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A new bilinear interface reconstruction algorithm (BLIC) is presented to capture highly-curved 
interfaces more accurately on structured grids without a significant increase in computational 
costs compared to the standard piecewise linear interface calculation (PLIC) methods. The new 
reconstruction algorithm uses the initial PLIC segment and improves continuity of the interface 
using an averaging method. A curvature-weighted method improves the repositioning of the linear 
segments.
A new unsplit donating quadrant advection (DQA) scheme is introduced that is conservative and 
can create consistency with the momentum flux for two-phase flow models with a staggered 
MAC arrangement of variables within a grid cell. The consistent discretization of the fluxes 
prevents spurious interface velocities, negative densities, and instabilities. Standard 2D test cases 
and benchmarks demonstrate the performance of the BLIC and the DQA scheme, showing high 
accuracy and low costs compared to other available methods.

1. Introduction

1.1. Motivation and volume-of-fluid method

Modeling an interface between two separated fluid structures is a general application in industry. An application example for 
interface modeling is breaking water waves. Breaking wave impacts can enforce high peak pressures on marine structures. The forces 
are difficult to predict due to the complex free surface configuration of a breaking wave. Analytical expressions, assumptions, and 
empirical relations are currently used for the prediction of these forces which do not account for all their physical variability, hence 
the need for accurate free surface resolving numerical methods.

Sophisticated low-cost numerical two-phase flow models would decrease the uncertainty in determining the acting forces on 
marine structures. These models can also be used for a better understanding of the physics. This article proposes two new low-
cost algorithms that improve the accuracy of modeling an interfacial flow compared to state-of-the-art approaches: an interface 
reconstruction algorithm and a stable interface advection scheme, both for use in numerical two-phase flow models.

There are multiple ways of interface modeling available for a two-phase flow model. One type of categorization is that between 
interface-capturing and interface-tracking techniques. The interface-tracking approach is a technique that explicitly transports La-
grangian markers surrounding an interface [39]. Disadvantages of such an approach are the difficulty of handling arbitrary changes of 
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the topology and complex operations like the merging and breakup of interfaces [46]. In this article, we consider interface-capturing. 
Many interface-capturing techniques exist, e.g. Volume-of-Fluid (VOF) methods using a discrete volume fraction field 𝐶𝑓 having a 
value between 0 and 1 to identify the position of the interface, and level-set methods using the signed distance to the interface.

The level-set method is easily differentiable, but often not fully mass conserving without special measures [50,33]. This article 
focuses on a VOF method that enforces strict volume conservation. A VOF method [17] uses a color function 𝑓 (x, 𝑡) as an indicator 
of the material present at a defined position. The advection equation is

𝐷𝑓

𝐷𝑡
= 𝜕𝑓

𝜕𝑡
+ (u ⋅∇)𝑓 = 0, (1)

where u is the interface velocity. The interface motion is approximated on a numerical grid of discrete cells covering the physical 
domain at hand. Cells are control volumes for governing equations like Eq. (1). In the discrete representation of Eq. (1), volume 
fraction field 𝐶𝑓 is the average of the continuous color function over a given cell.

A VOF method for capturing the interface consists of two parts: the geometrical interface reconstruction and fluid advection. Geo-
metrical interface reconstruction is required for finding the position of the interface from the color function. Fluid advection works 
by determining the donating regions and the fluxes. The donating region is the volume that is transported through the cell face 
while the flux is the quantity of the captured fluid going through the cell face. Our focus is on geometrical reconstruction using 
VOF although algebraic reconstruction [55,49] or no reconstruction with compressive terms would also have been options when our 
interest would have been on only the two phases of fluid. There are faster methods than geometric reconstruction, using explicit 
analytic formulas (a Moment of Fluid method [29]). Algebraic reconstruction requires less complex coding and computational costs 
than geometrical reconstruction, but may have lower accuracy for similar grid resolutions. With this article, however, we aim to 
resolve challenges with two-phase flow modeling especially when a (rigid) marine structure (a third phase) is to be represented in 
the domain, challenges that were encountered in our method [52] and in others. The implementation of the new schemes required 
to address the challenges is investigated in 2D on structured grids for two-phases. A reflection regarding their implementation in 3D 
is formulated.

1.2. Brief literature overview of geometrical interface reconstruction

Early algorithms to predict the interface orientation are the piecewise linear approximation [11], a stair case approximation [17], 
and simple line segments aligned with one of the grid axes (SLIC) [32]. These algorithms have a disadvantage that they can not keep 
fluid structures together due to the discontinuity in the interface from cell to cell; diffusion of the interface results in unphysical 
disconnecting droplets.

The Piecewise Line Interface Calculation (PLIC) method was an improvement over SLIC because it uses a linear function instead 
of a constant function of the spatial coordinates for determining the interface position in a grid cell. Even though the PLIC method 
still suffers from interface discontinuity at the faces of a grid cell, the PLIC method is often used to good effect. Many methods are 
available for determining the interface orientation, e.g. Parker and Youngs’ method [36], (efficient) least square interface reconstruc-
tion (ELVIRA) [37], least-square gradient [43], height function scheme (Centered Columns) [37], Mixed Youngs-Centered (MYC) 
implementation [4], Centroid-Vertex Triangle-Normal Averaging (CVTNA) [24], piecewise continuous linear interface calculation 
(PCLIC) [53], and linear or quadratic fitting [48].

After the introduction of the PLIC method, other methods with higher-order functions in the spatial coordinates for the recon-
struction were introduced. Price [40] proposed a parabolic reconstruction method (PPIC) based on a second-order equation for the 
interface segment. Similarly, Renardy and Renardy [42] presented a three-dimensional parabolic approach called PROST. Both meth-
ods showed an increase in accuracy but also in computational costs caused by iterative steps. The discussed parabolic reconstruction 
methods still display discontinuities in the interface. A reconstruction method that aims to reduce the discontinuity between the 
material interfaces is Patterned Interface Reconstruction (PIR) [30] using planar interfaces. This method is second-order accurate but 
does not fully satisfy continuity.

Further developed methods enforced the continuity of the interface. Sometimes even equality of the line segments’ first derivative 
on either side of a cell faces is satisfied. The following references in this paragraph all found that a continuous representation of 
the interface reduces the diffusivity of the interface. Reconstruction methods based on cubic splines of Ginzburg and Wittum [14]
and López et al. [25] (SIR) resulted in continuity and improved estimation of the curvature. However, the interfaces are wavy due 
to the non-locality of errors. Diwakar et al. [12] proposed the Quadratic Spline based Interface (QUASI) reconstruction algorithm 
satisfying the continuity and first derivative constraint. Although the QUASI method showed improved accuracy, the computational 
costs are an order higher than the standard low-order reconstruction methods. The noniterative PQLIC method [53] using quadratic 
lines has improved accuracy but, again, a significant increase in computational costs. Furthermore, the PQLIC method is not fully 
conservative. Another method worth mentioning is the piecewise circular arc interface calculation (PCIC) method [26] that makes 
use of a correction such that the interface is continuous. Other recently published methods provide higher-convergence rates but do 
not tackle topological changes of the interface like the methods discussed above [7,58].

The reconstruction methods using higher-order functions are accompanied by an increase in the difficulty of flux calculations, 
computational costs, and sometimes additional computational (iterative) steps. For increasing the accuracy of representing an arbi-
trary (highly-curved) fluid structure like a breaking wave with small flow features, the accuracy and sharpness improvement of the 
interface does not always outweigh the increase in computational costs. An example of such a highly-curved fluid structure is illus-
2

trated in Fig. 1 (wedge-entry experiments performed in dedicated setup at Delft University of Technology for validating multi-phase 
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Fig. 1. Comparison free surface experimental & numerical data of a 2D wedge entry representing a section of a marine structure; – experiment left side, – experiment 
right side, – numerical result at 0.092[s]. The ‘h’ and ‘w’ indicate the height and width position, respectively. The impact speed is up to 7[m/s] for a wedge with a 
deadrise angle of 15[deg] and a width of 0.218[m]. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

numerical methods representing large deformations of the interface between phases; simulations performed with the method in this 
article).

Our new reconstruction algorithm aims to improve the accuracy of reconstructing highly-curved interfaces without a significant 
increase in computational costs compared to a PLIC algorithm using the Volume of Fluid method. The algorithm should be robust for 
an accurate interface reconstruction; the implementation needs to be straightforward. An iterative scheme is avoided such that no 
thresholds are needed. Compared to a PLIC algorithm, the presented scheme should reconstruct the interface with higher accuracy. 
We call the new algorithm the BiLinear Interface Calculation (BLIC) method. It is discussed in Sec. 2.

1.3. Brief literature overview of fluid advection schemes

The second part of a VOF method is fluid advection. Fluid advection geometrically estimates the fluid fluxes through the faces 
of a grid cell as a means of transporting the interface. The donating region and the corresponding reconstructed interface determine 
the size of the fluid flux. A distinction between two kinds of fluid advection schemes is made: an operator-splitting advection scheme 
and an unsplit advection scheme.

The operator-splitting schemes are characterized by the ease of determining the donating region and by how many calculation 
steps are required for the final fluid flux. These calculation steps can be split into two parts; determining the fluid flux in one direction 
and intermediate geometrical interface reconstructions. The advantage of a direction-split scheme is that it is straightforward to 
implement and robust. However, they show numerical diffusion and geometrical splitting errors that distort the interface [37]. The 
Conservative Operator Splitting for Multidimensions with Inherent Constancy (COSMIC) scheme [22] tries to minimize these errors 
and is used for comparison in this article with unsplit advection schemes. The choice for COSMIC as a reference is made because it 
was applied in our research field a number of times before [13,52]. The focus of this article is on unsplit advection schemes.

The second kind of fluid advection algorithm, unsplit advection schemes, prevents geometrical errors and the intermediate 
reconstruction step(s) by fluxing at once, sometimes in multiple directions, based on a polygon forming the donating region. The 
polygon is a plane figure described by a finite number of line segments resulting in a closed shape for every cell face. The polygon 
represents the donating region used for determining the flux. Polygon reconstruction is based on the velocity magnitude at the cell 
face and the surrounding velocity field.

The majority of unsplit advection schemes discussed here are for structured grids, but it is worth mentioning two recently 
proposed unsplit advection schemes for unstructured grids without going into more detail: a new triangulation algorithm with 
a modified Swartz method (UFVFC-Swartz) that shows high accuracy on unstructured grids [27], and a blended high-resolution 
scheme described as simple and efficient [19].

Many (multidimensional) unsplit advection schemes for structured grids are available, but not all advection schemes are without 
problems. The problems are characterized by Comminal et al. [9]: overlapping of donating regions (non-conservative), gaps between 
the donating regions (diffusion of interface), and non-conforming donating regions (undershoot or overshoot because the edges of 
the adjacent donating regions do not have the same length).

Early unsplit advection schemes were introduced by Rider and Kothe [43], Puckett et al. [41], Pilliod Jr and Puckett [37], and 
Harvie and Fletcher [16]. The Rider and Kothe scheme estimates the donating regions by a polygon based on face-centered velocities. 
Where the advection scheme is straightforward and has low costs, it is non-conservative because of overlapping donating regions 
and the diffusivity of the interface. The conservative Defined Donating Region (DDR) scheme of Harvie and Fletcher [16] prevents 
the overlap but increases the diffusivity of the interface and has a lower order of accuracy. Higher accuracy is obtained by Puckett’s 
scheme, allowing, in contrast to DDR, fluid to enter and exit a cell in one time step while still being conservative. None of the 
discussed schemes results in conforming donating regions.

López et al. [25] proposed the Edge-Matched Flux Polygon Advection (EMFPA) scheme. Different than the advection schemes 
3

above, it is based on vertex velocities instead of face-centered velocities. The EMFPA scheme is accurate and conservative. However, 
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Fig. 2. Example with EMFPA scheme resulting in a negative donating region. The donating region is given by the blue lines . This region can generate a receiving 
flux larger than the donating one for a geometrically reconstructed interface, which is incorrect. The geometric fluid structure is given by . The flux 𝛿𝐶𝑓 (hatched 
with –) has a different direction (indicated by a blue arrow) than the face-centered velocity 𝑢𝑓𝑎𝑐𝑒 (indicated by a black arrow). The faces of a grid cell are given by 
–. A cell vertex is given by ×.

the advection scheme did not initially result in conforming regions due to the volume corrections needed to satisfy the volume 
constraint, i.e. the volume of the polygon that satisfies the flux size based on the face-centered velocity.

More variations of the volume corrections of EMFPA are proposed [23,28], but they did not solve the non-conforming regions. 
Cervone et al. [8] proposed an additional volume correction that solved the problem of conforming regions. The FMFPA-3D scheme 
of Owkes and Desjardins [34] showed another solution for having conforming donating regions using EMFPA. They added a simplex 
to the polygon to create a solenoidal fluid flux.

The advection schemes discussed above are based on polygons constructed of linear edges. More sophisticated advection schemes, 
like Cellwise Conservative Unsplit advection (CCU) [9] using streaklines and the Stream scheme [15] using stream tubes, are not 
discussed in this article because of the computational costs. The CCU scheme showed to be around seven times more expensive than 
the EMFPA scheme.

