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Abstract—Soft robots have the potential to accelerate robotiza-
tion in areas that are complex and impractical for hard robots.
The use of soft materials results in a safe and flexible design
that is unattainable for hard robots. However, this attribute
results in the need for new control approaches and strategies.
Hybrid controllers are a relative unexplored type of controllers
that consist of a model-based controller part and a learning
part to correct the model-based controller. A hybrid controller
benefit by the unrequired need for accurate system identification.
Simultaneously, the learning effort is reduced by the preliminary
work of the model-based component.

In this project, a model-based feedforward controller is pro-
posed and compared with a hybrid controller consisting of the
same model-based controller enhanced with a Gaussian process to
reduce the end-point error in the bending angle. The controllers
are tested using a crafted 2-segment pneumatic silicone soft robot,
following a circular trajectory with different radii.

The results of this new control strategy highlights the poten-
tial benefits of adding a learning approach to a model-based
controller to reduce model errors. Using a relative small dataset
preserves a computational usable Gaussian process. The small
dataset remains effective by reducing the range of the training
data.

Index Terms—Soft robot, continuum robot, model-based con-
trol, hybrid control, supervised learning, Gaussian process

I. INTRODUCTION

Soft robots are a new type of robots that can revolutionize
the integration of robots into society due to their flexibility
and safe materials. Soft or continuum robots are, inspired by
nature, working in a more natural way. These robots are made
of flexible and soft materials such as silicone and rubber and
are often oblong shaped to mimic the trunk of an elephant,
the body of a snake or the arm of an octopus. Unlike rigid
robots, soft robots are flexible, compliant, and organically
shaped. The flexibility and softness makes a soft robot more
versatile and adaptable to unstructured environments compared
to its rigid counterpart. A soft robot is also by design safer to
operate among humans due to the compliant nature of the soft
materials. Therefore, soft robot have the potential to excel in
areas where rigid robots exhibit poor performance, including
unstructured and changing environments and human robot
interactions. However, because of their compliant nature, the
behaviour of these systems is described by infinite-dimensional
and highly nonlinear equations. Therefore, the design of con-
trollers for these systems can be significantly more complex
than the strategies used for rigid robots, representing one of
the current bottlenecks in this area.

The Department of Cognitive Robotics (CoR), Delft Univeristy of Tech-
nology, the Netherlands.

A. Mathematical Description of Soft Robots
For classic rigid robots, the amount of links and joints are

finite and thus limiting the degrees of freedom by design.
On the contrary, the flexible body of a soft robot enables the
robot an infinite amount of postures that would lead to infinite
degrees of freedom. However, multiple resembling solutions
to limit the amount of parameters are listed below.

1) Cosserat Rod Theory: Considering that most soft robots
are round and linear shaped, mechanical rod models describing
continuous bending are a logical choice. In [1] and [2]
Cosserat rod is applied to model soft robots. In [3] an exact
steady state solution is proposed via Cosserat rod models. A
recent study describing and validating energy-based control
based on Cosserat rod models can be found in [4].

The advantage of Cosserat Rod models is that an exact
solution can be achieved for steady state [5]. Still, there is
an infinite amount of states possible when using Cosserat rod
theory, which makes it complex to use for control.

2) Finite Element Method: A common technique for
solving the deformation of complex shaped solids is called
Finite Element Method (FEM). FEM provides a numerical
solution by meshing the complex shape into point masses
and connecting them via springs. Using FEM in soft robots
discretizes their shape, solving the issue of the infinite-
dimensional models in soft robots. The use of more nodes
leads to a more accurate model of the soft robot at the expense
of a bigger state space and thus higher computational load. In
[6], the external force acting on the soft robot is calculated by
measuring the difference between the FEM calculation and the
vision observed position of the soft robot. In [7], FEM is tested
by using different shapes of soft robots under external load. A
control framework is proposed in [8] based on hyper-elastic
FEM. FEM results are accurate, however the computational
bottleneck is emphasized, which complicates online control
using FEM.

3) Piecewise Constant Curvature: The most prominent
technique describing the state of a soft robot is Piecewise
Constant Curvature (PCC). This framework defines the state
of the soft robot along a finite set of arcs in series, assuming
a constant bending of each arc segment. Thereby, each arc
segment consists of 3 degrees of freedom [9], [10]. PCC
simplifies the posture of a soft robot by assuming constant
bending over the length of each individual curvature. In most
cases, the amount of independent curvatures is equal to the
number of segments of the soft robot. The success of PCC
can be explained by the fact that most actuator types of soft
robots control a segment of the robot with limited length,
which in most cases bend equal over that length. Therefore,
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the simplification of PCC is accurate enough while reducing
the degrees of freedom from infinite to only 3. A variation
on PCC is Variable Constant Curvature, which is more useful
for tapered shaped soft robots [11], [12]. A drawback of PCC
approximations is the presence of singularities for some pos-
tures. Such a problem is solved by defining new coordinates
in [13]. This singularity-free approach is used in [14] where 3
PCC curvatures per segment are used since the used tapered
shaped soft robot does not bend constantly over the length of
each segment.

