2.1: Parallel Computation Models [38, 66]

2.2 Heterogeneous Computing: A Hardware Approach

The need for specialized computing has led to the hardware diversity we experi-
ence nowadays. The fundamental premise of specialized or, as it is widely known,
heterogeneous computing is having a task or a specialized workload to run on the
most appropriate hardware platform in order to achieve the best performance and
the lowest power consumption.

In this section, we describe the most important hardware categories that can be
found nowadays in computing infrastructures.

7



2.2.1 General Purpose Processors (GPP)

All the conventional, general purpose, computer architectures which consist of one
(rarely) or several homogeneous cores fall in this category.

They are shared-memory architectures with a multi-layer cache hierarchy and
usually facilitate complex performance oriented hardware level optimisations (e.g.
branch prediction, dynamic execution). They are mostly used as stand-alone pro-
cessors, but newer designs, with significantly improved performance capabilit-
ies, have been created to be used as high performance coprocessors, like Knights
Corner and Knights Landing (brand name Xeon Phi) [21, 13].

They target almost the whole market spectrum, from mobile devices to servers,
and are offered by many industrial vendors like Intel, AMD, IBM and ARM.

Intel Haswell is the latest generation of Intel’s GPPs [12, 46] 1.
A large of variety of models based on Haswell architecture are released or

planned to be released soon, depending on the target market (e.g. High Perform-
ance, Low Power).

Most high performance designs come with four physical cores. Each one, due
to Hyper-Threading Technology, can be seen as consisting of two individual cores,
usually called logical cores. Hyper-Threading tries to exploit the fact that not all
execution resources are being used during the execution of an instruction. By du-
plicating some resources, for example resources that keep the state of the program,
gives the illusion of two distinct cores and the ability to run two independent pro-
cesses or tasks in parallel.

System Agent

Core 1

L2 Cache

Core 2 Core 3 Core 4

Integrated Graphics 
Accelarator

L3 Cache Partition L3 Cache Partition L3 Cache Partition L3 Cache Partition

M
em

o
ry C

o
n

tro
lle

r

Display Controller

PCIe/DMI IOs

L1 Cache

L2 Cache

L1 Cache

L2 Cache

L1 Cache

L2 Cache

L1 Cache

Figure 2.2: Haswell system architecture

Cores have private L1 and L2 8-way associative caches with sizes of 32 KB and
256 KB respectively. A L3 cache, shared between the processors, and has varying
size depending on the model.

Haswell also supports out-of-order execution, being enhanced with multiple re-
sources required for dynamic scheduling.

Both vector and integer registers are present in Haswell. In addition, multiple
execution and address generation units exist. There is support for both scalar and

1At the time of writing, May 2014

8



SIMD operations.
Interesting is the fact Haswell contains an Integrated Graphics Accelerator con-

nected to the bus ring, giving the ability to run graphics (and not only) tasks. The
Graphics Accelerator was updated with compute capabilities. Different versions
exist across the GPP models. The latest one is the Iris Pro 5200 version.

The L3 cache, along with the ring bus, run at a higher frequency than the cores
in order to ensure GPU’s high performance while keeping the cores in a low power
state.

An example model of Haswell architecture is i7-4770K with and integrated
Haswell GT2 graphics card is presented in Figure 2.3. The CPU itself has a peak
performance of 448 Gflops (AVX with FMA) while the GPU 400 GFlops. The
power consumption is close to 85 W [19].

Figure 2.3: The Haswell micro-architecture [12]
(Courtesy of Real World Tech)

2.2.2 Digital Signal Processor (DSP)

A significant number of applications are signal processing oriented. Typical ex-
amples are sound or image applications. The need to accelerate such an application
and the power constraints of mobile devices led to the design of DSPs. DSPs are
processors designed for the efficient manipulation of digital signals.

A DSP’s architecture differs in many ways from other processors. First of all,
they have a signal processing oriented Instruction Set Architecture (ISA), which
enables easier and faster implementation of digital signal processing applications.
As required from these algorithms they perform a significant amount of operations

9



in parallel per work cycle. Such operations may be Multiply-accumulate (MAC)
operations or even Fast Fourier Transform (FFT) loops. Moreover, in order to
provide multiple operations per cycle and low power at the same time, they operate
in lower frequencies.

Example companies designing DSP architectures are Texas Instruments, NXP
and Freescale.

Keystone multicore DSP is one state-of-the-art multicore DSP architecture (see
Figure 2.4) [53, 54] 1. It consists of 8 DSP core packs each one running up to a
frequency of 1GHz (see Figure 2.4b). Each DSP pack has a two-layer cache, L1
and L2 with 32KB and 512 KB respectively, and they all share a third one with a
size of 4096 KB. Additionally, a memory interface exists for fast access to a DDR3
external memory. A large amount of standard interface is supported, some of the
are PCIe2, Ethernet, UART and many more.

Each core has two datapaths with one register file and 4 functional units each
(see Figure 2.4a). There are four kinds of functional units, .L and .S which perform
general arithmetic and logical operations, .M for multiply operations and finally
.D for transactions between the memory and the register file. Each functional
unit can perform multiple operations per clock cycle depending on the operands’
lengths.

Finally, the SM320C6678 DSP based on Keystone architecture has a perform-
ance of 16Gflops/32GMACs per core when cores operate at full frequency, which
sums up to a total performance of 128Gflops/256GMACs.

(a) CorePac Block Diagram [54] (b) Functional Block Diagram

Figure 2.4: DSP C66x [54]
(Courtesy of Texas Instruments R©)

10



2.2.3 General-purpose computing on Graphics Processing Unit (GPGPU)

In the beginning of the 21st century an interesting twist took place in the field
of Graphics Processing Unit (GPU). These previously graphics dedicated archi-
tectures were enhanced with compute capabilities by deploying multiple simple
cores. Nowadays, GPGPU is constantly attracting more and more people from
both academia and industry.

GPUs are ALU-heavy, which means they contain multiple small and simple
cores with compute capabilities and limited control logic. For this reason, suitable
GPGPU applications mostly have high arithmetic intensity (arithmetic intensity is
defined as the ratio between the number of operations and the data transfers needed
for those operations), large input data sets and minimal dependencies between data
elements. Evidently, GPUs target data parallel applications.

Furthermore, they have a complex memory-hierarchy which consist of on-chip
memories, with multiple cache layers, and off-chip memories.

GPUs are mostly used as accelerators, but integrated graphics solutions also
exist. Examples are Intel’s new processor designs (Sandy Bridge, Ivy Bridge,
Haswell) and ARM’s Mali T60x architecture where GPUs and GPPs share the
same physical memory space.

Example companies that provide GPUs are NVIDIA, AMD, Intel, ARM, Ima-
gination Technologies and Qualcomm.

NVIDIA GK110 is a state-of-the-art NVIDIA Kepler based architecture [50].
GK110 architecture consists of five Graphics Processor Cluster (GPC), where

each containing three ”next-generation Streaming Multiprocessors”, which are widely
known as SMX (see Figure 2.5). Most designs utilize 13 or 14 out of the total 15
SMXs, probably to increase yield during manufacturing. Moreover, across the
edges there are six 64-bit memory controllers, summing up to a 384-bit path to the
off-chip memory.

Each SMX unit accompanies 192 single-precision CUDA cores, 64 double-
precision units, 32 special function units and finally 32 load-store units (see Fig-
ure 2.6). Four Warp Schedulers and eight Instruction Dispatch units are present,
giving the ability to execute eight instructions from four selected warps (each warp
contains 32 threads) per clock cycle.

Each SMX comes with a 64 KB on chip memory which can be configured as
16/48 or 48/16 or 32/32 between the L1 cache and the shared memory. One more
addition to the GK110 architecture is the 48KB read-only data cache, which tar-
gets unaligned access patterns for data that are meant to be read-only during the
execution of the program.

In conclusion, GK110 leads to extreme raw computational power. For example
GeForce GTX Titan based on GK110 architecture offers up to 4 TFlops of raw
performance, 288 GB/s memory bandwidth with a maximum power consumption
of 250 W [49].

11



Figure 2.5: GK110 architecture [50]
(Courtesy of NVIDIA R©)

Figure 2.6: SMX architecture [50]
(Courtesy of NVIDIA R©)

2.2.4 Field-programmable Gate Array (FPGA)

The inherent high performance of hardware based solutions is tempting for every-
one. Unfortunately, designing ASIC for every possible application is both time
consuming and not flexible.

12



FPGAs are ASICs which consist of a matrix of reconfigurable logic blocks con-
nected with each other with programmable interconnects (see Figure 2.7) [55].
Thus, they can be reprogrammed to facilitate any desired algorithm. Of course,
their performance is lower compared to a custom made ASIC solution but this is
compensated by the flexibility that they offer through re-programmability. It’s im-
portant to mention that FPGAs offer high speed I/Os and data buses which make
them appropriate for real-time or high volume applications. Xilinx and Altera are
the two biggest FPGA providers worldwide.

Block Rams
DSP Blocks

Logic Blocks

Programmable
Interconnects

I/O Blocks

Figure 2.7: FPGA architecture

2.3 Parallel Programming Languages

Nowadays, a variety of parallel programming languages exist, giving everyone the
ability to utilise and benefit of the advantages that multicore systems have to offer
at a level of abstraction that suits their competency.

We will briefly describe OpenCL and CUDA, the state-of-the-art languages we
extensively used, along with OpenMP and MPI which exist for decades now but
still have a dominant position.

2.3.1 OpenCL

OpenCL is a royalty-free industrial standard designed for programming heterogen-
eous architectures which consist of collections of Central Processing Units (CPUs),
GPUs, DSPs, FPGAs or other hardware accelerators in a single platform [57].
OpenCL was initially an Apple Inc. project, but from 2008 on it is managed by
the non-profit Kronos Group which has the immediate support of vendors like In-
tel, NVIDIA, ARM, AMD and Qualcomm. Each of these providers release their
own OpenCL implementation targeted for their own hardware platform.

The OpenCL platform model considers a single host connected to one or more
OpenCL Compute Devices. Each Compute Device consists of one or more Com-

13



pute Units where each Compute Unit is made of one or more Processing Elements.
Finally, each Processing Element executes code as SIMD or SPMD.

Figure 2.8: OpenCL Architecture Model
(Courtesy of Khronos Group)

An OpenCL program consists of two distinct parts [25], the host and the device
code. The device code is actually a kernel, or a collection of kernels, which run
on the Compute Devices; they are written in a data/task parallel manner (see Fig-
ure 2.8). The host code is responsible for orchestrating the initialization, commu-
nication, and execution of the kernels among the Compute Devices.

The data are processed over an index space which can have varying dimension-
ality from one to three. Each element of this index space is a work-item and a
collection of work-items is called work-group. Each work-group is independent
of any other one and multiple work-groups can run in parallel. Thus, work-groups
should not directly share data. However, work-items of a work-group can commu-
nicate and synchronize.

Finally, the OpenCL memory model, which is a relaxed memory model, is di-
vided in four different memory spaces: the global memory, the constant memory,
the local memory and the private memory. Each one has its own limitations and
regulations concerning consistency between processing elements.

The greatest advantage of OpenCL is the code portability that it offers, but this
does not mean that it will run optimally across different OpenCL devices without
hardware or vendor specific optimizations [26, 37, 61].

2.3.2 CUDA

CUDA is the parallel programming model and platform developed by NVIDIA in
order to harness the power of the NVIDIA GPUs [56]. The first public version
was released in early 2007 while the latest stable version is 5.5 and was released in
2013. CUDA is quite popular in both academia and industry, leading to a variety
of compute intensive applications to be ported on GPUs.

CUDA and OpenCL programming models are quite similar. Just like OpenCL,
CUDA assumes a single host with one or more CUDA capable devices. The host is
responsible for both the communication and synchronisation between the processor

14



and the CUDA devices, and for the invocation of compute intensive parts also
called kernels to be executed on the GPUs. As the host code used to bare all the
coordination burden of the application, NVIDIA ultimately tackled this problem
by supporting in their new architectures (from Kepler on) a level of autonomous
and dynamic parallelism, where a CUDA capable device has the ability to generate
work for itself.

CUDA utilizes the GPUs through a hierarchy of threads [25, 69]. Threads are
grouped into blocks called threadblocks and threadblocks are further grouped cre-
ating what is known as grid. The grid may have dimensionality up to three (see
Figure 2.9a).

Two distinct physical address spaces are part of the CUDA memory system, an
off-chip DRAM and an on-chip memory. From CUDA’s perspective four different
spaces are available, the global memory, the constant memory, the local memory
and finally the shared memory (see Figure 2.9b).

Overall, CUDA is a major solution when targeting NVIDIA GPUs. CUDA its
quite friendly as a language, making the implementation of parallel applications
simple for someone that has a clear understanding of the programming model. The
implementation of optimised versions may require deep understanding of both the
target application and the underlying hardware, and lies on the capabilities of each
programmer. Moreover, CUDA comes with a significant number of pre-optimized
libraries for different scientific domains, like linear algebra (CUBLAS) and signal
processing (CUFFT) which decrease programmer’s effort.

(a) CUDA Thread Hierarchy (b) CUDA Memory Model

Figure 2.9: CUDA Thread and Memory Model

15



2.3.3 OpenMP

OpenMP is an Application Programming Interface (API) [58] that extends differ-
ent programming languages in order to express shared memory parallelism. It is
a collection of compiler directives, environmental variables and routines that hide
the implementation details from the programmers. OpenMP is used to parallel-
ize a sequential application. Although OpenMP can be considered a productive
solution due to its abstraction level, parallelizing a legacy or inherently sequential
application may limit the performance gain. OpenMP was first released in 1997 for
Fortran from the OpenMP Architecture Review Board. Many specification updates
have followed this up with the last one being Version 4.0.

In more detail, OpenMP is based on the fork-join [67] parallization model, where
a master thread is split in a pre-specified number of work or slave threads which
share the tasks among them (see Figure 2.10). Once the threads are forked, they
run concurrently or in parallel. Depending on the nature of the parallelized applica-
tion synchronization or communication between threads may be important for this
reason appropriate pragmas exist.

Figure 2.10: OpenMP Example [67]
(Courtesy of Wikipedia Commons)

2.3.4 MPI

MPI is a parallel programming model that enables the message passing paradigm
for programming of parallel applications on distributed machines with separate
memory spaces. The MPI specification standard was introduced in 1992 with the
release of MPI 1.0 taking place in 1994. The latest version of MPI is MPI 3.0
and was released in 2012 [17]. After so many years, MPI is still the main solution
when developing distributed applications. MPI, initially targeted only distributed
memory architectures, but as multi-core processors trend took place and were con-
nected over network, hybrid architectures were born. For this reason MPI was
extended to support all kinds of memory models including hybrid (distributed and
shared). Different implementations of MPI exist (e.g MPICH, LAM-MPI).

A generic MPI program consists of the environment initialization step, where the

16



communication world between the distributed machines is created, then the parallel
execution starts where each machine performs its work and, finally, in the end the
MPI environment is terminated [4] . During the parallel work step, machines can
communicate using different message passing calls depending on the nature of the
needed communication. Different communication types are being supported like
broadcast, gather/scatter, reduce.

2.4 Real-time Systems

Real-time systems are computing systems that have to react to external stimuli
within some timing constraints. As a result, the correctness of such a system is
not specified only by the correctness of the calculated output, as in conventional
systems, but also by meeting the imposed deadlines [5].

