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Navigating miners during an evacuation using a smart evacuation technology can 
significantly decrease the evacuation time of an underground mine in case of an 
emergency. This paper presents a mathematical programming model to calculate the most 
efficient escape path for each miner as a critical component of the smart evacuation 
technology. In this model, the total evacuation distance of the crew is minimised and 
scenarios with blocked pathways, and stamina categories for the miners are simulated. It 
was found that all the tested scenarios are technically feasible. Using the feature that filters 
out blocked pathways has no downsides, as safer routes are calculated, and there is no 
penalty in the computation time. The paper also discusses the social and technical issues 
that need to be overcome before the algorithm can be implemented as an actual escape 
solution.  
 
 

INTRODUCTION 
 
Current strategies for mine evacuation are blind, and outdated technologies that only require people to 
run to predefined locations such as escape ways or refugee chambers during emergencies (Brenkley, 
Bennett, & Jones, 1999). These technologies can be divided up into passive methods (such as hanging 
signs on intersections of mining pathways (Chasko, Conti, Lazzara, & Wiehagen, 2005) or by using 
lifelines (Conti, 2001), and active methods (which give both visual and audible cues about the exit route). 
In many cases, the predefined routes may pass through danger zones and are definitely not the best 
choice for dispatching people.  

In a virtual reality environment, it has been proven that smart evacuation is faster than conventional 
methods (Gaab, 2019). According to Gaab (2019), smart evacuation systems are “real-time evacuation 
guidance systems that are adaptable to changing conditions such as location, and spreading of fire and 
resulting safest and fastest exit routes”. In order to employ the smart evacuation, an algorithm is needed 
to determine the safest and fastest exit routes. 

In order to utilise smart evacuation, real time localisation of the individuals underground is needed. 
Localisation can be done using radio frequency identification (where miners wear tags which 
communicate by readers using electromagnetic waves (Radinovic & Kim, 2008; Rusu, Hayes, & 
Marshall, 2011)), WiFi (which used the signal strength of smart devices (Mohapatra et al., 2020)), 
Bluetooth (which is similar to WiFi, but works better in an environment with a lot of background noise) 
(Baek, Choi, Lee, Suh, & Lee, 2017)), Wireless Sensor Networks (which uses fingerprinting of radio 
signals (Chehri, Fortier, & Tardif, 2009; Yiu, Dashti, Claussen, & Perez-Cruz, 2017)), and Image-Assisted 
Person Location (which identifies miners by the lamp on their helmet (Niu, Yang, & Yin, 2018)). 
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There are several algorithms that can be used to determine the shortest path. Examples are Dijkstra’s 
algorithm (Dijkstra, 1959; Hong, Li, Wu, & Xu, 2018), the Floyd-Warshall algorithm (Bari, 2018; 
Hougardy, 2010) and Ant Colony Optimisation (ACO) (Guangwei & Dandan, 2013; Mirjalili, 2018). All 
these methods have their own advantages and disadvantages. Dijkstra’s algorithm and the Floyd-
Warshall algorithm will always find the shortest route possible, but can become computationally 
inefficient if the network it is used upon is extensive (with a worst case running time of O(n2) for 
Dijkstra’s algorithm (Biswas, Mishra, & Mahanti, 2005)). ACO is faster, but may deliver a suboptimal 
solution.  

In this paper, the development of a smart evacuation algorithm, based on mathematical programming, 
will be presented as part of a larger project to develop a practical smart evacuation technology, 
supported by the US National Institute of Occupational Health and Safety at the University of Nevada, 
Reno. A case study is executed for a drift and fill gold mine located in north-central Nevada, USA. For 
the case study, the CAD model of the mine containing information of the network of the underground 
tunnels is used. The locations of the miners, fires, and their destinations in case of an emergency (refugee 
chambers and shafts) are randomised. This paper investigates if mathematical programming can be 
used to determine the most efficient escape solution in case of an evacuation.  

 

METHOD 

Mathematical Model 
The task of finding the optimal evacuation routes for each specific miner during an emergency in an 
underground mine can be modelled as a Minimum-Cost Network Flow Problem (MCNFP), which is a 
well-known optimisation method. The mathematical programming model can be solved with different 
approaches (Winston & Goldberg, 2004). According to Winston and Goldberg (2004), a mathematical 
programming problem can be defined as follows: 

• “It is attempted to maximise (or minimise) a linear function of decision variables. The function 
that is to be maximised or minimised is called the objective function.” 