B. Model-Based Control

1) Static Control: A static controller can be defined as
a steady-state controller that works under the assumption of
force equilibrium, thus neglecting the dynamics of a soft robot.
Consequently, the state parameters of the soft robot are given
by its posture. The two main types of static controllers are
the task space controller [15] and the joint space controller.
For the former, instability can be a problem which is often
solved by lowering the control loop frequency [16]. Static
controllers tend to be slow or inaccurate due to the steady-
state assumption.

2) Dynamic Control: A model-based dynamic controller is
much more complex compared to static controllers, but have
the potential to be more accurate, faster, energy efficient and
smoother in movement [9]. To obtain the dynamic equations
for a soft robot, generally energy-based models such as Euler-
Lagrangian or Port-Hamiltonian mechanical system are used.
In [17], a general control architecture is proposed based
on shaping the potential energy. In [18], two architectures
designed for dynamic trajectory tracking are presented, relying
on the fundamental characteristics of the Lagrangian system.
The controllers are validated through simulation and experi-
ments on planar soft robots, respectively.

C. Learning-Based Control

Considering the complexity of controlling a soft robot and
the relative large amount of unknown variables influencing
its behaviour, a machine learning-based approach is a logical
choice. Machine learning can outperform tasks that are too
complex to be identified in a model. Different learning-based
approaches exist and are listed below.

1) Static Control: Learning-based static controllers work
via data-driven inverse kinematics. Data to learn the translation
between the task space and the actuator space is acquired via
sampling. In [19], an exploration algorithms was proposed for
an elephant’s trunk like robotic arm. The algorithm generates
samples to translate from the task space to the actuator space.
In [20], the inverse kinematics of the bionic handling assistant
of a mobile robot called Robotino are modelled via a learning
approach. A neural network is used to directly learn the
forward kinematics. In [21], a convolutional neural network is
used to estimate the angle of the soft robot. In [22] a learning
approach for the control of a magnetic actuated soft robot is
presented.

2) Dynamic Control: The dynamic control of a soft robot
via a machine learning-based approach is relatively complex.
For this reason, this area remains relative unexplored [9]. A
DDPG algorithm consisting of an actor-critic reinforcement
learning neural network is able to work with a continuous
action space. In [23], a framework for deterministic policy
gradient algorithms is presented. Results show that DDPG
outperform its stochastic counterpart.

D. Hybrid Control

The combination of machine learning and prior model
knowledge could be a good balance between model uncer-
tainties and learning complexity. A learning-based approach
provides robustness to uncertainties concerning the soft robot’s
parameters, while the model-based part provides a good indi-
cation of the behaviour of the soft robot, making the learning
task smaller and less complex. In [24], a hybrid trajectory
tracking approach is presented and validated using a CBHA
robot. In [25], a Model Predictive Controller is used to control
a soft robot, using a neural network that outputs the next state
of the robot based on input and current state.

E. Research Objectives

The performance of model-based controllers, are sensitive
to mismatches in the system’s parameters which are complex
to define and can even change such as the elasticity due to
wear or temperature. In contrast, Learning-based approaches
do suffer from long learning times and stability issues due to
the complexity of the learning task.

In this applied research, a hybrid set-up consisting of a
Gaussian process regression improvement of a model-based
controller is proposed and tested on pneumatic soft robot.
This approach benefits from being less sensitive to system
parameters due to the Gaussian process learning part that
learns to correct for deviations. Another advantage is that the
relative straightforward learning part remains trackable and
clear, in contrast to more complex black box models. The
machine learning algorithm also reduces in time and amount
of iterations due to the less complex learning task compared
to learning the absolute control.

The research attempts to address gaps in control approaches
for soft robots, and in doing so makes important contributions.
First, the research combines a model-based and model-free
controller, while in most studies one controller is selected.
Second, the research uses a relative simple and transparent
learning part by using Gaussian process regression. A search
of the relevant literature revealed no similar approach. Third,
the use of IMU sensors for measuring the posture of the robot
is unique. Former research often uses camera systems or flex
sensors.

The objectives of the project are:
• Construct a pneumatic soft robot to verify experimen-

tally the proposed improved controller. The soft robot
consists of 2 segments in series and 4 air chambers per
segment, resulting in a total of 8 individual actuators. The
design of the soft robot follows the design from Robert
Katzschmann.
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• Develop fast and reliable sensor data for measuring the
current posture of the soft robot.

• Construct a simplified model-based feedforward con-
troller via the Euler-Lagrangian equations and verify the
performance.

• Acquire learning data to correct for steady state errors and
improve the controller by providing it with a Gaussian
progress regressor that predicts the optimal corrections.

• Analyse the performance of the improved hybrid con-
troller and compare it with the model-based feed forward
controller.

