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ABSTRACT

Everything around us is rapidly changing. Whole new blocks of buildings are built,
huge infrastructural projects are constructed and so on. Hence, there is a need of a
reliable and up-to-date inventory of the area and the objects of interest for mapping
and monitoring assets and their changes. An answer of this upcoming need is an
automated inventory of infrastructure using Remote Sensing and artificial intelli-
gence (AI) techniques.

Rail sector shares the same need for fast and reliable inspection on its infrastruc-
ture. Monitoring frequently the condition of the railway infrastructure, can improve
the maintenance efficiency and the avoidance of hazards. The traditional monitor-
ing techniques are costly, time consuming and in some cases dangerous, due to their
reliance on the physical presence of the inspector. Hence, new state-of-the-art tech-
niques that are able to frequently and without putting in risk human lives, inspect
the condition of the railway and its infrastructure.

This master thesis aims at developing an efficient workflow for combining 2D
imagery and 3D light detection and ranging (LiDAR) point clouds for the automated
detection and localization of the railroad infrastructural objects into 3D world coor-
dinate system, for monitoring the railway infrastructure.

Using deep learning (DL) methods in imagery we detected and mapped, approx-
imately the 60% of the railroad equipment of our interest (i.e. light signals and
equipment boxes). These detected equipment were analysed with stereoscopic tech-
niques to retrieve their position in 3D world coordinate system. That led to the
automated creation of a geographical information system (GIS) map having the po-
sitional and class information of railway equipment. Once the detected objects were
mapped, then the point cloud data were automatically cropped into voxels includ-
ing the same objects. Hence, using various sophisticated machine learning (ML)
techniques, the points referring to the objects were classified. Furthermore, combin-
ing the positional information provided via 2D analysis with 3D point clouds, the
vertical position was refined and the height of the mapped objects was estimated.
Lastly, the positional information estimated from the 2D analysis enhanced, the un-
supervised ML classification in point clouds. The product of this classification, has
the potential to be used as training data to Fugro’s point cloud classifier.

The proposed workflow and methods are based on rail environment using RILA -
a state of the art mobile mapping systems (MMs) which has multiple sensors able to
record the accurate position of the train and they can track and capture the railroad
and the environment next to it accurately up to a millimeter level.
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INTRODUCTION

The inspection of the railway infrastructure was involving one or more field oper-
ators (see Figure 1.1). This technique was dangerous, time consuming and costly
[16]. Automation and remote sensing techniques on the inspection of infrastructure
became feasible due to recent technological advancements. Nowadays, we have the
potential to process and store big amount of data in real time and with minimum
computational efforts. In addition, with the help of Al we are able to lower the risks
of hazardous situations (e.g. driving assistant) [17] as well as to visually inspect
potential structural damages [18]. Taking advantage of these new technologies, the
inspection of the railway infrastructure can be now performed by a remote operator

Figure 1.1: Monitoring the railway infrastructure by means of GNSS and leveling. The ac-
quisition of the geo-data made by the physical presence of an inspector (Figure
taken from [1]).

In this project, the acquisition of the input data was derived by cameras, geo-
graphical navigation satellite systems (GNSS) and mobile laser scanner (MLS), that
were mounted in Fugro’s mobile mapping system(s) (MMS) RILA (see Figure 1.2).
RILA was adjusted on the tail of the train, to acquire data of the railroad and the
surroundings.

GNSS Antenne

Foldable carbon fiber mast

Light weight Carbon-unit

360° LiDAR scanner
3 » Video Cameras 165°

IMU

Figure 1.2: Illustration of the main sensors and parts of Fugro’s MMs RILA. For the acquisi-
tion of geo-data, RILA consists of 3 LiDAR, 3 cameras, GNSS reciever and an inertia
measurement unit IMU (Figure taken from [2]).
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| INTRODUCTION

This thesis investigates the potential and advantages of combining 2D imagery
and 3D MLs data. The output of this research would be the creation of a suitable
workflow creating a geographic information systems (GIS) map that provides infor-
mation about the position of the side rail infrastructure (i.e. light signals and equip-
ment boxes). In more detail, 2D video frames capturing a part of railway in Ely (see
Figure 1.3), were used to detect the mentioned objects by means of convolutional
neural network (CNN). Once the 2D video frames were georeferenced, stereoscopic
techniques were used to retrieve the 3D position of the detected objects in the world
coordinate system, as to be located on a geographic map. The 2D object detection
via CNN involves the creation of 2D bounding boxes around the detected objects.
However, inaccuracies in the height of the created bounding boxes were noticed.
To compensate for these inaccuracies, 3D LiDAR point clouds were involved to re-
fine the vertical plane and the height information of the detected mapped objects.
First, the 3D volumes-voxels of the detected objects were cropped, based on their
estimated position retrieved from the previous 2D analysis. Then, the voxels were
classified, using machine learning (ML) techniques, either as “ground”, “object” or
“other”. Lastly, based on the classified points referring to the objects, the refinement
of the vertical plane and their height was made.

Automation in mapping railway infrastructural objects (i.e. light signals and
equipment boxes), is a proper definition of this thesis scope. Automation in the
sense that the user involves in placing the input 2D video frames captured via
RILA and the software returns the output. The output is a .csv file that includes the
object-class, position and height information of the railway infrastructural objects,
and classified 3D voxels that include the aforementioned three classes. The last out-
put of the thesis, unlocked the potential of using the automatically classified voxels
as training data for Fugro’s point cloud classifier.

Ely, United Kingdom

United .. 1
Kingdom "=

MMMMMMMMM

* Rail corridor

0 1 2 km
|

Figure 1.3: Ely, city in the United Kingdom. In blue the part of the railroad that the data of
this thesis were acquired.



1.1 MOTIVATION |

1.1 MOTIVATION

Railroad transportation represents a huge proportion of the travel needs in the globe.
Hence, the need of a fast, reliable and safe transportation is increasing. In the
Netherlands, the railway sector is an economic pillar of outmost importance with
a long history that begun at 1839. In addition, "The maintenance of tracks and track
side infrastructures is considered to be one of the most hazardous jobs in the rail industry”
[16]. The aforementioned need has led to safer and more efficient methods, using
remote sensing techniques for monitoring the railway infrastructure, having a sub-
jective diagnosis of its condition for maintenance and inventory reasons, regardless
of the weather conditions. A semi-automatic or fully automatic inspection will reduce
its subjectivity and will save public resources while improving the road safety” [19].

The previous decades, the inspection of the rail and the track side infrastructure
was made with inspectors being physically present (Figure 1.1). Lately, this has
changed and modern automatic remote sensing techniques have replaced the field
worker with a remote operator (Figure 1.2). Automation in monitoring railways and
the infrastructure next to it, brought a revolution in the inspection of the sector, min-
imising the delivery time of the results. As a consequence, the inspection frequency
increased, leading to faster and safer diagnosis of the railway condition [20]. Most
of the time, airborne light detection and ranging (LiDAR) and aerial photography are
used to extract the rail infrastructure, the railway itself as well as the catenary wire
masks [21], [22].

More recently, terrestrial MMS have been involved in monitoring the railway. Due
to the higher resolution that they provide, we are able to detect and classify smaller
infrastructural objects, such as light signals and equipment boxes, that they are not
observed in the railroad in high frequency. RILA is Fugro’s terrestrial MMS for the
acquisition of the railway geo-data. This research is dealing with the investigation
of using RILA’s 2D and 3D data to detect and map in 3D world coordinate system,
the aforementioned infrastructural objects.

1.2 SCOPE OF THE STUDY

There is a need for automated, safe and more frequent inspection of the infras-
tructural objects that are next to the rail. The current state-of-the-art methods for
the automated monitoring of the railway infrastructure mainly involve MLS for the
segmentation and classification of the 3D point cloud data. This technique is less
capable in the recognition of the infrastructural objects, where the involvement of
video cameras is more suitable even for smaller objects. “The distribution of 3D LI-
DAR point clouds become more and more sparse as the distance from the scanning center
increases, which brings difficulties for a 3D LIDAR to detect specific objects in the classifi-
cation step” [23].

The objective of this study is the investigation and the creation of an effective
workflow to combine georeferenced 2D video imagery and LiDAR data, for an auto-
mated inventory of the track side infrastructure.

Hence, this thesis proposes a reliable method that can deal with this need and
investigates the feasibility of combining 2D video imagery with 3D point clouds, to
acquire accurate 3D position of the signage next to the rail. In a nutshell, this study
approaches the problem by means of object detection in 2D video imagery using
deep learning (DL) techniques. After the objects of our interest are detected, using
the stereoscopic method of triangulation, their position in 3D world coordinates
is retrieved. Having their positional information in xy plane, the correspondingly
3D volumes-voxels are cropped from the point cloud and the objects are classified
using various ML techniques. Lastly, the height of the objects is retrieved by 2D and
3D fusion.

3
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1.3

RESEARCH QUESTIONS

Taking into account all the above and considering that Fugro rail operates the in-
novative and state-of-the-art RILA4.0, this thesis deals with the following research
questions.

Main question:

What would be an effective workflow to combine 2D and 3D data to map the
infrastructural railway objects (i.e. light signals and equipment boxes), with
an accuracy of a meter?

Sub-questions:

What are the properties of the input data?

What are the existing techniques for object detection in 2D imagery and what
are their pros and cons?

How to estimate the 3D position of the detected objects in 2D imagery?

What are the requirements of the inspection regarding the accuracy and pre-
cision of the position of the signage?

To what extent the feature detection from 2D imagery can be complementary
to the 3D point cloud classification, and how it might aid in improving the
accuracy of the classified point cloud?

Validation questions:

What methods can be used to describe the quality of the results? How can we
validate the results?

Can this method be linked to Fugro’s OnePortal system? Is it robust?



RELATED WORK

This chapter presents an overview of the theoretical knowledge and background,
that this study is using to approach its research. The literature review consists of
introducing the mobile mapping systems (MMS) and Fugro’s MMs RILA, the current
methods for object detection in imagery and the stereoscopic techniques, as well
as unsupervised classification techniques in point clouds. Lastly, the chapter deals
with some existed studies illustrating fusion methods between 3D and 2D data.

2.1 MOBILE MAPPING SYSTEMS - RILA

MMS, due to its mobility and multi-discipline, is a highly expanded method for the
collection of geo-spatial data [24], [25]. Typically, a MMS consists of various optical
and ranging sensors such as cameras, light detector and ranging systems (LiDAR),
radars, global navigation satellite systems (GNSS), inertial measurement unit (IMU)
systems etc. that are adjusted into a land-based, water-based, hand-based and aerial-
based vehicles. Hence, the MMS are able to acquire georeferenced data for mapping,
monitoring and other purposes with a remarkable detail and having a big coverage
depending on the application.

For monitoring of the rail infrastructure, Fugro uses the state of the art RILA
MMS. ”RILA uses a sophisticated GPS measurement system, combined with inertial mea-
surement units, laser scan technology and video cameras to collect the X, Y and Z position
of the track, the rail profile and parameters such as track gauge and cant” [26] (see Fig-
ure 1.2).

2.1.1  LiDAR

Laser light is one of the most important measuring tools for acquiring geo-data, in
civil engineering and geo-sciences. The reason of being such an important sensor
is that it provides a direct method for data collection with a millimeter accuracy
[27]. The way that the sensor calculates the distances is by measuring the travel
time of the propagated laser light beam when it hits an object. Depending on
the application, different wavelengths of lights are used. Typically, in topographic
measurements, near-infrared laser is used to acquire the geo-data [28]. The product
of a LiDAR survey is a point cloud - a collection of points in 3D space, having X, Y
and Z coordinates and other attributes, representing 3D shape of the objects.

2.1.2 Differential Global Navigation Satellite System (DGNSS)

"DGNSS is a code-based relative positioning technique that employs two or more receivers
simultaneously tracking the same satellites”[29]. DGNSS involves a fixed-based location
with well know position that improves the standalone GNss position data, provid-
ing positional corrections and eliminating pseudorange errors (satellite clock, atmo-
spheric, receiver noise) [30] (see Figure 2.1).

The positional accuracy of ranges from sub-meter level to meter depending mainly
on the distance between the fixed-based receiver and the user (rover), and the per-
formance of the receiver [[31], [32]].
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Known position

Figure 2.1: The complex of DGNSS. Left: fixed-base station with known position, right: The
user (rover). The distance between the two is the baseline (Figure taken from [3]).