Conclusions found in existing literature for a consistent two-phase flow solver [52] are the reason for introducing a new fluid-
advection scheme. van der Eijk and Wellens [52] use a consistent approach to determine the mass and momentum fluxes on a 
staggered MAC arrangement of variables. A temporary continuity equation and densities discretized with the mass fluxes are used for 
consistency [59]. van der Eijk and Wellens [52] concluded that a direction-split advection scheme, like the COSMIC scheme, leads to 
inconsistency between the mass and momentum transfer and an increase in instability of the interface. The inconsistency is caused 
by a combination of the intermediate geometrical interface reconstruction step and the staggered MAC arrangement of variables. The 
densities resulting from the temporary continuity equation can even be negative, leading to instability of the interface.

EMFPA [34] prevents the intermediate geometrical reconstruction step while remaining conservative. However, as EMFPA is 
based on cell-vertex velocities, the created polygon can result in a so-called “negative” donating region. An example is illustrated 
in Fig. 2. The blue donating region self-intersects through the cell face resulting in a donating and a receiving volume at the same 
time. The receiving volume is of the opposite sign than the velocity centered at the cell face (𝑢𝑓𝑎𝑐𝑒). There is the possibility that the 
final flux (𝛿𝐶𝑓 ) found with the receiving region is larger than the donating region or even the volume constraint. This is not correct, 
because the flux and the face-centered velocity have opposite signs.

From the authors’ point of view, the donating region in Fig. 2 is in contradiction with the momentum fluxes for two-phase flow 
solvers in which the velocity is assumed constant over the cell face; the momentum flux and mass flux based on the face-centered 
velocity can have a different sign from the VOF flux. The negative region can result in negative densities for a two-phase flow solvers 
such as van der Eijk and Wellens [52]. The problems of splitting schemes and the negative densities with EMFPA are discussed in 
more detail in Sec. 6.

The new advection scheme introduced below is a multidimensional unsplit VOF advection scheme that is conservative, conform-
ing, and allows the material to enter and exit a grid cell in one time step. Face-centered velocities are used to prevent negative 
regions. We call the advection scheme DQA, which stands for donating quadrant advection. It is seen as a modification of EMFPA 
and the Rider-Kothe scheme that should obtain similar accuracy to EMFPA.

1.4. Structure of the article

The article starts with the introduction of the BiLinear Interface Calculation (BLIC) algorithm. In Sec. 3 the new BLIC method is 
compared with two standard PLIC methods for the static reconstruction of two shapes. In Sec. 4 the donating quadrant advection 
(DQA) scheme is introduced. The combination of the BLIC and DQA schemes are compared with other available methods in terms of 
accuracy and computational costs for traditional transport benchmarks in Sec. 5. In Sec. 6 the consistent application of the advection 
scheme for a two-phase solver [52] with a staggered arrangement of variables is discussed. The occurrence of negative densities when 
using a split advection scheme or the EMFPA scheme is highlighted. Instabilities caused by the reconstruction step and prevention of 
negative densities are illustrated in Sec. 6.4 for the example of a translating bubble. Conclusions are formulated in the final section.

2. BiLinear interface calculation

The new reconstruction method presented here will be called BiLinear Interface Construction (BLIC) method. It consists of the 
4

following steps:
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Fig. 3. Labeling of cells [52]; labels F, S, C, and E. Fluid is indicated by (𝐶𝑓 > 0).

1. identification of cells that contain the interface (Sec. 2.1);
2. an initial Piecewise Linear Interface Construction (PLIC) per cell based on the gradient of the volume fractions 𝐶𝑓 , with an 

inspection of the orientation of the interface in neighboring cells (Sec. 2.2);
3. determination of the wetted parts of the cell faces (Sec. 2.3);
4. weighted averaging of the wetted parts on either side of the cell face to improve continuity of the interface (Sec. 2.4);
5. addition of a control point to create a bilinear interface, while keeping the volume fraction 𝐶𝑓 the same (Sec. 2.5).

The number of the step refers to the number of the subsection below in which the step is discussed, with an evaluation of the method 
in the last subsection. The method should remain low-in-costs, achieve higher accuracy for highly curved interfaces, and increase 
the continuity of the interface compared to PLIC methods. The scope of the implementation is limited to 2D. Considerations about 
extending the implementation to 3D are given at the end of this chapter. PLIC methods (e.g. Parker and Youngs, least-square gradient, 
ELVIRA) are portable to unstructured grids [18]. The BLIC method is a low-effort extension of PLIC which would be equally portable 
to unstructured grids.

2.1. Identification of the interface

Labeling of grid cells is used to account for the position of the interface between two fluids. The labels decide where the re-
construction of the interface takes place. The choice for the label of each cell is based on the volume fraction. The volume fraction 
𝐶𝑓 indicates the degree to which a grid cell is filled with fluid and takes a value between 0 and 1. We have adopted the labeling 
system of van der Eijk and Wellens [52], omitting solid structures (B label) for brevity. In Fig. 3, the labeling of the cells in a domain 
containing two fluids is illustrated, using label E(mpty) for cells completely filled with the lighter of the two fluids (𝐶𝑓 = 0), and the 
label S(urface) for cells with some of the heavier of the two fluids adjacent to E cells in the directions of the cartesian grid lines. 
Remaining cells are defined as F(luid) cells.

The label C(orner) is used to create an improved representation of the interface. C-labels are given to those F-cells that neighbor
diagonally to a single E-cell, and make sure that those cells are recognized as part of the interface where in previous methods they 
were not. S-labeled cells and C-labeled cells need reconstruction of the interface between the two fluids. Why S-cells and C-cells are 
labeled differently is because of continuity of the interface and will become clear later in this section. S-cells and C-cells are also 
referred to as interface cells.

2.2. Initial PLIC reconstruction

A PLIC method uses a piecewise linear segment that approximates the real physical interface in a cell. An example of such a linear 
segment is illustrated in Fig. 4. It is described by the following 2D equation

𝑚𝑥𝑥+𝑚𝑦𝑦 = 𝛼, (2)

where m = [𝑚𝑥, 𝑚𝑦]𝑇 is the interface orientation, x = [𝑥, 𝑦]𝑇 the position vector of a point on the interface, and 𝛼 the distance to 
the origin so that the interface satisfies the volume constraint 𝐶𝑓 for the given interface orientation. The distance to the origin 𝛼 of 
the interface is found analytically, as in Scardovelli and Zaleski [47], either in 2D or in 3D.

The first step of a PLIC method is to identify the interface orientation, often based on the gradient of the volume fraction. Many 
methods to determine the interface orientation are published and discussed above. In the presented work, Parker and Youngs’ method 
and Mixed Youngs-Centered (MYC) are discussed because of their ease of implementation and the relatively low costs [13]. Here, in 
any case, Parker and Youngs and MYC are compared to identify their effect on the final reconstruction. Diwakar et al. [12] mentioned 
that for their higher-order QUASI method, the interface orientation method for the initial PLIC is expected not to be relevant for the 
final reconstruction. We will find out if this is also the case for the BLIC method.

The Parker and Youngs’ method, for a 2D grid, determines the gradients of the volume fraction 𝐶𝑓 at four corners of the central 
grid cell using finite difference. The gradients are normalized and averaged, resulting in the interface orientation m. The method is 
5

first-order accurate, but the errors in the reconstruction are comparable to second-order methods [37,48].
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Fig. 4. A quarter circle reconstructed using piecewise linear segments (PLIC); the normal vector m and height value constant 𝛼 for a random x are illustrated for a 
3×3 stencil. Fluid is indicated by (𝐶𝑓 > 0).

Fig. 5. Definition of face values 𝐴. Fluid is indicated by . PLIC endpoints by . A more continuous endpoint is found by averaging PLIC endpoints. The labeling of 
the cells and the surrounding cells is shown by means of letters 𝐹 , 𝑆 and 𝐸.

The Mixed Youngs-centered (MYC) method [4] is a mix between the Parker and Youngs’ method and the standard height function 
approach with a stencil of 3×3 grid cells. It is described as a fast and accurate way to compute the interface normal m. Aulisa 
et al. [4] showed that the implementation outperforms the Parker and Youngs’ method [36] in terms of accuracy and approaches 
second-order accuracy. Düz [13] reported the MYC implementation as a good compromise between accuracy and computational cost.

2.3. Face values

The next step of the BLIC method is determining the face values of the PLIC reconstruction. Every PLIC line contains two endpoints 
positioned at a cell face. An example is illustrated in Fig. 5. The face value is determined by a PLIC endpoint, illustrated by . 𝐴 is 
a value between 0 and 1 that describes the part of a cell face that connects to the heavier fluid (𝐶𝑓 = 1). These endpoints are found 
analytically [47]. The 2D PLIC line forms a quadrangular or triangular shape, uniquely described by 𝑚𝑥, 𝑚𝑦, and 𝛼. For every cell 
with label S or C a PLIC line is computed. The endpoints of PLIC lines in the two cells on either side of a cell face in general do not 
coincide. The face apertures based on the PLIC lines left and right cell face, 𝐴𝑙𝑒𝑓𝑡 and 𝐴𝑟𝑖𝑔ℎ𝑡, are combined so that face aperture 𝐴 is 
the average of 𝐴𝑙𝑒𝑓𝑡 and 𝐴𝑟𝑖𝑔ℎ𝑡.

The neighboring PLIC endpoints may be not positioned on the same cell face. This makes it harder to obtain continuity of the 
interface. Repositioning of the endpoints then is needed. Examples of how endpoints could be repositioned is illustrated in Fig. 6, 
which are inspired by the approach of Diwakar et al. [12]. The red arrows show the directions in which PLIC endpoints are moved. 
Every situation needs a different treatment to determine face aperture 𝐴, created by the more continuous interface that is represented 
by means of the dashed lines after repositioning the endpoints.

We want to avoid distinguishing between situations like in Fig. 6 to limit the involved computational effort. A such method should 
satisfy the following constraints

1. the face value 𝐴 of an edge in an interface cell (S-or C-cell) neighboring a F-or E-cell is equal to 1 or 0, respectively;
2. a S-or C-cell has two face values 𝐴 between 1 and 0;
3. the volume constraints are enforced without iteration or a significant increase in computational costs;

and is described in the next section.

2.4. Averaging method: curvature weighted

The proposed averaging method for determining the new face value 𝐴 is based on the motto that the curvature is more accurately 
6

predicted by a piecewise linear segment when the curvature is close to zero. When averaging, the method gives more weight to the parts 
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Fig. 6. Four different situations of PLIC reconstructions to obtain continuity along the interface without satisfying the volume constraint yet [12]. Each situation ask 
for a different treatment to find the endpoints, which requires computational effort. A method that avoids distinguishing between situations is proposed in Sec. 2.4. 
Fluid is indicated by . PLIC endpoint . Continuous endpoint . The labeling of the cells and the surrounding cells is shown by means of letters 𝐹 , 𝑆 and 𝐸.

of the interface that have low curvature. A piecewise linear representation for those parts is expected to be more accurate than 
for the parts of the interface with high curvature. Weighted averaging prevents the parts of the interface with high curvature from 
influencing the parts with low curvature, improving the overall accuracy of the interface reconstruction. A better curvature prediction 
gives a more accurate representation of the face values of the interface.

The curvature is calculated for interface cells (S- and C-cells). Curvature is not defined for the remaining labels. Many methods 
are available to predict curvature. In this article, we will only highlight two; the standard height function technique [10,38] and the 
classic technique using finite difference [1,36]. These methods are chosen for their relative ease of implementation and are used for 
illustrative purposes only.

The curvature (𝜅) is defined as

𝜅 = −∇ ⋅
(

∇𝜙||∇𝜙||
)
, (3)

where 𝜙 can be a height value (a sum of aligned volume fractions) or just the volume fraction 𝐶𝑓 . The standard height function 
technique is described by, for instance, Kleefsman et al. [20], using a 3×3 stencil. When the interface is more vertical than horizontal, 
the height function is defined parallel to the horizontal axis. The finite difference technique to calculate the curvature is based on 
the approach of Parker and Youngs [36]. The approach computes the normal vector to the interface at every corner of a cell. The 
difference in normal vectors at the corners results in the curvature of the free surface in that cell, defined at the cell center.

An example of a interface on a 3×3 stencil is shown in Fig. 7 (note: representation of the interface only this crude for illustration; 
examples with finite curvature are available in literature [1]). The curvature at the corner of the fluid body in this example should 
approach infinity; the values for the height function technique and the classic finite difference technique are given. Fig. 7 is an 
extreme example, with a strongly underresolved free surface configuration, to exaggerate the issue with the standard height function 
technique. The issue with the standard height function technique is that applying the method at sharp corners of the interface can 
lead to negative values of the curvature. To avoid negative values for the curvature, we continue with the classic finite difference 
technique. That approach does not guarantee convergence of curvature in general, but the results in the next chapter and in the 
remainder of the article show that it is well behaved in combination with BLIC.

