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Abstract

Providing farmers with the tools to monitor their crops continuously and reliably can aid the scaling of global
food production to meet the ever-growing demand. The optical Normalised Difference Vegetation Index
(NDVI) is commonly used to monitor crop greenness as an indicator for biomass, but it is limited by clouds
and signal saturation. Synthetic Aperture Radar (SAR) imagery, which is not hampered by clouds, can be used
to complement the NDVI. The Biomass Proxy (BP) combines the NDVI and SAR data, but spatial biomass es-
timations still strongly depend on the NDVI and therefore face the same limitations. This study aims to assess
the potential value of spatial SAR data to approximate the in-field biomass distribution. The SAR signal from
Sentinel-1 and the NDVI signal from Sentinel-2 were analysed temporally and spatially for fields of maize,
barley, oat, and spring wheat in the Dutch province of Flevoland. It was assumed that consistent SAR pat-
terns in the spatial signal correspond to biophysical changes in the monitored crops. A framework to detect
these patterns and include them in the BP was created based on combining cluster detection with spatial
autocorrelation. The components of this framework demonstrate that backscatter intensity, phenological
stage and crop type influence the probability of consistent patterns and that consistent patterns could not
be observed from the spatial NDVI signal. Moreover, it was found that the BP’s sensitivity to the input signals
depends on crop type. With the knowledge of when and where consistent patterns occur, targeted research
can be done to understand the spatial SAR signal better and, thereby, optimally use all available information.
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1
Introduction

This chapter provides an introduction to this thesis. First, in Section 1.1, some context on agricultural mon-
itoring with remote sensing and an overview of previous work in the field is given. Then, in Section 1.2, the
scope of this thesis is defined by posing the research questions. Last, the document structure is presented in
Section 1.3.

1.1. Context
As the stress on food supply increases due to the growing world population and changing climate, crop mon-
itoring can be a key component in ensuring food security (Kuester & Spengler, 2018; Mkhabela, Mkhabela, &
Mashinini, 2005; Veloso et al., 2017). By closely monitoring agricultural fields, yields can be predicted, and
water use can be optimised (Awad, 2019). Fields can be mapped daily and accurately with the help of satellite
imagery (McNairn & Shang, 2016). One of the major challenges is the scalability of this monitoring. With a
global food demand that is expected to double by 2050 (Godfray et al., 2010; Tilman, Balzer, Hill, & Befort,
2011), the agricultural sector continues to grow, and suitable technologies that can be applied at scale are
indispensable (Behzad et al., 2019). Remotely sensed data can provide continuous and reliable crop informa-
tion, enabling farmers and food producers to optimise the available resources and implement timely inter-
ventions to maximise yields (Khabbazan et al., 2022). In addition, crop monitoring can also help reduce the
use of pesticides and fertilisers and promote more environmentally friendly land management (Vreugden-
hil et al., 2018). With crop monitoring on this scale, the first steps towards the transition towards precision
agriculture can be made.

1.1.1. Agricultural monitoring using remote sensing
Crop monitoring is often still done manually by inspection on the ground, which has the disadvantages that
it is labour-intensive, can only be executed on a small scale, and does not give a clear insight into long-term
trends (W. Li & Guo, 2010). Due to these problems, the use of remote sensing for crop monitoring has quickly
gained popularity over the last few decades, providing more and more farmers with cost-effective, efficient,
and reliable data for cropland management (Zhao, Qu, Chen, & Yuan, 2020). Often, remote sensing methods
use vegetation indices derived from optical and Near Infra-Red (NIR) bands (Andela, Liu, M. Van Dijk, De Jeu,
& McVicar, 2013), which can be used to estimate the biophysical parameters of the crops. One of the most
common indices is the Normalised Vegetation Index (NDVI), which is a measure of the greenness (chloro-
phyll) of the backscattering surface (Tarpley, Schneider, & Money, 1984). Over the last few decades, many
methods have been developed to process the optical remote sensing data, and the resolution and repetition
frequency of the data have increased significantly (Zhao et al., 2020). Nevertheless, optical imagers that rely
on clear-sky conditions will always have limitations. For crop monitoring, persistent cloud cover will drasti-
cally reduce the number of usable imageries, resulting in a poor temporal resolution of the data.

Radar remote sensing provides information which the optical-based vegetation indices cannot capture.
Two inherent differences between the techniques cause this. Firstly, radar satellites are active satellites, mean-
ing they transmit and receive signals. This enables day- and night monitoring since the signal does not de-
pend on sunlight. Secondly, radar waves have a much longer wavelength than optical signals, allowing the

1
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electromagnetic waves to pass through clouds and be unhindered by other atmospheric conditions (Vreug-
denhil et al., 2020). Because of these characteristics, the temporal resolution only depends on the satellite
revisit time and is, therefore, much higher than that of optical remote sensing. This difference in temporal
resolution is visualised in Figure 1.1 for an agricultural field in the Netherlands.

Moreover, the radar waves can penetrate the surface it scatters onto a certain depth, depending on the
wavelength. Thus, the backscattered signal can provide valuable insights into the structure and the material
of the surface it interacts with (Ottinger & Kuenzer, 2020). Furthermore, because of its ability to penetrate the
surface, the signal gets saturated at a higher vegetation density than the NDVI (Y. Y. Liu, Van Dijk, De Jeu, Mc-
cabe, & Evans, 2012). However, due to its longer wavelength, radar has a much lower spatial resolution than
optical data and compared to optical data. The use of SAR data in agricultural applications has advanced less;
partly because SAR data is more complicated, diverse, and less accessible, and in part, because data interpre-
tation is more challenging (Veloso et al., 2017).

Figure 1.1: Full-coverage observation frequency of the radar Sentinel-1 (S1) and optical Sentinel-2 (S2) satellites of an arbitrary maize
field in Flevoland.

1.1.2. Previous work
Agricultural remote sensing has extensively been researched for different purposes, such as crop yield esti-
mation (Abdikan, Sekertekin, Ustunern, Balik Sanli, & Nasirzadehdizaji, 2018; J. Liu et al., 2010; Mkhabela et
al., 2005), agricultural drought monitoring (X. Liu et al., 2016; Rhee, Im, & Carbone, 2010; Sánchez, González-
Zamora, Martínez-Fernández, Piles, & Pablos, 2018) and estimating crop phenology (De Bernardis, Vicente-
Guijalba, Martinez-Marin, & Lopez-Sanchez, 2016; Meroni et al., 2021; Schlund & Erasmi, 2020). For crop
monitoring, a substantial amount of literature is available on optical and radar methods. For optical data,
many studies focus on a single parameter of the monitored crops and its relation to vegetation indices such
as the NDVI. Examples include leaf area index (LAI) monitoring (Asner, 1998; Kuusk, 1991), phenological stage
determination (Onojeghuo et al., 2018; Ulsig et al., 2017), or biomass estimation (C. Li et al., 2019; Meng, Du,
& Wu, 2013). Studies analysing the radar backscatter response have also found significant relations between
crop parameters and the signal. For instance, Blaes et al. (2006) report relationships for maize crops between
various polarisations and the vegetation parameters LAI, biomass, and plant height. Vreugdenhil et al. (2018)
assess the potential of Sentinel-1 vertical co-polarised (VV) and cross-polarised (VH) backscatter and their
ratio VH/VV, the cross ratio (CR), to monitor these same parameters and the vegetation water content (VWC).
The feature importance of the different microwave indices was determined by training a random forest model
on two test sites with the radar data and in-situ measurements. Paris (1983) describes the backscattering co-
efficients of maize and soybean for different frequencies, sensor look-angles, and polarisation combinations.
They identified when row direction differences play a role, how surface-soil moisture influences the backscat-
ter, and how depolarisation of the signal can help classify the crops. Furthermore, Mc Nairn and Brisco (2004)
and Steele-Dunne et al. (2017) both comprehensively review agricultural monitoring with radar.

Besides studies on either optical or radar remote sensing, valuable studies discussing the relationship be-
tween the two were also published, e.g. Behzad et al. (2019); Veloso et al. (2017). These studies aim to improve
understanding of both signals and compare their responses to growing vegetation. This relationship has been
further explored and used in other studies where the signals were combined. For instance, Valero, Arnaud,
Planells, and Ceschia (2021) implemented a method to use the combination of Sentinel-1 and Sentinel-2 data
for cropland and crop type classification. Zhao et al. (2020) conducted a study using deep neural networks
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to fill in the temporal data gaps of optical data with radar data. Chang and Shoshany (2016) showed that a
14% increase in accuracy could be reached by combining radar and optical signals for estimating biomass in
shrublands. Blickensdörfer et al. (2022) proposed a workflow based on combined optical, radar, and environ-
mental data for agricultural land cover maps that accounts for varying environmental conditions and shows
a 6% to 10% increase in accuracy compared to single data sources.

Reviewing the existing literature, it becomes apparent that the studies can roughly be divided into three types:

1. identifying the relationship between biophysical parameters and remote sensing data, e.g. defining the
relationship between the radar signal and LAI

2. a temporal analysis of radar or optical signals, e.g. extracting sowing and harvest dates with radar
backscatter

3. agricultural land cover mapping, e.g. performing crop classification on an agricultural area

Types one and two are based on temporal analyses, while type three is based on the distribution in space.
These studies form a good basis for understanding backscatter responses through time and for the differ-
ences between crops. However, research on (spatial) in-field variability of biomass is minimal. One could
speculate that this is because obtaining spatial validation data at the field level is very labour-intensive and
would require destructive samples or because the spatial resolution of radar is too coarse for many (small)
fields. Either way, in-field vegetation parameter monitoring would provide valuable information for crop
management practices.

To tackle these problems, the Biomass Proxy (BP) could be deployed, which is a product of Planet Labs
PBC (formerly known as VanderSat) to monitor biomass in agricultural fields (Planet Labs PBC, 2022). The
BP is a fusion of the Sentinel-1 (SAR) and the Sentinel-2 (NDVI) imagery, using the advantages of each to
estimate relative above-ground crop biomass regardless of cloud cover accurately and at a high spatial reso-
lution (10 m x 10 m). Before fusing the signals, the CR is extracted from the SAR signal and filtered in time
and space, resulting in the Sentinel-1 (S1) index. From this S1 index and the NDVI, daily biomass estimations
can be computed. The output is given in time and space at the field level, representing the relative amount
of biomass between 0 (low biomass) and 1 (high biomass). The model owes its strength to the fusion of the
radar and optical data in the spatial and temporal domains separately, making it possible to utilise the high
temporal resolution of the radar data and the high spatial resolution of the optical data. Despite the valuable
insights the algorithm already provides, it has not yet reached its full potential, especially in the spatial do-
main. The algorithm is designed to rely strongly on optical data for spatial information. And, therefore, faces
the same challenges as regular optical monitoring, namely large data gaps due to cloud cover and saturation
of the signal.

1.1.3. Research gap
So far, this section has highlighted the substantial amount of knowledge on the temporal SAR and NDVI
signals for agricultural monitoring, as well as the lack of knowledge on spatial interpretation of the SAR data.
Although the BP has already taken considerable steps towards providing crop data with high temporal and
spatial resolution using the SAR and NDVI signals, it is still spatially limited due to its dependency on optical
data.

The contribution of the SAR signal could be increased in the fusion of the BP to reduce this dependency.
However, without the research and knowledge of the spatial characteristics of the radar data, this would lead
to uninterpretable results. So far, research has yet to be conducted on which characteristics contain valuable
information and how they could be fused with the NDVI. With this information, the contribution of the SAR
data in the BP could deliberately be increased or decreased such that the information gain can be optimised
without losing interpretability.

This study aims to bridge this gap by assessing the potential of spatial SAR data for agricultural monitor-
ing.

1.2. Research objective
The research gap forms the basis of this study. The objective of this study is, therefore, to assess the potential
of spatial SAR data to approximate the in-field biomass distribution. Consequently, this information could
be used to evaluate how this could improve the BP.
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The main obstacle is probably why this research has not been not carried out before: the lack of spatial
validation data. This was also the case for this research, and, therefore, the answers given in response to
the questions addressed in this research are also solely based on remotely sensed data. In the process, two
important assumptions are made about the radar data: 1) some of the spatial patterns in the radar signal
represent real and valuable information, while others are radar ’artefacts’, and 2) persistent patterns occurring
in the field multiple observations in a row, represent real information while quickly fluctuating patterns do
not. Based on this objective and these assumptions, the research will address the following questions:

1. How do NDVI and SAR data describe biophysical changes of various crops in the temporal and spatial
domains?

2. What spatial metrics can be used in which situations as indicators for clustering of the spatial S1 index
data?

3. How often are clusters in the radar signal persistent, and what causes these persistent clusters?

4. How is the Biomass Proxy influenced by the static weight of the Sentinel-1 data, and how does this
change throughout the growing season?

The research has been carried out for the province of Flevoland in the Netherlands, an agriculturally dense
area with a low probability (20%) of acquiring optical imagery without cloud cover in the growing season
(van der Wal et al., 2013). The crops investigated all have above-ground biomass and were grown on at least
50 fields in Flevoland in 2019, the year of which the data was used. These crops are maize, barley, oat, and
(spring) wheat. Note that winter wheat is also often cultivated, but since this would bring more uncertainty
in the analyses of the signals due to different climatological conditions, it is not researched.

1.3. Reading guide
To give a deeper understanding of the signals, vegetation, and the complexity of their interaction, an extensive
theoretical background is given in Chapter 2. In addition to the signals and vegetation, Section 2.5 provides
an overview of the spatial features used to describe the spatial data and Appendix C background information
on a pattern detection algorithm. Next, the steps of the methodology are described in Chapter 3. This chap-
ter starts with a description of the study area and the data sets used in Section 3.1. The following sections,
Section 3.2 to Section 3.5, correspond to the research question posed in Section 1.2. Finally, the results are
presented and discussed in Chapter 4, and Chapter 5 contains the conclusions and recommendations.



2
Theoretical Background

This chapter provides an overview of the main topics to understand the methods, analyses and discussions in
this study. Each topic is by no means exhaustive but will help gain a necessary basic understanding. First, in
Section 2.1 and Section 2.2, the input signals of the BP algorithm are discussed. Section 2.3 reviews existing
literature on the use of these signals for agricultural monitoring. Section 2.4 explains the theory behind the
algorithm, focused on the spatial processing of the SAR signal. Finally, in Section 2.5, multiple evaluation
metrics are presented, which are used to describe the spatial signals.

Additional background on the crop development stages, entropy and K-means clustering is presented in
Appendix A, Appendix B, and Appendix C respectively. These topics are not essential in understanding the
narrative, but support the understanding of the analyses.

2.1. Normalised Difference Vegetation Index
The Normalised Difference Vegetation Index (NDVI) is a commonly used index in agricultural remote sensing.
The index can, amongst others, be used for crop monitoring (e.g. Fang, Yan, Wei, Zhao, and Zhang (2021);
C. Li et al. (2019); Seo, Lee, Lee, Hong, and Kang (2019); Veloso et al. (2017)), yield forecasting (e.g. Groten
(1993); Maselli (n.d.); Mkhabela, Bullock, Raj, Wang, and Yang (2011); Mkhabela et al. (2005)) and agricultural
management practices (e.g. Meivel, Maheswari, and Grade (2020); Xue et al. (2014)). The index is based on
the properties of green vegetation to reflect the incident solar radiation differently in the Near Infra Red (NIR)
and Red (R) spectral wave bands (Mkhabela et al., 2005). The NDVI is calculated as follows (Tarpley et al.,
1984)

N DV I = N I R −R

N I R +R
(2.1)

where the NDVI is unitless and ranges from -1 to +1. The index is sensitive to chlorophyll pigment in green
vegetation and leaf scattering mechanisms, which cause low spectral reflectance in the visible red band and
high reflectance in the near-infrared band (De Bernardis et al., 2016). Healthy green vegetation, therefore,
corresponds to high positive values. In contrast, non-vegetated surfaces such as bare soil, ice, water, snow
and clouds usually correspond to NDVI values close to zero or even slightly negative (Mkhabela et al., 2005).
Negative values often denote water (Laksono, Saputri, Pratiwi, Arkan, & Putri, 2020). Vegetation with a small
leaf area or stressed vegetation have positive, but reduced, NDVI values (Kogan’ & Ciren’, 1994). An agricul-
tural crop’s typical temporal NDVI profile rises in spring as plant cover increases, peaks during summer and
drops when the crop is harvested. However, when the plants change to yellow or golden colours during the
senescence, the NDVI will decline before the harvest.

Advantages of the NDVI include the intuitive interpretation, comparatively high resolution (due to the
short wavelengths of the signal) and strong scientific foundation. Unfortunately, the NDVI also provides lim-
ited information both spatially and temporally. The spatial signal is limited since the NDVI only senses the
top of the vegetation (Y. Y. Liu, van Dijk, McCabe, Evans, & de Jeu, 2013), saturates in dense vegetation (Fang
et al., 2021), is limited by atmospheric effects such as clouds, cloud shadows and aerosols (Vreugdenhil et
al., 2018), and is sensitive to effects of soil brightness and colour (Y. Y. Liu et al., 2013). Besides that, the
NDVI is temporally severely limited due to atmospheric influences such as clouds and aerosols (Kobayashi &
Dye, n.d.) and its dependency on daylight. An overview of these advantages and disadvantages is shown in
Table 2.1.
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Advantages Drawbacks
• High spatial resolution • Limited by atmospheric effects (clouds, cloud

shadow, aerosols); poor temporal resolution
• Simple and intuitive • Saturation on dense vegetation
• Open source data • Only senses the top layer of the canopy

• Sensitive to effects of soil brightness and colour

Table 2.1: Advantages and disadvantages of NDVI for remote sensing C. Liu et al. (2013); Xue et al. (2014).

2.2. Synthetic Aperture Radar
This section will provide an overview of the theoretical background needed to understand and analyse the
Synthetic Aperture Radar (SAR) signal. The technical side of the SAR and the interaction with the vegetation
must be considered to gain a sufficient understanding of the received signal.

2.2.1. Basic SAR principles
Since SAR can provide images independent of daylight, cloud coverage and weather conditions, it is pre-
destined to monitor the Earth’s dynamic processes. SAR systems are active microwave sensors transmitting
electromagnetic waves at microwave frequency and receiving the backscattered signal. The waves are trans-
mitted from a pulsed radar installed on a platform with forward movement. The system’s echo is received
sequentially (Moreira et al., 2013). The transmitted pulse’s frequency typically ranges between 450 MHz and
35 GHz, but the most common frequencies are 1.3-1.4 GHz (L-band), 5.3-5.4 GHz (C-band) or 9.56 GHz (X-
band) (López-Dekker & De Zeeuw Van Dalsen, 2021). When the signal interacts with the Earth’s surface, the
amplitude, phase and polarisation change depending on the physical (e.g. geometry, roughness) and elec-
trical properties (e.g. permittivity) of the imaged object. The transformation of the emitted wave (E t ) to the
received wave (E r ) is defined as (Lee & Pottier, 2009)

E⃗ r = exp(−ikr )

r
[S]E⃗ t∗[

E r
H

E r
V

]
= exp(−ikr )

r
·
[

SH H SHV

SV H SV V

][
E t

H
E t

V

]∗ (2.2)

The elements of [S] denote the four complex scattering amplitudes S I J =
∣∣S I J

∣∣exp
(
iϕI J

)
, where the H and

V subscripts indicate the horizontal and vertical polarisations respectively. The phase shift and attenuation
for a spherical wave are expressed by the factor exp(−i kr )/r , with k = 2π/λ the wave number. These verti-
cal and horizontal linear polarisations refer to the orientation of the electric field vector of the transmitted
and received electromagnetic wave and should be interpreted in the context of the structure of the target
(McNairn & Shang, 2016). The polarisation possibilities are visualised in Figure 2.1b. The transmitted and re-
ceived configuration of the polarisations is instrument dependent: dual-polarised instruments transmit H or
V and receive H and V simultaneously, and quad-polarised instruments transmit H and V on alternate pulses
and also receive them simultaneously (Podest, Pinto, & Fielding, 2017).

Since SAR operates in the microwave part of the electromagnetic spectrum, it does not capture images
the same way as optical satellites do. Instead, they provide reflectivity maps of the region of interest (ROI),
where targets appear bright if the signal is directly reflected and dark when the target’s backscatter is low. The
flight direction is denoted as the azimuth and the line-of-sight as slant range direction (Moreira et al., 2013).
A Single Look Complex (SLC) product is the ’image’ the radar takes of a scene in the slant range by azimuth
imaging plane. Each image pixel is represented by a complex magnitude value and therefore contains ampli-
tude and phase information (ESA, n.d.). Figure 2.1a illustrates the typical SAR geometry, where the platform
moves in the azimuth or along-track direction, whereas the slant range is the direction perpendicular to the
radar’s flight path. Because of this geometry, SAR is side-looking (unlike optical sensors, which are usually
nadir-looking). The swath width gives the ground-range extent of the radar scene, while its length depends
on the ’duration’ of the image, i.e., how long the radar is turned on (Moreira et al., 2013).

Targets scanned by the radar all have a radar cross section (RCS or σ), which measures how detectable
an object is by radar. Objects with a larger RCS are, therefore, easier to detect. The reflected signal can be
represented by the backscatter coefficient, which is the RCS (or backscattering area) per unit ground area,
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(a) Illustration of the SAR imaging geometry. r0 stands for
the shortest approach distance, Θa for the azimuth beam
width and v for the sensor velocity (Moreira et al., 2013).

(b) Linear polarisations of the electromagnetic waves, adjusted figure from
(Skrunes, Brekke, & Eltoft, 2014).

Figure 2.1: Basic principles of SAR satellite geometry and polarimetry.

also referred to as the normalised radar cross section (NRCS or σ0). Because σ0 depends on many factors of
the target (e.g. size, structure, geometry and electromagnetic characteristics), it can vary by several orders
of magnitude. Therefore, it is often converted to dB as 10log10σ

0. It can be seen as a measure to determine
whether the radiated terrain scatters the incident microwave radiation preferentially towards the SAR sensor
(dB > 0) or away from the sensor (dB < 0) (ESA, 2012). Besides the properties of the reflective surface, σ0 gen-
erally has a significant variation with incidence angle, wavelength, and polarisation (MacDonald, 2011). This
incidence angle results from the target’s topography and the satellite’s geometry, i.e. the relative orbit. Earth’s
topography distorts the radar signal when there is relief displacement. Effects include foreshortening, lay-
over and variations in the ground resolution along the range direction (McNairn & Shang, 2016). Therefore,
satellite radar images must be orthorectified using the orbital models and the Digital Elevation Model (DEM)
(Marsetič, Oštir, & Fras, 2015). The orbit model provides information on the satellite’s geometry: each relative
orbit has a a certain satellite direction (ascending or descending) and a range of incidence angles. Since SAR
is side-looking, different areas are illuminated in the ascending or descending direction. The flight direction
impacts the illuminated pixel area and, depending on the local incidence angle, can lead to differences in
backscatter intensity. If the ROI is completely flat, this effect is minimised. However, the sensor is still theo-
retically interacting with other parts of the surface (Dumitru & Datcu, 2013).

The azimuth resolution δa is determined by the smallest separation between two point targets detected
by the radar. For a simple radar, this is inversely proportional to the length of the antenna, i.e. a long an-
tenna will have a good azimuth resolution. In order to improve the resolution without drastically having to
increase the antenna size, many pulses are transmitted from short antennas which have an overlap in the
scene they capture. By combining these lower resolution images, a longer antenna is simulated, hence the
name Synthetic Aperture Radar (López-Dekker & De Zeeuw Van Dalsen, 2021). The slant-range resolution δr

is inversely proportional to the system bandwidth according to δr = c0/2Br with c0 the speed of light (Mor-
eira et al., 2013). Note that the spatial resolution is not the same as pixel spacing: the former describes the
system’s ability to distinguish between adjacent targets, while the latter corresponds to the distance between
adjacent pixels in an image, expressed in meters. For Sentinel-1, this means that the spatial resolution of
20x22 m corresponds to a pixel spacing of a grid of 10x10 m (European Space Agency, 2012).

2.2.2. SAR image properties
As mentioned in Section 2.2.1, optical and SAR images do not capture the same information. Because the
nature of the signal is different, both come with their own challenges and complications. Roughly, two types
of effects that significantly degrade the spatial resolution of the output image can be defined: system noise
and speckle (ESA, 2012).
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The Noise Equivalent Sigma Zero (NESZ) measures the sensor’s sensitivity to low backscatter areas, en-
compassing all system noise sources, including thermal noise and quantisation noise sources (ESA, 2012). It
is defined as the NRCS of a distributed target within the product coverage for which the signal power level in
the final image is equal to the noise power level (thermal noise only), i.e. an image with a Signal to Noise Ratio
(SNR) of 0 dB. The values of the NESZ depend on the incidence angle, polarisation and sensor characteris-
tics (Lopez-Sanchez, Vicente-Guijalba, Erten, Campos-Taberner, & Garcia-Haro, 2017). However, since this
difference between co- and cross-polarisation is less than 0.1 dB, these differences often are neglected (Mac-
Donald, 2011). The thermal noise included in the NESZ is an additive noise caused by the sensor and only
becomes relevant when the signal mean is low. In the multi-swath acquisition modes, this noise typically has
a different intensity in each sub-swath, and the data (including noise contributions) are multiplied during
the raw SAR focusing (Piantanida, Miranda, & Hajduch, 2017). During the post-processing of the data (in the
Level 1 GRD data), the additive noise in the sub-swaths is removed to help reduce discontinuities between
sub-swaths for scenes in multi-swath acquisition modes (ESA, 2012).

