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Automatic Recognition of Safety and Performance
Related Activities in Motocross

Bas Breider

Abstract—

Motocross is a popular, but dangerous sport: improvements
in performance and safety should be made to make it more
attractive and less dangerous. By automatically recognizing
activities of the rider on the track, riders can be informed
about dangerous situations, and fans can be provided with
insights into the performance of the riders. The goal of this
study is to develop and validate an automatic activity recognition
methodology that can determine safety and performance related
activities in motocross. A 3D accelerometer and gyroscope were
used to collect movement data of the rider and motorcycle.
Time and frequency domain features were extracted and used
to evaluate several machine-learning classifiers: decision tree, k-
nearest neighbor model, support vector machine, and multilayer
perceptron neural network. These classifiers were evaluated
based on accuracy, precision, recall, and speed to show overall
classifier performance in real time, and to identify classification
patterns for individual activities. The results were validated for
multiple riders at different types of motocross tracks to test
generalizability of the approach. Overall accuracy showed no
large differences between the individual classifiers (74%-78%
+ 6.8%). Similar results were found when the approach was
validated with new riders and tracks (73%-79% and 68%-72%).
The neural network classifier showed the highest precision for
the safety related activities: stopping and falling (82%-95%).
However, low precision was found for the performance related
activities: jumping, turning and driving straight (20%-78%). To
conclude, the neural network approach can be used for the
detection of safety related activities, but more data of different
riders is needed to confirm the proposed approach.

Keywords: Activity recognition, motocross, safety, perfor-
mance, machine learning, classification.

I. INTRODUCTION

Motocross is a high-risk sport and is currently the most
widely practiced motorcycle sport, both in Europe and the
USA [1]. The popularity can be ascribed to the extreme
physical and psychological demanding elements of motocross,
which captivate the fans and media, but also expose riders to
dangerous situations. Motocross racing is inherently risky due
to the high speeds attained and the unpredictable nature of the
tracks. Furthermore, the demanding competition, and in some
cases inadequate training have increased the frequency and the
severity of accidents [2]. Despite the increasing popularity of
motocross racing and the associated harm it brings, little has
been done to improve safety and performance in motocross.
In this thesis, the improvement of safety and performance in
motocross is addressed.

A potential technique for improving safety and performance
that is already used in other related fields as sports [3]
and automotive [4], is automatic activity recognition. One
of the advantages of automatic activity recognition is that it
could determine dangerous situations. Currently in motocross,

marshals alarm upcoming riders with a flag signal when they
detect a dangerous situation. Hence, the upcoming rider can
slow down and avoid the dangerous situation the rider in front
of them is causing. However, lack of volunteers and their
limited experience [5] make it difficult to ensure safety on
the track. Automatic recognition of dangerous activities such
as falling and standing still, could assist or eventually replace
marshals. In addition, by recognizing other motocross tech-
niques as jumping, turning and driving, valuable information
on the rider’s behavior can be provided. For instance, the users
can easily retrieve specific movement data for performance
analysis [6] and provide insights to increase fan experience
[7]. All of these potential applications benefit from accurate
automatic recognition of motocross activities. Therefore, accu-
rate automatic recognition of safety and performance related
activities is explored.

To the best of our abilities, we have found no scientific
literature on activity recognition in motocross. In non-racing
motorcycling, several studies have been conducted to recog-
nize activities thereby improve knowledge on driver behavior
and safety [8], [9]. In both studies, street motorcycles were
equipped with lightweight accelerometer and gyroscope sen-
sors that measured three-dimensional (3D) movements of the
rider. These small sensors were used because they are easily
attached to the motorcycle and have low power consumption in
comparison with another frequently used activity recognition
sensor: the camera. The recorded accelerometer and gyroscope
data was then used to evaluate multiple classifiers: decision
trees, support vector machines, and k-nearest neighbor models.
These classifiers were able to recognize activities like turning,
stopping, and driving straight correctly with an average accu-
racy of 84%. Besides the usual driving activities, undesired
situations like falling, could be distinguished from natural
driving activities when using accelerometer and gyroscope
data as well [10]. However, the threshold-based classifier used
in this study is tuned on specific street motorcycle domain
knowledge and therefore difficult to transfer with the limited
scientific knowledge of motocross available. As alternative, a
neural network classifier is proposed: the multilayer percep-
tron. This classifier seems suitable to motocross, because of
its capability to identify complex underlying characteristics of
nonlinear data [11]. In this thesis, accelerometer and gyroscope
motocross activity data is acquired and used to evaluate
multiple machine learning classifiers: decision trees, support
vector machines, k-nearest neighbor, and multilayer perceptron
neural network.

Not all activity recognition solutions adopted in non-racing
motorcycling can be directly applied to motocross. To cus-
tomize the activity recognition process to motocross, some



extra challenges arise, predominantly caused by the motocross
bike’s dynamical capabilities and the challenging conditions
of the motocross track. In the data acquisition process a
large variety of activity execution is expected, because of
the bumpy and unique track composition [12]. Therefore,
the accelerometer and gyroscope sensors’ ranges must be
large enough to capture all movements and withstand extreme
shocks and vibrations. The algorithm design process is also
effected extreme dynamic demands of motocross. The vibra-
tions caused by the engine create unwanted noise in the data
and decreases the classifier’s capabilities to predict activities
correctly [10]. For the evaluation of the adopted motocross
approach and its possible applications, this paper does take
into account the real time aspect of the designed setup. The
effectiveness of such a system is dependent on the ability to
process the data quickly. The proposed approach is adapted to
the extreme conditions during motocross racing and challenges
for the recognition of the motocross activities.

The goal of this study is to develop and validate
an activity recognition methodology that can recognize
safety and performance related activities in motocross.
This paper proposes to use machine learning algorithms to
classify accelerometer and gyroscope data into six different
motocross activities: left turn, right turn, drive straight, jump,
fall, and stop. The choice of these selected activities was made
to represent the most relevant activities related to safety and
performance in motocross racing. The focus of the evaluation
is to compare the effectiveness of the proposed classifiers on
a real motocross dataset in terms of accuracy and potential
real time use. Four machine learning classifiers are compared:
decision tree (DT), support vector machine (SVM), k-nearest
neighbor model (k-NN), and multilayer perceptron neural
network (NN). Additionally, this study is used to evaluate
how well the proposed approach can be generalized across
different riders and tracks. One of the other facets of the work
presented in this paper is the creation of the first database in
which motocross movement data is included. This dataset can
be used in future studies that focus on analyzing motocross
rider’s behavior.

The remainder of this paper is organized as follows. The
data collection process, including the sensor and dataset de-
scription, is presented in Section II. Section III includes the
proposed methodology for analyzing the data in terms of pre-
processing, feature extraction, model learning, and evaluation.
The performance of the different machine learning approaches
is presented in section IV. These results are discussed in
section V. The final section concludes the study and suggests
future directions for this work.

II. DATA COLLECTION

In this section, we introduce the sensors, activities, data
acquisition process, and resulting datasets.

A. Sensors

In this study, the dynamics of the rider and the motorcycle
were recorded using a tri-axial accelerometer (range: £160
m/s?, resolution: 0.05 m/s?) and a tri-axial gyroscope (range:

+2000 °/s, resolution: 0.08 °/s). The accelerometer and
gyroscope were set to a sampling rate of 1 kHz, which is
needed in highly dynamic driving situations [12]. In this paper,
only the data collected with the accelerometer and gyroscope
were used for classification. Therefore, the observations from
the sensors are defined as:

X= (ax,ayaazarmary’rz) (1

where a,, ay, and a, are the longitudinal, vertical, and
lateral accelerations respectively: r,, r,, and r, are the roll,
yaw, and pitch angular velocities respectively.

Fig. 1. Placement of the sensor on the motorcycle including the references
axis orientation.

The accelerometer and gyroscope have to operate wireless
and without constraining motion of the rider. Therefore, the



accelerometer and gyroscope were combined into a standalone
wearable sensor device. The sensor functionalities were imple-
mented inside a 100 mm x 60 mm x 30 mm aluminum case
and mounted on the left front of the motorcycle (Figure 1).
Aluminum housing was used to make the sensor device strong
enough to withstand impacts during the race, but at the same
time make it lightweight so it could be easily attached to the
motorcycle. A 2000 MB memory drive was placed inside the
housing to save the data locally. By placing the sensor device
on the motorcycle, the movements were measured without
intervention of the researchers.

A ground truth is needed to evaluate the performance of the
approach. The ground truth is typically defined through video
analysis. For this purpose, one action camera was embedded
on the motorcycle helmet (Figure 2). The camera recorded
activities with a frame rate of 50 fps and a resolution of 720p.

Fig. 2. Placement of the action camera on top of the helmet. The top mount
provides a complete view of the rider’s movements.

The ground truth was then used to provide the accelerometer
and gyroscope data with an activity label. Labeling is achieved
by linking the sensor measurements with the ground truth.
Global positioning system (GPS) was used as tool to provide
time synchronization between the accelerometer, gyroscope,
and video data. Both the accelerometer/gyroscope sensor
device and the action camera were equipped with GPS an-
tenna/module. The GPS adds a standardized global timestamp
to sensor and video data. This allowed a comparison between
the timestamp of ground truth activities set by the camera
and the timestamp of the sensor data. With the GPS time
synchronization, the data of the accelerometer and gyroscope
sensors were provided with an activity label. (See Appendix
A for more information about the labeling process.)

B. Activities

There are two categories for the target activities: safety
related activities and performance related activities. Safety re-
lated activities such as stopping and falling are in contradiction
with the dynamic nature of motocross racing and therefore
often indicate danger. Performance related activities involve
motocross movements techniques such as jumping, turning,

and driving. These activities are related to performance, be-
cause these activities are essential for riding fast. The activities
used in this study and their descriptions are given in Table I.

TABLE I
LIST OF SELECTED ACTIVITIES. ACTIVITIES ARE CATEGORIZED IN
SAFETY AND PERFORMANCE RELATED ACTIVITIES, WITH NAME AND
DESCRIPTION OF THE RECORDED ACTIVITIES.

State Activity Description
Rider hits the ground and lies
Fall .
o horizontally
Safety Activities . . .
Stop Motorcycle is not moving while

standing upright

Drive straight  Rider is moving in a straight

line

Turn left Rider is turning the motorcycle
Performance Activities . to the 1 eft .
° Turn right Rider is turning the motorcycle
to the right
Jump Motorcycle comes clear of the

ground with both wheels

C. Data acquisition

One of the evaluation criteria is to see if the proposed
approach is generalizable across riders and tracks. Therefore
a requirement for data acquisition was to recruit different
motocross riders with different driving experience, thus de-
picting different behaviors faced with the same driving event.
Furthermore, the conditions of the track should be different to
get a complete view of the conditions during motocross.

70
60 Tracks
50 B |Jmuiden
Time 40
{min) 30 ® Nieuw Vennep
20
10 Rutten
0
D1 D2 D3|D4 D5 D6 |D7
51 52 53
Datasets

Fig. 3. Duration of each of the 7 datasets in minutes. Datasets (D1, D2, ...,
D) are presented with the corresponding rider (S1, S2, S3).

Data were collected at three different motocross tracks in
the Netherlands: Rutten, IJmuiden, and Nieuw-Vennep. The
tracks are a combination of sand and clay tracks, which are
the most common surface types of motocross tracks [13].
Three subjects (S1, S2, and S3) with different profiles (age:
16-52 years) and motocross riding experiences (motocross
experience: 4-35 years) participated in the data acquisition
process. Subjects gave informed consent to participate. The
riders used a motorcycle that fitted their physical capabilities:
KTM 125SX, KTM 450EXC, and Kawasaki KX450F. No
instructions were given on how and when to perform certain



activities to ensure a naturalistic approach of motocross riding.
For two of the riders (S1 and 52) data were collected on all
three motocross tracks; the third rider (S3) was detained by
unavoidable circumstances during two sessions and therefore
data were only collected on one track (IJmuiden) for this
rider. Figure 3 shows the duration of each dataset sorted by
riders and tracks. Thus, the total dataset contains data from 3
different riders and 3 different tracks.

D. Datasets

For this study, the total dataset is composed of 7 individual
datasets (D1, D2, ..., D7), where each one was performed
according to the sequential activities uniquely corresponding
to the track composition. Figure 4 shows the percentage of
samples of each activity for each dataset. We can see that
the different classes are not equally distributed. The activities
falling and jumping are poorly represented compared to other
activities. We also note that the majority of the sequences are
composed of driving straight or stopping activities. To limit
the influence of the imbalanced dataset on the performance,
special attention must go out to evaluation measures address
the performance for each individual activity.

60%

50% Activity

0% H Drive

Number of

samples  30%
per class (%)
20%
10%
0%
D1 D2 D3 D4 D5 D6 D7

Dataset Number

Fall
Jump
W Stop

= Turn Left

M Turn Right

Fig. 4. Percentage samples per class for each dataset. Note that fall and jump
are poorly represented in the datasets.

III. APPROACH

In this section, we present the proposed methodology in-
cluding preprocessing, feature extraction, classification and
performance evaluation. Figure 5 summarizes the different
steps of the adopted approach.

A. Data preprocessing

The filtering step is important for separating meaningful
data and noise. The accelerometer and gyroscope are sensitive
to high frequency vibrations. Because of the noise and the
variance in the collected data, some preprocessing tasks were
required. Initially, a frequency analysis by power spectral
was conducted to estimate the vibration characteristics of the
motorcycle. The power spectrum of the vertical acceleration,
i.e., ay, shown in Figure 6, indicates that the frequency of
the motorcycle noise in the static state (stop) is approximately
30 Hz. The high frequency power spectral peaks represent
the noise caused by the vibration of the engine and therefore
do not contain important characteristics of the activity move-
ments. To remove the noise, data was filtered.

[ Data collection ]

Raw dataset

h 4

4 1\

Preprocessing

. J

Preprocessed dataset
\ 4

4 1\

Feature extraction

. J

Feature vector

A 4

[ Training dataset ] [ Test dataset ]

A4
DT
SVM .
KNN Trained models ]
\ ANN /
[ Performance evaluation }

Fig. 5. Representation of data flow for testing and training activity recognition
algorithm.