For more information about accurate methods for determining curvature, one is referred to Popinet [38] and Abadie et al. [1], 
who resolved the issue with negative curvature by making the height function technique adaptive.

The new face value 𝐴 is calculated as

𝐴 =
𝜅
𝑛𝜅
𝑟𝑖𝑔ℎ𝑡

𝐴𝑙𝑒𝑓𝑡 + 𝜅
𝑛𝜅
𝑙𝑒𝑓𝑡

𝐴𝑟𝑖𝑔ℎ𝑡

𝜅
𝑛𝜅
𝑙𝑒𝑓𝑡

+ 𝜅
𝑛𝜅
𝑟𝑖𝑔ℎ𝑡

, (4)

where 𝑛𝜅 is a weighting factor. This weighting factor is a free parameter for which a value is found by comparing simulation results 
in Sec. 3 for the static reconstruction of two different shapes. Referring to the constraints given in Sec. 2.3, the formulated method 
ensures that the face values of a F-cell or E-cell are 1 and 0, respectively. Repositioning of the endpoints (see Fig. 6) is automatic 
7

when the curvature-weighted approach is used. The curvature weighted approach should ensure that when an interface cell has more 
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Fig. 7. Prediction of the curvature (𝜅) using the volume fractions 𝐶𝑓 with two different techniques; the classic technique ( ), and the height function technique ( ). 
Fluid is reconstructed with original PLIC indicated by (𝐶𝑓 > 0). PLIC endpoint . Continuous endpoint resulting in 𝐴 . Center grid cell where 𝜅 is defined (×).

Fig. 8. Procedure BLIC reconstruction to meet volume constraint. The volume 𝑉0 after averaging the face values to 𝐴 is . The final volume 𝑉𝑓𝑖𝑛𝑎𝑙 satisfying the 
volume constraint is . BLIC additional point . Continuous endpoint .

than two neighboring interface cells in vertical and horizontal direction, the number of face values remains two by applying it only 
for the lower two values of 𝐴.

2.5. Addition of BLIC point

When the continuity is improved by averaging as in Fig. 8a, the reconstruction will not satisfy the volume constraint. Therefore an 
additional point is introduced which will make the reconstruction bilinear. The additional point is initially positioned in the middle 
of the reconstructed line, see the in Fig. 8b. The point moves perpendicular to the continuous reconstructed line until it satisfies 
the volume constraint for 𝐶𝑓 .

No iterations are needed to find the final position of the additional point. Using the definitions in Fig. 8c, the coordinates of the 
additional point (𝑥3, 𝑦3) are found from

𝑦3 = 𝛾(𝑥3,0 + 𝛽) + 𝑏 where 𝛾 = −(𝑥1 − 𝑥2)∕(𝑦1 − 𝑦2) and 𝑏 = 𝑦1 − 𝛾𝑥1. (5)

The points are ordered counter clockwise. The third line can move over the line y(𝛽) with initial point

𝑥3,0 =
𝑥1 + 𝑥2

2
and 𝑦3,0 =

𝑦1 + 𝑦2
2

. (6)

The value of 𝛽 is found by

𝛽 =
𝑉𝑓𝑖𝑛𝑎𝑙 − 𝑉0

1
2 𝛾(𝑥2 − 𝑥1) +

1
2 (𝑦1 − 𝑦2)

, (7)

where 𝑉𝑓𝑖𝑛𝑎𝑙 − 𝑉0 is the difference between the volume constraint and the volume before adding the extra control point.

2.6. Evaluation

The curvature-weighted averaging is evaluated for the reconstruction of a sharp corner in Fig. 9, including the additional point 
8

satisfying the volume constraint. Two values for 𝑛𝜅 , 0 and 2, are compared with the end-positioning approach of Diwakar et al. [12]. 
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Fig. 9. Continuous face value calculation 𝐴 for a 90 degrees corner. Red line is PLIC Youngs reconstruction (–). is the approach of Diwakar et al. [12] for determining 
the face values. is the averaging method for 𝑛𝜅 = 0. x is the weighted averaging method for 𝑛𝜅 = 2. Fluid is indicated by (𝐶𝑓 > 0).

Note that 𝑛𝜅 equal to 0 is simply averaging. The approach of Diwakar et al. [12] needs special treatments for repositioning endpoints 
as mentioned in Sec. 2.3. Compared to Fig. 6b their approach ignores the information of 𝐴𝑙𝑒𝑓𝑡 and assumes 𝐴 is equal to 𝐴𝑟𝑖𝑔ℎ𝑡.

The results in Fig. 9 show that for this case, the proposed curvature-weighted averaging method is an improvement compared to 
the approach of Diwakar et al. [12]. The value of 𝑛𝜅 affects the reconstruction and therefore needs extra evaluation in Sec. 3.

An additional remark concerns the BLIC point dividing the line segment. When this BLIC point is positioned outside of a grid 
cell, the initial PLIC line is used. The interface in that case is not continuous anymore. This is most likely to happen for S and C-cells 
which are almost empty or almost full. How often this happens is evaluated for the reconstruction of circle with 64 grid cells in the 
diameter. The chance is in the order of 0.1% and decreases to zero with grid refinement. For the reconstruction of a square with 
its sides resolved by 64 grid cells, the same results are obtained. The test case in Sec. 5.2 elaborates on this by also considering 
underresolved structures and shows how accurate BLIC remains compared with PLIC.

Another remark concerns the C-cells which is a reason why S-and-C-cells do not have the same label. There is the chance that a 
C-cell, connected to two S-cells, has an original PLIC interface with an opposing orientation than the S-cells before applying BLIC. 
This works against creating a smooth continuous BLIC interface when using the curvature-weighted approach. For this situation, the 
normal of the interface in the C-cell is reoriented such that it points in the direction of the average of the normal vectors of the 
interfaces in the neighboring S-cells. After reorienting the normal vector, the face values 𝐴 in the BLIC algorithm are determined. 
The situation of opposing orientations in neighboring interface cells is even rarer than BLIC points being positioned outside of grid 
cells.

A final remarks concern the extension to 3D. The BLIC algorithm can be extended to 3D by following a similar procedure with 
planes and lines instead of lines and points. The BLIC algorithm presented in Sec. 2.5 can be formulated in 3D without increasing 
the complexity. The shape of the interface will be a pyramid after positioning the endpoints using the curvature-weighted approach. 
The cost increase of using BLIC instead of PLIC in 2D is evaluated in Sec. 5.3. The cost increase of using BLIC instead of PLIC in 3D 
is proportional to that in 2D.

3. Static reconstruction interface

The accuracy of the following reconstruction methods is compared for two static shapes: Parker and Youngs [36], Mixed Youngs 
Centered (MYC) [4], and BLIC. The transport of fluid is not involved, only reconstruction. The shapes that are evaluated are a circle 
and a square.

A domain of one by one is used. The width of the square is 0.512, and the circle radius is 0.368. The square is positioned in 
the center of the domain and the circle off-center at (0.525, 0.464) to prevent the reconstruction method from favoring a specific 
interface orientation [43]. The 𝐿1 norm of the error between the exact interface and the reconstructed interface is calculated as

𝐿1 = ∫ ∫ |𝑆𝑒𝑥𝑎𝑐𝑡(𝑥, 𝑦) − 𝑆𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑(𝑥, 𝑦)|𝑑𝑥𝑑𝑦, (8)

in which 𝑆 is the interface. The 𝐿1 norm for both shapes and the different reconstruction methods is given in Table 1 as a function 
of the number of grid cells in the domain.

Circular shapes are common for fluid configurations, like droplets and bubbles. High accuracy in representing these shapes is 
important for contacts between bodies. The reconstruction using Parker and Youngs and MYC alone results in errors at least twice as 
high as when they are combined with BLIC.

Sharp corners in fluid bodies, like those in a square, are not present due to surface tension effects. However, when moving solid 
objects representing structures are present in a simulation, and when it is convenient to reconstruct the interface between solid 
objects and fluids in the same way as between fluids, then sharp corners do play a role. From that point of view, we want to know 
how the various reconstruction methods deal with sharp corners. The reconstruction error in the 𝐿1 norm is reduced by an order of 
9

magnitude compared to Parker and Youngs and MYC when using the BLIC method.
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Table 1

Reconstruction error static square / circle for different grid resolutions with 𝑛𝜅 = 2. The order of convergence is given in between parentheses.

Grid Youngs Youngs + BLIC MYC MYC + BLIC

Square Circle Square Circle Square Circle Square Circle

10 4.81e-3 8.92e-4 3.51e-4 3.59e-4 5.64e-3 9.76e-4 8.82e-4 4.63e-4
20 6.81e-4 (2.82) 2.59e-4 (1.78) 7.61e-5 (2.21) 9.91e-5 (1.86) 7.72e-4 (2.87) 2.35e-4 (2.05) 7.61e-5 (3.53) 1.21e-4 (1.94)
40 2.48e-4 (1.46) 1.17e-4 (1.15) 2.57e-5 (1.57) 4.38e-5 (1.18) 3.40e-4 (1.18) 6.91e-5 (1.77) 1.96e-5 (1.96) 3.41e-5 (1.83)
80 7.20e-5 (1.79) 5.39e-5 (1.12) 5.62e-6 (2.19) 2.03e-5 (1.11) 8.82e-5 (1.95) 3.02e-5 (1.19) 1.93e-6 (3.34) 1.53e-5 (1.16)
160 4.06e-6 (4.15) 2.83e-5 (0.93) 1.90e-7 (4.89) 1.09e-5 (0.90) 4.44e-6 (4.32) 1.57e-5 (0.94) 4.26e-7 (2.18) 7.91e-6 (0.95)
320 1.79e-6 (1.18) 1.41e-5 (1.01) 6.24e-8 (1.60) 5.52e-6 (0.98) 1.97e-6 (1.17) 7.71e-6 (1.03) 1.72e-7 (1.32) 3.86e-6 (1.03)

Table 2

Reconstruction error static square / circle with BLIC (with Parker and Youngs initialization) for increasing value of 𝑛𝜅 , and 
therefore dependency of curvature 𝜅.

𝑛𝜅 0 1 2 3 4

Square Circle Square Circle Square Circle Square Circle Square Circle

10 1.26e-3 3.76e-4 4.68e-4 3.38e-4 3.51e-4 3.59e-4 2.34e-4 4.22e-4 1.19e-4 7.05e-4
20 8.00-4 1.03e-4 3.18e–5 9.91e-5 7.61e-5 9.91e-5 8.94e-5 9.85e-5 9.28e-5 9.79e-5
40 8.25e-5 4.06e-5 5.93e-6 3.96e-5 2.57e-5 4.38e-5 3.85e-5 4.58e-5 4.60e-5 4.67e-5
80 1.75e-5 1.76e-5 5.04e-6 1.85e-5 5.62e-6 2.03e-5 6.20e-6 2.13e-5 6.77e-6 2.19e-5
160 4.44e-6 9.39e-6 2.47e-7 9.67e-6 1.90e-7 1.09e-5 4.93e-7 1.15e-5 6.80e-7 1.18e-5
320 1.97e-6 4.69e-6 1.41e-7 4.94e-6 6.24e-8 5.52e-6 2.10e-7 5.84e-6 3.05e-7 6.02e-6

The results in Table 1 show that when an underresolved material interface like the corner of a square is present, BLIC decreases 
the reconstruction error significantly with a higher order of convergence. For the circle, which is not underresolved, the results show 
that the decrease in error with BLIC is less. For the circle, the reconstruction error with BLIC converges to the error obtained with 
PLIC on a grid that is twice as fine. This was expected because BLIC divides piecewise linear segments in two.

The effect of the magnitude of weighing factor 𝑛𝜅 on the reconstruction error in Eq. (4) is evaluated in Table 2 for BLIC (initial-
ization with Parker and Youngs). The results show that the dependency on the curvature for the face apertures in the BLIC method 
improves the accuracy of reconstructing a square. For the square having sharp corners, the best performing value for 𝑛𝜅 is 2. A lower 
value for 𝑛𝜅 performs better than a high value for the reconstruction of a circle. BLIC performs, independent of the value of 𝑛𝜅 , better 
than Parker and Youngs when comparing the errors in Table 2 with Table 1. The reason for the improvement compared to PLIC when 
using higher values for 𝑛𝜅 is because the corners of a square in general are inherently underresolved, making PLIC so inaccurate. For 
circles, this inherent absence of resolution is not there, so that BLIC and PLIC have a comparable accuracy. Making 𝑛𝜅 adaptive is an 
interesting option for future research. In the remainder of this article, we will continue with 𝑛𝜅 is 2 with the underlying thought of 
representing fluid configurations with highly-curved interfaces.

The cost evaluation and comparison with other available reconstruction algorithms is done for the benchmarks in the next section.

4. Unsplit edge-matched upwind flux polygon advection scheme

A new unsplit multidimensional advection scheme has been developed. It is compared with a direction-split advection scheme, 
called COSMIC [22], for several benchmarks. Before introducing these advection schemes, a brief overview of the advection of the 
interface using the Volume-of-Fluid (VOF) approach is given.