2.1.3 Inertial measurement unit (IMU)

An IMU device, uses accelerometers and gyroscopes to measure the angular velocity,
body’s specific force and orientation. These electronic devices are mainly used in
maneuver airplanes and drones, autonomous vehicles and in robotics [[33], [34]].

IMU systems are of high importance in supporting GNSS in applications where
GNss is incapable of providing reliable positional measurements. “while GPS can pro-
vide precise-long-term position information in open areas, the GPS signal could be blocked
or attenuated by obstacles in urban areas resulting in GPS signal outages”[34].

2.2 OBJECT DETECTION METHODS IN 2D IMAGERY

There are two major categories of methods in object detection and object classifica-
tion/identification. The oldest one involves various computer vision algorithms for
feature extraction in 2D imagery, while the other category uses sophisticated ma-
chine learning (ML) and deep learning (DL) techniques like the convolutional neural
networks (CNN). The latter is also used for real time applications like automated
driving and robotics [35].

The first category of object detection in 2D video imagery with the use of clas-
sical approaches is discussed in this paragraph. The object detection can be done
using many existing techniques like the temporal/frame differencing, a method
which involves the calculation of the changes between different 2D frames [36]. In
addition, background subtraction which can be done by detecting an object, its tra-
jectory, and make a prediction of its behaviour [37], is also a well known technique
for object detection. Lastly, clustering based techniques are used, like the optical
flow method. For the sake of accuracy, the use of multiple 2D frames to identify an
object, reduces the false positives, hence it is better to have multiple frames instead
of a single image [37], [36].

Regarding the use of DL techniques like CNN for object detection and inventory
in 2D imagery, multiple studies exist and propose their own architecture. CNN is an
image recognition and classification technique that passes the input images though
convolutional layers (hidden layers) and filters (kernels) for feature extraction, and
classifies the objects that are present in them [38]. Object detection algorithms are
state-of-the-art computer vision techniques for locating instances of objects in 2D
imagery and video [4]. The majority of the studies are based on the pedestrian
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detection in urban areas, while a percentage of them are dealing with the identifi-
cation of signage in rural areas for self driving [35]. Another study, combines some
of the image processing techniques with the CNN, in order to return more reliable
and fast results for inventory purposes [39]. The quality of all ML techniques rely
on the architecture of the CNN models, but most importantly on the input data that
the user provides to train the classifier.

In various applications such as street monitoring, DL methods are used. More
specifically, you only look once YOLOV3 - a CNN architecture [38], that creates bound-
ing boxes when identify a class. The reason that CNN used instead of classical ML
techniques, is mainly the benefit of localization of the detected object (see Figure 2.2).
In addition, while classical ML techniques outperform when having small training
datasets, deep networks have achieved accuracy that is far beyond.

Classification Object Detection
+ Localization

Classification

CAT, DOG, D

L J
| T
Single obiect Multiple objects

Figure 2.2: Classification vs Object Detection (Figure taken from [4]).

2.2.1 Deep Neural Network - YOLOV3

You Only Look Once - YOLO, is a single neural network algorithm for object de-
tection with 106 hidden convolutional layers. Its architecture permits small object
detection, which is convenient in applications where the objects appeared in various
scales due to the varying distances from the cameras. In more detail, YOLOv3 down-
samples the input 2D video frames by the factor of 32, 16 and 8 (see Figure 2.3),
improving the detection of an object in different scales/distances from the camera.
Another important advantage of YOLO compared to other convolutional neural net-
works is its time performance. "The state-of-art version (YOLOv3) not only has high
detection accuracy and speed, but also performs well with detecting small targets” [40].

26 x 26 52 x 52

Figure 2.3: Scaling procedure of the an input image to optimize the detection of objects in
multiple scales (Figure taken from [5]).

In more detail, the algorithm resizes the input image to 416x416 and then down-
samples its size 3 times in different scales 8-16-32 [5] (see Figure 2.4). In every scale,
a single convolutional network predicts multiple boxes, one for every grid shell and
calculates the class probabilities for those boxes. These confidence scores are made
by using logistic regression and reflect how confident the model is, that the bound-

7
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ing box contains an object, and how accurate it thinks every box is [41]. Finally,
((52x52) 4 (26x26) + 13x13))x3 = 10647 bounding boxes created [42]. To get rid
of boxes with a low score and to find the best bounding box, a score-thresholding
and the non-maximum suppression technique are used (see Figure 2.5), that ignores
redundant and overlapping bounding boxes (see Figure 2.6).

36
61
91 /
ﬁg ‘y
m Concatenation gf Concatenation /
DarkMet Upsampling Upsampling
architecture ﬂ layer layer
Scale: 1 I
Stride: 32
I 7 v
N Scale: 2 f
Detection layers Stride: 16 L
at scale 1 /
94
Scale: 3
Stride: 8
106 U

Detection layers
at scale 2

Detection layers
at scale 3

Figure 2.4: The architecture of the CNN YOLOV3, for object detection (Figure taken from [5]).

Before non-max suppression After non-max suppression

Non-Max
Suppression

Figure 2.5: Choosing the best bounding box using the non-maximum suppression technique
(Figure taken from [6]).
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i

S xS grid on input 1 Final detections

Class probability map

Figure 2.6: The 3 steps that YOLOvV3 uses to create the bounding boxes in all 3 scales (Figure
taken from [5]).

The training procedure of the classifier does not differ much from the main de-
tection part; the ground truth knowledge makes it different. In more detail, 2 new
statistical /metric tools are present in every iteration that the classifier uses during
the training procedure. The first tool is the loss function or mean square error (MSE)
(see Equation 2.1). The main principal of the loss function is the intersection over
union (IoU) among the predicted and the ground truth bounding boxes, while the
confidence of the predicted object is based on the center of each bounding grid cell.
The second tool that YOLOv3 uses to access the quality of the trained weights is the
mAP [43], which is is the average precision calculated for all the classes. It is also
important to note that in some papers, the use average precision (AP) refers to mAP
interchangeably. To understand better the mAP as a metric for the performance of a
2D detector, we need to first review the metrics precision and sensitivity/recall (see
Figure 2.7). Hence, the metric mAP is defined as the summation of all the precision
of the classes, divided by the number of the classes (see Table 2.1).

1N -
MSE = N Y (V) = Y(t)? (2.1)
t=1

~

Where N is the number of input labels and ) (t), Y (t)the ground truth and predicted
corners of bounding boxes respectively [44]. MSE refer to the mean square error.

intersection intersection

Detected box
Precision= ——m Recall =

Detected box

Detected box

Figure 2.7: A cartoon showing the main metrics for the quality assessment of CNN (Image
source).
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TP = true positive FP = false positive
TN = true negative EN = false negative

.« . TP
Precision TP

Sensitivity/Recall Tpﬂ%

1 N TP
mAP N Li—1 TP TP

Table 2.1: 2D detector’s metrics.

2.3 ORIENTATION OF 2D PIXELS INTO 3D SPACE

There are multiple ways to localize a pixel into 3D space. These methods are us-
ing computer vision and stereoscopic techniques for the creation of depth maps, as
well as some newer techniques like the well known dense image matching [45] and
other photogrammetric techniques [46]. Hence, in this section some of the most
prominent methods are presented.

In literature, the terms depth map and disparity map, are referring to the correlation
of every pixel in 2D imagery with their distances from the camera. ”“By using the
principle of triangulation, the disparities of a number of 3D points mapped to pixels in two
images are computed. Then the visual information of depth is also recovered” [47]. Further-
more, advances in computer vision allow us to generate reliable 3D point clouds
from depth images. In more detail, the study [48] uses and presents a workflow on
how to generate georeferenced 3D point clouds (pseudo-light detection and rang-
ing LiDAR) by using the depth images and the information of the relative position
of the cameras.

The oldest photogrammetric technique is the stereo matching. With the technique
of stereo we can combine two or more images (multi view) for the creation of the
well known depth-imagery that gives us an illusion of the 3rd dimension [49]. This
technique requires the calibration of the camera (intrinsic and extrinsic), with the
latter to be the key for the creation of the depth images. In more detail, using the
method of triangulation/3D reconstruction and having knowledge of the position
of and pose of the camera (calibrated camera), it is possible to triangulate distances
(see Figure 2.8) and make estimations of the distance to points in the world [50],

[51], [52].

Central
cam

Left

cam Right
cam

2D
pixel
points

3D
world
points

Figure 2.8: Triangulation of 3 cameras with known relative distances.

For the triangulation to be performed we need to have knowledge about the
pinhole camera model (Figure 2.9) and the intrinsic and extrinsic parameters of



2.3 ORIENTATION OF 2D PIXELS INTO 3D spPAce | 11

the camera(s) (see Section 2.3.1). Equation 2.2 shows the forward projection model,
from a point in world coordinates to 2D pixel (projection matrix). Hence, creating
the back projection we are able to project the 2D pixels back to 3D world coordinates.
This procedure is also known as 3D reconstruction.

P=(X,Y,2)

o World coordinate system

-

principal point optical axis

coordinate
system

]
Il
~
]

v? Y

Figure 2.9: Pinhole camera model. An illustration of the forward projection (Figure taken

from [7]).
X
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P =K[R | t|W, v | =10 f ¢ f21 Tt b 7 | 22
1 0 0 1 r31 T3y 133 I3 1

Where P is the projected point vector in 2D, K the camera matrix (see equation 2.3),

R the rotation matrix (see also equation 2.5), t the translation vector (East, North, Down)
and W a point in world coordinates. The multiplication of the camera matrix K with
the transformation matrix [R | t] is called projection matrix.

2.3.1  Camera Calibration

"In geometrical camera calibration the objective is to determine a set of camera parameters
that describe the mapping between 3-D reference coordinates and 2-D image coordinates”
[53]. When a pinhole camera projects the 3D coordinates of a point to 2D image
plane, it introduces distortion (see Figure 2.10). Furthermore, transforming from the
real positions to pixels involves scaling and translation, since the size of the pixel
is not standard (e.g. 1 [mm]) and since the principal point does not correspond to
the center of the image sensor respectively. Hence, performing camera calibration is
essential to extract the camera properties and in particular the intrinsic and extrinsic
parameters of it (see Figure 2.11).
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(a) Barrel distortion. (b) Pincushion distortion.

Figure 2.10: Lens distortion types (Image source).
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Figure 2.11: Forward model of the extrinsic/intrinsic camera parameters (Figure taken from

(8D

Intrinsic : The pinhole camera model defines the geometric relationship between
a 3D point and its 2D corresponding projection onto the image plane. When using
a pinhole camera model, this geometric mapping from 3D to 2D is called a per-
spective projection. The retrieved information we get when we perform perspective
projection is the focal length of camera’s lens which is the optical distance from the
point where light rays converge to form a sharp image of an object to the sensor.
In addition, we retrieve information about the principal point, which is defined as
the spot of the image plane which the perspective center is projected, and the ra-
dial/tangential distortions, which are positional “shifts” of the projected points into
the image plane (see Figure 2.12). After we retrieve the intrinsic parameters of the
pinhole camera, we are able to construct the camera matrix (see equation 2.3) that is
used to undistort the image as well as to create the projection matrix Equation 2.2.

A Position with
distortion

dt

L

Ideal position

dr Radial distortion
dt Tangential distortion

Figure 2.12: Intrinsic camera parameters. Radial and tangential distortions in 2D image
plane (Figure taken from [9]).
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fx 0 ¢y
0 0 1

Where fy, fy the focal length of the camera and cy, ¢, the principal points of the
lens.

Extrinsic : As opposed to the intrinsic parameters that describe internal parame-
ters of the camera (focal distance, radial lens parameters), the extrinsic parameters
indicate the external position (see equation 2.4) and orientation of the camera in a
reference system (see equation 2.5). They are used to transform 3D coordinates to a
camera coordinate frame. In addition, extrinsic parameters can be used to describe
the relationship between multi-camera systems. In more details, the pose parame-
ters of the camera are defined as the pitch, yaw or heading and roll (see Figure 2.13).

z

h

Yaw

./

Pitch

X Roll Y

Figure 2.13: Extrinsic camera parameters - Pose (Figure taken from [10]).

t=| t (2.4)

Where t is the translation vector and t1,t2,t3 are the easting, northing and altitude
in [m] respectively.

cosxcos B cosasinfBsiny —sinacosy cosasinpcosy + sinasiny
R=| sinacosf sinasinfsiny+ cosacosy sinasinpcosy —cosasiny
—sinf cos B sin‘y cos B cos 7y

(2.5)

Euler angles rotation formula used for the construction of the above matrix. Where
«, B and 7y are the yaw, pitch and roll in [rad] respectively.

