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Precision Medicine and Imaging

Predicting the 1p/19q Codeletion Status of
Presumed Low-Grade Glioma with an Externally
Validated Machine Learning Algorithm
Sebastian R. van der Voort1, Fatih Incekara2,3, Maarten M.J.Wijnenga4, Georgios Kapas2,
Mayke Gardeniers2, Joost W. Schouten3, Martijn P.A. Starmans1, Rishie Nandoe Tewarie5,
Geert J. Lycklama6, Pim J. French4, Hendrikus J. Dubbink7, Martin J. van den Bent4,
Arnaud J.P.E. Vincent3,Wiro J. Niessen1,8, Stefan Klein1, and Marion Smits2

Abstract

Purpose: Patients with 1p/19q codeleted low-grade
glioma (LGG) have longer overall survival and better treat-
ment response than patients with 1p/19q intact tumors.
Therefore, it is relevant to know the 1p/19q status. To
investigate whether the 1p/19q status can be assessed prior
to tumor resection, we developed a machine learning algo-
rithm to predict the 1p/19q status of presumed LGG based
on preoperative MRI.

Experimental Design: Preoperative brain MR images
from 284 patients who had undergone biopsy or resection
of presumed LGG were used to train a support vector
machine algorithm. The algorithm was trained on the basis
of features extracted from post-contrast T1-weighted and
T2-weighted MR images and on patients' age and sex. The
performance of the algorithm compared with tissue

diagnosis was assessed on an external validation dataset of
MR images from 129 patients with LGG from The Cancer
Imaging Archive (TCIA). Four clinical experts also predicted
the 1p/19q status of the TCIA MR images.

Results: The algorithm achieved an AUC of 0.72 in the
external validation dataset. The algorithm had a higher
predictive performance than the average of the neurosur-
geons (AUC 0.52) but lower than that of the neuroradiolo-
gists (AUC of 0.81). There was a wide variability between
clinical experts (AUC 0.45–0.83).

Conclusions: Our results suggest that our algorithm can
noninvasively predict the 1p/19q status of presumed LGG
with a performance that on average outperformed the onco-
logical neurosurgeons. Evaluation on an independent data-
set indicates that our algorithm is robust and generalizable.

Introduction
Low-grade glioma (LGG) is a primary brain tumor that origi-

nates from glial cells. The World Health Organization (WHO)
2016 criteria recognize three subtypes based on molecular and

histologic features: (1) diffuse isocitrate dehydrogenase (IDH)
wild-type astrocytoma (IDHwild-type, 1p/19q intact), (2) diffuse
IDHmutant astrocytoma (IDHmutated, 1p/19q intact), and (3)
oligodendroglioma (IDH mutated, 1p/19q codeleted; refs. 1, 2).

Studies have shown that the distinction between these three
categories is clinically relevant in terms of prognosis and man-
agement: in patients treated with optimal surgical resection,
followed by radiotherapywith or without chemotherapy,median
survival is longest of those with oligodendroglioma (3, 4). In
addition, studies have suggested that residual tumor has a more
negative impact on survival in 1p/19q intact, IDH-mutated astro-
cytomas than on 1p/19q codeleted, IDH-mutated oligodendro-
gliomas (5, 6). Therefore, the ability to predict the molecular
subtypes of LGG at an early stage could provide better guidance of
risk-benefit assessment and clinical decision making.

The recent shift from histopathology-based glioma classifica-
tion to the molecular subtype-based WHO 2016 classification
gave rise to neuro-oncologic radiogenomics research in which
features seen on preoperative MR images are used to predict the
genetic mutation status of glioma (7–9). Features such as frontal
tumor localization, indistinct tumor borders, heterogeneous sig-
nal intensity (SI) on T2-weighted images, and both cortical and
subcortical tumor infiltration all suggest the presence of 1p/19q
codeletion (7).

One way of linking MRI features to 1p/19q codeletion is
throughmachine learning. Although several studies have applied
this method to datasets of patients with high-grade glioma, few
studies have developed radiogenomics methodology in
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LGG (10–15). Of the ones that have, most have not used an
independent test set and, therefore, it is difficult to estimate their
actual performance in the real-world clinical set-
ting (10, 11, 13, 14). Lu and colleagues (12) did use an inde-
pendent test set, but this set contained a very limited number of
LGG cases (N ¼ 12). Zhou and colleagues (15) used a test set
consisting of IDH-mutated LGG and high-grade glioma to eval-
uate the 1p/19q codeletion prediction performance. This is not an
ideal test set as 1p/19q codeletion status is not clinically relevant
for high-grade glioma, and there is a selection bias of IDH-
mutated tumors only.