• “The values of the decision variables must satisfy a set of constraints. Each constraint must be 
a linear equation or linear equality.” 

• “A sign restriction is associated with each variable. For any variable xi, the sign restriction 
specifies that xi must be either nonnegative (xi ≥ 0) or unrestricted in sign (urs).” 

Modelling starts with construction of a network model which is identical to the physical model of the 
access roads in the mine. The mathematical programming representation of an MCNFP is stated as: 

𝑚𝑖𝑛 $ 𝑐&' ∗ 𝑥&'	
+,,	+-./

																																																																																																																							(1) 

Subject to 

	$𝑥&' −$𝑥4& = 𝑏&	
4'

																																																																																																																				(2) 

Where, 

• xij is the number of units of flow sent from node i to node j trough arc (i, j). 
• cij is the cost of transporting one unit of flow from node i to node j via arc (i, j). 
• bi is the net supply (outflow minus inflow) at node i. 

In the objective function (equation 1) the total distance that miners need to travel altogether is minimised 
as the length of the arc between two nodes, cij, is multiplied by the number of miners, xij, that take this 
route when they are heading for the exit. It should be noted that cij is not only based on the distance 
between nodes (Adjiski, Mirakovski, Despodov, & Mijalkovski, 2015). Influences like the slope angle of 
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the path, the temperature and quality of the air can be incorporated in this parameter, so as to not only 
calculate the shortest route, but also one that is the safest and the most efficient. In this paper, only slope 
angle, closed pathways, and the stamina of the miners are considered. How the stamina for individual 
miners is introduced will be discussed later in this paper. 

Constraints (as given in equation 2) describe the difference between the flows that lead towards a node 
(xij), and the flows that lead away from it (xki). By setting parameter bi to a certain value, places where 
miners are located at the time of an emergency, and the nodes where they can find a safe haven can be 
simulated. For instance, if a worker is present at node 1, b1 can be set to one. This way, the workers are 
introduced in the network of nodes and arcs. If a refugee chamber at node 𝑖 can house ten people, bi 
should be set to more or equal than -10. This way, when a miner reaches a safe haven, he ‘disappears’ 
from the system. A relatively large coefficient is assigned to the mine shaft due to its high capacity. 
Keeping bi zero at nodes that serve no particular purpose, makes sure that all miners arriving at this 
node will have to leave as well. This way, miners have to keep passing ‘empty’ nodes until they find a 
safe haven. 

Equation 1 and 2 are not the full mathematical description of the MNCFP. Normally, an extra equation 
considering the capacities of the specific arcs is included. For instance, if a certain drift in the mine can 
only harbour twenty miners, a constraint setting this limit could be included. It is assumed, however, 
that miners will arrive at specific drifts at different points in time, eliminating the need for specific 
capacities for the arcs. The main reason for this assumption is that the model is static rather than 
dynamic: the escape solution is calculated at a certain point in time, and is not modified afterwards. 
Setting a constraint for a specific arc could lead to miners finding detours or even being trapped, while 
this is not necessary. If the model would be dynamic (i.e. is constantly or regularly updated during an 
emergency), one could consider extending the model with this feature.  

Implementation 
The Python programming language is used to implement the escape algorithm proposed in this paper. 
Special note needs to be made of the GUROBI library that solves the optimisation problems, using the 
network simplex algorithm. 

Scenarios and Situations 
A total of four scenarios are tested: 

• Scenario 1: No correction to the pathlengths for the stamina of the miners and no blocked 
pathways. 

• Scenario 2: No correction to the pathlengths for the stamina of the miners with ten blocked 
pathways. 

• Scenario 3: Pathlengths are corrected for the stamina of the miners and no blocked pathways. 
• Scenario 4: Pathlengths are corrected for the stamina of the miners with ten blocked pathways. 

As can be seen, stamina categories are introduced in the last two scenarios. In these scenarios, miners 
are given a value from zero to four (where zero indicates a low stamina, two means an ordinary stamina, 
and four is the highest category). Miners in the lowest category are given a stamina of 80% while the 
miners in the highest category are given a stamina of 120%.  By adjusting the objective function and 
constraints so that each category is represented, miners in a low category will be favoured for a spot in 
a refugee chamber (if this is relatively close by, and the capacity is limited). A miner in a higher category 
will be sent to a safe haven further away in their place. This is done by adjusting the pathlengths relative 
to the percentages for each category. For instance, for an arc of 100 metres, the pathlength for a miner 
in the lowest category will become 899

9.;
, which is 125 metres. For miners in the highest category this will 

be 899
8.<

, which is 83.3 metres. Because the paths for miners in a high category are relatively shorter, it is 
cheaper to send them to safe havens further away. 