II. PRELIMINARIES

A. Piecewise Continuous Curvature

In this project, the elongation of the soft robot is not
considered. Fig. 1 shows a schematic front view of the soft
robot and the parametrization.

q =
[
ϕ1 θ1 ϕ2 θ2

]
(1)

Equation (1) defines the soft robot state parameters q ∈ R4

via PCC assumption by the rotation of the bending plane ϕ
and the amount of bending θ. The soft robot consists of 2
segments and its parametrization is consequently defined by 4
parameters. The implementation of PCC reduces the degrees
of freedom of the 2 segment soft robot to 4.

θ1

θ2

ϕ1

ϕ2

Fig. 1: Front view of the 2-segment soft robot.

B. Euler-Lagrange Dynamics

The Lagrangian of soft robots is given by

L ≡ T − V (2)

where T and V represent the kinetic and potential energy,
respectively. The kinetic energy can be defined by

T =
1

2
q̇TM(q)q̇ (3)

where M(q) ∈ R4×4 represents the mass inertia matrix. The
potential energy is given by

V = G(q) +K(q) (4)

where G(q) ∈ R4 is the potential energy due to gravity
and K(q) ∈ R4 the elastic potential energy. Moreover, the
equations of motions are described as

d

dt

(
∂L

∂q̇

)
− ∂L

∂q
= τa −D(q)q̇ (5)

with τa ∈ R4 the torque from the actuators and D(q)q̇ ∈ R4

the damping of the system. Combining equation (2) to (5) the
dynamics of a soft robot can be represented as follows

M(q)q̈ + C(q, q̇)q̇ −
(
−∂V

∂q

)
= τa −D(q)q̇ (6)

M(q)q̈ + C(q, q̇)q̇ +D(q)q̇ +G(q) +K(q) = τa (7)

When the robot is stationary, the components depending on
the velocity become zero and equation (7) reduces to

G(q) +K(q) = τa (8)

which determines the equilibrium of the system.

C. Gaussian Process Regression

A Gaussian Process Regressor (GPR) is a form of super-
vised learning that is able to efficient statistical predict a
function based on samples or observed targets. This is achieved
by updating the probabilities via observations.

The GPR involves a mean function and covariance kernel.
A prediction is done by calculating the weighted mean. The
covariance or kernel function returns how related observations
are. A popular kernel function is the Radial Basis Function:

k(x, x′) = e−
1

2σ2 ∥x−x′∥2

(9)

where σ is the length scale hyperparameter. This parameter
describes how much the resulting function varies. This kernel
function relates approximately similar inputs (i.e., relative
small Euclidean distance in the input space) to similar outputs,
while reducing the significance of distanced inputs.

III. METHODOLOGY: SOFT ROBOT DESIGN

The intention of this research is to investigate if a pneumatic
soft robot performs accurately in endpoint position if the
model-based controller is equipped with of a GPR correcting
for errors in the model-based controller compared to a purely
model-based controller.

A. Pneumatic Actuated Soft Robot: Design and Manufacturing

To verify and test the performance of the controllers, a
pneumatic soft robot is fabricated. Fig. 2 shows a picture of
the resulting 2 segment pneumatic soft robot. Each segment
is made using silicone moulding technique. First, the 3D
printed mould is assembled. The mould contains 4 ribs made
of paraffin wax to mold the air chambers, one air chamber
for each quadrant, labelled by A1 − A4 for segment 1 and
A5 − A8 for segment 2 in the cross-section fig. 3. After the
silicone solidified, it is removed from the mould and heated
in an oven, which causes the wax inside to melt and outflow,
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creating the cavities for the air chambers. Specification of the
soft robot segments is given in Table I.

After connecting the air tubes to each segment, the segments
are connected together with silicone rubber adhesive to form
the 2-segment soft robot. The air tubes of the lower segment go
through the centre of the upper segment. The upper segment
is shifted 45◦ in the yaw-angle to improve the ability to bend
in all directions more similar. Fig. 3 illustrates this convention
and also shows two 3D-printed brackets to link the MPU6050
sensors to the silicone soft robot. The sensors are aligned to
the centre of the chambers A1 and A5.

Soft Robot Properties:
Segment length 11 cm

Diameter 45 mm
Segment weight 117g
Silicone material DragonSkin-20

total length 22 cm

TABLE I: Soft robot specification.

Fig. 2: picture of the soft robot mounted in the experimental
set-up

B. Pressure Regulator

For the pneumatic actuation of 8 air chambers, a pressure
regulator is needed to control the pressure in each chamber
independently. In this project, the Festo Motion Terminal
VTEM is used. Using a LAN connection between the VTEM
and a computer, communication is established according to
the Modbus protocol. The VTEM pressure regulator contains
a low level PID controller to match the set pressure. Further
information can be found in the datasheet [26].

A1A4

A3 A2

M
PU60

50

Pitch

Roll

ϕ

x

y

Rotation axis

(a) Cross-section of the upper silicone segment of the pneumatic soft
robot.