2.4.1 What Real-time Means

The term ”real-time” is falsely interpreted by many [5]. Some assume a system to
be real-time when it produces results really fast, but as the meaning of ”time” is
relative such is the meaning of ”fast”.

To characterize a system as real-time we have to have a clear understanding of
the environment that it operates in and, as a result, of its timing characteristics. We
have to make sure that the system operates in the same time scale with the envir-
onment, and guarantee that it will respond fast with respect to the environment’s
evolution. Sometimes, such systems may be compromised when external, ”non-
natural”, events disrupt the timing characteristics of the environment it operates
in.

Many real-time systems have been reported to malfunction due to false model-
ling of the environment timing characteristics, which may lead to incorrect correl-
ation between the system’s ”time” and the environment’s ”time”.

2.4.2 Types of Real-time Tasks

At conceptual level, a real-time task differs from a non-real-time one on the timing
constraints that it has to meet. These constraints come in a form of deadlines.
Imposing deadlines to a task introduces the probability of missing one of them
as well, which means that the task is unable to produce the required data before
the deadline. As a consequence, the criticality of a deadline miss to the system’s
behaviour helps to distribute real-time tasks in three distinct categories [5]:

• Hard: A real-time task is characterised as hard when the miss of a dead-
line causes catastrophic consequences to the system or the environment.
Example of such task is a task that controls an aeroplane’s motors and/or
sensors, where a deadline miss may lead to a catastrophic result from the
control feedback loop.

17



• Firm: A real-time task is characterised as firm when a deadline miss pro-
duces useless data for the system but do not damage the system or the envir-
onment. Most of the times, a deadline miss in such tasks may lead to quality
degradation. Examples of such tasks can be found in the signal processing
domain, like video encoding/decoding or video streaming.

• Soft: A real-time task is characterised as soft when the data produced after
a deadline are still useful but lead to a degradation to the system’s perform-
ance. Example is a graphic user interface of an application.

2.4.3 Features of Real-time Systems

It is important for a real-time system to support six fundamental properties [5] in
order to be able to host a critical application. These properties are:

• Timeliness: Such a system has to be able to guarantee that all the imposed
deadlines are going to be met.

• Predictability: It is important for real-time systems to have been developed
in a way where extensive analysis schemes can be applied to them, and vary-
ing behaviour over different scheduling techniques can be predicted.

• Efficiency: Usually, real-time systems come with not only timing constraints
but also with power, area and computational power constraints. Thus, such
a system has to operate correctly given all this constraints.

• Robustness: Aperiodic events may have a varying pattern depending on
the evolution of the environment. Consequently, when event burst occur the
response of such a system may be compromised. For this reason, we have to
guarantee the correct behaviour in extreme workload cases.

• Fault tolerance: Due to either materials’ physical properties and limitations
or software errors, faults may introduced to a system. As a consequence,
the system should be able to tolerate such permanent or transient faults and
continue working in order not to compromise the system’s operation.

• Maintainability: The system has to be developed in such a way that possible
extensions and/or modifications can take place without much integration ef-
fort.

2.5 Synthetic Aperture Radar (SAR)

SAR is a form of radar imaging methodology where a large antenna is emulated
by moving a smaller antenna over a specific region. SAR creates finer spatial
resolution images than any other conventional beam scanning techniques. SAR

18



technology is usually deployed on satellites, aircraft and more recently also on
Unmanned Aerial Vehicles (UAVs).

Figure 2.11: MQ-9 Reaper UAV equipped with SAR
(Courtesy of U.S. Air Force)

2.5.1 Radar Principles

Radar stands for Radio Detection and Ranging and is an electrical system the main
purpose of which is to detect objects and define their distance [36]. The fact that
radar systems operate in almost every weather condition, day and night, makes
them a really attractive solution compared to others.

In more detail, radars transmit electromagnetic waves over a target area and re-
ceive reflections of these waves from objects that may lie in this area of interest (see
Figure 2.12). The angle the electromagnetic waves are received and the time dif-
ference between the transmission and reception of these waves reveal information
about the position and the range of the objects in this transmission area.

Figure 2.12: Radar Principle

Identifying an object sometimes is not that straight-forward, as multiple sources
of both external and internal interference exist. Examples are the noise of the
electronic circuitry (e.g. thermal noise) and reflected electromagnetic waves from
areas outside the area of interest.

19



Radars operate in frequencies between 300MHz and 110GHz, and limitations ex-
ist in both low and high frequencies. Achieving high resolution in low frequencies
require large antennas while high frequencies increase the effect of atmospheric
attenuation [36].

The transmitter along with the receiver are the main components of a radar sys-
tem. The antenna is the part of the system which transfers the electromagnetic
waves from/to system to/from the medium. Multiple transmitter/receiver configur-
ations exist. They may share the same antenna (monostatic) or be separated, each
one having its own antenna (bistatic). The main reason of bistatic radar systems
is to provide physical isolation of the transmitting and the receiving subsystems.
This is due to the fact that transmitters usually transmit high-power electromag-
netic waves (KW or MW) which may affect the sensitive subsystem of the receiver,
which receives signals with orders of magnitude less power (mW or nW).

Two distinct categories of radar waveforms exist: continuous wave and pulsed.
In continuous wave waveform, transmitters and receivers operate at all times with
the transmitter continuously transmitting a signal. On the other hand, in pulsed
waveforms, short signals are being transmitted with a short period, while the re-
ceiver receives in between transmissions.

When relative motion between the target and the radar exist, the frequency of the
received signal will be different from the frequency of the transmitted one. This
commonly known as the Doppler effect. Proper utilisation of the Doppler effect
helps to identify moving targets along with their direction and speed.

2.5.2 SAR Principles

The fundamental premise of a SAR radar is to be able to emulate a rather large
antenna, which would require a large amount of power and area, by moving a
smaller antenna over a target area. The longer this synthetic antenna is, the higher
the spatial resolution we can achieve.

The length of the synthetic antenna is determined by the distance between the
start and the end of the data collection process (see Figure 2.13). Finally, by coher-
ently integrating the collected data we can construct high resolution spatial images
of the illuminated area.

The resolution of a SAR system can be expressed in two terms along two per-
pendicular axes: the range resolution and the azimuth resolution (see Figure 2.14).

The range resolution takes place along the range axis which is perpendicular to
the antenna moving path. Calculation of range resolution does not differ of that of
a conventional radar.

The azimuth resolution is the resolution along the moving track. Multiple ob-
servations take place along the track, which in the end are coherently integrated to
form high resolution images.

20



(a) Length of Synthetic Antenna (b) SAR Geometry

Figure 2.13: SAR Principle [70]
(Courtesy of Radartutorial.eu)

Figure 2.14: SAR Resolution

SAR Operation Modes

SAR systems support different illumination modes depending on the needs of the
application. Figure 2.15 illustrates the most common SAR modes .

In strip map mode (see Figure 2.15a) the antenna has a fixed direction resulting
in successive high resolution images along the illumination path of the antenna.

On the other hand, in spot mode (see Figure 2.15b) the antenna is steered to
point to a desired target in the ground which leads to longer integration time and
therefore very high resolution images. With digital beam forming, as mentioned
later, multiple beams can be formed so that Strip and Spot can be performed sim-
ultaneously. This puts heavy demands on the processor.

21



(a) Strip Map Mode (b) Spot Mode

Figure 2.15: SAR Modes [70]
(Courtesy of Radartutorial.eu)

SAR Processing

As we previously mentioned, the main purpose of a SAR system is to transform the
sampled raw data into a spatial image. This image formation procedure consists
of multiple processing steps, with the most important being pulse compression and
azimuth compression. Other steps include motion compensation, autofocus and
contrast scaling which improve image’s focussing and sharpness.

Over the years multiple ways of performing these important SAR processing
steps have been proposed. We distinguish three distinct types of SAR processing
techniques, each one having different weight distribution between accuracy and
performance [34].

• Frequency domain algorithms like Spatial Matched Filter Interpolation, Range-
Doppler, ω-K and Chirp Scaling perform both range and azimuth compres-
sion in the frequency domain. The utilization of FFTs to do that decreases
considerably the required computational time but may lead to defocused
images, wrap-around errors or even spread artifacts all over the processed
image. This mainly happens because assumptions for the data layout are
being made which may lead to formulation problems and approximations
especially for wide-angle processing. Further, spatial based processing tech-
niques are sensitive to motion errors, which are most of the times present in
airborne SAR.

• Back-Projection is an alternative that offers accurate results in exchange of
higher computation requirements as it operates on the time-domain. Back-
Projection stems from tomographic imaging, where one-dimensional line
projections taken from a two or three dimensional target scene from dif-
ferent angles, are used to create a spatial image of the target scene. Being a
time-domain approach, makes back-projection able to deal with non-linear
motion paths. Back-Projection was not possible years ago, but has become
feasible thanks to fast computing.

22



SAR applications

The ability of radar systems to operate independent of the weather conditions,
along with the flexibility and high resolution output of the SAR processing scheme
makes SAR have numerous applications from military to environmental based ones
[36].

Some example applications are:

• Target Surveillance: Used mainly for military purposes for the surveillance
of specific target areas. Surveillance reasons may be treaty preservation
between countries.

• Ground Moving Target Indication (GMTI): Moving targets are being mon-
itored. Informations like the direction and the speed of moving targets can
be extracted and utilized in a variety of ways.

• Navigation: The ability of radar systems to work in every weather condi-
tion, day or night, can be used in navigation systems. Cross-correlation of
images with reference images that were previously obtained may reveal loc-
ation and/or direction information.

• Environmental Monitoring: Environmental changes can be monitored with
the use of SAR technology. Such changes may be deforestation, ice level or
even oil spills as different materials have different backscatter characterist-
ics.

• Foliage and Ground Penetration: Interesting is the fact that low frequency
radar system can penetrate foliage and sometimes decades of meters beyond
ground surface. Such an important attribute can reveal information about
underground targets.

• Interferometry: When two or more SAR images (or data from 2 or more
antennas) are combined, generation of 3-D surface images is feasible.

23



24



Chapter 3

Software Architecture

3.1 Processing Requirements

As we mentioned in the previous chapter multiple processing steps are required in
order to produce high quality two-dimensional spatial images. Figure 3.1 illustrates
the processing chain of a multi-channel SAR[62].

Downsamplng

Channel 
Reduction

Digital Beam 
Forming

Back-Projection

Range FFT

2D Map Drift

PGA

Final 
Image

Samples

INS GPS

Motion 
Integration

INS/GPS 
Integration

Motion 
Integration

Mutli-Channel

 Back-Projection

Figure 3.1: SAR Software Architecture

Initially, after the sampling phase a Decimation step takes place. Decimation
[33] filters and down-samples the input data in order to reduce the input data rate.

25



This could be helpful for two main reasons. First of all, the sampling rate may be
high enough leading to a high data rate, which may not be able to be supported by
the underlying communication interface. Second, the amount of gathered samples
may be more than enough to reconstruct high quality images, so a down-sampling
step will reduce the processing requirements of the following steps of the chain and
still provide high-resolution images.

Having multiple channels in the azimuth direction increases the active sampling
rate which leads to higher resolution images or to wider swath width [65]. Channel
reduction, tries to reduce the input data rate by adding pairs of channels together.
Adding all the channels in this level of the processing chain leads to a conventional
SAR configuration with one transmitter and a single channel receiver.

Multi-channel Back-Projection is the heart of the SAR system. It operates over
three sampling domains: the channels, the fast time (cross-track) and the slow
time (along-track). Back-projection constructs the spatial image of a target area by
coherently summing the appropriate reflections of each voxel on the grid. In addi-
tion, Digital Beamforming (DBF) [20] helps improve the final image by focusing
the receiver in the required direction. Moreover, DBF gives the ability to point
different beams in multiple direction, thus multiple images can be constructed. In
back-projection we perform explicitly an ultimate form of beamforming by focus-
ing and steering beams to each voxel independently. Range resolution is achieved
using FFTs while azimuth resolution by coherent integration along the flight path.

Information about the flight track are obtained through the Inertial Navigation
System (INS) and the Ground Positioning System (GPS). By combining these
information we can have a clear view about the radar positioning and motion.

Unfortunately, high accuracy INS and GPS systems are expensive and power
hungry. Moreover, the accuracy required by a SAR systems strongly depends on
the operating frequency of the SAR which for example when is in a magnitude of
GHz, millimetre resolution is required by the INS and GPS sensors. In order to
compensate potential motion errors multiple steps of iterative autofocus are per-
formed [7]. With Map Drift[6] we can compensate large motion error while resid-
ual motion errors can be compensated using the Phase Gradient Algorithm (PGA)
[64].

It is important to mention that this processing chain is just an example. More
steps can be added or changed in order to support different functionality or meet
specific power or time requirements. An example could be a step for identifying
moving targets.

Finally, our main goal is to identify the requirements of each step of the pro-
cessing chain and investigate possible real-time solutions under area, power and
computational power constraints. We will provide this analysis in two phases. First
we will discuss each module (Chapters 4-7). Next, we integrate and analyze these
modules (Chapter 8).

26



3.2 Hardware Platforms

A variety of hardware architectures were used to evaluate empirically our SAR
implementation.

To start with, Table 3.1 summarizes the specifications of the used GPPs: Intel R©
CoreTM i7-2670QM[42], Intel R© CoreTM i7-3612QM[43] and Intel R© CoreTM i7-
4960X Extreme Edition[45].

Model
Intel Core Intel Core Intel Core

i7-2670QM i7-3612QM i7-4960X Extreme
Cores/Threads 4/8 4/8 6/12

Core Frequency (GHz) 2.2 2.1 3.6
Last Level Cache (MB) 6 6 15
Throughput (GFlops) 70.4 67.2 130

Memory Bandwidth (GB/s) 21.3 25.6 59.7
Memory Channels 2 2 4

Thermal Design Power (W) 45 35 130

Table 3.1: GPPs’ Specifications

Further, multiple GPUs were used: a mobile GPU, NVIDIA R©GeForceTM GT540M[48],
a mid-range GPU, NVIDIA R© GeForceTM GTX650 Ti[48] and finally two high-
end GPUs, NVIDIA R© TeslaTM K20[52] and NVIDIA R©GeForceTM GTX Titan[49].
Table 3.2 presents the most important specifications of the previously mentioned
architectures.

Model
NVIDIA NVIDIA NVIDIA
GT540M GTX680 GTX Titan

Cores/Threads 2/96 32/1536 14/2688
Core Frequency (Hz) 1344 1006 837

Off-chip Memory (GB) 1 2 6
Throughput (GFlops) 258 3090 4500

Memory Bandwidth (GB/s) 28.8 192 288
Memory Frequency (Hz) 900 6000 6000

Memory Interface GDDR3 GDDR5 GDDR5
Memory Width (bits) 128 256 384
Compute Capability 2.1 3 3.5

Thermal Design Power (W) 35 195 250

Table 3.2: GPUs’ Specifications

The experimental data that we used come from AMBER [60], a X-band Digital
Array SAR which targets UAVs. AMBER has a maximum bandwidth of 1 GHz and
thus a maximum resolution of 15 cm. Moreover, it is equipped with a 24 element
receiver array with a sampling frequency of 20 MHz.

27



3.3 Metrics

Throughout this thesis multiple implementations of the all the algorithms will be
presented. In order to compare those and be able to evaluate their performance on
different hardware platforms we use the following metrics:

• Execution Time (T ) is the main decisive metric when comparing different
implementations. The execution time is obtained using the wall timer or
using profiling tools like NVIDIA’s nvprof [51] and Intel’s VTune Amplifier
[44].