To remove high frequency noise, a low pass filtering tech-
nique was applied to the accelerometer and gyroscope data.
For the design of the algorithm and the potential applications,
it is important to operate in real time. Therefore, the choice
for which low pass filtering technique to use, is based on the
ability to remove noise and the execution time. The low-pass
Butterworth filter is the best suited for our algorithm, because
the execution time is shorter than other commonly used low
pass techniques as wavelet and median filters [10]. A third-
order low pass Butterworth filter with a 20-Hz cutoff frequency
was used to remove the noise.

B. Feature extraction

Before the data was used as input for the classifier, feature
extraction was done to extract informative insights of the data
for each activity. Table II presents the features used in this
study, sorted by domain.

1) Sliding window

To calculate the features from the activity data, the dataset
first had to be segmented into windows. In this study, the
fixed sliding window approach is used for segmentation. Since
it does not require any preprocessing treatments, the sliding
window approach is well-suited to real-time applications [14].
The windows are calculated with a certain overlap to handle
transitions more accurately, and reduce misclassification due
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Fig. 6. Power spectral density for vertical acceleration (ay) measured for
stop activity. Power peaks indicated by red box. Note that first set of peaks
is at approximately 30 Hz.

to transitions [15]. For each sliding window with a size of
0.5 s (500 samples each), a 50% (250 ms) overlap was used.
The window size was set to be 0.5 seconds to ensure that short
duration activities like jumping could be captured fully without
including other activities. However, no smaller window size
than 0.5 seconds was used to limit the effect of only capturing
transitions between activities and not the specified activities.

TABLE I
LIST OF SELECTED FEATURES. THE FEATURES ARE CATEGORIZED INTO
TWO GROUPS: SAFETY RELATED ACTIVITIES AND PERFORMANCE
RELATED ACTIVITIES.

Domain Feature

Mean

Root mean square
Maximum value
Minimum value
Range

Time Domain

Peak frequency

Frequency Domain Peak magnitude

2) Features

The accelerometer and gyroscope both have 3 dimensions in
which data are collected. From these individual axis, charac-
teristic information about the orientation can be extracted [15].
It is also possible to infer characteristics of an activity by using
the vector norm of the 3D accelerometer and gyroscope signal.
If the norm is used, the features calculated are independent of
the orientation of the sensors. This will increase robustness to
small placement errors. Therefore, in addition to the x, y, and
z components, the Euclidean norm of these three axis was also
used for feature extraction (Equation (2). This means that the
accelerometer and gyroscope each have four components (x, y,
z, and Euclidean norm) that are used for calculating features.
Mean and root mean square have been used in previous
activity recognition studies to characterize accelerometer and
gyroscope data in the time domain [16]. As an extension of
these features, we included the minimum and maximum value,
and the range within the data window.

=22+ y?+ 22 2

Frequency domain features are used for discriminating static
and dynamic activities in previous activity recognition studies
[17]. The dynamic and static activity division is also seen
in motocross activities: stopping and falling as (partly) static
activities and driving and the related maneuvers as dynamic
activities. To derive frequency domain features, a power spec-
trum was performed on each window of activity data. The
peak frequency and magnitude of the first dominant peak
in power spectrum of accelerometer and gyroscope data are
used as frequency domain features. As with the time domain
features, the frequency domain features were derived for each
axis. A total of 56 (8 components x 7 features) features were
calculated from each window of activity data.

3) Normalization

Since the ranges of raw data vary widely, in some machine
learning algorithms, classifier functions will not work properly
without normalization. For example, the majority of classifiers
calculate the distance between two points by the Euclidean
distance. If one of the features has a broad range of values,
the distance will be governed by this particular feature [18].
Therefore, the range of all features should be normalized so
that each feature contributes approximately proportionately
to the final distance. So to avoid the domination of one
signal over the others in the classification step, the data sets
were normalized to a zero mean and a unit variance in all
dimensions. The normalization equation is listed below:

' = 3

where z is the original feature vector, Z is the mean of that
feature vector, and o is the standard deviation.

C. Classifiers

The aim of the work is to automatically recognize motocross
activities. To evaluate the approach, we used four machine-
learning classifiers: decision tree, support vector machine,
k-nearest neighbor model, and multilayer perceptron neural
network.

1) Decision trees

A decision tree is an oriented graph formed by a finite
number of nodes departing from the root node. In binary trees,
each parent node is linked to only two lower level nodes. A
branch of the tree is a sub-tree obtained by pruning the tree
at a given internal node [19]. In the tree growing, predictors
generate candidate splits at each internal node of the tree, so
that a suitable criterion needs to be defined to choose the best
split of the features. In the case of the decision tree algorithm,
we used Gini diversity index as split criterion (Equation (4)).
Gini index is a measure of how often a randomly chosen
element from the set would be incorrectly labeled if it was
randomly labeled according to the distribution of labels in
the subset. Gini index can be computed by summing the
probability p; of an activity with label 7 being chosen times the
probability 1—p; of a mistake in categorizing that activity. The
split selected minimizes the value of the difference between
Gini index before splitting and Gini index after splitting. It
reaches its minimum (zero) when all cases in the node fall
into a single target category.
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The only parameter to tune is the number of splits, which is
determined by varying the number of trees from to 1 to 100.
We picked the number of splits that provided the best accuracy
rate when cross-validated on the datasets. The number of splits
used in the template is 30.

2) Support vector machine

The support vector machine is based on the idea of calcu-
lating maximal margin hyperplanes that separate the data in
a way that the margin between data points of each activity is
maximized. For nonlinear accelerometer and gyroscope data,
the data is mapped to a higher dimensional space using a
kernel function [20]. Correctly classified points lying outside
the margin boundaries of the support vectors are not penalized,
whereas points within the margin boundaries or on the wrong
side of the hyperplane are penalized in a linear fashion
compared to their distance from the correct boundary by the
hinge loss function (Equation (5)). In this hinge loss function
L, y is the output of the classifier, ¢ is the intended output. It
can be seen that when ¢ and y have the same sign, meaning
that the support vector machine predicts the right class, the
hinge loss is zero. The support vector machine performs well
on data sets that have a large amount of attributes. However,
it also is able to classify activities when data sets contain very
few cases on which to train the model, in our case the fall
activity.

L=maz(0,1—y-t) (5)

For the support vector machine classifier with the Gaussian
radial basis function kernel, the two hyper parameters to
be tuned are C' and ~. These parameters were estimated
with Bayesian optimization. This algorithm uses previous
observations of the loss to determine the next (optimal) point
to sample for. The optimal values are C = 7 and v = 1.

3) k-Nearest neighbor

The objective of the k-nearest neighbor model is to classify
new data points based on the similarities that they exhibit with
examples of the learning database using distance functions.
The new observation is assigned to the most common activity
through a majority vote of its k nearest neighbors. To classify
unknown data points, the Euclidean distance of the new data
point p to the known data points g is computed (6). Its k-
nearest neighbours are determined, and the activity labels of
these neighbours are then used to identify the activity label of
the unknown object. The k-nearest neighbor model can handle
missing values and is resistant to outlying data points, which
are often seen in accelerometer and gyroscope sensors.

D(p,q) = [> (pi — @:)? (6)
i
In the case of KNN method, the best choice of & was tuned
by varying k from 1 to 20. The optimal value of k£ = 5 led to
the best combination of high accuracy and lowest computing
time with cross-validation for the datasets.

4) Neural network

The multilayer perceptron is an artificial neural network
with multilayer feed-forward architecture and is in general
based on non-linear activations for the hidden units [21].
This neural network minimizes the error function between the
estimated y and the desired network outputs d (Equations (7)
(8)) which represent the activity labels in the classification
context. The neural network uses backpropagation for training
the network, which allows the network to converge on a
satisfactory feature weighting and flow. For this study, a
two-layer multilayer perceptron neural network with sigmoid
hidden and softmax output neurons, is constructed.

ej(n) =d;(n) —y;(n) (7

E(n) = % Z e3(n) (3

The amount of neurons in the hidden layer was varied from
10 to 30. The number of hidden neurons was chosen to be 15
based on optimal combination of accuracy and training time.
In total, this led to a neural net with 56 input neurons (equal
to the number of features), 15 hidden neurons, and 6 output
neurons (equal to the number of activity classes).

D. Evaluation

1) Performance measures

The performance of the proposed method must be evaluated
to gain insights on the classifier performance. A general
measure used to evaluate the classifiers performances was
accuracy, which measures the proportion of correctly classified
examples. The accuracy can be expressed as follows:

T, + T,
Ty + Fp+ Ty + Fp,

where T}, (true positives) represent the correct classifications
of positive examples and 7, (true negatives) represent the cor-
rect classifications of negative examples. F,, (false negatives)
and F), (false positives) represent, respectively the positive
examples incorrectly classified into the negative classes and
the negative examples incorrectly classified into the positive
classes. However, the accuracy measure does not give a
complete view of the classifier performance when unbalanced
datasets are used, because the accuracy is particularly biased
to favor the majority classes.

In this study, the class proportions are not well balanced
since the number of falling and jumping activity samples
is small compared to driving straight and stopping samples
(Figure 4). To avoid the influence of the class imbalance,
other metrics such as precision, recall, and F-measure are
calculated. The precision is the number of correctly classified
positive instances to the total number of instances classified
as positive. Alternatively, the recall is the ratio of correctly
classified positive instances to the total number of positive
instances. So high precision will lead to more relevant results
than irrelevant ones, while high recall implies that the most of
the relevant results are classified correctly [22]. The F-measure

®

Accuracy =



is defined as the combination of two criteria, the precision and
the recall, which are defined as follows:

T,

Precision = —F— 10
T+ F, (10)

T
Recall = —2 11
eca T, + Fy (11)

Precision - Recall

F — measure = 2 -

Precision + Recall (12)

To summarize, the following evaluation criteria are consid-
ered: the average of the accuracy rate and its standard deviation
(std), recall, precision, and f-measure. The combination of
these measures gives an indication of the overall performance,
and performance on the individual activities.

2) Validation

The dataset acquired during the motocross tests are used for
validation. First, the 7 datasets were checked for abnormalities
by training a classifier for each dataset and validate this
classifier by a k-fold cross validation [23]. The data set is
randomly partitioned into k subsets, and the holdout method
is repeated k times. Each time, one of the k subsets is used as
the test set and the remaining k-/ subsets are put together to
form a training set. The cross-validation process is repeated
k times, with each of the k subsets used exactly once as the
validation data. Then the average error across all k trials is
computed. Using this method each dataset can be evaluated
individually.

For a further analysis of the dataset the cross-validation
method was used. This technique was used for assessing the
average results of the classifiers for the datasets. One dataset
was used for testing (D = 1) and the remaining datasets were
used for learning (D = 6). This procedure was repeated 7
times (i.e., once for each sequence) and the average of the
performance was calculated. After the overall analysis, the
classifier that performs best in terms of statistical measures like
accuracy, F-measure per activity, training time, and prediction
time, was picked to be analyzed on its individual performance
on safety and performance related activities.

Another specific contribution of this paper is to determine
if the classifiers are able to generalize across riders and tracks.
These two paths were investigated by using leave-one-rider-
out and leave-one-track-out procedure respectively. By leaving
one rider out as dataset, and in the second experiment leaving
one track out. This hold-out set should be as large as possible,
to accurately represent the activity variation that may be
expected. However, keeping a large part of the data from the
training set gives the classifier less data to train on. Hence, a
balance between the size of the training set and the size of
the holdout set must be struck. To provide a split between test
and training data, rider 2 is used as test in the leave-one-rider-
out validation and track Nieuw-Vennep is left out as training
set to test the capabilities to generalize across tracks. Using
this split, all activities are present in training and test sets and
therefore all activities can be evaluated individually.

All algorithms were built with a custom made code run by a
commercial software package (MATLAB Release 2016b, The

MathWorks, Inc., Natick, Massachusetts, United States. Aca-
demic licence provided by Delft University of Technology).

IV. RESULTS

In this section, we review and compare the performances
of the machine learning approaches to recognize motocross
activities.

A. Dataset investigation

The results obtained with the different classification ap-
proaches for each individual dataset are given in Table III.
The data show that the average classifier results were above
80%, except for dataset 5. The classification accuracy for
dataset 5 reported an average accuracy of approximately 60%
for all classifiers. Dataset 5 differed significantly from all
other datasets (p<0.05). These results indicate that there is
difference in performance, which must be analyzed before
using the dataset for experimental results.

TABLE III
ACCURACY OF DIFFERENT CLASSIFIER TECHNIQUES FOR EACH DATASET.
FOR EACH DATASET, THE BEST CLASSIFIER IS IN BOLD. NOTE THAT THE
ACCURACY OF DATASET 5 (66.7%) 1S SIGNIFICANTLY LOWER COMPARED
TO THE OTHER DATASETS (P<0.05).

DI [ D2 | D3 | D4 | D5 | D6 | D7
]()o;sismn Tree | 850 | 80.1 | 820 | 847 | 597 | 79.8 | 892
;ﬁgﬁgij: (@ | 870 | 857 | 850 | 862 | 667 | 826 | 910
Support \(/S,f)“’r 87.7 | 869 | 87.1 | 873 | 649 | 82.5 | 90.9
iig;‘ral Network | g6 3 | 854 | 85.1 | 859 | 572 | 81.1 | 86.6

An analysis of the video footage in combination with the
sensor data of dataset 5 showed that there was a failure in
the experimental setup. The sensor attachment on the front
fork came loose and as a result the sensor was able to rotate
independently of the front fork. Thus, the accelerometer and
gyroscope orientation changed during the experiment, which
resulted in erratic sensor values. As this error in sensor
placement does not confirm the defined experimental setup,
dataset 5 was excluded from further analysis. From this point
on, the total number of datasets used for classification results
was reduced to D = 6.