4.1. VOF advection

The interface is captured using Eq. (1) under the assumption of incompressibility and the no-slip condition between the two 
fluids. In case of a Volume of Fluid (VOF) method, the color function 𝑓 is replaced by a discrete volume fraction 𝐶𝑓 . The discrete 
volume fraction indicates the filling ratio of one of the fluids in a grid cell and is the average of the color function.

The fluids are transported with the assumption of incompressibility

∫
𝑉𝑐

𝐶𝑛+1
𝑓

−𝐶𝑛
𝑓

𝛿𝑡
𝑑𝑉 = −∫

𝑉

(u ⋅∇)𝐶𝑓𝑑𝑉 = −∫
𝑉

∇ ⋅
(
u𝐶𝑓

)
𝑑𝑉 = −∮

𝑆𝑐

(
u𝑛𝐶𝑛

𝑓

)
⋅ n𝑑𝑆, (9)

in which 𝑉 and 𝑆 are the volume and boundary of the grid cell, respectively. The superscript indicates the time level; 𝑛 + 1 is the 
new time level and 𝑛 is the old-time level. Eq. (9) is the basis for the discretization of the advection equation. A straightforward 
discretization of the advection equation reads

𝐶𝑛+1
𝑓

= 𝐶𝑛
𝑓
− 1

𝑉

∑
𝑓𝑎𝑐𝑒

𝛿𝐶𝑓,𝑓𝑎𝑐𝑒, (10)

in which subscript 𝑓𝑎𝑐𝑒 refers to a cell face, and the VOF flux 𝛿𝐶𝑓 is the amount of fluid transported from one cell to the next. 
10

Similar to Fig. 2, Fig. 10 shows an example of a flux at the cell face and the donating region for a one-directional flow field. The 
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Fig. 10. Flux is calculated in a grid cell. Fluid is indicated by . The other fluid is white. The amount of fluid being transported (fluxed 𝛿𝐶𝑓 ) is hatched with –. The 
cell faces are named. The donating region is indicated by the dashed line.

velocity field is defined at the cell faces of a grid cell. The VOF flux is based on the reconstructed interface segment of the donating 
cell. The flux is of the form

𝛿𝐶𝑓 ∼ 𝐶𝑓𝑢𝛿𝑡𝛿𝐴, (11)

where 𝛿𝐴 is the part of the area of a cell face in contact with the fluid being transported. The total area of the cell face in Fig. 10 is 
equal to 𝛿𝑦. The naming of the cell faces, w(est), e(ast), n(orth), and s(outh), are illustrated.

4.2. COSMIC advection scheme

The COSMIC split scheme we compare the new method to consists of multiple transport and reconstruction steps [22]. The 
COSMIC scheme, in 2D, reads as follows

𝐶∗𝑋
𝑓

= 𝐶𝑛
𝑓
− 1

𝑉

∑
𝑓𝑎𝑐𝑒=𝑤, 𝑒

𝛿𝐶𝑓,𝑓𝑎𝑐𝑒(𝑢𝑛,𝐶𝑛
𝑓
) +

𝐶𝑛
𝑓

𝑉

∑
𝑓𝑎𝑐𝑒=𝑤, 𝑒

𝑢𝑓𝑎𝑐𝑒𝛿𝑦,

𝐶∗𝑌
𝑓

= 𝐶𝑛
𝑓
− 1

𝑉

∑
𝑓𝑎𝑐𝑒=𝑛, 𝑠

𝛿𝐶𝑓,𝑓𝑎𝑐𝑒(𝑣𝑛,𝐶𝑛
𝑓
) +

𝐶𝑛
𝑓

𝑉

∑
𝑓𝑎𝑐𝑒=𝑛, 𝑠

𝑣𝑓𝑎𝑐𝑒𝛿𝑥.

(12)

The interface of the intermediate volume fraction fields 𝐶∗𝑋
𝑓

and 𝐶∗𝑌
𝑓

is again reconstructed, resulting in 𝐶𝑋, 𝑛+1∕2
𝑓

and 𝐶𝑌 , 𝑛+1∕2
𝑓

. 
The superscripts ∗ and 𝑛 +1∕2 indicate intermediate time levels. A distinction is made between these two time levels (∗ and 𝑛 +1∕2) 
for the discussion in Sec. 6 of why inconsistency can be found with COSMIC. Even though the values for 𝐶𝑓 with time levels ∗ and 
𝑛 + 1∕2 in a cell are the same, the staggered arrangement of variables causes a difference for momentum control volumes after the 
reconstruction.

The new fraction field is found from

𝐶𝑛+1
𝑓

= 𝐶𝑛
𝑓
− 1

𝑉

∑
𝑓𝑎𝑐𝑒=𝑤, 𝑒

𝛿𝐶𝑓,𝑓𝑎𝑐𝑒

⎛⎜⎜⎝𝑢
𝑛,

𝐶𝑛
𝑓
+𝐶

𝑌 , 𝑛+1∕2
𝑓

2

⎞⎟⎟⎠−
1
𝑉

∑
𝑓𝑎𝑐𝑒=𝑛, 𝑠

𝛿𝐶𝑓,𝑓𝑎𝑐𝑒

⎛⎜⎜⎝𝑣
𝑛,

𝐶𝑛
𝑓
+𝐶

𝑋, 𝑛+1∕2
𝑓

2

⎞⎟⎟⎠ . (13)

4.3. Proposed Donating Quadrant Advection (DQA) scheme

As mentioned in the introduction, we want the new advection scheme to satisfy the following conditions.

1. It will be an unsplit multidimensional scheme: to prevent distortion of the interface, and geometrical errors.
2. Be conservative and non-diffusive: no overlapping regions or gap between neighboring donating regions.
3. Feature conforming regions: the length of the edges of two neighboring donating regions should have the same length.
4. Allow fluid to enter and exit a grid cell in one time step.

The EMFPA [34] scheme meets these requirements. The computational costs and accuracy of the new scheme should not be 
inferior to the EMFPA scheme. It also, in contrast to EMFPA, needs to be consistent with the mass and momentum transfer of 
two-phase flow solvers similar as presented in van der Eijk and Wellens [52]. Therefore, the subsection explaining the new scheme 
consists of four steps: positioning and determining the linear edges of the donating region, volume correction by adding an extra 
control point to satisfy the volume constraint, and checking if the final donating region complies with the requirements.

4.3.1. Positioning of the linear edges

The new scheme is based on face-centered velocities, like Rider-Kothe [43], to prevent the so-called negative donating flux-region, 
illustrated in Fig. 2. The negative donating region can result in a VOF flux of opposite sign than the fluxing face velocity. We consider 
11

this inconsistent with the direction of the face-centered velocity and the effect thereof is elaborated upon in Sec. 6. The donating 
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Fig. 11. Three different situations of flux polygon construction using velocities defined on the cell faces. The thick linear edge is determined by the encircled velocities. 
Grid cells are illustrated with −. The amount of fluid being transported with DQA (fluxed 𝛿𝐶𝑓 ) is virtual hatched with – and with EMFPA is hatched with –. A cell 
vertex is given by × where the velocities are averaged for EMFPA. A velocity position is given by an arrow.

region needs to be on one side of the cell face, given by the sign of the face velocity. In contrast to Rider-Kothe, the new scheme is 
conservative and has no overlap with neighboring donating regions. We will name the scheme DQA, short for Donating Quadrant 
Advection.

Three different situations for constructing a linear edge of the donating region are illustrated in Fig. 11. The difference between 
the vertex velocity-based EMFPA scheme in Figs. 11d to 11f and the new scheme in Figs. 11a to 11c is given. The encircled velocities 
in Fig. 11 are used for determining the magnitude and direction of the thick-lined linear edge. The vertex velocities used for EMFPA 
are found by averaging the surrounding face-centered velocities.

The DQA scheme depends on the direction of the fluxing face-centered velocity. The quadrant where the linear edge is positioned 
decides which single face-centered velocity is used. The linear edge is always positioned in a quadrant where, in 2D, two (vertical 
and horizontal) face-centered velocities are donating. When no quadrant has two donating face-centered velocities, in Fig. 11c, a 
non-sloped linear edge is made to prevent a negative donating region. The use of a non-sloped linear edge has the disadvantage that 
it can lead to a gap between neighboring donating regions because the non-sloped edge does not match with the edge of the donating 
region of the upper velocity in Fig. 11c. The improved robustness and loss of accuracy as a result of this procedure is evaluated by 
means of benchmarks in Secs. 5.1 and 5.2 and by comparing with EMFPA. The results show that DQA has similar accuracy compared 
to EMFPA, without the risk of negative densities.

4.3.2. Determination of the linear edges

Determining the complete donating region with DQA, including the coordinates of the vertices, is based on Fig. 12. The flux 
velocity 𝑢𝑚𝑎𝑖𝑛 determines the volume of the donating region. The vertical velocities 𝑣𝑏𝑜𝑡 and 𝑣𝑡𝑜𝑝 are used to determine the slope of 
the linear edges. The distance value 𝜖 and slope value 𝜙 are related to the volume correction discussed in the next subsection.

The velocities are defined such that the positioning of the linear edges complies with the three situations illustrated in Fig. 11. 
The velocities in Fig. 12a for the linear edges of the donating region are defined as follows

[𝑢1, 𝑣1] =
⎧⎪⎨⎪⎩
[𝑢𝑚𝑎𝑖𝑛, 𝑣𝑏𝑜𝑡], if sign(𝑣𝑏𝑜𝑡∕𝑢𝑚𝑎𝑖𝑛) ≠ sign(𝑢𝑚𝑎𝑖𝑛)

[𝑢𝑏𝑜𝑡, 𝑣𝑏𝑜𝑡] , else if sign(𝑢𝑏𝑜𝑡) = sign(𝑢𝑚𝑎𝑖𝑛)

[𝑢𝑚𝑎𝑖𝑛, 0.0], otherwise

[𝑢2, 𝑣2] =
⎧⎪⎨⎪⎩
[𝑢𝑚𝑎𝑖𝑛, 𝑣𝑡𝑜𝑝], if sign(𝑣𝑡𝑜𝑝∕𝑢𝑚𝑎𝑖𝑛) = sign(𝑢𝑚𝑎𝑖𝑛)

[𝑢𝑡𝑜𝑝, 𝑣𝑡𝑜𝑝] , else if sign(𝑢𝑡𝑜𝑝) = sign(𝑢𝑚𝑎𝑖𝑛)

[𝑢𝑚𝑎𝑖𝑛, 0.0], otherwise

(14)

Donating region construction in other directions is approached similarly. The scheme, like EMFPA [34], can be straightforwardly 
12

extended to 3D.
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Fig. 12. Definition of DQA scheme; in case 𝑢1 = 𝑢𝑚𝑎𝑖𝑛 , 𝑢2 = 𝑢𝑡𝑜𝑝 , 𝑣1 = 𝑣𝑏𝑜𝑡 , and 𝑣2 = 𝑣𝑡𝑜𝑝 . Donating region is given by –. Slopes are given by –. The volume correction 
with slope 𝜙 is illustrated for the approach of Owkes and Desjardins [34]. The cell face area 𝛿𝐴 is equal to 𝛿𝑦.

4.3.3. Volume correction

The donating regions in Fig. 12 do not initially satisfy the volume constraint. Many volume correction methods are available 
[23,28,34,8]. The correction method of Owkes and Desjardins [34] is adopted by adding an extra control point. This extra point 
ensures that the volume of the donating region satisfies the volume constraint. Conforming donating regions are found when applying 
this correction method.

The distance value 𝜖, illustrated in Fig. 12b, should result in a donating region with a volume of 𝑢𝑚𝑎𝑖𝑛𝑑𝑡𝛿𝐴 (the volume constraint). 
The additional point that satisfies the volume constraint is found with 𝑢𝑎𝑣𝑔 and 𝑣𝑎𝑣𝑔 being equal to 1

2 (𝑢1 + 𝑢2) and 1
2 (𝑣1 + 𝑣2), 

respectively. The distance is found from

𝜖 = 𝑑𝑡
−𝑢2𝑣1𝑑𝑡+ 𝑢1𝑣2𝑑𝑡+ 2𝑢𝑚𝑎𝑖𝑛𝛿𝐴− (𝑢1 + 𝑢2)𝛿𝐴

(𝑣2 − 𝑣1)𝑑𝑡+ (𝑢1 − 𝑢2)𝜙𝑑𝑡− 𝛿𝐴
, (15)

in which 𝛿𝐴 is equal to 𝛿𝑦 for Fig. 12.
The slope value 𝜙 can be determined in many ways. Evaluation of the effect of 𝜙 on the accuracy is needed. Owkes and Des-

jardins [34] uses the normal vector of the original linear edge as the direction for creating the additional point. This method is 
illustrated as an example in Fig. 12. Other ways to determine the slope value 𝜙 are

𝜙 =
𝑣2 − 𝑣1
𝑢2 − 𝑢1

(Owkes and Desjardins [34]),

𝜙 = 0 (this work, referred to as ‘Zero slope’ in Table 7),

𝜙 =
𝑣2 + 𝑣1
𝑢2 + 𝑢1

(this work, referred to as ‘Slope in mean flux direction’ in Table 7).