• Speedup (S) represents the absolute performance gain between two different
implementations with execution times T1 and T2 respectively:

S =
T1
T2

(3.1)

• Throughput

– Computational Throughput, is a measure of the amount of work that a
computational system can perform in a given time period, and is cal-
culated as the number of floating point operations that are being per-
formed per second:

FLOPS =
FLOPstotal

T
(3.2)

– Memory Bandwidth, is a measure of the rate that data can be stored
and read from a memory subsystem, and is calculated as the number
of bytes transferred through memory transactions from and to the main
memory (read and writes) per second:

MBw =
bytesread + byteswritten

T
(3.3)

• Back-projections per second (BPs), the number of back-projections that
can be performed per second:

BPs =
Back − projectionstotal

T
(3.4)

28



Chapter 4

Multi-channel Back-Projection

4.1 Algorithm

Back-Projection is one of the most used processing techniques in SAR systems.
We focus on the time-domain ”brute-force” approach presented in [63].

Along a flight path each radar observation s [r] is associated with a three-dimensional
antenna position ~ak. Each radar observation is a collection of range compressed,
complex data indexed by range r (see Figure 4.1b).

(a) SAR scheme

(b) S
AR
data representation

Figure 4.1: SAR back-projection

Range can be specified by calculating the euclidean distance between the pos-
ition of the voxel ~w where we need to measure the radar reflectivity and the k-th
position of the antenna ~ak (see Figure 4.1a).

rn(~w) = |~w − ~ak| (4.1)

29



Having calculated the range between these two points, we can calculate the one-
way phase shift φk(~w) and consequently the two-way phasor θk(~w).

φk(~w) = 2π
rk(~w)

λ
(4.2)

θk(~w) = e2jφk(~w) (4.3)

where λ is the wavelength of the transmitted wave.
Further, the partial reflectivity of this voxel from a single observation can be

reconstructed as follows:

uk [~w] = sk [rk(~w)] · θ′k(~w) (4.4)

Finally, the total reflectivity of a voxel can be calculated by coherently summing
all the partial contributions to the voxel’s reflectivity from all the relevant radar
observation.

uk [~w] =
∑
k∈K~w

uk [~w] (4.5)

Clearly, in order to compute the reflectivity of a collection of voxels representing
the grid of interest, this procedure has to be performed for each voxel independ-
ently, leading to high computational demands for high resolution wide grids.

For multi-channel receive antennas the number of radar observations is increased
by a factor equal to the number of the receive channels. To be more specific, for m
channels, the total reflectivity of a voxel is:

uk [~w] =
∑
k∈K~w

∑
m

uk,m [~w] (4.6)

4.2 Sequential Implementation

Initially, we implemented a sequential version of the multi-channel back-projection
to reveal any computational bottlenecks and identify potential candidates for par-
allelization.

Figure 4.2 illustrates the processing steps of the presented algorithm. In the
initialization step, the required data structures are initialized and the observations
along with the position of the antenna are read. Having the antenna positions helps
us calculate the position of each channel respectively.

Next, the main processing routine follows, where for each pulse and for each
channel we calculate the reflectivity of each voxel in the target grid.

Overall, the whole process to calculate each voxel’s reflectivity is an independent
summation over three distinct domains: fast-time (across range), slow-time(across

30



track) and channels. As time-domain processing in the fast-time domain (across-
range) lead to no significant improvements in output’s quality, frequency-domain
processing is preferred (Range Compression box). The order these summations
occur does not change the final result.

Initialize 
Data Structures

Iterate over 
channels

Iterate over 
pulses

Calculate partial 
contribution

Iterate over 
voxels

All voxels 
processed?

NoNo

Perform pulse 
compression

Read pulsesPre-processing

Write Final 
Image

Read antenna/
channels 
positions

No

All channels 
processed?

All pulses 
processed?

Yes

Yes

Yes

Figure 4.2: Data flow diagram

Profiling this application will help measure the execution time of each individual
part along with its contribution to the overall execution time of the program. We
reconstructed voxel grids of varying sizes by integrating over 5 seconds of samples
which is approximately 1506 sweeps.

Table 4.1 presents the execution time of the most important functions along with
their contribution to the total execution. As we can see, the contribution calcula-
tion function and the range compression account together for the most part of the
total time. When reconstructing voxel grids of larger sizes, we observe that the
execution time of the contribution function is increasing while range compression

31



remains constant.
Evidently, we conclude that the contribution function along with the range com-

pression one are the two main processing steps that urge parallelization as they
account for approximately the 95% of the total execution time.

Size Functions T[s] %

100mx100m
contribution 1276 74

rangeCompress 301 17
others 154 9

200mx200m
contribution 5320 92

rangeCompress 304 5
others 162 3

Table 4.1: Profiler Results on GPP (single-threaded)

4.3 Parallel Approaches

Typically, applications use either input-based parallelization or output-based par-
allelization.

In input-based parallelization, the input elements are processed concurrently or
in parallel. This can be advantageous when the number of the input elements is
significantly larger than the output elements, but on the other hand can also lead
to synchronization problems when multiple input items affect the same output ele-
ment.

In output-based parallelization, the output elements are processed in parallel.
While this can lead to redundant reads of input elements, and less parallelism in
case the output is much smaller than the input, it resolves the synchronization prob-
lem.

Below we describe how these approaches can be applied to the given back-
projection algorithm along with arguments of which one is friendly for a GPU
implementation.

4.3.1 Input-based parallelization

In this parallelization approach, each thread takes care of one or several input ele-
ment(s). Thus, our main goal is to calculate which output voxels this input ele-
ment/s affects and, as a result, coherently add its contribution to these voxels.

The number of elements of the input data is orders of magnitude larger than the
output elements, a factor suitable for a gpu-level parallelism. Moreover, threads
will read consecutive memory elements (coalesced accesses) which will lead to
better utilisation of the memory hierarchy.

In order to follow this approach, each input element has to iterate over all the out-
put elements and check which ones it affects. In [10] the authors mathematically

32



prove that the voxels that have to be checked can be limited to a certain amount, but
still depending on the size of the grid and radar specific parameters their number
could vary. Moreover, iterating over output elements may lead to a computational
explosion and also increases dramatically the lifetime of each individual thread.
Another way is to use a mathematical way to specify, with an acceptable accuracy,
the elements that each input item affects. This may of course introduce more com-
plex control logic and highly depends on many radar and sampling specific factors
which are explained further during the data analysis step. Finally, due to the fact
that multiple threads may access similar output voxels, atomic access to the output
voxels is required.

4.3.2 Output-based parallelization

The output-based parallelization can be implemented by making each individual
parallel task responsible for calculating the contribution to a specific voxel of the
output voxel grid. Such an approach may initially imply a lower level of parallelism
as the number of the voxels is orders of magnitude less than the input data, but in
reality the computational part is much more parallel-efficient and straightforward.

The main problem of this approach is that, as mentioned in the algorithm present-
ation, for each voxel we have to calculate the distance from the antenna for each
aperture. Depending on this distance we have to access the appropriate range bin.
These accesses to the corresponding range bins for the voxels may not be consecut-
ive between voxels which may lead to lower utilization of the memory hierarchy or
restrictions for further optimisations. Further analysis on the access patterns take
place later in this chapter.

We chose to proceed with this approach as it turns out to be more parallel effi-
cient and has less drawbacks and limitations compared to the input-based approach.

4.4 Analysis

Before proceeding to the parallelization process is important to have a deep under-
standing of the computational and memory requirements of the algorithm.

We start with a basic setup where we assume a single antenna consisting of M
channels in the azimuth direction and a Frequency-Modulated Continuous-Wave
(FMCW) radar.

4.4.1 Complexity Analysis

Input

In SAR processing, an image is reconstructed using a start-stop approximation,
where a synthetic aperture is created consisting of multiple individual radar obser-
vations. The number of the individual apertures, P , depends on the start and stop

33



time of the integration process and the Signal Repetition Frequency (SRF), which
is the frequency a pulse is transmitted (see Equation 4.7).

P = |tstart − tstop| · SRF (4.7)

During consecutive apertures there are M channels sampling over the fast-time
domain. The number of the collected samples across range per channel,R, depends
on the hardware’s sampling frequency (fsample) and the upsweep’s time (Tupsweep)
(see Equation 4.8)

R = fsample · Tupsweep (4.8)

For back-projection to achieve better resolution, an interpolation or upsampling
takes place in the fast-time domain. This leads to an increased number of range
bins, R̃, and depends on the upsampling factor (nupsample) (see Equation 4.9).

R̃ = R · nupsample (4.9)

Figure 4.3 illustrates the structure of the observations in the three distinct do-
mains.

Pulses

Channels

Figure 4.3: Data Layout

As a result, the number of input observations equals to the number of apertures,
times the number of channels, times the number of observation of each channel at
each aperture:

input = obs = P ·M · R̃ (4.10)

Output

The number of the output voxels in each dimension depends on the size of this
dimension and the resolution we want to achieve in this dimension (see Equa-
tion 4.11).

34



Nd =
Sized
resd

(4.11)

where Sized is the length of the voxel grid in this dimension in meters and resd is
the resolution in this dimension.

The total number of voxels or output out is the product of the voxels in each
dimension (see Equation 4.12).

out = Ntotal =

d∏
i

Ni (4.12)

Overall, the complexity of the algorithm is O(PM(NxNy + (R̃log2R̃))). This
comes from the fact that for every pulse P and for every channel M we perform
range compression over the interpolated range R̃ samples using FFTs1 and we
calculate the contribution for each pixel (where NxNy is the total amount of pixels
of a 2D voxel grid). Dominating factors are the number of channels, the number of
pulses and the number of voxels.

4.4.2 Operational Intensity Calculation

It is important to calculate the needs of our application in terms of computational
intensity and memory bandwidth. This will provide us insight in our application’s
bounds and will guide our optimization strategy.

First of all, we focus on the contribution function requirements. Let’s assume we
operate on range compressed data. Moreover, we do not account the requirements
for the pre-processing step as they are negligible compared to the main processing
procedure.

The equation below (Equation 4.14) gives an estimate of the requirements of the
application in terms of FLOPs, which in turn determines its computational needs
and intensity.

FLOPs =#iterations·
(The computational intensity of the contribution function)

=P ·M ·NxNy·
8 · addf + 8 · subf + 20 ·mulf + 3 · divf + 1 · sqrtf + 1 · expf

(4.13)
where :

• addf , subf ,mulf and divf are single-precision floating point addition, sub-
traction, multiplication and division respectively.

• sqrtf is single-precision floating point square root calculation.

1N-point FFT has a complexity of O(Nlog2N )

35



• expf is single-precision floating point exponential calculation.

The requirements of each individual floating-point operations for an x86 archi-
tecture are [2] :

• addf 1 FLOP

• subf 1 FLOP

• mulf 1 FLOP

• divf 15 FLOPs

• sqrtf 15 FLOPs

• expf 20 FLOPs

By taking into account the above numbers, the computational intensity of the kernel
is 116 FLOPs.

On the other hand, the memory requirements of the application are:
MemBytes =#iterations·

(Floating points read + Floating points written) · (Bytes per floating point)

=P ·M ·NxNy·
(8 reads + 2 writes) · 4B

(4.14)
We can calculate the operational intensity of the application as the operations

per byte of DRAM accesses. For the back-projection applications the operational
intensity equals :

P ·M ·NxNy · 116
P ·M ·NxNy · 40

=
116

40
= 2.9 (4.15)

The roofline model[68] is a theoretical model having as its goal to provide real-
istic insights about an application’s performance and reveal its bounds. The model
ties together peak performance, memory performance and operational intensity,
thus a different output is associated with different architectures due to different
performance and memory capabilities. The model is represented as a two dimen-
sional graph having as an upper bound a horizontal line which represents the peak
computational performance of the targeted platform and a steep line which reaches
eventually the horizontal line and represents the memory bound of the platform.
Further, X axis represents Flops per byte while Y axis the attainable performance
inGflops/s. The attainable performance of an application can be calculated using
the following Equation:

Attainable GFlops/sec = Min(Peak Floating Point Performance,

Peak Memory Bandwidth x Operational Intensity)
(4.16)

36



Depending on the ”roof” that application’s operational intensity reaches, it can
be characterized as compute or memory bound. Figure 4.4 illustrates the roofline
model for our application. Clearly, our application is considered memory-bound.

0 5 10 15 20
0

1,000

2,000

3,000

4,000

5,000

Flops/byte

G
flo

ps
/s

GeForce GTX-Titan GeForce GTX680 GeForce GT540M

Figure 4.4: Roofline model before applying any optimizations

Finally, assuming a second of integration which, for our radar hardware, con-
sists of 301 pulses and different voxel grid dimensions of the highest possible res-
olution(15cm), the computational and memory requirements for the contribution
calculations are presented in Table 4.2.

Size Back-Projections[GBP]
Computational Memory

Requirements [GFLOPS] Requirements [GB]
100m x 100m 16.08 372.8 128.555
300m x 300m 144.57 3351.93 1155.84
1km x 1km 1606.56 37247.46 12843.95

Table 4.2: Computational and memory requirements per second of integration

4.5 Parallel Implementation

4.5.1 Naive Implementation

Our first attempt was to actually port the serial implementation on a GPU using the
finest task granularity possible, where each execution element was responsible for

37



the calculation of the reflectivity of a single output voxel. Although this is a simple
and straight-forward approach, it lead to a significant speedup over the sequential
implementation (see Table 4.3).

4.5.2 Optimization Steps

In this section we describe a series of optimizations we applied to improve the per-
formance. Both architecture independent and vendor specific optimizations were
applied mainly targeting the NVIDIA GPU series. The optimization and tuning
process is an iterative procedure where in each step the performance evaluation is
revisited to make the appropriate decisions towards further possible improvements.
All the optimization results are reported in Table 4.3.

Range Compression Optimization

Our first goal was to optimise the range compression step. For every second of
integration we have to approximately integrate over 301 pulses for the specific
radar hardware. Each pulse consists of independent collections of range samples.
The number of these collections is equal to the number of channels, which is 24 in
our case, and each collection has 29160 samples.

As a result, for every second of integration we have an input data size of ap-
proximately 850MB. In strip mode, where not maximum possible resolution is
required, the integration of 2s − 3s could be enough, but for spot mode, where
high resolution images are constructed, up to 10s are required.

Fast-time integration is performed in the frequency domain using FFTs which
leads to lower computational demands than time-domain processing. A variety
of FFT libraries exist which provide highly optimized routines (e.g. FFTW [16],
CUFFT [47], clMath [41]) and are generally preferred. Initially, we used FFTW to
perform range compression on the CPU, using the maximum number of possible
hardware threads, but the fact that we perform up-sampling over range to achieve
better accuracy lead to large range compressed data sizes. In more detail, to achieve
better range resolution we increase the number of bins by a constant factor k. This
results in hundreds of thousands bins. For example, for an up-sampling factor of
8 we have to perform a 233280− point FFT for each channel of each pulse. This
FFT leads to an output of 13.5GB. If we take into account that for real inputs the
Hermitian property is satisfied, the size can be reduced to half (7GB).

Consequently, for every second of integration we have to transfer 7GB of input
data to the GPU which with the current state-of-the art communication interface
PCI Express 3.0 requires more than one second. This immediately imposes enough
problems into achieving real-time performance.