B. Cross-validation

One of the goals of this study is to compare the performance
of the machine-learning classifiers. The results of the classifier
comparison using cross-validation are listed in Table IV. The
table shows the average accuracy, F-measures, and speed of
the classifiers. All correct classification rates exceeded 74%.
The SVMs resulted in the highest overall classification rate
at 78.1%. In addition to the overall accuracy, the SVMs
also obtained the highest average F-measure (0.60). However,
the other classifiers performed similarly on both the overall
accuracy and average F-measure: the accuracy and F-measure
of the NNs were 1% lower than SVM, the kNNs were
2% lower, and the DTs were 4% lower. The combination



TABLE IV
CROSS-VALIDATION RESULTS IN TERMS OF AVERAGE ACCURACY, F-MEASURE PER ACTIVITY, AVERAGE F-MEASURE, TRAINING TIME, AND PREDICTION

TIME.
Accuracy F-measure per activity F-measure | Training Testing
(%) % std Stop Fall Jump | Turn Right | Turn Left | Drive Straight Time (sec) | Time (sec)
Decision Tree 744 +74 | 092 | 035 | 0.02 0.34 0.50 0.78 0.59 3.9 0.1
k-Nearest Neighbor 76.0 = 6.0 | 092 | 048 | 0.14 0.44 0.58 0.78 0.58 0.4 13.6
Support Vector Machine | 78.1 £ 7.1 | 0.94 | 031 | 0.11 0.44 0.61 0.81 0.60 123.5 14.0
Neural Network 778 £ 6.7 | 092 | 037 | 0.05 0.47 0.60 0.80 0.59 12.8 0.1

of small differences in overall accuracy and large standard
deviation of the classifiers, do not indicate any differences in
performance patterns. In line with these findings, we found
that the differences in overall accuracy between the classifiers
were not significant (p >0.05).

The F-measures in Table IV show the performance of the
classifiers for each activity. The safety related activities stop
and fall are on average best classified by SVM and kNN: 0.94
and 0.48 respectively. For the stop activity, the F-measure for
all classifiers exceeded 0.90, however no classifier exceeded
0.50 for falling. Out of all performance related activities
Jjumping was classified worst, reporting F-measures ranging
from 0.02 - 0.14. The SVM obtained the best classification
rates for driving straight (0.81), but the other classifiers scored
similarly for this activity (0.78 - 0.80). These measures show
that no classifier is generally superior in terms of overall
classification and classification of each activity.

The classifier’s capability to predict in real time is essential
for usage in safety or performance applications. Two measures
that show the speed of the classifier: training and testing time,
are reported in Table IV. The SVM classifier, which reported
the highest overall classification rate, needed the longest time
to classify the activities in the test set. The NN and DT
classifiers were less accurate, but had a prediction time of
approximately 1% compared to the SVM and kNN classifier.
Therefore, the DT and NN have a higher execution speed than
the SVM and kNN.

C. Leave-one-rider-out validation

The classifiers ability to generalize across new riders is
tested by leaving the dataset of rider 2 as test set and using
the datasets of riders 1 and 3 as training sets.

The results of the classifiers for the leave-one-rider-out
validation are presented in Table V. We can see that SVM
classifier reports the highest accuracy of 79.0% correct clas-
sification. This is 0.9% higher than the accuracy found with
cross-validation (78.1%). The other classifiers show a slight
decline in accuracy relative to the repeated cross-validation (-
1 - -4%). However in general, the overall performances did not
differ significantly when validated on a new rider (p>0.05).

To identify the underlying classification patterns that are
difficult to recognize from statistical means only, a confusion
matrix is constructed for the NN classifier. The NN classifier
is chosen above the other classifiers, because this classifier
showed the combination of best overall F-measure (0.51) and
lowest prediction speed (0.1 s). Above all, the NN classifier
showed best performance for classifying the essential safety

related activity: fall. The confusion matrix with the corre-
sponding recall and precision for each activity is given in
Table VI. (See Appendix B for the confusion matrices of the
other classifiers.)

For the safety related activity stop, the NN classifier ob-
tained a precision of 82%, and a recall of 95%. The other
safety related activity fall, was predicted with a precision of
92%, but a recall of only 27%. The most of confusion occurred
between the the performance related activities driving straight,
turning right, turning left, and jumping. As can be seen, there
was a large influence of driving straight on the performance of
the other activities, predominantly due to predicting one of the
other activities as driving straight. So regarding the individual
activities, the safety related activities were recognized with a
higher precision than the performance related activities.

TABLE VI
CONFUSION MATRIX OBTAINED WITH THE NEURAL NETWORK CLASSIFIER
FOR LEAVE-ONE-RIDER-OUT VALIDATION.

NN Predicted activities
Turn Turn | Drive
Stop | Fall | Jump Right | Left | Straight Recall
Stop (%) 4760 |1 0 6 15 216 0.95
Fall (%) 36 24 0 3 14 10 0.27
True Jump (% 2 |o |38 0 20 | 413 0.01
activities ump (%) - i
Turn
Right (%) 85 0 0 533 54 769 0.37
Turn
Left (%) 39 0 0 42 1029 | 1235 0.43
Drive
Straight (%) 808 1 32 159 872 8069 0.81
Precision 082 1092102 0.71 051 1075

D. Leave-one-track-out validation

Another variable in the motocross datasets are the tracks.
The generalization across tracks is tested by leaving the
datasets recorded on motocross track in Nieuw-Vennep as
test set and using the remaining datasets as training sets. The
results of the leave-one-track-out validation method are shown
in Table VII. The SVM obtained the highest overall accuracy
of 71.4%, which is within one standard deviation from the
SVM results of the cross-validation (78.1% =+ 7.1%). The
overall accuracy of NN and DT classifiers also laid within one
standard deviation from the repeated cross-validation mean;
the kNN reported an accuracy that was slightly more than
one standard deviation lower. Although the performance of
the classifiers in leave-one-track-out validation was worse than
in repeated cross-validation, no classifier differed significantly
(p>0.05).

In Table VIII the confusion matrix for neural net with leave-
one-track-out validation is shown. We see most prediction er-
rors occurred for the activities turning, and jumping, resulting



TABLE V
LEAVE-ONE-RIDER-OUT RESULTS IN TERMS OF ACCURACY, F-MEASURE PER ACTIVITY, AVERAGE F-MEASURE, TRAINING TIME, AND PREDICTION
TIME. NOTE THE DIFFERENCES OF THE F-MEASURE BETWEEN THE CLASSIFIERS FOR THE fall ACTIVITY.

Accuracy F-measure per activity F-measure | Training Testing
(%) Stop | Fall | Jump | Turn Right | Turn Left | Drive Straight Time (sec) | Time (sec)
Decision Tree 73.6 090 | 034 | 0.05 0.35 0.38 0.79 0.47 2.6 0.1
k-Nearest Neighbor 76.9 091 | 0.09 | 0.12 0.52 0.47 0.81 0.48 0.3 17.6
Support Vector Machine 79.0 0.92 | 0.09 | 0.08 0.57 0.46 0.82 0.49 59.4 9.2
Neural Network 74.8 0.89 | 042 | 0.03 0.49 0.47 0.78 0.51 8.8 0.1
TABLE VII
LEAVE-ONE-TRACK-OUT RESULTS IN TERMS OF ACCURACY, F-MEASURE PER ACTIVITI, AVERAGE F-MEASURE, TRAINING TIME, AND PREDICTION
TIME.
Accuracy F-measure per activiti F-measure | Training Testing
(%) Stop | Fall | Jump | Turn Right | Turn Left | Drive Straight Time (sec) | Time (sec)
Decision Tree 68.9 0.86 | 0.54 - 0.60 0.62 0.73 - 42 0.1
k-Nearest Neighbor 68.0 0.89 | 0.56 - 0.59 0.55 0.73 - 0.3 7.9
Support Vector Machine 71.4 093 | 0.69 | 0.05 0.61 0.64 0.75 0.61 123.5 4.5
Neural Network 70.1 090 | 0.76 | 0.16 0.61 0.64 0.73 0.63 9.9 0.1

in low recall values for these activities. In most cases, these
activities are predicted as driving straight. Furthermore, this
classifier was able to predict a fall with 95% precision and
64% recall. Out of the 9 classification errors, 7 times a fall was
classified as stop. So the prediction errors of a fall were mainly
due to the confusion with the other safety related activity stop.
Overall the same patterns are seen: safety related activities are
better classified than the performance related activities.

TABLE VIII
CONFUSION MATRIX OBTAINED WITH NEURAL NETWORK FOR THE
LEAVE-ONE-TRACK-OUT VALIDATION.

NN Predicted activities
St Fall | 7 Turn Turn | Drive Recall
op | UMP | Right | Left | Straight | "¢?

Stop (%) 914 1 0 8 5 55 0.93
Fall (%) 7 18 0 1 0 2 0.64

True

activities Jump (%) 0 0 40 0 1 399 0.10
Turn
Right (%) 2 0 0 836 22 861 0.48
Turn
Left (%) 1 0 4 15 1206 | 1049 0.53
Drive
Straight (%) 132 0 14 148 258 3993 0.88
Precision 0.86 | 0.95 [ 0.69 0.83 0.80 | 0.63

V. DISCUSSION

In this section, we will discuss the results based on the goals
of this study presented in the introduction.

A. Safety related activities

The goal of this study was to develop and validate an
automatic activity recognition methodology that could recog-
nize safety and performance related activities in motocross.
First, we discuss the performance of the approach for safety
related activities. The combined F-measure for stop and fall
for the different classifiers suggest that the multilayer per-
ceptron neural network is the best classifier for classifying
safety related activities. The high precision and lower recall
indicate that the classifier is careful when predicting a fall,
and therefore sometimes misses a fall. For the application of
a safety detection device in motocross, the high precision -
low recall trade off is acceptable. Having irrelevant signals

indicating a dangerous situation will lead to reduced trust in
the system. As riders want to be as quick as possible to win
the race, unnecessary stops will cause important loss of time.
Eventually, the rider will not obey the system if it will lead
to unneeded losses.

Ideally, the false negatives seen when predicting a fall
are reduced, because missing a fall may lead to dangerous
situations, especially in the case when such a safety alarm
system would be used as replacement of the marshals that
are responsible for safety. The confusion matrices show that
the false negatives most of the time appear because a fall is
classified as stop. Explanation of these results could be that
after a fall a transition to a stop takes place. Due to the sliding
window approach, it is likely that such a transition is labelled
with either stop or fall, but includes characteristic features of
the other activity as well. For the potential alarm system the
confusion between a fall and stop would not give a problem
as these activities are both considered unwanted during a race.
Therefore this approach could only be used as assistance for
the marshals on the track.

B. Performance related activities

The confusion matrices shown in Table VI and Table VIII
show that the activities jumping, turning, and driving straight
are often mixed up. The confusion between driving, turning,
and jumping can be explained by the similarities between
these activities. Firstly, labeling the data is dependent on the
definitions the researchers give to an activity. For example,
a turn can either be long or, in the most extreme case, be
a hairpin turn. Where a long turn only requires the rider to
slightly lean to the side, a hairpin turn can only be performed
when the rider abruptly rotates his steer and leans horizontally.
The long turn will have huge resemblance with driving straight
and that might be the reason for the confusion between turning
and driving straight. Secondly, motocross activities are often
short in duration and alternate frequently. Therefore, many
transitions are included in the data. These transitions have
shown to give problems in classifying activities, because fea-
tures of transitional data are less characteristic [24]. Another



factor that may cause the confusion of the performance related
activities, is the track composition [12]. The bumpy track
could lead to a jump like motion during normal driving,
causing a confusion between driving straight and jumping.
To summarize, the confusion between the performance related
activities indicates a difficulty in recognizing these activities,
which can either be assigned to similarity due to dynamics of
the motorcycle, variety of movement executions or subjective
labeling.

C. Performance of the different classifiers

The focus of the evaluation is to compare the effectiveness
of the proposed classifiers on a real motocross dataset in terms
of accuracy and potential real time use. The results indicate
that there is no big difference in accuracy between the four
different classifiers. These findings are supported by [8], who
similarly did not find any big differences between kNN, SVM,
and DT classifiers accuracy in motorcycle activity recognition.
However classifiers do differ in execution speed. The short
prediction time of decision tree and neural network makes
these classifier better suited for real time applications. Unlike
decision trees, neural network were not expected to be as quick
in predicting, because they use all features to classify, were
the decision tree only evaluates one feature per node. One
possible explanation and limitation of the speed measures is
that is predicted on a laptop, which is known to have large
computational power. Any application with wearable sensors
would have less processing power of a computer. Therefore in
future research, online classification on the wearable device
must be evaluated to test the classifiers capability to operate
in real time.

D. Generalizability

Additionally, this study is used to evaluate how well the
proposed approach can generalize across different riders and
tracks. The similarities in terms of overall performance be-
tween cross-validation and leave-one-out validation methods
indicate that the classifiers can generalize to new motocross
tracks and different riders. Although the differences between
the repeated cross-validation and the leave-one-track-out were
larger than the-leave-one-rider out, performance is similar
when multiple riders and tracks are included in the training
set.

We expected the neural network to outperform the other
classifiers, based on its ability to model non-linear patterns
[25] seen in accelerometer and gyroscope data. For gener-
alization, the use of a neural network was also expected to
have a higher accuracy than the other classifiers, because it
should be able to infer unseen relationships in new complex
data [26]. Still, the neural network did not outperform other
classifiers when validated for new riders and tracks. A possible
reason for this could be the imbalanced dataset (figure 4).
By normalization and using class specific evaluation measures
like precision and recall, we tried to reduce the effect of
class imbalance on the classifiers. However, the weights of
the neurons are already adapted to the skewness of the data in
the training phase [27]. The neural networks may likely ignore
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the features representing the classes that have small number
of examples in the training set. To overcome the problem of
a imbalanced dataset, more samples of the underrepresented
activities (fall and jump) should be recorded. When more
training data is added, we assume that the neural network
classifier will outperform the other classifiers.