Speckle, on the other hand, is a multiplicative ’noise’ that inherently exists in SAR and severely limits spa-
tial resolution. It is also known as radar noise and is caused by the presence of many scatterers within a reso-
lution cell, all with a different random distribution. The coherent sum of their phases and amplitudes results
in strong fluctuations of the backscattered signal between the resolution cells. Consequently, the intensity
and phase in the final image are no longer deterministic but follow an exponential and uniform distribution,
respectively (Oliver & Quegan, 2004). This effect is illustrated in Figure 2.2.

Figure 2.2: Speckle occurs in SAR images due to the coherent sum of many elemental scatterers within a resolution cell. The two
parallelograms show the distribution of the scatterers in each resolution cell and the resulting amplitude and phase values (Moreira et

al., 2013).

With these image properties, the Signal to Noise Ratio (SNR) can be defined as follows (Park, Won, Ko-
rosov, Babiker, & Miranda, 2019):

SN Rpp =
σ0

pp −N ESZpp

N ESZpp
(2.3)

where the subscript pp defines the polarisation. The NESZ varies with incidence angle but has a maximum
of -22.2 dB for Sentinel-1 (MacDonald, 2011). As the formula shows, the SNR decreases as the backscatter
(σ0) becomes lower, i.e. images of low reflective surfaces are noisier.

The radar images (in Level 1) can be processed either from a Single Look Complex (SLC) image or Ground
Range Detected (GRD) image. Level-1 SLC products consist of focused SAR data, geo-referenced using orbit
and altitude data from the satellite, and provided in slant-range geometry. The products include a single
look in each dimension using the full available signal bandwidth and complex samples (real and imaginary),
preserving the phase information (Miranda & Meadows, 2015).

In order to reduce the amount of speckle and compress the data, neighbourhoods of pixels can be aver-
aged. This is also known as multi-look processing (Canty, 2014). It is, however, at the cost of spatial resolution.
The result is the Level-1 GRD product, which consists of focused SAR data and has been multi-looked and
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projected to ground range using the Earth ellipsoid model WGS84. Each pixel value represents the detected
amplitude, but due to the multi-looking, phase information is lost (Miranda & Meadows, 2015).

To summarise, the advantages and disadvantages of SAR remote sensing are shown in Table 2.2. Com-
paring this with the advantages and disadvantages of NDVI (Table 2.1), one can see that the two signals are
complementary on some levels, but also how they come with their own challenges.

Advantages Drawbacks
• SAR can produce data day and night since it is an
active sensor that does not depend on sunlight.

• Extended target areas that one would ex-
pect to have a constant backscattering behaviour
(e.g., large homogeneous agricultural fields) show
speckle.

• SAR backscattering depends on different physi-
cal properties of the target than the properties that
cause optical reflectance. These properties relate
to (electromagnetic) material properties and struc-
tural geometry of the target.

• SAR backscattering depends on the angle of in-
cidence of the radar waves, i.e. the same target
will appear different depending on whether it is the
near or far range of the swath. Moreover, how the
backscattering varies with the incidence angle is
target-dependent.

• SAR is insensitive to atmospheric conditions in
C-band (except for very dense rain cells).

• SAR backscattering is strongly influenced by
terrain relief because it modulates the illuminated
area by the side-looking SAR radiation.

• SAR data can be calibrated, without the need for
atmospheric correction, leading to consistent time
series.

• To use SAR data efficiently, one needs to be aware
of what part of the signal relates to the intrinsic sen-
sor properties and what part to the physical proper-
ties of the target.

Table 2.2: Advantages and disadvantages of SAR for remote sensing (Google Developers, 2022).

2.2.3. Microwave backscatter from vegetated surfaces
With a general understanding of the observation configuration and signal properties, the backscattered sig-
nal can be evaluated and interpreted. SAR signals can be difficult to interpret due to their sensitivity to several
parameters. Ulaby et al. (2019) divides these parameters into two sets: sensor (or wave) and terrain parame-
ters. After a brief introduction to the types of backscatter, this subsection will go into the different wave and
terrain parameters influencing the backscatter.

The total SAR backscatter is conventionally expressed in received dB and can broadly be split into three
categories (Ottinger & Kuenzer, 2020):

1. Direct or surface backscatter Figure 2.3(a)

2. Volume backscatter Figure 2.3(b)

3. Double-bounce backscatter Figure 2.3(c)

Figure 2.3: Radar backscattering mechanisms (Ottinger & Kuenzer, 2020).
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One source of scattering typically dominates, but depending on the complexity of the target, secondary
and tertiary sources of scattering can also be present (Mc Nairn & Brisco, 2004). The received backscatter type
depends on different factors of both the signal and the vegetation.

Wave parameters
One must understand how different signal parameters influence the target interaction to monitor crops. The
satellite and signal properties of SAR have been discussed in Section 2.2.1. Three of these properties play an
important role in how electromagnetic waves interact with the vegetation: the incidence angle, frequency
and polarisation.

The incidence angle is defined as the angle between the incoming radar wave and the normal of the sur-
face. For large (shallow) incidence angle, the reflectivity generally decreases (Cable, Kovacs, Jiao, & Shang,
2011). The incidence angle also affects the path the radar wave travels through the vegetation. A small (steep)
incidence angle implies a more or less vertical path through the vegetation, predominantly scanning the top
part of the crops (assuming a C-band frequency). Conversely, a large angle results in a more horizontal path,
measuring different characteristics, e.g. the stems. However, the angle difference should be minimised to
meaningfully compare images taken from various angles (Wiseman, McNairn, Homayouni, & Shang, 2014).
Figure 2.4 illustrates the relation between incidence angle and backscatter for the different polarisations.

Figure 2.4: General characteristics of
backscattering-coefficient variation with angle

of incidence (Ulaby et al., 2019).

Vreugdenhil et al. (2020) has described the relationship be-
tween backscatter and incidence angle for different polarisa-
tions and surface types. For bare soil, the backscatter de-
creases as a function of incidence angle, as shown in Fig-
ure 2.5(a). In the case of perfectly rough soil, the incident
wave will be scattered uniformly in all directions. This phe-
nomenon is also known as Lambert scattering. Lambert scat-
tering is common for thick vegetation canopies and is inde-
pendent of incidence angle. This kind of dense vegetation
mainly causes volume scattering, which is illustrated in Fig-
ure 2.5(c) for VV backscatter. Since backscatter from vol-
ume scattering is independent of incidence angle, the slope
of the backscatter-incidence angle relation is almost flat (Fig-
ure 2.5(d)).

The wave frequency is inversely proportional to the wavelength and is defined as f = c/λ, where f is the
frequency [Hz], c is the speed of light, and λ is the wavelength [m]. The dependency can already be seen
in Equation 2.2, where the frequency is in the negative exponential term, i.e. the backscatter increases with
an increase in frequency. The wavelength of the transmitted signal determines the penetration depth and
thus the amount of interaction with the soil or the lower parts of the crops (Vreugdenhil et al., 2020). There-
fore, backscattering behaviour differs between wavelengths, but since this research only considers C-band
radar, this does not have to be taken into account. As mentioned previously, Sentinel-1 operates at C-band
frequency, corresponding to f = 5.4 GHz and λ = 56 mm. This frequency does not penetrate a canopy fully
(unlike L-band) and is therefore generally not sensitive to soil moisture changes or soil roughness during
the growing season (Steele-Dunne, Friesen, & Van De Giesen, 2012). However, before the closure date of the
crops, i.e. when soil is not completely covered, soil properties do influence the signal.

Finally, the polarisation of the radar wave influences the interaction with the vegetation (see Section 2.2.1
for the definition). This effect of vegetation on polarisation is visible when comparing Figure 2.3(b) and (c):
there is no H return for bare soil, but due to the diffuse scattering in the canopy, there is a V and H return.
Horizontal structures and V-polarized waves strongly reflect the incident wave with H polarisation by vertical
structures. The HV and VH are sensitive to both orientations and are, therefore, indicators of random scat-
terers. The roughness of the soil or thickness of the vegetation also affects the degree of depolarisation d ,
which measures how much the polarisation of the backscattered wave varies from point to point within that
target. A smooth, bare surface will have strongly polarised returns (d close to 1), while diffuse scatterers will
have almost completely unpolarised returns (d close to 0) (Mc Nairn & Brisco, 2004). Thus, d increases with
increasing multiple and volume scattering, depending on crop type and condition. Hinds, Sofko, Wacker, and
Koehler (1993) showed that the degree of (de-)polarisation depends on crop type, growth stage and polarisa-
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tion. The degree of polarisation varied throughout the growing season for the same crop type, decreasing as
the vegetation developed and increasing as the crops matured and dried out.

Figure 2.5: Scattering mechanisms of VV and VH polarised backscatter, where (a,b) show the relation between backscatter and
incidence angle and scattering mechanisms for bare soils, and (c,d) the relation between backscatter and incidence angle and

scattering mechanisms for vegetation (Vreugdenhil et al., 2020).

Figure 2.5 also demonstrates that the (de-)polarisation and scattering-type are interlinked. Vreugdenhil
et al. (2020) describes how volume scattering can lead to depolarisation effects, where double- (or multiple-)
bounce scattering can lead to a change in polarisation. Figure 2.5(c) shows that the return of the H-polarized
backscatter is stronger in vegetation than for bare soils (Figure 2.5(b)). Hence, antennas that receive cross-
polarised signals (e.g. VH) detect an increase in received energy with increasing vegetation density. This is
consistent with Moreira et al. (2013), where it is described that a VH (or HV) response is strong when multiple-
scattering dominates. A smooth to medium rough surface does not lead to depolarisation of the signal but
does increase the received energy of the co-polarised receiving antenna (e.g. VV). However, this increase is
not as strong as for the cross-polarised signal.

Terrain parameters
Once the signal has reached the surface, multiple factors can influence how the wave is scattered. Influencing
factors include surface roughness, dielectric constant, geometry and agricultural practices.

The surface roughness influences the backscatter when the soil is not (yet) covered by vegetation or when
the penetration depth is large enough to reach the soil. Smooth surfaces act as mirror-like reflectors, scatter-
ing the incident wave away from the radar. Rough surfaces scatter the waves in random directions, resulting
in diffuse waves. Ulaby et al. (2019) has shown that σ0 is higher for smooth soils for angles close to nadir but
decreases faster with incidence angle than rougher surfaces. The authors define a surface as smooth based
on the roughness (expressed in root mean square average), the wavelength and correlation length.

The dielectric constant of the surface is dependent on water content which is present in the soil and the
vegetation (VWC). Ulaby (1980) describes how scattering occurs when the radar waves encounter dielectric
discontinuities. The presence of water typically causes these discontinuities due to its high dielectric con-
stant (80.4) compared to air (1) (Ulaby & El-Rayes, 1987). Interaction between the plants and radar waves is,
therefore, (amongst others) driven by the volume of water in the plant. Ferrazzoli et al. (1992) reported that
plant moisture (i.e. the ratio between water content and the dry biomass of plants) of cereals was rather sta-
ble during their research. Therefore, the increase or decrease in VWC is directly related to the plant’s biomass.

Crop geometry is an important factor in the backscattered signal. It is an important driver for the type
of backscatter and the re- or depolarisation. Plant geometry is heavily interlinked with the phenological
stages, causing a crop-specific temporal profile. For instance, during the stem elongation phase of wheat,
the plant structure becomes more vertically pronounced, causing an increase in σ0

V V (Chakhar, Hernández-
López, Ballesteros, & Moreno, 2021; Veloso et al., 2017; Vreugdenhil et al., 2018).

Besides the crops’ characteristics, agricultural practices can also influence the signal. McNairn and Shang
(2016) describes how physical orientation with respect to the polarisation of the incident wave can influ-
ence the amount of microwave interaction. In addition, the authors describe how planting density and row
direction (relative to the range direction) could influence the SAR response. Paris (1983) also reported that
the backscatter intensity is generally higher when the row direction is perpendicular to the range direction.
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However, Mc Nairn and Brisco (2004) showed that the cross-polarised signal is insensitive to planting row
direction, which makes VH (or HV) an important polarisation for crop monitoring. Susan Moran et al. (2012)
verified this by demonstrating that cross-polarised backscatter can be used to track growth stages for grain
(jointing and heading) and maize (leaf development and reproduction). Wiseman et al. (2014) observed dif-
ferences in SAR response among soybean fields due to varying planting densities, even though all fields were
at the same phenological stage. Patel et al. (2007) obtained similar results, reporting positive linear relation-
ships between all polarisation types and the planting density of theProsopis juliflora, a thorny plant.

A summary of all effects is visualised in Figure 2.6. When relevant, polarisation is included. For (e), the
dielectric constant, the upper figure visualises the situation for a low dielectric constant, i.e. dry biomass,
and the lower figure a high dielectric constant, i.e. high VWC. In the column illustrating agricultural practices
(g), the upper figure illustrates the effect of high planting density, and the lower figure represents the planting
direction perpendicular to the range direction. Both of these practices result in strong volumetric backscatter.

Figure 2.6: Effect of different signal and vegetation or terrain parameters. It should be noted that the differences between the upper and
lower figures are illustrative and that all of the factors together make up the precise backscatter processes. Arrows indicate radar waves,

and the line widths indicate backscatter intensity.

2.3. Related work
As mentioned in Section 1.1.2, there is a vast amount of literature available on both optical as well as radar re-
mote sensing for agricultural monitoring. There, related work on agricultural remote sensing was discussed,
while this section will focus on the use of NDVI for agricultural monitoring, the Cross Ratio (CR) and the
temporal analysis of remote sensing signals for the crops of interest.

2.3.1. NDVI for agricultural monitoring
The NDVI is one of the earliest analytical product in remote sensing used to interpret multi-spectral imagery,
and is now the most popular index for vegetation monitoring (Huang, Tang, Hupy, Wang, & Shao, 2021). The
NDVI is appealing due to its ability to quickly distinguish vegetation and vegetative stress, which is useful in
commercial agriculture and land-use studies. Huang et al. (2021) has reviewed different applications of NDVI
data and demonstrated the increasing interest since its first use in Rouse, Haas, Schell, and Deering (1974).

The overall objective of using NDVI is to improve the analysis of vegetation information using remotely
sensed data. Some examples of possible applications for the NDVI are its use for landcover classification (e.g.
Pettorelli et al. (2005)), and to estimate various vegetation characteristics, such as biomass (e.g. Zhu et al.
(2019)), chlorophyll content (e.g. Pastor-Guzman, Atkinson, Dash, and Rioja-Nieto (2015)), the LAI (e.g. Tian
et al. (2017)), plant stress (e.g. Ji and Peters (2003)), and plant productivity (e.g. Vicente-Serrano et al. (2016)).
These estimates are frequently obtained by comparing remotely sensed NDVI values to ground-measured
values of these variables. Butt (2018) therefore justly pointed out that the reliability of the NDVI directly de-
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termines the robustness of the NDVI-based models.

Huang et al. (2021) describes the three main limitations of NDVI as atmospheric effect, saturation phe-
nomenon, and sensor factors. These atmospheric effects such as clouds is the cause of the low temporal
resolution of NDVI in the Netherlands, and thus degrades the value of the product. Other atmospheric ef-
fects, e.g. aerosoles, are corrected for in the Sentinel-2 data (Frantz, 2019). Another limitation is the NDVI’s
insensitivity to changes in biomass when biomass density reaches a certain level. For maize, the NDVI al-
ready reaches saturation for a LAI of 1.5 (Thomason, Phillips, & Raymond, 2007). Lastly, Rossi et al. (2019)
points out the existing inconsistencies between NDVI values obtained with different sensors. These incon-
sistencies were caused by sensor-specific spatial and spectral resolutions and acquisition geometries, as well
as agricultural practices and crop development during the growing season.

2.3.2. Cross Ratio
Many studies (e.g. Meroni et al. (2021); Veloso et al. (2017); Vreugdenhil et al. (2020)) demonstrate the ad-
vantage of combining the polarisations into the CR. This CR is more sensitive to vegetation changes as it is
less influenced by changes in soil moisture and soil-vegetation interactions. Vreugdenhil et al. (2018) demon-
strated this by computing the feature importance of the VV, VH and CR for a model estimating the total VWC,
where the importance of the CR was more than twice as high as that of the VV and VH (0.35 vs 0.16 and 0.17
respectively). This observation agrees with the findings of Veloso et al. (2017), who showed that the cross-
polarized backscatter is more sensitive to volume scattering than co-polarised, such that the CR increases
with vegetation. However, Vreugdenhil et al. (2018) discusses the challenge of isolating the influence of soil
roughness and vegetation structure when using cross-polarised backscatter or the CR. Soil roughness can
result in depolarisation and can have the same backscatter or CR values as a vegetated surface.

2.3.3. Temporal analysis SAR
Since C-band radar does not penetrate the ground, most studies using this frequency focus on crops with
above-ground biomass, such as cereals, maize, rice, soybeans and sunflowers. As Section 2.2.3 has high-
lighted, backscatter depends on crop structure and vegetation water content. Since the development of the
plants differ per crop type, backscatter responses differ per crop type and phenological stage of that crop dur-
ing the image acquisition. Various scales to indicate these phenological stages have been developed, of which
the BBCH scale is one of the most commonly used (BBA et al., 2001). A description of the crops’ phenologi-
cal stages and their corresponding BBCH stages can be found in Appendix A, and the same stage numbering
will be used in this section and in the analysis of the temporal signal in the results. Many efforts have been
made to describe this temporal signal. Mattia et al. (2003) and Wiseman et al. (2014) both found high corre-
lations between C-band SAR responses and dry biomass for wheat, maize, canola and soybeans. Responses
increased rapidly early in the growing season as biomass accumulation accelerated, leading to strong corre-
lations with non-linear models. Wiseman et al. (2014) found the strongest correlations with dry biomass for
entropy (r = 0.81 for maize), suggesting that at the start of the season, accumulation of biomass increases
the randomness of the scattered signal. During seed and fruit development in the mid to late season, the
rate of increase of the SAR response was reported. During these stages, the signal became more responsive
to changes in growth stages rather than biomass accumulation. The study suggests that this increased sensi-
tivity to phenological stages could partially explain the reduced sensitivity of SAR to biomass changes during
this part of the growing season. Vreugdenhil et al. (2020) also offers that an increase in CR can be observed
right before leaf out due to the depolarisation occurring in the multi-scattered signal. The soil-vegetation
interactions via branches and stems cause this depolarisation, leading to an increase in CR. After leaf out, the
leaves attenuate this soil-vegetation interaction, and volume scattering dominates.
Due to the difference in anatomy and phenological stages of the plants, the temporal behaviour can differ.
For each crop, the literature on the temporal behaviour of the specific crop will be discussed. An overview of
the used literature is presented in Table 2.3.

Maize
The temporal profile of the SAR signal can be discussed in terms of different stages in the growing season.
Before the emergence between January and mid-May, Veloso et al. (2017) describes a decrease in VH, VV
and the CR caused by the gradual smoothing of the soil with time. The temporal variations in the signal
are mainly attributable to variations in soil moisture (Khabbazan et al., 2019). Both studies show that, from
mid-May onwards, the slope of the S1 index becomes positive, indicating an increase in water. This period
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corresponds to the expected emergence from the plants (Sibma, 1987) and is, therefore, probably caused
by the increasing Vegetation Water Content (VWC). This first stage is the leaf development stage, denoted
on the BBCH scale as 12 (BBA et al., 2001). C. Liu et al. (2013); Wiseman et al. (2014) report an increase in
VH backscatter after emergence due to an increase in volume scattering caused by the vegetation. In 2017,
Khabbazan et al. (2019) reported a crop growth of 160 cm between the 8th of June and the 10th of July. Due
to this significant buildup of above-ground biomass, an increase in both the VH and CR backscatter was
observed. During this period, the stem elongation stages (BBCH 31 to 39) took place, which changed the
geometry of the maize plant to have a more prominent vertical structure. This change in (vertical) geometry
increases the VV backscatter and the double bounce backscatter between the stalks and the soil. Veloso et
al. (2017) showed that during this period, the influence of the soil becomes marginal, and the soil moisture
variations do not influence the backscatter. Multiple studies (e.g. Ferrazzoli et al. (1992); Jiao et al. (2011);
Vreugdenhil et al. (2018)) have shown saturation of the radar backscatter signal around this period as the LAI
reaches values of 2-3. Khabbazan et al. (2019) also reported a plateau of the VH backscatter around the end of
July, which corresponded to the grain development phase (BBCH 71) and the maximum height of the plants.
During the final stages of late fruit development (BBCH 75) and the ripening stages (BBCH 89), Vreugdenhil
et al. (2018) saw a slight decrease in CR due to the drying of the plants and thus a reduced VWC.
At parcel level, Khabbazan et al. (2019) noted abrupt decreases in backscatter between mid-September and
mid-October as the maize was harvested. With the soil left bare again, the soil moisture starts to influence
the backscattered signal again. Making it more difficult to detect harvest in wet autumn months.

Cereals
Cable et al. (2011) and Vreugdenhil et al. (2018) found closely related backscatter signals of wheat, barley and
oat since the early growing stages and the main phenological stages are very similar. Therefore, no distinction
between the cereals was made for these first stages.

As with maize, the backscatter is essentially determined by the soil before emergence (Veloso et al., 2017).
At the beginning of spring (around April), the vegetation starts to emerge, causing less direct (VV) and more
volume (VH) scattering. This emergence causes an increase in the CR as well. Chakhar et al. (2021) reported
that, after reaching a maximum in the CR a month later, there was a decrease in CR, which can be attributed to
the stem elongation stage (BBCH 30-39). The predominantly vertical structure of the cereal stems attenuates
the signal (Veloso et al., 2017; Vreugdenhil et al., 2018). After the stem elongation stage, Skriver, Svendsen,
and Thomsen (1999) and Larranaga, Alvarez-Mozos, Albizua, and Peters (2013) observed an increase in VH,
VV and CR again, indicating the heading stage (BBCH 51-59). They attribute the increase in this period to
the increase in fresh biomass. The flag leaves become less dominant within the canopy during the heading,
creating a more open vertical structure. C. Liu et al. (2013) reports a decrease in CR again near the end of the
growing season, indicating the end of the phenological cycle. The plants dry out, causing the radar waves to
penetrate deeper, thus reducing the amount of backscatter. After harvest, all cereal crops returned to that of
a rough surface as observed by McNairn, Duguay, Brisco, and Pultz (2002).

Once mature, the seed-bearing structures are very different for the three cereals, as was shown in Fig-
ure A.2b. In the late growing stages of barley (after senescence BBCH 87), Cable et al. (2011) observed an
increase in VV response while VH decreased as expected due to the drying of the plant. The VV, however, was
likely caused by the heads of the barley that became too heavy and leaned over. The authors found a simi-
lar backscatter behaviour for oat, except for the increase in VV. They expect this is due to the oat heads that
stayed erect. Vicente-Guijalba, Martinez-Marin, and Lopez-Sanchez (2015) developed a dynamic approach
for monitoring crops, among which wheat, barley and oat. They demonstrated the effectiveness for wheat
and barley, but the model’s sensitivity was only sufficient in the first and last stages for oats. Lopez-Sanchez,
Vicente-Guijalba, David Ballester-Berman, and Cloude (2013) also reported a lower sensitivity from the radar
response to oats. They attribute this to the vegetation volume, which is less dense and tall than the other
cereals. Therefore the radar response does not exhibit clear variations after the end of the vegetative phase,
and the contributions from the soil are more present than for the other cereals.
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Table 2.3: Literature overview of sources for the time series analysis.

Crop(s) Signal Study area Description Source
Wheat, barley,
rapeseed,
maize,
soybean,
sunflower

Sentinel-1,
Sentinel-2

Southwest
France

Analysis of the temporal trajectory of remote sensing
data for a variety of winter and summer crops that are
widely cultivated.

Veloso et al.
(2017)

Sugar beet, potato,
maize, wheat, En-
glish rye grass

Sentinel-1 Flevopolder,
the Nether-
lands

Time series analysis compared to ground measure-
ments of phenological stage and height, estimation
of emergence and closure dates and harvest detection
using inSAR coherence.

Khabbazan et
al. (2019)

Maize, wheat, soy-
bean

Radarsat-2 Eastern
Ontario,
Canada

Multiyear trend analysis for crop monitoring using
polarimetric synthetic aperture radar analysis based
on the Pauli decomposition.