The most straight-forward solution is to perform both the up-sampling and range
compression inside the GPU. Because the output of the FFTs is larger than the
memory that GPUs have available, we perform range compression and eventually
the contribution calculation over small chunks of input pulses.

38



In total, we manage to reduce the data transfer time only to the time required for
transferring the initial input data, which for example, for 5s of integration (4GB of
input data) less than one second is required. In addition, performing FFTs inside
the GPU gives a significant speedup of approximately 10 over the execution time
required by the range compression, and especially for this size of FFTs.

For the CUDA version CUFFT library is used. For OpenCL, clMath is preferred.
Moreover, as we send batches (chunks) of pulses for processing, we have the ability
to perform multiple FFTs in parallel and leverage the compute capabilities of the
GPU.

Limitations of these libraries are the supported FFT sizes, which have to be any
mix of powers of 2,3,5,7 for CUFFT and 2,3,5 for clMath. Moreover, CUFFT
operates on data structures with interleaved complex values, while clMath gives
the ability to also use planar input/output arrays where real and imaginary values
are stored in different arrays. Such an option can give an significant advantage for
architectures with vector hardware extensions and achieve better memory coales-
cing.

Basic Optimizations

Compiler Flags In most GPU architecture there are hardware units able to per-
form special math functions like square root and sinusoid calculations. Using this
option may increase the performance of our application but will also decrease the
accuracy as these operations are usually approximations. Apart from that, GPUs
can usually perform both multiplication and addition in a single instruction, some-
thing that is referred as fused multiply-accumulate.

In order to force the compiler to use these hardware capabilities, special com-
pilation options have to be used. For OpenCL ”-cl-fast-relaxed-math” and ”-cl-
mad-enable” options enable the use of native mathematical functions and the use
of fused multiply-accumulate operations respectively. In CUDA the use of native
functions can be achieved using the ”–use fast math” flag which also automatic-
ally enables the contraction of multiplications and additions to fused.

By mapping the math functions on native GPU instructions we reduce the num-
ber of flops required for each one of them. The requirements of each individual
native floating-point operation for a GPU architecture is [2] :

• addf 1 FLOP

• subf 1 FLOP

• mulf 1 FLOP

• divf 1 FLOP

• sqrtf 1 FLOP

• expf 1 FLOP

39



By taking into account the new numbers, the computational intensity of the kernel
drops from 116 FLOPs to 41 FLOPs. This leads to a reduction of the arithmetic
intensity of the back-projection kernel and makes our kernel memory-bound. Ad-
ditional compiler optimizations reduce further the number of flops.

AoS vs SoA Channel and voxel grid positions along with pulse compressed data
are grouped into structures. A position structure contains x, y, z elements which
represent the position of an element and a pulse compressed structure contains the
real and imaginary elements of a complex number.

Depending on the application requirements and the underlying hardware, dif-
ferent ways to represent the data are preferred to achieve better performance and
better memory utilisation. Two of them are AoS and SoA (see Figure 4.5). In
AoS, an input array is a collection of identical complex elements, where each one
consists of multiple sub-elements. On the other hand, in SoA, input is an element
which consists of arrays each one containing exclusively one of the sub-elements
of the complex structure.

AoS

SoA

Figure 4.5: AoS vs SoA

In each contribution calculation, the positions of the voxel and the channel along
with the value of the calculated range bin are needed. Access granularity inside
threads occurs in terms of structures, which means that each thread reads a whole
struct and not selective elements of a structure. In GPUs, memory accesses occur
with a warp granularity. Consequently, threads inside a warp will access consec-
utive voxel position structures, leading to coalesced memory accesses. Moreover,
access patterns for the range elements are irregular, something that is later ex-
plained. Thus, transformation from AoS to SoA will lead to almost no speedup to
the execution time and it requires additional time for the transformation process of
all the input data.

Finally, we have to point out that for hardware architectures that deploy SIMD
units, using SoA is preferred. For CUDA implementation we use the AoS approach
while for OpenCL the AoS is also implemented for efficient execution on vector
based architectures.

40



Shared Memory Leveraging the underlying access patterns is important towards
achieving high performance applications. Understanding and knowing possible ac-
cess patterns help us utilise the fast, on-chip, shared memory which has low access
times. This helps us achieve higher memory bandwidth and as a result improve the
performance of memory-bound applications. Our application is memory bound
which, for this reason, makes any possible exploitation of access patterns benefi-
cial.

Figure 4.6 illustrates the phase history of some grid voxels, which also represents
the access pattern between consecutive pulses for a voxel. We can clearly see that
there is a regularity in the accesses for a single voxel. Unfortunately, for different
voxels, we observe that the curvature of the access patterns changes. This mainly
depends on two factors, the distance of each voxel grid with respect to the antenna
and the sampling space of the observations.

 

Apertures

Range

Figure 4.6: Phase history

For uniform sampling we can assume a regularity in the accesses, but a non-
uniform sampling space may change instantaneously the curvature of the phase
history.

Even if we assume uniform sampling space the curvature change for different
voxels depends on their distance, something that requires additional control logic
in order to be realized.

Overall, trying to exploit access patterns in our application is ”tricky” and may
lead to wrong or blemished results. Consequently, in order to preserve the correct-
ness of our application we avoided this kind of optimizations.

Instruction Throughput NVIDIA’s profiler provides information about the device’s
ability to issue instructions. Many reasons lead to an instruction stalling, making
unable the GPU to issue the next kernel instruction. Instruction fetch stall, exe-
cution dependency stall, data request stall and synchronization stall are some of
them. For our application, profiler reports an instruction stalling factor because
of execution dependencies of up to 40%. This means that the input operands that

41



instructions require in order to execute are not yet calculated.
This can be resolved by making each thread do some additional work. For ex-

ample, a thread could be responsible of calculating more than one voxel or respons-
ible for calculating the contribution of two or more independent pulses.

We chose to make each thread calculate the contributions of all the channels
of a pulse. This helps reduce the instruction stalling factor as we introduce more
instructions, independent with the previous ones, helping the compiler rearrange
them to achieve higher throughput.

Moreover, by having each thread calculating the contribution of all the channels
of a pulse, we reduce the required memory bandwidth, as we now need to read the
voxel position only once and not multiple times.

Data Locality Until now, all our approaches use 1D thread grids. Using a 2D
approach, we can achieve better data locality as neighbouring voxels tend to access
close range bins. Figure 4.9 illustrates the difference of using 1D grids and blocks
instead of 2D. As we can see the threads of the 2D approach are more close to each
other while in the 1D approach they are spread.

1D block/workgroup 2D block/workgroup

Figure 4.7: Thread block/workgroup dimensionality

By changing the grid and block dimensionality to 2D we managed to achieve
better data locality.

Antenna position on constant memory Both antenna and voxel positions are
constant and read-only throughout the program lifetime. When all the threads of a
warp access the same element, constant memory leads to beneficial gains.

We perform an output based parallelization scheme which makes all threads read
different voxel positions, but operate on the same pulse which is characterized by
a single antenna position. Thus, placing the antenna positions on constant memory
complies to the usage of constant memory.

Pointer Aliasing Compilers account the possibility of aliasing between different
pointers when applying optimizations strategies. This decreases the efficiency of
the applied optimizations. The programmer can introduce hints to the compiler in
order to limit the effect of pointer aliasing. This can be done by using the keyword
restrict for pointer declarations, when the pointed memory elements are accessed

42



through this and only this pointer. If in any case another independent pointer ac-
cesses the object this will lead to undefined behaviour.

Automatic Unrolling and Tuning Instead of performing manual loop unrolling
in order to achieve better performance and achieve lower instruction stalling factors,
one can explicitly indicate to the NVIDIA compiler to perform unrolling using the
#pragma unroll directive. Usually compilers are more ”clever” into performing
such kind of optimizations.

Unfortunately, sometimes compiler may proceed to conservative or brute un-
rolling, for this reason tuning and specifying the unrolling factor is possible. We
tested our applications with different unrolling factors. Figure 4.8 illustrates the
execution time for some of them. We concluded that an unrolling factor of 4 is the
most appropriate for our underlying hardware as it provides the lowest execution
time.

2 4 6 8 10
400

420

440

460

480

500

520

Unroll factor

Ti
m

e(
m

s)

CUDA

Figure 4.8: Execution time with varying unrolling factor

Vendor Specific Optimizations

Texture Cache Optimization The newer Kepler architectures introduce a new,
48KB read-only data cache, which targets unaligned access patterns for data that
are meant to be read-only during the execution of the program. Unable to exploit
access patterns lead us into utilising this new cache for accessing the range com-
pressed data.

Use of this cache can be automatically done by the compiler by specifying the
specific input data as const restrict or by using the ldg intrinsic.

43



Figure 4.9: Kepler cache hierarchy

Re-evaluate ”Roof” Figure 4.10 depicts the roofline model after having applied
all the optimisation steps. The operational intensity is increased to:

P ·M ·NxNy · 41
P ·M ·NxNy · 9

=
41

9
= 4.56 (4.17)

We can conclude that the application is still memory bound, something that is also
backed up by the statistically obtained results. The profiler reports a performance
of 1371 GFlops/s, close to the one that the roofline model reports, something that
leads to a device utilization of 30%

Finally, all the optimization results are gathered in Table 4.3. T reports the
execution time, S the speedup over the reference solution, Sr the relative speedup
of the solution over the previously reported implementation and finally, GBP/s
the number of giga back-projections per second.

Optimizations Scalability

We performed each optimization with different grid sizes and varying input data
(see Figure 4.11 and Figure 4.12). As expected most of the optimizations had the
same efficiency, with some small absolute variability, independent of the output
size. On the other hand, data coarsening and constant memory efficiency seems to
vary with the output size. The first one is due to L2 caching limitations as all the
global accesses are cached in L2 memory, while the second depends on the warp
number and context switch overhead.

In addition, for different interpolation factors data coarsening, data locality and
texture cache optimizations efficiency increase as threads access data closer to each
other.

44



0 5 10 15 20
0

1,000

2,000

3,000

4,000

5,000

Flops/byte

G
flo

ps
/s

GeForce GTX-Titan GeForce GTX680 GeForce GT540M

Figure 4.10: Roofline model after applying optimizations

Solution T[s] S Sr GBP/s
Reference 1276 1 - 0.12

Naive 4.57 279.2 1 3.51
Compiler Flags 3.63 351.5 1.26 4.43

AoS vs SoA - - - -
Coarsening 1.58 807.6 2.3 10.18

Data Locality 1.3 981.5 1.22 12.37
Constant Memory 0.73 1747.95 1.78 22.03
Pointer Aliasing 0.51 2501.96 1.43 31.53
Texture Cache 0.50 2502 1.02 32.16

Unrolling 0.406 3142.86 1.23 40.01

Table 4.3: Optimization Results

1 2 3 5 10

0

200

400

Grid Dimensions (*100m)

E
xe

cu
tio

n
Ti

m
e

(s
)

Reference
Compiler Flags

Coarsening
Data Locality

Constant Memory
Pointer Aliasing
Constant Cache

Unrolling

Figure 4.12: Optimization impact on execution time

45



2 4 6 8 10

1

1.5

2

2.5

3

Grid Dimensions (*100m)

O
pt

im
iz

at
io

n
E

ffi
ci

en
cy

Compiler Flags
Coarsening

Data Locality
Constant Memory
Pointer Aliasing
Constant cache

Unrolling

Figure 4.11: Optimizations efficiency

4.5.3 Task-level parallelism

Until now, we have focused on fine-grain parallelism, trying to optimise the per-
formance of individual tasks. When tasks are independent with each other, ex-
ploitation of task-level parallelism is feasible. Mapping algorithms on hardware
accelerators with dedicated memory usually comes at cost. As GPUs target data-
level parallelism usually have to operate on large input data which have to be trans-
ferred on its memory. Thus, a communication overhead required for data transfers
between the host and the accelerator’s memory is inevitable. A common optimiza-
tion applied to such a problem is to overlap any memory transfers with independent
computation workload.

Multi-channel back-projection performs three main tasks: memory transfers,
range compression and back-projection. The memory transfer task is respons-
ible for copying the appropriate pulses and antenna position on the memory of
the GPU. Range compression is then applied on the transferred pulses using FFTs
and finally, back-projection is performed with the pulse compressed data as an in-
put. We observe that a dependency exists between the tasks, meaning that in order
for back-projection to be performed, pulse compression has to have taken place
in advance and memory transfer before that. Consequently, overlapping memory
transfer with range compression can lead to invalid results as the new pulses will
overwrite the existing ones before range compression ends. On the other hand,
while back-projection is performed, the new data can be prefetched and be ready
for the range compression step.

The top part of Figure 4.13 illustrates two iterations of multi-channel back-
projections on a single stream while in the bottom a parallel execution is shown
with three distinct streams, each one dedicated to a task. Arrows represent depend-

46



encies between instructions and the vertical lines synchronization points.

Memory
Transfer

Range 
Compression

Back 
Projection

Memory
Transfer

Range 
Compression

Back 
Projection

Memory
Transfer

Range 
Compression

Back 
Projection

Memory
Transfer

Range 
Compression

Back 
Projection

Stream1

Stream2

Stream3

Stream

Time

Memory
Transfer

Figure 4.13: Task parallelism on multi-channel back-projection

With this approach we managed to hide a fraction of the memory transfer over-
head. The exact amount depends on the execution time required for memory trans-
fer and back-projection. In our NVIDIA Titan platform, back-projection is faster
compared to memory transfer thus 75% of the communication overhead can be
hidden. On the other hand, on slower platforms all the memory transfer overhead
can be compensated.

4.6 Evaluation

4.6.1 Scalability

The computation time required for back projection scales roughly linearly with the
number of output voxels.

Moreover, for a state-of-the-art GPUs with 6GB of memory, voxel grids of up
to 750Mpixel can be supported. For larger grids, back-projection has to be per-
formed multiple times, each time operating on smaller sub-grids. A feature already
supported by our implementation.

4.6.2 Output Quality

Originally, back-projection uses double precision arithmetic. Migrating to single
precision arithmetic led to an absolute error compared to the double precision solu-
tion, but also to a reduction of the execution time roughly by a factor of two. Fortu-
nately, the Peak signal-to-noise ratio (PSNR) of the final image is more than 30db

47



0 1,000 2,000 3,000 4,000 5,000

GTX-Titan

GTX-Titan(overlapped)

K20

K20(overlapped)

GTX-680

GTX-680(overlapped)

Time [ms]

back-projection range compression memory misc

Figure 4.14: Overlap impact for different devices (grid size of 100 by 100 m)

which is acceptable in image processing. Moreover, quality degradation is rarely
visible. Better quality can be achieved by performing some of the calculations us-
ing double precision arithmetic (e.g. range and one-way shift calculation) under a
small performance degradation.

4.6.3 Why both OpenCL and CUDA?

CUDA is more mature and targets NVIDIA GPUs. For this reason using CUDA
helps one squeeze more performance when using NVIDIA hardware accelerators.
Furthermore, the CUDA ecosystem is well supported, with enhanced debugging
and profiling capabilities, something that clearly increases productivity.

On the other hand, OpenCL is an attractive solution when multiple hardware
solutions have to be supported and/or compared. In addition, most mobile compan-
ies designing GPUs support OpenCL, something that makes OpenCL an attractive
solution for embedded systems. Unfortunately, the OpenCL ecosystem is quite
immature, making application development more time consuming.