E. Dataset

One of the other facets of the work presented in this
paper is the creation of the first database in which motocross
movement data is included. The accelerometer and gyroscope
sensors were able to measure all motocross movements. The
measurements were recorded with sampling rate of 1 kHz,
which is recommended when recognizing the impact of falling
[12]. However for a potential real time use, we would suggest
to evaluate lower sampling rates to reduce computational load.
This exploratory research showed that ground truth can be
measured with an action camera, but the labeling is still
subjective. For future motocross studies, we would suggest to
adapt the labeling process to the requirements of the particular
research topic. However, this complete dataset can be used
in future studies that focus on analyzing motocross rider’s
behavior. (See Appendix C for examples of the database.)

VI. CONCLUSION & FUTURE WORK

In this paper, we presented an automatic activity recognition
approach with the goal to detect dangerous and performance
related activities in motocross. This is done by measuring
3D accelerometer and gyroscope motocross activity data to
evaluate multiple machine learning classifiers. No large overall
accuracy differences were found between the classifier perfor-
mances. However, the proposed multilayer perceptron neural
network approach shows the highest predictive power for
the safety related activities: stopping and falling. In addition,
the neural network approach had the lowest prediction time
of the classifiers tested. The combination of high predictive
power and good real time capabilities indicates that the neural
network approach could be used as safety assistance device to
assist marshals.

No satisfying performances of the approach were found for
the recognition of the performance related activities: jumping,
turning, and driving straight. Confusion between the activities
was often encountered and therefore no good classification
is guaranteed. The confusion is most likely caused by the
similarities between the performance related activities and by
the variety of different ways one activity can be executed. In
conclusion, this approach is not suitable for any application
that includes the recognition of the performance related activ-
ities.

We validated the generalizability of our method by testing
the trained models with datasets of unseen riders and tracks.
No differences in performance were noticed when we tested
the approach on new riders and tracks. Therefore, the adopted
approach should be able to generalize when used in a real life
application. However in this study, only a small group of 3
riders is used to validate the approach. Future validation step
of this approach should involve expansion of the dataset by



adding more riders. This will also benefit the expansion of the
first motocross database constructed in this study.

VII. ACKNOWLEDGEMENTS

This research was supported by MYLAPS Sports Timing.

(1]
(2]

(3]

(4]

[5]
(]

(71

(8l

[91

(10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

REFERENCES

Alberto Gobbi. Motocross injuries: Incidence, management, and pre-
vention. In Sports Injuries, pages 2841-2852. Springer, 2015.

A Noelle Larson, Anthony A Stans, William J Shaughnessy, Mark B
Dekutoski, Michael J Quinn, and Amy L MclIntosh. Motocross mor-
bidity: economic cost and injury distribution in children. Journal of
Pediatric Orthopaedics, 29(8):847-850, 2009.

Eduardo Velloso, Andreas Bulling, Hans Gellersen, Wallace Ugulino,
and Hugo Fuks. Qualitative activity recognition of weight lifting
exercises. In Proceedings of the 4th Augmented Human International
Conference, pages 116-123. ACM, 2013.

Donald Selmanaj, Matteo Corno, and Sergio M Savaresi. Hazard
detection for motorcycles via accelerometers: A self-organizing map
approach. 2016.

Knmv motorsport organisatie vrijwilligers [online]. available:
http://www.knmv.nl/motorsport/knmv/organisatie/vrijwilligers/.

Le Nguyen Ngu Nguyen, Daniel Rodriguez-Martin, Andreu Catala,
Carlos Pérez-Lopez, Albert Sama, and Andrea Cavallaro. Basketball
activity recognition using wearable inertial measurement units. In
Proceedings of the XVI International Conference on Human Computer
Interaction, page 60. ACM, 2015.

Tsutomu Terada, Masakazu Miyamae, Yasue Kishino, Takahito Fukuda,
and Masahiko Tsukamoto. An event-driven wearable system for support-
ing pit-crew and audiences on motorbike races. J. Mobile Multimedia,
5(2):140-157, 2009.

Ferhat Attal, Abderrahmane Boubezoul, Latifa Oukhellou, and Stéphane
Espié. Powered two-wheeler riding pattern recognition using a machine-
learning framework. IEEE Transactions on Intelligent Transportation
Systems, 16(1):475-487, 2015.

Ferhat Attal, Abderrahmane Boubezoul, Allou Samé, and Latifa Oukhel-
lou. Powered-two-wheeler safety critical events recognition using a
mixture model with quadratic logistic proportions. In ESANN 2015-
23rd European Symposium on Artificial Neural Networks, pages pp—421,
2015.

Abderrahmane Boubezoul, Stéphane Espié, Bruno Larnaudie, and Samir
Bouaziz. A simple fall detection algorithm for powered two wheelers.
Control Engineering Practice, 21(3):286-297, 2013.

Leopoldo Marchiori Rodrigues and Mario Mestria. Classification meth-
ods based on bayes and neural networks for human activity recognition.
In Natural Computation, Fuzzy Systems and Knowledge Discovery
(ICNC-FSKD), 2016 12th International Conference on, pages 1141-
1146. IEEE, 2016.

Jussi Parviainen, Jussi Colliri, Timo Pihlstrom, Jarmo Takala, Kari
Hanski, and Aki Lumiaho. Automatic crash detection for motor
cycles. In IECON 2014-40th Annual Conference of the IEEE Industrial
Electronics Society, pages 3409-3413. IEEE, 2014.
Motocross and speedway tracks in europe [online].
http://www.mxbrothers.com/mx-tracks/europe.

Stephen J Preece, John Yannis Goulermas, Laurence PJ Kenney, and
David Howard. A comparison of feature extraction methods for the
classification of dynamic activities from accelerometer data. I[EEE
Transactions on Biomedical Engineering, 56(3):871-879, 2009.

Oscar D Lara and Miguel A Labrador. A survey on human activity
recognition using wearable sensors. I[EEE Communications Surveys and
Tutorials, 15(3):1192-1209, 2013.

Andreas Bulling, Ulf Blanke, and Bernt Schiele. A tutorial on human
activity recognition using body-worn inertial sensors. ACM Computing
Surveys (CSUR), 46(3):33, 2014.

Stephen J Preece, John Y Goulermas, Laurence PJ Kenney, Dave
Howard, Kenneth Meijer, and Robin Crompton. Activity identification
using body-mounted sensorsa review of classification techniques. Phys-
iological measurement, 30(4):R1, 2009.

Jhun-Ying Yang, Jeen-Shing Wang, and Yen-Ping Chen. Using ac-
celeration measurements for activity recognition: An effective learning
algorithm for constructing neural classifiers. Pattern recognition letters,
29(16):2213-2220, 2008.

available:

[19]

[20]

21

[22]

[23]

[24]

[25]

[26

[27]

11

S Rasoul Safavian and David Landgrebe. A survey of decision
tree classifier methodology. IEEE transactions on systems, man, and
cybernetics, 21(3):660-674, 1991.

Johan AK Suykens and Joos Vandewalle. Least squares support vector
machine classifiers. Neural processing letters, 9(3):293-300, 1999.
Jiexiong Tang, Chenwei Deng, and Guang-Bin Huang. Extreme learn-
ing machine for multilayer perceptron. [EEE transactions on neural
networks and learning systems, 27(4):809-821, 2016.

Jamie A Ward, Paul Lukowicz, and Gerhard Troster. Evaluating
performance in continuous context recognition using event-driven error
characterisation. In International Symposium on Location-and Context-
Awareness, pages 239-255. Springer, 2006.

Payam Refaeilzadeh, Lei Tang, and Huan Liu. Cross-validation. In
Encyclopedia of database systems, pages 532-538. Springer, 2009.
Jorge-L Reyes-Ortiz, Luca Oneto, Albert Sama, Xavier Parra, and
Davide Anguita. Transition-aware human activity recognition using
smartphones. Neurocomputing, 171:754-767, 2016.

Akram Bayat, Marc Pomplun, and Duc A Tran. A study on human ac-
tivity recognition using accelerometer data from smartphones. Procedia
Computer Science, 34:450-457, 2014.

Ebrahim Al Safadi, Fahim Mohammad, Darshan Iyer, Benjamin J
Smiley, and Nilesh K Jain. Generalized activity recognition using ac-
celerometer in wearable devices for iot applications. In Advanced Video
and Signal Based Surveillance (AVSS), 2016 13th IEEE International
Conference on, pages 73-79. IEEE, 2016.

Zongyuan Zhao, Shuxiang Xu, Byeong Ho Kang, Mir Md Jahangir
Kabir, and Yunling Liu. Investigation of multilayer perceptron and class
imbalance problems for credit rating. International Journal of Computer
and Information Technology, 3(4):805-812, 2014.



Appendices

15



A Labeling

A challenge for activity recognition tasks is the collection of annotated or
ground truth labeled training data. Ground truth annotation is a time-
consuming task, as the annotator has to go through the data and manually
label all activity instances post hoc. In addition, motion data recorded from
an accelerometer or gyroscope is often more difficult to interpret than data
from other sensors, such as cameras. Therefore in this paper, the ground
truth is established by a camera and linked to the sensor data of the ac-
celerometer and gyroscope based on time. The process of time synchroniza-
tion is shown in Figure A.1. In this appendix, we will describe the labeling
process.

GPS
Time Synchronization

A
Y

l Sensor Data with Timestamp l Video Data with Timestamp

t Raw Database J

Labeling

A 4

Motocross Activity
Database

Figure A.1: GPS time synchronization between the sensor data and video
data.
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To label the accelerometer and gyroscope sensor data, the ground truth
and sensor data must be synchronized. The first step in this process is to
establish a ground truth. For the establishment of the ground truth, an
action camera was used. This camera was fixed on top of the helmet to get
a wide view of the rider and track. In the datasets, six different motocross
activities are represented: drive straight, jump, turn right, turn left, stop, and
fall. In Figure A, the six motocross activities are shown as seen in the raw
video data.

Inside the action camera, a GPS module was built. The GPS provides
timestamps to the video data, because each GPS satellite contains multiple
atomic clocks that send time global signals to the device. The update rate of
the GPS embedded in the action camera was 10 Hz. The time between the
update points was calculated based on the frames per second. This means
that with a frame rate of 50 fps, the maximum accuracy for video labeling is
0.02 s.

The next step is to label the activities seen in the data with their corre-
sponding timestamp. The activities were manually labeled according to the
activities seen in video data. The current time of each frame was shown in
the video data. The start and stop time of each activity were determined by
skipping through the video data frame by frame. This results in a large file in
which for the total length of the video data, the activities were written down
together with their start and stop time. Now the ground truth is established:
all activities are provided with the corresponding timestamp.

To link the activity timestamps to the accelerometer and gyroscope sen-
sor data, these sensor datapoints also needed a timestamp. Therefore, the
accelerometer and gyroscope was attached to a GPS antenna. The GPS an-
tenna is able to decode the satellite signals and therefore can add timestamps
to the data of the accelerometer and gyroscope. The update rate of the GPS
sensor was 12,5 Hz; the sampling rate of the sensor was 1000 Hz. To solve
this problem, the timestamps for the sensor datapoints between the two GPS
update points were interpolated.

The last step is to add the activity labels to the sensor data points based
on their common timestamps. After this is done, each sensor data point has
a corresponding activity label. The sensor data en activity labels can then
be further processed and used to train the classifiers.
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Jump

Drive Straight

Figure A.2: Video data of the six motocross activities. Labels were added
according to the activities seen in video data
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B Confusion matrices

In the paper provided in the first part of thesis, we analyzed the confusion
matrices of the neural network. In this appendix, we provide the confusion
matrices of the decision tree, support vector machine and k-nearest neighbor
classifiers for both the leave-one-rider-out validation and the leave-one-track-
out validation. The confusion matrices are shown in the tables below. Tables
B.1, B.2, and B.3 are the confusion matrices validated with the leave-one-
rider-out method for the k-nearest neighbor, support vector machine and
decision tree classifier respectively. Tables B.4, B.5, and B.6 are the confu-
sion matrices validated with the leave-one-track-out method for the k-nearest
neighbor, support vector machine and decision tree classifier respectively.
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Table B.1: Confusion matrix obtained with k-nearest neighbor model, vali-

dated with leave-one-rider-out method
Predicted activities

NN

True
activities

Table B.2: Confusion matrix

Turn

Turn

Drive

Stop | Fall | Jump Right | Left | Straight Recall
Stop (%) 4539 | 2 1 7 8 441 0.91
Fall (%) 55 4 0 5 10 13 0.05
Jump (%) 5 0 34 8 8 408 0.07
Turn

14 1 12 1 4
Right (%) 0 0 616 0 69 0.43
Turn
Left (%) 24 1 6 43 975 1296 0.42
Drive
Straight (%) 329 |0 71 214 672 8655 0.87
Precision 0.91 | 0.57 | 0.30 0.69 0.54 | 0.75

leave-one-rider-out method

NN

True
activities

obtained with decision tree, validated with

Predicted activities

Turn

Turn

Drive

Stop | Fall | Jump Right | Left | Straight Recall

Stop (%) 4305 | 2 0 0 7 684 0.86
Fall (%) 4 21 0 0 8 54 0.24
Jump (%) 0 0 16 0 21 426 0.03
Turn

Right (%) 6 0 2 339 289 805 0.24
Turn

Left (%) 11 2 1 15 826 1490 0.35
Drive

Straight (%) 240 11 77 131 795 8687 0.87
Precision 0.94 | 0.58 | 0.17 0.70 0.42 | 0.72
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Table B.3: Confusion matrix obtained with support vector machine, vali-

method
Predicted activities

dated with leave-one-rider-out

NN

True
activities

Turn | Turn | Drive

Stop | Fall | Jump Right | Left | Straight Recall
Stop (%) 4625 | 3 0 0 6 364 0.93
Fall (%) 52 4 0 2 10 13 0.04
Jump (%) 0 0 23 0 3 428 0.05
Turn

1 4 1 4
Right (%) 9 0 0 643 00 679 0.45
Turn
Left (%) 12 0 5 36 860 1432 0.37
Drive
Straight (%) 295 |0 54 141 374 9077 0.91
Precision 0.92 | 0.57 | 0.28 0.78 0.64 | 0.76