(16)

The evaluation of the slope value is done in the next section. The slope value of Owkes and Desjardins [34] is used for comparison 
with other computational methods.

The extra correcting point can result in a non-convex donating flux region. When the shape is non-convex, the donating region is 
split into multiple convex triangles. This increases the computational costs as the triangles are dealt with separately, but it solves the 
problem of determining the VOF flux of a non-convex region. The intersection points of the donating region with the BLIC interface 
are expensive to determine for non-convex shapes. The computational costs are analyzed in one of the following sections.

4.3.4. Reducing order with DDR scheme

Owkes and Desjardins [34] showed that their advection scheme is unconditionally stable. We want to discuss what constraints 
are needed to keep the two-phase solver described in Sec. 6 stable. When the volume correction is large, the additional point can 
lead to an overlap of the donating region with neighboring regions. Or it can result in a negative donating region. The DQA method 
can easily switch to a lower-order DDR scheme when this happens. The difference between DDR and DQA, illustrated in Fig. 13b, 
is that the donating polygon never intersects a cell face; material cannot enter and exit a cell in one time step. The DDR scheme is 
found when the boxed step in Eq. (14) is omitted. DDR is robust and conservative, but increases the diffusivity of the interface.

The criteria to switch from DQA back to DDR are
13

1. The correcting point should not lead to overlap with neighboring polygons or the polygon itself to prevent mass changes.
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Fig. 13. Difference between EMFPA ( ) and the DQA scheme ( ) for two different cases. The dashed line is the donating region after volume correction. The solid 
line is the original donating region. The hatched area is the flux 𝛿𝐶𝑓 . Liquid is indicated by . The air is white. Note that the hatched area for the EMFPA scheme can 
be larger than the volume constraint 𝑢𝑚𝑎𝑖𝑛𝛿𝑡𝛿𝐴, but DQA is not.

2. The correcting point should not be at the opposite side of the cell face compared to the other points of the donating region (later 
referred to as ‘negative donating region’) because it can induce instability of the two-phase solver.

When these criteria are not met, one of the provided constraints is violated, and the DDR method is used for that particular cell 
face. Note that the correction method we use can also cause mass issues due to overlap when combined with EMFPA. Alternative 
correction methods will be a research topic of ours for the near future.

The chance that switching back to DDR occurs is negligible for cases with imposed velocity fields. However, for the case in Fig. 1, 
with large interface (free-surface) deformations, the switch back provides robustness, in the sense that negative donating regions that 
can induce instabilities of the two-phase solver are prevented. For a case similar to the one shown in Fig. 1, using a relatively coarse 
grid resolution (roughly 100 cells in the width and height of the domain) and a Courant number of 0.50, the number of times the 
algorithm switches back to DDR is smaller than 1% of the total number of time steps. Switching back especially occurs when water 
and air near the interface have large velocities in opposite direction. At those moments, the correction to meet the volume constraint 
can lead to overlap or the situation discussed in the Sec. 4.3.5, so that switching back to DDR is necessary to prevent instability. 
The percentage of time steps, in which the algorithm switches back to DDR, decreases when lowering the Courant number. Grid 
refinement with a factor of two reduces the number of times the algorithm switches back with a power of two. We consider the 
chance of the algorithm switching back small. The effect of switching back to DDR on the accuracy is evaluated in Sec. 5.2.

4.3.5. Difference EMFPA and DQA for two examples

In Fig. 13 the full donating region with EMFPA and DQA is compared for two cases. These two cases are considered to be the 
most different. The length of the velocity vectors is to scale. The flux size is illustrated by the hatched area. The volume correction 
method of Owkes and Desjardins [34] is used with both EMFPA and DQA.

In Fig. 13a, a shear flow is considered, an example of EMFPA having a flux of opposite sign than the fluxing face-centered velocity. 
The DQA scheme prevents this by using the face-centered velocity based on the position of the linear edges of the donating region. In 
Fig. 13b, an example of DQA switching to DDR is given. A negative donating region is created due to the volume correction, which 
is allowed by EMFPA but not by the DQA scheme.

The authors want to point out that, even though the chance is small, EMFPA can result in a negative donating region that gives a 
flux larger than the volume constraint. In other words, the size of the hatched area can be larger than the sum of the receiving and 
the donating region. As a requirement, DQA strictly enforces volume conservation.

5. Fundamental transport cases

5.1. Zalesak slotted disk rotation

The first benchmark case with advection of a fluid structure to be discussed is the Zalesak slotted disk [57]. The Zalesak slotted 
disk is a well-known benchmark for volume-tracking methods. The disk is rotated for one complete anti-clockwise revolution in a 
velocity field with uniform vorticity
14

𝑢 = −Ω(𝑦− 𝑦0), 𝑣 =Ω(𝑥− 𝑥0), (17)
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Table 3

Error 𝐸𝑛 for slotted disk rotation (𝑛 = 1). Other schemes are 
compared with the presented ones. Youngs is an abbreviation 
for the Parker and Youngs method. A Courant number of 0.25 is 
used.

Algorithm Error (E1)

SLIC [32] 8.38e-2
Hirt-Nichols [17] 9.62e-2
CICSAM [51] 2.02e-2
High-resolution VOF - unstructured grid [19] 1.01e-2
Puckett - stream [15] 1.00e-2
Puckett - DDR [16] 9.73e-3
Puckett - EMFPA [25] 9.73e-3
Youngs - stream [15] 1.07e-2
Youngs - DDR [16] 1.56e-2
Youngs - EMFPA [25] 1.06e-2
QQ - THINC [56] 1.42e-2
SIR - EMFPA [25] 8.74e-3
ACLSVOF uniform triangular grid [3] 7.19e-3
ACLSVOF adaptive triangular grid [3] 1.25e-2
Linear least square fit - EI-LE [48] 9.42e-3
Quadratic fit - EI-LE [48] 5.47e-3
Quadratic fit + continuity - EI-LE [48] 4.16e-3
QUASI - EMFPA [12] 2.69e-3

Youngs - DQA (this work) 1.23e-2
Youngs - COSMIC (this work) 1.25e-2
MYC - DQA (this work) 1.06e-2
MYC - COSMIC (this work) 1.09e-2
Youngs BLIC - DQA (this work) 7.76e-3
MYC BLIC - COSMIC (this work) 6.16e-3
MYC BLIC - DQA (this work) 5.85e-3

Table 4

Error 𝐸1 for slotted disk rotation (𝑛 = 1) for different grid resolutions using MYC. A 
Courant number of 0.25 is used. The order of convergence is in between parentheses.

Algorithm 50×50 100×100 200×200

MYC - DQA (this work) 1.39e-1 3.45e-2 (2.01) 1.06e-2 (1.70)
MYC - COSMIC (this work) 1.41e-1 3.47e-2 (2.02) 1.09e-2 (1.67)
MYC BLIC - COSMIC (this work) 1.42e-1 2.08e-2 (2.77) 6.16e-3 (1.76)
MYC BLIC - DQA (this work) 1.38e-1 2.30e-2 (2.58) 5.85e-3 (1.98)

where 𝐮=[u, v]𝑇 is the 2D velocity field, 𝐱=[x, y]𝑇 the spatial position, and the position with subscript ‘0’ the axis of rotation. The 
domain is four by four with the center of rotation at coordinate (2.00, 2.00). The constant angular velocity Ω is 0.50. The disk has a 
radius of 0.50 and is initially positioned at coordinate (2.00, 2.75). The slot has a width of 0.12 and stops in the center of the disk. 
The grid resolution used for the benchmark is 200×200. These parameters are adopted from the work of Rudman [44] and Diwakar 
et al. [12]. The error is defined as

𝐸𝑛 =

∑
𝑖,𝑗 |𝐶𝑛

𝑓,𝑖,𝑗
−𝐶0

𝑓,𝑖,𝑗
|∑

𝑖,𝑗 𝐶
0
𝑓,𝑖,𝑗

, (18)

in which 𝑛 represents the number of revolutions of the slotted disk.
In Table 3, the errors of Eq. (18) for various reconstruction and advection schemes after one rotation of the disk are given 

with a reference to the article from which it was taken. The results of the newly presented reconstruction and advection scheme 
are compared with the state-of-the-art schemes in Table 3. For an equal comparison, a Courant number of 0.25 is used based on 
the maximum velocity [25]. The number of times DQA switches back to DDR, as discussed in Sec. 4.3.4, is 0%. López et al. [25]
commented that the largest error for this case is typically found near the slot and Scardovelli and Zaleski [48] found that PLIC 
methods normally smooth out parts of the interface with high curvature, like the slot.

The error 𝐸1 after one rotation of the disk and the order of convergence obtained when using the reconstruction and advection 
methods in this article, is shown in Table 4. For higher grid resolutions, the error can potentially be governed by the number of 
time steps [48]. Decreasing the Courant number results in higher errors 𝐸1, because it increases the number of reconstruction and 
advection steps. Where a Courant number of 1.00 with a grid of 200×200 (MYC BLIC - DQA) results in an error of 4.78e-3, a Courant 
number of 0.50 gives 5.30e-3, and 0.25 gives 5.85e-3. This effect is also mentioned by Diwakar et al. [12], showing that it does not 
happen with their QUASI scheme.

In Fig. 14, the application of BLIC showed that the corners of the slot are better represented than with PLIC. A more accurate 
PLIC method like MYC reduces the error compared to Paker and Youngs, also in combination with BLIC. The unsplit DQA advection 
15

scheme shows a slight reduction of the error compared to COSMIC and a similar error as EMFPA. The combination of DQA and MYC 
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Fig. 14. The interfaces of the Zalesak’ slotted disk for one turn with 200×200 (interface based on reconstruction line). MYC BLIC - DQA is indicated by . MYC BLIC 
- COSMIC is indicated by . MYC - COSMIC is indicated by . Reconstruction of interface is given for a number of rotations n = 1.

BLIC obtains similar accuracy for the slotted disk as higher-order methods like the Quadratic fit methods [48]. The computational 
costs are compared in Section 5.3.

5.2. Rider–Kothe single vortex

A simple translation or solid body rotation of a fluid structure like the slotted disk by itself is not enough for testing interface 
modeling methods. No final judgment can be made because this kind of case is not realistic and more suitable for benchmarking and 
debugging [44]. A more physical case for interface modeling is the reversed single vortex field case by Bell et al. [5], modified by 
Rider and Kothe [43].

A solenoidal velocity distribution is imposed for the reversed single vortex field in a domain of one by one. The velocity field is 
determined by the stream function field

Ψ(𝑥, 𝑦, 𝑡) = 1
𝜋

sin2(𝜋𝑥)sin2(𝜋𝑦)cos
(
𝜋𝑡

𝑇

)
, (19)

with 𝑇 the period of the reversed motion of the vortex. An initial circle with a radius of 0.15 is positioned at (0.50, 0.75) and 
deformed until 𝑡 = 𝑇 ∕2. Hereafter, the deformed structure morphs back to its initial shape until 𝑡 = 𝑇 . The error 𝐸𝑇 is determined 
by the difference between the initial and final volume fraction field multiplied by the grid spacing [12]

𝐸𝑇 =
∑
𝑖,𝑗

𝛿𝑥𝑖𝛿𝑦𝑗 |𝐶𝑇
𝑓,𝑖,𝑗

−𝐶0
𝑓,𝑖,𝑗

|. (20)

According to Scardovelli and Zaleski [48] the main error for the single vortex, as well as for the slotted disk, is caused by the number 
of reconstructions rather than the advection algorithm.

Period 𝑇 is chosen to be 2.0. Table 5 shows the errors 𝐸𝑇 for single vortex simulations with the advection and reconstruction 
methods presented in this article. The methods described here are compared to methods from the existing literature. Three different 
grid resolutions 32×32, 64×64, and 128×128 are considered. A Courant number of 0.95 is used, the Courant number at each time 
level being based on the maximum velocity component in the domain at that time level. In the existing methods, a Courant number of 
1.00 was used, but for that number using DQA can lead to mass losses due to overlap in donating polygons caused by the correction 
point (see Sec. 4.3.4). This is elaborated upon below.

MYC BLIC - DQA has a lower error compared to other available methods. The method competes in terms of accuracy with higher-
order methods like PCIC (piecewise circular arcs) and QUASI (quadratic splines). The choice for a more-accurate PLIC method, like 
MYC compared to Parker and Youngs, improves the result for reversed single vortex. For a period 𝑇 of 2.0 and grid 128×128, MYC 
BLIC - DQA has a similar error as PCIC - EMFPA. Referring back to Sec. 4.3.1, the accuracy of DQA is similar to EMFPA when 
comparing Youngs - DQA with Youngs - EMFPA. These results show that the use of a non-sloped linear edge has negligible influence 
on the accuracy for this case.

Fig. 15 shows the difference in interface at 𝑡 = 𝑇 ∕2 and 𝑡 = 𝑇 for six of the single vortex simulations in Table 5, comparing 
methods on a grid of 32×32 and on a grid of 128×128. The interface obtained with MYC BLIC - DQA on the coarser grid comes 
closest to the interface obtained on the finer grid. On the finer grid the difference between methods is not visible any more. Switching 
back from BLiC to PLIC was not necessary for the simulations used to make Fig. 15; they all met the constraints defined in Sec. 2.6.