There are two main approaches for camera calibration, the photometric-calibration
which involves 3D or planar objects with known geometry, and the self-calibration
which is using constraints on the camera properties and the image scene. The latter
one is mainly used in 3D modeling [54]. Among the most famous, easy to imple-
ment and fast methods is the use of control points like the well known checkerboard
which has been used in computer vision the last decades. The latter method uses
pattern recognition algorithms such as Delaunay triangulation to identify control
points on the image [55] and then by the use of linear regression techniques to cal-
culate the distortion that the lens introduces. Furthermore, other techniques such as
the one that has been proposed by the [56], propose the use of non-linear methods
to calculate the distortion of the image by using circular control points.

13



14

| RELATED WORK

2.4 UNSUPERVISED POINT CLOUD CLASSIFICATION
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Figure 2.14: Workflow of how unsupervised aid to supervised classification (Figure taken
from [11]). First, using the region growing algorithm, an initial segmentation of
the point cloud is made. This segmentation is used to extract geometric features
to further refine the classification of the data.

Unsupervised classification techniques, need the minimum involvement of the user
with no use of training data, while they use the point density and the geometric
properties of the unstructured point cloud (topology) (see Figure 2.15). Thus, unsu-
pervised methods are used mainly as the initial segmentation of the raw unstruc-
tured point cloud data, to aid the final object-based classification (see Figure 2.14).
Depending the application, unsupervised classification methods might be suitable
because they are low in computational complexity. ”Automatic shape segmentation is
thus valuable to avoid labour intensive labelling” [11].

2.4.1  Geometric Feature Extraction

”Ground objects can be regarded as a combination of structures of different geometries. Gen-
erally, the structural geometries can be grouped into linear, planar and scatter shapes (see
Figure 2.15). A good segmentation of objects into different structures can help to interpret
the scanned scenes and provide essential clues for subsequent semantic interpretation” [57].
This can be done using only the raw X, Y, Z attributes of any point cloud [58].



Figure 2.15: Unsupervised classification. Left: Raw point cloud. Right: Segmented point
cloud based on the linearity (red), planarity (gray) and scattering (green) geo-
metric features [12].

" Feature extraction from a range of scales is crucial for successful classification of objects
of different size in 3D point clouds with varying point density” [15]. For the geomet-
ric properties of the point cloud to be retrieved, the use of the local properties of
a neighbour area of the points should be investigated. ”“The unstructured nature of
3D point cloud makes it necessary to recover neighbourhood information before meaningful
features can be extracted” [15]. After the investigation of the neighbourhood of the
points, the construction of the covariance matrix of the created eigenvalues is essen-
tial to derive the local properties of the points. "The features used in the separation of
different objects are important for successful point cloud classification. Eigen-features from a
covariance matrix of a point set with the sample mean are commonly used geometric features
that can describe the local geometric characteristics of a point cloud and indicate whether
the local geometry is linear, planar, or spherical” [59]. Hence, extracting the maximum
eigenvalues out of the covariance matrix, we can combined them to create the fol-
lowing features (see Table 2.2). Based on the created geometric features we are able
to classify unstructured point clouds.

[60] suggests a pre-segmentation approach using multi conditional random field
(CRF) classifier in order to define at a high-level the structure of a voxel. Those super
voxels are defined by using clustering techniques such as k-means. This method can
be defined as “weakly” supervised segmentation.

Formula

i i A=A
Linearity Ly =2 2

i A=A
Planarity Py, = 2/\1 3
Scattering S, = %
Omnivariance Oy = M AAs

i A=A
Anisotropy Ay = 1/\1 3
Change of curvature C) = m

n

Mean elevation Me — ijzl z
Elevation difference Ed = Zmax — Zmin

Table 2.2: Geometric features. Where A1 > Ay > A3 and Z the eigenvalues with the higher
values of the covariance matrix and the vertical direction respectively [15].
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2.4.2 Principal Component Analysis (PCA)

"PCA is an orthogonal transformation technique used to convert a set of points with possi-
bly correlated variables to another set of points with linearly uncorrelated variables called
principal components in which the first principal component has the largest variance and
each successive component is orthogonal to the preceding components” [59]. Hence, apply-
ing PCA to the created geometric features, the components with low variance - high
covariance, become redundant, leading to a smaller subset of components having
higher discriminative power.

2.5 EXISTING PIPELINES FOR FUSING 2D — 3D

A resent study focused on RGB 2D imagery and LiDAR data using a CNN for au-
tonomous vehicle environment, showed remarkable results [61]. The study was
based on the MMs MENGSHI, a system consisting of multiple visual and ranging
sensors. The pipeline of this study starts with the creation of an image that includes
the distance information in every pixel between the camera and the object (depth-
image), from LiDAR data. Then, it continues with the object extraction in 2D imagery
that is based on ground truth data. Lastly, these images and the combination of red,
green, blue, depth (RGB-D) were used to train the classifier. Hence, the inputs of the
classifier are objects consisted of four channels (R,G,B,Depth).

[19] is one of the most important studies on the object detection and object recog-
nition for the self driving in urban areas. The data of the study derived by LYNX
MMS comprised of RGB cameras and LiDAR. In this paper, the fusion between 2D
and 3D data was made for the road sign recognition by using the 2D imagery as in-
put for CNN. In more detail, the workflow started by segmenting and clustering the
3D point cloud for sign detection. The use of a digital surface model DsM and the
property of high intensity due to reflectivity of the signage were used for the seg-
mentation of the point cloud. To further classify and isolate the points that represent
the signage, the Density-based spatial clustering of applications with noise (DBSCAN)
clustering method was used. Next, having knowledge about the relative position
between the vehicle and the cameras as well as knowing the trajectory of the vehicle,
the clusters were re-projected on 2D images. Finally, using hierarchical classification
techniques, the semantics of the signage obtained and stored.

In [21] and [62], a different workflow was used for the fusion of 2D and 3D data.
Airborne high resolution imagery used for the detection of the rail infrastructure.
Then, the position of the objects that have been detected in airborne imagery were
used as a mask to spatially select matching point from airborne LiDAR point cloud
dataset. After this, the implementation of the Random sample consensus (RANSAC)
algorithm was used to accurately approximate the linear rail infrastructures (e.g.
rails), so to make the best match of the point by keeping the linear segments having
the less outliers.

Lastly, the study [63] combines photogrammetry point clouds that have been
created by overlapping airborne imagery with the stereo pair technique (see Sec-
tion 2.2), with LiDAR point clouds, to increase the accuracy of the 3D city models.



METHODOLOGY FOR OBJECT
MAPPING

This chapter deals with the input data, workflow, methods and tools that were used
in this project for the creation of the proposed workflow. After introducing the data
used for this research, the chapter illustrates the steps made in 2D and 3D analysis,
for mapping of the infrastructural objects (Figure 3.1).

3.1 WORKFLOW

Figure 3.1 illustrates the workflow of this project in a nutshell.

- ) ) Extract position & class
J,/ -:I Objel:itnD2ta[tJQCT|on Convolutional neural networks information of the detected
/ ;'/ bounding boxes

(- Camera
| | catibration |
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/' Retrieve the actual height of the
| detected objects and improve the |
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Figure 3.1: Workflow for mapping railway objects. The first 2 boxes refer to 2D image anal-
ysis while the last box to 3D point cloud analysis.

e The workflow starts with the preparation of the data as explained in Sec-
tion 3.3, to be suitable as an input to train the 2D classifier. Next step is
the training of the 2D classifier in Section 3.4 and the optimization of the 2D
detector network in Section 3.4.1.

e The first intermediate step of a camera calibration (see Section 3.6) was nec-
essary to re-project the estimated central coordinates of the created bounding
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boxes (2D pixels) into 3D world coordinates. Here, multiple functions were
created to transform the translation and pose information of the center of the
mass of the IMU system to a world coordinate system. The same procedure
was followed for the camera(s). Hence, mapping the forward projection from
3D coordinates to 2D image plane, we were able to perform the backward
projection (from 2D to 3D).

o After we georeferenced the cameras in Section 3.6, we were able to move to
the second box (Section 3.7). By combining pairs of 2D frames that include
the central coordinates of the created bounding boxes referring to the same
object, we retrieved the actual position of the objects in the 3D world coordi-
nate system. The triangulation method was implemented to reconstruct the
3D position of the detected objects - from 2D pixels to 3D world coordinate
system.

e The final intermediate step as described in Section 3.8, is the mapping/object
tracking and inventory. This step deals with the central coordinates triangula-
tion and the inventory of each individual detected object. The product of this
step a geographical information system (GIS) map having positional and class
information of all detected objects.

o After the creation of the object inventory, 3D light detection and ranging
(LiDAR) point cloud data used to refine the vertical information. In Section 3.9
it is described how the 3D point cloud data are cropped based on the po-
sitional results from the previous step, and divided into classes like terrain,
other and object, using machine learning (ML). Next, points that classified as
class: object are used to refine the height information of each object.

3.2 INPUT DATA

The input data consist of 2D imagery, position data - .csv file - including the ex-
trinsic information of the inertial measurement unit (IMU) system of every 2D video
frame, and 3D light detection and ranging (LiDAR) data.

2D Imagery: The video frames are 2D images taken via three pinhole cameras
(Section 2.3.1) that are mounted on Fugro’s mobile mapping system (MMS) RILA
(Section 2.1) which is installed at the tail of the train. The 2D imagery data were
compiled as moisac of the three synchronized 2D frames under the same frame
index. Hence, the raw imagery data is a tessellation of all cameras, where each
image has a dimension of 4096x4096 pixels (see Figure 3.2). The video frames used
in this thesis, are taken in 2019 and they capture 2.2km of railroad in the area of Ely
in the United Kingdom (see Figure 1.3).
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Figure 3.2: Raw 2D imagery data. A tessellation of raw images of the 3 cameras mounted
on Fugro’s MMS RILA. The dimensions of every individual 2D video frame are
2016x2016 pixels.

Position data: A csv file having positional, orientational and time information of
the center of the mass of the RILA’s IMU system, at the time of capturing the 2D
video frame data. In more detail the file consist of ten columns, as specified in Fig-
ure 3.3, frame index/longitude/latitude/easting/northing/altitude/heading/pitch/roll/time, of
the central of mass of the IMU system, and multiple rows (as much as the video
frames).
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S |frames/ep11-201002303-20190430-092646/frame_0763.jpg  0.272744417 52.43125295 554611.0773 283901.9618 6.371153521 137.0168381 2.075059462
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11 frames/ep11-201002303-20190430-092646/frame_0765.jpg  0.272783162 52.43122609 554613.8051 283899.0572 6.388034088 137.0796122 2.047132013
12 ‘framES/Ep11-ZDIDDZSDE-ZDIHMED-DHZMS/HEIT\E_D?ﬁﬁ.]pg 0.272802535 5243121267 554615.169 283897.606 6.396229826 137.1490633 2.03772342
13 frames/ep11-201002303-20190430-092646/frame_0767.jpg  0.272821895 52.43119924  554616.532 283896.1544 6.404180429 137.1387482 2.018315836
14 ‘frar‘nesfepllr201002303—20190430—032646/framej?ﬁB.Jpg 0.272841228 52.43118581 554617.8932 283894.7014 6.411813565 137.145541 2.014985419
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Figure 3.3: Capture of .csv file, including the position data, the extrinsic and the time infor-
mation of the RILA’s IMU system, for every video frame.

3D LiDAR Point Cloud: A point cloud dataset acquired via RILA, that captures

the railway and its surroundings. As mentioned in Section 2.1, the MMS RILA con-
sists of multiple LiDAR systems (see Figure 1.2). Because we are interested in the
railroad surroundings, the 3D point cloud data acquired via the 360° LiDAR scanner
- not via the two railscanners. The accuracy of the point cloud data is up 2cm level
in the horizontal and 3cm in the vertical plane [26].