Table B.4: Confusion matrix obtained with k-nearest neighbor model, vali-

dated with leave-one-track-out method
Predicted activities

NN

True
activities

Turn | Turn | Drive

Stop | Fall | Jump Right | Left | Straight Recall
Stop (%) 929 | 6 0 0 0 48 0.95
Fall (%) 5 14 0 1 0 8 0.50
Jump (%) 3 1 0 0 0 436 -
Turn 8 0 |0 774 |28 |91l 0.45
Right (%) '
Turn
Left (%) 2 0 0 13 1125 | 1135 0.49
Drive
Straight (%) 220 | 2 0 77 196 4050 0.89
Precision 0.79 | 0.61 | - 0.89 0.83 | 0.61
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Table B.5: Confusion matrix

leave-one-track-out method

NN

True
activities

obtained with decision tree, validated with

Predicted activities

Turn | Turn | Drive

Stop | Fall | Jump Right | Left | Straight Recall
Stop (%) 891 0 0 0 1 91 0.91
Fall (%) 5 11 0 0 0 12 0.39
Jump (%) 13 0 0 1 0 426 -
Turn

1 4
Right (%) 0 0 0 776 38 897 0.45
Turn
Left (%) 19 0 0 4 936 1316 0.41
Drive
Straight (%) 88 0 0 115 153 4189 0.92
Precision 0.86 | 1.00 | - 0.87 0.83 | 0.60

Table B.6: Confusion matrix obtained with support vector machine, vali-

dated with leave-one-track-out method
Predicted activities

NN

True
activities

Turn | Turn | Drive

Stop | Fall | Jump Right | Left | Straight Recall
Stop (%) 932 | 0 0 0 3 48 0.95
Fall (%) 5 15 0 0 1 7 0.54
Jump (%) 1 0 11 0 0 428 0.03
Turn 1 0 |0 781 |22 | 917 0.45
Right (%) '
Turn
Left (%) 2 0 0 14 1153 | 1106 0.51
Drive
Straight (%) 60 0 0 56 184 4245 0.93
Precision 0.93 [ 1.00 |1 0.92 0.85 | 0.62
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C Database

One of the contributions of this work is the creation of motocross activity
database. The raw data from the motocross tests was stored into a .txt file to
get a clear structured dataset. Two examples of the database are presented
below. Figure C shows the raw data acquired directly from the accelerometer,
gyroscope and GPS. Figure C shows the data after it is labeled. This data was
used as input for the feature extraction process. The following parameters
can be found in the excel sheets, in sequence of display:

Miscellaneous
Time: time in seconds from the moment the device is turned on
Dist: distance in meters calculated by the GPS

Accelerometer

ACCX: Accelerations in m/s? in x-direction
ACCY: Accelerations in m/s? in y-direction
ACCZ: Accelerations in m/s? in z-direction

Gyroscope

GYROX: Angular velocity in °/s in x-direction
GYROY: Angular velocity in °/s in y-direction
GYROZ: Angular velocity in °/s in z-direction

Global Positioning System

MMDD: First 2 digits represent months, last 2 digits represent days
HHMM: First 2 digits represent hours, last 2 digits represent minutes
SSHH: First 2 digits represent seconds, last 2 digits represent hundredths
GPSVALID: 1 if GPS is connected to satelites, 0 if no connection is available

Label
ActID: Activity label
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A B C D E F G H L M M 4]

Time Dist ACC X ACCY ACCZ GYRO_X GYRO_Y GYRO_Z MMDD HHMM SS5HH GPSValid
NUMBER ~NUMBER ~NUMBER ~MNUMBER ~NUNMBER +NUMBER ~NUMBER ~NUMBER +NUMBER ~NUMBER ~NUMBER ~MNUMBER
Time Dist ACC_X ACCY ACCZ GYRO_X GYRO_Y GYRO_Z MMDD HHMIM S5HH GPSValid
o m m/st m/s* m/s® deg/s deg/s deg/s -
0,000 0 -9.89 -1.55 1,60 -2,32 -0,32 040 | 10,25 42,70 10
.00 0 9,80 155 158 224 0,40 0,24 |35 10,25 42,70 10
0,002 0 -9.89 -1,56 1,57 -2,16 -0,48 0,08 k,lﬁ 10,25 42,70 10
fo.003 0 9,80 157 157 208 0,64 0,00 |35 10,25 42,70 10
0,004 0 -9.89 -1.57 1,55 -2,08 -0,72 -0,16 k,lﬁ 10,25 42,70 10
.05 0 9,80 158 154 192 0,88 0,24 |35 10,25 42,70 10
006 0 988 57 1,53 184 0% 032 |35 10,25 4270 10
b,007 0 087 157 152 176 112 0,48 |35 10,25 42,70 10
008 0 987 1,58 152 1,60 120 048 |35 10,25 4270 10
b,009 0 087 157 151 152 128 0,64 |35 10,25 42,70 10
b.o10 0 987 57 1,50 128 136 072 |35 10,25 4270 10
.011 0 9,86 157 150 112 144 0,80 |35 10,25 42,70 10
b.o12 0 985 57 1,50 096 144 096 |35 10,25 4270 10
013 0 9,84 157 150 0,80 144 1,04 |35 10,25 42,70 10
b 014 0 983 156 149 056 152 104 |35 10,25 4270 10
.015 0 983 155 149 0,40 152 112 |35 10,25 42,70 10
b 016 0 982 158 149 016 1,60 112 |35 10,25 4270 10
p,017 0 98l 1,54 150 0,00 1,60 128 |35 10,25 42,70 10
b.018 0 980 158 151 0,24 168 128 |35 10,25 4270 10
b,019 0 9,80 153 151 0,48 168 136 |35 10,25 42,70 10
b.020 0 979 153 151 0,64 168 136 |35 10,25 4270 10
021 0 978 152 152 0,88 168 1,44 |35 10,25 42,70 10
b.o2z 0 977 152 152 112 168 152 |35 10,25 4270 10
b.023 0 976 152 153 128 168 152 |35 10,25 42,70 10
024 0 975 152 1,54 152 168 160 |35 10,25 4270 10
b.025 0 974 152 155 168 168 168 |35 10,25 42,70 10
b.026 0 974 152 156 1,84 176 176 |35 10,25 4270 10
.027 0 973 152 157 200 176 176 |35 10,25 42,70 10
028 0 972 152 1,58 208 184 184 |35 10,25 4270 10
b,029 0 971 151 159 224 1,84 13 |35 10,25 42,70 10
b.030 0 971 51 1,60 232 192 2,00 |35 10,25 4270 10
.031 0 971 152 161 240 1932 2,00 |35 10,25 42,70 10
b 032 0 970 51 162 256 200 208 |35 10,25 4270 10
b.033 0 960 151 162 264 200 2,08 |35 10,25 42,70 10
N 0 968 51 1,63 280 208 208 | 35 10,25 4270 10

Figure C.1: Representation of the raw data acquired by the accelerometer,
gyroscope, and GPS before labeling.
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1 2 3 4

ACC_X ACC_Y ACC Z GYRO_X
31200 -1.5600 1.8500 -7.9200
11.5900 3.6800 1.2600 -8.3200
17.6500 11.0300 0.8000 -8.8000
16.1300 13.8100 1.2800 -9.1200
£.3600 10.5000 0.2800 -0.3600
1.8400 7.6400 -0.9800 -9.5200
31800 10.0400 0.1200 -9.5200
9.3600 13.5400 1.0300 -9,2000
14,5100 10.7300 1.5000 -8.8000
15.8800 7.6300 0.7200 -8.4800
15.3300 10.5600 0.5200 -8.0800
14,9000 14,9800 21300 -7.6800
13.2200 17.1300 3.3000 -7.2000
10.6400 16.6300 2.0500 -6.9600
9.3000 14.0300 0.2200 -6.8000
9.0600 8.2800 -1.4600 -6.5400
9.3000 4.5100 -2.1500 -6.4000
14.0900 6.0400 -0.1400 -6.4800
17 9.6400 1.2400 -6.8800
16.6500 11.5700 21700 -7.4400
13.7500 13.4100 1.5400 -7.7600
£.1100 10.2500 0.3900 -7.3400
3.8300 -1.4800 1.0800 -7.4400
6.7300 -5.0700 1.8300 -7.0400
12,8100 2.5500 1.3800 -7.3600
14.6000 8.6500 -0.6500 -7.7600
10.8200 9.2100 -1.0600 -7.8400
4.0900 3.9100 -0.3000 -7.3600
0.9100 0.3900 0.7600 -6.8800
3.8400 3.6700 21200 -6.7200
9.0900 6,300 1.7300 -6.8000
13.4200 4 1.5200 -6.4800
14,7600 22300 2.0800 -5.9200
12.5100 4.3700 2.2800 -5.5200
9,3400 £.9500 3.0100 -5.1200

Figure C.2: Representation of the raw
and gyroscope after labeling.
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5 6 7
GYRO_Y GYRO_Z ActlD
52,0800 7.5200 Turn Left
56.0800 6.4800 Turn Left
57.6000 5.7600 Turn Left
557600 6.2400 Turn Left
53.4400 8 Turn Left
52.4800 9.6000 Turn Left
551200 9.6800 Turn Left
58.6400 84800 Turn Left
60,2400 7.4400 Turn Left
59.8400 7.5200 Turn Left
58,8800 7.7600 Turn Left
58.4800 7.5200 Turn Left
58.1600 6.9600 Turn Left
57.3600 7.2000 Turn Left
57.5200 7.5400 Turn Left
57.9200 8.2400 Turn Left
57.3600 8 Turn Left
57.4400 7.1200 Turn Left
56,8000 6.4800 Turn Left
54.9600 6.5600 Turn Left
53.6800 7.2000 Turn Left
52.4800 8 Turn Left
51.7600 8.1600 Turn Left
524800 7.5200|Drive
54.4000 6.4800 Drive
54 5.9200|Drive
52 6.1600 Crive
50.3200 7.2800 Drive
50,6400 8.4800 Drive
53.2800 8.4800 Drive
56,0800 7.2800|Drive
571200 6.1600 Drive
57.2000 6.0800 Drive
56.4000 6.2400 Drive
555400 6.0800 Crive

data acquired by the accelerometer
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Review of Activity Recognition and the Challenges
Related to Off-road Motorcycle Riding

Bas Breider

Abstract—Activity recognition has expanded its influence by
providing information on people’s behavior in numerous appli-
cations. With activity recognition having advanced substantially,
so has the number of challenges in designing, implementing, and
evaluating activity recognition systems. This review specifically
focuses on the challenges that arise when designing an activity
recognition system for motocross applications. In this paper,
different approaches to activity recognition are analyzed to
examine the current status. First, the various activities and
sensors used in activity recognition are discussed with respect
to their challenges that arise in motocross. In the next section,
the related work is discussed according to the main steps of
activity recognition: preprocessing, feature extraction, classifica-
tion, evaluation. Finally, various trends and ideas are presented
to address in future research.

I. INTRODUCTION

Physical activity has been defined as any bodily movement
produced by skeletal muscles, which can be categorized into
occupational, sports, conditioning, household, or other activi-
ties [1]. Automatic recognition of these activities has emerged
as a key research area in pattern recognition, especially in
the last couple of decades. In general, activity recognition
is seen as a broad concept involving the use of technology
to automatically recognize different activities and then apply
this information for various applications. To increase the
lifestyle quality of people, the need for the automated activity
classification applications has been identified in various fields,
ranging from health care to entertainment industries [2].

A potential application domain for activity analysis is sports.
Especially the analysis of movement is considered as a grow-
ing research area within the field of sport monitoring. The aim
of sports monitoring is to enhance the performance of athletes,
prevent injuries, or optimize training programs. Considering
the ongoing research on the development of activity recogni-
tion, the application areas of movement analysis in sports will
also benefit from this trend. The activity recognition used for
movement analysis can for example provide valuable informa-
tion to better understand the physical demands of numerous
sports [3], which subsequently can be used to provide feed-
back to athletes [4] and design training programs to improve
performance [5]. Activity recognition is also increasingly used
in sports broadcasting allowing analysts to identify interesting
events of the game and provide better viewer insights [6].
These various examples indicate the significance of activity
recognition in sports.

In addition to sports monitoring and sports entertainment
industries, safety related applications could benefit from the
development of activity recognition. Health benefits of activity
recognition include the reduction of injury risk in sports [7].

One of those high risks sport that could benefit from increased
safety is motocross. This extreme sport, mainly popular in
America and Europe [8], has one of the highest injury rates
among all sports [9]. This work focuses on off road motorcycle
riding, in particular motocross.

The automated recognition of activities is a challenging area
of work, where the challenges are related to both technical
and human factors in terms of design and implementation.
In addition to the common issues in activity recognition
like variability within and between persons, sport activity
recognition has its own challenges [10]. The variety of sport
activities can be highly diverse and its recognition therefore
requires careful selection of several various sensors that differ
in their capabilities and characteristics. Furthermore practical
limitations on placement and number of sensors have to be
taken into account, together with sensor characteristics as
power consumption, privacy, accuracy, and noise [11]. To
successfully recognize multiple activities in motocross, an
algorithm must overcome these challenging factors.

The aim of this review is to present the current state in hu-
man activity recognition making use of the current challenges
and their relation to activity recognition in motocross. As the
main challenges in activity recognition are briefly introduced
before, their elaboration and application to motocross will be
discussed in section 2. Now that every activity recognition
is a combination of methods to overcome these challenges,
the activity recognition process follows a general framework.
Solutions for the main steps of the framework are required
to get a functional activity recognition method of motocross
activities. This subdivision of methods is used to organize sec-
tion 3 of literature study. Furthermore, this review introduces
some of the most relevant open problems in the field providing
directions for future research in section 4 and ends with a
conclusion in section 5.