The effect of the Courant restriction on the accuracy of the simulations is evaluated for the methods discussed above. The error 
16

𝐸𝑇 , obtained using grid 128×128, is shown in Table 6 for values of the Courant number 0.1, 0.5, 0.95 and 1.00. Similar to the 
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Table 5

Error 𝐸𝑇 at different grid resolutions for the reversed single vortex field with 𝑇 = 2.00 and Courant 
number 0.95. Methods presented in this article are compared with methods from the existing literature, 
for which a Courant number of 1.00 was used. Youngs is an abbreviation of the Parker and Youngs 
method. The order of convergence is in between parentheses.

Algorithm 32x32 64x64 128x128

Hirt & Nichols + LHF [13] 1.01e-2 5.25e-3 (0.94) 2.47e-3 (1.09)
QQ - THINC [56] 6.70e-2 1.52e-2 (2.16) 3.06e-3 (2.29)
Puckett - stream [15] 2.37e-3 5.65e-4 (2.07) 1.32e-4 (2.10)
Puckett - Rider & Kothe [43] 2.36e-3 5.85e-4 (2.01) 1.31e-4 (2.16)
Puckett - EMFPA [25] 2.14e-3 5.39e-4 (1.99) 1.29e-4 (2.06)
Youngs - stream [15] 2.49e-3 7.06e-4 (1.82) 2.23e-4 (1.66)
Youngs - EMFPA [25] 2.31e-3 6.89e-4 (1.75) 2.25e-4 (1.61)
LSG - COSMIC [13] 2.74e-3 7.01e-4 (1.97) 1.96e-4 (1.84)
LSG - EI-LE [13] 2.70e-3 6.93e-4 (1.96) 1.89e-4 (1.87)
ELVIRA - COSMIC [13] 2.55e-3 6.50e-4 (1.97) 1.51e-4 (2.11)
ELVIRA - EI-LE [13] 2.54e-3 6.47e-4 (1.97) 1.45e-4 (2.16)
CVTNA - PCFSC [24] 2.34e-3 5.38e-4 (2.12) 1.31e-4 (2.04)
Linear least square fit - EI-LE [48] 1.75e-3 4.66e-4 (1.91) 1.02e-4 (2.19)
Quadratic least square fit - EI-LE [48] 1.88e-3 4.42e-4 (2.09) 9.36e-5 (2.24)
Quadratic least square fit + continuity - EI-LE [48] 1.09e-3 2.80e-4 (1.96) 5.72e-5 (2.29)
Mixed markers and VOF method [3] 1.00e-3 2.69e-4 (1.89) 5.47e-5 (2.30)
SIR - EMFPA [25] 8.62e-4 2.37e-4 (1.86) 5.62e-5 (2.08)
QUASI - EMFPA [12] 6.65e-4 1.57e-4 (2.08) 4.33e-5 (1.86)
PCIC - EMFPA [26] 5.61e-4 1.46e-4 (1.94) 4.17e-5 (1.81)

Youngs - DQA (this work) 2.14e-3 5.15e-4 (2.05) 1.66e-4 (1.63)
MYC - DQA (this work) 2.09e-3 4.32e-4 (2.27) 1.08e-4 (2.00)
MYC - COSMIC (this work) 2.74e-3 6.96e-4 (1.98) 1.80e-4 (1.95)
Youngs BLIC - DQA (this work) 1.23e-3 1.88e-4 (2.71) 6.25e-5 (1.60)
MYC BLIC - COSMIC (this work) 1.68e-3 4.04e-4 (2.06) 1.40e-4 (1.53)
MYC BLIC - DQA (this work) 1.21e-3 2.04e-4 (2.57) 4.42e-5 (2.20)

Fig. 15. The interfaces for the reversed single vortex from Rider and Kothe [43] with 𝑇 = 2.00 and Courant number 0.95 (interface based on reconstruction line). 
MYC BLIC - DQA is indicated by . MYC BLIC - COSMIC is indicated by . MYC - COSMIC is indicated by .

slotted disk, a decrease in Courant number does not lower the error when using DQA. The larger error for lower Courant numbers 
is due to the increased number of reconstructions. When using COSMIC the error does decrease when going from Courant number 
1 to Courant number 0.95, and from 0.95 to 0.5, but that due to the fact that COSMIC, with the reconstruction step, is not mass 
conserving for Courant numbers above 0.5 [54]. Note again that DQA is not mass conserving either at a Courant number of 1.0 
because of the overlap in donating regions. The mass losses for DQA depend on the grid size. The mass losses for MYC BLIC - DQA 
with Courant number 1.00 are 0.18%, 0.62% and 1.50% respectively, for grids 128×128, 64×64 and 32×32. For grids 128×128 and 
64×64 DQA switched back to DDR in 0.00% of all time steps, for grid 32×32 DQA switched back in 0.50% of all time steps.

In Fig. 16, two different grid resolutions and time instances of the interface for a non-reversed single vortex are illustrated. The 
BLIC method keeps the fluid body better together than PLIC. The number of detached droplets is reduced when using BLIC. Sharper 
parts of the vortex, especially the front, and the tail are represented better with BLIC than with PLIC. With BLIC the interface could 
17

not always be reconstructed for grid resolution 32×32 and switched back to PLIC due to the correction point of BLIC being outside 
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Table 6

Error 𝐸𝑇 at grid resolution 128×128 for different Courant numbers. The mass changes are given as a percentage of the 
initial mass in between parentheses.

Courant number 0.1 0.5 0.95 1.0

Youngs - DQA (this work) 3.06e-4 (0.00%) 2.66e-4 (0.00%) 1.66e-4 (0.00%) 3.30 (0.04%)
MYC - DQA (this work) 1.35e-4 (0.00%) 1.21e-4 (0.00%) 1.08e-4 (0.00%) 2.49e-4 (0.18%)
MYC - COSMIC (this work) 1.39-4 (0.00%) 1.30e-4 (0.00%) 1.80e-4 (0.04%) 2.47e-4 (0.07%)
Youngs BLIC - DQA (this work) 2.23e-4 (0.00%) 8.22e-05 (0.00%) 6.25e-5 (0.00%) 2.22e-4 (0.18%)
MYC BLIC - COSMIC (this work) 1.53e-4 (0.00%) 6.36e-05 (0.00%) 1.40e-4 (0.04%) 1.98e-4 (0.08%)
MYC BLIC - DQA (this work) 1.34e-4 (0.00%) 4.99e-5 (0.00%) 4.42e-5 (0.00%) 2.15e-4 (0.18%)

Fig. 16. The interfaces for a non-reversed single vortex with different reconstruction and transport schemes at two time instances (interface based on reconstruction 
line). MYC BLIC - DQA is indicated by . MYC BLIC - COSMIC is indicated by . MYC - COSMIC is indicated by .

of a cell. The number of time steps BLIC switched to PLIC for that grid until t = 3.0 is 8.9% with MYC BLIC - DQA and 13.7% with 
MYC BLIC - COSMIC. Even when having to switch back to PLIC this many time, there is still an advantage of using BLIC because its 
error 𝐸𝑇 is smaller than for plain PLIC. For grid 128×128, BLIC switched back to PLIC in fewer than 0.3% of all time steps.

The effect of determining the slope value 𝜙 for the DQA scheme is evaluated for the three approaches provided in Eq. (16). The 
results are given in Table 7 for the combination MYC BLIC - DQA. The volume correction of Owkes and Desjardins [34] has the best 
18

results for this case, even though they mentioned that the effect of the volume corrections is probably small.
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Table 7

Error 𝐸𝑇 for different 𝜙 in Sec. 4.3.3 with MYC BLIC - DQA for the 
reversed single vortex field with 𝑇 = 2 and Courant number is 0.95.

𝜙 32x32 64x64 128x128

Owkes and Desjardins [34] 1.03e-3 2.18e-4 4.42e-5
Zero slope 1.11e-3 2.22e-4 4.69e-5
Slope in mean flux direction 1.27e-3 2.52e-4 6.03e-5

Fig. 17. Comparison of computational costs normalized with the costs of Parker and Youngs - COSMIC (Y-C) for the single vortex case based on 384 timesteps for 
three different grid resolutions. (D) is DQA. (C) is COSMIC. (Y) is Parker and Youngs’ method. (MYC) is Mixed Youngs and Centered method.

5.3. Computational costs

The code is written in Python and compiled using the Numba package [21]. The compiled code is run on a 12-core stand-alone 
machine. In Fig. 17, the computational costs of the reconstruction and advection methods are compared for the reversed single 
vortex, normalized with the costs of the combination Parker and Youngs - COSMIC (Y-C). The costs at three different grid resolutions 
are compared. The average computational time is based on 384 time steps. The sensitivity of the costs is tested by repeating the same 
simulation on the same machine. After repeating five times, the cost variation is between 1% and 3%.

The application of the MYC reconstruction method over the Parker and Youngs’ method is neglectable in computational costs. 
BLIC has between 20% and 1% more computational costs than Parker and Youngs. Similarly, as the results of Diwakar et al. [12], 
the costs relatively decrease by increasing the grid resolution.

The costs of the advection scheme become dominant for a higher grid resolution. The presented unsplit advection scheme (DQA) 
results in an average of around 5% less computational costs than the splitting scheme (COSMIC) when using a PLIC method. Similarly, 
the extra costs of using BLIC with the COSMIC scheme compared to the DQA scheme are even more dominant. The relative increase 
in computational costs is because of the additional intermediate reconstruction steps for COSMIC. The DQA scheme does not make 
use of intermediate reconstruction steps.

Compared to other reconstruction methods in the existing literature of which the costs are documented, BLIC appears to have 
fairly low costs. The quadratic least-square reconstruction algorithm with continuity equation seems twice as costly as Parker and 
Youngs [48]. The QUASI method, showing high accuracy in representing the interface, is around 30 times higher in costs and ELVIRA 
10 times compared to Parker and Youngs [12]. The computational costs of the SIR scheme are comparable with BLIC, around 1.1 
times higher in costs than Parker and Youngs [25]. PCIC with continuity correction is around 15 times higher in costs compared 
to Parker and Youngs [26]. Note that it is difficult to compare with accuracy to the reported computational costs of methods in 
the existing literature. Not for every method cost indications are given. And for ELVIRA, for instance, reports [12,25,26] appeared 
inconsistent. Costs, moreover, depend on the efficiency of coding and the hardware that was used. For these reasons, the comparison 
in Fig. 17 can potentially be valuable, because all methods were implemented in the same code and run on the same machine.

6. Consistent mass-momentum transport

‘Consistent’ is the name used for two-phase methods with staggered variables that make sure that mass and momentum fluxes 
are determined in the same way, carefully considering that the control volumes for mass and momentum are also staggered with 
respect to each other [45,59,52,2,35]. Consistent modeling prevents momentum losses and prevents spurious velocities from being 
generated near the interface between fluids, that – in some cases – lead to instability.

Consistency is analyzed for the transport and reconstruction methods described in this article, in combination with the two-phase 
19

method of van der Eijk and Wellens [52]. The results of van der Eijk and Wellens [52] show temporal plots of momentum losses 
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Fig. 18. Standard MAC configuration of variables (staggered); pressure 𝑝 is defined in the cell center ( ), the horizontal velocity 𝑢 field is sampled on the vertical 
faces (→), the vertical velocity 𝑣 is sampled on the horizontal faces (↑). The overlap of the continuity control volume (–), with a vertical momentum control volume 
(–), and with a horizontal momentum control volume (–) is shown.

which are nearly zero. When spurious velocities do occur and when they can be explained in terms of the discretization of mass and 
momentum, we call them ‘inconsistencies’. The discretization of the density is key for explaining the inconsistencies.

6.1. Brief overview of two-phase solver

A brief overview of the two-phase solver is needed to explain from where inconsistencies originate. The governing equations for 
two-phase flow are formulated as if it is a single homogeneous mixture [31]. The motion of the mixture is described in terms of a 
single velocity and a single pressure field, solving the continuity equation and the momentum equation, together with the advection 
equation for the interface. Viscous, capillary, and gravitational effects are neglected for the purpose of this article.

A 2D Cartesian grid of cells is adopted. According to the staggered MAC configuration of variables, velocities (u = [𝑢, 𝑣]𝑇 ) are 
defined in grid cell faces, and scalar variables, the pressures (𝑝), volume fractions (𝐶𝑓 ), and densities (𝜌), are defined in grid cell 
centers. How continuity control volumes (𝑉𝑐) and momentum control volumes (𝑉𝑚), different for each velocity direction, are defined 
with respect to the grid cells is shown in Fig. 18.