A5

A8

A7

A6

MPU6050

Pitch

Roll

ϕ
x

y

Rotation axis

(b) Cross-section of the lower silicone segment of the pneumatic soft
robot.

Fig. 3: Schematic of the pneumatic soft robot. A1 − A8
represents the individual air chambers. In red the rotation axis
is shown which is perpendicular to the direction of ϕ.

Fig. 4: Festo pressure regulator [27].

C. Soft Robot Sensing

To measure the current posture of the soft robot, fast and
precise sensors are needed that can sense the rotation of
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the soft robot. Inertial Measurement Unit (IMU) sensors are
small, light, fast, reliable, cheap and widely available. These
neat sensors can play an important role into the future of
soft robots because the sensor chip is small enough to fit
well inside macro-scale soft robots, enhancing their flexibility
and mobility. Besides, the energy-efficiency of these type of
sensors also contributes to the mobility of soft robots.

qg(n) = q(n−1)︸ ︷︷ ︸
previous position

+ q̇g∆t︸ ︷︷ ︸
time integration

(10)

q(n) = 0.96qg(n) + 0.04qa(n) (11)

In this project, two IMUs are used to sense the posture of
the two segments. Details about the MPU6050 IMU sensor can
be found in Table II. The sensors are connected to an Arduino
Nano via a I2C communication protocol. The main program
of the Arduino comprises continuous tracking the rotations
of the IMU sensors by reading the data of the gyroscope
and accelerometer. The complementary filter combines the
gyroscope and accelerometer data to compensate the drift
caused by dead reckoning due to integrating the angular
velocities of the gyroscope to obtain the angular position.
Equation 10 shows how the angular position follows from the
gyroscopic data. In equation 11 the compensatory filter, used
by the Arduino, is shown.

The complementary filter is only capable of compensating
drift for the pitch and roll angles. The filter is not able to
compensate the drift in the yaw angle because the gravitational
acceleration always points along the yaw angle. However, the
yaw angle is not used in this research because the soft robot
does not exhibit torsional rotation.

MPU6050:
Serial Interface I2C

Operating power consumption 12 mW
Chip size 4 x 4 x 0.9 mm

Gyroscope:
Available angular range ±250, ±500, ±1000, and ±2000°/sec

Output data rate 8000 Hz
Analogue to Digital converter 16-bit

Sensitivity scale 131 LSB/(°/sec)
Accelerometer:

Available acceleration range ±2g, ±4g, ±8g and ±16g
Output data rate 1000 Hz

Analogue to Digital converter 16-bit
Sensitivity scale 16384 LSB/g (at range ±2g)

TABLE II: Specification of the MPU6050 IMU sensor. Further
details can be found in the datasheet [28].

IV. METHODOLOGY: CONTROL DESIGN

In this part, the control design of the soft robot is explained.
The control of a soft robot consists of multiple parts: A
starting point is needed to conduct the robot desired positions
over time, the controller should proceed these commands and
calculate needed pressures, communication with the actuator
is needed and the data from the sensors needs to be read and
evaluated.

A. Robot Operating System 2: Foxy

The communication interface with the Festo pressure reg-
ulator is written in C++, while other parts of the application
requires Python. Hence, ROS 2 is used, which allows to inte-
grate both programming languages. Fig. 5 shows the overview
of different ROS nodes.

Fig. 5: Rqt graph of ROS2 nodes and topics.

Details about the ROS nodes can be found in appendix A.

B. Model-Based Feedforward Control

The model-based controller in this project is restricted to
a static feedforward controller. Considering only the static
components is valid if the robot’s velocity is small (q̇ ≈ 0) to
such an extent that the inertia, damping and Coriolis torque in
equation (7) does not significant influence the behaviour of the
robot. The soft robot does move in a circular path, however
the time for one rotation is set to 10 sec resulting in slow
movement, thus a static controller is assumed a valid choice.

A model-based controller can be obtained by solving equa-
tion (7) and finding the external torque needed so that the
desired configuration is the new equilibrium. When the soft
robot is at the equilibrium (q̇ = q̈ = 0)(

∂V (q)

∂q

)
q=q∗

= τa (12)

G(q∗) +K(q∗) = τa (13)

Where τa ∈ R4 is the applied torque from the actuator and
q∗ ∈ R4 is the desired robot configuration.

1) Gravitational Torque: Finding an accurate expression
for the gravitational component is more complex compared
to rigid link robots because of the highly nonlinear behaviour
of the soft robot. However, limited amounts of pressures are
used to protect the soft robot from damage due to overstressing
the fragile silicone. Therefore, the resulting maximum bending
angle is small.