II. CHALLENGES

There is no uniform solution to the problem of activity
recognition due to the abundance in applications. Most of the
challenges that appear when designing an activity recognition
system are related to variance since there are countless pos-
sibilities depending on the application goal. The wide range
of activities, the different ways of data acquisition, the envi-
ronmental changes, and the surplus of variance in appearance
of the user and performance of the action, cause that the
activity recognition process has to be adapted to each individ-
ual system. To customize the activity recognition process to
motocross, some extra challenges arise, predominantly caused
by the extreme conditions during motocross races. The notion



that action recognition is still an unsolved problem brings up
the following question: what are the common challenges in the
field of action recognition and how are these challenges related
to motocross? This section provides background information
on the available sensors and the activities that can be detected,
pinpoints its problems, and gives a comparison of the state of
the art to tackle the challenges in motocross.

Activity Challenges

1) Specification of activities

Activity recognition is a broad concept within the current re-
search literature. To gain insight in the fundamental processes,
the first step is to define what is exactly an ’activity’. In brief,
activity can be described as any bodily movement produced by
skeletal muscles, which can be categorized into occupational,
sports, conditioning, household, or other activities [1]. There-
fore the goal of the application determines which activity is
useful to recognize.

Daily life activities Current literature shows that the ap-
plications of activity recognition in health care are abundant
[12]-[14]. In many of the health care applications the user is
monitored to recognize daily activities like sitting, standing,
jumping, and walking [15]. These activities are characterized
by their slow sequence of movements or in fact even a static
posture. As motocross is a sport in which high speeds are
needed to achieve a good performance, the natures of the
activities are mainly dynamic. These slowly executed or even
static activities are thus not relevant activities in motocross to
be recognized.

Falls among physically active people remain an essential
public health issue. So can falls lead to serious damage to
the body like contusion, fractures, and concussions [9]. Even
when no physical damage is done to the body, the resultant
fear of falling may lead to reduced freedom of movement.
With regards to health care applications, falling is detected and
used to alert caregivers that can then provide help to the injured
person. Falling can also be detected before the impact actually
occurs to deploy an inflatable jacket and prevent serious injury
[16]. This inflatable jacket concept is also tested in motor
riding [17]. A fall detection system could potentially reduce
the high injury rates in motocross [9] by preventing the impact
of the fall. Besides the application of fall recognition for
these kinds of safety devices, fall detection could also improve
safety in motocross after the fall has already occurred. During
motocross races and practices, volunteers stand alongside the
track to increase safety for the riders. These volunteers will
alarm race control when an accident has happened, provide the
rider with medical care, and are held responsible for creating
safe racing environment for all riders [18]. Considering all
these different tasks, some help in creating a safe situation
could benefit the volunteers as well as the riders. With a fall
detection system, the task load of the volunteers would be
reduced and safety would increase during motocross racing.

Sport activities Besides that daily life events can be related
to motocross, there are also some sport specific activity
recognition application that could be related to motocross. The
sports activity recognition applications range from daily sports

activity measurement and performance classification [19] to
sports entertainment [6]. Although the applications of activity
recognition in sports are large, yet it has to be applied to
motocross. Usually thousands of motocross fans watch the
races live on television or go to circuit, which indicates the
high entertainment value of motocross for their fans. When
watching a race, fans can gain a sense of togetherness with
riders and other fans. However, they cannot obtain sufficient
information to understand the current race situation at the
circuit, because it only provides very little information about
timing of the riders. Therefore, there is an increasing demand
for information systems to provide the information that the
fans want to know. To solve this problem, activity recognition
is used for the detection of high entertainment valued activities
like turning and crashes in motorcycle racing [6]. In the case
of recognizing such an event, the information can transferred
to the television control room from which these events can be
broadcast with relevant added information. Besides the direct
link between activity recognition and valuable information,
there are more sources that could provide interesting infor-
mation about the performance of the rider. With the use of
Intel’s micro sensors [20] the crowd and racer can be provided
with valuable information about the performance of the jump
in terms of airtime, height, and speed during the jump. The
recognition of high entertainment valued activities could also
be applied to motocross. So can jumping and turning be seen
as key activities for the spectators as well as the riders and the
team, which after the recognition can be broadcast and shown
with additional performance metrics.

Motor riding For this review about activity recognition
there is no directly applied relevant work when it comes
to motocross. The closest what has been done compared to
activity recognition in motocross is fall detection [21], impact
detection [22] and safety critical event recognition of powered
two wheelers on the road [23], [24]. In particular, the riders
safety in terms of falling has been researched [21]. The falls
were specified to falling in a turn caused by a slippery surface.
As smooth falling styles are not the only falling patterns,
[22] presented a concept for crash detection in general. [23]
and [24] took it one step further and identified dangerous
riding patterns, like swaying and extreme accelerations and
decelerations. However, this is to a limited extend comparable
to motocross. So can changes in surface cause the motor
and motor rider to perform maneuvers that are normal during
motocross racing, but would indicate a hazardous situation on
the road [22]. Furthermore, jumping while riding a motorcycle
would in most cases mark a dangerous situation, however this
is a frequently occurring activity in motocross. Yet the safety
reasons and their related activities like for example jumping
and falling are relevant for motocross.

2) Composite and Concurrent activities

To discuss qualitative activity recognition, relevant activities
have to be separated from the other activities that occur during
motocross. The challenge of refining an activity becomes
much harder when we take activities into account that are
composed of multiple other activities. Composed activities
like sewing and drilling are composed of several instances of
lifting hands, pushing, and pulling [25]. Consider the problem



of automatically recognizing a jump during motocross. With
the evolution of the jumping technique for advanced riders,
the jump evolved into what is called a ’scrub’ [26]. This
’scrub’ includes, beside the vertical movement of the rider,
a horizontal positioning of the motorcycle while in the air. So
this activity is composed by several activities, jumping and
falling, which makes the differentiation in recognition process
harder.

During the execution of a sequence of movements, it is
possible that a certain activity begins when the previous activ-
ity is not yet finished: concurrent activities. The assumption
that an individual only performs one activity at a time is true
for basic activities. However in general, activities are rather
overlapping and concurrent. This also introduces the problem
of defining which activity is performed when. So can a person
for example be falling while running or riding a bike [27].
This challenge is also present in motocross, as falling is an
unintentional and unwanted activity that occurs mainly during
jumping and turning during the race as is shown in figure 1.

Composite activities

Falling
Turning Free fall Lying Standing
[ t t i > Time
t1 i2 i3 4
Concurrent activities
Jumping
Turning

1

f # = Time
t2 13 i4

Fig. 1. Representation of composite and concurrent activities in motocross

3) Variance in activities

So far the different activities are discussed, but there are
some more challenges that arise when executing these activi-
ties. Namely, the activity recognition system is the best when
it works for a large number of users instead of tailored to a
specific use, because differences between individuals result in
variations in the way that people perform tasks. Several factors
can affect the performance of the activity, such as stress,
fatigue, or the emotional or environmental state in which the
activity is performed [28]. As this effect is shown in many
different sport activities [29], this could also be related to
motocross. Especially when you take in mind the high physical
activity demand on the riders. At the beginning of a race, riders
are less fatigued and therefore more powerful to execute a

jump higher and further than at the end of a tiring race. This
means that for classification of the activities, the difference
between and within the racers have to be taken into account.

The set of activities that are being recognized, play an
important role in the design decisions of an activity recognition
system. From what is discussed so far, there are important
activities like falling, jumping, turning, and starting/stopping
that are useful for activity recognition in motocross for dif-
ferent reasons like safety, entertainment, and performance. In
addition to the application, the activity specification can help
developers or researchers to make different design choices,
such as which sensors to use. This sensor selection and other
sensor challenges are discussed next.

Sensor Challenges

4) Sensor selection

A practical challenge for implementing activity recognition
in applications is caused by the sensing equipment, more
specifically the variability in sensors and their characteristics.
The sensors used in activity recognition can be roughly divided
into two categories: (1) camera sensor based methods, which
can be either fixed or mobile; (2) micro physical sensor based
methods, which utilize motion sensors and environmental cues
to get information of the user’s state.

Camera

Camera sensor based methods make use of a camera to
record the activity sequence and recognize the activities using
computer vision algorithms. Within the activity recognition
field, cameras are used in two different setups: fixed camera
in the environment of the user and a wearable camera attached
to the user.

Fixed camera Fixed camera setup for activity recognition
has been used in health care applications to capture activity
or fall in household settings [30]. In an entertainment en-
vironment, the activity recognition can improve the human
computer interaction, such as the automatic recognition of
different players actions during a sports game [31]. Using
cameras fixed to the environment may be acceptable when
activities are confined to certain parts of a constrained envi-
ronment, like indoor sports. When activities are performed in
a changing environment and involve going from place to place
fixed camera systems are not very practical because acquiring
video data is difficult for long-term human motion analysis
in such unconstrained environments. In motocross, the variety
in track compositions does not make a static camera setup
suitable for activity recognition.

Wearable camera Recently, wearable camera systems have
been proposed to overcome the problems of a fixed camera.
From a first person view, a wearable camera mounted on the
chest was able to capture which activities were performed
with the users hands [32]). Another application of activity
recognition with a wearable camera is to recognize activity
of others [33]. Besides the continuous capture of relevant
activities with a wearable camera, the other disadvantages,
such as occlusion effects, the high cost of processing and
storing images, the need for using multiple camera projections
from 3D to 2D, and cameras privacy issues do still exist.



When it comes to activity recognition in motocross, using
a wearable camera would not be sufficient, nevertheless first
person viewpoint could be used for entertainment purposes.

Capturing physical activity with any optical system can be
challenging, even impractical, within large volumes of data
due to the cost and difficulty capturing specific activities
with enough cameras to ensure enough coverage. Additional
complications can also arise during outdoor data capture
sessions where there is little control over lighting conditions
or occlusions when motion from high velocity movements is
required and tracking can easily be lost. Efforts to recognize
activities in unconstrained settings have caused a shift from
camera usage toward using inertial sensors.

Microelectromechanical systems

Alternative sensors that can overcome the drawbacks of the
camera are microelectromechanical systems (MEMS). MEMS
are miniature devices comprising of integrated mechanical and
electrical components designed to work together to sense and
report on the physical properties of environment. The vast
majority of activity recognition systems make use of MEMS
such as inertial sensors, accelerometers, and gyroscopes. These
sensors are used either alone, in combination with each other,
or in combination with other sensors like GPS. In the following
part of this review the most used MEMS in activity recognition
will be elaborated.

Accelerometer Accelerometers are sensors which measure
the accelerations of objects in motion along reference axes.
Measuring activity using accelerometers is preferred because
acceleration is proportional to external force and thus can
reflect intensity and frequency of movement. Research has
shown that accelerometers can be used to identify human
activity for high energy actions such as walking, running,
and jumping [34]-[36]. Measured accelerations can also be
due to gravity, and therefore accelerometers can be used to
calculate tilt angle. The resulting inclination data can be used
to classify body postures. Fall detection makes use of these
features to classify if a person is either lying or standing
[37]. In sports, accelerometers have been used to monitor elite
athletes in competition or training environments. For example
in swimming, accelerometers have allowed the comparison
of stroke characteristics for a variety of training strokes
and therefore have helped to improve swimming technique
[38]. With these characteristics, accelerometers are capable of
providing sufficient information for measuring a wide range of
human activities. Especially the good results in unconstrained
and varying environments make the accelerometer suitable to
motocCross.

Gyroscope Gyroscopes provide angular rate information
around an axis of sensitivity. By integrating the gyroscope
signal, change in orientation can be obtained. The orientation
can then be used to identify postures and change in position.
This is done in [39] to identify static and dynamic activities
like standing, running, walking upstairs and downstairs. The
gyroscope produces better recognition accuracy for activities
that are characterized by rotations around the reference axis of
the gyroscope, like walking upstairs and downstairs with gyro-
scope placed on the leg. Activities which are characterized by

change in orientation can thus be identified from a gyroscope
signal. However, the combination of an accelerometer and
gyroscopes performs better for activities that exhibit unique
patterns of orientation changes. So did [39] and [40] report
that activity recognition improved when the accelerometer
signals where complemented with gyroscopic signals. In com-
bination with an accelerometer, the gyroscope performs better
than when used individually. This is an important result and
supports the idea of using both sensors in combination with
each to better recognize activities. To see if this also holds
for other activities, [24] did use a gyroscope in combina-
tion with an accelerometer to detect dangerous maneuvers
during motor riding. By combining the accelerometer and
gyroscope data, all changes in the dynamic behavior of the
motorcycle can be detected. For the activities that occur during
motocross, positioning of the bike and rotational changes are
characteristic. A gyroscope would be a good sensor to provide
information about the rotations that the rider and the bike
experience/endure during a race.

Magnetometer Sensor units that contain accelerometers and
gyroscopes can be enhanced by magnetometers. Combining
magnetometers with accelerometer and gyroscopes in a single
inertial measurement unit (IMU), allows the sensor heading to
be determined and can help increase robustness against high
acceleration motions [41]. The magnetometer, accelerometer,
and gyroscope were evaluated individually and together based
on the activity recognition accuracy. Comparing the classi-
fication results based on the different sensor combinations
indicates that if only a single sensor type is used, the best
correct differentiation rates are obtained by magnetometers,
followed by accelerometers and gyroscopes. However, com-
bining all three sensors lead to the best recognition accuracy
[39]. Especially in motocross, a sport in which the posture is of
main importance to be able to perform under hard conditions.
Turning is an obvious activity in which the posture of the
rider is used to keep balance. So any sensor that could give
information about the heading of the rider, could improve the
characterisation of movements. It should be kept in mind,
however, that magnetometer outputs can be easily distorted by
metal surfaces. The deflection in magnetometer readings can
lead to misleading information and wrong interpretations. So
the usability for activity recognition for motocross is reduced
as the motor itself is partially made out of steel components.