Each of the scenarios were run for five different situations. In each situation, the miners and blocked 
pathways are located differently and chosen randomly by the computer. The situations (i.e., the location 
of miners and fires) are the same in each scenario and are run with 1, 5, 10, 50, 100, 200, 500, and 1000 
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workers underground. The locations of the safe havens are kept the same in all simulations. The 
algorithm is not sensitive to location of fires. The random locations were only chosen for the sake of this 
research. In the future, when the algorithm is applied for the real-world examples, there will be no 
concerns and no bias will be introduced in the generated results. The number of ten blocked pathways 
may seem a bit high. The reason this number has been chosen was to make sure that in some simulations 
miners get trapped, so as to demonstrate the algorithm will still work in these cases.  

Visualisation  
The escape solution for each individual miner can be visualised. An example of this is given in Figure 
1. The red dot indicates the initial location of the miner. The red lines give the route she/he needs to 
follow to reach a safe haven. 

In scenario 2 and 4 the random locations of fires or roof collapses are implemented. In these scenarios, 
because some of the paths are blocked, it is possible that some miners may get trapped without any 
feasible escape way. In this case, the mathematical model identifies their locations and provides a plot 
of their positions for the rescue teams. These types of plots consist only of red dots to indicate the 
locations of the trapped miners. 

 

Figure 1. Example of route plot. The red dot indicates the original position of a miner. The red lines are his/her 
route to safety.  
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Figure 2. Close up of escape path. 

 

RESULTS 

Examples of the distribution of miners among safe havens, the paths of an individual miner (called 
Miner X) in the different scenarios, and the computation times of the algorithms are presented as results.  

Distribution of miners among safe havens 
Five safe havens are used in each of the simulations: two shafts (located at node 200 and node 250) and 
three refugee chambers (located at nodes 120, 150, and 300). As mentioned, these nodes were chosen 
randomly by the author. The numbers of the specific nodes were used for programming purposes, and 
given in this paper only for means of identification. The refugee chambers are assumed to have a 
capacity of 30 miners, while the shafts have infinite capacity. Table 1 to Table 4 show the distribution of 
the miners among the safe havens for each different scenario in situation 3. For brevity, only situation 3 
is given as an example. For full results please see (Meij, 2020). 

A first point that one should notice is that with up to 200 miners underground, the capacities of the 
refugee chambers are sufficient. This does not mean that all miners have to be directed to a refugee 
chamber, if they are close to the exit shaft, the algorithm will direct them to this point. Furthermore, in 
some conditions some miners will be sent to a safe haven that is not the closest (i.e., if refugee chamber 
A, which is the closest, is full, a miner may be guided to the other refugee chamber). This is one of the 
strongest points of this approach; everything can be planned in real-time, and if someone has to go to 
another chamber, it is known from the beginning. As there were a lot of randomisations in the 
localisation of miners and safe havens, no hard conclusions can be drawn from these results. However, 
it is important to see that if the refugee chambers were to fill up, more miners would be sent to the 
shafts. From 500 miners and up, the refugee chambers will reach their maximum capacity, which leads 
to more miners being sent to the exit shaft. Besides this, in scenario 2 and 4 not every miner will make 
it to a safe haven. This is, as mentioned, due to the blocked paths in these scenarios, which lead to miners 
being trapped. 

In order to compare the scenarios, in Table  to  

Table , the absolute difference in the number of miners in a specific safe haven for the different 
scenarios can be found. 
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Table 1. Defined destinations for Scenario 1, Situation 3 

Refugee / # of Miners 1 5 10 50 100 200 500 1000 
Chamber 120 0 2 3 10 22 30 30 30 
Chamber 150 0 0 0 4 11 30 30 30 
Chamber 300 0 0 0 2 5 16 30 30 
Shaft 200 0 0 4 22 42 85 223 482 
Shaft 250 1 3 3 12 20 39 187 428 
Total 1 5 10 50 100 200 500 1000 
Trapped Miners 0 0 0 0 0 0 0 0 

 

