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[1] The flow path to a partially penetrating well in a semiconfined aquifer with finite
thickness can exhibit nonmonotonic behavior. Water particles entering a semiconfined
aquifer far away from a well through the confining layer go downward, and closer to the
well they move upward, while under certain circumstances they rise so high that they
come down again to finally be captured by the well. An approximative problem is solved
analytically under the assumptions that the aquifer is of infinite thickness and that the
screen may be represented as a point. It is shown that this phenomenon will occur for
particular values of parameters Kc/a > 1.283, where a is the position of the point
extraction in the aquifer with respect to the top of the aquifer, K is the hydraulic
conductivity of the aquifer, and c is the hydraulic resistance of the covering layer. Such
upward bending groundwater path lines have ecological implications in the sense that
water from far away will come close to the top of the aquifer in the neighborhood of the
well.
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1. Introduction

[2] It was noted in 1984 at the National Institute for
Public Health and Environmental Protection (now the
National Institute for Public Health and the Environment,
Bilthoven, Netherlands) that the flow of a water particle
started far away at the top of a semiconfined homogeneous,
isotropic aquifer, just underneath the semiconfining layer, to
a partially penetrating well, showed a ripple (Figure 1).
[3] A particle can be seen to start at the top of the aquifer,

far away from the well, initially go downward below
the bottom elevation of the well screen, and then in the
neighborhood of the well go upward. In fact, close to the
well, the particle continues to rise such that it has to go
downward again to be captured by the well. This trajectory
exhibits a minimum and a local maximum as a function of
the distance to the well. We show that for certain parameter
values the nonmonotonic flow paths seen in Figure 1 are to
be expected, which might be useful for the interpretation of
water quality measurements in the field.

2. Mathematical Model

[4] Firstly, we describe the flow pattern by a mathemat-
ical model with the corresponding analytical solution for the
drawdown f = f (r, z). The governing differential equation
and associated boundary conditions are:
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where (r, z) [L] are the spatial coordinates, with the z-axis
pointing downward, f [L] the drawdown, D [L] the
thickness of the aquifer, K [LT�1] the hydraulic conductiv-
ity, c [T] the hydraulic resistance of the aquitard at the top of
the aquifer, a [L] the distance (assumed to be positive)
between the center of the screen and the top of the aquifer, l
[L] the length of the screen and Q [L3T�1] the pumping rate
of the partially penetrating well. The analytical solution to
the problem defined by (1), (2) and (3) is given by
[Bruggeman, 1999, formula 532.06]:
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where an, n = 0, 
 
 
, 1 are the positive roots of the
transcendental equation a tan a = D/(Kc), and K0 the
modified Bessel function of order zero. This analytical
solution is implemented in FLOP3N [Veling, 1992], which
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calculates the drawdown in each of N coupled aquifers (in
our case 2) based on the analytical solution for the full
three-dimensional problem [Maas, 1987].
[5] Although one may start with finding the zeros of the

first derivative of (4), the terms in the resulting series
exhibit a rather erratic behavior of the sign depending on
the relative magnitudes of an, l and a. To avoid this we will
solve an approximative problem with a more convenient
solution.

3. Approximative Problem

[6] Since we know that the strange behavior of interest
occurs only then when the screen is situated rather high in
the aquifer, the first approximation is to ignore the lower
aquifer boundary, hence take the aquifer to be infinitely
deep. Moreover, in such a case it is reasonable to approx-
imate the well screen by a point extraction. This means that
we address the mathematical problem:
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Here we assume a > 0 because otherwise there can be no
ripple at all. The solution to (5), with (6) and (7), is given by
[see Bruggeman, 1999, formula 522.24]
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Herein is J0 the Bessel function of the first kind and order
zero. In this representation use has been made of
[Abramowitz and Stegun, 1964, formula 29.3.55]
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4. Estimates

[7] Our purpose is to show that there are values for r, a, K

and c such that
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a trajectory passing the elevation a of the extraction will rise
but since it will be captured by the well afterward, it will
show a ripple. For this to happen the velocity component at

(r, a) must be negative. The vertical velocity component is
proportional to
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At the derivation of (10) use has been made of (9). If one
evaluates (10) at the level of the well, thus for z = a, then it
follows that
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In Appendix A we prove that the integral in this expression
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Condition (13) is equivalent with

r2 < a Kc� 4að Þ; ð14Þ

and it is only possible to satisfy this condition if

Kc=a > 4: ð15Þ

Because (15) is a sufficient condition, it does not mean that
the phenomenon is absent in cases where Kc/a � 4. In
Appendix A we derive a more general sufficient condition