Considering the time discrete version of the continuity, momentum and advection equation, using Forward Euler in time for 
brevity of notation, the equations are integrated over control volumes to obtain the weak form. The weak form is the basis of the 
discretization in space. First, the fluids are advected using Eq. (9), repeated here as Eq. (21) to be complete

∫
𝑉𝑐

𝐶𝑛+1
𝑓

−𝐶𝑛
𝑓

𝛿𝑡
𝑑𝑉 = −∮

𝑆𝑐

(
u𝑛𝐶𝑛

𝑓

)
⋅ n

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡

𝑑𝑆. (21)

Here, 𝑆𝑐 refers to boundary of the control volume 𝑉𝑐 shown in Fig. 18. Transport and reconstruction of the interface are solved 
for continuity control volumes with labels S and C (refer to the labeling system in Sec. 2.1). Because the fluids are considered 
incompressible, the continuity equation reduces to

∮
𝑆𝑐

𝐮𝑛+1 ⋅ 𝐧𝑑𝑆 = 0. (22)

The time discrete momentum equation is solved in steps, the main step being

∫
𝑉𝑚

𝜌𝑛+1𝐮𝑛+1 − 𝜌𝑛+1�̄�
𝛿𝑡

𝑑𝑉 = −∮
𝑆𝑚

𝑝𝑛+1𝐧𝑑𝑆, (23)

in which auxiliary vector field �̄� in Eq. (23), without viscous, capillary and gravitational effects, is solved from

∫
𝑉𝑚

�̄��̄�− 𝜌𝑛𝐮𝑛
𝛿𝑡

𝑑𝑉 = −∮
𝑆𝑚

𝜌∗𝐮𝑛 (𝐮𝑛 ⋅ 𝐧)
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡

𝑑𝑆, (24)
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whereas auxiliary density �̄� is solved with a temporary continuity equation that is integrated over momentum control volumes
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∫
𝑉𝑚

�̄�− 𝜌𝑛

𝛿𝑡
𝑑𝑉 = −∮

𝑆𝑚

(
𝐮𝑛𝜌∗

)
⋅ 𝐧

⏟⏞⏞⏟⏞⏞⏟
𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡

𝑑𝑆. (25)

Here, 𝜌∗ is a density for which a consistent discretization in space is used. A consistent space discretization for momentum and 
mass is obtained when the advective terms indicated by the word ‘consistent’ are treated the same with continuity control volumes 
and with momentum control volumes, and when the spatial discretization of 𝜌𝑛 and 𝜌𝑛+1 is the same on continuity control volumes 
and on momentum control volumes. The density 𝜌𝑛+1 is solved differently from �̄�.

The new density 𝜌𝑛+1 is associated with the fluid volume in a momentum control volume. The fluid volume A in a momentum 
control volume is calculated with volume fraction field 𝐶𝑛+1

𝑓
and the fluid-interface orientation: 𝜌 = A𝜌𝑓 + (1 −A)𝜌1−𝑓 , with 𝜌𝑓

the constant density of the fluid that is advected (typically the heavier of the two fluids), and 𝜌1−𝑓 the constant density of the other 
fluid.

The auxiliary density �̄� is calculated using 𝜌∗. The value of 𝜌∗ depends on the size of the VOF flux 𝛿𝐶𝑓 at the boundary of the 
momentum control volume, so that consistency is obtained between the mass flux and the momentum flux. The momentum flux 𝜌∗u

is discretized using

𝜌∗u =
(
C𝜌𝑓 + (1 − C)𝜌1−𝑓

)
u, (26)

in which C is a scalar fraction indicating the VOF flux normalized by the size of the donating region [59]. This discretization ensures 
consistency between mass and momentum flux.

C =
|𝛿𝐶𝑓 ||u|𝛿𝑡𝛿𝐴 . (27)

The density 𝜌∗ is above zero by definition and, therefore, absolute values of flux and velocity are used.

6.2. Application of an advection scheme to the solver

Besides calculating the VOF fluxes around the faces of the continuity control volume for Eq. (21), additional VOF fluxes need to 
be calculated around the faces of the momentum control volumes for Eqs. (25) and (24) to find 𝜌∗. Owkes and Desjardins [35] dealt 
with this in a similar way. The VOF flux positions for all control volumes are illustrated in Fig. 19, including examples of donating 
regions for a flow that is directed to the right and to below. Fig. 19 shows one of the nine continuity control volumes in Fig. 18. 
The continuity control volume is subdivided in four quadrants so that fluxes of mass and momentum can be matched in continuity 
control volumes, horizontal and vertical control volumes. An arrow is drawn at every face of a quadrant, representing a VOF flux 
that requires computation. Per 2D grid cell, not four, but twelve VOF fluxes are calculated.

The thick-lined arrows in Fig. 19 are the cell-face-centered velocities solved from the system in Eq. (23). These velocities are 
assumed constant along a cell face. Therefore, the unknown sub-velocities for the faces of the quadrants are equal to the solved 
face-centered velocity, for instance for the velocities on the right-hand side of the cell: u𝑟𝑖𝑔ℎ𝑡 = 𝑢𝑟𝑖𝑔ℎ𝑡,1 = 𝑢𝑟𝑖𝑔ℎ𝑡,2. The same applies to 
u𝑙𝑒𝑓 𝑡, v𝑏𝑜𝑡, and v𝑡𝑜𝑝. The velocities in the middle of a grid cell (u𝑚𝑖𝑑 and v𝑚𝑖𝑑 ) are not the same as the velocities in the cell faces. An 
averaging procedure is used to find these velocities. They are found from 𝑣𝑚𝑖𝑑 =

1
2

(
𝑣𝑡𝑜𝑝 + 𝑣𝑏𝑜𝑡

)
and 𝑢𝑚𝑖𝑑 =

1
2

(
𝑢𝑙𝑒𝑓𝑡 + 𝑢𝑟𝑖𝑔ℎ𝑡

)
. The sum 

of the two fluxes at the position of 𝑣𝑚𝑖𝑑,1 and 𝑣𝑚𝑖𝑑,2 in Fig. 19 results in the total VOF flux through the bottom face of the vertical 
momentum control volume needed for 𝜌∗. The same is true for the horizontal control volume fluxes at the position of 𝑢𝑚𝑖𝑑 .

The sub-velocities in Fig. 19 are used to reconstruct the donating region. The linear edges of the donating regions (black dashed 
lines in Fig. 19 representing the (sub-)donating regions) are calculated as in Sec. 4 using the sub-velocities of the cell quadrants. The 
sum of two donating regions along a cell face should be equal to the volume constraint, where ‘volume constraint’ means the total 
amount of fluid to be fluxed. For example, the volume constraint for the donating regions at the face indicated with 𝑟𝑖𝑔ℎ𝑡 is 𝑢𝑟𝑖𝑔ℎ𝑡𝛿𝑦
= 12𝑢𝑟𝑖𝑔ℎ𝑡,1𝛿𝑦+ 12𝑢𝑟𝑖𝑔ℎ𝑡,2𝛿𝑦.

Similarities with Owkes and Desjardins [35] are found in dividing the cell into sub-cells. Even though they make use of vertex-
centered velocities and adopt the method of Rudman [45], reconstructing the interface in sub-cells to create consistency and a 
conservative scheme, a difference is found in the way of correcting the donating region such that they comply with the volume 
constraint. In our case, for every sub-velocity a donating region with a correction is defined, resulting in a less complex system but 
more correction calculations.

6.3. Inconsistency

A method is considered to be fully consistent when the auxiliary density �̄� is the same as 𝜌𝑛+1, see Eqs. (23) and (24). The method 
in Rudman [45] is fully consistent with both transport and reconstruction of the interface taking place in cell quadrants, but also 
computationally expensive. Reconstruction handled in complete cells, instead of in cell quadrants, can lead to small inconsistencies. 
The overlap of the interface reconstruction in the continuity and momentum control volume is the reason for this. The problem is 
that �̄� does not account for the reconstruction of the fraction field in a complete cell (or continuity control volume), while 𝜌𝑛+1 does. 
Collocated approaches, like in Bussmann et al. [6] and in Rudman [45], do not have this issue.

Zuzio et al. [59] use grid cells divided up in quadrants to determine mass fluxes, but reconstruct the interface in complete grid 
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cells. In theory, reconstructing the interface in this way can lead to inconsistency because during reconstruction fluid can be moved 
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Fig. 19. Subdivision of a grid cell in quadrants. DQA donating regions needed for a consistent discretization with a staggered arrangement are also indicated; solid 
black is the border of the grid cell and dashed black borders are the donating regions based on the sub-velocities. The 𝑢𝑚𝑎𝑖𝑛 velocity for every donating region is given. 
Cell-face-centered velocities are thick-lined. The other arrows are sub-velocities. The overlap of the continuity control volume (–) with a vertical momentum control 
volume (–) is indicated, as well as the overlap with a horizontal momentum control volume (–).

Fig. 20. Interface transport and reconstruction resulting in inconsistency between �̄� and 𝜌𝑛+1 , because �̄� is based on the fluxes (leading to fluid configuration in (a)) 
and 𝜌𝑛+1 is based on the volume fraction after reconstruction (fluid configuration in (b)). Volume fraction before transport is indicated by . Volume fraction after 
transport is indicated by hatched area. The cell boundary (–), the horizontal momentum control volume (–), and continuity control volume (–) are also shown. The 
arrows represent the VOF fluxes through the faces of the momentum control volume. The values give the volume fraction of half the momentum control volume, 
normalized by the size of the total momentum control volume.

from one quadrant to another, without having mass fluxes associated with that movement. Zuzio et al. [59] have demonstrated, 
however, without explicitly stating it in their article, that the effect of this type of inconsistency on the overall accuracy of the 
method is marginal, which was confirmed later by van der Eijk and Wellens [52] when using a similar approach in combination with 
the COSMIC transport method that reduces direction-split errors through an additional step including intermediate reconstruction.

An example of the non-problematic inconsistency described above with single-step advection methods is given in Fig. 20. The 
interface is transported in 1D with a constant velocity. The grey area shows the fluid configuration before transport. The hatched 
area shows the fluid configuration after transport. The numbers represent the volume fraction in half of a momentum control volume 
(in blue), normalized by the size of the momentum control volume. Fig. 20a gives the configuration of the fluid after transport (net 
value of all fluxes), but before reconstruction. The volume fraction in the halves of the momentum control volume then has a value 
that correspond to the fluxes. After reconstruction, in Fig. 20b, the volume fraction in the halves of the momentum control volume 
has changed. And because density field �̄� is based on the VOF fluxes, and density field 𝜌𝑛+1 is based on the volume fraction, an 
inconsistency between �̄� and 𝜌𝑛+1 arises.

For incompressible flow modeling using the mixture formulation, the conditions 𝜌1−𝑓 < �̄� < 𝜌𝑓 and 𝜌1−𝑓 < 𝜌𝑛+1 < 𝜌𝑓 for 𝜌1𝑓 < 𝜌𝑓

need to hold. Density 𝜌𝑛+1 is associated with the volume fractions in a momentum control volume. As A, as well as 𝐶𝑓 , is bounded 
between 0 and 1, 𝜌𝑛+1 always satisfies these criteria. Density �̄� is based on the VOF fluxes. It therefore depends on the advection 
scheme whether �̄� satisfies the conditions.

Upon more careful consideration, it was found that the intermediate reconstruction in COSMIC lead to a more substantial incon-
sistency, resulting in spurious velocities, negative densities �̄� and even instability. Compared with the non-problematic reconstruction 
step discussed above, this intermediate reconstruction does violate the criteria given. The mechanism is explained below and is true 
for all direction-split schemes that include intermediate reconstruction (another example is the MACHO scheme [22]).

A sequence of steps of how a negative value for �̄� can come about with COSMIC is given in Fig. 21 using the notations in Sec. 4.2. 
The hatched area indicates the size of the flux. The advection of the interface is split in fluxing the vertical direction first (Fig. 21a) to 
obtain the intermediate volume fraction field 𝐶∗

𝑓
, then reconstructing the interface to obtain 𝐶𝑛+1∕2

𝑓
(Fig. 21b), followed by fluxing 
22

in horizontal direction to obtain 𝐶𝑛+1
𝑓

(Fig. 21c).
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Fig. 21. Problematic inconsistency due to intermediate reconstruction in COSMIC. Fluid 𝐶𝑛
𝑓

is indicated by . The cell boundary (–), the horizontal momentum 
control volume (–), and continuity control volume (–) are shown. The black hatched area indicates the flux for the momentum control volume. The black dashed 
lines is the donating region for the given face-centered velocity.

The initial density 𝜌𝑛 in Fig. 21 is equal to zero inside the momentum control volume. Using the variables from the situation of 
Fig. 21 in Eq. (25) results in an expression like

�̄� = − 1
𝛿𝑉𝑚

(𝛿𝐶𝑓,2 − 𝛿𝐶𝑓,1)𝜌𝑓 , (28)

in which it is assumed that the only non-zero VOF fluxes are 𝛿𝐶𝑓,1 and 𝛿𝐶𝑓,2, that 𝛿𝑉𝑚 is the size of the momentum control volume, 
and that 𝜌𝑓 >> 𝜌1−𝑓 . When, due to intermediate reconstruction 𝛿𝐶𝑓,2 is larger than 𝛿𝐶𝑓,1, so when the hatched area in Fig. 21c is 
larger than in Fig. 21a, then a negative value for �̄� is obtained. Our experience is that negative densities lead to spurious velocities, 
which affect the time step through the Courant criterion. When the time step is kept the same, the spurious velocity may lead to 
instability.