3.3 PREPARATION OF THE DATA

The preparation of the data is split into two parts. The first part consist of labeling
of the data (see Section 3.3.1) in order to train the convolutional neural network
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(CNN), while the second part consists of cropping/undistorting (see Section 3.3.2)
the 2D video frames (see Figure 3.4).

Undistort

Undistort

Undistort

Figure 3.4: Preparation of the raw imagery data consists of cropping (left), dividing (center)
and undistorting (right).

3.3.1 Labeling Data - Training Data for detecting equipment boxes and traffic
signals

Here we describe how we obtain training data for training our classifier to detect
objects in the 2D imagery. “Every artificial intelligence system needs big data for training.
In particular, artificial intelligence for object detection requires a lot of images for training”
[64]. As a rule of thumb, an effective training dataset consist of 2000 labeled images
for every class, having different scale, rotation and illumination conditions [65].

We want to detect two classes of objects and therefore we also train for these
two classes. The first class consist of equipment boxes (see top left in Figure 3.5)
and the second of traffic signals (see bottom left in Figure 3.5). The choice was
made due to the shape and structure differences among these two classes as well as
their frequent appearance in the railroad. Another reason for this choice was their
similarity to other infrastructural object near the rail. Hence, the results of these two
objects can be used as a quality indicator of the performance of the neural network
of you only look once (YOLO). In more detail, the class “box” has many similarities
to planar objects such as buildings or warehouses next to the railroad, while the
"signal” class can be confused with poles.

Labeling the training data was done manually by myself using the open source
software application labelimg [66]. The number of labeled images is 995, with the
majority of them having more than one object to be labeled (see Figure 3.5).
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Figure 3.5: Creation of training data - Labeling procedure on raw input data. Top-left: la-
beled equipment box; Bottom-left: labeled signal; On top right, both objects
classes are present.

Note that the quality of the training data (labeling), dominates the performance
of the 2D detector. Hence, wrong labeling will lead to bad performance of the
detector and visa-versa, [[67] [68]].

3.3.2 Cropping - Undistorting the Input Data

In Figure 3.2, the raw 2D video frames is a tessellation of 3 frames. In order to use
the triangulation method to re-project the central coordinates of the created bound-
ing boxes to 3D space, the 2D images should be reconstructed to their original form
as acquired by the cameras. Hence, the raw images are cropped and split into three
distinct images (see Figure 3.4) with sizes of 2016x2016 pixels, to become suitable
input data for the 2D detector. Lastly, using the information of the intrinsic pa-
rameters of the camera(s) (Section 2.3.1), the images are undistorted such that the
2D coordinates of the created bounding boxes are corrected from shifts caused by
lenses distortions.

Figure 3.6 and Figure 3.7, illustrate the undistortion of an image using 2 different
methods. The methods differ in their choice of the scaling parameter alpha. The
alpha value ranges from 0 to 1, where zero alpha eliminates unwanted black pixels
which also cause the loose of some image information, while an alpha value of one
alpha value retains all image pixels by introducing some extra black pixels at the
edges [69]. In Figure 3.6, there are no black pixels on the edges, while there is a loss
of pixel-information compared to Figure 3.7. In this application, the 2nd method
is the preferably method for undistortion, as no valuable information is lost when

applying it.
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Figure 3.6: Distorted (left) and undistorted (right) image, due to lens distortions. Alpha = 0.

500

1000

1250

1500

1750

0 250 500 750 1000 1250 1500 1750 2000

o 250 500 750 1000 1250 1500 1750 2000

Figure 3.7: Distorted (left) and undistorted (right) image, due to lens distortions. Alpha = 1.

3.4 TRAINING THE YOLO 2D OBJECT DETECTION

"Good” training of the deep neural network, is essential for its performance as 2D
object detector. The metrics that are used in Section 2.2.1 as quality indicators of
the training procedure of YOLO, are the loss function (see Equation 2.1) and the mean
Average Precision (mAP) (see Table 2.1); both metrics were analysed in Section 2.2.1.
An ideal convergence through the training procedure of the loss function and the
mAP is to be stabilized bellow 1 pixel? and above 90% respectively [70], [65]. Many
factors play a role for this to happen. The major factors are illustrated in detail in
Section 3.4.1.

In our case, the output of the training procedure showed promising results as the
created weights end up having an average loss = 0.1687 pixel?> and a mAP above 95%
(see Figure 3.8).
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Figure 3.8: Plot that indicates the performance of the training procedure of YOLO’s weights
for 2D object detection. As the 2D detector is being trained, the mAP (in red)
is increasing and hence, it eliminates false positives. The decreasing trend of
the loss function (in blue) indicates that the 2D detector’s predicted bounding
boxes are in line with the ground truth based on the intersection over union IoU

principal. Both curves show sharp changes at the beginning of the training while
they stabilize at the end.

3.4.1  Optimization of the Yolo Neural Network Model

For detection and localization of the data, you only look once (YOLO)v3 is used. The
reason for that is that YOLOv3 detects and localizes objects in 2D pixel space with
high accuracy and speed. In addition it is able to perform well on small objects
(see Section 2.2.1). This was suitable for this application, because its architecture
permits detection in various scales. Due to the movement of the train cameras, the
railway objects appeared in multiple scales, hence, the use of YOLO was convenient.
The 2D position in pixels (i.e. center of the bounding boxes) of the detected objects
are later used to reconstruct the 3D world coordinate position of the objects.

The repository used to train the classifier was imported from darknet_for_colab

and was used on a local machine. The key factors that were customized in order to
have most fruitful results were:

e The maximum number of batches/iterations, which indicates how many times
the training runs thought the input data. As a rule of thump, 2000 batches for
every class is needed for the optimization of a training [65].

e The number of steps. The first step should be 80% of the max batches (it-
erations), while the second should be 90% of it. Steps, present checkpoints
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that define how the learning rate should change. In this way the 2D detector
avoids over fitting on the training data.

e The number of convolutional filters of YOLO that extract image features (e.g.
line detectors), tuned up with the following equation: Number of filters =
(classes +5) * 3. Hence, in this case the value of the convolutional filters is 21.

e Subdivision of the input images. Depending on the scale of the objects that we
want to detect, we can tune-up the subdivisions of the images so the network
could perform to large-medium-small scale objects. As mentioned before, in
this application we have multiple 2D video frames as a sequence that include
the objects of our interest in all scales. Hence, the 2D input images were
subdivided by 32,16, 8 (see Figure 2.4).

3.5 OBJECT DETECTION

The YOLO deep neural network (Section 2.2.1) is used for the detection of the railroad
infrastructural objects in 2D images. As input for the 2D detector, undistorted 2D
video frames (see Figure 3.6) captured via the 3 mounted cameras in RILA, in a
part of the railway that did not took part in the training procedure were used.
Except of the 2D images with created bounding boxes, the output of the detection
includes .csv files with information on the specific camera(s) that captured the 2D
video frames. This information includes their ID frame and 5 coordinates of every
bounding box (4 corners and the central coordinate). After this step, georeference
of the camera (Section 3.6) and the method of triangulation used to project 2D point
into 3D world coordinate space (Section 3.7).

36 EXTRINSIC CALIBRATION - FRAME GEOREFERENC-
ING

To be able to reconstruct the 3D position of a 2D pixel to 3D world coordinate
system, the camera(s) captured the images should georeferenced - to know its po-
sition and pose in world coordinate system. The intrinsic and extrinsic parameters
(Section 2.3.1) of the three cameras were provided in an .xml file. Regarding the ex-
trinsic parameters (translation and rotation), the central camera were defined as the
center of the local coordinate system. Hence, the pitch, yaw, roll and the offset of the
other cameras were taken with respect to the central camera. In addition, for every
2D video frame, the translation and orientation of the IMU system with respect to
the British coordinate reference system (OSGB36 — OSTN15) was provided in the
.csv file (Section 3.2). Hence, having knowledge of the fixed position and orienta-
tion of the central camera with respect to the IMU, we were able to georeference the
cameras with respect to the British coordinate system.

In more detail, the transformation matrix of the central point of the IMU was cre-
ated with respect to the world coordinates system. The transformation matrix is
a combination of a rotation matrix and translation vector (see equation 3.1). Con-
structing the transformation matrix of the central camera with respect to the IMU
and multiplying it with IMU’s transformation matrix, the transformation matrix
of the camera with respect to the British coordinate reference system was created.
Hence, with this procedure we georeferenced the central camera. Creating also the
transformation matrices of the central camera with respect to the other cameras, we
georeference the remaining cameras as well. Figure 3.9 illustrates in a nutshell the
complex transformations of the extrinsic parameters of the cameras in order to be
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georeferenced, which allowed us to proceed to the next step of the triangulation as
described in Section 3.7.

Ri1 Ry Rz | X
Ryt Ry Ry | Y
M = 1
R31 Rz Rzz | Z G-1)
0 0 0 1

Where Ri]- are the elements of the rotation matrix (see equation 2.5), X,Y,Z the ele-
ments of the translation matrix (see equation 2.4) and M the transformation matrix.
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A Left
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Figure 3.9: A cartoon showing the complex extrinsics of the cameras and IMU system
mounded on the Fugro’s MMS RILA.

3.7 TRIANGULATION - 3D RECONSTRUCTION

As mentioned in Section 2.3, the method of triangulation was used to back-project
a 2D pixel into 3D coordinate space (reverse perspective projection). Having all the
needed information of the coordinates of the detected objects, the OpenCV’s build-
in function cv2.triangulatePoints was used to perform the 3D reconstruction. In more
detail, the function’s technique is based on the intersection of the reconstructed 3D
vectors from the camera(s) to the object in one or two 2D frame(s) in case two or
one camera(s) involved respectively.

As input to the function, a pair of the created projection matrices (see equation
3.2) of the cameras as well as their projection points (bounding boxes central points)
that relate to the same 2D video frame were used (see Figure 3.10 and Figure 3.11).
In order to be consistent with Python’s library, the following steps were followed.
The translation vectors (see Equation 2.4), initialized in North-East-Down reference
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frame and then they were related with the 3D world frame East-North-Up, by ap-
plying additional frame transformation.

Proj,,; = K*M (3-2)

Where K is the camera matrix (see equation 2.3) and M the transformation matrix
(see equation 3.1). The construction of the Projj;-projection matrix, is needed for
the projection of the 2D pixels to 3D world and visa versa.
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Figure 3.10: The 2D coordinates of the detected bounding boxes of 2 consecutive 2D frames.
The coordinates of the corners and the center of the bounding box of the 2nd
frame are shown in red.

(a) 2D frame 2386. (b) 2D frame 2387.

Figure 3.11: Two consecutive 2D video frames captured via the central camera. In Fig-
ure 3.10, the bounding boxes’ coordinates of the left signals of both 2D frames
are illustrated.

In case there is a sequence of 2D video frames that include one or more objects
captured only by one camera, a pair of projection matrices can be replaced by the
projection matrix of that camera. In the place of the two projected points of the
same frame, 2 different 2D frames captured by the same camera (see Figure 3.12)
are used. Hence, we triangulate distances and make estimations of the distance to
points in the world, either from multiple cameras or multiple 2D frames from one.
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Figure 3.12: 3D reconstruction-triangulation, using 2 frames captured by the same camera
(Figure taken from [13]).
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Figure 3.13: Quality assessment of the triangulation. Back-projection of 3D reconstructed
points to 2D image plane pixels. The RMSE between them was 1.575 pixels.

Figure 3.10 and Figure 3.11, illustrate an example of bounding boxes’ coordinates
of only two consequently 2D video frames. In reality, this left light signal appeared
in more than two 2D video frames and hence, combining pairs of them, we are
able to reconstruct more than once the position of the signal in world coordinate
system. Furthermore, the method of triangulation was used, considering the central
coordinates of the bounding boxes of 23 video frames that captured and included



28

| METHODOLOGY FOR OBJECT MAPPING

the same left signal. In order to asses the calibration and triangulation procedures,
we first back-project the created 3D coordinates to 2D pixels (see Figure 3.13). In red,
the bounding boxes” central coordinates of the left signal of 23 consecutive frames,
while in blue star, the forward projection (see Figure 2.11) of the triangulations
that were made combining the central coordinates of the bounding boxes, back to
2D image plane. As it can be seen, the re-projected points fell into the projected
points having RMSE 1.575 pixels, which is an indicator of the accuracy of the camera
calibration. Another outcome of this figure is the sinusoidal pattern of the 2D
central coordinates of the detected bounding boxes. This can be justified by the
wobbling movement of the train and consequently, the mobile mapping system
(MMS) RILA.