The aim of this retrospective study was to develop a radio-
genomics approach to predict the 1p/19q codeletion status of
presumed LGG based on preoperative MRI features, with a
machine learning algorithm that was validated on a large external
dataset.

Materials and Methods
EMC/HMC dataset
Study participants. All patients aged 18 years or older newly
diagnosed with presumed LGG and who underwent tumor
resection or biopsy between October 2002 and March 2017
at the Erasmus MC, University Medical Centre Rotterdam
(EMC) or the Haaglanden Medical Centre (HMC) were retro-
spectively included in the EMC/HMC dataset. Patients were
eligible if histopathologic diagnosis with molecular subclassi-
fication of the 1p/19q codeletion status and preoperative
post–contrast T1-weighted and T2-weighted MR images were
available. The study was approved by the Medical Ethical
Committee of Erasmus MC, who waived the need for written
informed consent from the patients due to the retrospective
nature of this study and the (emotional) burden that would
result from contacting the patients or their relatives to obtain
consent. The study was performed in accordance with the 1964
Declaration of Helsinki and its later amendments or compa-
rable ethical standards.

Histopathologic diagnosis and molecular subclassification. Tumor
samples were obtained from patients who underwent surgical

resection or biopsy. Histopathologic examination was per-
formed by neuropathologists and further molecular subclassi-
fication of the 1p/19q codeletion and/or IDH mutation status
was performed as part of the diagnostic routine by molecular
biologists using fluorescence in situ hybridization (FISH), loss of
heterozygosity analysis, and targeted next-generation sequencing
panel using an Ion Torrent Personal Genome Machine (Life
Technologies) or Ion S5XL or a Multiplex Ligation Probe Assay
(MRC-Holland; refs. 4, 16–18). All tumors were subclassified on
the basis of the WHO 2016 criteria.

Imaging acquisition and postprocessing.MR images were used that
were acquired in the routine diagnostic process. T1-weighted and
T2-weightedMRI sequenceswere used for the algorithm. Inmany,
but not all, patients, T2-weighted fluid-attenuated inversion
recovery (T2w-FLAIR) imaging was also available. As images were
acquired at a number of sites, the imaging data were heteroge-
neous with a wide range of acquisition settings in voxel spacing,
matrix size, echo time, repetition time, number of slices, slice
thickness, and field strengths on scanners from three different
manufacturers (General Electric, Philips, and Siemens). An over-
view of the scanning settings is given in the Supplementary
Materials, Appendix 1.

All images were visually inspected by M. Smits and excluded
if MRI artifacts were present. Presumed LGG was defined as
nonenhancing tumor, as seen on the presurgical post–contrast
T1-weighted MR image. Therefore, all post–contrast T1-weighted
images were reviewed and excluded if clear or solid enhancement
was present. When available, T1-weighted precontrast images
were inspected for hemorrhage to prevent false-positive assess-
ment of enhancement. Although tumors with evident contrast
enhancement were excluded, minimal enhancement was toler-
ated. Minimal enhancement was defined as punctiform (<1 mm
in diameter) or poorly defined faint enhancement, similar to
Pallud and colleagues (19).

Tumor segmentation was performed by two independent
observers (F. Incekara and G. Kapas) using ITK-Snap (20). Seg-
mentation was done on T2w-FLAIR when available (N ¼ 119),
otherwise on the T2-weighted images (N ¼ 165). Because in our
institution LGG segmentations are preferably performed on
T2w-FLAIR images, we did not enforce the assessors to segment
on T2-weighted images in order to stick to the real-world clinical
practice. The segmentations were then transformed to the
T2-weighted images (in the case of T2w-FLAIR segmentation)
and the T1-weighted images, using the image registration software
SimpleElastix (21). For all patients, brain masks were automat-
ically constructed using FSL's BET tool with a fractional intensity
threshold of 0.5 (22). These brain masks were subsequently
used to normalize the intensity of the MR images. Details can
be found in Supplementary Materials, Appendix 2.

The Cancer Imaging Archive dataset
Patients from The Cancer Imaging Archive (TCIA)

"LGG-1p19qDeletion" dataset were screened for eligibility on
the basis of previously described inclusion and exclusion
criteria and used as the external validation dataset (10, 23, 24).