GPS The Global Positioning System (GPS) enables all sort
of location based services that can complement inertial sensors
to recognize activities based on velocity and position. In [42],
the authors aimed to recognize several sports activities based
on accelerometer and GPS data. The location of the user
can be helpful to infer their activity using logical reasoning.
As an example, if a rider’s location is off the track, there
might be a problem with the safety of the rider. In addition,
the location of the wearer is also useful in a risk-associated
sport like motocross to detect the position of the rider and
pass this through to emergency services in case the driver
was unobserved by others. This application has already been
introduced for motorcycles and other vehicles on the road
[22], [43]. GPS would not be helpful for activity recognition
in motocross, because of the lack of information from the



coordinates on the track. However, GPS could help to increase
safety by providing volunteers and emergency services the
exact location of the injured rider.

5) Sensor Placement

One of the challenges in activity recognition using sensors is
the variability in placement. The placement of sensor systems
refers to the locations where the sensors are attached and the
positions in which the sensor is placed. Fixed sensor systems
have to be placed in a specified position in which every activity
can be recorded, while being stationary. This non-intrusive
way of motion recording is ideally used in situation in which
the user is constantly moving within the range of the sensor,
as the inference of activity entirely depends on the interaction
of the users with the fixed sensors. In motocross this is not
feasible as the area in which the motions are performed are
large, this would require many fixed sensors and therefore
increase cost of installation and maintenance.

Naturally, wearable sensors give much more variability in
placement for motion detection. Most of the measured at-
tributes of wearable sensors are related to the users movement,
environmental variables, or physiological stimuli. To measure
the changes in these signals, the miniature inertial sensors have
to be attached to the human body instead of employing sensor
systems fixed to the environment. Problems are caused by the
wrong placement or orientation of the sensors and changes in
the position of sensors during motion.

For some wearable sensors such as the accelerometer and
gyroscope, activity recognition results depend on orientation
changes during the motion. When attached to the body, the
axis are aligned and calibrated to the user. Consequently, a
change of orientation of the inertial sensors influences the ro-
bustness of the measurements. So did [44] report that accuracy
decreased when sensor displacement was detected. Consistent
orientation can be achieved by a fixed position, which is
needed to have a practical activity recognition solution.

So with the lack of orientation independence, users are
required to place the sensors in a specific orientation to
increase robustness. When riding a motorcycle, the sensors
can be placed on the frame of the motorcycle instead of the
rider. The sensor devices can then be easily attached to or de-
tached from a motorcycle before and after the race. Therefore,
motor-placement causes no constraint in body movement and
discomfort can be minimized as well [24].

6) Sensor Consumption

Power consumption is the main factor affecting the design
of activity recognition system. The size of the sensor network
constraints the power consumption that is related to the battery
size, furthermore sensor systems should have enough memory
space both for computational power and data that needs to be
stored. The requirements of the data storage and computational
power depends on the response time of the sensors, which are
set by the application of the activity recognition system. The
sensor system can either provide online or offline feedback
about the activity recognition. Online feedback involves that
the information on the performed activities is directly fed back
to the user. Offline feedback includes delayed information,
because either more time is needed to recognize activities

due to high computational demands, or are intended for
applications that do not require real-time feedback.

Fixed sensor systems can be designed in a way that the
energy providing source can be connected to the sensor system
in multiple ways. The sensors are not explicitly limited by
a power supply, as a sensory system can be connected to a
stationary power source. The extra volume and weight of the
battery is needed to provide, for example a stationary camera,
with enough power to match the requirements of the high
computational cost when high resolution images have to be
processed [45]. However, the maintenance cost and deploying
difficulties of the power supply make the system hard to use
in situations that need constant adaptations to a changing
environment like a motocross track.

As for wearable devices, which are powered by small
batteries, size constraints battery capacity. The miniature size
is essential for wearable systems, leaving little space to accom-
modate sufficient energy storage. In most cases, existing wear-
ables store the data in local memory storage and do not make
the data available in real-time [46]. The data is stored onboard,
and thus data has to be first downloaded from the multiple
devices and synchronized offline. Naturally, if data cannot be
received from wearable devices in real time, applications that
use this data cannot be implemented. So offline recognition,
unlike online, is not greatly affected by processing and storage
issues, because the required computations could be executed in
an external server that has large computational power and data
storage capabilities. If feedback is provided online, the power
consumption of wearable devices increases [47]-[49]. Despite
the increased power consumption with direct feedback, inertial
measurement units can reduce the size of batteries, enhance
sensor lifetime, and enable long-term activity monitoring.

One way to reduce energy consumption is to only use the
sensors that are needed. Although some of the sensors perform
better in certain situations than others, the best recognition
accuracy is achieved when various sensors are included in
the design. Consequently, the energy consumption increases
when all sensors are turned on. Since all sensors may not
be necessary simultaneously, dynamic and adaptive sensor
selection can be used to improve battery life. This means that
the sensors are turned on and off in real time in an adaptive
way for energy-efficient activity recognition. Such an adaptive
sensor selection did not result in a lower accuracy, while the
sensor consumption was reduced [48], [S0]. See table 1 for a
summary of the advantages and disadvantages of the various
sensor approaches.

III. ACTIVITY RECOGNITION

There are many different methods for interpreting activ-
ity information from raw sensor data. However, all activity
recognition processes can be summarized as a sequence of
signal processing, pattern recognition, and machine learning
techniques to classify activities based on raw sensor data.
These techniques are based on multiple general steps that
define an activity recognition process. The incoming sensor
data is first processed to optimally characterize meaningful
features of the activities. When characteristic features of the



TABLE I
COMPARISON OF SENSOR APPROACHES
Category Advantages Disadvantages
e Capture only race track specific parts
e Fixed camera at place with high activity High processing time and power consumption
Vision based e No need for multiple physical sensory devices

Intuitive to operate

Sensitive to occlusion and light

L]

e Camera are comparatively expensive

L]

e High amount of computational power needed

Physical sensor based

Relatively low cost

Precise information of body movements during racing
Able to capture the movements of the rider continuously
Low power consumption and computational power

Many sensors needed for complete information
Sensitive to noise
e Discomfort of wearing sensors

data are determined, these features and corresponding ground
truth class labels are used as input to train a classifier model,
which is the training phase. In classification phase, new sensor
data is fed into the trained classifier to test the performance in
new situations. The final performance evaluation phase allows
the assessment of the performance of classifier by setting a
score for each activity class and map these scores into a single
class label (figure 2). In the following section the most widely
used algorithms and methods for each of these steps together
with the challenges that arise during the process design are
presented.

Training data Test data

Y Y

Feature extraction and selection

l

Model learning and classification

l

Performance evaluation

Fig. 2. Representation of data flow for testing and training activity recognition
system

A. Feature extraction

In the first phase raw data is acquired using several sensors
placed either on the body or in the environment of the user.
Before using the streams of data as input to the activity
recognition chain, characteristic features have to be determined
from the data. In general, these features can be defined as the
abstractions of raw data and the purpose of feature extraction
is to find the main characteristics of sensor data that precisely
represent the original data [S1]. Different features have been
considered in the literature ranging from raw vision and
inertial data signals to high-level descriptors [52]. The feature
extraction and selection stage reduces the data into quantitative
measures that are discriminative for the different activities.
In the following section the most common feature extraction
and selection techniques for each of the previously described
sensors will be discussed (table 2).

Microelectromechanical systems

The incoming raw inertial sensor data can have unwanted
noise caused by a variety of sources like environmental factors,
sensor malfunction or activity execution, which interfere with
the activity patterns. Therefore the feature extraction phase
includes filtering of the raw data. There are different types of
filters used for noise removal: low-pass, high-pass, or band-
pass filter [21]. Apart from using low-pass filters for the
removal of high-frequency noise [24], low-pass filters can
also be used to remove the dynamic acceleration, and thus
the direction of the gravity vector is found during quasi-static
activities. On the other hand, gravitational acceleration can
be extracted with a high-pass filter to analyze the dynamic
acceleration often characterizing the movement [53].

These filtering techniques have in common that their pur-
pose is to retain useful information in a signal while rejecting
unwanted information. When it comes to motocross, the en-
gine of the bike and the bumpy track may cause unwanted
vibrations. Therefore the accelerometer and gyroscope data
become very noisy and require filtering. Initially, a static
frequency analysis can conducted to estimate the spectral
signature of the data, which will show the frequency of
the engine noise. The engine noise can then be removed
by a low-pass or band-pass filter [24]. It is important to
note that this preprocessing is supposed to be generic; that
is, it should not depend on anything but the data itself. It
should not, for example, be specific to any particular person
or bike. After the preprocessing stage, characteristics can be
extracted from the inertial data. The features are divided here
into four categories: heuristic features, time domain features,
frequency domain features and timefrequency domain features.
The heuristic features are typically related to specific aspects
of the movements that occur during the activity and therefore
are only useful in certain applications. For motocross this
mainly includes the postural changes and execution speed of
movements in time that happen when riding a bike on a bumpy
track. To extract these features, the designer of the features is
required to have expert knowledge about the application so
that they know which features will best serve their purpose.
For example during a fall, the rider is first subject to a free fall
period, which is followed by a rapid deceleration when he hits
the ground [22]. In addition there is also a measurable change
in orientation during a fall [54]. For every other activity that
happens during motocross such features have to be engineered
to work well.

In contrast to the heuristic approach, the time, frequency



and time-frequency domain features are not typically related to
specific aspects of individual movements or postures. Instead
they simply represent different ways of characterizing the
information within the time varying. The time domain features
are the general statistical measurements that can represent the
generalization of the data [55]. The frequency domain features
analyze the frequency performance of the sensor signals,
which is usually the periodicity of the signal over a long
duration. Therefore the frequency domain features are good
at analyzing stationary signals that contain frequency patterns
specific for each activity [56]. The timefrequency domain
features refer to features that captures both time and frequency
information simultaneously with different timefrequency rep-
resentations that are useful for non stationary signals in which
the frequency component changes in time. They are mainly
used to detect transition between different activities [57].

Camera

In vision based activity recognition, a video object is first
segmented from its background to extract the required ob-
ject from a sequence of images. Video object segmentation
methods have been categorized into background construction-
based methods, and foreground extraction-based methods. In
background construction-based methods, the camera is static,
hence the background information is obtained in advance
and the model is build up for object segmentation. On the
contrary, foreground extraction is better used when the ac-
tivity is captured by the moving camera. Due to the moving
object and background,the background model cannot be built
in advance. Therefore, the model is obtained in an online
setting [58]. After the segmentation, important characteristics
of the silhouettes are extracted and presented as a set of
features. Ideally, the features should be able to cope with small
variations in the images, such as viewpoint, user appearance
and action execution. Meanwhile, they should be sufficient
enough to support robust recognition of activities.

Features in video based activity recognition can be divided
into two categories: Global features and local features: global
features follow top-down procedure, while local features pro-
ceed bottom-up. Extracting global features needs localisation
of the user and specification of a region of interest. The
general use of global features is powerful since they encode
rich information. However, it requires precise procedures for
determining important parts in the image. On the other hand,
local features describe the image as a collection of independent
blocks of data. They detect the essential spatio-temporal points
and calculate the local correlation around these points. At
last, the blocks around these points are unified into a final
representation. Compared with global features, local features
are less sensitive to noises and do not require high quality
background subtraction. However, they require an intensive
preprocessing step to extract a sufficient amount of relevant
points [59].

Feature selection For a given classification problem it is
often difficult to identify optimal features. Therefore, methods
for selecting optimal features from a larger set and methods
for reducing dimensionality of features can be used as pre-
processing stage before algorithm learning. The goal of the

TABLE II
SUMMARY OF FEATURE EXTRACTION METHODS

Methods

Body angle, body ve-
locity, body accelera-
tion

Mean, axis crossings,
standard  deviation,
variance

Fast Fourier trans-
form, discrete cosine

References
[22], [43], [54], [64]

Category
Heuristic domain

Time domain

[13], [19], [34], [55]

[15], [48], [56]

Frequency domain

transform
Frequency-time domain | Wavelet transform [57]
Global features Discrete Fourier [32]
transform
Local features Scale invariant fea- [65]

ture transform

feature selection is to identify the features with relatively small
intra-class and large inter-class variations. Since such features
are more discriminative, they result in more accurate classi-
fication. Furthermore, the often unnecessarily large number
of features can be reduced, which decreases the computation
requirements during the activity recognition process [60].
To reduce the feature dimension, multiple approaches can
be applied to adapt the feature extraction to the dataset. A
well-known method to reduce dimensionality of the existing
feature space is principal component analysis (PCA) [61]. The
PCA feature extraction method finds the direction of maximal
variance in the sensor data and then the data is projected onto
those optimal directions. After running the PCA, the most
discriminating features are maintained by removal of highly
interacting features. As a consequence of the rejection of the
features with smaller variance, a reduction of features can be
achieved. In addition, neural networks have been proposed
to extract more meaningful features, because neural networks
can identify local dependencies in sensor data without specific
domain knowledge [62]. Another key advantage of a feature
extraction done by neural networks is its representation of
input features that can create a more generalized learning
methods for feature extraction for different activities [63].
This will potentially increase performance in the varying
environments and circumstances that are inherent to the nature
of motocross.

B. Training & Classification

After feature extraction from the sensor data, the next step in
the activity recognition process is to make use of classification
algorithms. These algorithms are helpful to describe processes,
recognize patterns, and predict sensor data. The degree of
complexity of these different classification algorithms varies
from simple self-defined threshold-based schemes to more
advanced machine learning algorithms like neural networks.
The choice for one of these classifiers will be determined by
a number of considerations. As well as accuracy, factors like
ease of development and speed of real-time execution will
influence the final choice. The following paragraphs briefly
summarize the different techniques, giving an overview of the
potential advantages and disadvantages of each method (table
3).



Threshold-based methods Naturally, the threshold-based
classification scheme is the most intuitive classifier known for
activity recognition. A predetermined characteristic feature is
simply compared to its threshold value to determine whether
a particular activity is being performed [66]. For example,
threshold-based classification has been successfully applied to
the detection of falls when riding a motorcycle. In this case,
the extreme postural change that happens when falling with a
motorcycle was identified as a characterizing movement. As
a result, the rapid deceleration which occurs when the user
comes in contact with the ground exceeded the threshold value
and therefore was identified as a fall [22].