Next, outliers from the estimated positions removed, using an iterative algorithm.
The algorithm, in every iteration keeps the subset of points that the value of their
horizontal plane is every time inside the standard deviation (std) (see Algorithm 3.1).
This iterative procedure ended when the number of triangulated points reached the
minimum of 4 (see Figure 3.14). The minimum number of estimated positions
decided to be 4 after trial and error.

Algorithm 3.1: ITERATIVE OUTLIER FILTERING (L, £_clear)

Input: A list with the estimated positions of an object £
Output: A list with the Easting, Norhing and Altitude of the object £ _clear

11=0
while length(L) > 4 do
if |x(i) —x < std(x)| or |y(i) —y < std(y)| then
L L_clear <— L.drop(L(i))
5 | i=i+1
6 x < median(L_clear(x))

y < median(L_clear(y))
8 z + median(L_clear(z))
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Figure 3.14: Bar chart illustrating the RMSE between the calculated positions and the ground
truth. It can be seen that the RMSE decreases during the outlier filtering process.
In addition, the Northing offset is higher due to the “South-North” direction of
the train at this part of the railway (see Figure 3.16).
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The Figure 3.15 is a scatter plot of the remaining 4 triangulations. Again, it can be
seen that the Northing variations were higher due to the “South-North” direction of
the train in these 2D frames. Hence, this “South-North” direction of the train cased
sharpest intersection angles of the triangulation vectors and as a consequence the
triangulations were less accurate.

Object's estimated positions using 4 triangulations
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Figure 3.15: Scatter plot illustrating the position of 4 triangulations. It can be seen that the
Northing range (~ 40cm) is approximately 6 times higher than the Easting range
(=~ 7cm). Lastly, the altitude deviates less at (~ 2cm). The minimum value-
coordinate extracted from the others to make the new local coordinate system
easier to read.
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Figure 3.16: The projection of the 4 estimated coordinates made via triangulation, into QGIS.
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Figure 3.16 illustrates the 4 estimated positions in the British local coordinate
system, using the QGIS. It can be seen that all the points fell on the actual position
of the left signal with a RMSE =~ 30 cm. The median value of the the remained
coordinates was used as the final estimated position of signal (Figure 3.17). The
acceptance value of the difference between estimated positions and ground truth,
was set by Fugro to be 1m.

Google

Figure 3.17: The final output coordinate of the 3D reconstruction, projected in google maps.

The procedure made in Section 3.5 and Section 3.7, can be seen at Figure 3.18. In
the Section 3.8, the shame pattern followed, this time for all the detected objects.

Figure 3.18: The procedure followed to map a single infrastructural object into world co-
ordinate system. Sequence of undistored and georeferenced 2D video frames
including the same detected light signal (left); triangulation/3D reconstruction
of the central coordinates of the bounding boxes (center); final 3D projection
into world coordinate system - GIS map (right).

38 MAPPING - AUTOMATED OBJECT INVENTORY

The object inventory was crucial for the automation of the mapping of the detected
infrastructural objects. The procedure of the 3D reconstruction of the position of one
infrastructural object was illustrated in Section 3.7. There, the choice of the frames
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that will be involved in the triangulation was made manually, knowing the presence
of that specific object in these 2D frames. In this section, the automation of this
procedure is illustrated. Automation in the sense that all the available video frames
are involving in the creation of Ely’s GIS map and hence, the 3D reconstruction of
all detected objects is considered. The selection of the 2D frames that include the
bounding boxes referring to the same object, made by using conditional statements
(see Algorithm 3.2).

Algorithm 3.2: INVENTORY (DF,CSV, W)

Input: List of csv files CSV, the size of the frame-window W
Output: Dataframe with all coordinates of every object DF

1 for i < csv_first to csv_last do

2 previous_frame <— csv_frame_number

3 pixel_threshold < 120pixels

4 threshold_step < 15pixels

5 ] —i+1

6 | frame_count <0

7 | while frame_count < W & j < length_csv do

8 current_frame <— csv_frame(j)

9 if previous_frame # current_frame then

10 pixel _threshold < pixel _threshold + threshold_step

frame_count < frame_count 4 current_frame — previous_frame
| previous_frame <— current_frame

11 if csv_previous_class = csv_current_class then

12 if csv_previous_coordinates — C_current_coordinates <
pixel_threshold then

13 DF < append_csv

u | | j=j+1

First, the selection of the 2D frames that will involve in the triangulation was
made. Hence, a frame-window of value 4 found that returned the position of the
majority of the infrastructural objects that are present in the Ely’s railway area. The
algorithm counts as individual objects all the classes that are present in the 1st 2D
frame and searches if they appeared also in the next 3 2D frames based on more
conditional statements. The second selection was based on a pixel-wise window.
Hence, the algorithm is checking if the central coordinates of the same class object of
the next 2D frames appeared in a certain pixel-window. It is worth to mention here
that the pixel-wise window deviates based on the combination of the 2D frames.
Hence, the area that the algorithm was checking to find a central coordinate, differ
between the 1st - 2nd and the 1st- 4th frame due to the motion of the train.

Furthermore, all the possible combinations of pairs of 2D frames were made. To
remove the outliers of hundreds of triangulations referring to the same object, more
conditional statements were used. First, a removal made to the results that their z
value referring to altitude, was outside of the range of —2 and 50000 [m]. These
numbers define the lowest and the highest elevation of railways worldwide [71], so,
anything below or above these numbers would be an outlier. In addition, Z score
formula (see Equation 3.3) was used for the second phase of removing outliers. The
triangulations kept, were inside the range of 95% of the std of the position.

After the outlier removal, the median coordinates of all directions in every indi-
vidual object kept and created the object inventory.

(3-3)
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Where x;, X the individual triangulations and the sample mean respectively, while,
S and z;, the std and the Z score of the samples respectively.

3. POINT CLOUD CLASSIFICATION

The 3D point cloud analysis was made to refine the vertical position of the de-
tected infrastructural objects. Although the 2D image analysis returned accurate
results in horizontal plane (see Section 3.7), the vertical estimations were inaccurate
(Chapter 3). The inaccuracy of the estimations in the vertical plane in 2D analysis,
was a consequence of the non precisely created heights of the bounding boxes (see
Figure 4.2). Hence, involving the centimeter accurate 3D point cloud in positional
mapping of the infrastructural objects, increased the confidence and the accuracy
of the results in the vertical plane and as a consequence, returned valuable height
estimations of the detected objects.

This section illustrates the techniques and methodology used for the classification
of the 3D point cloud. Instead of performing ground filtering (Section 3.9.1) and
unsupervised classification algorithms (Section 3.9.2) to massive 3D point cloud
data, it was decided to sub-sample the point cloud into 3D volumes-voxels. Hence,
based on the estimated position of the infrastructural objects (Section 3.8), point
cloud was cropped in voxels that include the area of the mapped objects. The length
and width of the voxels decided to be 4x4[m] so to have a higher confidence that
the voxels include the infrastructural objects. Having the object class information of
the estimated positions and the knowledge of the height of the objects, the height of
the voxels chose to be 4.5 and 3[m]| referring to lights signals and equipment boxes
respectively.

The major reason we cropped the 3D point cloud data into voxels, was to extract
the height information of the mapped objects. To do this, it was needed to clas-
sify the points that refer to objects so to calculate their height. Their height was
estimated by the absolute difference between the higher and lower elevation of the
classified points as object. To be able to classify the points that refer to the mapped
objects, ground filtering algorithms were performed (Section 3.9.1). After the voxels
classified as ground and non-ground points, unsupervised classification performed
into the non-ground points, to further distinguish the non-ground points as object
and other. In this way we were able to refine the height of the mapped objects.
There were also minor reasons that we analysed voxels instead of all the data. The
first reason is that we are able to use the classified points as object, as training data
for supervised classification. In this way, a further refinement can be done on the
already classified 3D point cloud data of Fugro. Second, having only a small part of
the 3D point cloud, ground filtering performe better in distinguishing the ground
and non-ground points (Section 3.9.1), due to the smaller elevation variations of
small 3D point cloud voxels. Lastly, having only the non-ground points of the 3D
voxels allow us to use object-based classification techniques, based on the geometric
properties of the objects (Section 3.9.2). The 3D point cloud analysis in a nutshell
can be seen in Figure 3.19.
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Figure 3.19: Followed steps for voxel classification. The 3D point cloud were cropped auto-
matically into voxels based on the estimated positions. Then, ground filtering
performed on voxels. Based on the principal component analysis (PCA) on non-
ground points, further classification was made creating the classes other and
object.

3.9.1  Ground Filtering - Digital Surface Model (DSM) of the Voxels

The ground filtering algorithms were performed on the created voxels. Having
filtered the ground points, further improve the performance of the unsupervised
classification such as the PCA. Hence, by better classifying the points that refer to
the infrastructural objects, we more accurately estimated the height of them.

The main reason that filtering the ground points improved the PCA, is that it
increased the discriminative power, of created geometric features (Section 2.4.1). In
more detail, having only the DsM of the points, geometric features like the planarity,
can be used to distinguish the vegetation from other more planar surfaces. The
terrain next to the railroad is flat (planar) hence, differentiating the ground from
the facade of an equipment box using the mentioned feature, is not trivial.

Initially, an iterative method was used for the ground filtering using the proper-
ties of a triangulated irregular network TIN, specifically the Delaunay Triangulation.
The method is based on the greedy insertion of ground points into a TIN [72]. In
more detail, this method creates a TIN that includes the lower points in every grid
cell. After the creation of a TIN, the distance and the maximum angle of the points
outside the TIN, from the created triangles, are checked. If the conditional statement
is met, the algorithm re-creates the TIN including the checked point. The resulted
TIN, is the DSM of a 3D point cloud voxel. The pseudo-code of the method (Al-
gorithm 7.1) as well as the flowchart (Figure 7.7) can be found in the appendix
Section 7.1.2.

Due to the complexity of the above method and because it is time-consuming, the
alternative algorithm of Cloth Simulation Filter (CSF) [14] was used for the ground
filtering. This technique was faster and performed better compared to the previous
algorithm, mainly due to its simplicity. In a nutshell, the algorithm flips a terrain
upside down (see Figure 3.20) and works as if a virtual cloth is placed on it. The
shape of this virtual cloth presents the digital terrain modeling (DTM) of the points
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while the remaining points are considered as the DsM. The steps that the algorithm
follows are illustrated in the flowchart (Figure 3.21).

finvers e

Y

Figure 3.20: CSF mechanism for creating DsM (Figure taken from [14]).
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Figure 3.21: CSF flowchart (Flowchart taken from [14]).

3.9.2 Geometric Feature Analysis

PCA was used in 3D point cloud analysis to further classify the non-ground points
(DsM) into the 2 new classes - object and other. The points that classified as object,
were used to calculate the actual height of the detected objects.

In more detail, having classified all the voxels as ground and non-ground points,
we performed PCA on the non-ground points (DSM). At first, Nearest Neighbors per-
formed to extract local geometrical features based on the structure of the 3D point
cloud [73]. The use of k-dimensional tree (k-d tree) was used for the organization of
the points in such way to accelerate the search of the Nearest Neighbors algorithm.
Using the created covariance matrix, we extracted the 3 eigenvalues with the higher
values and by combine them [12], the 8 geometric features Table 2.2 discussed in
Section 2.4.1, were created.

To choose the geometric feature(s) with the most discriminative power, visual
inspection Figure 3.22 and PCA Figure 3.23 were used.
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(b) Omnivariance

(c) Change of Curvature (d) Anisotropy

(e) Elevation difference (f) Mean Elevation

(g) Planarity (h) Scattering

Figure 3.22: 8 geometric features of a typical infrastructural signal. The color range follow

the same order as the visual color spectrum. Bluish ~ 0, Reddish ~ 1.
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Figure 3.23: PCA analysis for feature reduction. One feature can approximately reach the
80% of the discriminative power.