This data collection is a publicly available dataset that consists
of histopathologically proven LGG with coregistered T1- and
T2-weighted preoperative MRI images as well as biopsy-proven
1p/19q codeletion status. Molecular analysis of the 1p/19q
codeletion status was performed with FISH for all tumors; IDH

Translational Relevance

This study is, to the best of our knowledge, one of the first to
train an algorithm that predicts the 1p/19q co deletion status
in an unselected, real-world patient population with pre-
sumed low-grade glioma and to validate this algorithm on
an independent, external dataset. It shows that the predictive
performance of the algorithm outperforms the predictive
performance of surgical neuro-oncology experts but not that
of the radiologists. It indicates that together with age and
sex, the location of the tumor and heterogeneity as seen on
T2-weighted MRI are important for the prediction. The study
discusses the potential impact of machine learning algorithm
on clinical decision making. Our algorithm provides the
treating physician and the patient with a nonenhancing,
presumed low-grade glioma with a prediction of the tumor's
1p/19q codeletion status prior to surgery, allowing better
informed decision making on treatment.
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mutation status was not determined. All MRI images were
visually inspected by M. Smits as previously described. An over-
view of the MRI settings is listed in the Supplementary Materials,
Appendix 1. All tumors were semiautomatically segmented by
M. Smits on the T2-weighted images using ITK-Snap. Because
the T1-weighted and T2-weighted images were already coregis-
tered in this study, the segmentation could be directly used for
the T1-weighted images without the need for registration. Brain
masks were made using FSL's BET tool, with the same settings as
for the EMC/HMC dataset.

Classification algorithm
To predict the 1p/19q status of the tumors based on MRI

features, the PREDICT toolbox was used. This toolbox was used
to extract a total of 78 image features (such as image intensity,
tumor texture, tumor shape, and tumor location) from the T1-
weighted and T2-weighted MR image. These features, as well as
the age and sex of the patient, were then used to train a support
vector machine (SVM), resulting in a total of 80 features. All
parameter optimization and classifier training was performed on
the EMC/HMC training set dataset using 100 iterations of strat-
ified random-split cross-validation, with 80% of the dataset used
for training and 20% used for validation. Once the algorithmwas
optimized, no more changes were made to the algorithm and it
was then evaluated on the TCIA dataset. To evaluate the algo-
rithm, the accuracy, sensitivity (1p/19q codeletion prediction),
specificity (1p/19q intact prediction), area under the ROC curve
(AUC), weighted F1 score, and precision were determined by
comparing the predicted labels with the reference labels obtain-
ed from tissue diagnosis. Full details of the algorithm can be
found in the Supplementary Materials, Appendix 2 with more
information about the evaluation metrics in Supplementary
Materials, Appendix 3. An overview of the classification algorithm
is provided in Supplementary Materials, Fig. S1.

To minimize the variance due to randomness in the algorithm
training, an ensembleoffive SVMs,which averages thepredictions
of the five independently trained models, was also constructed;
the details can be found in SupplementaryMaterials, Appendix 2.
One hundred different ensembles were constructed and were
evaluated on the TCIA dataset using the evaluation metrics
described previously. Mean and standard deviation of themetrics
over the 100 ensembles were computed.

To evaluate the contribution of the different features to thefinal
prediction, a sensitivity analysis using polynomial chaos expan-
sions was performed, resulting in Sobol indices for each fea-
ture (25). The total Sobol indexwas used to determine the relative
feature importance of the individual features. The total Sobol
index is relative measure of the sensitivity of the algorithm to the
input features. The OpenPC toolbox was used to create the
polynomial chaos expansions and to calculate the Sobol
indices (26, 27).

We also determined which patients from the TCIA dataset were
considered as representative examples for the 1p/19q codeleted
and 1p/19q intact class by the algorithm. This was achieved by
counting the number of times the algorithm correctly predicted
the class for a specific patient in the 100 ensembles that were
constructed.

We also evaluated the performance of the algorithm when
the EMC/HMC and TCIA dataset were mixed instead of used as
a separate train and validation set to evaluate the effect of
adding additional training data.