Table 2. Defined destinations for Scenario 2, Situation 3 

Refugee / # of Miners 1 5 10 50 100 200 500 1000 
Chamber 120 0 2 3 9 18 30 30 30 
Chamber 150 0 0 0 4 11 21 30 30 
Chamber 300 0 0 0 3 8 24 30 30 
Shaft 200 0 0 4 22 44 87 242 503 
Shaft 250 1 3 3 11 18 35 163 402 
Total 1 5 10 49 99 197 495 995 
Trapped Miners 0 0 0 1 1 3 5 5 

 

Table 3. Defined destinations for Scenario 3, Situation 3 

Refugee / # of Miners 1 5 10 50 100 200 500 1000 
Chamber 120 0 2 3 10 22 30 30 30 
Chamber 150 0 0 0 4 11 30 30 30 
Chamber 300 0 0 0 2 5 16 30 30 
Shaft 200 0 0 4 22 42 85 224 475 
Shaft 250 1 3 3 12 20 39 186 435 
Total 1 5 10 50 100 200 500 1000 
Trapped Miners 0 0 0 0 0 0 0 0 

 

Table 4. Defined destinations for Scenario 4, Situation 3 

Refugee / # of Miners 1 5 10 50 100 200 500 1000 
Chamber 120 0 2 3 9 18 30 30 30 
Chamber 150 0 0 0 4 11 21 30 30 
Chamber 300 0 0 0 3 8 24 30 30 
Shaft 200 0 0 4 22 44 87 243 502 
Shaft 250 1 3 3 11 18 35 162 403 
Total 1 5 10 49 99 197 495 995 
Trapped Miners 0 0 0 1 1 3 5 5 
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Table 5. Difference in number of miners in safe haven between Scenario 1 and 2, Situation 3 

Refugee / # of Miners 1 5 10 50 100 200 500 1000 
Chamber 120 0 0 0 1 4 0 0 0 
Chamber 150 0 0 0 0 0 9 0 0 
Chamber 300 0 0 0 1 3 8 0 0 
Shaft 200 0 0 0 0 2 2 19 21 
Shaft 250 0 0 0 1 2 4 24 26 

 

Table 6. Difference in number of miners in safe haven between Scenario 3 and 4, Situation 3 

Refugee / # of Miners 1 5 10 50 100 200 500 1000 
Chamber 120 0 0 0 1 4 0 0 0 
Chamber 150 0 0 0 0 0 9 0 0 
Chamber 300 0 0 0 1 3 8 0 0 
Shaft 200 0 0 0 0 2 2 19 27 
Shaft 250 0 0 0 1 2 4 24 32 

 

Table 7. Difference in number of miners in safe haven between Scenario 1 and 3, Situation 3 

Refugee / # of Miners 1 5 10 50 100 200 500 1000 
Chamber 120 0 0 0 0 0 0 0 0 
Chamber 150 0 0 0 0 0 0 0 0 
Chamber 300 0 0 0 0 0 0 0 0 
Shaft 200 0 0 0 0 0 0 1 7 
Shaft 250 0 0 0 0 0 0 1 7 

 

Table 8. Difference in number of miners in safe haven between Scenario 2 and 4, Situation 3 

Refugee / # of Miners 1 5 10 50 100 200 500 1000 
Chamber 120 0 0 0 0 0 0 0 0 
Chamber 150 0 0 0 0 0 0 0 0 
Chamber 300 0 0 0 0 0 0 0 0 
Shaft 200 0 0 0 0 0 0 1 1 
Shaft 250 0 0 0 0 0 0 1 1 

 

In Table 5 and Table 6, scenarios with and without blocked paths are compared. As can be seen, the 
blocked paths cause a significant shift in how miners are divided among the safe havens. There are two 
reasons for this. The first, and most important, is that due to blocked pathways miners may have to take 
detours. On their new route, the safe haven that was closest by before may now be relatively further 
away. Moreover, the route to a safe haven may be blocked entirely for a specific miner. This can lead to 
miners heading to a different destination than they would have gone to when all paths were available. 
The second, and less important, reason for the differences are the trapped miners. These miners will not 
make it to a safe haven at all, which can be found back in the numbers (note that this does not mean that 
trapped miners are considered less important individuals, but simply that their impact on the difference 
in division of workers among the safe havens is low). 