C. Liu et al.
(2013)

Canola, corn, soy-
bean, spring wheat

Radarsat-2 Western
Canada

Polarimetric SAR responses of 21 parameters are com-
pared with dry biomass over a period of 6 weeks.

Wiseman et al.
(2014)

Maize, sunflower,
alfalfa, wheat, bar-
ley,

DUTSCAT,
ERASME,
MSP

Tuscany,
Italy

A comparative evaluation of the potential of active
and passive microwave sensors in estimating vegeta-
tion biomass.

Ferrazzoli et al.
(1992)

Maize, soybean Radarsat-2 Ottowa,
Canada

Deriving the relationship between SAR parameters at
two incident angles with LAI from optical imagery.

Jiao et al.
(2011)

Oilseed-rape,
maize,
winter cereals

Sentinel-1 Austria Quantifying the sensitivity of backscatter and mi-
crowave indices to vegetation dynamics by applying
linear and exponential models and machine learning
methods to the S1 data and in-situ measurements.

Vreugdenhil et
al. (2018)

Cereal, horticul-
tural/ industrial
crops, perennials,
deciduous trees,
legumes

Sentinel-1,
Sentinel-2

Castilla La
Mancha,
Spain

Assessing the potential of S1 polarizations and S2
NDVI to perform crop classification and examining
the temporal dynamics of the crops.

Chakhar et al.
(2021)

Wheat, barley,
oats, sunflower,
rapeseed, peas,
vetch, pastures,
fallow

Radarsat-2 Pamplona,
Spain

Perform a multitemporal analysis of the variations in
backscatter coefficients and ratios at different polar-
izations due to the growth stage of each crop and es-
tablishing the optimal dates for accurate crop separa-
tion and classification.

Larranaga et al.
(2013)

Barley, wheat,
rape, potatoes,
peas, beets

EMISAR Central
Jutland,
Denmark

Analysis of polarimetric signatures with respect to
incidence angle variations, between-field differences
and multitemporal variations.

Skriver et al.
(1999)

Barley, wheat, oat Radarsat-2 Saskatchewan,
Canada

Novel approach for real time vegetation parameter
modelling.

Vicente-
Guijalba et
al. (2015)

2.4. Biomass Proxy
The Biomass Proxy (BP) is a fusion of the Sentinel-1 (S1) radar signal and the Sentinel-2 (S2) optical signal,
providing daily and near real-time data of biomass estimations of agricultural fields. By fusing the signals, it
utilises the advantages of both the NDVI (see Table 2.1) and the SAR signal (see Table 2.2). This fusion allows
it to estimate the relative above-ground biomass, regardless of cloud cover and at a high spatial resolution of
10x10 meters. The input of the BP is a vector file of the agricultural field of interest. The output is two-fold,
providing both a spatial (relative) distribution of biomass and an absolute value in time. Figure 2.7a shows the
spatial output which is a two-dimensional representation of the field, where each pixel represents a relative
measure of biomass between 0 (low biomass) and 1 (high biomass) (Planet Labs PBC, 2022). The temporal
output is a time series of the expected biomass and is shown in Figure 2.7b.
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(a) The spatial output of the BP. (b) The temporal output of the BP, where the NDVI and BP are plotted on the left y-axis and the S1
index on the right.

Figure 2.7: Examples of the Biomass Proxy output signals.

Since this study focuses on the spatial information the S1 data contains, this section will only provide in-
depth information on the processing of the radar data and the fusion of the signals in the spatial domain while
giving a brief description of the NDVI processing. The (radar) processing chain can roughly be segregated into
three steps, which will be discussed separately in the following subsections.

Step 1) Signal preprocessing
The first step of the processing is the preprocessing of the S1 signal. This step aims to attain an image of the
CR with the lowest possible amount of speckle. As discussed in Section 2.2.3, the CR can be used to minimise
the influence of soil moisture on the radar signal and can be acquired by subtracting the VV polarisation band
from the VH band in the logarithmic domain. The input VH and VV images are level-1 GRD images. Next, the
CR image is filtered in time and space by the Lee-Sigma filter and again in space by a median filter. Lee (1983)
designed the Lee-sigma filter to reduce speckle while being computationally efficient. In principle, speckle
reduction for distributed scatterers requires averaging pixels within a homogeneous area. The Lee-sigma
filter was introduced as a way of selecting these homogeneous areas. The filter is based on the concept that
95.5% of the pixels are distributed within the two-sigma range from its mean. Since the mean is not known
a priori, the filter assumes the centre pixel value as the mean. The speckle can be reduced by replacing the
centre pixels of a scanning window with the window’s average of the pixels within the defined two-sigma
range. Pixels outside this range are considered outliers, thus separating homogeneous areas and reducing
speckle (Lee, Wen, Ainsworth, Chen, & Chen, 2009). Note that this is a spatial operation. The ’multi-temporal’
term indicates that the filter is applied to a series of images, of which the weighted average will be taken.

Next, the median filter is applied to smooth the signal even more. The median is one of the simplest
despeckling filters, in which the central pixel of a moving window is replaced by its median (Qiu, Berglund,
Jensen, Thakkar, & Ren, 2004). Smith and Smitht (1996) reported that the median filter is successful at pulse-
and spike noise-removal while retaining step and ramp functions, thus preserving edges between different
features. However, it does not preserve single pixel-wide features, which are altered when there is speckle
noise present. Lee et al. (1994) found that a 3x3 median filter is useful for preserving texture information but
does not retain the mean value.

In the final step of the preprocessing, an orbit correction is applied at field level. This correction removes
the bias between different orbits caused by the difference in orbit geometries. Instead of only using one
orbit as is often done (except for Lievens et al. (2019); Vreugdenhil et al. (2018)), it enables the algorithm
to use all available observations. The bias removal is done by identifying the different orbits iteratively and
subsequently scaling the orbits to the rolling mean of all available orbits of the specified field. This step also
includes filtering outliers by slope difference and a standard deviation threshold. The output of this step is a
collection of rasters of the filtered CR, which are all given an offset of 30 dB. This filtered CR is the S1 index
and will be referred to throughout this thesis as input for the BP.

The preprocessing of the optical data consists of computing the NDVI from the NIR and red band, apply-
ing a cloud mask, detecting the last full coverage or extrapolating partial coverage images and front filling for
days without NDVI observations.

Step 2) Scaling
One of the key features of the BP is its global consistency. This consistency is made possible due to the con-
sistent relationship found between the S1 index and NDVI. A global scaling parameter set was derived using
this relation. The S1 index is scaled with these parameters to the same scale as the NDVI values, which is
necessary for the fusion of the signals in the next step.
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Step 3) Fusing S1 and S2
In the third and final step, the S1 index and the NDVI signal are fused. It is important to note that this fusion
is different in the temporal and spatial domains to optimise both the high temporal resolution of the S1 index
and the spatial resolution of the NDVI signal. Since this research aims to understand better the spatial infor-
mation of S1, only the fusion process will be elaborated.

First, the weights of the fusion process are determined. These weights consider both temporal and spatial
factors by defining two different weight categories: static and dynamic weights.

The static weights for the spatial domain are wS1 = 0.075 for the S1 index and wS2 = 1−wS1 = 0.925 for the
NDVI (S2). These values are chosen such that the contribution of the S1 signal can never exceed 40%. This
limit was set in place such that users do not suddenly receive a completely different signal which they cannot
interpret.

The dynamic weights of the S1 index and the NDVI are a product of the coverage of the image between no
coverage (0) and full coverage (1) and a quality factor function. This function ranges between 1 and 0.1 as a
function of the number of days since the last full coverage image, decreasing in an s-curve. Additionally, the
quality factor of the S1 index is multiplied by the square root of the number of images within the last 24 days
with a maximum of 6 days, divided by 6.

If there is no NDVI observation within the last 24 days, the most recent image is used with the lowest
possible static weight (wS2 = 0.1). Since the contribution limit of S1 has a limit of 40%, the output image
would still mostly consist of the outdated NDVI image. The final contribution of the S1 index (cs1) is then
defined as

cS1 = wS1 ·q fS1

wS1 ·q fS1 +wS2 ·q fS2, f ul l
(2.4)

where w denotes the static weights and q f is the quality factor of the S1 index (S1) and NDVI (S2). The
term q fs2, f ul l denotes the quality factor of the last full coverage NDVI observation. An example of how this
contribution would look as a function of days since the last NDVI observation is shown in Figure 2.8a. For
this example, a full coverage value of 1 is assumed for the NDVI.

(a) Simulated contribution of the S1 index to
the BP for daily full S1 coverage.

(b) Fusion process of the Biomass Proxy where the ’Fused weights’ correspond to the combined
static and dynamic weights following Equation (2.4).

Figure 2.8: Fusion of the NDVI and S1 index.

After the S1 index is scaled to NDVI, it is normalised and averaged over the last ∼ 5 images to obtain the
internal ratio. The NDVI is also normalised to an S2 ratio, after which the signals can be fused using the S1
contribution determined from the quality factors. A single image of the ratios is obtained and multiplied by
the corresponding BP value from the time series.

The full processing pipeline is visualized in Figure 2.9.
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Figure 2.9: Flow chart of spatial S1 processing for the Biomass Proxy. The rounded squares denote inputs and the regular squares
processing steps.

2.5. Spatial evaluation metrics
Various metrics have been tested to get an insight into which metric is most valuable to evaluate the radar
data spatially. The following section will elaborate on the background of two principles from which most
metrics are derived to support the analyses. This is not an exhaustive description of the used metrics but
an introduction to their meaning and some of the reasoning behind it necessary to interpret the results. A
complete evaluation falls outside the scope of this thesis.

2.5.1. Entropy
In 1948, Shannon introduced the concept of entropy as a measure of uncertainty associated with information.
This idea stems from the information theory, in which the "informational value" of a communicated message
depends on the degree to which the content of the message is surprising. If a highly probable event occurs,
the message contains little information. Conversely, if an extremely unlikely event occurs, the message be-
comes far more informative (MacKay, 2003). So, applying this to the field of (agricultural) remote sensing,
a homogeneous field will have lower entropy than a heterogeneous field since it contains less (surprising)
information. Various entropy types have been applied for remote sensing analyses, e.g. Al Mashagbah (2016);
Arun (2014); Gómez-Chova, Jenssen, and Camps-Valls (2012); Lu, Peng, and Lu (2006), where Shannon en-
tropy is the most commonplace. In the field of remote sensing, entropy is also often computed from the
eigenvalues of the decomposed coherency matrix, as first suggested by Robert Cloude and Pottier (1997). The
found entropy values can then be used for landcover classification (e.g. Jiao et al. (2011); Nasirzadehdizaji
et al. (2019)) and for identifying the dominant scattering mechanism (e.g. Alberga, Satalino, and Staykova
(2008); Mc Nairn and Brisco (2004)).

For this study, however, entropy will be evaluated as spatial metric. Three different types of entropy were
studied: Shannon, Leibovici and Altieri entropy. Contrary to Shannon entropy, Leibovici and Altieri provide
information on the spatial distribution of the signals. An example of this concept is shown in Figure 2.10, and
a description of each type follows.
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Figure 2.10: Effect of varying spatial distributions on the Shannon, Leibovici and Altieri entropy for different biomass (bm) distributions.

Shannon entropy
Shannon (1948) defines the information content of an event E as a function that increases as the event’s prob-
ability, p(E) decreases, i.e. there is more information when the specified event is unlikely. Hence, information
content I reduces to zero when p(E) → 1 and vice versa. The log function can satisfy these requirements, and
the information content function can be defined as follows (MacKay, 2003):

I (E) =−log2(p(E)) = log2(
1

p(E)
) (2.5)

Shannon’s entropy H generalises this for a discrete random variable X and is then defined as the expected
value of the information function of this variable (Shannon, 1948):

H(X ) = E [I (pX )] =
I∑

i=1
p(xi )l og (

1

p(xi )
) (2.6)

where X can assume a set of different values xi , i = 1, ..., I with I the number of possible outcomes. H(X )
is in the range of [0, log (I )], indicating that it is non-negative, and its maximum depends on the number of
possible outcomes I . When X is uniformly distributed, the maximum entropy value is obtained, whereas the
minimum value is obtained only in the extreme case of certainty about the variable outcome.

Note that these random variables are discrete, which is not the case for the raster data used in this thesis.
Therefore, bins will be defined to categorise the numerical values.
As Figure 2.10 illustrates, the Shannon entropy is not influenced by the spatial distribution of the values.
Many attempts have been made to develop Shannon’s entropy further to function as an entropy measure that
does capture this influence of space on variable outcomes, e.g. H. Li and Reynolds (1993); O’neill et al. (1988);
Parresol and Edwards (2014); Riitters, O’neill, Wickham, and Jones (1996). These measures are often based on
the co-occurrence of values or categories, which enables the measures to provide spatial information. How-
ever, many developments in this field are limited because all indices are computed conditionally on a single
distance and do not cover the entire spatial configuration of the phenomenon under study. Furthermore,
only some satisfy the desired additive property between local and global spatial measures (B. L. Altieri, Coc-
chi, & Roli, 2018). Two entropies that consider these limitations are the Leibovici and Altieri entropy. Since
the Altieri entropy is a more extensive version of the Leibovici entropy, the latter will first be introduced.

Leibovici entropy
Leibovici, Claramunt, Le Guyader, and Brosset (2014) proposes a method based on co-occurrence or a set
of observations located within a given spatial zone. The starting point for the spatial entropy measure is a
univariate categorical value (Z ) that identifies co-occurrences over space, i.e. (xi , xi ′ ) with i , i ′ = 1, ..., I . The
order of the co-occurrences must be preserved to obtain an entropy sensitive to the spatial configuration of
the co-occurrences, i.e. the realization (xi , xi ′ ) with i ̸= i ′ is different from (xi ′ , xi ). The number of categories
of Z is then R = Ro = I 2. Conversely, if the order is not preserved, R = Rno = (I 2 + I )/2. The Shannon entropy
(Equation 2.6) for categorical value Z and probability mass function (pmf) pZ = (p(z1), ...., p(zR )) then is

H(Z ) = E [I (pZ )] =
R∑

r=1
p(zr )log (

1

p(zr )
) (2.7)
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Note that because Shannon entropy does not account for spatial configurations, such that R = Rno and
H(Z ) = H(X ). A neighbourhood definition is required to properly account for space in an entropy measure
based on Z. A neighbourhood can be represented using an adjacency matrix, a square matrix whose elements
indicate which realisations of X are associated to form couples. This adjacency matrix A is a symmetric, N x
N matrix in which auu′ = 1 if u′ ∈N (u), the neighbourhood of spatial unit u. The diagonal elements of A will
usually be zero. A subset of Z can be defined that only includes the co-occurrences identified by the non-zero
elements of A, i.e. variable Z |A. Substituting this in the Shannon entropy (Equation 2.6) will yield a spatial
entropy measure. The method deployed by Leibovici et al. (2014) uses this subset for a generic distance d. By
first fixing d, a specific Z |A can be defined. For each distance d , the co-occurrences can then be defined as
simultaneous realizations of X at a distance d∗ ≤ d . This Leibovici adjacency matrix is denoted as Ld , which
can be substituted in Equation 2.7 to obtain the Leibovici spatial entropy

H(Z |Ld ) = E [I (pZ |Ld )] =
Ro∑

r=1
p(zr |Ld )log (

1

p(zr |Ld )
) (2.8)

Note that the variable names are altered from the original formula to keep the symbols consistent and prevent
confusion with the other entropies. Although this measure does indicate the spatial distribution, B. L. Altieri
et al. (2018) mention two main disadvantages of this measure. Firstly, it is based on a conditional univariate
distribution; thus, all results are based on an arbitrary adjacency index. Secondly, it is not decomposable,
while additivity represents an appealing property in spatial statistics.

Altieri entropy
B. L. Altieri et al. (2018) proposes an enhanced version of the Leibovici entropy, also based on transformed
variable Z , but with an additional variable W to represent space, thereby making it a bivariate distribution. By
joining two variables, mutual information and residual entropy can be defined. Mutual information is a term
from the information theory which quantifies the information shared by two variables. In contrast, residual
entropy measures the amount of information on one variable after removing the effect of the other variable.
The random variable W denotes intervals of all possible distances between co-occurrences as wk = [dk−1,dk ],
with k = 1, ...,K and dk representing the distances between points. Each distance category wk results in the
creation of a unique adjacency matrix Ak , which identifies co-occurrences at a distance wk and thus defines
the study variable Z |Ak = Z |wk with probability function pZ |Ak = pZ |wk . As a result, K conditional univariate
distributions cover the entire range of distances. This forms the basis for Altieri entropy, which can be decom-
posed into spatial residual entropy and spatial mutual information. These two definitions help to quantify
the function of space, generalise prior spatial entropy measures, and possess the desirable additivity quality.

The variables are substituted in Shannon’s entropy (Equation 2.6) to obtain the residual entropy, and a
definition can be derived which can be interpreted as spatial partial entropies:

H (Z | wk ) = E
[
I
(
pZ |wk

)]= Rno∑
r=1

p (zr | wk ) log

(
1

p (zr | wk )

)
for k = 1, . . . ,K (2.9)

The information delivered by Z after the role of space has been regulated is quantified by each partial
entropy k, conditional on a distance range wk . This perspective enables investigation of the heterogeneity
of the studied phenomenon by examining the remaining entropy given the contribution of space at various
levels, i.e. partial terms consider different distance levels separately, as opposed to Leibovici’s entropy, which
uses a fixed distance d . By weighting the spatial partial entropies H (Z | wk ) by the probabilities associated
with each distance p(wk ), the residual entropy as defined by Cover and Thomas (2005) can be formulated:

H(Z )W = E [H (Z |W )] =
K∑

k=1
p (wk ) H (Z | wk )

= E
[
E

(
I
(
pZ |wk

))]= Rno∑
r=1

K∑
k=1

p (zr , wk ) log

(
1

p (zr | wk )

) (2.10)

This spatial global residual entropy H(Z )W controls the contribution of space and quantifies the amount
of information still brought by Z after eliminating the spatial configuration W .
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Cover and Thomas (2005) define mutual information as a measure of the association of two variables in
terms of entropy. In particular, it measures how much information is communicated, on average, in one
random variable about another. The mutual information of Z and W can be defined as follows (L. Altieri,
Cocchi, & Roli, 2017)

M I (Z ,W ) = E

[
I

(
pZ pW

pZ W

)]
=

Rno∑
r=1

K∑
k=1

p (zr , wk ) log

(
p (zr , wk )

p (zr ) p (wk )

)
. (2.11)

This MI is valuable to express as the proportional MI relative to the total entropy:

M Ipr op (Z ,W ) = M I (Z ,W )

H(Z )
(2.12)

This M Ipr op essentially provides information on which percentage of the total entropy is caused by the spa-
tial configuration of the data. Next, using the previously defined additivity property, M I (Z ,W ) can be split
into measures partial information (PI) as a function of k. The complete derivation falls outside this thesis’s
scope but can be found in B. L. Altieri et al. (2018). The definition of Altieri entropy can then be obtained by
summing the residual entropy and mutual information as follows

H(Z ) = M I (Z ,W )+H(Z )W

=
K∑

k=1
p (wk ) [PI (Z | wk )+H (Z | wk )]

(2.13)

More examples of the effect of varying pmfs and spatial distributions are provided in Appendix B to aid
the practical understanding of the entropies.

2.5.2. Texture analysis
Texture is a feature that characterises the spatial distribution of intensity levels in a neighbourhood of pixels.
It provides information about how the different intensity levels are structured, and the information that can
be retrieved from simple histogram features (Wirth, 2004). In the field of radar (remote sensing), texture
becomes the spatial variation of σ0 from one region to another Ulaby et al. (2019). Figure 2.11 shows an
example of the importance of texture: the three images of the same amount of black and white pixels and
thus the same intensity distribution, but have very different textures.

Figure 2.11: Example grid of binary intensity pixels, all pixels have the same intensity distribution, but different values for texture
metrics (Wirth, 2004)

Texture consists of an ensemble of texture elements, also referred to as texels (Haralick, Shanmugam, &
Dinstein, 1973). Each texel can describe tone, a feature based on pixel intensity properties, and structure,
which describes the spatial relationship between texels. If texels are small and tonal differences between tex-
els are large, the image has a fine texture. If texels are large and contain multiple pixels, the image will have a
coarse texture (Tuceryan & Jain, 1993).

The most intuitive texture measures are range and variance within the kernel but do not provide any infor-
mation about the repeating nature of texture (Wirth, 2004). A common metric that does provide information
on the image structure is the Grey Level Co-occurrence Matrix (GLCM). The GLCM contains information
about the positions of pixels having similar grey level values. A co-occurrence matrix is defined as a two-
dimensional array, P, in which the rows and columns represent a set of possible image values. To determine
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the GLCM co-occurrence matrix Pd[i , j ], a displacement vector d = (dx ,dy ) must be specified and all pairs of
pixels separated by d having grey levels i and j: Pd [i , j ] = ni , j (Wirth, 2004). Here ni , j denotes the occurrences
of pixel values (i, j), lying at distance d in the image. Pd has dimensions nxn, where n is the number of grey
levels in the image. An example of a GLCM for d = (1,1) is shown in Figure 2.12. The example image contains
sixteen pixel pairs that satisfy the spatial separation, each having one of the three grey level intensities (0, 1
or 2). Therefore, Pd is a 3x3 matrix.

Figure 2.12: Example of a Grey Level Co-occurrence Matrix with three grey values and distance metric d = (1,1) (Wirth, 2004).

GLCMs are useful for capturing texture properties of images but cannot be used for further analysis, e.g.
comparing different textures. Numeric features can be computed from the matrices to represent the texture
to overcome this (Tuceryan & Jain, 1993).

In this thesis, the GLCM features of the Python PyRadiomics (Van Griethuysen et al., 2017) package were
used. An overview of these features is presented in Table 2.4.
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Table 2.4: Grey Level Co-occurrence Matrix features from the PyRadiomics package (Van Griethuysen et al., 2017).

GLCM feature Description Formula

Autocorrelation Measure of the magnitude of the fineness and coarseness of texture.
∑Ng

i=1

∑Ng

j=1 p(i , j )i j

Joint Average Mean gray level intensity of the i distribution. µx =∑Ng

i=1

∑Ng

j=1 p(i , j )i

Cluster Prominence
Measure of the skewness and asymmetry of the GLCM.
A higher values implies more asymmetry about the mean while a lower value
indicates a peak near the mean value and less variation about the mean.

∑Ng

i=1

∑Ng

j=1

(
i + j −µx −µy

)4 p(i , j )

Cluster Shade
Measure of the skewness and uniformity of the GLCM. A higher cluster shade
implies greater asymmetry about the mean.

∑Ng

i=1

∑Ng

j=1

(
i + j −µx −µy

)3 p(i , j )

Cluster Tendency Measure of groupings of voxels with similar gray-level values.
∑Ng

i=1

∑Ng

j=1

(
i + j −µx −µy

)2 p(i , j )

Contrast
Measure of the local intensity variation, favoring values away from the
diagonal (i=j). A larger value correlates with a greater disparity in
intensity values among neighboring voxels.

∑Ng

i=1

∑Ng

j=1

(
i − j

)
p(i , j )

Correlation
Value between 0 (uncorrelated) and 1 (perfectly correlated) showing the
linear dependency of gray level values to their respective voxels in the GLCM.

∑Ng
i=1

∑Ng
j=1 p(i , j )i j−µxµy

σx (i )σy ( j )

Difference Average
Measures the relationship between occurrences of pairs with similar intensity
values and occurrences of pairs with differing intensity values.

∑Ng −1
k=0 kpx−y (k)

Difference Entropy Measure of the randomness/variability in neighborhood intensity value differences.
∑Ng −1

k=0 px−y (k) log2

(
px−y (k)+ϵ)

Difference Variance
Measure of heterogeneity that places higher weights on differing intensity level
pairs that deviate more from the mean.

∑Ng −1
k=0 (k −D A)2px−y (k)

Joint Energy
Measure of homogeneous patterns in the image. A greater Energy implies that
there are more instances of intensity value pairs in the image that neighbor each
other at higher frequencies.

∑Ng

i=1

∑Ng

j=1(p(i , j ))2

Joint Entropy Measure of the randomness/variability in neighborhood intensity values. −∑Ng

i=1

∑Ng

j=1 p(i , j ) log2(p(i , j )+ϵ)

Informal Measure
of Correlation 1
(IMC) 1

IMC1 assesses the correlation between the probability distributions of i and j
(quantifying the complexity of the texture) , using mutual information I(x, y).

H X Y −H X Y 1
max(H X ,HY )

∗

Informal Measure
of Correlation 2
(IMC) 2

IMC2 assesses the correlation between the probability distributions of i and j
(quantifying the complexity of the texture) , using mutual information I(x, y).

p
1−e−2(H X Y 2−H X Y )∗

Inverse Difference Moment
IDM is a measure of the local homogeneity of an image. IDM weights are the
inverse of the Contrast weights (decreasing exponentially from the diagonal i=j
in the GLCM).