Tests show that the robot is able to safely bend the endpoint
no more than 15 degrees. A small bending angle leads to a
more dominant elastic torque compared to the gravitational
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θ [Degrees] Measured Weight [gram] Elastic Force [N]
15 250 2.5
30 500 4.9
45 770 7.6
60 900 8.8
75 950 9.3
90 1150 11.3

TABLE III: Resulting elastic forces when bending the soft
robot.

torque because the direction of the gravitational force is almost
aligned with the longitudinal axis of the soft robot (recall that
the elongation of the soft robot is not considered). Notably,
when holding the soft robot horizontally (without actuation)
the soft robot slightly bends downwards for approximately
15 degrees (see Fig.( 6)) and so even when the gravitational
component exerts its maximum possible torque due to its
own weight, still the elastic force is more dominant. The
gravitational component is relatively small compared to the
elastic component. Hence, given the complexity of calculating
the gravitational torque and considering its minor contribution
to the steady-state configuration of the robot, we decide to
neglect the gravitational component in the model ( 13).

Fig. 6: Maximum gravitational torque is applied in the θ
direction by holding the robot horizontally. This results in a
bending angle of approximately 15 degrees.

2) Elastic Torque: To estimate the elastic torque, a weigh-
ing scale is placed vertical such that the endpoint of the soft
robot is touching the scale. Then, the fixed endpoint of the
robot is bent at different angles and the resulting elastic force
(via: F = mg) of the soft robot is measured. The results are
in Table III. To calculate the stiffness of the robot, the slope
between the bending angle and elastic force is calculated using
the line of best fit formula, i.e.,

k =

∑
(θ − θ̄)(F − F̄ )∑

(θ − θ̄)2
(14)

3) Actuation Matrix A(q): The actuation matrix maps
the calculated torque to the actuator pressure vector. The
mapping involves a translation of coordinates and a ratio
scaling between pressure and torque. The actuation matrix
A(q) is defined as follows

P = A(q)τa (15)

In equation (15), P ∈ R8 is the pressure vector, equal in size
to the amount of actuators. Consequently, A(q) ∈ R8×4. To
map the translation, we calculate the corresponding Jacobian,
whose details can be found in appendix B.

The ratio between pressure and torque is experimentally
estimated by measuring, for different pressure levels, the
amount of bending and using the previous measured stiffness
to estimate the amount of millibars per Newton meter.

Fig. 7 shows the resulting actuation graph that is obtained
from the Jacobian. The upper graph corresponds to the upper
segment Fig. 3a and the lower graph to the second segment
Fig. 3b.

0 50 100 150 200 250 300 350
0.0

0.2

0.4

0.6

0.8

1.0
Directional Actuation Scheme

0 50 100 150 200 250 300 350
Bending Plane Angle  [Degrees]

0.0

0.2

0.4

0.6

0.8

1.0

P3 / P7 P2 / P6 P1 / P5 P4 / P8

Fig. 7: Directional actuation scheme shows the actuator de-
pendency on ϕ.

4) Block diagram Feedforward Controller: The block
diagram of the feedforward controller is shown in Fig. 8.
The actuation matrix block A(q∗) depends on the desired
configuration due to the Jacobian. The actuation graph in Fig. 7
is normalized and therefore shows the fraction of actuation of
each air chamber compared to the amount of actuation when
ϕ is aligned with the actuation angle of the air chamber.

K A(q∗)
Soft
Robot

q∗ τa P q

Fig. 8: Block diagram of the model-based feedforward con-
troller. Here, q∗ corresponds to the desired robot configuration.

C. Supervised Learning: Gaussian Process

To improve the feedforward controller, a Gaussian process
regressor (GPR) can learn the relation between a correction
torque τl and the resulting bending angle θ for different desired
bending angles θ∗. Then, the GPR is used to predict the
bending angle θp for different torques τtry and selecting the
best correction torque τl (i.e., the torque for which the error ϵ
is the closest to zero.).

The correction torque τl is expected to be different for each
desired bending angle θ∗ of the soft robot, therefore it would
be necessary to include the desired bending angle of the soft
robot to the input space of the Gaussian Process. However, a
Gaussian process suffers from scaling and so the dimensions
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of the input space should be limited to avoid that the learning
process becomes too slow. It is consequently assumed that τl
does not significantly depend on the angle ϕ. Thus, the selected
input for the Gaussian process is θ∗ and τtry, which are the
desired bending angle and the applied torque and the output
is the predicted angle as shown in Fig. 9.

Training data points are equally spread over the input space
to acquire knowledge over the full input space. The process
of acquiring training data consists of using the feedforward
model-based controller and on top of that apply a varying τtry
to measure the resulting bending angle θ. Algorithm 1 shows
the pseudocode of acquiring learning data. Fig. 11 visualizes
the procedure, where θ∗ is set to different levels, and the
feedforward controller applies the corresponding torque. Then
τtry is applied, varying from -0.03 to 0.03. The black line
represents the sum of the feedforward torque and τtry.