Table 7 and Table 8 depict the differences with, and without the use of stamina categories in the 
algorithms. In these cases, no differences can be seen for the simulations with up to 200 miners. Minimal 
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differences can be seen around the shafts for the simulations with 500 miners and more. This is because 
in simulations with up to 200 miners the refugee chambers have sufficient capacity. This means that 
miners are sent to the safe haven closest to them, no matter what stamina category they are in. In the 
simulations where the refugee chambers are full, miners that have a lower stamina will be favoured for 
a spot in the refugee chambers (if this is relatively closer by). This means that a miner with better stamina 
will be sent to a shaft in his/her place. This shaft, however, may not be the same as the weaker miner 
would have gone to. This leads to some differences in the division of miners around the shafts. 

Miner X 
The purpose of this section is to investigate how blocked pathways and stamina categories may 
influence the path of an individual miner. Miner X is part of the simulations executed in the second 
situation. He/she is in the highest stamina category and his/her paths are determined in the case where 
500 miners are present. His/her paths are depicted in Table 9. 
 
Table 9. Destinations Miner X 
 

Scenario Distance in Metres Final Destination Node 
1 2502.7 150 (Refugee Chamber) 
2 2502.7 150 (Refugee Chamber) 
3 4285.1 250 (Shaft) 
4 6821.1 250 (Shaft) 

  

As can be seen, there is no difference between scenario 1 and 2. This means that, despite the fires, Miner 
X encounters no blocked paths on his/her route to safety in scenario 2. When looking at scenario 3, one 
can see that the distance that Miner X has to travel increases significantly compared to scenarios 1 and 
2. This is because a weaker miner is favoured for a spot in refugee chamber 150, and Miner X has to 
head to a shaft in his place. Finally, in scenario 4, the path for Miner X is longer than in scenario 3. This 
is because one or more pathways on his original route are blocked because of fire, which means he has 
to take a detour to get to the shaft at node 250. 

It can be concluded from Table 9 that both blocked pathways and stamina categories may add 
significantly to the path of an individual miner. In the case of blocked pathways, this isn’t necessarily 
undesirable. Although the route for an individual miner may be longer, it does avoid hazardous 
situations such as fires. Therefore, pathlength is exchanged for safety. That said, the added pathlength 
because of stamina categories does raise social and ethical questions. Can you expect a miner to travel 
further in favour of a weaker colleague?  

It should be noted that the pathlengths for Miner X seem unrealistically long. The reason for these 
unrealistic pathlengths is the randomisation that was used in the simulations for the locations of miners 
and safe havens. Therefore, one should see these results as a simulation, and not as an actual escape 
solution. 

Computation times 
The average times to run the algorithms for the different scenarios are presented in Figure 3. These times 
only refer to solve the optimisation problem. Times to read, set up the model and reporting are 
negligible.  



 

125 

 

Figure 3. Average computation times for different scenarios. 

As can be seen, blocked pathways have a negligible effect on the computation time of the algorithms. 
This is remarkable, as these scenarios require more execution of code. That said, it does mean there is 
virtually no downside to including the feature that filters out blocked pathways. Trapped miners are 
localised and their colleagues are sent on routes that avoid hazardous situations, without overly 
complicating the algorithm. It is therefore highly recommended to use this feature in the escape 
solutions. 

Using stamina categories, on the other hand, does add to the computation time (up to five seconds in 
simulations with 1000 miners underground). Although this time difference will most likely not result 
in a matter of life and death, it does, again, raise some questions about desirability. Firstly, if the refugee 
capacity is sufficient, the final solution the algorithm generates will be the same. In this case it is 
definitely undesirable to have the added computation time. Secondly, if the capacity of the refugee 
chambers is insufficient, added computation time is just one of the objections one can have against the 
use of stamina categories. 

A final note is that the simulations were run on an everyday use laptop (MacBook Pro, 3.1 GHz Dual-
Core Intel Core i5, 16 GB RAM 2133 MHz LPDDR3). If this system were to be implemented in an actual 
mining operation, most likely a specialised computer would be used. This could lead to a significant 
decrease in the time it takes for the algorithms to run. 

 

DISCUSSION 

This paper raises some ethical and social questions about the obtained solutions. Firstly, there is the 
issue of using stamina categories. It has been proven that using this type of category is technically 
feasible, but one could question whether it is desirable to employ gender and fitness discriminations 
into decision making. The categories can also have an adverse effect on the path of an individual miner 
(who has good stamina). Is it ethical or socially acceptable to expect a miner to accept a longer path of 
escape in favour of a weaker colleague? That said, using these category types may be useful if the 
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operation, for instance, uses vehicles such as trucks underground. These categories should perhaps then 
not be used to divide up miners, but could be used for a different purpose. 