∑Ng −1
k=0

px−y (k)

1+k2

Maximum Correlation

Coefficient Measure of complexity of the texture.
MCC =√

second largest eigenvalue of Q

Q(i , j ) =∑Ng

k=0
p(i ,k)p( j ,k)
px (i )py (k)

Inverse Difference
ID is another measure of the local homogeneity of an image. With more uniform
grey levels, the denominator will remain low, resulting in a higher overall value.

∑Ng −1
k=0

px−y (k)
1+k

Inverse Variance
Inverse of the variance, where k = 0 is skipped, since this would lead to division
by 0.

∑Ng −1
k=0

px−y (k)

k2

Maximum Probability
Maximum Probability is occurrences of the most predominant pair of neighboring
intensity values.

max(p(i , j ))

Sum Average
Measure of the relationship between occurrences of pairs with lower intensity values
and occurrences of pairs with higher intensity values.

∑2Ng

k=2 px+y (k)k

Sum Entropy Sum of neighborhood intensity value differences.
∑2Ng

k=2 px+y (k) log2

(
px+y (k)+ϵ)

Sum of Squares
Measure in the distribution of neighbouring intensity level pairs about the mean
intensity level in the GLCM.

∑Ng

i=1

∑Ng

j=1

(
i −µx

)2 p(i , j )



3
Methodology

In this chapter, the methodology of the research is presented. First, in Section 3.1, a description of the study
area and the data sets used are discussed. Next, the steps to analyse the temporal and spatial behaviour
resulting from changing biophysical parameters are explained in Section 3.2. Section 3.3 elaborates upon the
methods to evaluate the potential of the selected spatial metrics and for what values these metrics contain
valuable information. Section 3.4 then presents a method to extract temporal and spatial consistency using
the spatial metrics. And finally, in Section 3.5, the steps to perform a sensitivity analysis of the Biomass Proxy
to the S1 index data are described.

3.1. Data
This section contains a brief description of the study area in Section 3.1.1 and an overview of the used data in
Section 3.1.2.

3.1.1. Study area
This study uses the Netherlands as case study due to its high agricultural output, frequent cloud cover, and
high availability of ancillary data sets such as crop registration on parcel level and weather data. The province
of Flevoland was selected as study area from all provinces based on the number of fields per crop type and
field size. Figure 3.1 shows a map of Flevoland and the spatial distribution of the crops of interest. A box
plot and pie chart are included to illustrate the distribution of parcel size and crop frequency. Boundaries
and crop type of each parcel were determined from the Basisregistratie Gewaspercelen (BRP) (Ministerie van
Economische Zaken en Klimaat, 2019).

Flevoland is a small area of reclaimed land located five meters below average sea level. The area is flat
and open, and it is assumed that the climatological conditions of each parcel are the same. These conditions
include an average minimum temperature during winter of -3.3°C, an average maximum temperature of 22°C
during summer and a mean annual precipitation of 797 mm per year (Khabbazan et al., 2019). Because the
main soil type in Flevoland is clay, it generally experiences less nutrient and water stress than other agricul-
tural areas (Assinck, 2006).

Although the crops researched in this study are all cereals, they have slightly different growing seasons.
The expected growing seasons per crop type in the Netherlands are presented in Table 3.1. These are expected
sowing and harvest dates, but actual dates can deviate due to weather conditions (annual variations) and lo-
cal variability between the fields. For instance, Stokkermans (2019b) reported the maize had to be harvested
in September of 2018, due to a very dry summer. In 2019 however, the last maize parcels were harvested in
November (Stokkermans, 2019a). Moreover, the month in which the oat is harvested is soil-type dependent.
When growing on clay, the main soil type in Flevoland (Assinck, 2006), oat is usually harvested in August.

After a crop has been harvested, it is important to cover the soil with crops again as soon as possible to
prevent (wind) erosion, dehydration, water stagnation and leaching of nutrients. The soil can be covered
by planting cover crops: crops planted to cover the soil rather than to be harvested. In addition, well-chosen
cover crops can stimulate the build-up of organic matter and nutrients in the soil (Natuur en milieu federatie,
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Figure 3.1: Map of all parcels in 2019 where maize, spring wheat, barley or oat is grown in Flevoland. The box plot shows the parcel sizes
per crop type, and the pie charts visualize the frequency distribution per crop type.

Table 3.1: Growing season per crop type in the Netherlands (Interreg III, n.d.; Met, 1994; Praktijkonderzoek et al., 1999; Sibma, 1987).

Crop Sewing Harvest
Maize Apr Sep - Oct
Spring Wheat Mar - Apr Aug
Barley Feb - Apr Aug
Oat Feb - Apr Jul - Aug

n.d.). Since 2006 it has been mandatory in the Netherlands to grow a catch crop after growing maize on
sandy or loess soil. The final sowing dates are set by law to ensure that this catch crop has time to grow. For
undersowing or sowing directly after harvest, this final date is October 1. A new main crop has to be sown
before the October 31. These catch crops absorb enough nitrogen from the soil that has not been used by the
maize (Rijksdienst voor Ondernemend Nederland, 2019).

3.1.2. Data sets
Weather station data
Hydrometeorological data can provide necessary information to understand the radar signal, which can be
strongly influenced by precipitation and frozen soils (Veloso et al., 2017). Besides that, strong wind gusts
could change the geometry of the vegetation (Tan, Wu, Yan, & Zeng, 2018). Figure 3.2 visualizes the meteo-
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rological data collected by the KNMI in Lelystad (KNMI, n.d.). Total precipitation in 2019 was 735.5 mm, of
which 20% fell in October. The warmest month was June, and the coldest was January, in which there were
seven consecutive days of sub-zero daily mean temperatures recorded.

Figure 3.2: Meteorological data collected at the Lelystad KNMI weather station in 2019.

Basisregistratie gewaspercelen
The Basisregistratie gewaspercelen (BRP) is a data set provided by the Dutch government containing the lo-
cations of all agricultural parcels with their corresponding crop type (Ministerie van Economische Zaken en
Klimaat, 2019). A new data set is generated yearly around the 15th of May. Each parcel has a corresponding
category (grassland or agricultural land), crop type (e.g. spring wheat, maize silage, oat), crop code, year, field
size, geometry and status (pending or confirmed). The data sets before 2020 also contain the parcel size as a
feature.

Since this study only focuses on the previously described crops and the province of Flevoland, the data
set was filtered based on these features. Another feature was added to combine the different plant varieties
of a certain crop, e.g. ’maize silage’ and ’sugar maize’ both got the label ’maize’. This label was used to filter
the crops that showed a similar backscatter response in the SAR and NDVI time series.

Besides location and crop type, the BRP data was filtered based on field size. This filtering was done be-
cause of a weak (r ≈ 0.22) but significant (p < 0.05) correlation between field size and deviation from the
mean. By removing the 10th percentile of the fields based on size, extremely small fields were removed. These
very small fields often seemed incorrect and caused outliers. The total amount of parcels processed per crop
type after the field size filters can be seen in Table 3.2. Note that, since the crop types were processed sep-
arately, this filtering was performed for each crop, causing a slightly different frequency distribution than
presented in Figure 3.1.

Table 3.2: Number of processed parcels of each crop type.

Crop Nr. of parcels
Maize 309
Spring wheat 56
Barley 180
Oat 59

Note that the BP is not dependent on an ancillary data set such as the BRP since the algorithm is capable
of field delineation and uses global scaling parameters applicable to all crop types.
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Field measurements Flevoland 2017
Unfortunately, no ground data was available to validate the results. However, Khabbazan et al. were kind
enough to share the field measurements taken in their campaign in 2017. The field measurements include
crop height, BBCH stage and soil moisture for maize and other crops, which are not analyzed for this study.
The data was collected between the 18th of May and the 17th of August for five maize parcels. Meteorologically,
the summers of 2017 and 2019 were both warm, but in 2019 precipitation values were lower than average
(KNMI, n.d.). The data was, therefore, not used directly as validation but more as a benchmark.

Sentinel-1 data
The SAR data in this study is acquired by the Sentinel-1 (S1) satellites. The Copernicus Sentinel data 2019 was
obtained from the Planet database, a collection of the data retrieved from the Sentinel Hub. S1 is an imaging
radar mission based on a constellation of two satellites, equipped with a C-band SAR sensor which operates
at a centre frequency of 5.405 GHz (Valero et al., 2021). Over (non-polar) land, it utilizes the Interferometric
Wide (IW) swath mode, which provides dual polarization (VV and VH) with a spatial resolution of 20 meters
(Khabbazan et al., 2019). By combining the data from the Sentinel-1A and 1B satellites, the Netherlands is
covered by six relative orbits. Each relative orbit is described in Table 3.3. Unfortunately, on December 23 2021
the Sentinel-1B satellite ceased collecting data. Afterwards, only Sentinel-1A data is provided, decreasing the
frequency of SAR observations. This study uses Sentinel-1A and B images before this outage, between the
January 1, 2019, to the December 31, 2019. With Sentinel-1A and -1B in operation and a ground swath width
of 250 km, the local temporal revisit time is 1.5–4 days over Europe (all orbits active). However, due to the
acquisition scheme’s energy-related limitations, this reduces to 6–12 days globally (down to only 1–2 orbits)
(Vreugdenhil et al., 2020).

Table 3.3: Sentinel-1 IW data available over the study area in 2019.

Relative Orbit Pass Local Time Min. Inc. Angle (°) Max. Inc. Angle (°)
37 DESC 06:49 38.9 41.9
110 DESC 06:58 30.0 33.7
15 ASC 18:15 30.0 31.5
88 ASC 18:24 36.6 40.4
161 ASC 18:32 44.7 46.1

In many studies, a single orbit is selected to eliminate the effect of different incident angles and overpass
times. For this study, however, all orbits are considered to maximize the available information. Using all
orbits is possible because of the Biomass Proxy orbit correction (see Section 2.4): a preprocessing function
used in the algorithm that ’learns’ and corrects for the biases caused by the differences in relative orbit. The
functionality of this orbit correction was tested by checking the influence of the relative orbits and the time
of day of the image acquisition. The relative orbits were encoded, and acquisition times were divided into
’morning’ and ’evening’ and binary encoded. Then Pearson’s r and its corresponding p-value between the
deviation from the mean of all fields in a province and the relative orbit/acquisition time was computed.
Except for maize and oat in Flevoland, the correlation between all crops and the relative orbits and acquisition
times were insignificant (p>0.05). Maize and oat in Flevoland had a significant (p<0.05) but weak correlation
of 0.19 and 0.21, respectively. Therefore it can be concluded that the relative orbit and acquisition times do
not significantly influence the observations after the orbit correction, and thus all relative orbits can be used.

Sentinel-2 data
The NDVI data used in this study is acquired by the two Sentinel-2 (S2) satellites, which both carry a Multi-
Spectral Instrument (MSI) at Level 1C (Blickensdörfer et al., 2022). The MSI samples thirteen spectral bands:
four bands at 10m resolution, including visible and near-infrared (NIR), six bands at 20m and three bands at
60m spatial resolution (Chang & Shoshany, 2016). S2 is very suitable to map the NDVI since both the Red and
NIR bands have a high (10m) resolution. The revisit time of a single satellite (A or B) is 10 days, so an image
can be obtained by using both every 5 days. However, only a subset of these images is usable due to the cloud
cover. The S2 data was also obtained from the Planet database.



3.2. Understanding the temporal and spatial behaviour of crops 28

3.2. Understanding the temporal and spatial behaviour of crops
In order to evaluate the potential of the SAR signal in the BP, a general understanding of the field data is in-
dispensable. Although this research mainly focuses on data processing in the spatial domain, understanding
temporal behaviour is the first step to linking the biophysical processes to what we see in the spatial field
data. Therefore, Section 3.2.1 will go into the methods to analyse the temporal behaviour of the specified
crops. Subsequently, Section 3.2.2 will discuss the methods to analyse the spatial behaviour of a subset of the
fields.

3.2.1. Temporal behaviour
This method aims to link the temporal behaviour observed in the selected fields to the biophysical processes
observed in the literature discussed in Section 2.2.3. Since the crops have (slightly) different structures and
biomass, they are analysed separately and compared to the literature on the specific crop. It was assumed
that the crops have similar temporal behaviours for the different years and regions in the other studies.

The uniform averages of the NDVI, VH, VV and S1 index signals were computed to minimise the influence
of outliers and create a non-specific temporal profile. This averaging was done for each crop type for all fields.
The time series plots were made to visualise the profile of the four signals. A threshold was applied to exclude
extreme values from the S1 index time series based on a single or few fields. These outliers were often caused
by fields at the edge of a swath, which were not averaged out by enough other fields. This threshold was set
to 10% of the total fields, meaning that for each date plotted, at least 10% of the fields must have a value. An
example of this filtering is provided in Appendix D.

The standard deviations of the NDVI and S1 index were computed and included in the plots to illustrate
the variability between fields. Next, the extreme weather events, i.e. droughts, heavy precipitation and strong
winds, were compared with the time series to take variations from these causes into account. Finally, an ap-
proximation of the growing stages was made using the validated temporal profiles discussed in Section 2.2.3.

As discussed in Section 3.1.2, no validation data was available to validate the approximations. However, to
support the analysis, the data of the 2017 field campaign, together with the time series from the correspond-
ing research (Khabbazan et al. (2019)), was compared with the 2019 time series.

3.2.2. Spatial behaviour
A subset of the processed fields needed to be selected to analyse the spatial behaviour of the signals. This
way, spatial (raster) data could be visualised and qualitatively and quantitatively described. First, a minimum
area threshold of six hectares (Ami n = 6 ha) was set to reduce the number of fields. Ami n was selected for
two reasons. Firstly, it ensures a sufficiently large area to see large-scale spatial patterns since the BP spatial
filtering is at the scale of one hectare. Secondly, each crop type still had a minimum of ten fields in its subset
after applying the threshold, reducing the chance of selecting an outlier.

Subsequently, a single field was chosen from this subset to visualise the raster data. The temporal pro-
files of the individual fields were compared with the mean to select a representative field from the subset.
The field with the smallest Root Mean Squared Error (RMSE) from the mean was chosen for each crop, thus
assuming this field is also the most representative in the spatial domain. The time series of all fields were
plotted for each crop type, with the selected field and mean highlighted to picture the temporal similarities
and differences of the selected field.

After the field selection, the visualisation date(s) needed to be chosen. To account for differences in (spa-
tial) signals during different periods in the growing season, the analysis of the temporal behaviour as de-
scribed in Section 3.2.1, time series of the S1 index and NDVI were plotted and were (roughly) divided into
the principal growing stages of the specified crop. A date was selected in each growing stage on a day with an
NDVI observation such that the signals could be compared with minimal external differences. The selected
dates were then labelled and plotted in the time series.

Finally, the S1 index, NDVI, VH, VV and CR were plotted for each field and date. The CR was computed
by subtracting the VV raster from the VH raster in the logarithmic domain. To compare the rasters not only
qualitatively but also quantitatively, the histogram of each raster was plotted above the respective raster. In
the histogram plot, the mean µ, standard deviation σ, and coefficient of variation CV = σ

µ were added to
support quick comparisons. The coefficient of variation (CV) is a statistical measure of how far apart data
points in a series are from the mean (Brown, 1998). Even when the means of two data series strongly differ,
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the CV can be used to compare the degree of variation between the two data sets. It is therefore a suitable
statistical feature to compare the different dates and signals.

3.3. Cluster detection with spatial metrics
Once the rasters are obtained for the different crops, they can be analysed to evaluate if they contain spatial
information that is of interest to include in the Biomass Proxy. This section present a method to answer the
second research question: ’What spatial metrics can be used in which situations as indicators for clustering of
the spatial S1 index data?’

The methodology steps are all performed sequentially; therefore, the same fields are used for the spatial
analysis of Section 3.2. Since the research objective is to analyse when there is relevant spatial information in
the S1 index signal, only computations on the S1 index rasters are performed.

3.3.1. Metric selection
This step aimed to select metrics that best describe spatial information that is expected to be relevant. This
relevant spatial information is defined as spatial behaviour that could potentially indicate large changes or
anomalies in the field that would be of interest to the user. To detect this kind of behaviour in the spatial data,
three characteristics are deemed important:

1. the amount of clustering, i.e. the grouping of similar backscatter values

2. the size of the clusters

3. the contrast between the clusters and their surrounding

Here it was assumed that change happens in a certain area of the fields, that small changes are more likely
to be an artefact of the radar or simply irrelevant, and that higher contrast increases the probability of the
cluster being an anomaly. With these specifications in mind, three metrics were selected, and their potential
to describe the spatial data was analysed.

In order to select suitable metrics, the Shannon, Leibovici and Altieri entropy and several Grey Level Co-
Occurrence Matrix (GLCM) metrics were computed. For each field, the metrics were computed during the
crop-specific growing season. First, the different types of entropy were computed using a Python version of
the R-package Spatentropy (Milk, 2021; Parresol & Edwards, 2014).

The values had to be discretised to compute the entropies. Bins of 0.1 dB were defined, and every pixel
was assigned to its corresponding bin. The Shannon, Leibovici, and Altieri entropy were computed using
Equation (2.6), Equation (2.8), and Equation (2.13) respectively.

The default distance values were used for both the Leibovici and Altieri entropy, which correspond to
dLei bovi ci = 10 and dAl ti er i = [0,10]. Since Altieri entropy works with distance intervals, dAl ti er i = [0,10] is
divided into k = 10 intervals wk , for which the partial entropies are computed.

Subsequently, the GLCM metrics were computed with the Python PyRadiomics package (Van Griethuy-
sen et al., 2017). This package computes the twenty-four different GLCM features discussed in Section 2.5.2.
To use the functions, all rasters first had to be converted to SimpleITK (Insight Segmentation and Registra-
tion Toolkit) image format, which is a Python class built for image analysis (Beare, Lowekamp, & Yaniv, 2018).

The selection of the metrics was done by first analysing the metrics visually based on their ability to de-
scribe rasters with the described desired characteristics, and then by substantiating the selected metrics with
the theory.

For each field, these metrics were computed during the growing season. In order to compare different
metrics and crops, the data set was duplicated and normalised using min-max normalisation. Subsequently,
each metric’s minimum and maximum values were identified to select the metrics that best reflect the large-
scale patterns, and their corresponding S1 index rasters were plotted. For each metric, subplots were made
showing the S1 index rasters for the highest and lowest metric values of the growing season. The metrics that
seemed to represent clusters most clearly, i.e. the maximum values showed clear clusters were selected.
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metrics that met these requirements best were:

1. Altieri entropy

2. Cluster tendency

3. Cluster prominence

To motivate the choice for the Altieri entropy further, the theoretical background (Section 2.5) has high-
lighted its ability to describe the heterogeneity and the mutual information (MI) of the raster data. Both
contain valuable information, since, ideally, it would be valuable to know when there are clusters (MI) if the
field is not homogeneous (residual entropy). Thus, a change in the Altieri entropy indicates when the distri-
bution of backscatter values changes and if these values are clustered. The equation for the Altieri entropy is
given by Equation (2.13), and a more comprehensive explanation can be found in Section 2.5.

As their names suggest, the cluster tendency and cluster prominence are intuitive measures of cluster-
ing. The cluster tendency is a GLCM feature that measures groupings of voxels with similar grey-level values
(Van Griethuysen et al., 2017). It is defined as

cluster tendency =
Ng∑
i=1

Ng∑
j=1

(
i + j −µx −µy

)2 p(i , j ) (3.1)

where Ng is the number of discrete interval levels in the image, i , j the (row, column) index values of the
GLCM, p(i , j ) the normalised co-occurrence matrix, and µx and µy the mean grey level intensity of the
marginal row and column probabilities respectively. These marginal row/column probabilities can be ex-

pressed as px (i ) =∑Ng

j=1 p(i , j ) and py ( j ) =∑Ng

i=1 p(i , j ), such that µx =∑Ng

i=1 px (i )i and µy =∑Ng

j=1 py ( j ) j .

The cluster prominence measures the skewness and asymmetry of the GLCM. A higher value implies more
asymmetry about the mean, while a lower value indicates a peak near the mean value and less variation about
the mean. It has the same variables as the cluster tendency and is defined as (Van Griethuysen et al., 2017)

cluster prominence =
Ng∑
i=1

Ng∑
j=1

(
i + j −µx −µy

)4 p(i , j ) (3.2)

Since all metrics provide field averages, understanding values at field-level is not always straight-forward.
To support the analysis, the MI and residual entropy are used for the Altieri entropy. For the GLCM metrics,
a voxel-based computation of the metrics was performed to visualise what aspects of each raster cause the
high or low values. The voxels were defined as the same size as the pixels in the raster to keep the same spatial
resolution. The output of these computations was two-dimensional feature maps.

3.3.2. Metric analysis
To better understand the information the metrics contain, an analysis for each of the selected metrics was
performed, evaluating the information it describes and its computation time. This analysis consists of two
parts. First, the time series of the metrics were compared with the S1 index time series. For each field, when
there was a sudden change in the S1 index, the S1 index rasters were plotted with their corresponding metric
values to see how these metrics represent these changes. These sudden changes usually corresponded to the
(expected) harvest time.

Second, the time series of the three metrics were compared for each field. Dates were extracted where
the metrics showed similar values and where the largest differences occurred. Again, the S1 index rasters
corresponding to these dates were plotted and analysed.

Furthermore, to support the analysis, the feature maps of the GLCM features were plotted where deemed
appropriate. Since this is not a function of the SpatEntropy, which is used to compute Altieri entropy, the
analysis of this metric was supported by evaluating the residual entropy and the MI.

3.3.3. Defining thresholds
This step aims to identify suitable thresholds for each metric, such that they can be used as indicators when
the S1 index raster contains relevant spatial information and the analysis can be quantified. To prevent over-
fitting the value to one field, for each crop, four other fields were randomly selected from the subset, which
was filtered by size. For each metric and field, the S1 index rasters were sorted according to their metric value
and plotted in descending order. A threshold was chosen by visual inspection for the same requirements as
for the metric selection, with the specifications further refined as follows:
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1. the raster contains at least two recognisable clusters of at least 10 pixels

2. at least one cluster covers an area of at least 20 pixels

3. at least one cluster has an edge with high contrast, where ’high’ is defined as more than 1 dB difference

The metric values were converted back to the absolute values and averaged to define a crop-based threshold.

3.4. Pattern consistency
As previously mentioned in Section 1.2, this method is based on the premise that consistent patterns contain
relevant information and quickly fluctuating areas or pixels do not. With the framework to test and select
spatial features of the raster data developed, the next step was to analyse these persistent clusters in time and
space. An overview of the steps in this method is presented in Figure 3.3.

3.4.1. Temporal consistency
The spatial (auto)correlation can be computed between sequential rasters to test whether spatial data is con-
sistent in time. For each field, the spatial correlation between raster i and i −1 was computed for i = 2, ..., N
with N the number of available rasters in the growing season. The correlation was computed backwards
to be applied near real-time. The correlation value and its corresponding p-value were obtained using the
Pearson correlation function of the Python package Scipy Stats (Virtanen et al., 2020). If a correlation was
significant (p < 0.05), the correlation coefficient was included in the analysis. Next, a time series from the
autocorrelation values was created for each field. Following the definition of Greenwood (2014), a correlation
is defined as ’strong’ if r > 0.5. Therefore, to visualise potentially relevant periods, values in the time series
were marked if two or more sequential data points had values above 0.5.

Since high correlation could also indicate consistency in completely homo- or heterogeneous rasters, the
periods with high correlations were also tested against the different metrics defined in the previous section.
The metric time series were marked above their threshold value and were plotted together with the autocorre-
lation time series. The dates of the periods which met the conditions were extracted, and the corresponding
S1 index rasters were plotted to verify the expected consistent patterns. This step is denoted as (1) in Fig-
ure 3.3.

This temporal analysis was also performed on a larger scale by applying the described steps to all fields.
To analyse whether there is a higher probability of persistent patterns during certain stages of the growing
season, a plot of the distribution of occurrences was made per crop type. The plot is based on the histogram
where each bin represents a date, and the count corresponds to the number of times a raster on a specific day
is part of a persistent pattern. To compare the histogram profiles between the different crops, the values were
normalised by dividing the count by the total number of fields of the specified crop.

3.4.2. Spatial consistency
After obtaining the temporal occurrence of persistent patterns, the patterns were analysed spatially. This
spatial analysis was done for two reasons. The first reason is better to understand the spatial information, i.e.
determine typical cluster characteristics (such as shape, size and average value) and to compare the clusters
with the NDVI observations in the selected period. This both aids the understanding of what could cause the
signal (can the pattern also be recognised by optical imagery?) and demonstrate the relevance of the radar
data. The second reason is to set out a framework on how the information could be used to redefine the
weights in the fusion process of the BP.