ϵ = θp − θ∗ (16)

τl = τtry(min|ϵ|) (17)

Fig. 9 shows a block diagram of the learning part. After
training the Gaussian process, the GPR is used online to
estimate the bending angle for different torquesτtry for the
desired bending angle. τtry is a linear-spaced array with size
100. Thus, 100 predictions are done. Then for all predictions,
the error is calculated using equation 16. Finally, the torque
corresponding to the smallest error is selected using equa-
tion 17.

Fig. 10 shows the block diagram of the hybrid controller.
In this diagram, the learning part from Fig. 9 is summarized
into one block.

GP Error Select

θ∗

τtry

θp ϵ τl

Fig. 9: Block diagram of the learning part: the 2D-input of the
Gaussian process (GP) is the desired angle θ∗ and τtry

. The output is the predicted bending angle θp.

+

+

K

Learning
Part

A(q∗)
Soft
Robot

τk

τl

τ P q

q∗

Fig. 10: Block diagram of the proposed improved controller.

Algorithm 1 Algorithm to acquire training data for the
Gaussian Process

begin
for ϕ:=0 to 360 step 45 do

for θ∗:=0 to 15 step 3 do
for τtry:=-0.03 to 0.03 step 0.003 do

τ = τff (q) + τtry;
P = A(q∗)τ ;
apply pressure P;
Delay (1s);
θ(θ∗, τtry) := θcurrent; od

od
od

end

0 50 100 150 200 250
Samples [N]

0.02

0.00

0.02

0.04

0.06

0.08

0.10

 [N
m

]

Sampling Training Data

Setpoint = 0°
Setpoint = 3°
Setpoint = 6°

Setpoint = 9°
Setpoint = 12°
Setpoint = 15°

Feed 
Forward 
Sample 
Sum of 

Fig. 11: Visual representation of sampling the data for the
Gaussian process. For different desired bending angles, a
varying τtry is applied on top of the feedforward controller.

1) Gaussian Process Kernel: The kernel function of a
Gaussian process is an essential function and defines the
similarities between different points. Consequently, the kernel
function defines assumption on the system. The RBF kernel
function is a logical choice because approximately similar
values for τtry should lead to similar bending angles θ,
while not being affected by points further away. This is
the (valid) assumption that is defined in the kernel function.
After manually tuning the hyperparameter, the resulting kernel
function is given by

k(x, x′) = e−50∥x−x′∥2

(18)

The kernel function is plotted in Fig. 12.
2) Gaussian Process Prediction Time: Since the Gaussian

process is fitted only once (before starting the movement), the
time to predict τl for the controller using the Gaussian Process
is reduced compared to fitting every iteration with new data.
Fig. 20 shows the Gaussian process prediction time for each
controller during control iterations.
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Fig. 12: Kernel function for σ = 0.1

V. RESULTS

In this section, the experimental results are presented in
three parts. In the first part, the results of the movement of
the soft robot is presented for different controllers, then the
outcomes of the Gaussian process are shown and in the last
part performances are compared for different controllers.

A. Soft Robot Movement

During the experiment, the soft robot moves in a circular
path. To this end θ∗ is set to a constant radius, and the angle
ϕ∗ rotates in 10 seconds one revolution.

Fig. 13 shows the measured endpoint position for 4 types
of controllers. The experiments last one minute of movement,
which is equivalent to 6 rotations. The first controller is the
model-based feedforward controller. This controller shows the
results without the correction torque τl. The following polar
plot shows the results where both segments use an improved
controller. For each segment, a separate Gaussian process
optimization torque is calculated. The last two polar plots show
the improved control result, for which one of the segments
uses the improved controller and the other segment is purely
controlled by the model-based controller.

Analyzing the results of the three types of improved control
reveals that when only segment 2 is corrected, the results are
better. Fig. 14 shows the result of the model-based controller
and the result of the segment 2 improved controller in a
cartesian plot for different desired bending angles.
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Fig. 14: Soft robot end-point bending angle θ2 for different
radius circular movement. Comparison between model-based
control and segment 2 improved control.

B. Gaussian Process

Fig. 15 and 16 show a scattered part of the learning data
for 3 desired angles for segment 1 and 2, respectively. At
each desired angle τff is constant since the desired angle
is constant and τtry varies. Then the resulting angle θ is
measured. The figures also show the fitted Gaussian process,
where the intersection between the fitted Gaussian process
and the corresponding desired angle line corresponds to the
best τtry following from the training data. When using the
improved controller, the amount of torque at the intersection
is calculated and used in the controller as τl. If there is no
intersection, the torque with the smallest difference between
expected and desired angle is selected.

C. Soft Robot Performance

To compare the performances of different controllers, the
root-mean-square (RMS) error is a suitable measure because
smaller errors in the movement of the robot are less relevant
and could even be caused by sensor noise. Instead, larger errors
are of more relevant and should penalize the performance
more. Fig. 17 shows the resulting RMS errors for the model-
based controller and the S2 improved controller for different
angles.