The use of the algorithm without the use of stamina categories can also raise ethical issues. For instance, 
if five miners are positioned at the same workstation, and the closest refugee chamber can only harbour 
four more workers, a decision will have to be made as to which miner misses out on a spot in this safe 
haven. This can be a tough dilemma. Who do you let to decide as to who cannot go to the closest safe 
haven; the algorithm, the miners, or the emergency controller? There is, probably, not one best answer 
to this question. That said, this issue does need to be resolved before a smart evacuation system can be 
brought into practice. 

Another issue is how to classify which paths are suitable to use for escape and which are not. Naturally, 
in the case of a fire or toxic gasses the exclusion of a path is obvious. However, what if a path is partly 
blocked by machinery or other obstacles? What if a drift is partly filled with water? This issue can partly 
be resolved by giving these paths extra weight in the objective function, but this does require that the 
conditions for every location underground are extensively monitored. Besides this, a system needs to 
be devised that assigns certain penalties to certain situations. It can be argued, then, that the current 
system of assigning weights to the pathways is not yet complete. 

Practically, the current algorithm is quite crude: given more time and technical experience it could be 
made more compact, efficient, and elegant. Therefore, the main purpose of this algorithm is to prove 
that linear programming can be used to generate an escape solution for an underground mine. There 
are alternative methods to solving mathematical programming problems, e.g., other programming 
languages or Python packages. It would be worthwhile investigating which method would be the best 
for an actual mining environment. 

 

CONCLUSION 

In this paper, a mathematical programming component for a new smart evacuation algorithm for 
underground mines is proposed. The algorithm sets the evacuation model as a Minimum-Cost Network 
Flow Problem, which can be solved using any mathematical programming solver. This is done by 
setting the evacuation as an objective function, which is subject to a number of constraints. The objective 
function minimises the total distance travelled by all miners underground. The constraints are used to 
indicate the locations of workers and safe havens. The algorithms for this paper are written in the 
Python programming language, and solved by use of the GUROBI library (Version 8.0). 

A total of four scenarios are tested: with- and without blocked pathways and with- and without dividing 
the miners up in stamina categories. Each of the scenarios were run for five different situations, with 
simulations for 1, 5, 10, 50, 100, 200, 500 and 1000 miners. The locations of miners and blocked pathways 
were chosen randomly by the computer in each different situation. The safe havens were chosen 
randomly by the author, and kept the same for all simulations. 

It was found that in simulations with up to 200 miners, the capacity of the refugee chambers is sufficient. 
For simulations with 500 miners or more, the refugee chambers reach capacity, which leads to more 
miners heading to the shafts. The introduction of blocked pathways has a significant influence on how 
the miners are divided up among the safe havens. This has two reasons: the first being that blocked 
paths may cause a safe haven that was initially closest by, but is now relatively further away, or entirely 
unreachable. This will lead to miners being sent to a different safe haven. The second reason is that 
blocked pathways may cause miners to be trapped. They will therefore not reach a safe haven, which 
can be found back in the numbers. Stamina categories only have some effect on the division of miners 
around the shaft in simulations with 500 miners and more. This is because when a stronger miner is 
sent to a shaft in favour of a weaker miner, this does not need to be the same shaft as the latter would 
have originally gone to. 
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To give an idea how the different scenarios influence the path of an individual worker, Miner X was 
introduced (who comes from a simulation with 500 miners, and is in the highest stamina category). It 
was found that both blocked pathways and stamina categories may add significantly to the path of an 
individual miner. This is not that big of an issue in the case of blocked paths, as pathlength is exchanged 
for a safer route. However, in the case of stamina categories, there are some social and ethical objections 
that could be raised. 

Introducing a feature that filters out blocked pathways and localises trapped miners does not give a 
penalty to the computation time of the algorithms. This means that there is virtually no downside to 
using this feature. Stamina categories do add to the computation time. If there is sufficient refugee 
capacity, this is undesirable, as there will be no impact on the final solution. If the capacity is insufficient, 
the time penalty will most likely not result in a matter of life and death. However, social and ethical 
objections play a role here as well. 
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