From the Figure 3.23 it can be seen that the use of 1 geometric feature, returned
approximately the 80% of the variance. To define the geometric feature that has the
higher variance, visual inspection was used. Furthermore, looking the Figure 3.22,
it can be concluded that the geometric feature omnivariance which is an indicator of
the local density of the points, returned the higher discriminative power compared
to the other features (see also Figure 3.24). Hence, using this feature we were able
to distinguish the non-ground points as class object and class other (see Figure 3.28).
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Figure 3.24: Discriminative power of the geometric feature omnivariance. The vegetation has

higher values, while the infrastructure (”object” and “other”) have relatively
low.
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Figure 3.25: Class: Object Figure 3.26: Class: Other Figure 3.27: Signal.

Figure 3.28: Classification of the non-ground points of a signal based on the geometric fea-
ture omnivariance.

The same procedure followed for the classification of the box’s non-ground points
into object and other, while in that case, the geometric feature scattering was used
(from appendix Section 7.1.1 see Figure 7.2 and Figure 7.6). The reason that scatter-
ing returned the higher discriminative power among all the geometric features, is
the nature of the silhouette of the equipment box which has flatter surfaces com-
pared to signals. Hence, the surroundings (vegetation, soil, other), have a different
pattern compared to the relatively flat surfaces of a box (see Figure 3.29).
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Figure 3.29: Discriminative power of the geometric feature scattering. The vegetation has
higher values, while the infrastructure (“object” and “other”) have relatively
low.

After the points that refer to the infrastructural objects were classified, we used
this information to adjust correctly the z coordinate of the detected objects and as a
consequence to calculate the actual height of them (see Section 4.3).

3.9.3 Outlier Removal

To accurately calculate the height of the detected objects, we referred to the classified
point cloud data (Section 3.9.2). Hence, a precise classification of the points referring
an infrastructural railway object was crucial, while every non-well classified 3D
point cloud led to errors. Figure 3.31 shows that although PCA performed into
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the voxel’s non-ground points (DsM), the classification results were imperfect and
outliers were present.

Furthermore, to overcome this, the creation of a triangulated irregular network
(TIN) was created with the use of Delaunay triangulation. In more detail, a TIN was
created based on the points classified as object. First, a threshold value was used as
an indicator of which edges were sufficiently long. This threshold was defined as
the mean value of edges. Considering the length of all the edges of the triangles,
vertices were considered as outliers and removed, when they were linked to more
than two long edges (Figure 3.32). Although this technique sufficiently performed,
the points consisting the class object, continue to have outliers (see Section 5.4).

Figure 3.30: Voxel. Figure 3.31: Class: Object. Figure 3.32: TIN object.

Figure 3.33: TIN of the class: object created Figure 3.32, to remove the outliers. Vertices whose
triangle’s edges were long are considered as outliers.

3.10 WORKFLOW AUTOMATION - SOFTWARE PACKAGE

A big part of this thesis was the automation of the developed workflow into a
software tool. For the software to become reproducible, shareable and open to
changes (e.g. include more object classes), many steps were followed. This steps
including unit testing of the methods of the software’s modules and packaging it
so to be able to run in different environments. To further assist the reproducibility
and ability of the developed tool to be shared, we have compiled it as well as its
necessary dependencies into a software container. This step will elevate potential
barriers of adoption and assist users for its further expansion.



RESULTS

This chapter presents the outcomes of this research. Section 4.1 starts with showing
the results of the image analysis, ending at the 15 outcome - the creation of a
geographic information systems (GIS) map of the detected infrastructural objects. In
Section 4.2 the results of the analysis of the point clouds around each detected object
are presented - the contribution of the point cloud analysis on the refinement of the
estimation of height and the vertical position of the detected objects. Section 4.4,
illustrates the main sources of the errors of the positional results.

4.1 DETECTION PERFORMANCE

To evaluate the performance of 2D detection, a sequence of 245 raw 2D video frames
capturing part of the railroad near Ely (United Kingdom) were used. From these 245
images the two objects introduced in Section 3.2 - equipment boxes and light signals
- were detected using the method based on you only look once (YOLO), as described
in Section 2.2.1 and Section 3.5. Looking at the results (see table Table 4.1), the
sensitivity /recall metrics in both classes is above 60%. Where sensitivity /recall, is
a metric that shows to what percentage the 2D detection detects an object correctly
(see Figure 2.7). The performance of 2D detection and the Table 4.1 were made
manually by visually inspecting the objects comparison to all input frames.

From this test dataset we conclude that the 2D detector mistakenly counted as
signal one different object (false positive), while in the class of box the 2D detector
performed precisely in all 2D frames.

Box Signal
True Positives - TP 68 63
False Positives - FP o} 1
False Negatives - FIN 43 37
Precision - TP / (TP + FP) 1 0.98
Sensitivity /Recall - TP / (TP + FN) 0.61 0.63
Mean AV. Prec - mAP 0.99

Table 4.1: 2D detector’s performance based on convolutional neural networks (CNN) metrics.
High recall and precision implies that 2D detection method detected correctly
ground truth objects.

The created bounding boxes did not always fit well the height borders of the
silhouette of the detected objects. Hence, the estimated z coordinates are not reliable.
Some extreme examples of the bad performance of the 2D detector can be found in
the appendix Figure 4.2.

4.2 3D RECONSTRUCTION

This section illustrates the first outcome of the workflow - the creation of a GIS map.
As mentioned in Section 3.8 and Section 3.7, first the object inventory was made
and then the coordinates of every individual detected object were retrieved. The
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reconstructed coordinates of the objects detected inside the 2D video frames were
compared with ground truth locations. The output is a GIS map with the position
and class information of the detected objects.

Figure 4.1 illustrates the creation of a GIS map that covers 2.2 Km railroad in the
area of Ely. The majority of the light signals and equipment boxes were mapped
correctly, especially in the low density areas, while in areas with high density of
objects, the performance of both the 2D detection and 3D reconstruction was lower.
The RMSE of the x,y difference between the estimated and ground truth position of
objects was approximately 30cm.

« Estimated boxes
* Ground truth boxes
- Estimated signals
o Ground truth signals

Figure 4.1: The main result of the 2D analysis - a GIS map of 2.2km railroad infrastructure
near Ely, United Kingdom. The map illustrates both the positions of the mapped
infrastructural objects and the ground truth. The figure contains 12 correctly
detected equipment boxes and 9 correctly detected light signals, presenting the
50% and 43% of the ground truth respectively.

For the creation of Ely’s map (Figure 4.1), 2744 2D frames taken by the central
camera were processed, 471 of them contained at least one of the two considered
objects. For this piece of railroad, the numbers of ground truth boxes and signals
were 24 and 21 respectively, while the 2D detector identified 17 and 12 respectively.
This led to a value (see Table 2.1) of approximately 70% for the class box and 57%
for the class signal. Through the inventory process, 12 and 9 boxes and signals were
mapped, loosing 29% of the detected boxes and 25% of the detected signals. Hence,
through 2D analysis we were able to map 50% of the railway light signals and ap-
proximately 43% of the equipment boxes, with an acceptable RMSE in the horizontal
plane of ~ 30 cm against the ground truth. Furthermore, while approximately the
75% of the 2D analysis returned reliable positional results in the horizontal plane,
there were cases that the estimated positions exceeded the acceptable error and they
were not mapped. As it mentioned above, in areas with high density of infrastruc-
tural objects, the estimations were less accurate. When the estimations exceeded
the 1m difference from ground truth were not mapped. Details are discussed in the
limitations chapter in Section 5.3.
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To estimate the height of the detected objects, the z value of reconstructed 3D po-
sition was used as the center of the mass. While 2D detector predicts the best fitting
bounding box that contains the whole object, the created 2D bounding boxes did
not always fit correctly the detected objects ( see Figure 4.2), hence, the estimated
heights were inaccurate. To improve this, point clouds were used (Section 4.3).

Figure 4.2: Not sufficient performance of the 2D detector regarding the height borders of the
bounding boxes.

(b) Offset in estimated position.

(c) Typical example of estimated position. (d) Offset in estimated position.

Figure 4.3: The left figures is a good approximation of the position of the object (interior
bounding boxes) while the right figures illustrate an offset in the horizontal
plane. The well georeferenced classified point cloud voxels (red: “object”, blue:
”ground”, green: “other”), are used to illustrate the quality of the 3D recon-
structed estimated position made by 2D analysis.

Figure 4.3, illustrates typical positional examples as well as some extremes, in
the 3D reconstructed position estimated via the 2D analysis. The bounding boxes
that refer to the infrastructural objects (interior bounding boxes), were obtained
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based on the estimated position. Their length is 1m while their height borders in
the z direction are +2.2 and +0.8[m] from the estimated position, for the signals
and the boxes respectively. Furthermore, Figure 4.3d reveals also the limitation in
approximating the height of the box, as well as the potential of using the classified
point clouds to refine it.

= - o= ‘.: ¢
Light Signal '
B - LR

TR gL

w o-a I 1w Equipment
pi! . ”],, Box

Figure 4.4: Cross road in the railway near Ely, UK. The illustrated equipment boxes are
different than the boxes used for training. As a consequence, 2D detector was
not able to capture them.

Lastly, due to the lack of training data from light signals that are present in the
crossroads (Figure 4.4), YOLO could not perform well. In more detail, crossroad
light signals and equipment boxes, differ from the conventional railroad signals
and boxes. In addition, there were conventional differences of what it was counted
as equipment box (Figure 4.4) from our labeling and the British rail. It is worth
to mentioned that in this part of the railroad, 2 crossroad are present. Hence, the
numbers that assess the performance of the 2D detection (detectors recall ~ 60%
and mapped objects ~ 50%), do not precisely representing the 2D detection’s per-
formance. Hence, it can be concluded that the 2D detection can actually map more
than the 50% of the light signals and equipment boxes that are present next to the
railway.

4.3 POINT CLOUD ANALYSIS

As it mentioned in Section 3.9.2 and Section 4.2, the point cloud data were analysed
in order to aid the calculation of the vertical position of results retrieved via 2D
analysis. Hence, considering the lower and higher elevation point of the points
classified as object, the actual length of the detected objects were estimated.
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Raw height [m] Outlier removal height [m] Difference [m]

boxo1 0.425 0.184 0.241
boxo2 2.585 2.585 0
boxo3 2.694 2.694 0
boxos 2.06 2.026 0.034
boxo6 2.416 2.409 0.007
boxoy 0.648 0.646 0.002
boxo8 2.196 2.196 0
boxog 2.016 2.016 0
box10 2.517 2.02 0.497
box11 2.808 2.808 0
signaloo 4.122 4.112 0.01
signalo1 0.034 0.031 0.003
signalo2 4.087 4.061 0.026
signalo3 4.116 4.1 0.016
signalog 4.007 4.007 0
signalos 4.137 4.137 0
signalo6 4.112 4.109 0.003
signalo8 4.095 4.095 0

Table 4.2: Estimated object’s height based on the lower and higher elevation points of the
classified points object, before and after outlier removal. The median height of the
boxes and signals is ~ 2.2 and ~ 4.1 [m] respectively.

After the outlier removal performed as discussed in Section 3.9.3, the height re-
sults of the objects were compared. From the Table 4.2, it can be seen that in some
cases (e.g. boxo1, boxoy and signalo1), the results were not rational. This can be
explained by the low point cloud density of these specific voxels and hence, the ob-
jective difficulty in defining the height of these object. Another outcome of the table
is that after the outlier removal, the heights of the boxes differ on average ~ 15cm
and ~ lcm on signals. Hence, it can be conclude that the height refinement that we
wanted when performed outlier removal was insufficient (see Section 5.4).

(b) Both assumed and retrieved height in-

2D-3D istration. .
(a) 3 average registration formation.

(d) Height based on the object class
points.

(c) Assumed height.

Figure 4.5: Typical example of assumed and retrieved height information of an infrastruc-
tural signal.
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(b) Both assumed and retrieved height in-

(a) 2D-3D average registration formation

(c) Assumed height (d) Height based on the object class points

Figure 4.6: Typical example of assumed and retrieved height information of an infrastruc-
tural box.

Part of the visulation of the results of the point cloud analysis were generated
in Fugro’s OnePortal (see Figure 4.5 and Figure 4.6). From the Figure 4.5 and Fig-
ure 4.6d, it can be seen the extra vertical information that the point cloud analysis
provided, allowed us to estimate the height of the detected objects instead of assum-
ing it (see Figure 4.3). It is clear that the vertical boundaries of the objects are in-line
with the vertical boundaries of the object class (red), where in the Figure 4.5¢ and
Figure 4.6c, the vertical boundaries assumed based on the estimated position. It can
be seen in both figures that the offset of the estimated vertical position triggered by
the inaccurate classification of the voxels. More detail of the limitations of the point
cloud analysis will be follow in the Chapter 5.