A box plot involves not only information about the median,
but also about how the data is varying. This is useful because
if the soft robot oscillates more around the target angle,
the median, and average angle value could still be accurate,
however this would result in a box plot to a wider box
showing that the angle varies more. Therefore, comparing the
performances of the controllers in a box plot enables to also
compare the variance of each controller. Fig. 18 shows three
pairs of box plots analyzing the two controllers for different
desired angles.
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Fig. 13: Polar plot showing the circular movement of the soft robot for different controllers. The target angle of θ = 12◦ shown
in orange.
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Fig. 15: A snippet of the training data for segment 1: The
resulting bending angle θ for varying τtry. For readability,
only 3 different desired angles θ∗ are shown.

VI. DISCUSSION

A. Soft Robot Control Behaviour

The experimental results of the feedforward controller does
already show that results are close to the desired bending
angle. Considering the simplicity of the controller, the results
are better than expected. Some errors were expected since we
omitted the gravitational terms. Therefore, depending on the
application demands, a soft robot controlled by a feedforward
controller might be a valid, working, and relative easy to
implement choice.

However, the improved S2 controller shows the best results.
Comparing the RMS error of the 2 controllers in Fig. 17
shows a significant decrease of approximately 40% for the
three different desired bending angles. A noticeable difference
in accuracy is also visible in the polar plot. Data points are
more accurate and more precise, also shown in the box plot.

Fig. 14 shows an oscillating behaviour of the soft robot,
which is not clearly visible in the polar plot. A possible
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Fig. 16: A snippet of the training data for segment 2: The
resulting bending angle θ for varying τtry. For readability,
only 3 different desired angles θ∗ are shown.
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Fig. 17: RMS error graph for the model based controller and
the S2 improved controller.
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Fig. 18: Box plots visualizing the accuracy and precision
performance of the model-based controller and the improved
S2 controller. A smaller box indicates more precision, while
the median indicates the accuracy.

cause could be the ’dead-zones’ of the actuators located
at the direction of the walls. However, this is captured by
the actuation matrix by applying

√
0.5τmax to the two air

chambers (instead of 0.5τmax) since the chambers partially
counteract each other’s torque. Another cause could be the
increase in stiffness due to the same silicone walls between
the air chambers resulting in oscillating behaviour for when
a circular trajectory is followed. A manual test by bending
a segment and estimate the stiffness reveals this difference
in stiffness between walls and air chambers. The segments
are connected with a 45◦ shift to reduce this effect, however
since the lower segment does bend more than the upper
segment due to the weight of the lower segment, this effect is
not completely removed. Another cause for this fluctuating
behaviour could be that not all actuators deliver the same
torque when similar pressure is applied.

1) Gaussian Process Improvements: The learning data
shows that the desired torque (i.e., the intersection) lies in
the range of τtry in most cases for segment 1 and in all
cases for segment 2. This means that for segment 2 this range
is a sufficient choice to find the optimal τl. Moreover, all
intersection values lie between −0.01 < τtry < 0.01 therefore
there is even room to narrow the range further. For segment
1 when the desired angle is 7.5◦ no intersection is found.
Despite that some data points do exceed the desired angle, the
weighted mean of the Gaussian does not. A solution would be
to increase or shift the range of τtry upwards to capture the
intersection points.

2) The Success of Improved Control: Every extra data
point τtry that is added to find the intersection leads in the
current set-up to 48 new data points (8 ϕ directions and 6
levels of θ) and causes slower performance of the Gaussian
process. Because the final τ consists of the summed model-
based τk and τl where the larger contribution is given by
τk (the coarse part). Hence, the Gaussian process can use a
smaller range for τtry in the training data, leading to fewer
data points when training with the same τtry resolution (the

step size of τtry during learning). Therefore, this set-up excels
the performance of a comparable purely Gaussian process set-
up (learning based controller) because of the smaller learning
task.

B. Further Research
1) Design of the soft robot: The design of the robot could

be further improved. The used material is relative inelastic.
Softer material would lead to more stretching and bending
for the same pressure. Consequently, the soft robot could
bend more. However, the gravitational component would have
a greater impact on the dynamics. Therefore, it must be
investigated if the Gaussian process can compensate this or
if a model of the gravitational torque is needed.

2) Adding load to the soft robot: Something that is not
considered in this project is how the robot would behave when
a gripper or load is added. This requires an addition to the
control framework, since the needed torque varies for different
loads. Different Learning data sets for different loads and a
system that select the right learning data could be investigated.

3) Soft robot posture control: This research focuses on
the endpoint of the soft robot instead of the entire posture
of the robot. To control the posture, it is required to improve
both segments. Controlling the posture, allows verifying what
happens if the segments bend in different directions.