The steps taken to extract these spatial patterns are illustrated in Figure 3.3. The numbers from each
processing step correspond to the following description. Step 1 was to select a (sequential) series of rasters
(R) for each crop defined as Rd (i , j ) for d = 1, .., N with N the number of days in the series and (i , j ) the pixel
values. In step 2, the rasters were scaled to their internal ratio, i.e. each scaled was expressed in R s

d (i , j ) =
X ∗µRd , whereµRd corresponds to the mean of the field on day d . Step 3 includes averaging the series (µR s (i , j ))
in time. Then, in step 4, the average was subtracted from each raster in the series: δRd (i , j ) = R s

d (i , j )−µR s (i , j ).
In step 5, a boolean mask was created from the pixels where δRd (i , j ) < 0.1. Note that the ratio was taken such
that these differences are only based on the spatial pattern. Otherwise, the first and last rasters in a series
would be disadvantaged when there is biomass growth.

Once a mask was obtained for each raster in the series, the masks were combined to represent the pixels
that remained consistent throughout the series in step 6. The combination was done by setting the condition
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that all rasters must have the same boolean value (True). Next, in step 7, clusters (adjacent pixels with True
values) were filtered by size, such that clusters with less than 5 pixels were removed and holes of less than
5 pixels were filled. Two morphological operations were performed using the Scikit Python package (Pe-
dregosa et al., 2011). The final mask was then applied to the raster series in step 8, to visualise which parts of
the field were classified as persistent.

Finally, the persistent spatial patterns of these rasters were compared with the NDVI rasters in the same
period. This was done for two reasons: 1) to evaluate the relevance of the persistent radar patterns, i.e. could
these persistent patterns have been detected from optical imagery, and 2) to identify possible causes of the
pattern, i.e. if the NDVI observation does not show the same pattern the possible causes could be reduced
(dependent on the time in the growing season).

Field level S1 index
raster data

(1) Filter by spatial
metrics and

autocorrelation

(2) Scale to mean

(3) Compute series
average

(4) Compute difference to
average at pixel-level

(5) Create mask where
difference < 0.02

(6) Combine masks

(7) Apply morphological
filters

(8) Apply to original
series

Persistent pattern
series

Series of S1
index rasters

Figure 3.3: Methodology steps of extracting persistent patterns spatially.

3.5. Implementing spatial data in the Biomass Proxy
To answer the question ’How is the Biomass Proxy influenced by the static weight of the Sentinel-1 data,
and how does this change throughout the growing season?’, a sensitivity analysis of the static weights on the
Biomass Proxy was performed. The eventual objective was to find the ’tipping point’ of when radar patterns
become predominant in the BP. This is crucial information to determine how to include the spatial S1 infor-
mation in the output signal.

3.5.1. Processing BP for varying static weight
The BP was processed for various static weights to perform the sensitivity analysis. As mentioned in step 4 of
Section 2.4, the static weight is defined to range between 0 and 1. For the analysis, the BP was computed for
static weights of 0, 0.1, 0.25, 0.5, 0.75 and 1. In the analysis, the default value of 0.075 was also considered.

3.5.2. Identifying radar-like spatial patterns
For visualization purposes, a distinction was made between the rasters shown in 2D and crop averages. The
K-means clustering was only performed for these rasters. The dates of the plots were chosen to coincide with
an NDVI observation again. The S1 index, NDVI and weighted BP rasters were then plotted beside each other
and qualitatively described.

In order to quantify when radar characteristics become visible, a K-means clustering algorithm from the
Python library Scikit-learn (Pedregosa et al., 2011) was applied. The Silhouette score was used to deter-
mine the optimal number of clusters. This method was chosen over the elbow method since determining
’the elbow’ can be ambiguous. In a few small tests, the Silhouette score always had the same outcome as the
Davies-Bouldin index but a slightly shorter computation time. It was therefore used to determine the optimal
cluster number. The distance metric used is the Euclidean distance. A visual inspection was done for each
field with different weights to see when patterns became visible in the BP rasters.

3.5.3. Determining spatial correlation
In order to visualize the spatial relation between the weighted BP rasters for all fields, the spatial Pearson cor-
relation and its corresponding p-value were computed between the rasters and the S1 index and NDVI using
the Scipy Signal Python package (Virtanen et al., 2020). If the correlation between two rasters was signifi-
cant (p < 0.05), the correlation value was included in the computation. These correlations were computed for
each field and date in the growing season and averaged for the different static weights. The start and end date
of the growing season were taken as the first of the months specified in Table 3.1. Combining this throughout
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the growing season defined a relationship for each crop. The intersection point between the correlation with
the S1 index and the correlation with the NDVI signal was then determined from the plot to extract the value
above which static weight the output signal is more similar to the S1 index than NDVI. Finally, the intersection
points of the different crops were compared.



4
Results & Discussion

This chapter presents the results obtained in this study. To improve readability, each result is directly dis-
cussed. The main sections of this chapter are structured the same way as the methodology. First, the tempo-
ral and spatial analysis of the SAR and NDVI signals are analysed for the four crops in Section 4.1. Then, in
Section 4.2, the selected metrics are discussed and a suitable threshold is selected. Next, Section 4.3 provides
the findings on when and where persistent patterns occur. Last, the results from sensitivity analysis of the BP
to the static weights is presented in Section 4.4.

4.1. Understanding the temporal and spatial behaviour of crops
In order to finally be able to redistribute weights between the SAR and NDVI signals, one must understand the
information the signals contain. This chapter will therefore go into the question: ’How do NDVI and SAR data
describe biophysical changes in the temporal and spatial domains?’. Both the temporal as well as the spatial
aspect of the signals are analysed per crop type to answer this question, which will be done in Section 4.1.1
and Section 4.1.2 respectively. Descriptions of the phenological stages used in the analysis can be found in
Appendix A.

4.1.1. Temporal behaviour
Figure 4.1 illustrates the S1 index and NDVI signal of the four summer crops. The time series show that barley,
oat, and wheat have a similar growing season, which could be expected from the literature (or Table 3.1). As
expected, the growing season of maize starts later and continues after the other cereals are already harvested.

Figure 4.1: S1 index time series of maize, wheat, barley and oats.

Besides a similar growing season, barley, oat and wheat all show an increase in S1 index and NDVI signal
after harvest. This could be caused by the radar backscatter of cover crops, the backscatter of crop residue,
the influence of soil moisture, or a combination of the three.

34
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All crops show a sharp drop in the S1 index in January but not in the NDVI signal. The days this occurs
correspond to the days where the daily mean temperature was sub-zero (see Section 3.1.2). All crops also
show an increase at the beginning of March and a sharp peak on April 1. Looking back at Figure 3.2, it is
clear that these periods of increased S1 index coincide with increased precipitation. Since the soil is not yet
covered with crops in this period, the S1 index is mostly affected by soil moisture.

Maize
Figure 4.2 shows the time series of the S1 backscatter (VV, VH and S1 index) and the NDVI signal of all maize
parcels in Flevoland. Between January 1 and mid-May, the S1 index slowly decreased, with a few exceptions
caused by weather conditions, as stated above. This decrease is also visible in VH and VV, which agrees with
the findings of Veloso et al. (2017), who attributed this to the smoothing of the soil. From mid-May onwards,
the slope of the S1 index becomes positive, indicating an increase in water. This period corresponds to the
expected emergence from the plants (Sibma, 1987) and is, therefore, probably caused by the increasing VWC.
Note that the NDVI signal is not sensitive yet to the small plants. Only ten days later, when the chlorophyll in
the leaves starts to develop, does the signal start to increase.

After initial emergence (BBCH 10), VH backscatter (and therefore S1 index) start to increase because the
vegetation provides the main volume scattering contribution to the backscattered signal. This is analogous
to the results of C. Liu et al. (2013) and Wiseman et al. (2014). The same authors both subsequently saw an
increase in VV, which can also be observed in Figure 4.2 at the start of July. This is presumably due to the stem
elongation stages (BBCH 31-39), in which the vertical structure of the stalks reflects the VV backscatter more
strongly and the double bounce backscatter between the stalks and soil increases. Recall from Veloso et al.
(2017) that during this period, the influence of the soil becomes marginal, and the soil moisture variations
do not influence the backscatter. This corresponds to the presented time series when this is compared to the
precipitation data from Section 3.1.2: on July 10 and 30, heavy precipitation was recorded, which is not visible
in the S1 index time series.

At the end of July, the VH backscatter and S1 index start to plateau. Multiple studies (e.g. Ferrazzoli
et al. (1992); Jiao et al. (2011); Vreugdenhil et al. (2018)) showed similar saturation of the radar backscatter
around this period in which the grains start to develop (BBCH 71) and as the LAI reaches a value of 2-3. After
this, follow the late fruit development (BBCH 75) and the ripening stages (BBCH 89), at which the plants are
harvested. For this region in the Netherlands, this is usually around mid-September (Khabbazan et al., 2019).
During these last stages, it is difficult to distinguish between a decrease in the S1 index due to reduced VWC
as reported by Vreugdenhil et al. (2018) and harvest because of the averaging over the fields. As also noted
by Khabbazan et al. (2019), abrupt decreases occur in backscatter at individual parcel level between mid-
September and mid-October as maize is harvested. Harvesting precipitously decreases backscatter, most
prominently in VH, and increases the standard deviation of the VV, VH and S1 index. With the soil left bare
again, the soil moisture starts to influence the backscattered signal again. Making it more difficult to detect
harvest in wet autumn months. However, it is visible from the S1 index time series in Figure 4.2 that the
harvest occurs between mid-September and mid-October, as the standard deviation of the signal starts to
increase of both the S1 index as well as the NDVI.

Figure 4.2: Time series of Sentinel-1 backscatter (VV, VH and S1 index) and the NDVI signal of all maize parcels in Flevoland. Top: S1
index, NDVI and their respective standard deviations. Bottom: vertical (VV) and cross (VH) polarized signal.
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Barley
The temporal profile of barley is presented in Figure 4.3. Again, the backscatter is essentially determined by
the soil before emergence. At the beginning of April, there was a slight decrease in direct (VV) and an increase
in volume (VH) scattering, which also caused an increase in the S1 index. This is probably caused by the
emergence of vegetation, as was also observed by Vreugdenhil et al. (2018) and C. Liu et al. (2013).

Then, from mid- to end-May, the S1 index starts to decrease slightly, which agrees with the findings of
Chakhar et al. (2021), who observed this during the stem elongation stages (BBCH 30-39). Recall that Veloso
et al. (2017) and Vreugdenhil et al. (2018) also reported attenuation of the signals due to stem elongation. This
effect is visible in both polarisations and enlarged in the S1 index. Analogous to the results of Skriver et al.
(1999) and Larranaga et al. (2013), the VH, VV and S1 index start to increase again after the stem elongation
stages around the start of June. They found that the heading stages of the barley caused this. From mid-July
to the end of August, the VH and S1 index slope becomes negative again. This period coincides with the
expected harvest, as discussed in Table 3.1. Interesting to see is the two peaks in this period, one on the 30th

of July and the other on the 10th of August. Comparing this to the weather data, the former coincides with
heavy precipitation and the latter with a day with very strong wind gusts and heavy precipitation.

Just before the decrease in the S1 index, the NDVI decreases rapidly. Veloso et al. (2017) observed a similar
decrease before the harvest for wheat due to their colour transformation from green to yellow. Since NDVI is
sensitive to the plant’s greenness (chlorophyll), the signal no longer detects the yellow biomass.

Figure 4.3: Time series of Sentinel-1 backscatter (VV, VH and S1 index) and the NDVI signal of all barley parcels in Flevoland. Top: S1
index, NDVI and their respective standard deviations. Bottom: vertical (VV) and cross (VH) polarized signal.

The increase in the S1 index from September onwards could be caused by the cover crops planted after
the harvest. Since this time series represents the mean of all fields, no clear harvest event can be designated.
Looking at the individual field level, this is a clear event in both the S1 index time series and the NDVI series
(provided that there is no gap in the data due to clouds).

Oat
As discussed in Section 2.3, oat has a very similar growing season to barley. The S1 index and VH start to
increase, while there is a slight decrease in VV again around the start of April. When comparing the time
series, however, it can be seen that the local maximum is reached only in mid-June, a month later than for
barley.

A similar difference in slope was observed by Shang et al. (2020). After reaching this local maximum
around the same level of barley (22 dB), there is a decrease in VH while VV slightly increases. This causes a
similar local minimum as was seen in barley a month earlier. This period of decrease is again expected to
correspond to the stem elongation stages. Around the first of July appears to be the start of the next stage,
presumably caused by the heading stages again. Note that the maximum of ca. 23 dB it reaches around the
first of August is significantly lower than this maximum for barley of ca. 25 dB. This was also observed by
Lopez-Sanchez et al. (2013), who found that oat has a lower sensitivity from the radar response. Finally, the
S1 index reaches a minimum again at the end of August, when all plants are expected to be harvested.
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Figure 4.4: Time series of Sentinel-1 backscatter (VV, VH and S1 index) and the NDVI signal of all oat parcels in Flevoland. Top: S1 index,
NDVI and their respective standard deviations. Bottom: vertical (VV) and cross (VH) polarized signal.

Wheat
Finally, wheat has a similar temporal profile to barley and oat. The same phenological stages can be estimated
when comparing the time series to those of barley and oat. At the beginning of April, the plants are expected to
emerge; then, in mid-May, the VV starts to decrease slightly, resulting in a plateau of the S1 index. This period
is expected to correspond to the stem elongation phase, which is less pronounced in the average signal than
for barley and oat. Comparing this to the CR profile of wheat from Veloso et al. (2017), a similar decrease is
expected. The effect could be lost due to the temporal Lee-sigma filter applied to the S1 index. The period in
which the stem elongation takes place could be too short to show a small negative slope.

Around the first of July, the S1 index slope becomes positive again due to an increasing VH and a slowly
decreasing VV, which are expected to correspond to the heading stages (BBCH 50-59). Like barley, it reaches
its maximum at the start of July and starts to decrease after harvest or senescence. Like the other cereals, due
to the early harvest, there seems to be another growth cycle of a (cash) crop after September. Interestingly,
the standard deviation of this period seems to be much larger in NDVI, which could be caused by the different
crop types planted after wheat.

Figure 4.5: Time series of Sentinel-1 backscatter (VV, VH and S1 index) and the NDVI signal of all wheat parcels in Flevoland. Top: S1
index, NDVI and their respective standard deviations. Bottom: vertical (VV) and cross (VH) polarized signal.

4.1.2. Spatial behaviour
As described in Section 3.2.2, single fields needed to be selected to visualise the spatial behaviour. The se-
lected fields are shown in Appendix E, with the root mean square (RMS) differences between the crop mean
and the field. For each crop, the time series of the single field is shown with the corresponding rasters for the
chosen date in their corresponding subsections. In each time series, four dates are labelled corresponding to
the estimated phenological stages from the previous section. Recall that the dates were chosen to coincide
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with NDVI observations, therefore singling out (most) external parameters influencing the signals. This way,
the different signals can be compared based on their inherent differences.

A more elaborate discussion will follow on the first (maize) rasters. After that, to avoid redundancy, only
relevant features not present in the maize rasters are discussed.

Maize
The four selected dates of maize are shown in Figure 4.6 and their corresponding spatial rasters are presented
in Figure 4.7. The first date (label 1) corresponds to June 17, which is most likely in the leaf development
phase (BBCH 10-19), since both the NDVI and S1 index have started to increase. Label 2 is placed on July 2,
presumably corresponding to the start of the stem elongation phase. In 2017, during the field campaign of
Khabbazan et al. (2019), the five fields of which phenological stages were recorded all had a BBCH stage 39,
the last stage of the stem elongation, on July 3. On July 31, label 3 is placed to represent the start of the fruit
development stage (BBCH 71-75), which is a saturated period of both the NDVI and the S1 index. Finally,
label 4 on August 31 represents the approximated ripening stage (BBCH 83-89). These approximated growing
stages again corresponded to the field campaign of Khabbazan et al. (2019).

Figure 4.6: Time series of selected maize field for the S1 index and NDVI. The green dashed lines correspond to the dates which are
visualised spatially: (1) 17/6, (2) 2/7, (3) 31/7, (4) 31/8.

Figure 4.7 shows the rasters corresponding to the dates 1 to 4. The S1 index, NDVI, VH, VV, and CR is
visualised for each date. Analysing the rasters at separate dates, the differences between the signals are im-
mediately clear. Firstly, there are patterns in the S1 index that are not visible in the NDVI nor directly visible
in the VH, VV and CR rasters. These patterns could either be caused by the intrinsic sensor properties or
by the physical properties of the target. These physical properties may vary between the terrain parameters
discussed in Section 2.2.3. Noteworthy is that there are also patterns in the NDVI rasters which do not show
in the S1 index rasters, e.g. the area in the lower right corner of the field on day (2). The pattern could be
caused by an area lagging with fewer or smaller leaves, therefore having lower chlorophyll contents. Possible
reasons that this is not visible in the radar image are that a) the VWC is the same despite the lower LAI, or b)
the differences in structure are more dominant in the signal.

In the NDVI images, a border effect is also present, which is not visible in the other signals. This could
be caused due to the field delineation of the BRP data set. Secondly, looking at the VH, VV and CR, it is evi-
dent that these rasters are dominated by speckle. Even though the S1 index is the filtered CR, patterns visible
in the S1 index are barely recognisable in the CR raster. This difference is also visible when comparing the
histograms of the CR and the S1 index. On day 1, for instance, the coefficient of variation (CV) of the CR is
more than fourteen times as large as that of the S1 index, indicating a very large, evenly distributed spread in
values (which is not expected of an agricultural field). This difference emphasises the importance of filtering
the radar signal for interpretation. Lastly, the histograms (and rasters) demonstrate one of the disadvantages
of the NDVI, namely the saturation. For days 3 and 4, the field is completely homogeneous except for the
edges. This is not the case for the S1 index (or the other radar indices), which still shows spatial variability for
these dates. Note that the histogram values of the NDVI observations are biased because of the edge effects
and will, therefore, not be compared with the other signals.

Then, the rasters could be compared between dates. Note, however, that the colour bar and histogram
ranges are not set. This was purposely done to visualise the spatial patterns at every part of the growing sea-
son. When comparing the S1 index rasters, a few things are noteworthy. Firstly, because the values do not
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have defined peaks in the histogram, such as NDVI, the spatial information varies quite strongly, even though
the histogram values are similar. This highlights the necessity of spatial information to understand crop de-
velopment at field level. Secondly, these strong in-field variations also demonstrate the drawback of the S1
index signal since, without validation data, interpretation cannot be done with certainty.

Next, the NDVI signals can be compared. As discussed in Section 2.1, the interpretation of the NDVI is
much simpler. However, the disadvantages of poor temporal resolution and saturation are obvious from Fig-
ure 4.6 and Figure 4.7 respectively. Due to the combination of these two factors, only a small time window
and thus few observations are useful for crop monitoring. Finally, the other radar indices can be compared.
As discussed, interpretation of this raw spatial data is difficult. However, as expected from the theory (Equa-
tion (2.3)), it seems that the noise is higher when the backscatter is weaker. For instance, when comparing
day 1 CR with the S1 index, the pattern of the S1 index is not recognisable. However, on day 4, the dark area
in the middle is (vaguely) recognisable, as well as the light area in the lower right corner of the field.

(1)

(2)

(3)

(4)

Figure 4.7: Spatial signals of the S1 index, NDVI, VH, VV and Cross Ratio of maize, where the subfigure caption corresponds to the
labelled dates from Figure 4.6.

Barley
The time series of the selected barley field is presented in Figure 4.8, where the labels 1 to 4 correspond to
April 18, May 13, June 17 and June 30, respectively. The expected corresponding phenological stages are 1)
leaf development (BBCH 10-19), 2) stem elongation (BBCH 30-39), 3) heading (BBCH 50-59) and 4) the fruit
development or ripening stage (BBCH 70-89).
As discussed in Section 4.1.1, the harvest is distinguishable at field level (around July 20). Interestingly, the
NDVI has decreased earlier than the S1 index. This could be due to the transformation from green to yellow
during the ripening stage. Because the previous observation was at the end of June, it might appear that this
happened overnight, but there is a two-week difference between the observations.
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Figure 4.8: Time series of selected barley field for the S1 index and NDVI. The green dashed lines correspond to the dates which are
visualised spatially: (1) 18/4, (2) 13/5, (3) 17/6, (4) 30/6.

Comparing Figure 4.9 to Figure 4.7, a similar spatial behaviour can be seen. Again, the S1 index shows
very different patterns than the NDVI, and the NDVI signal demonstrates saturation and strong edge effects.
Note that the NDVI raster on day 3 does not represent the whole field because no full-coverage NDVI image
was available in this period.

Moreover, it should be noted that subtle differences in single polarisations, such as an increase in VV
due to the tipping of the heads, were not captured by the time series since only the S1 index and NDVI were
plotted. From the spatial data alone, such observations do not seem visible.

(1)

(2)

(3)

(4)

Figure 4.9: Spatial signals of the S1 index, NDVI, VH, VV and Cross Ratio of barley, where the subfigure caption corresponds to the
labelled dates from Figure 4.8.

Oat
Figure 4.10 presents the time series of the selected oat field. The labelled dates are 1) April 18, 2) May 13, 3)
June 25, and 4) July 30. Because of the limited availability of NDVI observations, the selected dates coincide
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with slightly different phenological stages. The approximated stages are 1) germination/leaf development
(BBCH ∼5-11), 2) leaf development/tillering (BBCH 12-29), 3) stem elongation (BBCH 30-39), 4) fruit devel-
opment/ripening (BBCH 75-85). Interesting to see is the high NDVI value during the stem elongation (day 3)
and the low NDVI value during the latest growing stages. The fact that the signals show opposite behaviour
(while reflecting the same field) confirms the complementary character of the SAR data.

As with barley, one can clearly distinguish the harvest date at parcel-level. Right before the harvest, a
slight decrease in S1 index can be observed. This is most likely due to the decrease in VWC, as expected from
the BBCH phenological stages (BBA et al., 2001) and is analogous to the findings of Vreugdenhil et al. (2018).

Figure 4.10: Time series of selected oat field for the S1 index and NDVI. The green dashed lines correspond to the dates which are
visualised spatially: (1) 18/4, (2) 13/5, (3) 25/6, (4) 30/7.

Some interesting features can be observed in Figure 4.11, which were not visible for maize or barley. On
the first day, a completely homogeneous NDVI raster can be seen (except for the recurring edge effects). On
this day, the average S1 index value is also still low. Despite the same observation date, the raster is rela-
tively homogeneous compared to the S1 index on the first day of barley (Figure 4.91). The areas with similar
backscatter values, i.e. clusters, are much larger for the oat raster, while the mean value only differs by 1.16
dB. A possible explanation could be that the barley just emerged and unfolded the first leaves (BBCH 11),
creating a heterogeneous field. If oat had not yet emerged, the observed pattern is caused by variations in soil
moisture, which is expected to be more homogeneous. In addition, a lower, more homogeneous backscatter
pattern corresponds to the findings of Veloso et al. (2017), who observed the smoothing of the soil before
emergence.

If one would only look at the NDVI rasters of day 1 and day 4, it would seem the vegetation in the field
would be similar. However, comparing the S1 index rasters on the respective dates shows large differences in
(presumably) vegetation. (Note once more that this cannot be stated with absolute certainty due to the lack
of validation data. However, comparing the temporal profile to the literature and with the knowledge of the
average harvest dates, it would be quite safe to assume the pattern caused by the vegetation.) According to
the BBCH scale, the oat plants turn yellow in the ripening stage (Earth Observation Research Branch Team,
2011). This would explain the homogeneous NDVI raster and the heterogeneous S1 index raster.

On day 2 and 3, a star-shaped pattern is visible on the right side of the NDVI rasters, which is not visible in
the S1 index rasters nor the other radar rasters. On days 2 and 3, the S1 index rasters show clear clusters in the
middle and lower left corners, respectively. Based on the estimated phenological stages, one could assume
structure differences cause these due to varying numbers of leaves and tillers on day 2, and a varying number
of nodes on day 3.
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(1)

(2)

(3)

(4)

Figure 4.11: Spatial signals of the S1 index, NDVI, VH, VV and Cross Ratio of oat, where the subfigure caption corresponds to the
labelled dates from Figure 4.10.

Wheat
Finally, the time series of wheat is presented in Figure 4.12. The observation dates are 1) April 18, 2) May 11,
3) July 2, and 4) August 10. Again assumed to represent the leaf development (BBCH 10-19), stem elongation
(BBCH 30-39), heading (BBCH 50-59), and senescence (BBCH 97).

Figure 4.12: Time series of the selected wheat field for the S1 index and NDVI. The green dashed lines correspond to the dates which are
visualised spatially: (1) 18/4, (2) 11/5, (3) 2/7, (4) 10/8

The wheat rasters in Figure 4.13 appear very similar to those of oat. The first and last NDVI observations
show little variability (except near the edges), and the observations on the second and third days are satu-
rated. The S1 index rasters on the first and fourth day are similar to the NDVI rasters: while the NDVI rasters
appear similar, the backscatter response on the fourth day is much stronger than on the first day.