Solutions to prevent negative densities could be to apply reconstruction in cell quadrants as in Rudman [45] with much increased 
computational effort. Another solution altogether could be to adopt a discretization based on a collocated arrangement of variables 
and control volumes. The solution we chose to obtain a robust, accurate and consistent method for two-phase flow simulations was 
to develop DQA, an unsplit advection method.

DQA is inspired by EMFPA. When researching the application of EMFPA for our applications, another problematic inconsistency 
was encountered that can lead to negative values of �̄�, and even instability, when the VOF flux is of opposite sign from the velocity 
in the same control volume face. Where the donating region for direction-split methods is always solely on one side of the control 
volume face, a multidimensional unsplit advection scheme like EMFPA can generate negative donating regions, as shown in Figs. 2, 
11f, and 13b. Negative donating regions can result in a VOF flux 𝛿𝐶𝑓 directed inwards of a momentum control volume, while the 
velocity u points outwards.

An example of a negative donating region is illustrated in Fig. 22, in which the VOF flux 𝛿𝐶𝑓 is larger than the available fluid 
volume. Using Eq. (26) results in momentum 𝜌∗𝑢 of opposite sign from the VOF flux. Using Eq. (25)

�̄� =
(
A𝑛 −

𝛿𝐶𝑓

𝛿𝑉𝑚

)
𝜌𝑓 (29)

for the situation in Fig. 22, in which the value of A𝑛 is smaller than the VOF flux 𝛿𝐶𝑓

𝛿𝑉𝑚
, while assuming that 𝜌𝑓 >> 𝜌1−𝑓 , leads to a 

negative value for �̄�, spurious velocities and, potentially, instability. There is even the chance with EMFPA, although small, that the 
VOF flux 𝛿𝐶𝑓 in the negative donating region is larger than the volume constraint 𝑢𝛿𝑡𝛿𝐴. Then, fraction 𝐶 in front of fluid 𝜌1−𝑓 in 
Eq. (26) becomes negative, at which time mass conservation is not longer enforced. DQA, which does not allow for negative donating 
regions by design, prevents the problematic inconsistency.

6.4. The effect of the advection scheme on stability

Simulations with the two-phase solver of van der Eijk and Wellens [52] are performed to demonstrate the effect of inconsistency 
on the results. Two cases are considered. The first is designed to show the negative densities associated with the intermediate 
reconstruction step when using COSMIC for fluid transport. The second case is designed to show the negative densities resulting from 
negative donation regions when using EMFPA for fluid transport. The results of both cases are compared with the simulation results 
in which DQA is used for fluid transport. In all simulations, BLIC-MYC is used to reconstruct the interface.

The setup of the first case is shown in Fig. 23. A 2D cylinder (circle) composed of high-density fluid is translated diagonally 
through the domain at a constant velocity of 14.14[m/s]. The cylinder is surrounded by a low-density fluid with a uniform velocity 
of the same magnitude and in the same direction as the velocity of the high-density cylinder. The relative velocity between fluids, 
23

therefore, is zero and further velocity changes should not occur. The density ratio between fluids is 106. The effect of the grid 
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Fig. 22. Negative donating region when using EMFPA. Volume fraction 𝐶𝑓 is indicated by . The donation region is shown in (–). The hatched area is the VOF flux 
𝛿𝐶𝑓 . Momentum flux 𝜌∗𝑢 is of opposite direction from the VOF flux 𝛿𝐶𝑓 . In case the fluid volume (A𝑛) is smaller than the VOF flux 𝛿𝐶𝑓 , a negative density �̄� is 
found, potentially leading to spurious velocities and instability.

Fig. 23. Simulation setup with cylinder of high-density fluid translating diagonally through low-density fluid at zero relative velocity.

Fig. 24. Contour plot of pressure in 40×40 simulation after 50 time steps. The interface is shown as a continuous black line. Results with COSMIC, to the left, feature 
regions of low and high pressure caused by spurious velocities. The simulation with DQA gives the expected results for this case without pressure gradients.

resolution on the results is investigated by considering three grid resolutions with 40×40, 80×80, and 120×120 grid cells. The time 
step is kept restrained at a value corresponding to an initial Courant number of 0.2. The Courant number is based on the size of the 
momentum control volume. The simulations finish after 100 time steps.

The results of the 40×40 simulation with the diagonal translation of the fluid cylinder are shown in Fig. 24. Contour plots of 
the pressure after 50 time steps are given. The pressure distribution in the simulation with COSMIC is showing a region with lower 
pressure and a region with higher pressure which is unexpected for a simulation with zero relative velocity between the high-density 
fluid cylinder and the surrounding fluid. These regions are caused by spurious velocities that themselves are caused by the negative 
density that has developed according to the mechanism described above. As shown on the right of Fig. 25, a simulation with DQA 
24

instead of COSMIC, but otherwise the same, yields the expected results and does not show any pressure gradients.
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Fig. 25. The interface between fluids in 80×80 and 120×120 simulations at two time levels. COSMIC is –. DQA is –. The interface in the simulations with COSMIC 
is highly distorted, whereas the simulations with DQA give the expected results.

Fig. 26. Simulation setup with square of high-density fluid at rest surrounded by low-density fluid moving with an undisturbed velocity magnitude of 10[m/s].

Fig. 25 compares the interfaces between COSMIC and DQA for two grid resolutions, 80×80 and 120×120. For both grid reso-
lutions, the interface with COSMIC is highly distorted as a result of the spurious velocities, whereas the interface with DQA is as 
expected. The interface distortion does decrease with increasing grid resolution. Both simulations with COSMIC became unstable, 
but the simulation with a grid resolution of 120×120 became unstable at a later time step than the simulation with a grid resolution 
of 80×80.

The density �̄� should be in between 𝜌𝑓 and 𝜌1−𝑓 . However, the simulation with COSMIC resulted for every time step in over-
and undershoots of the density �̄� in the order of 50. The over- and undershoots increase when the simulation becomes unstable until 
it crashes. An overshoot of 50[kg/m3] compared to a density ratio of 106 seems small but can result in instability. The spurious 
velocities are smaller for lower density ratios. It must be noted that the simulations became unstable because we did not allow the 
time step to decrease according to the Courant criterion.

It is our experience, from van der Eijk and Wellens [52] and the present article, that exaggerating the density ratio with respect 
to more common ratios such as for water and air, helps trigger issues when they are there. The undershoots and overshoots of the 
intermediate density ̄𝑟ℎ𝑜 seemed inconspicuous, but set a chain of events into motion that can even lead to unstable simulations.

The second case is designed to demonstrate the effect of having negative donating regions when using the EMFPA unsplit advec-
tion scheme in a two-phase flow solver with a high-density ratio between fluids. Negative donating regions can also lead to negative 
densities and spurious velocities. The mechanism is different from that with COSMIC, but the effect on the robustness of the solver 
is the same. The previous case discussed does not show any issues for EMFPA because no negative donating regions are created with 
the imposed constant velocity field. The chance of negative donating regions increases for shear flows as in Fig. 13a.

The simulation setup is shown in Fig. 26. A 2D square of high-density fluid is at rest while being surrounded by low-density fluid 
moving with an undisturbed velocity magnitude of 10[m/s]. The density ratio between fluids is 106. Two grid resolutions, 86×86 
and 87×87, are considered to show how sensitive EMFPA can be for the specific configuration of fluids. The time step is allowed to 
vary so that at any time the Courant number is lower than 0.4. The simulations end at 𝑡 = 0.05[s]. The thought behind the setup 
is to represent a shear flow, in which negative donating regions are constructed with EMFPA as in Fig. 13a. DQA does not allow 
negative regions to be formed. In absence of gravity and viscous stresses, the setup should not result in deformation or movement of 
25

the square of fluid. The differences between the simulation results with EMFPA and with DQA will be discussed.



Journal of Computational Physics 498 (2024) 112656M. van der Eijk and P. Wellens

Fig. 27. Contour plot of horizontal velocity and interface at 𝑡 = 0.005[s] in simulations with EMFPA and DQA at slightly different grid resolutions. Contour levels of 
the interface represent volume fraction values of 0.5, 0.01, 0.001, and 0.0001, becoming smaller from the high-density square towards the low-density surrounding 
fluid. EMFPA generates spurious velocities near -70[m/s] (not shown, minimum of scale is -20[m/s]).

The differences between the simulation results with EMFPA and with DQA are most apparent when the horizontal velocity field 
is shown together with the interface between fluids. Fig. 27 shows the horizontal velocity and interface of four simulations at time 
𝑡 = 0.005[s]. The top row in Fig. 27 is for grid resolution 86×86 and has the EMFPA results on the left and the DQA results on 
the right. The EMFPA results for grid 86×86 feature a distorted interface caused by negative densities, resulting in spurious velocity 
oscillations that attain a magnitude as high as 70[m/s] (the scale in the plot goes until 20 to be able to compare with the other plots 
in the figure). The bottom row of Fig. 27 shows the results of the simulation with a grid resolution of 87×87, again with EMFPA on 
the left and DQA on the right. For grid 87×87, the results of EMFPA and DQA are the same and equal to what could be expected. The 
difference between the results of the simulations with EMFPA, with a marginal difference in grid resolution, indicates how sensitive 
a two-phase flow solver can be to negative densities.

The interface deformation with EMFPA is related to the specific position of the interface in a grid cell with a grid resolution of 
86×86 and to EMFPA using vertex velocities. When a grid cell containing the interface is nearly filled, then, due to the high velocity 
of the low-density fluid, a negative donating region can be formed with a VOF flux of the opposite sign from the main velocity in 
that cell (see Fig. 13a). That VOF flux deforms the interface, which induces a negative density. With grid resolution 87×87, the grid 
cells near the interface have a lower volume fraction which prevents the negative donating region from being formed. DQA is not 
sensitive to this mechanism because it does not allow the creation of negative donating regions.

The spurious horizontal velocities in the 86×86 EMFPA simulation are a consequence of negative densities which are caused by 
the VOF fluxes in interface cells of opposite sign from the velocity in those cells. Negative densities �̄� were computed with values up 
to -350 kg/m3 in more than 50% of the time steps according to the mechanism explained above: solving the velocity field ū in Eq. 
(24), using Eqs. (26) and (25) yields a negative density �̄�, resulting in a change in sign of the velocity. The pressure field needs to 
26

ensure a divergence-free field and, therefore, induces a larger correction of the velocity field, giving even higher velocities.
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7. Conclusion

A new bilinear interface calculation (BLIC) method is introduced for reconstructing the interface in a 2D Volume-of-Fluid (VOF) 
method. A new multidimensional consistent unsplit VOF advection method, DQA, which is short for Donating Quadrant Advection, 
is presented using face-centered velocities that is conservative, low-cost, and accurate. It allows the fluid to enter and exit a cell in a 
time step.

Both BLIC and DQA are tested with standard 2D benchmarks like static reconstruction of two different shapes, Zalesak’s slotted 
disk, and a reversed single vortex field. The BLIC method uses a robust curvature-weighted averaging method with a piecewise 
linear segment as starting point to create continuity of the interface along the cell faces. Weighting using the curvature increases 
the accuracy of the BLIC method, especially for underresolved material interfaces. The accuracy of BLIC for higher grid resolutions 
converges to the accuracy of PLIC on a grid twice as fine. The additional computational costs compared to Parker and Youngs’ PLIC 
method is up to 20%, decreasing to 1% for higher grid resolutions. However, the increase in accuracy of representing the interface 
is up to an order of magnitude. The BLIC method needs a less dense grid and less computational time to reach similar accuracies as 
the PLIC method.

The DQA scheme we present shows similar accuracy as the state-of-the-art vertex velocities-based EMFPA scheme for traditional 
benchmarks. The computational costs of the unsplit DQA scheme are lower than for a direction-split scheme like COSMIC, mostly 
because of the intermediate reconstruction steps a direction-split scheme uses. The combination of the BLIC and DQA methods is 
competitive with higher-order methods in terms of accuracy but outperforms most of them in computational cost based on provided 
data from literature.

An important additional benefit of the DQA scheme is introduced to ensure consistency for an existing consistent two-phase flow 
solver with a staggered arrangement of variables. Consistency means using the same discretization techniques for determining the 
momentum, mass, and VOF fluxes and carefully matching them in the different control volumes that are staggered with respect to 
each other. Consistency is achieved by incorporating the VOF fluxes in the discretization of the density. Negative densities due to 
inconsistency are found for an intermediate reconstruction step in COSMIC, and for a VOF flux of the opposite sign than the velocity 
in EMFPA. The negative densities result in spurious velocities and instability near the fluid interface. The DQA scheme prevents these 
negative densities and remains stable and accurate in a simulation of a translating high-density cylinder in a low-density fluid, for 
which COSMIC fails, and in a simulation with a square of high-density fluid in a shear flow with low-density fluid, for which EMFPA 
fails.
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