Overall, when addressing the same hardware and no vendor specific optimiza-
tions are performed, CUDA and OpenCL should be able to achieve more or less
the same performance and mainly depends on the driver efficiency and not on any
framework limitations.

48



4.7 Related Work

Two dimensional SAR image reconstruction is a well researched topic. Multiple
approaches exist utilizing either or both the time and frequency domain.

Real-time FGPA-based [11, 14, 28, 32, 40] and GPU-based [27, 29, 30, 71]
solutions exist but they mostly operate on the frequency domain.

Concerning back-projection, different algorithmic modifications have been pro-
posed [8], to increase its accuracy with a computing time of the same order.

In [63], the Cell architecture is utilized achieving, a total of 177 million back-
projection per second.

In addition, [31] presents a multi-node implementation based on linear interpol-
ation, where each node consists of one Intel Xeon processor and two Xeon Phi
accelerators. Each node is capable of 35 billion back-projections.

Moreover, multiple CUDA based solution have been proposed [3, 10, 15, 18, 72].
In [3], using a linear interpolator, authors can achieve gigapixel image reconstruc-
tion within minutes, while in [8] better accuracy is achieved compared to different
interpolators with a small performance loss.

OpenCL solutions also exist and have been presented in [24, 35] but target dif-
ferent SAR domains.

In this chapter we presented a multi-channel back-projection implementation
based on [8, 63] with increased accuracy and the ability of performing up to 40
billion back-projection per second on a single NVIDIA GTX-Titan GPU.

49



50



Chapter 5

Multi-node Multi-GPU
Back-Projection

In this chapter, a multi-node multi-GPU back-projection implementation is thor-
oughly analysed to investigate the problem’s scalability of the ability to recon-
struct high resolution images. Moreover, potential bottlenecks and limitations are
presented.

5.1 Approaches

Due to the ”embarrassing” level of parallelism that back-projection exposes, ac-
celeration using multiple nodes and multiple hardware accelerators is feasible. Fig-
ure 5.1 illustrates a system with multiple computation nodes and multi-GPUs.

Node1 Node2 NodeN

GPU1 GPUM1 GPU1 GPUM2 GPU1 GPUMn

Figure 5.1: Multi-node Multi-GPU implementation

As proposed in [22], which is now expanded for multiple nodes and multiple
GPUs, there are two different ways to tackle this problem. Each one has its own
advantages and limitations.

51



5.1.1 Input-based parallelization

In this approach we distribute the input data across the nodes and each node further
to its GPUs. Each GPU performs back-projection with its assigned data and creates
a partial output. All the partial outputs are then collected by the node which is also
responsible for coherently summing them. The final step is to gather the results of
all the nodes to a single node and reduce them to construct the final output.

5.1.2 Output-based parallelization

In the output based approach each node is responsible for fully computing a part
of the output image. As a result, all the input data are distributed to all the nodes
and further to all the GPUs. Interesting is that no reduction or further calculations
have to take place. The final step is to collect all the portions of the output along
the nodes to a single node and as a result construct the final image.

5.2 Model

Symbol Description
#GPUs Number of GPUs per node
#Nodes Number of nodes

S? Size of the ? component
T? Time required for ? operation

Tcomm(S?) Time required to transfer the S? data
f(?) Function with ? as independent variables

Table 5.1: Symbols used in the model

5.2.1 Single Node - Single GPU implementation

In general the execution time of the serial implementation over one GPU is the
summation of the time required for computation and communication. The commu-
nication part accounts the time required for the data to be transferred to and from
the GPU.

Tser = Tcomp + Tcomm (5.1)
The communication between two devices has two distinct parts, TL which is

the latency between these devices and depends from their distance as well as of
the physical properties of the underlying communication interface and the time
required to transfer the data TD, which depends on the size of the data that have to
be transferred S and the bandwidth of the intermediate channel B.

Tcomm = TL + TD, where TD =
S

B
(5.2)

52



5.2.2 Input-based Multiple Node - Multiple GPU parallelization

As we mentioned splits all the input data along the available GPUs. Each GPU cal-
culates a partial output voxel grid by using the assigned input data. At the end, all
the output voxel grids are gathered and reduced to a single one. This method keeps
steady the time required by memory transfers but imposes a reduction overhead.
Figure 5.2 illustrates this approach.

+ 

+ 

=

Input Data

Partial Outputs

Final Output

Figure 5.2: Input-based parallelization

Equation 5.3 specifies the execution time of this parallel approach, which is the
summation of the time required for computations, the time required for communic-
ation and the time required for the output reductions.

T 1
par = T 1

comp + T 1
comm + T 1

reduction (5.3)
In more detail, as the GPUs run in parallel each one processing its part, the final

computation time is the maximum of the execution times of each individual GPU
(see Equation 5.4).

T 1
comp = max(TGPUi) (5.4)

Because we may run the parallel algorithm on multiple nodes, each one with
multiple GPUs, the communications time is split in two parts, the communication
time inside a node and the communication time across nodes (see Equation 5.5).

T 1
comm = T 1

commnode
+ T 1

commnodes
(5.5)

The communication inside a node has two distinct parts, the time required to
distribute the already reduced input data to the GPUs and the time required to
transfer the partial calculated outputs from the GPUs to the node for the reduction
process. As a result, the total communication time inside a node is a function of
the number of nodes, something that affects the size of the input data, the number
of the GPUs and the size of the output data (see Equation 5.6).

53



T 1
commnode

=T 1
input + T 1

output = f(#GPUs,#Nodes, Sinput, Soutput)

=
Tcomm(Sinput)

#Nodes
+#GPUs · Tcomm(Soutput)

(5.6)

On the other hand the communication across the nodes depends on the num-
ber of nodes, the size of the input data and the size of the output voxel grid (see
Equation 5.7).

T 1
commnodes

=f(#Nodes, Sinput, Soutput)

=Tcomm(Sinput) + (#Nodes− 1) · Tcomm(Soutput)
(5.7)

Finally, the time required for the reduction of the partial outputs is also split
in two parts, the time required to perform reduction inside a node and the time
require to perform reduction across nodes (see Equation (5.8)). Reduction inside
a single node depends on the number of GPUs and the size of the output solution
(see Equation (5.9)). On the other hand, reduction across nodes depends on the
number of nodes and the size of output solution (see Equation (5.10))

T 1
reduction = T 1

reductionnode
+ T 1

reductionnodes
(5.8)

T 1
reductionnode

= f(#GPUs, Soutput) (5.9)

T 1
reductionnodes

= f(#Nodes, Soutput) (5.10)
We have to point out that in case of overlapping of the computations and the

communication inside a node the execution time is reduced to the maximum time
between the computation and the inter-node communication along with the time re-
quired for across-node communication and the reduction time (see Equation 5.11).

T 1
par = max(T 1

comp, T
1
commNode

) + T 1
commnodes

+ T 1
reduction (5.11)

5.2.3 Output-based Multiple Node - Multiple GPU parallelization

The output-based parallelization splits the output elements over the GPUs, which
means that each GPU is responsible for calculating a part of the output voxel grid.
Figure 5.3 illustrates this approach. The benefit of this approach is that we over-
come the time required for reductions (see Equation (5.12). On the other hand, we
have to transfer a larger amount of data. In order for each GPU to calculate the
final value of the assigned part of the output voxel grid, all the input data have to
be processed by each GPU.

T 2
par = T 2

comp + T 2
comm + T 2

reduction = T 2
comp + T 2

comm (5.12)
In more detail, as the GPUs run in parallel each one processing its part, the final

computation time is the maximum of the execution times of each individual GPU
(see Equation 5.13).

54



Input Data

Outputs

Combined Output

Figure 5.3: Output-based parallelization

T 2
comp = max(TGPUi) (5.13)

Because we may run the parallel algorithm on multiple nodes, each one with
multiple GPUs the communication time is split in two distinctive parts, the com-
munication time inside a node and the communication time across nodes (see Equa-
tion 5.14).

T 2
comm = T 2

commnode
+ T 2

commnodes
(5.14)

The communication inside a node depends on the number of Nodes, GPUs, the
size of the input data and the size of the output (see Equation 5.15). The input has to
be processed by all the GPUs, so the communication time for distributing the input
(when no overlapping exists) is equal to time time required to send the input to a
single GPU multiplied by the number of GPUs. In addition, as each GPU processes
a part of the output, the total communication cost for the output gathering after the
completion of the back-projection equals to the number of voxels that have been
assigned to the specific node.

T 2
commnode

=f(#GPUs, Sinput, Soutput)

=#GPUs · Tcomm(Sinput) +
Tcomm(Soutput)

#Nodes

(5.15)

The communication cost for communication across nodes depends on the size
of the input and the number of nodes, because the input has to be broadcasted to
all the nodes. Moreover, in the end all the calculated voxels have to be collected
from all the nodes.

T 2
commnodes

= f(#Node, Soutput, Sinput) = (#Nodes−1)·Tcomm(Sinput)+Tcomm(Soutput)
(5.16)

It is important to mention that for a broadcasting operation (e.g. used in MPI),
the time required is not linear with the number of nodes that the message has to be
sent to. Advanced algorithms are used to reduce the time required for broadcasting.

55



Most of them use a tree-based approach where the time required is equal to :

Tbroadcast = f(#Nodes, Sdata) = log2(#Nodes) · Tcomm(Sdata) (5.17)
As with the previous approach, if overlapping of the computations and the com-

munication inside a node exists, the execution time is reduced to the maximum
time between the computation and the inter-node communication along with the
time required for across-node communication (see Equation 5.18).

T 2
par = max(T 2

comp, T
2
commnode

) + T 2
commnodes

(5.18)

5.2.4 Approach Comparison

Both approaches have their own advantages and when having to choose among
them, careful consideration of the system’s input and output requirements is neces-
sary. The number of GPUs, the number of computational nodes and the size of the
input and output data are of high importance.

When having large output images and the overhead of communication and re-
duction is high then the output-based approach is preferred. On the other hand, for
small output sizes the input-based approach is preferred as the reduction overhead
is negligible.

For an embedded environment where a small number of nodes is deployed and
usually the output data size is small in order to achieve real-time response the most
appropriate approach is the first one.

5.3 Communication Analysis

We distinguish here two data distribution policies: the block distribution and the
block-cyclic distribution.

In block distribution the data are distributed in blocks across the nodes, while on
the other hand, in block-cyclic distribution the input data are distributed in a cyclic
manner across the nodes.

We see no clear advantage with any of these two. The most important parameter
in tuning the performance of the overlapping is the granularity of the partition,
which can be tuned in both solutions. Therefore, we choose block-based partition-
ing for its low complexity in terms of coding.

5.4 Implementation

The implementation procedure can be split in two stages: the multi-GPU stage and
the multi-node stage.

In the multi-GPU stage, the multi-channel back-projection is parallelized across
the available GPUs. This can be performed either by using a multi-threaded ap-
proach where each thread is responsible for a given number of GPUs or by us-

56



ing multiple compute streams (CUDA) or command queues(OpenCL), where each
stream is associated with one of the available GPUs. For CUDA and OpenCL
implementations the second approach is preferred as it is less error-prone and
moreover it reduces the thread creation and handling overhead.

In the multi-node stage, one node is responsible for coordinating and transferring
the appropriate data to the remaining nodes. In the input based parallelization
approach parts of the input data are distributed across the nodes, while in the output
base approach all the input data are transferred to all the nodes through broadcast.
For the distributed multi-node environments MPI is used.

The model itself can be used to determine the performance for a given experi-
ment on a given configuration. To do so, some data have to be provided such as, the
time required for transferring the input and output data, or instead, some specifica-
tions about the transferring rate of the communication interface and the sizes of the
input and output data. In addition the time required for performing back-projection
on a single machine has to be provided.

One could easily modify the model in order to predict the number of GPUs (same
hardware model) and their configuration (intra- or inter-) that would be best for an
experiment of given size. Still some appropriate information have to be provided
along with bounds such as the maximum number of the inter-node GPUs.

5.5 Evaluation

Unfortunately, our experimental setup did not contain multiple nodes with more
than one GPUs. For this reason we evaluated our implementation in two steps.

First, we evaluated the multi-GPU environment under a single node and second,
the multi-node one under multiple nodes consisting of one GPU. The multi-GPU
environment consists of two NVIDIA Tesla K10, one NVIDIA Tesla K20x and one
NVIDIA Tesla K40c GPUs. On the other hand each node in the multi-node pro-
cessing environment consists of a NVIDIA GeForce GTX480 GPU.

5.5.1 Multi-GPU Evaluation

For the multi-GPU implemenation both the input based and output based approaches
were implemented.

Input-based Approach

Figure 5.4 illustrates the results of two experiments of different voxel grid sizes. As
the node consist of multiple GPUs each one having different compute capabilities
we first executed the application on each one independently and then to all of them
together. As we can see the total execution has been improved and is actually
closest to the execution time required from the slowest GPU to run its assigned
part, something that verifies our model.

57



K10 K20x K40c 2*K10 All
0

2

4

6

Ti
m

e
[s

]

100 by 100 m

measured model

K10 K20x K40c 2*K10 All
0

50

100

150

200

Ti
m

e
[s

]

1 by 1 km

measured model

Figure 5.4: Expiremental Results for the input-based multi-GPU approach

Output-based Approach

Figure 5.5 illustrates the results of the two experiments under the output-based
parallelization. We notice that the execution time is significantly higher for smaller
grid sizes due to increased number of memory transfers. This can be partially
compensated by using memory-compute overlap techniques. Moreover, for larger
grid sizes the performance seems to be worse, we suspect that this is due to the
block geometry we imposed. For this reason we can also see a large difference
from the predicted execution time. Better blocking sizes which take into account
the GPU configuration may lead to better results. We strongly believe that this
approach leads to lower execution times compared to the input-based approach
for larger grids, because it decrease the problem size and achieves better locality.
Thus, autotuning for better suitable block geometries is the next step to optimize
this solution.

5.5.2 Multi-node Evaluation

For the multi-node approach only the input-based parellization was implemented.
We performed two different experiments: one with a small voxel grid and one
with a much larger one. Our main purpose was to investigate the scalability and
behaviour of the parallel implementation.

Figure 5.6 presents the results of the first experiment. For the first experiment

58



K10 K20x K40c 2*K10 All
0

2

4

6

Ti
m

e
[s

]

100 by 100 m

measured model

K10 K20x K40c 2*K10 All
0

50

100

150

200

Ti
m

e
[s

]

1 by 1 km

measured model

Figure 5.5: Expiremental Results for the output-based multi-GPU approach

we used a small voxel grid with 100 m in each dimension and the highest possible
resolution. The left figure presents the execution time of the experiment when
varying the number of nodes. It includes both the prediction of the model along
with the actual measured execution time when accounting the communication and
reduction overhead. Moreover, the right figure illustrates the achieved speedup.

We notice that for such problem sizes where the communication overhead is too
high compared to the actual execution time, the speedup is too low. The maximum
achieved speedup is 2.5 when using 16 GPUs. In addition, we do not perform
any communication and computation overlap at node level, something that could
increase by a small portion the achievable speedup.

Figure 5.7 presents the results of the second experiment. For the second experi-
ment we used a much larger voxel grid with 1km in each dimension and the highest
possible resolution. Again, the left figure presents the execution time of the experi-
ment when varying the number of nodes, while the right one illustrates the speedup
of the experiment.