It is remarkable that in the NDVI rasters, an L-shaped feature is present with much lower NDVI values.
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This could be a structure such as a greenhouse in the field. The VH, VV and CR rasters show how the algorithm
filters such persistent structures. The feature is, however, not visible in the S1 index due to spatial filtering.
Therefore, areas with such areas that are masked in the BP algorithm are visible in the BP rasters if the spatial
contribution of the NDVI is dominant.

(1)

(2)

(3)

(4)

Figure 4.13: Spatial signals of the S1 index, NDVI, VH, VV and Cross Ratio of wheat, where the subfigure caption corresponds to the
labelled dates from Figure 4.12.

4.1.3. Conclusions on temporal and spatial behaviour
The temporal signal correspond well with the temporal profiles described in the literature for all crops. Ex-
tracting the principal phenological stages from the time series seems possible but would need to be verified
using field data. Moreover, the time series demonstrate the differences between maize and the cereals in the
SAR and NDVI signals.

The spatial information of the VH, VV and CR did not contain clear spatial patterns due to the presence
of speckle, and could, therefore, not be interpreted visually. The comparison between the NDVI and S1 in-
dex observations on the same dates demonstrated the inherent differences between the signals. The NDVI
spatial data was homogeneous for significant periods of the growing season, and the spatial S1 index data
demonstrated the difficulty of distinguishing between the different causes of the spatial features in the SAR
data. Therefore, from the spatial data alone, phenological stages or biomass cannot be estimated but must
be complimented with the time series.
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4.2. Cluster detection with spatial metrics
Because this step is based on image-processing, crop differences were deemed irrelevant when the rasters
showed similar cluster shapes and sizes. Therefore, a selection was made to minimise the redundant infor-
mation. In the following sections, the maize field is visualized as an example. The plots of the other crops can
be found in Appendix F.

4.2.1. Metric analysis
As set out in the methodology (Section 3.3.2), the three selected metrics (Altieri entropy, cluster tendency
and cluster prominence) were analysed for three scenarios. First, the behaviour of the metrics during sudden
changes in the S1 index is analysed temporally and spatially. Second, the S1 index rasters are compared for
periods when metrics are similar. Third, the rasters were compared for dissimilar metric behaviour. This
way, a better understanding was obtained of what the metrics describe and which metric would be the most
suitable in which situation.

The same sections and plots can be found in Appendix F for the barley, oat and wheat. Additionally,
Appendix F contains a comparison of the computation times for the different metrics.

S1 index change effects
The two dashed, black lines mark a period of a sudden change in the S1 index in Figure 4.14. Between October
3 and 11, the average S1 index (red line) decreased from 23.4 dB to 21.4 dB. During this period, the Altieri en-
tropy, the cluster tendency and cluster prominence remained almost constant, only showing a small decrease
and increase from the observations of October 9 and 11, respectively.

Figure 4.14: Effect of a sudden change in S1 index on spatial metrics of a maize field in time, where the dashed vertical lines denote the
start and end of the period of interest.

There are no clear changes in the spatial pattern analysing the S1 index rasters in this period. This is
confirmed by the histogram, which has a similar shape every day but is shifted to a lower mean value. Results
for the other crops were very similar in the sense that the changes in the S1 index could not be identified by
only looking at the spatial pattern (see Appendix F).

Figure 4.15: Maize S1 index rasters during a period of great S1 index changes.

This is an interesting result since this implies that no distinction based on spatial pattern can be made
between a fully grown field and a harvested field. The spatial metrics confirm the lack of change in spatial
pattern between the rasters, which could be expected since the rasters demonstrate a similar amount of clus-
tering. However, it cannot be said with certainty that the harvest occurred in this period. This assumption
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was made based on the expected harvest time from literature and the S1 index values but would have to be
verified by a field with a known harvest date.

Comparing these results to those of barley, oat and wheat (Appendix F.1), changes in spatial metrics ap-
pear not to be proportional to large changes in the S1 index. Therefore, the metrics do not seem suitable for
detecting harvest or other changes that are applied to the field simultaneously.

Metric similarities
Periods with similar and dissimilar behaviour are analysed to understand the spatial metrics better. Since the
cluster prominence is a modification of the cluster tendency where one of the terms in the sum is squared
(see Equation (3.1) and Equation (3.2)), the high and low values are amplified. Therefore, the distribution
of the normalised values is different, and only at the highest or lowest values do the cluster tendency and
cluster prominence have the same values. The normalized Altieri entropy also has a higher mean value than
the cluster prominence, so the metric values do not match except for the highest and lowest values. A period
was chosen to compare similar metric behaviour where the three metrics follow the same pattern but with
different biases, and is presented in Figure 4.16.

Figure 4.16: Time series of spatial metrics of the selected maize field, where the dashed vertical lines denote the start and end of a
period with similar metric behaviour.

Since the metrics were selected based on their ability to describe large clusters, it was expected that the
increase and decrease of the values would coincide with larger and smaller clusters. This corresponds well
to the values in the time series and the rasters in Figure 4.17, where the second, fourth and fifth rasters have
more clearly defined clusters than the first and third raster.

Figure 4.17: Maize S1 index rasters during a period of similar metric behaviour.

When comparing the second and fourth raster, however, it is not immediately clear what causes the large
difference in all three metrics. Both rasters appear to have four clusters of approximately the same size, with
areas between the clusters with slightly lower values. To better understand what causes the discrepancy in
the average values, the GLCM features were computed again at voxel-level, such that two-dimensional feature
maps of the metrics could be made. The results of the cluster tendency and cluster prominence feature maps
can be seen in Figure 4.18a and Figure 4.18b respectively. The feature maps demonstrate the cause of the
discrepancy and immediately highlight both metrics’ limitations.

Firstly, cluster tendency is a measure of the grouping of pixels for similar grey-level values. These grey-
level values do not necessarily correspond to very high or low backscatter values, i.e. dominant clusters. In the
case of Figure 4.18a, on August 12 (left figure), it shows that areas in between clusters seem to have similar val-
ues, and at the right edge, there is a group of lower values. On August 16, Figure 4.17 shows a large cluster on
the right side, which is not recognised by the cluster tendency in Figure 4.18a. This could be caused by small
differences within the cluster that fall into separate bins and are therefore not detected as a co-occurrence.
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Secondly, the feature maps of the cluster prominence are compared in Figure 4.18b, where the differences are
less clear. This could be expected since the difference between the two dates in the normalized time series
was also smaller (0.21 vs 0.46). Recall that a higher value implies more asymmetry around the mean of the
GLCM, while a lower value indicates a peak near the mean value and less variation about the mean. This
agrees with the histograms from Figure 4.17, where the histogram of the second raster has a larger standard
deviation (0.99 vs 0.68) and shows the highest peak around 23.85 dB, which is 0.31 dB higher than its mean.
This unevenness in the histogram directly translates into the GLCM since there is a higher probability of cer-
tain co-occurrences when the possible values are not uniformly distributed over the bins. The feature maps
of the cluster prominence in Figure 4.18b show the outlines of the prominent clusters. For August 12, the
outlines of the three main clusters in the upper half of the raster can be seen, but it appears that the contrast
needs to be higher for the clusters in the lower half. This immediately illustrates the difference with cluster
tendency, for which these values were similar and assigned high values. For the raster on August 16, a few
pixels have a much higher value than the rest of the raster. These pixels correspond to the edge between the
small cluster of low values and the larger, high-valued cluster. Since this raster of the fourth observation has
fewer areas with strong contrast, the cluster prominence has a lower mean value.

Note that this could be a limitation of the cluster prominence: if there are many very small clusters with
high contrast, cluster prominence would be high even though the raster would not meet the set requirements
of large clusters. However, due to the filtering of the S1 index, these small clusters are often smoothed enough
not to induce high values. Moreover, a limitation of the cluster prominence is that it does not fully capture
large clusters in the corners of the rasters.

(a) (b)

Figure 4.18: Comparison of the feature maps of (a) the cluster tendency and (b) the cluster prominence for the S1 index rasters of the
selected maize field on August 12 and August 16.

No feature maps were created for the Altieri entropy, but the spatial configuration can be assessed in terms
of residual entropy and MI. Recall that the residual entropy represents the information on one variable when
the other variables are removed. At the same time, the MI is used to identify the strength of the overall role of
space. Substituting the overall entropy and the MI in Equation (2.12), it shows that the percentage of entropy
due to the spatial configuration is 3.0% and 0.1% for the rasters on August 12 and 16, respectively, explaining
why the values agree with the other spatial metrics. The residual entropy is responsible for the largest part of
the overall entropy and is dependent on the uniformity of the data. This higher uniformity can be seen in the
histograms of Figure 4.17, where the raster of August 12 has a lower peak and a larger standard deviation.

Metric differences
A period is demarcated for dissimilar metric behaviour in the time series of Figure 4.19. During the four ob-
servations in this period, the second and third observations show divergent metric values: the second raster
from May 20 has an increased Altieri entropy, decreased cluster tendency and constant cluster prominence
with respect to the first observation. The third raster from May 21 displays a decrease in Altieri entropy, a
constant cluster tendency value, and a slight increase in cluster prominence with respect to the second raster.
Finally, all three metrics increase for the fourth observation.



4.2. Cluster detection with spatial metrics 47

Figure 4.19: Time series of spatial metrics of the selected maize field, where the dashed vertical lines denote the start and end of a
period with dissimilar metric behaviour.

An increase in Altieri entropy is observed for the second raster. Comparing the entropy’s elements to the
first raster, a similar residual entropy (7.11 vs 7.10) is observed. However, the spatial mutual information more
than doubles from 0.06 to 0.15. The main driver of this change is hard to discriminate by eye but could be
further evaluated using the partial entropy terms of the Altieri entropy to explain the spatial contribution for
each distance interval. Complete interpretation of the results falls outside of the scope of this thesis.

The Altieri entropy has decreased for the third raster due to a slightly lower residual entropy and MI. The
reduced residual entropy could be due to the marginally smaller variability (CV = 0.04 vs 0.05). The MI might
have decreased due to the similar values around the edges. Since co-occurrence distances are defined with
Euclidean distances, the measure is more sensitive to spherical shapes than the elongated clusters around
the edges. However, the differences are small (0.15 vs 0.11), and further analysis is required to state this with
certainty.

A decrease in cluster tendency is observed between the first and second raster. This seems logical com-
paring the rasters in Figure 4.20: the first raster shows more and larger clusters of similar values. This was
verified by the feature maps for the two rasters, which showed little to no cluster tendency in the middle part
of the second raster. Thereby causing a lower overall value.

Finally, a constant cluster prominence is observed between the two observations. This is presumably due
to the similar distribution of values, as can be seen in the histograms of Figure 4.20. Computing the cluster
prominence spatially shows the higher values around the edges of both rasters, where the clusters are defined
the most clearly.

The cluster tendency and prominence stay almost constant between the second and third rasters due to
the similar pattern and contrast between the rasters. The histograms confirm this, showing a similar but
shifted distribution towards higher backscatter values. The fourth raster shows larger, spherical clusters,
which shows in all three spatial metrics by an increase.

Figure 4.20: Maize S1 index rasters during period of dissimilar metric behaviour.

The differences between the metrics demonstrate the sensitivity to the different spatial features in the
rasters. The Altieri entropy is most sensitive to the probability of certain backscatter values and only in small
parts dependent on the spatial configuration. The cluster tendency performs well when capturing the pres-
ence of clusters. However, it is also sensitive to areas between clusters with similar backscatter values, i.e.
it has few ’false negatives’. Cluster prominence, on the other hand, is much less sensitive and only detects
prominent clusters, i.e. cluster prominence has few false positives.

Because all three metrics are based on co-occurrences, results depend on the selected bin size. Adjusting
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this parameter could emphasize or diminish certain spatial features, resulting in other spatial metric values.
However, a deeper analysis falls outside this thesis’s scope.

Limitations of analysis
The previous scenarios have proven useful in exploring the capabilities of the three selected metrics and pro-
viding an initial assessment of their potential. Nevertheless, there are several limitations to this approach.
First, the metrics selection is based on comparing the minima and maxima of varying GLCM and entropy
features for one field per crop type. Although the theoretical description of the features supported this deci-
sion, the sample size was small. Besides the GLCM features, the PyRadiomics package provides many more
spatial metrics, either based on shape or variations of the GLCM. A full comparison falls outside the scope of
this thesis but could assess the potential of the other metrics.

Furthermore, the analysed scenarios only represent a small subset of possible scenarios. Other periods
that would be interesting to analyse include right before leaf emergence, right after harvest, and during a long
period of saturation. Ideally, field data would be collected such that the analysis could be turned around: if a
certain event happens in the field, how do the different metrics capture this event? Is this response the same
for all crops and all parts of the growing season? By answering these questions, metric behaviour could be
matched with physical events.

Lastly, since rasters are selected based on certain metric values, the method is subjective to a confirmation
bias, i.e. the rasters are selected with the knowledge of the expected behaviour in mind. For instance, if the
Altieri entropy is high, one could explain this in light of a large number of classes, even though the actual
cause could be a combination of factors.

4.2.2. Defining thresholds
Based on the field inspection per crop type of five fields, the metric thresholds were defined and can be seen
in Table 4.1. A visual example of how the thresholds were selected can be found in Appendix G.

Table 4.1: Spatial metric threshold values per crop type, each value is the average of five field thresholds.

Maize Barley Oat Wheat
Altieri 6.62 6.45 6.86 6.49
Cluster tendency 250.00 303.08 437.41 329.50
Cluster prominence 225611.36 453664.53 447072.31 325152.97

Even though these values cannot be measured to a ’true’ value, their variability does provide information
on how clearly a threshold can be defined. For instance, if there is a clear ’tipping point’ when sorting the
rasters, a similar threshold will be chosen for each field, and thus the variability between the values is smaller.
From Table 4.1, it can be seen that variability between thresholds is lowest for the Altieri entropy. A further
discussion on this can be found in Appendix G.2.

The metric values of the rasters that were selected as limit, i.e. the first rasters that did not meet the
requirements, were recorded as normalised values to reduce a possible bias when manually selecting them.
This way, no value could be ’recognised’ since the normalisation was done with min-max scaling, resulting in
different distributions.

However, there are quite some limitations related to this method for threshold selection. First, the se-
lection is done by eye and, therefore, fairly subjective. Despite having set certain requirements, these were
not tested quantitatively. Results are, therefore, not completely reproducible, which is a severe limitation of
the method. Another limitation connected to this problem of subjectivity is that threshold selection is very
time-consuming. For this reason, the sample size is small, and the uncertainties are large. By automating
the process, the threshold values could be determined at a larger scale. However, yet another metric would
need to be implemented to evaluate the metric’s clusters, which would possibly introduce other sources of
uncertainty.

4.2.3. Conclusions on cluster detection with spatial metrics
The analysis has made the first steps towards understanding the spatial metrics and their potential. By com-
paring the three metrics in different scenarios, it highlighted the strengths and weaknesses of each of the
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metrics. An overview of these strengths and weaknesses is provided in Table 4.2. The next step in the appli-
cation of these metrics would be to identify when which sensitivity is required, e.g. if the detection of stem
elongation clusters would require better detection of prominent clusters or of larger clusters with a constant
value. However, this would require field measurements to determine the cause of the spatial data.

Table 4.2: Strengths and weaknesses of the three spatial metrics.

Strengths Weaknesses

Altieri entropy
· provides measure on heterogeneity and spatial configuration
· low threshold variability
· could provide further analysis of distance measures

· longer computation time
· less intuitive interpretation
· not able to detect S1 index changes

Cluster tendency

· sensitive to clusters
· few false negatives
· short computation time
· intuitive interpretation

· does not account for (small) intra·cluster variability
· sensitive to homogeneous areas in between clusters
· not able to detect S1 index changes
· very sensitive to bin size parameter

Cluster prominence

· only captures dominant clusters
· few false positives
· short computation time
· intuitive interpretation

· low sensitivity to clusters with a gradient around the edge
· does not represent large clusters in corners proportionally
· high threshold variability
· not able to detect S1 index changes
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4.3. Pattern consistency
Once the rasters that possibly contain relevant spatial features have been identified, the consistency between
sequential observations could be tested both temporally and spatially. First, the temporal consistency is
discussed in Section 4.3.1 for the same maize field. Then, in Section 4.3.2, an example of the persistent spatial
pattern extraction is presented.

4.3.1. Temporal consistency
Step one of the processing was to define the periods of interest. First, the temporal consistency of the example
maize field is analysed at field level to understand the autocorrelation behaviour and the metrics better. Next,
results are generalised for all crops and metrics.
Since these periods differ per metric, the example of the maize field is shown for each of the three metrics in
the following subsections. Examples of the other crops can be found in Appendix H.

Consistency at field level
Figure 4.21 shows the time series of the Altieri entropy and the autocorrelation for the example maize field.
The correlation is black, with values above the threshold value (0.5) marked red. Note that a red line between
two data points corresponds to three correlated observations in a row because correlation is computed be-
tween two rasters. The blue line shows the Altieri entropy, which is marked above the threshold value (6.87)
from Table 4.1.
Since the cluster prominence and cluster tendency demonstrated similar behaviour, the analysis is included
in Appendix H. Additionally, it contains the time series of the other crops.

Figure 4.21: Time series of autocorrelation and Altieri entropy, where periods with two or more subsequent observations are marked for
both metrics.

A few things are noteworthy in analysing this plot. First, a general trend opposite to that of the S1 index
can be seen. This result was expected from the literature and the plots shown in Section 4.1.2: the surface is
much less dynamic than when vegetation grows. Hence, changes in soil moisture are presumably the main
driver for changes. In addition to the slower changing backscatter (and thus higher autocorrelation), the S1
index rasters from this period also showed a more homogeneous pattern with larger clusters, hence the high
Altieri entropy.

Second, interesting to see is that even though both metrics have the highest values before July, they do
not always agree. The spatial patterns in the radar data after July are driven by the vegetation and show a few
occurrences where either the autocorrelation is high (e.g. July 19-23), the Altieri entropy is high (August 1-4),
or both (August 22-24). To understand these values, one must look at the spatial data presented in Figure 4.22.
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(a) (b)

Figure 4.22: Spatial S1 index data in periods of (a) high autocorrelation values and low Altieri entropy, and (b) high Altieri entropy and
low autocorrelation values.

Figure 4.22a shows the S1 index series between July 19 and July 23, a period with high autocorrelation
values but without Altieri entropy values above the threshold for all days. Between the rasters, a pattern
is recognisable, hence the autocorrelation values. However, the first two rasters have an insufficient Altieri
entropy to be deemed relevant. This is understandable for the first rasters, which do not clearly show any
clusters. However, the relevance of the second rasters is disputable: some clusters are visible, but the con-
trast is low. The currently defined threshold would, therefore, not include this raster, but, dependent on the
application, it could be of interest.

Figure 4.22b demonstrates the importance of combining the two metrics. Intuitively, if a constant spatial
metric value such as Altieri entropy is (approximately) constant, the spatial data could also be constant. These
two rasters show that, despite their similar entropy values (7.18 and 7.16), there is no constant spatial pattern.

Consistency at crop level
The computation was performed on all fields of all crops for the three metrics to generalise the occurrences of
cluster consistency. The resulting histograms for the Altieri entropy, cluster tendency and cluster prominence
can be seen in Figure 4.23, where the average S1 index time series are plotted in red. Note that the bars with
low values are caused by observations from relative orbits that not cover the entire study area, hence their
lower value after the normalisation using the total number of fields.

Two comparisons can be made between the figures: one between crops and one between the metrics.
Firstly, crops can be compared for each metric. Figure 4.23a, Figure 4.23b, and Figure 4.23c show this for the
Altieri entropy, cluster tendency and cluster prominence, respectively. It can be seen that frequency often
has an inversely proportional profile of the S1 index for all crops, although this opposite relation is more
pronounced for maize, barley and wheat than for oat. For maize, this corresponds to the findings for the
single maize field for all metrics (Figure 4.21, Figure H.1, and Figure H.1). Compared to the other crops, maize
shows the largest range in values, with a peak around the end of May of values between 0.5 and 0.65 and an
almost constant minimum between the start of August to the end of September between 0 and 0.2. The peak
occurs at the start of the growing season, around the time of emergence. It shows that, in this period, 50 to
65% of the fields display consistent clusters. Based on the analysis from Section 4.1.1, soil moisture plays
an important role in the spatial patterns at this stage, but vegetation likely also plays a role, as it has already
emerged during this period.

However, similar values of the other crops would be expected around emergence. A possible cause for
this discrepancy is the difference in soil moisture in May as opposed to April, which will not influence the
spatial signal of the cereals after they have already entered the leaf development stage. Another possibility
is a difference in agricultural practices, i.e. how the land is worked or the crops are watered. Furthermore,
the histograms of maize show a lower minimum, which stays constant over a longer period. This result can
indicate 1) the highly dynamic nature of the spatial data (low autocorrelation), 2) little to no clustering, or
both. Comparing this to the other crops, the minima all seem to have a higher absolute value in terms of nor-
malised frequency and relative compared to the maximum. The single field consistency time series of maize
(Figure 4.21, Figure H.1, and Figure H.1) and the other crops (Appendix H) demonstrate that autocorrelation
for the cereals is higher during the later phenological stages (after leaf development). This would mean that
the cereals contain more persistent clusters during this period. This might be due to the saturated S1 in-
dex in this period, in which small variations in structure or VWC are not detected and fluctuations in noise
dominate the spatial signal. Another possible cause is the influence of soil moisture on the spatial signal. In
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Section 4.1.1, it was discussed how precipitation events were visible in the average time series of the cereals
but not in maize. If the crops hold the rainwater for a few days, the spatial pattern could be influenced by the
increased soil moisture. However, this would need to be verified with field measurements.

The cereals appear to have a similar profile to some degree. During the stem elongation stages established
in Section 4.1.1, the frequency decreases for all crops. Observations from the spatial analysis at this stage
(Section 4.1.2) show clear spatial clustering. However, due to the dynamic nature of this period, i.e. large
structure changes over a short period, the frequency of persistent patterns decreases. Next, all crops show
a slight increase at the start of the heading stage. Although this is also a change in structure, the increase
could be due to the less substantial change in geometry in time (less dynamic change) and in space (smaller
changes could cause values to still fall in the same bins). During the final stages of the phenological cycle,
when the S1 index is highest, the minima are reached. Comparing Figure 4.23c with Figure I.1 shows that
the decrease in frequency is most likely due to a combination of the less defined clusters and lower spatial
autocorrelation.
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(a)

(b)

(c)

Figure 4.23: Normalized frequency distribution of the occurrences of high autocorrelation and (a) Altieri entropy, (b) cluster tendency,
and (c) cluster prominence. Small bars are caused by observations from relative orbits covering only part of Flevoland, which are

disadvantaged due to the normalisation with the total number of fields, and can be ignored for the purpose of the analysis.

The distributions ordered by crop type instead of metric are presented in Appendix I to see the metrics
side by side per crop type. The differences between the metrics can be analysed by comparing the figures in
Figure 4.23. This demonstrates two things. First, it shows a similar profile of the histograms in time, indicating
the sensitivity to similar spatial patterns. Second, absolute value differences can be seen, especially between
the Altieri entropy and the GLCM metrics. This could either be due to the higher sensitivity of the entropy or
due to a less strict threshold.

A final note on the limitations of this method is that results and interpretations are susceptible to the
choice of threshold values and time window of the autocorrelation. Both can be linked to the nature of the
changes to detect the spatially and temporally relevant periods and should therefore be altered according to
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their application.

4.3.2. Spatial consistency
To illustrate how the persistent spatial patterns are extracted, Appendix K presents an image corresponding
to each step of the spatial processing (steps 2 to 8 in Figure 3.3). This section will first present the results of
the applied method and the discussion on this result. After, it discusses possible methods to implement the
found patterns in the BP.

Extracting persistent clusters
Step 1 of the process is the selection of a suitable period. For this example, a period is selected for which
all three spatial metrics were above the threshold values but far enough in the growing season that there is
already vegetation. This period is from June 19 to 23. The rasters from this period are shown in Figure 4.24.

Figure 4.24: S1 index rasters of the selected period with high autocorrelation and high spatial metric values.

The following steps (2 to 5) create a mask for each raster, marking the pixels classified as persistent
throughout the series. The persistent clusters were obtained by applying this final mask to Figure 4.24, as
shown in Figure 4.25. The histogram shows here that, for this field, the consistency of the pixels does not
appear to be linked to backscatter intensity. The histograms of the original and filtered rasters show similar
shapes and ranges, indicating that no particular values have been filtered. The range did decrease slightly,
presumably because outliers are not constant in time and thus deviate from the mean. Furthermore, it can
be seen that the pixels grouped as clusters do not necessarily have the same backscatter values. The isolated
spherical clusters on the bottom left do, but the pixels connecting the spherical parts of the clusters deviate.

Figure 4.25: S1 index rasters filtered by persistent clusters in data.