4.3.1  Execution time

Time in [min]

Labeling 960
Training 1320
Cropping & undisotrting 100 frames 8
Object detection in 100 2D frames 1.1
Triangulatting 100 2D frames 0.0
Extracting 22 3D voxels 0.4
Ground filtering of 22 3D voxels via CSF 0.2
Outlier removal of 22 3D voxels 0.7
Feature extraction of 22 DsM 4.1

Table 4.3: The table illustrates the time consumption of the core steps followed in this work-
flow.



4.4 ERROR BUDGET |

This sub-section illustrates through Table 4.3, the time needed to execute the main
steps that followed on this workflow. By far, training and labeling were the most
time-consuming processes that took place only once at the begging of the thesis.
It is worth to mention that 100 2D frames were used for the calculation of the
execution time of cropping, undistorting and object detection processes, because of
the limitation in the usage of random access memory (RAM) ~ 500MB in my local
machine. The reason that 22 voxels were used to calculate the time in the point
cloud analysis was that 22 objects were mapped in the Ely’s railway area.

4.4 ERROR BUDGET

This section illustrates the main error sources that contribute to positional offsets
from ground truth. The main countable source of error is the accuracy of the GNSs
and as a consequence the quality of the georeference of the 2D image frames and
3D LiDAR point cloud. The creation of the bounding boxes from the 2D detector
(see Figure 4.2), and the implementation of the methods triangulation (Section 3.7),
extrinsic camera calibration (Section 3.6), influence the quality of the measurements
as well.

The uncertainties from the implementation of the methods are triggered due to
decimal accuracy. For instance, when we triangulate intersected vectors to 3D recon-
struct a 2D position, small variations in the vectors - low decimal accuracy pixels -
can lead to remarkable errors when we project the 3D estimated position to world
coordinates that have higher decimal accuracy. These relatively small variations in
the intersected vectors are mainly caused by the imperfect creation of 2D bounding
boxes. The center of the bounding box is not being representative of the same point
in space in other 2D video frames in which the object is detected. This "pixel error’
will have results on the triangulated point, especially when the intersection angles
are sharp (see higher error in “South-North” direction in Figure 3.16). Hence, a
slight shift in vector due to this pixel error can have significant influence on the
triangulated point.

To maximize the estimated positional accuracy, Fugro uses a post-processing inte-
grated solution between inertia measurement unit (IMU) and dual frequency DGNSS
[74]. After smoothing GNSS estimations of 4 runs and considering 3D points of the
center-line of the tracks, Fugro states that using a track-distance correction in ideal
conditions, can lead to LiDAR accuracy of 8mm and 12mm, in horizontal and vertical
plane respectively.

For this thesis, the 2D video frames were georeferenced considering one run of
the RILA, while the 3D point cloud is a merged product of 2 runs. Fugro’s RILA
specification affirm that under ideal conditions, this can lead to a 2 to 3cm accuracy.

The following parameters influence the quality of the positional results.

® GNSS — DGNSS.

1. In urban/mountainous areas or over dense tree canopies, we experience
the “urban canyon” phenomenon where there might be smaller number
of visible satellites leading to less accurate positioning. In addition, the
introduction of multipath effect influence the measurement [32].

2. Baseline distance. The accuracy of the position depends on the distance
between the RILA’s GNSS antenna and a reference station [29].

3. Train velocity influences the accuracy of the position results the GNSS
results [32].

4. Position ilution of precision (PDOP) [75]. Depending on various param-
eters, we might experience unfavorable satellite geometry that leads to
less accurate positioning.
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e LiDAR — RILA4.0.

1. Depending on the density of the point cloud. Merging 3D point cloud
data from multiple scan measurements (runs), increase the density of the
point cloud and hence, decrease the uncertainty.

2. Material nature of the target object by the laser beam (Section 2.1.1). Re-
flective materials or even non-reflective materials after a rain (equipment
boxes), can significantly degrade the measurement quality [76].

3. Distance from the LiDAR. The uncertainty increases when the distance
between the object and the LiDAR increases [77].



5 LIMITATIONS

This chapter illustrates the main limitations of the methodology in every step of the
procedure both in 2D and 3D analysis.

5.1 LABELING - TRAINING

Labeling and training the data is a time-consuming process. In Section 3.3.1, it was
mentioned that for the training of the classifier, 995 2D frames were labeled. As it
was claimed by the developers of the convolutional neural network CNN you only
look once YOLO [65], a desirable training dataset should have 2000 labeled images
from every class. Although in our case the labeled images usually include more
than one object class in every raw frame (see Figure 3.5), the training dataset was
below the proposed number. The reason that no more 2D frames were labeled was
that the manual procedure of labeling consumed time. It is worth to be mentioned
here that the labeling cost 16 hours of work (see Table 4.3).

Training the 2D detector is a slow procedure as well. Using a small and homo-
geneous number of input data and reaching sufficient values of the mean Average
Precision (mAP) and loss function, the training procedure costed 22 hours in a local
machine (see Table 4.3). At the beginning, Google Colab was used for the training
of the creation of the weights because of the benefit of the provided computational
power in its services. Because of the 12 hours limitation that Google Colab provides,
the training procedure chosen to be in a local machine.

5.2 2D DETECTOR'S PERFORMANCE

The object detection can never reach the ideal mAP of 100% and cannot rid of false
positives (see Figure 5.1). In addition, as it mentioned in Section 4.1, the detectors
localization is imperfect, meaning that the creation of the bounding boxes using the
non-maximum suppression is defective (see Figure 4.2).
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Figure 5.1: False positive (FP) detection of the 2D detector - Confusing a speed limit sign as
signal. This lowered the precision of the 2D detector (see Table 4.1). Although the
sign appeared in multiple 2D images/frames, only in one frame the 2D detector
captured it as a signal.

5.3 OBJECT INVENTORY

As it was mentioned in Section 3.8, the inventory of the detected objects was a
crucial and complicated step, involving multiple conditional statements on the back-
end development of the software. These conditional statements were not working
in all scenarios, so, they failed to map all the detected objects found in 2D video
frames. In addition, in the Section 4.2, it was indicated that through the inventory
process, 29% and 25% of the detected signals and boxes respectively, were not able
to be mapped. Bellow, the main limitations are illustrated.

e In case an object appeared in a small number of 2D frames, the positional
confidence is decreasing.

e When an object appeared in small scale (far from the camera), the triangu-
lation results were not reliable. As it was mentioned in Section 4.2, higher
positional variations appeared when the intersection angles from triangula-
tion are sharp Figure 5.2.

e In parts of the railroad, especially in the crossroads, the infrastructural ob-
jects appeared closer than the other parts. Depending on how dense they are
placed, the window of 4 2D frames is not sufficient to map them. Depending
on various parameters, an amount of the railroad infrastructural objects was
not mapped Figure 5.3.

e When the conditional statements failed to “track” individual objects and miss-
count 2 different objects as one, the product of the triangulation was wrong.
When 2 or more objects of the same class are placed next or in front to each
other in a corner, the model has the potential to fail. Figure 5.4, is an example
of how big can become the offset when the model miss-counts the signals as
one.
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Triangulations
with big offset

O ground_boxes
ground_signals

@ calculated positions

Figure 5.2: The 22 estimated positions of the left signal. The majority of them have 30 cm
RMSE. The triangulations that used 2D frames including the signal in a small
scale have bigger offset.

% window_3s
% window_4
% window_6

Figure 5.3: Depending on the window frame, different boxes were mapped.
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Figure 5.4: Wrong triangulations (red). The model mixed the 2 detected signals as one.

5.4 OUTLIERS

As it mentioned in Section 3.9.3, to accurately calculate the height of the detected
objects, satisfactory classification results were needed. Using unsupervised classi-
fication (Section 3.9) and ground filtering techniques (Section 3.9.2), does not accu-
rately segment the 3D points into ground, object and other points. Although outlier
removal was performed to overcome this issue, the results were not good enough

Figure 5.5.

Qutlier

Figure 5.5: Remaining outlier after outlier removal technique performed.

Because of the low density of the 3D point cloud, especially the points referring to
signals, when removing the vertices linked to long vertices (Figure 3.32), important
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information got lost. Hence, the outlier removal algorithm modified to balanced
to remove sufficient amount of outliers and to still not lose important information
from the 3D point cloud.
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Section 6.1, answers the research questions introduced in Section 1.3. In addition, a
set of recommendations for future research have been identified and presented in
Section 6.2.

6.1 CONCLUSIONS

In summary, 2D imagery and 3D light detection and ranging LiDAR point cloud
needs to be combined to automatically map i. the position in 3D world coordinates,
ii. the height and iii. the class information of the infrastructural railway objects (i.e.
light signals and equipment boxes). The 2D analysis provides reliable results in the
horizontal plane, while, to refine the vertical position and estimate the height of the
objects, the 3D analysis is used.

1. What would be an effective workflow to combine 2D and 3D data to map
the infrastructural railway objects (i.e. light signals and equipment boxes),
with an accuracy of a meter?

An effective workflow to combine 2D and 3D data to map the infrastructural
railway is mentioned in Section 3.1. The workflow starts with the 2D imagery
analysis for detecting the infrastructural objects and estimating their position
in the horizontal plane. Then, the workflow switches to 3D LiDAR analysis to
refine the vertical position and estimate the height of the objects.

For the 2D object detection in 2D analysis, convolutional neural networks
(CNN) were used and approximately 60% of the present infrastructure was de-
tected. Once the pixel information of the central points of the 2D bounding
boxes of the 2D detected objects was retrieved, then, the stereoscopic tech-
nique of triangulation was used to reconstruct their 3D position in world
coordinate system.

For the inventory procedure, a sophisticated algorithm was created in order to
correctly map the detected individual objects. The inventory mapped the posi-
tion and class information of approximately 50% of the present infrastructural
objects, within an accuracy of a meter.

Having the inventory of the mapped objects, 3D point cloud voxels that in-
clude points referring to the infrastructural objects, were automatically cropped
from the 3D LiDAR data. Hence, performing unsupervised machine learning
(ML) and sophisticated algorithms to segment and classify 3D voxels, we ac-
curately classified the voxels into three classes (Objects, Ground, Other). The
classified 3D points as "Object” were used to estimate the height and refine
the vertical position of the mapped objects.

2. What are the properties of the input data?

The properties of the input data are illustrated expensively in Section 3.2. In
short, the input data consist of 2D video frames, 3D LiDAR point cloud and
a .csv file. The 2D video frames are mosaics of the three captures of the
cameras mounted to Fugro’s MMs RILA, with dimensions 4096x4096 pixels.
Regarding the 3D point cloud data, they were acquired via RILA’s 360° LiDAR
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scanner, having up to 2cm accuracy level in the horizontal and up to 3cm in
the vertical plane. Lastly, the .csv file consists of the position, the extrinsic and
time information of RILA’s IMU system, for every 2D video frame capture,
therefore it was used for georeferencing the cameras.

. What are the existing techniques for object detection in 2D imagery and
what are their pros and cons?

Some of the well known existing techniques in object detection in 2D imagery
and their advantages and disadvantages are discussed in detail in Section 2.2.
In short, there are two main categories of techniques used for object detec-
tion in 2D imagery. The classical computer vision techniques like the tempo-
ral/frame differencing, clustering-based techniques and background subtrac-
tion, and the state-of-the-art deep learning (DL) techniques involving CNN.

The use of CNN has dominated the process of object detection due to its accu-
racy and ability to be used in real time applications. Another advantage of
the use of CNN over the classical object detection techniques is the creation of
bounding boxes (i.e. localization of the detected object into 2D pixel space).
On the other hand, the classical object detection techniques are better in terms
of their independence of the need of the huge amounts of training data and
computational power that CNN requires.

In this thesis project, CNN were used for object detection in 2D imagery be-
cause we wanted to localize the objects into 2D space so to use stereoscopic
techniques to reconstruct their position in 3D world coordinate space.

. How to estimate the 3D position of the detected objects in 2D imagery?