We notice that for larger problem sizes the communication and reduction over-
head is almost completely compensated. Moreover, for eight nodes or less the
speedup is linear. On the other hand, for more nodes the speedup is below the
ideal due to the congestion that the master node experiences for the final reduction
of the outputs of each individual node. In addition, we have to point out that the
reduction cost for such large outputs can be reduced by using multi threading and
SIMD approaches or more advanced reduction schemes (e.g. tree based reduction)

59



0 5 10 15

2

3

4

5

Number of nodes with single GPU

Ti
m

e
[s

]

model
full

2 4 6 8 10 12 14 16
0

5

10

15

Number of nodes with single GPU

Sp
ee

du
p

ideal
model

full

Figure 5.6: Expiremental Results for a 100 by 100 meter voxel grid

in order to reduce both the communication and computational cost.

0 5 10 15
0

20

40

60

80

100

120

140

Number of nodes with single GPU

Ti
m

e
[s

]

model
full

2 4 6 8 10 12 14 16
0

5

10

15

Number of nodes with single GPU

Sp
ee

du
p

ideal
model

measured

Figure 5.7: Expiremental Results for a 1 by 1 km voxel grid

Overall, in our experiments, we have shown a grid of 1km in each dimension
(aproximately 50 MPixels) being processed in only 7 seconds. These results show
that gigapixel image reconstruction can be indeed performed in a few minutes. We
also point out that the bottleneck of this solution remains the data transfer. Thus,

60



multi-node approaches are preferred when large voxel grids have to be processed.

5.6 Related Work

In [31] an implementation with multiple nodes and multiple Xeon Phi acceler-
ators is presented, achieving a performance of 35 billion back-projections per
node. Moreover, in [9] a multi-GPU implementation using the NUFFT approach is
presented. Finally, in [3] an output-based multi-node multi-GPU implementation
of back-projection is implemented and is capable of gigapixel image reconstruc-
tion using nodes consisting of Xeon X5660 processors and Tesla C2050 GPUs. Our
implementation is different and outperforms previous attempts. Moreover, we are
the first to propose a model to evaluate and predict the performance of multi-node
multi-GPU back-projection on modern cluster-like architectures.

61



62



Chapter 6

Decimation and Channel
Reduction

6.1 Decimation

Decimation or Downsampling [33] is the process of reducing the frequency of a
signal. Decimation operates in the discrete-time domain and creates a new discrete
signal y[n] using sub-samples of another signal x[n].

Decimation by an integer factor M reduces the sampling frequency from fs to
fs
M . The main concept is for every M samples to discard M − 1 of them. An anti-
aliasing filter h[n] is then applied to avoid aliasing effects from high frequency
components (see Equation 6.1).

y[n] =
K−1∑
k=0

h[k] · x[nM − k] (6.1)

6.1.1 Requirements

Decimation reduces the data rate of the system. The data rate of a system is given
by Equation 6.3 depends on the the sampling frequency fs, the size of the samples
nr (in bits) and the number of channels m.

Data rate = m · fs · nr [Mb/s] (6.2)

Decimation reduces the data rate by a decimation factor k.

Data ratedec =
Data rate

k
[Mb/s] (6.3)

Decimation requirements in terms of computational power are quite low. For
our radar hardware they are approximately 0.1 GFlops/s per channel.

63



6.1.2 Evaluation

Decimation can lead to a significant reduction of the input data rate and size. On
the other hand, by reducing the number of samples, we reduce the accuracy and as
a result the quality of the system’s output.

To be more specific, a decimation step in our system reduces the number of
samples we have to integrate over the fast-time domain. As the calculations on the
fast-time domain take place in the frequency domain, such an operation will reduce
the size of the FFTs that have to be performed during the range compression step.

As presented in Chapter 4, the computational demands of the range compression
step depend on the number of sweeps, the number of channels, the number of range
samples we have to integrate on, and it is independent of the size of the output
image.

As a result, by performing decimation, we only reduce the time required for
performing range compression and not the time required for the calculation of the
reflectivity contributions. Table 6.1 presents the execution time of the range com-
pression process when using different interpolation factors for 29120 samples per
channel and 1506 sweeps in the slow-time domain. Moreover, Figure 6.1 illustrates
the impact of the upsampling factor to the quality of the output image.

Important is the fact that with lower upsampling factors, the performance of the
contribution calculation was also improved. The main reason is the tighter data
locality that is achieved, as the range differences between consecutive voxels are
getting smaller.

For a system that needs to calculate the radar reflectivity over small grids this
may lead to a significant reduction of the execution time, but when large voxel
grids have to be constructed, the speedup is minimal.

Interpolation factor GT540M GTX-Titan
1 2.01 0.195
2 3.68 0.376
4 8.37 0.746
8 16.92 1.493

Table 6.1: Range compression performance (execution time[s]) with varying up-
sampling factor

6.2 Channel Reduction

Another way to reduce the input data rate is by adding channels either in RF or at
digital level. Channel addition reduces the coverage of the radar, and when it is not
performed carefully it leads to problems.

Having a large number of channels leads to a wide area coverage, sometimes
wider than the area covered by the illumination beam. For this reason, channel

64



(a) a=1 (b) a=2

(c) a=4 (d) a=8

Figure 6.1: Image quality with varying upsampling factor

reduction may lead to no or small quality degradation depending on the position
and the area of the grid we need to reconstruct (see Figure 6.2).

On the other hand, when channel reduction is performed in such a manner, we
cannot control the directivity of the new beam. So, if a voxel grid that we want to
reconstruct was previously inside the coverage of the receive beams, after channel
reduction it may not be, something which will lead to the inability of reconstructing
the needed area. Moreover, when the level of channel summation is high and result
to new channels with length greater than the wavelength ambiguities may took
place, where the origin of the received signal can not be exactly specified.

Other approaches can be used in order to improve the behaviour of channel re-
duction. One for example could be to change the directivity of the beam by using
information obtained by the INS about the position of the radar and the position
of the area we want to reconstruct. Such an approach is much simpler to realize
during the digital beamforming step and not directly at RF level.

65



R1 R2 R3 R4
R1 R2 R3 R4

Σ Σ Σ 

R1 R2 R3 R4

Figure 6.2: Channel Reduction

6.2.1 Requirements

Channel reduction also reduces data rate by a specific factor depending on the
number of channels we want to add together.

The maximum computational demands of channel reduction occurs when we
want to add all the channels together, where m− 1 additions have to be performed
(see Equation 6.4).

Channer Reductionmax = (m− 1) · fs [FLOPs] (6.4)

For the radar hardware that we use with 24 channels channel reduction requires
less than one MFLOP.

6.2.2 Evaluation

The execution time of Multi-channel back-projection can be significantly reduced
through the addition of channels. The number of channels affects the whole pro-
cessing chain of the multi-channel back-projection: the contributions calculation
part and the range compression one.

By reducing the number of channels we reduce the number of pulses that we
have to compress over range. In addition, we reduce the number of channels we
have to integrate on during the contribution calculation part. Consequently, by
reducing the the number of channels by a factor k, we roughly reduce the com-
putations and the memory transfers between the host and the device by the same
factor. Table 6.2 presents the performance of the contribution function when chan-
nel reduction is performed. Figure 6.3 illustrates the impact of channel reduc-
tion to the quality of the output image. When we reduce the number of chan-
nels by four we are able to identify the presence of ambiguities. The ambiguities
are products of (Doppler) aliasing caused by the effective reduction of azimuth

66



sampling. Secondly, adding channels creates a narrowing of the antenna receive
beam that leads to darkening of some areas

Interpolation factor GT540M GTX-Titan
1 11.3 0.491
2 5.7 0.245
3 2.8 0.120
4 1.4 0.061

Table 6.2: Back-projection performance (execution time[s]) with different levels
of channel reduction

(a) a=1 (b) a=2

(c) a=4 (d) a=8

Figure 6.3: Image quality degradation due to channel reduction

67



68



Chapter 7

Map Drift Autofocus

7.1 Algorithm

Existence of motion errors in SAR systems is almost inevitable. High accuracy
INS and GPS systems are expensive and power hungry, something that prohibits
their usage in an embedded radar platform with power constraints. Moreover, the
accuracy required by a SAR systems strongly depends on the operating frequency
of the SAR itself. For example, a SAR with frequency of GHz, requires millimetre
resolution from the INS and GPS sensors.

In order to compensate potential motion errors multiple steps of iterative auto-
focus are performed [7]. Multiple algorithms exist, but in this thesis we focus on
correcting large motion errors using the Map Drift[6] algorithm.

Figure 7.1 depicts the Map Drift principle.

Radar

Integration 
Interval

Images

Figure 7.1: Map Drift

69



In the Map Drift algorithm, multiple images are being processed on the same
grid using different non-overlapping sections of radar data. This eventually leads
to images that are defocused, distorted and displaced with respect to each other.
The displacement can be estimated by cross correlating these consecutive images.

It is important to calculate this displacement back to a motion error, which can
then be applied on the aircraft track. Performing back-projection again using the
same data and the corrected track will lead to a reduction in the absolute value of
the total displacement. This procedure continues until there is no more displace-
ment or the error is small enough. Finally, the images are coherently added together
to produce the final autofocus images. Figure 7.2 illustrates the processing steps of
the map drift autofocus process.

Motion
Data

Correct 
Motion Error

Process N Images
(same grid, different data)

Radar
Data

Image 1

Image 2

Image N

Cross 
correlate

Calculate Motion Error 
from N-1 displacements

Small 
Error?

Add Images
(coherently)

Final
Image

No

Yes

Figure 7.2: Map Drift autofocus process chain

Calculating back to motion is not trivial, but here we propose a simple form, suf-
ficient for our case. We consider the motion only in line-of-sight (see Figure 7.3),
so in the direction the radar is looking, where the motion sensitivity is higher, thus
we use the displacements in the cross-track direction. We then use a polynomial
approximation of the motion error, the order of which is linked to the number of
consecutive images used.

7.2 Implementation

In order for our system to support the map drift autofocus algorithm first we had
to alter the multi-channel back-projection module to support multiple ”looks” on

70



Line-of-sight

Image

Figure 7.3: Line-of-sight displacement

the same voxel grid. Given the number of ”looks” that we want to have, and
the total integration time, multi-look multi-channel back-projection splits the total
back-projection procedure into smaller ones, equal to the number of the required
”looks”. This step is the most compute intensive step of the autofocusing process,
as it contains the back-projection calculation, and has to be performed in every
iteration.

Next step is to perform the cross-correlation procedure between the consecutive
images. Cross correlation calculation is quite similar to convolution as the main
difference between them is a time reversal in one of their inputs. As with linear
convolution, there are two distinct ways to compute the linear cross-correlation of
two inputs, one is performed in the spatial domain while the other in the frequency
domain. Performing cross-correlation in the spatial domain through the sliding
method, where we slide the one input over the other leads to high complexity.
On the other hand, in the frequency domains FFTs are used in order to speedup
the process. Analogous to the convolution theorem, by multiplying the Fourier
transform of the one signal with the complex conjugate of the Fourier transform of
the other, we obtain the Fourier transform of their correlation (see Equation (7.1)).

F{f ? g} = (F{f})∗ · F{g} (7.1)

Figure 7.4 depicts the cross-correlation process between two consecutive ”looks”.

Cross-correlation can be performed either on the GPP or the GPU, something
that depends on the size of the images that are being processed.

Having calculated the cross-correlation of two images, we are interested to find
its ”peak”. The position of the ”peak” reveals the displacement between the two
images in terms of pixels. This can be translated to meters by multiplying the offset
with the radar resolution.

Although, we are interested into correcting only the motion in line-of-sight, by
performing a two dimensional cross-correlation we obtain both the offset along-
track and cross-track. This gives us the ability for further extending the motion
correction process in the future.

71



Cross Correlated 
Image

[N1+N2--1,M1+M2-1]

Element-wise 
Multiplication

Image 1
[N1,M1]

Image 2
[N2,M2]

2D FFT

2D FFT

2D IFFT

Complex 
Conjugate

Figure 7.4: Cross-correlation using FFTs

The next step of the process is a polynomial approximation among the displace-
ments. This will lead to obtaining the coefficients of the polynomial, which will
give us the track correction of every time step along the integration interval. This
correction is then applied on the used track and the back projection is performed
again.

7.3 Evaluation

The computational requirements of the Map Drift Autofocus alone are quite small,
as the most compute intensive part is the cross-correlation process. On the other
hand, the fact that is an iterative process where back-projection has to be performed
multiple times evidently restricts autofocus utilisation in real time processing. It-
erative processes violate the deterministic behaviour that real-time systems have to
follow. Clearly, some pre-defined steps can be performed in case is required and
the appropriate time budget is available.

We mentioned that FFTs can be performed either on the GPP or the GPU. For
images with dimensions less than 4000 pixels the GPP is preferred, while for lar-
ger images where the communication overhead can be compensated, the GPU ap-
proach leads to faster results. Moreover, interesting is the fact that by performing
one dimensional FFTs, instead of a two dimensional FFT leads to faster results
although a matrix transposition step has to take place.

The only limitation that Map Drift Autofocus has is the size of the images that
it is capable of cross correlating. Very large images, along with the intermediate
calculations, may not be able to fit the GPU memory. Solutions for this problem
can be found but are not currently implemented in this thesis.

7.4 Related Work

Multiple autofocusing techniques targeting SAR have been proposed, map drift is
one of them. In this thesis, we optimise and investigate the behaviour and limita-
tions of this algorithm and finally, incorporate it in the whole processing chain. Our

72



main interest lies in the possibility of performing a number of autofocusing steps
at real-time when possible. An implementation for both GPP and GPU is provided
and automatically selected depending on the size of the processing images.

73



74



Chapter 8

Proposed System Architecture

8.1 System Design

In this chapter we revisit and analyse the requirements of each processing block
and we propose a possible hardware mapping along with a custom architecture.

8.1.1 Hardware Mapping

Table 8.1 summarizes the computational demands of the whole system per second
of integration when assuming the radar hardware described in Chapter 3, a voxel
grid of maximum resolution and size of 100 by 100 meters and an upsampling
factor of 8 (29160 · 8 = 233280 range samples).

Component GFlops/s
Decimation 2

Channel Reduction 0.001
Range FFT 75.1

Multi-channel Back-projection 74.1

Map Drift1
2D Cross Correlation 0.57

Polynomial Approximation 0.01
Rest Components 2

Table 8.1: Computational requirements per second of integration

The ”Rest Components” include the inertial data manipulation, the voxel grid
creation and other pre-processing routines.

Figure 8.1 illustrates a proposed hardware mapping of all the processing blocks.
Our main target is to perform each block on the most appropriate hardware plat-
form in order to minimize both the computation time and the power requirements.

1We do not account the computations required for performing back-projection again. This is
purely the execution time for the Map Drift process when having already two input ”looks”. For
every additional ”look”, another cross correlation has to be performed.

75



Mutli-Channel

 Back-Projection

GPP/GPU

GPU
GPU

GPP

FPGA
Downsamplng

Channel 
Reduction

Range FFT

2D Map Drift

Final 
Image

Samples

INS GPS

Digital Beam 
Forming

Back-Projection
Motion 

Integration
INS/GPS 

Integration

Beams 
Selection

Figure 8.1: Proposed Module Mapping

Decimation and channel reduction are two processes that can be mapped on an
FPGA. FPGA deploys very fast I/Os, thus has the ability to support high-speed
data. In our system, an FPGA can keep up with the sampling frequency and per-
form decimation and channel reduction under low latency.