During these persistent S1 index rasters, one NDVI observation was acquired, which is shown in Fig-
ure 4.26. Comparing these filtered rasters to the NDVI raster, no obvious similarities between patterns can be
seen.
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Figure 4.26: NDVI raster from the period of S1 index raster series.

The NDVI displays a light horizontally striped pattern, which is neither visible in the filtered rasters from
Figure 4.25, nor in the unfiltered S1 index rasters in Figure 4.24. In Section 4.1.1, it was established that stem
elongation is expected to occur during this period. The structure changes could therefore induce the patterns
in the rasters. However, in-situ data would be necessary to validate this.

A limiting factor in this analysis is the result’s dependency on several selected parameters. More research
is crucial to optimise the use of these parameters, as they strongly influence the classification of clusters as
persistent. For instance, by adjusting the bin size of the metrics, clusters will become larger as the intra-
cluster variability can be larger. Other examples of the influence of parameters and a sensitivity analysis of
these parameters can be found in Appendix J.

If the user is mainly interested in harvest detection (of part of the field), a longer period of autocorrelation
might be expected since this is a (semi) permanent change. Nevertheless, if the user is interested in monitor-
ing the phenological stages of his or her crops, more dynamic cluster changes could be used as indicators of
structure and VWC changes in the crop. Furthermore, even in the latter example, refinements could be made
between, e.g. alarming conditions of part of the field lagging or everyday checks. One would require stricter
threshold values than the other or other parameter settings such as bin sizes.

Using spatial patterns as parameter BP fusion
In order to use the information on pattern consistency in the BP, a method must be established to detect
persistent clusters and to weigh the rasters accordingly. There are three possibilities to adjust these weights
based on spatial consistency:

1. Time - increasing the weight of the whole S1 index raster

2. Space - redistributing the weight locally where persistent clusters are detected

3. Time & space - spatially redistributing the temporally increased weight

Firstly, weights could be adjusted in time by, for instance, increasing the weight for each sequential observa-
tion with at least an X % or an X number of clusters. However, if a significant area in the field is harvested
and has a persistent cluster of other backscatter values, but the rest of the field is strongly fluctuating, these
fluctuations will also be introduced in the output signal.

Secondly, by adjusting the weights in space, fluctuations in parts of the field would not be a limiting factor
as the weights would be redistributed locally. However, this could introduce unwanted discontinuities in the
output signal when using a mask (such as Figure K.3). Alternatively, one could introduce a mask based on
the inverse variance of the rasters in the series, where more persistent pixels are assigned higher weights. A
disadvantage of applying this method like that would be that no morphological operations to remove single
pixels or small holes can be applied. To compensate for this, other operations are necessary, e.g. spatial filters.

Thirdly, the mentioned possibilities could be combined: increasing the weight per raster as each sub-
sequent raster meets the requirements and redistributing the increased weights accordingly. An advantage
of this would be that, although clusters become smaller as time increases, the weight would become even
higher. A disadvantage of this method would be that it introduces more complexity to the output signal, pos-
sibly making interpretation more difficult.
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Additionally, if the method is to be implemented, it must be transformed to be used in near real-time. A
possible solution would be to compute the rolling mean of the rasters to compute the differences. The time
window of this mean could be varied depending on the application. For dynamic changes, a time window
of two observations could be set, providing spatial consistency from the third observation onwards. How-
ever, this would not show the difference between clusters with longer periods of consistency and those with
consistency only within the time window. The opposite will happen by selecting a larger time window, so a
trade-off would have to be made.

Alternatively, one could consider adding the persistent clusters as an extra layer or as metadata to the
product. That way, no compromise has to be made due to the fusing of the signals. However, this would
consequently not improve biomass estimations but would serve a different function. The best method is
application dependent and falls outside the scope of this thesis.

4.3.3. Conclusions on pattern consistency
Field-based time series of the combined metrics and autocorrelation demonstrated the complementary na-
ture of the two. Applying the method to all fields showed the decreased consistency of all crops during their
maximum S1 index values, which is most significant for maize. For the other cereals, changes in plant struc-
ture seemed to influence the frequency of consistent patterns. Moreover, the developed method to extract
persistent spatial clusters appears effective, but parameters must be fine-tuned depending on the applica-
tion. Finally, the example showed that the pattern classified as persistent was not recognizable in the NDVI
image, demonstrating its complementary value. The detected patterns could be implemented in the BP by
adjusting the weights of the S1 index in time, space or both, which all come with advantages and complica-
tions.
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4.4. Implementing spatial data in the Biomass Proxy
This section provides an analysis of the spatial BP data for varying static weights for the fusion of the S1 index
rasters with the NDVI rasters. First, the weighted rasters of the maize field are presented throughout the
growing season together with the clustered outputs. Second, the spatial correlation of all fields was combined
per crop type as a function of the static weights.

4.4.1. Identifying radar-like spatial patterns
The sensitivity of the BP to the input spatial S1 index data was tested by plotting the selected field for each
crop on the dates from Section 4.1.2. For conciseness, only one day of the maize field will be shown and
discussed extensively since the other days and crops yielded similar results. These results can be found in
Appendix L. Recall that the BP uses the spatial information of the NDVI and S1 index to distribute the time
series values over the field. Because a rolling mean is used in the fusion process, a lag is introduced in the
time series, influencing the average field value of the BP. To better understand the signal values, the time
series with the selected date is shown in Figure 4.27.

1

2

3
4

Figure 4.27: Time series of the maize field with four days of interest at which the static weight sensitivity analysis was performed.

In Figure 4.28, the weighted BP rasters (a) and the corresponding clusters (b) of the third day can be seen.
Due to the homogeneous NDVI signal, the detected clusters in Figure 4.28b originate from the S1 index signal.
Two interesting observations can be done from this example. Firstly, comparing the S1 index raster with the
weighted BP ws1 = 1 raster, the patterns appear dissimilar. This is caused by a combination of temporal
averaging and scaling of the spatial S1 index. Recall that the S1 index values are scaled to the NDVI scale to
fuse the two signals. The scaling is done using an exponential function with a linear tail, causing the high
S1 index values to be amplified and the low values to be smoothed. Since the current BP has a maximum S1
index contribution of 40% because of the ws1 = 0.075, this cannot occur. However, this effect should be kept
in mind if dynamic weights allow exceeding this limit.

Secondly, there is a clear difference between the clustered raster of ws1 = 0.1 and ws1 = 0.25, indicating
a tipping point between these values in which the cluster configuration changes. By narrowing this down,
it could be determined for which contribution of the S1 index the radar features become visible in the BP
raster. With this information, the weights of the S1 index could be increased during a period of saturation in
the NDVI, enabling it to provide in-field variability during this period which it does not provide now (see the
BP raster ws1 = 0.075 in Figure 4.28a).

Note that, although clusters are detected from ws1 = 0.25 onwards, spatial correlation at this static weight
is still very low (r = 0.05). For this example, spatial correlation of the S1 index with the BP rasters only exceeds
the correlation between the NDVI and BP rasters for a static weight of ws1 = 0.59 onwards.
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(a) (b)

Figure 4.28: BP weighted rasters for varying static weights of day 3, regular (a) and clustered (b).

A few side notes apply here, however. One is that the weight of this tipping point will be different for all
fields, crops, or parts of the growing season. As discussed, the scaling function smoothes the S1 index if values
are low or alters the pattern by amplifying certain values and diminishing others. In addition, patterns in the
NDVI rasters will alter the exact tipping point. Applying such sensitivity analysis on a more narrow scale is
thus more complex due to the dependence on multiple variables. However, a first step could be taken by
performing such an analysis during a period of NDVI saturation to exclude the NDVI patterns as a variable.

Second, note that these rasters were all computed on days with full-coverage NDVI observations. Since
the final weight is a product of the dynamic and static weights, the S1 index contribution increases over time.
Thus spatial features from the radar could become visible in the BP raster at lower weights than might appear
from this analysis. For a static weight of 0.075, the contribution of the S1 index to the output image would be
the same after approximately 12 days as the contribution with static weight of 0.25 on the date with an NDVI
observation.

4.4.2. Spatial correlation
The spatial correlations were computed per crop type to quantify the relationship between the S1 index and
the NDVI rasters with the weighted BP rasters. Results for all crops are shown in Figure 4.29.
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(a) Intersection point at weight=0.34 with Pearson correlation 0.51.

(b) Intersection point at weight=0.64 with Pearson correlation 0.55.

(c) Intersection point at weight=0.63 with Pearson correlation 0.53.

(d) Intersection point at weight=0.65 with Pearson correlation 0.56.

Figure 4.29: Spatial Pearson correlation of all fields per crop type.
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The results demonstrate three things. Firstly, it shows that even for ws = 0 and ws = 1, the correlations do
not equal 1. As discussed in the previous section, this is due to the averaging and the scaling of the signals
and does not depend on the fusion.

Secondly, the relationship between the input signals and the weighted BP rasters is almost identical for
the cereal types. The intersection points for barley, oat and wheat are at static weights of 0.64, 0.63 and 0.65,
respectively. In addition, the Pearson correlation values at these intersection points are 0.55, 0.53 and 0.56.

Thirdly, there is a clear discrepancy between the spatial correlation relationships between cereals and
maize. Although the Pearson correlation at the intersection is similar (0.56), the static weight at the intersec-
tion of 0.33 is significantly lower than the static weights at the intersections of the cereals. This is an intriguing
result, which could be caused by the structure differences between the cereals and maize or by the relatively
long period of NDVI and S1 index saturation of maize. On average, 29% of the days in the growing season have
an NDVI ≥ 0.80 for maize, against 6% for barley, 0% for oat and 13% for wheat. Because maximum S1 index
values deviate, the amount of saturation of the S1 index depends on the definition of saturation. Since the
maximum value of the S1 index for maize is lower than that of, e.g. barley but is more stable, it was chosen to
define S1 index saturation based on the maximum value of the respective crop time series, i.e. observations
are saturated when the S1 index ≥ 0.90·max(S1). This results in an average of 66% days in the growing season
with a saturated S1 index signal against 29% for barley, 37% for oat and 42% for wheat.

This could explain the difference in spatial correlation between maize and cereals but would neglect the
differences between the cereal types, while these demonstrate almost identical spatial correlations. There-
fore, plant structure likely plays a role in the sensitivity to the S1 index. This may explain why the radar-like
pattern became visible at the static weight of ws = 0.25 for maize, while it only became visible for ws = 0.5 for
oat, wheat and two from the three barley rasters.

Alternatively, the discrepancy could also be caused by the definition of the growing season. Since the
cereals were analysed for the same dates (April 1 to September 1), and maize has a slightly longer and later
growing season (May 1 to November 1), external factors that influence the relationship between the BP and
the input signals could play a significant role here. Correlation values could be compared for the same crops
and growing seasons in other years to verify this.

Note that for the current settings of the BP, a static weight of 0.075 is used, at which point the difference is
smaller between maize and the cereals, but can already be seen in Figure 4.29. The correlations of the input
signals at the default setting of the BP are presented in Table 4.3, showing the skewed representation of the
signals for the different crops.

Table 4.3: Spatial Pearson correlation of input signals with the Biomass Proxy with the default static S1 index weight of ws = 0.075.

Maize Barley Oat Wheat
NDVI correlation 0.67 0.75 0.75 0.79
S1 index correlation 0.33 0.27 0.24 0.28

Although ws = 0.075 is far from the ’tipping point’ for all crops, in Figure L.2 it was shown that even at
this static weight, some spatial features from the radar data were detected by the K-means algorithm. This
presents a limitation of this method: it does not show when the first (most prominent) clusters from the
radar data become visible. Since the goal is not to increase the weight until the BP looks like the S1 index
raster but to include the relevant S1 index spatial information, adjusting the weight such that only the most
prominent clusters become visible in the BP is sufficient. Another limitation of this method is that it does not
account for the different phenological stages and, thus, not the different backscatter responses. This section
has highlighted the important role saturation (and possibly structure) plays in the correlation between the
input signals and the BP, and Section 3.4 and Appendix L show the spatial examples of change throughout
the growing season. However, the methods used to obtain the results in the latter section and appendix are
not scalable. A compromise must be made in which general insights, such as sensitivity to saturation and
structure, are supported by small-scale analyses at the field level.

4.4.3. Conclusions on implementing spatial data in the Biomass Proxy
It was shown that, for the example, clusters only became visible at a static weight of 0.25, both visually and
from the K-means algorithm. Additionally, the analysis demonstrated that even for the extreme case of ws = 1,
the BP is not the same as the S1 index due to scaling and temporal averaging, emphasising weights should
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be adjusted deliberately. Moreover, it showed the role saturation in the NDVI plays in the ability to recognise
clusters.

At crop-level, it was demonstrated that sensitivity to the static weights of the S1 index could be crop type
dependent, but an inter-annual comparison is necessary to verify this. Differences in sensitivity are likely due
to signal saturation, plant structure differences or definition of the growing season.



5
Conclusions and Recommendations

This thesis assessed the potential of spatial SAR signal from Sentinel-1 in the Biomass Proxy for monitoring
agricultural fields in the Netherlands. This chapter contains the key points, main conclusions and recom-
mendations for further research.

5.1. Conclusions
This section first presents the key points of this study by providing answers to the four research sub-questions.
Then, the general conclusion of this thesis is discussed.

How do NDVI and SAR data describe biophysical changes of various crops in the temporal and spatial
domains?
The S1 index, the NDVI, and the radar polarisations were analysed temporally and spatially to evaluate the
signal responses of biophysical changes. The averaged time series in the temporal analysis were in agreement
with reviewed literature, and the principal phenological stages of maize and the three types of cereal could
be recognised. Moreover, the literature review and time series showed that for the cereals, plant structure
changes clearly influenced the S1 signal but not the NDVI.

The spatial analysis demonstrated the inherent differences between the signals. The spatial information
from the radar polarisations was dominated by speckle and could, therefore, not be analysed from isolated
rasters. It was found that the NDVI was able to detect the greenness of the monitored crops with high spatial
resolution but that the signal quickly became saturated and could, therefore, not capture differences in later
phenological stages. Lastly, the S1 index displayed spatial patterns throughout the growing season, presum-
ably caused by VWC, plant structure or soil moisture variability. Distinguishing causes from the spatial S1
index data alone is, therefore, not reliable, and field measurements should be carried out to verify the causes
of spatial patterns.

What spatial metrics can be used in which situations as indicators for clustering of the spatial S1 index
data?
The ability of the Altieri entropy, cluster tendency, and cluster prominence to describe spatial clustering of
the S1 index data was assessed. The Altieri entropy showed the lowest variability in the selected threshold
for all crops and between crops and could be suitable as a global indicator. The cluster tendency is sensitive
to grouping of similar backscatter values, making it suitable for applications where few false negatives are
desired. However, intra-cluster variability of large clusters could lead to cluster division, and homogeneous
areas in between clusters could be misleading. The cluster prominence proved promising in detecting domi-
nant clusters with strong contrast to their surroundings but could not capture clusters with a gradient around
the edge. This characteristic could be useful for anomaly detection. All three metrics did not seem to capture
strong changes in the S1 index, making the metrics unsuitable for harvest detection.

How often are clusters in the radar signal persistent, and what causes these persistent clusters?
Histograms of the normalised occurrences of persistent patterns in the spatial S1 data were created for each
crop and metric. Periods with the lowest amount of consistency corresponded to periods of the maximum
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S1 index values and varied between 0% and 20%. The period with the most consistency was observed at the
start of the growing season, where, on average, 60% of all fields contained persistent clusters. Spatial cluster-
ing is presumably driven by soil moisture and roughness variations and is thus more consistent than growing
vegetation. Besides this, the frequency of persistent clusters decreased during the stem elongation stages and
increased during the heading stages for all cereals. Comparing a persistent pattern to an NDVI observation in
the same period showed that the optical imagery could not capture the pattern. Therefore, it was not caused
by biophysical parameters linked to NDVI.

How is the Biomass Proxy influenced by the static weight of the Sentinel-1 data, and how does this change
throughout the growing season?
The influence of the static weight was tested by performing a sensitivity analysis on the BP, which showed
that, on the days with an NDVI observation, spatial features from the S1 index data could be detected for a
static weight of 0.25 for all cases of the example and rasters became more similar to the S1 index for even
higher static weights. However, due to the scaling and temporal averaging of the S1 index, clusters become
more prominent and are compressed, and the BP never becomes identical to the S1 index.

Furthermore, the comparison between the spatial correlations showed that the BP’s sensitivity to the in-
put signal differed between maize and the cereals. This is likely due to either plant structure or signal satura-
tion, and will therefore vary throughout the growing season.

Main conclusion
The main objective of this study was to assess the potential value of the spatial SAR signal from Sentinel-1
in the Biomass Proxy for monitoring agricultural fields in the Netherlands. Extensive temporal and spatial
analyses in Section 4.1 demonstrated the complexity of the spatial SAR data; it contains elements with a
dynamic nature that do not necessarily correspond to biomass. It was assumed that consistent SAR patterns
in the spatial signal correspond to biophysical changes in the monitored crops that are of interest to the
user. In Section 4.2, it was shown that consistency of spatial patterns could be detected by combining spatial
autocorrelation with different spatial metrics. However, results are sensitive to the type of metric, metric
parameters and thresholds for consistency. In Section 4.3.1, it was shown that the timing and frequency of
consistent patterns depend on crop type. Furthermore, in Section 4.3.2, a period where consistency was
determined temporally showed a spatial pattern which could not be observed in the corresponding NDVI
observation, indicating the complementary value of the spatial SAR data. There are multiple methods to
implement the detected patterns, each with advantages and complications. Finally, Section 4.4 evaluated the
effect of increasing the contribution of the S1 index in the BP, demonstrating that the sensitivity to the input
signal presumably depends on plant structure and signal saturation.

This research has made the first steps in understanding the spatial data, and the insights gained could
be valuable in redefining the spatial weights of the S1 index for varying applications. However, a deeper un-
derstanding of these patterns is crucial to implement the detected patterns to improve the BP. In-situ data is
essential for this cause, but with the knowledge of when and where the patterns occur, targeted research can
be done to better understand the spatial SAR signal and, thereby, optimally use all available information.

In conclusion, the method proposed in this thesis demonstrated the complementary value of the spatial
SAR data to the NDVI and, therefore, the promising potential. Although limitations exist, this framework
could support the next steps in utilising radar data spatially and consequently contribute to the transition
towards precision agriculture, which could play a crucial part in the challenge of meeting the global ever-
growing demand for food production.
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5.2. Recommendations
The results and discussion highlight several limitations of the method and the need for validation data. This
section presents some suggestions for future research. First, suggestions are made regarding the methods
used in this thesis. Second, recommendations are given on possible implementation in the biomass proxy
and on a strategy for future field work.

Method improvements
The first recommendation to improve the methods presented in this thesis is to assess the influence of varying
parameters of the computations performed. For instance, the bin sizes of the metric computations lie at the
basis of a better part results since slightly larger or smaller bin sizes could strongly influence the output values
of the spatial metrics. Another example of this is the definition of the distance intervals of the Altieri entropy.

Second, an objective method to determine the threshold values for the spatial metrics should be imple-
mented. This would increase the reproducibility of the results and support the interpretation of the rasters.

Third, there is room for improvement in the metric selection and analysis. The current method only
compared three entropy features and twenty-four GLCM features, but there are many more entropy features
and features based on co-occurrences available. Ideally, the method should be replicated in a study where
spatial validation data is available, so suitable metrics could be selected based on the biophysical data. Other
clusters could potentially be understood if certain metric values could be derived from a cluster with a known
cause.

The final suggestion for method improvements would be distinguishing between polarisations and be-
tween relative orbits. Since the different polarisations interact differently with the vegetation, it might be
possible to isolate the cause for certain patterns. Additionally, distinguishing between rasters obtained from
varying relative orbits could show if this influences the spatial output. Currently, orbit correction is only im-
plemented in the temporal domain in the Biomass Proxy. A potential bias should be taken into account if the
spatial weight of the S1 index is increased.

Future research
If the spatial S1 index data were to be increased in the BP, decisions would have to be made regarding the
data representation. For instance, with the obtained knowledge of how strongly structure changes in cereals
influence the output signal, increasing the weight of the S1 index would not make the output a better proxy
for biomass. As discussed, the BP could potentially add this information as an extra layer in the output, which
is another product. However, biomass estimation could also be improved from the S1 index signal if changes
induced by the VWC could be isolated. A possible method to isolate these changes would be using some
type of signal decomposition (e.g. Pauli decomposition), which analyses the scattering components. Ideally,
this could be combined with fieldwork to narrow down the causes of the scattering. This information could
support the biomass estimation while, if desired, diminishing the effects of structure or soil.

One key aspect that came forward in this thesis is the need for validation data. This data is essential to
improve understanding of the signals and would help decision-making in the design of the algorithm. How-
ever, as addressed in Section 1.1, spatial biomass data is complicated to obtain since it requires destructive
samples, and spatial patterns can, therefore, not be analysed in time. However, by first creating a thorough
understanding of the link between the biophysical parameters and the biomass, field measurements could
focus on obtaining these parameters, such as the phenological stage. The spatial data would not only sup-
port the understanding of the spatial patterns but could also provide information on other fields with similar
metric values.
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A
Crop Development

In order to interpret the remote sensing images of the specified crops, a general understanding of crop devel-
opment is indispensable. The crop and crop growth stage definitions of BBA et al. (2001) will be used for this
research. Of the four selected crops: maize, barley, oat and wheat, the latter three are grouped together and
thus follow the same phenological growth stages and BBCH-identification keys. Below is a brief description
of the principal growing stages of maize and cereals. Note that the principal growing stages are not always a
contiguous sequence because of the definitions BBA et al. (2001) used.

A.0.1. Maize growing stages
The growing season of maize (Zea mays L.) is divided into seven principal growing stages. The first principal
growing stage is germination and describes the period from the dry seed (BBCH 00) to the emergence (BBCH
09). Principal growing stage 1 is the leaf development stage, where each stage (BBCH 10-19) describes the
development of a new leaf. Next, stage 3 (BBCH 30-39) describes the stem elongation and node development
of the plants. This stage drastically changes the structure of the plant, creating a strong vertical component.
As mentioned, not all principal growing stages are sequential, and for maize, stage 4 is undefined in the BBCH
model. Stage 5 is the heading stage and describes the period from the beginning of the tassel emergence
(BBCH 51) until the tassel fully emerged and separated (BBCH 59). Next, stage 6 describes the flowering of
the male and female plants. The male plants shed pollen, and in the female plant, the stigmata become
visible (BBCH 63). The stage ends with flowering for the male plants and drying of the stigmata for the female
plants (BBCH 69). Principal stage 7 describes the fruit development from the beginning of grain development
(BBCH 71) to the stage where nearly all kernels have reached their final size (BBCH 79). Stage 8 is the ripening
stage, where the dry mass of the kernels increases from about 45% (BBCH 81) to 65% (BBCH 89). Finally,
stage 9 is senescence, in which the plant dies, collapses (BBCH 97), and is harvested (BBCH 99). The different
phases are shown in Figure A.1.
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Figure A.1: Growing stages of maize as defined by BBA et al. (2001).

A.0.2. Cereal growing stages
Many growing stages of the different cereals (wheat = Triticum sp. L., barley = Hordeum vulgare L., oat =
Avena sativa L.) are somewhat similar to those of maize. The cereals also start with germination (stage 0)
and leaf development (stage 1). The next stage, however, is principal growing stage 2, which describes the
process of tillering from no tillers (BBCH 20) to the maximum amount of detectable tillers (BBCH 29). Stage
3 is also stem elongation but is defined differently for cereals. The first stages correspond to certain heights
of the first node above the tillering node (BBCH 31-36), and the last stages correspond to the emergence of
the flag leaf (BBCH 37& 39), where the flag leaf is defined as the first leaf below the inflorescence (or the last
leaf to emerge). Next, stage 4 is the booting stage. BBCH 41-47 describe the development of the flag leaf
sheath until its opening (BBCH 47) and the visibility of the first awns (BBCH 49). Stage 5 is again the heading
stage, where each BBCH key indicates a 10% increase in the inflorescence emergence from the sheath. During
stage 6, flowering occurs. It starts with the first anthers becoming visible (BBCH 61) and ends with all spikelets
having completed flowering. The last stages are all part of the maturing of the plants, during which the kernels
harden and moisture decreases. The first step in this maturing process is the milking stage (BBCH 71-77),
where the grains grow their final size but are still very soft. Then, in stage 8, the ripening occurs. The kernels
go from soft dough (BBCH 85) to hard dough (BBCH 87) to fully ripe (BBCH 89). Finally, the senescence
is described by stage 9, where the grains loosen (BBCH 93), the plant dies and collapses (BBCH 97) and is
harvested (BBCH 99). The growing stages are illustrated in Figure A.2a.
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(a) BBCH growing stages of cereals (wheat, barley, oat) (Earth Observation Research Branch Team, 2011)

(b) Differences between the ears of the
studied cereal types (wheat, barley

and oat) (Lakna, 2019).