Kc=a > 1:282371 
 
 
 : ð16Þ

[8] In the example presented in Figure 1, condition (15)
has been satisfied. In Figures 2, 3, 4, and 5 the quotient Kc/a
takes on values of 24.0, 8.89, 3.33, and 1.0, respectively.
Condition (15) is satisfied only by the first and second
cases, which exhibit the phenomenon (Figures 2 and 3).
Condition (15) has not been satisfied by the third case, but
(16) has been satisfied: the phenomenon is present but
hardly visible (Figure 4). When (16) is not satisfied, the
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Figure 1. Example of the upward flow near a well. The horizontal axis shows the radial distance to the
well; the vertical axis shows the height of the aquifer covered by an aquitard. The aquifer is bounded
on the bottom by an impervious layer. The z axis is pointed downward. The screen is located at r = 0,
from z = 10 m to z = 27.5 m. The six trajectories starting at r = 475 m,. . ., 959 m at the top of the aquifer
exhibit the upward flow behavior the most obviously. Parameter values are K = 25 m/d, c = 450 days, D =
80 m, and a = 18.75 m, l = 17.5 m. Horizontal dimension is 1000 m, vertical dimension is 84.5 m. The
small circles at the screen indicate the location where the water particles reach the screen. The other
symbols indicate the time before the water particles will be kept by the screen (3, 60, 365, 1825, 3650,
and 9125 days, respectively, for a pumping rate of 9240 m3/d and a porosity of 0.3.

Figure 2. First of a series of four figures with variation of the hydraulic resistance parameter c. The
horizontal axis shows the radial distance to the well; the vertical axis shows the height of the aquifer
covered by an aquitard. The aquifer is unbounded from below. The z axis is pointed downward. The point
extraction is located at r = 0, z = a = 18.75 m. Horizontal dimension is 210 m, and vertical dimension is
34.5 m. The symbols indicate the time the water particles starting at the top of the aquifer have traveled
into the direction of the screen (3, 60, and 365 days, respectively, for a pumping rate of 9240 m3/d and a
porosity of 0.3). Parameter values K = 25 m/d and c = 18 days. Condition (15) has been satisfied.
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phenomena is not present (Figure 5). From (14) one can get
an estimate at which distance from the well this particular
behavior will occur. For the first three cases we find: r <
89.4 m, r < 51.7 m and r < 22.1 m, respectively, so it will
occur at distances easily measurable in the field. In the
fourth case (16) is not satisfied.
[9] In the limit for c!1, thus in a confined aquifer, it is

clear that the local maximum occurs always, since (15) is
always satisfied. The locus of the points of that local
maximum is given by

r2 ¼ a2 � z2
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[10] The dimensionless parameter combination Kc/a is
the only relevant parameter for this problem. This can be
seen by scaling the axes as r = r0a and z = z0a; in that case
the extraction is located at (r0, z0) = (0,1), and the

equation (6) becomes
@f r0; 0ð Þ

@z0
=
af r0; 0ð Þ
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.

5. Discussion

[11] We have shown that particles which enter an
aquifer far away from an extraction well may follow a
path through the aquifer in such a way that close to the
well they move upward before they are captured by the

Figure 3. Parameter value c = 6.67 days. See Figure 2 for further explanation. Condition (15) has been
satisfied.

Figure 4. Parameter value c = 2 days. See Figure 2 for further explanation. Condition (15) has not been
satisfied, but (16) has. However, the phenomenon is hardly visible at the fifth streamline from the top left,
starting at r = 82 m.
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well. This has implications regarding the assessments of
the shallow groundwater quality close to the extraction
point.
[12] It is useful to try to understand why this phenomenon

occurs. It certainly is a balance between the infiltration
through the confining layer close to the extraction point and
the amount of water coming from far. It can be proved that
all the extracted water comes through that confining layer,
as long as c > 0. If Kc/a becomes larger (see equation (6),
after the scaling discussed above) the infiltration through the
confining layer for the same r becomes less, giving more
room for trajectories from below to overshoot the level of
the extraction. In the limit for c!1 this will occur always,
because the aquifer is confined then, and the water has to be
extracted from the aquifer itself.

Appendix A

[13] In this appendix we show that the integral in (11) is
always positive.
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The function f(y) = y � y2eyE1(y) is monotonously
increasing with f(0) = 0, so, if y = 2a/(Kc) < y0 =
1.559611
 
 
, with y0 � y0

2ey0E1(y0) = 1/2, then condition
(A3) is fulfilled and the derivation of (16) is complete.
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Figure 5. Parameter value c = 0.75 days. See Figure 2 for further explanation. Condition (16) has not
been satisfied.
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