The data parallel nature of Multi-channel back-projection makes a GPU the most
appropriate architecture for this module. Moreover, Range FFT can also be mapped
on a GPU. GPUs tend to achieve a great speedup over GPP implementations for
large FFTs, where the memory transfer can be compensated.

Map Drift deploys more complex logic, thus requires a combination of GPUs
and GPPs. Cross correlation can be performed using FFTs. For small FFT sizes
(less than 8000 elements), GPP implementations provide lower absolute execution
times as they do not have a memory transfer overhead. As a result, for small
images, cross correlation is performed on the GPP, for larger ones GPU is the best
solution.

76



Polynomial approximation has a more complex logic and low computational
demands. For this reason a GPP is preferred.

Finally, all the other components like pre-processing, voxel grid creation and
inertial data manipulation have to be mapped on a GPP.

8.1.2 Custom Hardware Architecture

The major drawbacks of combining different hardware architectures are the over-
head spent for communication and data transfer among them and the total power
consumption of the whole system. Custom hardware architectures are designed
in order to facilitate specific applications and have as their main goal to achieve
higher performance power ratio. Figure 8.2 illustrates a possible custom design
that is specialized for SAR processing but can be also used for applications which
expose data level parallelism and require high-speed IO transactions.

Reconfigurable
Logic

GPU
Cluster

L2 Cache

GPU
Cluster

L2 Cache

GPU
Cluster

L2 Cache

GPU
Cluster

L2 Cache

Last Level Cache

Memory Controller Memory Controller

Memory Controller Memory Controller

GPU
Cluster

L2 Cache

GPU
Cluster

L2 Cache

GPU
Cluster

L2 Cache

GPU
Cluster

L2 Cache

M
e

m
o

ry
 C

o
n

tro
lle

r
M

e
m

o
ry

 C
o

n
tro

lle
r

GPP IO

Radar 
HW

INS

Figure 8.2: Custom Architecture

The architecture consists of a GPP which coordinates the whole system and
executes control intensive and task-parallel modules, the GPU cores which are
responsible for executing the data-parallel modules and a reconfigurable logic cap-
able of high-speed IO transactions.

All these components are connected through a main ring bus which is respons-
ible for memory coherency. Moreover, multiple memory controllers are available
to achieve a wide memory path and thus higher memory bandwidth. High-speed
IOs are connected to the reconfigurable logic.

77



An estimation of the performance of such a system is possible. As GPP a
multi-core mobile GPP architecture can be used with low power consumption and
mid-range performance. GPU clusters can consist of mobile GPUs which are able
nowadays to achieve high raw performance of approximately 350 Gflops each un-
der a power consumption of 2 W each. Having eight GPU clusters produces a total
performance of 2.8 Tflops with a power consumption of less than 100 W 2. Recon-
figurable logic should be small and able to facilitate small hardware accelerated
modules like decimation module. Such an FPGA core is estimated to have a power
consumption of 10 W. Moreover, having for example six 64-bit wide memory con-
trollers leads to a 384-bit path to the main memory, thus for memory frequencies
higher than 5 Gbps an aggregate memory bandwidth of 240 GB/s can be achieved.

8.2 Scenarios

Because the ideal architecture presented in Section 8.1.2 is not (yet) available, we
present and analyse three distinct possible processing scenarios. The first one
targets off-line processing using high-end hardware solutions. The second scen-
ario targets off-line processing using mid-range hardware solutions mainly used on
laptops. Finally, the third one targets on-line processing with power and computa-
tional constraints, and analyse the possibility of real-time processing.

8.2.1 Off-line High-end Processing

Off-line processing using state-of-the-art hardware can not only reveal potential
limitations and bottlenecks, but also help improve future radar designs and enhance
radar capabilities.

For the purposes of this scenario we use an NVIDIA Titan GPU and an Intel i7
Extreme CPU (see Chapter 3) which are state-of-the-art GPU and GPP architec-
tures, respectively.

For off-line processing, all the components mapped on an FPGA can be per-
formed on the GPU, as the impact on the total execution time is negligible.

As described in Table 8.1 the requirements for our radar design per second of
integration sum up to 150 GFlops for the multi-channel back-projection part and
an additional 151 GFlops (1 GFlops for the 2D Map Drift and 150 GFlops for
performing back-projection with the corrected track) for every iteration of the map
drift autofocus and two images.

These workload may initially seem bearable for high-end architectures, but for
larger voxel grids and a larger amount of integration time the requirements increase
dramatically.

Our radar hardware targets UAVs, thus supports a maximum grid of 2 km in
each dimension. The lowest feasible resolution of 15 cm can leads to images of
178 Mpixel.

2Power consumption does not scale linearly. Multiple factors affect the total power.

78



For this example we assume a voxel grid of 1 km in each dimension, maximum
feasible resolution, up-sampling factor of 8 in the fast-time domain 3 and an integ-
ration time of 5 s (the average integration time for spot mode).

Moreover, map drift autofocusing can be avoided in images of this size, because,
as we mentioned in Chapter 7, for very large images, space requirements for 2D
Cross Correlations are quite large. Nevertheless, track correction and autofocusing
can be performed in smaller images with the same effect and this is something that
depends on the absolute value of the motion error.

Table 8.2 presents the requirements of the proposed test case along with the
execution time of each component. Channel reduction along with decimation can
be performed but we are interested in more compute intensive scenarios.

Component GFlops/s T[s] Notes
Decimation 10 0 Not performed

Channel Reduction 0.01 0 Not performed
Range FFT 375.5 1.51 24 channels

Multi-channel Back-projection 36951 45 24 channels
Rest Components 4 2 1.1 Mostly memory transfers

Table 8.2: Computational requirements for 5 s of integration

Back-projection has a performance of 35 GBP/s and almost 1.2 TFlops/s, which
is less compared to the one achieved for smaller grids. This difference stems mainly
from thread handling and cache related factors.

Thus, we can conclude that maximum supported image with the highest resolu-
tion can be reconstructed in approximately 4 min. By using P GPUs, the execution
time can be reduced roughly by a factor P . However, when cluster environments
are used, this factor is an optimistic approximation, as more overheads appear due
to the underlying physical communication interface.

8.2.2 Off-line Mobile Processing

Having the ability to perform fast off-line processing using hardware accelerat-
ors on conventional portable computers gives both the advantage of on-site radar
tuning and also makes fast radar processing accessible to more users.

We assume two scenarios, a small grid of 100 m in each dimension and one of
1 km. Both with the maximum feasible resolution, up-sampling factor of 8 in the
fast-time domain and an integration time of 5 s which is the average integration
time for spot mode.

In the first scenario we also perform a multi-look map drift autofocus using 5
images (Each image corresponds to a second of integration).

3Experimental data are already decimated by a factor of 1 during the sample gathering.
4We do not count the time required for the parsing of the input data.

79



Table 8.3 presents the requirements of the proposed test cases along with the
execution time of each one. Channel reduction along with decimation are also not
performed.

Dimensions Component GFlops/s T[s] Notes

100m

Decimation 2 0 Not performed
Channel Reduction 0.001 0 Not performed

Range FFT 1502 68 24 channels, 4 times
Multi-channel Back-projection 1478.04 35.2 24 channels, 4 times

Map Drift 6.9 0.4 5 images, 3 iterations
Rest Components 2 1.94 Mostly memory transfers

1km

Decimation 10 0 Not performed
Channel Reduction 0.01 0 Not performed

Range FFT 375.5 16.92 24 channels
Multi-channel Back-projection 36951 1295 24 channels

Rest Components 3 2.45 Mostly memory transfers

Table 8.3: Computational requirements for 5 s of integration

Even using mobile accelerators, with much lower compute capabilities com-
pared to high-end solutions, fast image reconstruction is feasible. In the first
scenario, multiple back-projection and map drift iterations were performed in two
minutes with a throughput close to 70 GFlops/s. For larger grids more time is re-
quired. Glaring example is the second scenario, which required approximately 20
minutes. Although the execution time is much higher than the one required by the
high-end solutions, it is still much lower than the initial reference solution, where
days were spend in order to finish.

Finally, the larger possible image sizes requires a little more than an hour to be
reconstructed.

8.2.3 On-line processing

On-line processing turns out to be the most important processing scenario. There
are two main directions on on-line processing: first, to be able to achieve real-time
response, and second, to be able to perform processing at time intervals specified
by the user.

The second scenario is similar to the off-line processing, in terms that we are still
interested in the processing time but no actual deadlines exist. The user defines the
area that wants to be reconstructed and the SAR processing is performed using the
appropriate radar data. In other words, the processing is performed when the user
wants and is not continuous. This can be used for spot image reconstruction, where
the user specifies an area of interest, gathers data and performs SAR processing.

On the other hand, in real-time processing, the processing chain is constantly
executed reconstructing each time an area in the ground pointed by the radar. Such

80



an approach can be used for strip mode SAR, where successive images are recon-
structed along the illumination path of the antenna. Figure 8.3 depicts the real-time
process. Clearly, using GPUs, an image cannot be reconstructed while gathering
data for this specific area, thus first the data gathering takes place with an integra-
tion time depending on the resolution and size of the final output. Consequently,
the latency of this system is equal to the integration time.

Radar

data data data
Integration 

Interval
process process process

Figure 8.3: Real-time Processing

We performed two experiments for real-time processing, one using NVIDIA Ti-
tan and one using NVIDIA Geforce GTX680. Our goal is to calculate the maximum
grid dimensions that we can reconstruct within the integration time interval.

We assume that the airborne platform flies with a speed of 40 m/s and we integ-
rate for an interval of five seconds, targeting the highest possible radar resolution
of 15 cm. The product of the integration time with the fly speed results in the
length of the reconstructed voxel grid, which in our example is equal to 200 m.
Our goal is to specify the possible width of the reconstructed grid under different
configurations.

Figure 8.4 illustrates the results of the above experiment. With a mid-range
accelerator, we were able to reconstruct a 200 by 100 meters grid while with the
high-end GPU a 200 by 300 meter image reconstruction was feasible. Increasing
the dimensions is possible by applying decimation on the input samples or reducing
the number of integration channels. Decimation led to a small increase of the grid
size by 100 meters in both experiments while channel reduction doubled the current

81



grid size. Grid dimensions can be increased further by reducing the resolution of
the radar.

Radar

data
Integration 

Interval

v=40 m/s
Radar

data
Integration 

Interval

v=40 m/s

Normal 100 m

200 m

Decimation by 2

Channel reduction by 2

100 m

200 m

400 m

300 m

200 m

Decimation by 2

Normal

100 m

Channel reduction by 2 400 m

800 m

Figure 8.4: Real-time Grid Dimensions (left NVIDIA Geforce GTX680, right
NVIDIA Titan)

Overall, real-time on-line processing is feasible, but strongly depends on plat-
form specific attributes like the platform’s speed, the radar hardware and the re-
quirements of the system’s output.

82



Chapter 9

Conclusions and Future Work

9.1 Conclusions

Nowadays, multiple different architectures exist, each one offering a performance
boost on applications of different nature. Specialized and multi-core computing is
clearly mainstream, as most application are ported or redesigned in order to expose
any level of parallelism. Thus, new software and programming infrastructures have
been introduced to help programmers exploit the benefits multi-core and special-
ized computing have to offer.

SAR is a radar infrastructure capable of creating high resolution spatial images.
Most SAR processing chains operate on the frequency domain for lower computa-
tional demands, but the multi-core era has made time-domain processing feasible.
Time-domain SAR processing can be quite demanding in terms of computational
power for large problem sizes but overcomes formulation problems that frequency-
domain algorithms face.

In this thesis, we investigated the possibility of achieving real-time performance
on a SAR system, operating on the time-domain. For these purposes the basic
processing chain of such a system is analysed, implemented and optimized.

We started by optimizing the most compute intensive component, multi-channel
back-projection. Multiple optimization steps took place in both OpenCL and CUDA.
We investigated the impact of each optimization step for different problem sizes.
The final implementation gave a speedup of approximately 3000 at kernel level
and 750 at application level over the sequential implementation. Moreover, we
transferred range compression calculation to the GPU, something that lead to a re-
duction of a factor of 8 for the memory transfers between the host and the GPU. In
addition, we exploited potential overlap between computation and communication,
hiding 75% of the communication time for NVIDIA Tesla and 100% for the rest
GPUs.

The ”embarrassingly” parallel nature of the multi-channel back-projection led
us into the expansion of the implementation for multiple nodes where each node
had multiple GPUs. We investigated different parallel solutions and in addition,

83



we presented a model under different communication strategies. Finally, an almost
linear scaling with the number of GPUs across the nodes is achieved.

We analysed different strategies targeting data rate reduction of our processing
chain. Our main goal was the reduction of the execution time required by the
back-projection module. Two techniques are proposed, decimation and channel
reduction. Decimation led to a reduction of the range samples and thus in the
computational time required for range compression, something that proves to be
useful when calculating small grids. On the other hand, channel reduction reduced
the number of the total integration sweeps and eventually the time required by
back-projection. Careful utilization of the above techniques is of high importance
as they may lead to low quality images and may favour the presence of ambiguities.

The final module was map drift autofocusing. Both GPU and GPP versions
were implemented, each one favouring different problem sizes. Track correction
was performed only in the line-of-sight, but the main infrastructure for supporting
more complex correcting algorithms already exists.

Finally, a module mapping along with a custom hardware architecture are presen-
ted. Each processing module is assigned to the most appropriate architecture to
guarantee efficient execution. Moreover, three distinct possible processing scen-
arios are presented, with the most interesting being the last one, which emphas-
izes achieving real-time response. Real-time response can be eventually achieved
depending on the underlying hardware architecture and the requirements of the
system (speed of the aircraft, size of supporting grid, resolution etc.).

9.2 Future Work

This thesis presents an initial attempt into evaluating and optimising a SAR pro-
cessing chain, thus multiple potential directions for future work exist. We emphas-
ize three such directions: the SAR system design research, the application research
which focuses on back-projection itself, and finally the generic research.

The SAR system design research path mainly focuses on expanding the pro-
posed processing chain, making it capable of supporting additional features like
GMTI. In addition, more complex autofocusing techniques can be applied and in-
vestigated, which may lead to more accurate results. In general, having a fast and
generic SAR processing framework gives radar engineers the ability to experiment,
evaluate and introduce more complex features.

In this thesis, we restrict our experiments to NVIDIA GPUs, but GPUs from
other vendors can be used and evaluated. An interesting twist, could be the utilisa-
tion of low-power mobile GPPs and GPUs. This may initially require custom-made
designs, containing clusters of GPPs and GPUs in order to support the computa-
tional demands required by a SAR system. But such a design could lead to a low-
power system able to be mounted on power constrained platforms and eventually
on the aircraft itself.

The application research path mainly focuses into back-projection itself. First,

84



more optimisation steps could be tested and evaluated, with the main one being
data-dependent optimisations. An appropriate sorting of the raw input data could
simplify the computations and give us the ability to utilise the fast GPU memory,
in turn leading to a significant reduction of the memory traffic inside the GPU.
Second, back-projection is not used only in SAR processing, it has many applica-
tions in fields like medicine, astronomy and non-destructive testing. Thus, a fast,
optimised and parametrizable generic back-projection implementation could be be-
neficial not just for radar processing.