4) Gaussian process modification: Another interesting
possible improvement would be to investigate an iterative
Gaussian optimization framework in which the fitted optimal
τl is added as an angle dependent constant to the controller,
releasing computational load while maintaining the benefit of
the correction. Then a new Gaussian Process with a smaller
range for τtry can be learned to find the error of the already
improved controller. Using a smaller range also enables to
make the step size in τtry smaller. A smaller step size zooms
in to find a more accurate τl. Even if for any reason the
previous Gaussian process did make a mistake, that would
result in an error which will be captured and corrected by
the new Gaussian process. This could also be an interesting
approach, considering wear and tear of the silicone, which
leads to different behaviour.

VII. CONCLUSION

Soft robots are useful for workspaces that are unpredictable
and involve humans due to the safe and flexible nature of the
materials. However, this also induces a control challenge that
requires new approaches. In this research, a hybrid controller is
designed and validated in a two-segment pneumatic soft robot.
Then, the performance of the hybrid controller is compared
with the model-based one. The control goal was to follow a cir-
cular trajectory, with the end point of the robot. Experimental
results show that a hybrid controller consisting of a model-
based controller with estimated parameters and a learning
based correction part leads to better performance compared
to only using a model-based controller. This improvement is
achieved when the second segment only is corrected with
the Gaussian process. The findings show that closed-loop
performance can be significantly improved with a relatively
simple learning approach.
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APPENDIX A
ROS 2 NODES

• Imu publisher: This node establishes a USB serial
connection with the Arduino Nano. When this node sends
a request for data to the Arduino, the Arduino replies
by sending the quaternion and the Tait-Bryant angles
(yaw, pitch, roll) for each IMU sensors. The data is
processed and published into 3 parametrizations: axis-
angle, quaternion and PCC notation using conversion
equations.

• vtem service: The VTEM service node manages the
communication with the pressure regulator over Ethernet
via a Modbus protocol. It activates the pressure regu-
lator and when ready offers two ROS services named
set_pressure and read_pressure. A client node
can request the set_pressure service via a custom
service message containing 8 pressure values in mbar for
air chambers A1−A8 respectively. The service will reply
with a boolean that is true if the requested pressure is
successful send to the VTEM. The read_pressure
service works by sending an empty request, which will
be replied with the 8 actual pressure’s.

• task executor: The task executor node is the starting
point of the system. This node publishes the desired
configuration of the robot with a frequency of 10 Hz. The
node selects which shape the robot must follow. Possible
shapes are a circle, lemniscate, turbine, or an Archimedes
screw. Besides shape trajectories, the node too features
holding a fixed configuration. More parameters of this
node are the time to complete the shape and the maximum
theta bending angle. This node besides publishes the
actual shape and percentage of completion for logging
purposes.

• soro controller model based: The model based con-
troller node is the main node and consists of sub-
scribing to desired_state, current_state and
task_state and then based on the information calcu-
lating the updated pressure and requesting these pressures
via the service set_pressure. This node also logs the
data to a CSV-file. Further details on the controller can
be found in IV-B.

• soro controller improved control: The improved con-
troller is not visible in Fig. 5 because it replaces the
model-based controller after sampling the behaviour of
the soft robot. The node has the same functionality, how-
ever the control performance is enhanced via the Gaussian
Process. This is further explained in section IV-C.

APPENDIX B
JACOBIAN MATRIX: ACTUATOR SPACE TO ROBOT

CONFIGURATION SPACE

Fig. 19 shows in red the direction of bending for each
actuator. Each actuator works only in the shown direction and
not in the opposite direction. To map this to the configuration
space of the soft robot, the Jacobian is needed:
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(a) Cross-section of the lower silicone segment of the pneumatic soft
robot.

Fig. 19: Cross-section schematic direction of pneumatic actu-
ation.

J =
∂P

∂q
=

−θ1c(ϕ1 +
π
4 ) −s(ϕ1 +

π
4 ) 0 0

+θ1c(ϕ1 − π
4 ) +s(ϕ1 − π

4 ) 0 0
+θ1c(ϕ1 +

π
4 ) +s(ϕ1 +

π
4 ) 0 0

−θ1c(ϕ1 − π
4 ) −s(ϕ1 − π

4 ) 0 0
0 0 +θ2s(ϕ2) −c(ϕ2)
0 0 +θ2c(ϕ2) +s(ϕ2)
0 0 −θ2s(ϕ2) +c(ϕ2)
0 0 −θ2c(ϕ2) −s(ϕ2)


(19)

APPENDIX C
GAUSSIAN PROCESS: COMPUTATIONAL RESULTS

A Gaussian process does not scale well due to the curse of
dimensionality. The training data consists of 1008 samples (8
directions, 6 bending angles and 21 torques). Before movement
starts, at start-up the Gaussian process is fitted based on
the training data. During movement, there is no new data
added and so no new fitting is required, which helps to
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Fig. 20: Overview of the time for the controller to calculate
the new τgp during the experiments.

reduce the computational. Fig. 20 shows a histogram of the
time the computer needed to predict a value (i.e., calculating
the weighted mean for a giving input). All experiments are
performed using an Intel®i7-9750H 12-core CPU.
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