The ways to estimate the 3D position of the detected objects in 2D imagery are
mentioned in Section 2.3. Advanced computer vision techniques like the cre-
ation of the disparity map/depth map as well as the oldest stereoscopic technique
of stereo matching, use the method of triangulation to reconstruct 2D pixels
into 3D world coordinate space. All techniques are using georeferenced and
calibrated camera(s) and more than one 2D image frame including the same
capture from a different view, to triangulate the distances.

The method of triangulation (Section 3.7) is used to reconstruct the 3D world
coordinates of an object. In order to implement the method of triangulation, at
least two frames referring to the same object are needed. For this scope, once
the central 2D coordinates of the 2D created bounding boxes were retrieved,
the method of triangulation was used. Knowing the relative distance of the
camera(s) and the difference in pixels of the central point of 2D bounding
boxes in pairs of 2D images, we estimate the 3D position of these pixels.

In this research, to increase the confidence of the estimation of the 3D posi-
tion of the detected objects in 2D imagery, multiple pairs of triangulated 2D
pixels were used when they were available. Therefore, the root mean square
error (RMSE) of the estimated positions from the ground truth is approximately
30cm. While this practice is correct, in Section 3.7, Section 4.4 and Section 5.3
it was mentioned that large errors (i.e. small pixel deviations due to the incon-
sistency of the pixels representing the same point in space in other 2D image
- causing big offset) are observed when the objects appeared in small scale
(i.e. far away from the camera). This can be explained due to the sharpest
intersection angles of the triangulation vectors.

Lastly, due to the imperfectness in the creation of the 2D bounding boxes (i.e.
bounding boxes do not include the object perfectly) obtained from CNN, it is
not guaranteed that intersected vectors with less sharp angles return always
more accurate results.

. What are the requirements of the inspection regarding the accuracy and
precision of the position of the signage?
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The inspection accuracy of the mapped infrastructural objects was set at the
threshold of 1m. This was possible to be monitored in the area of Ely because
of the given ground truth data. Therefore, estimations exceeding 1m from
ground truth were not mapped in the inventory (Section 4.2).

To generalize the pipeline in areas where there are no available ground truth
data, an iterative outlier filtering algorithm (Algorithm 3.1) was used to im-
prove the precision of the sample (Section 3.7). Therefore, by removing estima-
tions that were labeled as outliers according to the aforementioned algorithm,
the variance of the sample decreased, increasing its precision.

. To what extent the object detection from 2D imagery can be complementary

to the 3D point cloud classification, and how it might aid in improving the
accuracy of the classified point cloud?

In Section 3.9 and Section 4.3, it is extensively discussed the reasons of 2D,
3D fusion, and the followed procedure. In short, the resulted object inven-
tory from 2D analysis benefited from 3D LiDAR point clouds, by automatically
estimating the height, and refining the vertical position of the mapped infras-
tructural objects. On the other hand, the object detection from 2D imagery
was complementary to the 3D point cloud classification, via the automation
in the creation of 3D training data. Generally the creation of 3D training data
is a time consuming and expensive procedure. These training data will be
used as input to further train Fugro’s classifier.

The automation in extracting 3D point cloud voxels that include the points re-
ferring to the objects of our interest, aid the classification of 3D point cloud. As
discussed in Section 3.9, ground filtering techniques perform better in small
3D point cloud voxels due to their smaller variations in elevation. Therefore,
after extracting the ground points from 3D voxels, then the unsupervised
classification technique of principal component analysis (PCA) is used. The
PCA classifies the non-ground points into two new classes (class: object, class:
other). There are two reasons for the remarkable performance of the PCA clas-
sification. The first reason is the sufficient result of the ground filtering. The
second reason is that extracting the relatively planar ground, the 3D voxels
remained with unstructured vegetation (i.e. high scattering properties) and
infrastructural objects with planar and omnivariance properties of their geo-
metric features (Section 3.9.2). Therefore, using the positional results from
the 2D analysis, the discriminative power of the geometric features of the 3D
objects sufficiently increased, leading to an accurate classification of 3D point
cloud.

. What methods can be used to describe the quality of the results? How can

we validate the results?

CNN metrics indicating the quality of the 2D detector were illustrated in Sec-
tion 2.2.1. The quality assessment of the training and the detection perfor-
mance of the 2D detector were discussed in Section 3.4 and Section 4.1. The
mAP = 95% and loss function & 0.17 pixel> were used to describe the qual-
ity of the trained weights of the 2D detector (see Figure 3.8). The evaluation
of the 2D detector’s performance was made using the mAP ~ 100% and the
sensitivity /recall ~ 60% for both classes (see Table 4.1).

To evaluate the camera calibration results and the forward /backward model,
the estimated positions were projected to 2D image space (see Figure 3.13).
The RMSE ~ 1.575 pixels between the projected estimations and the created by
the 2D detector bounding boxes, was used to asses the quality of the triangu-
lation method.

The validation of the 3D reconstruction (i.e. positional estimations ), was
made using the RMSE ~ 30cm against the ground truth (Section 4.2). In ad-
dition, the range of the estimated coordinates in horizontal plane was used
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to describe the quality of the triangulation (Section 3.7). It was found that
depending on the direction of RILA mobile mapping system (MMS), the es-
timation error showed deviations. More specifically, when the direction of
RILA was ”South-North” the precision of the estimations in this direction
was lower compared to the estimations of the other direction (”East-West”)
(see Figure 3.15).

To describe the quality of the 3D analysis, a PCA metric showing the variance
of the created geometric features was used (see Figure 3.23). The choice of the
geometric features, the performance of the classification, the ground filtering
and the outlier removal algorithms, were visually inspected.

8. Can this method be linked to Fugro’s OnePortal system? Is it robust?

It can be concluded that the followed methodology can be integrated to Fu-
gro’s asset digital twin named OnePortal. In Section 4.3, the results of both 2D
and 3D analysis were illustrated on Fugro’s OnePortal visualization system ac-
curately (i.e. within the range of the given threshold of 1m) . The integration
of the method to OnePortal visualization system is generic and robust and as
long as ground truth data are provided, it can be used for the visualization of
the assets of other case-studies.

6.2 RECOMMENDATIONS

The recommendations section is distinguished in 2 parts. The first part is a discus-
sion for future research based on the 2D analysis, while the second part presents
potential alternatives in 3D analysis.

The recommendations are based on the dominant sources of the errors of the
proposed model. The steps of labeling, training and detection in 2D analysis (Sec-
tion 3.1), consist the biggest proportion of the error budget, while the 3D analysis
portion is smaller. Hence, using alternatives to increase the overall performance of
the model, is discussed in this section.

6.2.1 Training Data

Creating training data for deep learning in 2D analysis is a time consuming proce-
dure, especially in cases where multiple classes in various non-homogeneous envi-
ronments are needed. ”Generating large labeled training data is becoming the biggest bot-
tleneck in building and deploying supervised machine learning models” [78]. In addition,
in cases where there are limited data for labeling (e.g. rarely appeared infrastruc-
tural railway objects), overfitting might be caused. ”Owerfitting is a fundamental issue
in supervised machine learning which prevents us from perfectly generalizing the models
to well fit observed data on training data, as well as unseen data on testing set” [79]. To
overcome these limitations, augmentation and automatic labeling alternatives are
suggested.

e Geometric transformations, color space augmentations, kernel filters, mixing
images, random erasing and feature space augmentation, are some augmenta-
tion techniques that are used to improve the performance of the model [80].

e Tensorflow library uses image augmentation [81] which improves 2D detec-
tor’s accuracy approximately by 2.3 mean average precision (mAP) and hence
it increases the performance, as well as it is more convenient because it allows
the use of a smaller number of training data [82].
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e Automatic image annotation (AIA), where using machine learning (ML) tech-
niques, extracts semantic features in imagery [83]. Using (AIA) techniques,
will reduce the amount of labeling hours dramatically.

6.2.2 Deep Convolutional Neural Networks Alternatives

It was mentioned above that the effectiveness of the 2D detector is important for
the overall performance of the model. The convolutional neural networks (CNN),
can be more efficient detection-wise and on how thoroughly create the borders of
a bounding box (localization). This subsection proposes alternatives that may be
used to increase the overall performance of the model.

e Gaussian YOLOV3 : a method for predicting the localization uncertainty that
indicates the reliability of a bounding box. By using the predicted localiza-
tion uncertainty during the detection process, the proposed schemes can sig-
nificantly reduce the false positives and increase the true positives, thereby
improving the accuracy [84].

e Using a CNN that combines object detection and localization, with instant seg-
mentation (Deep Sort) [85]. In this way, the masks of the detected objects can be
used instead of the central coordinate of their bounding boxes as the center of
their gravity. In this way, both the mAP (see Table 2.1) and the re-construction
of their position in 3D world coordinate system (Section 3.7), may return finer
results.

6.2.3 Generalization of the Pipeline

The automation in object inventory (Section 3.8) had some limitations that were il-
lustrated in Section 5.3. This sub-section discusses ways to mitigate those limitation.
It is recommended to:

Figure 6.1: The benefit of involving all cameras. This image is taken via Fugro’s OnePor-
tal system and illustrates a tessellation of RILA’s 3 cameras. In front of the
equipment box there is vegetation that blocks the direct and clear view of the
infrastructure from the central camera.

e Make use of Kalman filter to predict the trajectory of the center of the detected
bounding boxes. In this way, a hyper-parameter for the selection of the frame-
window and pixel-window, may be introduced. Hence, the choice of the 2D
frames involving the triangulation may become more robust.
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e Involve hypothesis testing and confidence interval in the positional results. In
this way, post processing may be introduced to the estimated positions with
low confidence.

e Involve all the 3 cameras. Having more 2D frames increases the overall
model’s performance Section 5.3, hence, using the frames taken via all cam-
eras will improve the performance. In addition, when there are other objects
or vegetation in front of an object, the central camera is insufficient in provid-
ing clear shots of the object Figure 6.1, hence the use of all possible cameras
can tackle the ”blind spot” issue.

6.2.4 Improve Classification

By improving the classification in 3D point clouds, the calculation of the height of
the detected objects will be more robust. Bellow, steps for 3D point cloud classifica-
tion refinement are proposed.

e Enhance the 3D point cloud data with the R,G,B information from the cam-
eras. Combine the R,G,B with the geometric features (Section 3.9.2) created
via the principal component analysis (PCA), will increase the quality of the
classification.

e Using supervised classification (see Figure 2.14) after the PCA analysis will
return remarkably greater results.

e Optimize the iterative ground filtering method discussed in Section 3.9.1. Apart
of the complexity of that algorithm, it can be optimized to perform in voxels
including an equipment box as well as a signal. Due to the density differences
of these two voxels, the algorithm should tuned-up accordingly.

e The use of more sophisticated algorithms for outlier removal such as a fast
cluster statistical outlier removal (FCSOR) [86], may help us further clean the
points classified as object.
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Figure 7.1: Voxel signal classification.
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7.1.1  Geometric Features - Principal Component Analysis (PCA)

(b) Omnivariance

(e) Elevation difference (f) Mean Elevation

(g) Planarity (h) Scattering

Figure 7.2: 8 geometric features of a equipment box. The color range follow the same order
as the visual color spectrum. Bluish ~ 0, Reddish ~ 1.
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Figure 7.3: Class: Object Figure 7.4: Class: Other Figure 7.5: Box.

Figure 7.6: Classification of the non-ground points of a signal based on the geometric feature
scattering.

7.1.2  Ground Filtering

The steps and the principal of this method can be seen as a diagram in Figure 7.7
as well as in the pseudo-code Algorithm 7.1.
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Figure 7.7: Flowchart of the iterative ground filtering method using TIN.

3 e 4 4 4 36363 3 3 3 3 3 e e 4 4 3 3 3 3 3 3 3 e e A 3434 N S S A3 AN



7.1 POINT CLOUD ANALYSIS | 61

Algorithm 7.1: GROUND FILTERING (P, grid_size, 0, d)

Input: Unstructured point cloud data P, the size of the grid cell grid_size,
the maximum allowable angle value 6, and the maximum allowable
distance d

Output: P’: the non-ground points

1 for i < cell_start to cell_end do
2 L ground_points < lowest_point_of cell

3 TIN < ground_points # Delaunay triangulation

4 while True do

5 | fori<« 0tolength(no_ground_points) do

6 distance = dist(no_ground_point(i), triangle)

max_angle = max_angle(no_ground_point(i), triangle_vertices)

if distance < d & max_angle < 6 then
| TIN « append no_ground_point(i)
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