Finally, the generic research path focuses on concepts concerning parallel pro-
gramming and parallel programming frameworks. We used and compared both
OpenCL and CUDA using theoretical models and performance measuring tools.
CUDA is well-supported with a large amount of in-house performance measuring
tools, while OpenCL lack such tools. Having the appropriate tools could help us
elaborate more into the performance differences of these two parallel program-
ming frameworks. In order to do this more applications with both simpler and
complex structure should be investigated. Moreover, it would be interesting to
have an insight into the impact of different optimisation strategies while account-
ing both problem and input scalability. Ultimately, an appropriate model could be
developed capable of analysing, under pre-specified assumptions, potential optim-
ization strategies and estimate their impact to performance.

85



86



Bibliography

[1] Gene M. Amdahl. Validity of the Single Processor Approach to Achieving Large
Scale Computing Capabilities. In Proceedings of the April 18-20, 1967, Spring Joint
Computer Conference, AFIPS ’67 (Spring), pages 483–485, New York, NY, USA,
1967. ACM.

[2] Folding at Home. FAQ: FLOPS.
[3] T.M. Benson, D.P. Campbell, and D.A. Cook. Gigapixel spotlight synthetic aper-

ture radar backprojection using clusters of GPUs and CUDA. In Radar Conference
(RADAR), 2012 IEEE, pages 0853–0858, May 2012.

[4] Lawrence Livermore National Laboratory Blaise Barney. Message Passing Interface
(MPI) Tutorial, May 2014.

[5] Giorgio C. Buttazzo. Hard Real-time Computing Systems: Predictable Scheduling
Algorithms And Applications (Real-Time Systems Series). Springer-Verlag TELOS,
Santa Clara, CA, USA, 2004.

[6] T.M. Calloway and G.W. Donohoe. Subaperture autofocus for synthetic aperture
radar. Aerospace and Electronic Systems, IEEE Transactions on, 30(2):617–621,
Apr 1994.

[7] Terry M. Calloway, Charles V. Jakowatz, Jr., Paul A. Thompson, and Paul H. Eichel.
Comparison of synthetic-aperture radar autofocus techniques: phase gradient versus
subaperture. volume 1566, pages 353–364, 1991.

[8] A. Capozzoli, C. Curcio, and A. Liseno. Fast gpu-based interpolation for SAR back-
projection. In Progress In Electromagnetics Research, vol133, pages 259–283, 2013.

[9] A. Capozzoli, C. Curcio, A. Liseno, and P.V. Testa. Nufft-based sar backprojec-
tion on multiple gpus. In Advances in Radar and Remote Sensing (TyWRRS), 2012
Tyrrhenian Workshop on, pages 62–68, Sept 2012.

[10] W. Chapman, S. Ranka, S. Sahni, M. Schmalz, U. Majumder, L. Moore, and B. Elton.
Parallel processing techniques for the processing of synthetic aperture radar data
on GPUs. In Signal Processing and Information Technology (ISSPIT), 2011 IEEE
International Symposium on, pages 573–580, Dec 2011.

[11] Ben Cordes and Miriam Leeser. Parallel Backprojection: A Case Study in High-
performance Reconfigurable Computing. EURASIP J. Embedded Syst., 2009:1:1–
1:14, Jan. 2009.

[12] Real World Technologies David Kanter. Intels Haswell CPU Microarchitecture,
November 2012.

[13] Real World Technologies David Kanter. Knights Landing Details, January 2014.
[14] A.P. Delazari Binotto, E. Pignaton de Freitas, C.E. Pereira, A. Stork, and T. Larsson.

Real-time task reconfiguration support applied to an UAV-based surveillance sys-
tem. In Computer Science and Information Technology, 2008. IMCSIT 2008. Inter-
national Multiconference on, pages 581–588, Oct 2008.

87



[15] A. Fasih and T. Hartley. GPU-accelerated synthetic aperture radar backprojection in
CUDA. In Radar Conference, 2010 IEEE, pages 1408–1413, May 2010.

[16] FFTW. Fftw library.
[17] MPI Forum. MPI Documents, May 2014.
[18] Liang Fulai, Qu Xiaojiang, Li Yanghuan, Song Qian, and Zhang Hanhua. GPU-

accelerated SAR backprojection in JACKET for MATLAB. In Synthetic Aperture
Radar (APSAR), 2011 3rd International Asia-Pacific Conference on, pages 1–4, Sept
2011.

[19] Rahul Garg. Floating point peak performance of Kaveri and other recent AMD and
Intel chips, January 2014.

[20] N. Gebert, G. Krieger, and A. Moreira. Digital beamforming on receive: Techniques
and optimization strategies for high-resolution wide-swath sar imaging. Aerospace
and Electronic Systems, IEEE Transactions on, 45(2):564–592, April 2009.

[21] Intel R©George Chrysos. Intel c©Xeon Phi TMCoprocessor - the Architecture, Septem-
ber 2012.

[22] T.D.R. Hartley, A.R. Fasih, C.A. Berdanier, F. Ozguner, and U.V. Catalyurek. In-
vestigating the use of gpu-accelerated nodes for sar image formation. In Cluster
Computing and Workshops, 2009. CLUSTER ’09. IEEE International Conference
on, pages 1–8, Aug 2009.

[23] M.D. Hill and M.R. Marty. Amdahl’s Law in the Multicore Era. Computer, 41(7):33–
38, July 2008.

[24] V Jithesh and K Poulose Jacob. GPU Based Performance Acceleration of Radar
Imaging Algorithms.

[25] David B. Kirk and Wen-mei W. Hwu. Programming Massively Parallel Processors:
A Hands-on Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
1st edition, 2010.

[26] Kazuhiko Komatsu, Katsuto Sato, Yusuke Arai, Kentaro Koyama, Hiroyuki Takiz-
awa, and Hiroaki Kobayashi. Evaluating Performance and Portability of OpenCL
Programs. In The Fifth International Workshop on Automatic Performance Tuning,
June 2010.

[27] F. Kraja, A. Murarasu, G. Acher, and A. Bode. Performance evaluation of SAR
image reconstruction on CPUs and GPUs. In Aerospace Conference, 2012 IEEE,
pages 1–16, March 2012.

[28] Yung Chong Lee, Voon Chet Koo, and Yee Kit Chan. Fpga-based pre-processing unit
for real-time synthetic aperture radar (sar) imaging. In Progress In Electromagnetics
Research Symposium, pages 1087 – 1091, March 2012.

[29] Bin Liu, Kaizhi Wang, Xingzhao Liu, and Wenxian Yu. An Efficient SAR Processor
Based on GPU via CUDA. In Image and Signal Processing, 2009. CISP ’09. 2nd
International Congress on, pages 1–5, Oct 2009.

[30] Bin Liu, Kaizhi Wang, Xingzhao Liu, and Wenxian Yu. An Efficient Signal Processor
of Synthetic Aperture Radar Based on GPU. In Synthetic Aperture Radar (EUSAR),
2010 8th European Conference on, pages 1–4, June 2010.

[31] Jongsoo Park, P.T.P. Tang, M. Smelyanskiy, Daehyun Kim, and T. Benson. Ef-
ficient backprojection-based synthetic aperture radar computation with many-core
processors. In High Performance Computing, Networking, Storage and Analysis
(SC), 2012 International Conference for, pages 1–11, Nov 2012.

[32] Song Jun Park, D. Shires, D. Richie, and J. Ross. Enhanced SAR Imaging Algorithm
Development for Streaming Processors. In High Performance Computing Modern-
ization Program Users Group Conference (HPCMP-UGC), 2010 DoD, pages 396–
400, June 2010.

88



[33] B. Porat. A course in digital signal processing. John Wiley, 1997.
[34] X. Qiu, C. Ding, and D. Hu. Bistatic SAR Data Processing Algorithms. Wiley, 2013.
[35] M. Raskovic, A.L. Varbanescu, W. Vlothuizen, M. Ditzel, and H. Sips. OCL-

BodyScan: A Case Study for Application-centric Programming of Many-Core Pro-
cessors. In Parallel Processing (ICPP), 2011 International Conference on, pages
542–551, Sept 2011.

[36] M.A. Richards, J.A. Scheer, J. Scheer, and W.A. Holm. Principles of Modern Radar:
Basic Principles. Number v. 1 in Principles of Modern Radar. SciTech Publishing,
Incorporated, 2010.

[37] Sean Rul, Hans Vandierendonck, Joris D’Haene, and Koen De Bosschere. An exper-
imental study on performance portability of OpenCL kernels. In Application Accel-
erators in High Performance Computing, 2010 Symposium, Papers, page 3, 2010.

[38] H.J. Sips. Aspects of Computational Science a Textbook on High Performance Com-
puting, chapter Programming Languages for High Performance Computing, pages
125–194. NCF, Den Haag, 1995. Editor: A. van der Steen.

[39] Xian-He Sun and Yong Chen. Reevaluating Amdahl’s Law in the Multicore Era. J.
Parallel Distrib. Comput., 70(2):183–188, Feb. 2010.

[40] Zhi-Jian Sun and Xue-Mei Liu. The realization of sar real-time signal processor by
fpga. In Computer Science and Software Engineering, 2008 International Confer-
ence on, volume 4, pages 79–82, Dec 2008.

[41] AMD R©. AMD R© clMath.
[42] Intel R©. Intel R© CoreTM i7-2670QM Specifications.
[43] Intel R©. Intel R© CoreTM i7-3612QM Specifications.
[44] Intel R©. Intel R© VTuneTM Amplifier XE 2013.
[45] Intel R©. Intel R©l Core i7-4960X Extreme Edition Specifications.
[46] Intel R©. Desktop 4th Generation Intel Core Processor Family: Datasheet, Vol. 1.

Intel R©, March 2014.
[47] NVIDIA R©. cuFFT CUDA Toolkit.
[48] NVIDIA R©. GeForceTM GT540M Specifications.
[49] NVIDIA R©. GeForceTM GTX TITAN Specifications.
[50] NVIDIA R©. NVIDIAs Next Generation CUDA TMCompute Architecture: Kepler TM

GK110. NVIDIA R©.
[51] NVIDIA R©. NVIDIA R© Visual Profiler.
[52] NVIDIA R©. TeslaTM K20 Specifications.
[53] Texas Instruments R©. TMS320C66x DSP CPU and Instruction Set Reference Guide.

Texas Instruments R©, November 2010.
[54] Texas Instruments R©. TMS320C6678 Multicore Fixed and Floating-Point Digital

Signal Processor. Texas Instruments R©, revision e edition, March 2014.
[55] XILINX R©. FPGA.
[56] NVIDIA R©CUDA TM. CUDA TM, May 2014.
[57] Khronos Group TM. OpenCL, May 2014.
[58] OpenMP TM. OpenMPTM, May 2014.
[59] Leslie G. Valiant. A Bridging Model for Parallel Computation. Commun. ACM,

33(8):103–111, Aug. 1990.
[60] M.W. van der Graaf, M.P.G. Otten, A.G. Huizing, R.G. Tan, M.C. Cuenca, and

M.G.A. Ruizenaar. Amber: An x-band fmcw digital beam forming synthetic aperture
radar for a tactical uav. In Phased Array Systems Technology, 2013 IEEE Interna-
tional Symposium on, pages 165–170, Oct 2013.

[61] Jarno van der Sanden. Evaluating the performance and portability of opencl. MSc
thesis, Eindhoven University of Technology, August 2011.

89



[62] M. P. G. Otten & W. L. van Rossum & R. Tan & W. J. Vlothuizen & J. J. M. de Wit.
Multi-channel processing for digital beam froming SAR. In Proceedings of the 21st
European Signal Processing Conference (EUSIPCO 2013), Marrakech, Morocco,
2013.

[63] W.J. Vlothuizen and M. Ditzel. Real-time brute force SAR processing. In Radar
Conference, 2009 IEEE, pages 1–4, May 2009.

[64] D.E. Wahl, P.H. Eichel, D.C. Ghiglia, and Jr. Jakowatz, C.V. Phase gradient
autofocus-a robust tool for high resolution SAR phase correction. Aerospace and
Electronic Systems, IEEE Transactions on, 30(3):827–835, Jul 1994.

[65] W.Q. Wang. Multi-Antenna Synthetic Aperture Radar. Taylor & Francis, 2013.
[66] Wikipedia. Bulk Synchronous Parallel, May 2014.
[67] Wikipedia. OpenMP, May 2014.
[68] Samuel Williams, Andrew Waterman, and David Patterson. Roofline: An insightful

visual performance model for multicore architectures. Commun. ACM, 52(4):65–76,
Apr. 2009.

[69] N. Wilt. The CUDA Handbook: A Comprehensive Guide to GPU Programming.
Pearson Education, 2013.

[70] Christian Wolff. Radar Tutorial, May 2014.
[71] Yewei Wu, Jun Chen, and Hongqun Zhang. A real-time SAR imaging system based

on CPUGPU heterogeneous platform. In Signal Processing (ICSP), 2012 IEEE 11th
International Conference on, volume 1, pages 461–464, Oct 2012.

[72] Zhang Xin, Zhang Xiaoling, Shi Jun, and Liu Zhe. GPU-based parallel back pro-
jection algorithm for the translational variant BiSAR imaging. In Geoscience and
Remote Sensing Symposium (IGARSS), 2011 IEEE International, pages 2841–2844,
July 2011.

90


	Preface
	Introduction
	Context
	Research Questions
	Contributions
	Thesis Organization

	Background
	Parallelism
	Amdhal's Law
	Models of Parallel Computation

	Heterogeneous Computing: A Hardware Approach
	General Purpose Processors (GPP)
	Digital Signal Processor (DSP)
	General-purpose computing on Graphics Processing Unit (GPGPU)
	Field-programmable Gate Array (FPGA)

	Parallel Programming Languages
	OpenCL
	CUDA
	OpenMP
	MPI

	Real-time Systems
	What Real-time Means
	Types of Real-time Tasks
	Features of Real-time Systems

	Synthetic Aperture Radar (SAR)
	Radar Principles
	SAR Principles


	Software Architecture
	Processing Requirements
	Hardware Platforms
	Metrics

	Multi-channel Back-Projection
	Algorithm
	Sequential Implementation
	Parallel Approaches
	Input-based parallelization
	Output-based parallelization

	Analysis
	Complexity Analysis
	Operational Intensity Calculation

	Parallel Implementation
	Naive Implementation
	Optimization Steps
	Task-level parallelism

	Evaluation
	Scalability
	Output Quality
	Why both OpenCL and CUDA?

	Related Work

	Multi-node Multi-GPU Back-Projection
	Approaches
	Input-based parallelization
	Output-based parallelization

	Model
	Single Node - Single GPU implementation
	Input-based Multiple Node - Multiple GPU parallelization
	Output-based Multiple Node - Multiple GPU parallelization
	Approach Comparison

	Communication Analysis
	Implementation
	Evaluation
	Multi-GPU Evaluation
	Multi-node Evaluation

	Related Work

	Decimation and Channel Reduction
	Decimation
	Requirements
	Evaluation

	Channel Reduction
	Requirements
	Evaluation


	Map Drift Autofocus
	Algorithm
	Implementation
	Evaluation
	Related Work

	Proposed System Architecture
	System Design
	Hardware Mapping
	Custom Hardware Architecture

	Scenarios
	Off-line High-end Processing
	Off-line Mobile Processing
	On-line processing


	Conclusions and Future Work
	Conclusions
	Future Work