Threshold-based hierarchical classification schemes The
threshold based classifier can be extended by adding multiple
features and corresponding thresholds. The range of different
characteristics that have been used to develop heuristic fea-
tures are then used in threshold-based classification schemes.
Accordingly, a number of studies have demonstrated improved
fall detection accuracy when a number of different threshold
rules are combined together [65], [67]. Setting the rules
manually is labor-intensive and requires knowledge about the
movement of the activity, however the execution of the scheme
is executed with minimal computational power [42].

Decision trees The decision tree approach is similar to
hierarchical classification as it flows through a decision scheme
in which a set of rules is created. However, rather than the
decision structure being build up manually by the user, the
decision rules are formed by the algorithm. The classifier
is therefore fast to develop without considerable user inter-
vention. It is normally executed with minimal computational
power and is therefore well suited to real-time applications
[68].

K-nearest neighbor Nearest neighbor algorithms are used
for classification of activities based on the closest training
examples. With a k-nearest neighbor (kNN) classification
scheme, each feature makes up a dimension and thus a multi-
dimensional feature space is constructed. To classify a new
data set, the most common label of the k closest training data
labels is chosen as activity class [69]. The kNN classifier has
proved to identify activities riding a bike and falls during a
prolonged period of time [24], [70].

In terms of feasibility, classification algorithm using the
kNN method can be developed rapidly, are highly versatile
and can be used to classify a large range of different activities.
However, for a large dataset each new sample will be used to
calculate the distances and therefore it can be computationally
expensive. The kNN algorithm requires all the training data
to be kept in memory for comparison between each new data
point and the entire training datasets. The computation burden
of this approach constraints the energy resource capabilities
and real time response requirements of the activity recognition
system. Hence, there is need to make kNN more suitable for
online recognition of activities [71].

Support vector machine The support vector machine (SVM)
is a prominent classifier for activity recognition. This machine
learning method is based on finding optimal hyperplanes
between classes in a way that the margin between patterns of
each class is maximized. To do so, an optimization technique

is used to find the corresponding separating hyperplanes that
perform the required classifications [61]. The SVM method
is based on kernel functions that enables classification on
higher dimension, but therefore may also be very slow to train
with large datasets. When trying to maximize the performance
of the SVM method difficulties arise with setting the kernel
parameters and type. Because the knowledge is hidden within
the model, this may hinder the analysis and incorporation of
the algorithm by the creator of the recognition system [72].

Hidden Markov model Markov chains describe system
which contain information on the probability of transition
between different activity states. In particular, hidden Markov
models are a subset of the Markov chain and represent a
hierarchical approach for identifying a sequence of activities
from a sequence of measured features. At each step, a human is
considered to be in one state, which generates an observation.
Then a system transits into another state and the transition
probabilities between the states are calculated. With this
technique, classification of sensor data depends not only on
the observed features but also on the likelihood of a transition
from a previous activity [73].

Neural network Artificial neural networks are algorithms
inspired by biological neural existing in the human brain.
It consists of a large number of nodes acting as neurons in
a network and the weighted connections between different
neurons representing the relationship between its inputs and
outputs [74]. In activity recognition, neural networks capture
local dependencies of activity signals. In image recognition
tasks, the nearby pixels typically have strong relationship with
each other. Similarly, with wearable sensors given an activity
the nearby inertial sensor readings are likely to be correlated
[75]. With a large enough set of training data and parame-
ter tuning, a neural network can provide high classification
performance in complex settings [76]. One of the factors that
make a neural network well suited for activity recognition is
that it preserves feature scale invariances. In image recognition
and wearable sensor integration, the recognition system is
presented with different scales in images and sensor amplitude
readings. Neural networks are capable of classifying activities
in these circumstances due to their ability to model local
dependencies [75]. However, neural network classifiers have
several limitations as well. One of them is the large data set
that is often required for training, usually such a dataset is
not easily available for wearable based applications. Moreover,
trained networks are not interpretable for users as the under-
lying algorithm weights and links are formed without human
interference. And although they have demonstrated high levels
of accuracy for a number of classification problems, they
can be slow to train and some types of networks difficult to
implement [62].

Supervised vs. Unsupervised Two different approaches can
be applied to the learning process of classifiers, namely
supervised and unsupervised learning. For supervised learning
the labelled activity data is required to train the classification
algorithm. Once the training phase is complete, the classifier
is able to assign an activity label to unknown sensor data.
In comparison, unsupervised classification does not require
activity labels but directly clusters the sensor data into possible



TABLE III
SUMMARY OF CLASSIFICATION MODELS

Classification model Advantages Limitations References
Threshold-based : &?ﬁﬁfé?iﬁ)ﬁgjtsaitio(;]falru;gi«er e Requires knowledge about movement [22], [65]-[67]
Decision trees e Fast to develop set of rules e Binary classification [68]

k-Nearest neighbor : EZ‘:: E:rﬁiztii; trlg;ilr_lt%me applications e Parameter selection essential [24], [70]
Support vector machine | e Good performance for multiple activities e Knowledge hidden in model [61], [72]
Hidden Markov model : Iég;ﬂ;ﬂgzdo?ﬁsxﬁeg: igc?;n?;f)?:mon e Weak performance for time-independent activities [73]
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activities. The use of an unsupervised approach may be needed
in such a context of activity recognition when it is difficult
to have labels for the activity data. In general, the user
is expected to execute an activity as natural as possible to
simulate real life as close as possible. For this reason it
is recommended for users to perform activities without the
participation of many sensors and researchers interferences.
Under these circumstances the chances of missing training
data classification labels is increased [77]. In addition, large
datasets are often costly to process, because the time needed
for annotation of the training data depends on the quality
and amount of data. Especially for systems detecting adverse
events, like falls, datasets are large and the relevant activities
infrequent. And due to the low frequency of these adverse
events and the long time needed for annotation, unsupervised
learning is a suitable solution for speeding up classifying [78].

Combining different classifiers Combining classifiers is an-
other very promising approach to increase performance of
activity recognition systems. The fusion of multiple classifiers
leads to the combination of results outputs into a single
decision. As these classifiers are all using the same data set to
base their decision on, the difference in classifying boundaries
is determined by their sensitivity for different patterns. Fusion
techniques commonly used in activity recognition research
are majority voting, where the majority class is chosen [79],
stacking which trains the classifiers to use as a new training
stage [80], and boosting which assigns weights to the training
patterns to combine weak classifiers [81]. In comparison with
single classifiers, majority voting provided better accuracy for
daily life activities [55]. Similarly, adaptive boosting improved
the performance of other learning algorithms when applied
to both artificial and real world datasets [82], [83]. Overall
ensemble classifiers can provide complementary decisions and
improve the overall accuracy. The increased performance can
be ascribed to a few different aspects such as; increased
robustness to variability in sensor characteristics and reduced
complexity through use of classifiers generated for a specific
activity. Despite the increased performance, combining classi-
fiers is clearly more expensive, computationally speaking, as
they require several models to be trained and evaluated [84].

C. Evaluation

In order to evaluate an activity recognition system, there
is need for performance evaluation. In general, performance

evaluation is based on the detection of the activity, which
can either be correctly detected, confused or falsely detected
by the system. The vast majority of activity recognition
systems are using true positives and true negatives for correct
classification. On the other hand wrong classification will lead
to false positives and false negatives. From these classifications
multiple metrics can be defined to access the performance of
the activity recognition system. First is the accuracy, the most
standard metric used for overall performance. The instances
that are either correctly detected or rejected are divided by
these correct detection and rejection plus the false detection
and rejection. Two other measures of relevance are precision
and recall. The precision is the number of correctly classified
positive instances to the total number of instances classified
as positive. Alternatively, the recall is the ratio of correctly
classified positive instances to the total number of positive
instances. So high precision will lead to more relevant results
than irrelevant ones, while high recall implies that the most of
the relevant results are classified correctly [85].

Confusion matrix One way to visualize these metrics is
to use a so called confusion matrix. The confusion matrix
displays the ground truth activities on the rows of the matrix,
while the type of activity that is detected is shown on the
columns. In this way the matrix shows the number of correct
classifications on the diagonal and the number of misclassified
activities off diagonal. By comparing the ground truth with
the detected activities, the previous described metrics can
be determined for overall performance. However, the overall
accuracy is not representative of the true performance of a clas-
sifier. The number can be strongly biased by dominant classes,
usually the less relevant background class. For example a fall
is relatively infrequent activity, where jumping and turning
are activities that happen more often. However riding between
these events are considered to be a large part of the dataset with
no relevant information. To address this class skew problem,
normalized confusion matrices should be used to allow for
objective comparison between the different activity classes
[86]. Instead of absolute counts of instances, a normalized
confusion matrix shows the confusion as a percentage of the
total number of ground truth activity instances. By using the
normalized confusion matrix, a clear visual interpretation of
the performance of the classifier for each activity can be made.

ROC curve One of the main challenges that arise when
evaluating the performance is to set the optimal decision



threshold for the classifier. Therefore, a specific approach is to
tune the performance for each individual activity and analyze
the behavior in so-called Receiver Operating Characteristic
(ROC) curve. The ROC curve plots the true positive rate versus
the false positive rate [87] and therefore the area underneath
the ROC curve represents the performance of the system. A
problem that arises with the ROC curve is the sensitivity
to class imbalance, which lead to incomplete view as the
assumption of balanced classes needed to calculate the ROC
is violated.

Note that while designing an activity recognition system, the
performance metrics and the corresponding confusion matrix
and ROC area are dependent on the overall performance. An
application can choose to operate at any point that satisfies the
needs in performance. For example, if false positives are more
costly than false negatives, an operating point toward the left
hand side of the ROC curve would be chosen [88]. However
this introduces a new problem that if the characteristics of
one activity differ largely from the other, the optimization
problem will have to compromise between the accuracy of
both activities to get the highest performance measure.

Cost sensitive classification Apart from the optimization
challenges introduced by class imbalance effecting the perfor-
mance metrics, the effect of the performance evaluation on the
practical application is of great importance. The optimization
objective may be to maximize a single performance metric
or several at the same time, however the translation of these
metrics into real life situations have to be taken into account.
Often it is favorable to reduce false negatives at the price of
false positives. This is for example the case in fall detection
for elderly [88]. The cost of missing a fall outweighs the cost
of indicating a fall when no fall has occurred. The cost of
faults can be significant, especially for individuals who are
vulnerable, and those that are in need of care. In other cases,
a high false positive rate can make people ignore the systems
notifications and eventually abandon the system [89].

Time based vs Event based To determine if the activity is
correctly classified, the predicted activity has to be compared
to the ground truth. However, there are different approaches to
evaluate the classification when it comes to evaluation criteria.
Classification is typically evaluated with respect to time, which
is based on the comparison of each frame of the classified
activity and the ground truth. The alternative is to evaluate the
classifiers performance in detecting activity based on events
rather than time segments. The classified events segments are
correct if the activity label has the same label as ground truth
for a predefined overlap threshold [80]. In figure 3 the example
of the overlap threshold is shown, where the overlap between
the ground truth (GT) and classification (C) can be expressed
as:

GTNnC
O(GT,C) = aruC

Where O is the overlap percentage of the activity classification
and ground truth compared to the total amount of data of the
particular grounth truth and classification.

c1

c2

C3

GT

Signal

Fig. 3. Representation the ground truth and classification for event based
evaluation. The signal is plotted with the ground truth activity (GT) and the
three classifications (C).

IV. DISCUSSION & FUTURE WORK

This review presented aspects of activity recognition and
their challenges with respect to the applications in motocross.
Despite the extensive literature, it is difficult to compare all
of these studies due to their different experimental setups,
classifiers, evaluation methods, and their various applications.
On the whole, the previously described articles give rise to
new challenges, here, an overview of some general trends
in activity recognition is given and the aspects that can be
improved in future research are highlighted.

Most previously published activity monitoring studies vary
considerably in the choice of sensor placements and in the
range of activities analyzed, which means that comparisons
of the results from different studies should be treated with
caution. However, a clear trend show that when tracking
activity takes place in an unconstrained environment, the use
of wearable sensors is preferred over camera. Although almost
all of the relevant studies make use of inertial sensors, there is
less consensus when it comes to hazardous activity definition.
Falls, near falls, crashes and unexpected driving behavior
are all considered dangerous driving but no clear definition
for each one is given in the existing literature. Moreover,
the detection of dangerous riding patterns or falls are often
simulated or executed in controlled environments. For future
research it is good to implement a more naturalistic data
acquisition process in which all the relevant activities will be
defined beforehand.

In the third section a range of different classification
techniques has been reviewed. Although a small number of
studies do compare the individual performance of different
classifiers, there is suggested that either decision trees or
artificial neural networks may give the highest classification
accuracy in motorcycle hazard detection. Furthermore, there
are other methods that showed high potential in detection ad-
verse events such as unsupervised learning, but the application
is still in its infancy. In addition, the classifiers are not only
chosen based on performance, but on their practical benefits
in terms of computational cost and power consumption. This
aspect is underexposed in the reviewed literature and therefore
further work is required to establish the suitability of the



different techniques for specific activity recognition problems
this review deals with.

V. CONCLUSION

In this paper, different approaches to activity recognition are
surveyed and geared towards the applications in motocross
racing. The information has been organized into three sec-
tions. First the background of the activities and the related
challenges were discussed, next the different kind of sensors
characteristics and challenges were analyzed. In the third
section, the related work was discussed according to the
fundamentals of activity recognition: preprocessing, feature
extraction, classification, evaluation. Finally, various trends
and ideas were presented to address in future research due
to their high relevance for motocross applications.

By providing background information on the types of sen-
sors used, targeted activities, and the steps of the activity
recognition process, the aim was to present a view of the
activity recognition field and their specific challenges when
applying it to motocross. According to this review, most of
the proposals use wearable sensors and machine learning
algorithms for the recognition of safety related activities like
falling or jumping. However, due to new developments in the
area of neural networks and their potential to be applied to
activity recognition, their use has to be explored in future
research.
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