Prediction of 1p/19q status by clinical experts
To compare the results of the algorithm with expert perfor-

mance, the 1p/19q status of the TCIA tumors was also predicted
by two neuroradiologists and two neurosurgeons at the Erasmus
MCBrain Tumor Centre. Theywere presentedwith the T1-weight-
ed and T2-weighted images side by side for each patient as well
as the sex and age to ensure that the algorithm and the raters had
access to the same information. For each tumor, the raters
were then asked to choose whether they thought it was 1p/19q
codeleted or intact to provide a confidence score ranging from1 to
5 (1 indicating very unsure and 5 indicating very sure). This
confidence score was then turned into a prediction "score" by
dividing it by 5 and multiplying it by 1 if the predicted label
was 1p/19q codeleted or by�1 if the predicted label was 1p/19q
intact. In this way, an AUC could be determined for the manual
classification. The accuracy, sensitivity, and specificity were deter-
mined in the same way as for the algorithm.

Statistical analysis
Statistical analyses to test differences between the two datasets

were performed with SPSS 21.0 statistical software (IBM Corp.).
We tested whether the two datasets differed significantly from
each other using the Mann–Whitney U test for continuous,
nonnormally distributed variables (age and volume) and the
c2 test for all other categorical variables (sex, genetic analysis,
presence of mild enhancement, codeletion status). Predictive
performances [mean, 95% confidence interval (CI)] between the
EMC/HMC training set and TCIA validation set were tested with
the Welch t test. Accuracy between the clinical experts and the
algorithm was tested with the McNemar test. A P value of <0.05
was considered statistically significant. The 95% CIs were calcu-
lated such that if the entire experiment of training on EMC/HMC
and prediction on TCIA would be repeated in 95% of the repeti-
tions, the result would lie within that interval.

Data sharing
The data used in this study are available on Mendeley Data

(http://dx.doi.org/10.17632/rssf5nxxby.1). The code for the con-
struction and evaluation of the prediction algorithm is available
on GitHub (https://github.com/Svdvoort/PREDICT). The code
used to construct the polynomial chaos expansions and calculate
the Sobol indices is available on GitHub as well (https://github.
com/Svdvoort/OpenPC).

Results
In the EMC/HMC dataset, 424 LGGs were identified and

screened for eligibility. Cases were excluded because of unknown
1p/19q codeletion status (N ¼ 22), absence of T1- and/or
T2-weighted MRI images (N ¼ 46), enhancement (N ¼ 58), and
unacceptable image quality (N ¼ 14), which resulted in 284
patients included for final analysis (flowchart, Fig. 1).

From the TCIA database, all 159 patients were screened
for eligibility. Patients were excluded because of enhancement
(N ¼ 18), signs of prior biopsy/surgical procedure (N ¼ 7), no
post–contrast T1-weighted imaging available (N ¼ 3), and
patients being younger than 18 years (N ¼ 2), resulting in 129
patients included in the external validation dataset (flowchart,
Fig. 1). An overview of the excluded patients from the TCIA
database as well as the reason for exclusion is available as Sup-
plementary Materials, Appendix 4.
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Therewas no significant difference between the EMC/HMCand
TCIA datasets for median age [43.0 years, interquartile range
(IQR): 17.0, vs. 39 years, IQR: 19.5, respectively; P ¼ 0.11] and
sex distribution (56.7% vs. 52.7% male, respectively; P ¼ 0.45).
Median tumor volume in the EMC/HMCdataset was significantly
larger than in the TCIA dataset (median: 47.80 cm3, IQR: 58.65 vs.
median 35.70 cm3, IQR: 49.10), P ¼ 0.04). There were fewer
1p/19q codeleted tumors in the EMC/HMC compared with the
TCIA dataset (35.20% vs. 65.40%, P < 0.0001). Patient and tumor
characteristics of both datasets are further presented in Table 1.

The predictive performance of the algorithmon the EMC/HMC
training dataset, obtained from the cross validation, and the TCIA
validation dataset is given in terms of accuracy, AUC, F1 score,
precision, sensitivity, and specificity in Table 2. The accuracy,
AUC, and sensitivity did not differ significantly between training
and validation datasets (P ¼ 0.886, P ¼ 0.746, and P ¼ 0.146,
respectively), whereas the specificity was significantly lower in the
validation dataset (P ¼ 0.038).

The predictive performances of the clinical experts compared
with the algorithm can be found in Table 3, and their ROC curves
in Fig. 2. The algorithm had a higher AUC when compared with
the average performance of the neurosurgeons but a lower AUC
when compared with the neuroradiologists. There was high
variability in predictive performance between the clinical experts
(AUC of 0.449–0.830).

The results of mixing the EMC/HMC dataset and the TCIA
dataset are shown in Supplementary Materials, Appendix 5.
Mixing the datasets leads to a slightly improved performance but
still within the CI of the EMC/HMC dataset cross-validation
results.