A more comprehensive description of the growing stages, supported by field images, can be found in
Earth Observation Research Branch Team (2011). The main difference between barley, wheat and oats is that
barley and wheat are cereal grasses grown as primary crops, whereas oats are a secondary crop derived from a
weed of primary cereal grasses (such as wheat and barley). Furthermore, barley grains are arranged in a spike,
whereas oats grow as small florets (Lacorn, Weiss, Wehling, Arlinghaus, & Scherf, 2019). The differences are
visualized in Figure A.2b.



B
Entropy Concept Examples

To illustrate the effect of different probability mass functions (pmfs) and spatial distributions on the types of
entropy, biomass data was simulated and entropies were computed. The results are presented in Figure B.1
to Figure B.4.

Figure B.1 shows the effect of spatial distribution of the biomass values. Since the pmf of the biomass data
us uniform, the Shannon entropy is the same for each of the three scenarios. Furthermore, the Altieri entropy
is affected more strongly by the spatial configuration: it demonstrates a decrease of 0.607 vs a decrease of
0.269 of the Leibovici entropy.

Figure B.1: Shannon, Leibovici and Altieri entropy for uniform pmf and random, slightly clustered, and strongly clustered biomass
values.

The Altieri and Leibovici entropy are intuitive to interpret here: if similar values are isolated clusters, one
would expect a value at a certain location, thus making it unsurprising (i.e. it has a low information content).
However, in some cases an increase in Altieri and Leibovici entropy between the second and third scenario
can be observed. Figure B.2 demonstrates this is due to the strong increase in mutual information (MI). The
proportional MI (M Ipr op ) increases significantly and the total entropy increases again.
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Figure B.2: Increase in Altieri entropy for uniform pmf and random, slightly clustered, and strongly clustered biomass values.

Besides spatial distribution, the entropies are influenced by the pmf. Figure B.3 shows the effect of varying
the pmf while maintaining the same (random) spatial distribution. A significant decrease in all entropies can
be observed, since each data point will contain less information when the probability of the points belonging
to the same class is high. Note that even though the coordinates of the data points did not change, spatial
distribution does play a role: the number of co-occurrences is much higher in the second and third scenario,
thereby increasing the MI.

Figure B.3: Shannon, Leibovici and Altieri entropy for random spatial distribution and uniform, slightly skewed, and very skewed
weights. Note that the scalars corresponding to the weights are ordered as (low bm, medium bm, high bm).

Lastly, the effect of the number of classes is evaluated in Figure B.4. As expected, the entropy increases
with an increase in the number of classes: there is less certainty to which class a data point will belong if
there are more classes. This corresponds to the mathematical definition of entropy, where log(I ) (with I the
amount of classes) equals the maximum entropy.

Figure B.4: Shannon, Leibovici and Altieri entropy for random spatial distribution and uniform weights, but with a different number of
classes.



C
K-means Clustering

A clearly recognizable characteristic of radar data is the ’radar pattern’, e.g. see S1 index raster in Figure 2.8b.
These patterns often consist of multiple clusters, i.e. areas with similar backscatter values. To quantify such
a pattern, one must analyse where objects with similar spectrum values are clustered together without any
previous knowledge. K-means clustering is an unsupervised classification algorithm, which has become one
of the most common methods of data analysis, as in the fields of pattern recognition, image processing, re-
mote sensing and many more (Lv et al., 2010).
K-means clustering is a partitional clustering algorithm, which implies that data objects are divided into non-
overlapping groups. The algorithm is non-deterministic, which means that even if two distinct runs were
based on identical input data, the outputs might still vary (Al-Doski, Mansor, & Shafri, 2013). Lv et al. (2010)
discusses the algorithm’s strengths and weaknesses, including their scalability and ability to detect spherical
shapes as strengths and their inability to detect complex shapes and density differences as weaknesses.

The algorithm is relatively simple and can be described in a few steps, which are also visualised in Fig-
ure C.1. First, it requires the user the specify two parameters: 1) the number of clusters (k), and 2) the max-
imum number of iterations (m) (Wang, Jensen, & Im, 2010). The number of clusters can either be chosen
based on prior knowledge of the data set, e.g. a classification problem with a fixed number of classes or based
on a method to find the optimum number of clusters. Several methods are available, and three commonly
used examples are given below.

1. The elbow (curve) method - method based on defining clusters such that the total within-cluster sum
of square (WSS) is minimised. Optimal k is when adding another cluster does not improve the WSS
much (Cui, 2020).

2. The silhouette score - method using mean of intra-cluster distance (a) and the mean of nearest-cluster
distance (b) for each sample, such that the score is defined as (a −b)/max(a,b). The optimal k corre-
sponds to the maximum silhouette score (Aranganayagi & Thangavel, 2007).

3. The Davies Bouldin (DB) index - a ratio of intra-cluster distance and inter-cluster distances. Therefore
a minimal DB index is desired for the optimal k (Petrovic, 2006).

Since the algorithm is relatively cheap and very fast, limiting the number of observations is often unnecessary.
Broder, Garcia-Pueyo, Josifovski, Vassilvitskii, and Venkatesan (2014) found that K-means converges between
20 to 50 iterations for all practical applications.
The next step in the algorithm is to determine the centroid locations. For the first iteration, this is done
randomly. All data points are then allocated to the closest centroid by a certain distance metric, such as
Euclidean distance. Next, the average distance of the data points to the cluster centroid is computed. If the
cluster centres do not change or the maximum number of iterations is reached, a raster with cluster labels
is returned. Otherwise, the updated centre locations are defined as centroids, and the algorithm starts over
again (Wang et al., 2010).
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Figure C.1: Flow chart of K-means algorithm, adjusted figure from Senarathna and Hemapala (2020).



D
Field Thresholds

Figure D.1 illustrates the reason for the filtering of fields that are only covered by (part of) one orbit, causing
outliers in the mean time series. The relative orbits of each observation is marked in the time series by one
of the four symbols. Comparing Figure D.1a with Figure D.1b, it can be seen that the outliers are caused by a
single orbit, and that, after applying the requirement that at least 10% of the fields should have an observation,
these observations are filtered. If this threshold is increased to 20%, as was done in Figure D.1c, no other
strong peaks are filtered, indicating an agreement between the fields of other values.
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(a) t f = 0%

(b) t f = 10%

(c) t f = 20%

Figure D.1: Example of maize fields for to filter fields that are not covered entirely, filtering based on the relative amount of fields
available with the field threshold (t f ).



E
Field Selection

As discussed in Section 3.1, for each crop a field was selected with the smallest RMS from the mean of the
fields. Figure E.1 illustrates how the selected fields compare to the mean and the other fields.
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(a)

(b)

(c)

(d)

Figure E.1: Selected fields for (a) maize, (b) barley, (c) oat, and (d) wheat. The selected fields (green) are based on minimal root mean
square difference between the fields and the mean (red). The other fields are plotted in light grey to demonstrate the variability.



F
Metric Analysis Cereals

As described in Section 4.2.1, the metric analysis performed is mainly based on image processing, and is
assumed not to be crop dependent. However, for completeness and avoiding drawing conclusions on a single
field, the plots were also created for the other crops. The following sections are structured the same way as
Section 4.2.1, but show the respective plots for each of the cereals (barley, oat and wheat). Furthermore,
Appendix F.4 visualises the differences in computation time of the metrics.

F.1. S1 index change effects

(a) Time series of spatial metrics with the period of interest denoted by the dashed vertical black lines.

(b) S1 index rasters during period of interest.

Figure F.1: Effect of sudden change in S1 index on spatial metrics of a barley field in (a) time, and (b) space.
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(a) Time series of spatial metrics with the period of interest denoted by the dashed vertical black lines.

(b) S1 index rasters during period of interest.

Figure F.2: Effect of sudden change in S1 index on spatial metrics of a oat field in (a) time, and (b) space.

(a) Time series of spatial metrics with the period of interest denoted by the dashed vertical black lines.

(b) S1 index rasters during period of interest.

Figure F.3: Effect of sudden change in S1 index on spatial metrics of a wheat field in (a) time, and (b) space.
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F.2. Metric similarities

(a) Time series of spatial metrics with the period of interest denoted by the dashed vertical black lines.

(b) S1 index rasters during period of interest.

Figure F.4: Period of similar spatial metric values of barley in (a) time, and (b) space.

(a) Time series of spatial metrics with the period of interest denoted by the dashed vertical black lines.

(b) S1 index rasters during period of interest.

Figure F.5: Period of similar spatial metric values of oat in (a) time, and (b) space.
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(a) Time series of spatial metrics with the period of interest denoted by the dashed vertical black lines.

(b) S1 index rasters during period of interest.

Figure F.6: Period of similar spatial metric values of wheat in (a) time, and (b) space.

F.3. Metric differences

(a) Time series of spatial metrics with the period of interest denoted by the dashed vertical black lines.

(b) S1 index rasters during period of interest.

Figure F.7: Period of dissimilar spatial metric values of barley in (a) time, and (b) space.
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(a) Time series of spatial metrics with the period of interest denoted by the dashed vertical black lines.

(b) S1 index rasters during period of interest.

Figure F.8: Period of dissimilar spatial metric values of oat in (a) time, and (b) space.

(a) Time series of spatial metrics with the period of interest denoted by the dashed vertical black lines.

(b) S1 index rasters during period of interest.

Figure F.9: Period of dissimilar spatial metric values of wheat in (a) time, and (b) space.
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F.4. Metric computation time

Figure F.10: Computation time of each crop type for the different features, where computation of the cluster tendency and cluster
prominence both described by the GLCM features.



G
Defining Thresholds

G.1. Threshold selection
As described in Section 3.3.3, the thresholds were defined by sorting the rasters in a descending order, and
test them by eye to see if they met the requirements. These requirements were:

1. the raster contains at least two recognisable clusters of at least 10 pixels

2. at least one raster is large, i.e. covers an area with a minimum of 20 pixels

3. at least one raster has an edge with high contrast, i.e. more than 1 dB difference

An example of a raster of which the metric was selected as threshold is shown in Figure G.1.

Figure G.1: S1 index raster of selected maize field in descending order of Altieri entropy.

The first two rasters have clearly recognisable clusters, but it is more difficult to distinguish the clusters
with lower values in the third raster. Therefore, to avoid a bias towards clusters with values higher than the
mean, the rasters were also plotted with diverging colour maps as shown in Figure G.2.

Figure G.2: S1 index raster of selected maize field in descending order of Altieri entropy with diverging colour map.

Even though the dark clusters are better recognisable, it can be seen that the third raster still does not
meet all requirements due to its low contrast (requirement 3). Therefore, the threshold was set at 0.46 in this
example, and converted to the absolute value for the threshold computation.
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G.2. Variability of selected thresholds
However, because the average values are at different orders of magnitude, the standard deviations of these
values cannot be compared. Therefore, the coefficient of variation (CV) is used to compute the variability of
the threshold values for each crop and metric. The results can be seen in Figure G.3.

Figure G.3: Coefficient of Variation (CV) per metric and crop type.

Clearly, the variability of the Altieri entropy is the lowest (CVmean = 0.03), followed by the cluster tendency
(CVmean = 0.21) and lastly the cluster prominence (CVmean = 0.36). Moreover, the variability between the
different crops is also the lowest for the Altieri entropy (CV = 0.03), then for the cluster tendency (CV = 0.24)
and finally for the cluster prominence (CV = 0.30). This variability between crops is understandable since
a larger uncertainty for each crop type will generally result in a larger variability between the crop types.
This result implies that the rasters obtained using the Altieri entropy as a filter are more likely to possess the
desired characteristics. However, this does not necessarily result in the exclusion of the other two metrics.
Depending on the user’s needs, one could make a trade-off between accuracy and precision by setting the
value higher or lower.



H
Temporal Consistency Per Crop Type

To compare both the metrics as well as the crop types at field level, the time series of the autocorrelation
with the metrics is presented in the following sections. First, a more extensive analysis of the maize field is
performed as an example on how to interpret the results. Afterwards, the time series of barley, oat, and wheat
are presented.

H.1. Maize
Altieri entropy
The temporal consistency at field level of the autocorrelation with the Altieri entropy is presented and dis-
cussed in Section 3.4.1.

Cluster tendency
The cluster tendency in Figure H.1 shows a similar temporal profile to the Altieri entropy of high(er) values
before July. It also displays the same behaviour as Altieri entropy in the periods of Figure 4.22. However,
between August 19 and 24, there is a high autocorrelation and Altieri entropy, but the cluster tendency stays
below the threshold.

Figure H.1: Time series of autocorrelation and cluster tendency, where periods with two or more subsequent observations are marked
for both metrics.

Evaluating the rasters from Figure H.2, it seems logical that the cluster tendency is low: there are few
clearly defined clusters, and the area between them is not constant. The Altieri entropy for the second and
third raster is 6.93 and 7.05, respectively, above the threshold value. As seen in the respective histograms,
the residual entropy largely causes the high value due to the almost homogeneous distribution of backscatter
values.
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There are two possible causes for the scenario when one metric has values above the threshold, and the
other(s) do not. First, the threshold of one metric is selected more strictly than the others. As discussed
in Section 4.2.2, the currently deployed method is sensitive to subjectivity, and the sample size was small.
This can lead to (too) strict or lenient threshold values so that some rasters will or will not be considered
relevant. Secondly, the metrics are different, so they will be sensitive to different spatial features as discussed
in Section 4.2.1. In this case, the former seems to be the cause because the selected period has similar cluster
tendency values as the whole time series post-June.

Figure H.2: Spatial S1 index data in a period of high autocorrelation and Altieri entropy, but low cluster tendency.

Cluster prominence
Since the cluster prominence is the amplification of the cluster tendency, periods of values above the thresh-
old are similar, as can be seen in Figure H.3. However, Section 4.2.1 showed that due to this amplification,
rasters with prominent clusters correspond to much higher values than ’smoother’ rasters. Besides that, the
definition of the threshold again plays an important role.

Figure H.3: Time series of autocorrelation and cluster prominence, where periods with two or more subsequent observations are
marked for both metrics.
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H.2. Barley

(a)

(b)

(c)

Figure H.4: Barley time series of autocorrelation and (a) Altieri entropy, (b) cluster tendency, and (c) cluster prominence, where periods
with two or more subsequent observations are marked for both metrics.
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H.3. Oat

(a)

(b)

(c)

Figure H.5: Oat time series of autocorrelation and (a) Altieri entropy, (b) cluster tendency, and (c) cluster prominence, where periods
with two or more subsequent observations are marked for both metrics.
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H.4. Wheat

(a)

(b)

(c)

Figure H.6: Wheat time series of autocorrelation and (a) Altieri entropy, (b) cluster tendency, and (c) cluster prominence, where periods
with two or more subsequent observations are marked for both metrics.



I
Consistency Distribution per Crop

This appendix provides figures to support the analysis of the temporal consistency from Section 4.3.1. First,
the histograms only based on autocorrelations are shown in Appendix I.1, followed by the metric comparison
of each crop in Appendix I.2.

I.1. Autocorrelation frequency distribution

Figure I.1: Histograms of autocorrelation for the four crop types.

100



I.2. Metric comparison frequency distribution 101

I.2. Metric comparison frequency distribution

Figure I.2: Histograms of maize where the bars indicate the normalised occurrences of consistency and the red line corresponds to the
mean S1 index time series. The subplots correspond to the Altieri entropy, cluster tendency and cluster prominence respectively.

Figure I.3: Histograms of barley where the bars indicate the normalised occurrences of consistency and the red line corresponds to the
mean S1 index time series. The subplots correspond to the Altieri entropy, cluster tendency and cluster prominence respectively.
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Figure I.4: Histograms of oat where the bars indicate the normalised occurrences of consistency and the red line corresponds to the
mean S1 index time series. The subplots correspond to the Altieri entropy, cluster tendency and cluster prominence respectively.

Figure I.5: Histograms of wheat where the bars indicate the normalised occurrences of consistency and the red line corresponds to the
mean S1 index time series. The subplots correspond to the Altieri entropy, cluster tendency and cluster prominence respectively.



J
Parameter Sensitivity

To better understand the influence the threshold, the same maize field was plotted for thresholds of 0.01,
0.03 and 0.04, presented in Figure J.1a, Figure J.1b, and Figure J.1c respectively. As expected, differences are
clearly visible, and the field is completely considered as consistent for threshold values from 0.065 onwards.
As discussed, threshold values could be adjusted to fit the application. For instance, if the user wants to be
certain of constant values indicating some change in the field, a low threshold of 0.01 could be used. Another
possible use is estimating the reliability of the radar image. If a higher threshold is selected, the missing
pixels in the filtered raster indicate large, non-consistent deviations from the mean. If this is a significant
percentage of the total number of pixels, it could be regarded as less reliable, assigning it a lower weight in
the spatial fusion.
Moreover, larger clusters could indicate large change, but if the intra-cluster variability is high, the change is
not the same for the entire cluster. On the other hand, small clusters with little variability are likely to be more
precise and could therefore be just as relevant. Depending on the application, the inter-cluster variability
could be a measure to select a suitable threshold.
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(a) Threshold of 0.01.

(b) Threshold of 0.03.

(c) Threshold of 0.04.

Figure J.1: Effect of various threshold values on defining persistent clusters, an example of the selected maize field.

Besides threshold value, the current method is severely affected by the number of observations in the pe-
riod of interest. With the defined threshold values from Section 4.2.2, periods of interest now seldom contain
more than four observations. However, if one would adjust the threshold values and thereby increase the
number of observations, the method should be robust enough to handle this. The rasters from Figure 4.24
correspond to a period (from June 19 to 23) where the autocorrelation and the three spatial metrics are above
their threshold values. However, the autocorrelation and Altieri entropy continue to have high values until
June 26. Applying the same algorithm to this series of S1 rasters (Figure J.2a), the clusters have shrunk, and
connecting parts have been filtered (Figure J.2b).
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(a)

(b)

Figure J.2: Series of S1 index rasters for period of high autocorrelation and Altieri entropy (a) and filtered rasters based on consistency
with threshold 0.02 (b).

This is a limitation of the currently deployed method since by simply comparing Figure 4.25 and Fig-
ure J.2b now; it seems that there are more persistent pixels (larger persistent clusters) in the former than in
the latter. However, that would neglect that the clusters in Figure J.2b contain two extra observations, thereby
increasing the probability of real persistent change. Besides, this method cannot be used in near real-time
since it uses an average taken over the selected period.



K
Spatial Consistency Pipeline

To illustrate how the persistent spatial patterns are extracted, this section presents an image corresponding
to each step of the spatial processing (steps 2 to 8 in Figure 3.3). After, the effects of the different processing
steps are discussed by comparison of the results.

Step 1 of the process is the selection of a suitable period. For this example, a period is selected for which
all three spatial metrics were above the threshold values but far enough in the growing season that there is
already vegetation. This period is from June 19 to 23. The rasters from this period are shown in Figure K.1.

Figure K.1: S1 index rasters of the selected period with high autocorrelation and high spatial metric values.

The following steps (2 to 5) are used to create a mask for each raster, marking the pixels classified as
persistent throughout the series. These steps are illustrated in Figure K.2. The input for these steps is the
rasters from the selected period (Figure K.1). In step 2 of the process, the internal ratio was taken, i.e. each
pixel was expressed in X times the mean of the raster on the respective day (µRd ). Then the (uniform) average
is taken and subtracted from each raster in step 3. This results in the second row of rasters in Figure K.2, where
differences are amplified. Note that because the internal ratio was taken from the rasters, the differences are
also expressed in this unitless measure. In the fifth step, a boolean mask was created to mark all pixels with
a smaller absolute difference than 0.02. For these rasters, this corresponds to 0.45 on average, resulting in an
approximate range of 1 dB, which is the radiometric resolution of Sentinel-1.

106



107

Figure K.2: Processing steps 2 to 5 of the pipeline for spatial consistency.

With the three masks as the output of Figure K.2, a single mask was created to detect which pixels were
masked in every raster. This resulted in Figure K.3a. Most single pixels have been filtered out since these are
often not constant in time. However, this is not the case for all pixels. It can be seen from the masked rasters
that the edges of the single raster masks often cause single pixels or small groups of pixels. Since the assump-
tion was made that only clusters at a larger scale are relevant, the mask was filtered by two morphological
filters, of which the result is presented in Figure K.3b. From the before and after, it can be seen that all pixels
groups with less than 5 pixels have been removed. Note that also a morphological filter for filling small holes
(<5 pixels) was applied, but no small holes were present in the mask of this example. As with the thresholds
for the spatial metrics, the threshold for the number of pixels can be adjusted according to the application.
This again comes back to the question of false positives and true negatives and should therefore be chosen
accordingly.

(a) (b)

Figure K.3: Consistency mask before (a) and after (b) morphological operations.

The persistent clusters were obtained by applying this final mask to the original rasters from Figure K.1,
as shown in Figure K.4.
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Figure K.4: S1 index rasters filtered by persistent clusters in data.



L
Spatial Data of Weighted Biomass Proxy

This appendix contains the extended analysis from Section 4.4.1. There, day 3 of Figure L.1 was discussed;
this appendix will therefore go into days 1, 3, and 4.

1

2

3
4

Figure L.1: Time series of the maize field with four days of interest at which the static weight sensitivity analysis was performed.

The results from day 1, corresponding to the leaf development phase, are shown in Figure L.2. It can
already be seen from Figure L.1 that the BP value is still low due to the lag of the signal. This is confirmed
by Figure L.2, where the average value of the BP fields is 0.17. Because of the low BP time series value, the
pattern in the weighted rasters is hardly recognisable. In addition, the S1 index has a relatively large standard
deviation (compared to the other S1 index rasters for this field), which contributes to the vague BP signal.

Inspecting the weighted rasters in Figure L.2a, it seems that only rasters of static weights of 0.5 and higher
show similar spatial features as those visible in the S1 index raster. However, looking at the clustered rasters
in Figure L.2b, the algorithm already recognises an isolated cluster in the middle of the raster in the default
static weight of ws = 0.075. This demonstrates the algorithm’s ability to fuse the two signals with a strong
spatial preference for the NDVI signal but still keep the most prominent spatial features from the S1 index.
Interestingly, the last three clustered raster of Figure L.2b show very little change. This could be due to three
different causes or a combination of the three.

Firstly, the high variance of the S1 index, combined with the spatial distribution of multiple small clusters,
causes the low BP signal to spread out quite evenly over all these small clusters. Secondly, due to the homo-
geneity of the NDVI raster, NDVI and S1 index clusters are not ’competing’ for which pixel belongs to which
cluster. Because of the Euclidean distance measure used in the K-means clustering, spherical clusters are
preferred by the algorithm. When two signals are fused, one of which has spherical shapes, the clustering will
be inclined to that spatial pattern and will not change. Lastly, the S1 index values are scaled to the NDVI scale
to fuse the two signals. The scaling is done using an exponential function with a linear tail, causing the high
S1 index values to be amplified and the low values to be smoothed. The bend of this linear to exponential
scaling is at 23 dB, thus causing most of the S1 index on day 1 to be smoothed.

Furthermore, spatial NDVI features remain visible in the weighted BP rasters as well. This is clear from the
(double) edge in the NDVI signal, which is recognisable in the clustered signals until the cluster with ws = 0.5.
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(a) (b)

Figure L.2: BP weighted rasters for varying static weights of day 1, regular (a) and clustered (b).

Figure 4.27 and Figure L.3a show that on day 2, the field means of the S1 index, the NDVI, and the BP
have increased. Due to the higher mean value and the stronger contrast between clusters of the S1 index,
the spatial radar-like features are better recognisable in the BP rasters than on day 1. Besides that, the NDVI
raster is less homogeneous and shows a weaker spot in the field on the right side. Spatial features from the
NDVI data, such as the horizontal line near the upper edge, can be seen in the clustered rasters up to and
including the BP raster of ws = 0.25.

Comparing the last three clusters of the weighted BP, the clusters appear to become smaller, which is a
negative side effect under the assumption that larger clusters are of interest. Interestingly, comparing the BP
cluster of ws = 1 to the S1 index raster, the former has much smaller clusters than the latter. This is again
caused by a combination of the temporal averaging of the BP and the scaling of the S1 index rasters.

(a) (b)

Figure L.3: BP weighted rasters for varying static weights of day 2, regular (a) and clustered (b).

Figure L.4 shows that on the last day, day 4, a similar result was obtained as on day 3. The mean value
of the BP rasters has decreased slightly, which agrees with Figure 4.27. Interesting to see is that for the same
static weight, ws = 0.25, clusters are detected in Figure L.4b. For the NDVI-saturated barley field, this value is
either the same or 0.5 (Appendix L). For oat and wheat, this always was 0.5. More fields should be checked,
however, before any conclusions can be drawn.
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(a) (b)

Figure L.4: BP weighted rasters for varying static weights day 4, regular (a) and clustered (b).

Note that these rasters were all computed on days with full-coverage NDVI observations. Since the final
weight is a product of the dynamic and static weights, the S1 index contribution increases over time. Thus
spatial features from the radar could become visible in the BP raster at lower weights than might appear from
this analysis.
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