According to the algorithm, the most important features for
accurate 1p/19q codeletion status prediction were the cranial/
caudal location of the tumor, the skewness of the T2-weighted SI
histogram, and one of the texture features, together with age and
sex (SupplementaryMaterials, Fig. S2). The algorithm identified a
typical 1p/19q codeleted glioma as a frontal heterogeneous

Figure 1.

Flow diagram of the inclusion procedure for both the EMC/HMC training dataset and TCIA validation dataset.
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tumor as seen on T1-weighted and T2-weighted scans, whereas a
typical 1p/19q intact glioma was identified as a parietal homog-
enous tumor, as shown in Fig. 3.

Discussion
In this study, we developed an algorithm that predicted the

1p/19q codeletion status of presumed LGG noninvasively based
on preoperative MR images with an AUC of approximately 0.75.

We tested the algorithm on an external, independent validation
dataset. To the best of our knowledge, this is the first time that
this has been done in presumed LGG and thus sets a benchmark
for the expected performance in the real-world clinical setting.
The algorithm had a higher AUC than the averaged AUC of
the neurosurgeons but lower than the averaged AUC of the
neuroradiologists.

To the best of our knowledge, this is the first study performing a
radiogenomics-based machine learning study in LGG from the
perspective of real-world clinical practice: we included all patients
with presumed, non–contrast-enhancing LGG, rather than a
selection of patients with histopathologically defined LGG. This
is important, because in a clinical setting the genetic mutation is
unknown at first symptomatic presentation. Because it is known
only after surgery andmolecular analysis, we aimed tomirror this
real-world situation as best as possible bynot selecting patients on
the basis of histologic tumor features but on the imaging features
that are available at the time of presentation. Note that subse-
quently all lesions were surgically resected to obtain the ground
truth data based on confirmed histologic andmolecular analysis.
We trained the algorithmon a heterogeneous training dataset and
used a separate, completely independent, publicly available data-
set with data from an entirely different institute to validate the

Table 1. Patient and tumor characteristics

EMC/HMC—Training set
(n ¼ 284)

TCIA—Validation set
(n ¼ 129) P

Clinical n (%) n (%)
Age median [IQR] in years 43 [17] 39 [19.5] 0.11
Sex 0.45
Male 161 (56.7) 68 (52.7)
Female 123 (43.3) 61 (47.3)

Imaging
Volume median [IQR] in cm3 47.8 [58.7] 35.7 [49.1] 0.04
Mild enhancement 0.005
Yes 27 (9.5) 25 (19.4)
No 257 (90.5) 104 (80.6)

Histopathology (WHO, 2016) <0.0001
Oligodendroglioma 100 85
Astrocytoma 181 44
Glioblastoma 3 0

Genetic
1p/19q codeletion <0.0001
Yes 100 (35.2) 85 (65.9)
No 184 (64.8) 44 (34.1)

IDH mutation n/a
Yes 214 (75.4) 0 (0.0)
No 35 (12.3) 0 (0.0)
Unknown 35 (12.3) 129 (100.0)

Method of analysis <0.0001
NGS 214 (75.4) 0 (0)
FISH 45 (15.8) 129 (100)
MLPA 25 (8.8) 0 (0)

Abbreviations: FISH, fluorescence in situ hybridization; MLPA, multiplex ligation probe assay; NGS, next-generation sequencing.

Table 2. Predictive performances of the algorithm on the EMC/HMC training
and TCIA validation datasets

EMC/HMC—Training set TCIA—Validation set
Mean (95% CI) Mean (95% CI) P

Accuracy 0.698 (0.636–0.760) 0.693 (0.657–0.729) 0.872
AUC 0.755 (0.694–0.817) 0.723 (0.708–0.737) 0.313
F1 score 0.701 (0.640–0.761) 0.697 (0.661–0.733) 0.896
Precision 0.570 (0.491–0.649) 0.787 (0.754–0.820) <0.001
Sensitivity 0.657 (0.562–0.752) 0.732 (0.689–0.775) 0.123
Specificity 0.721 (0.628–0.813) 0.617 (0.544–0.691) 0.027

NOTE: The performances on the EMC/HMC training dataset were obtained by
cross-validation; the performances on the TCIA validation dataset were
obtained by training on the EMC/HMC dataset and then testing on the TCIA
dataset.

Table 3. Predictive performance of four clinical experts compared with the algorithm on the TCIA validation dataset

Neurosurgeon
1

Neurosurgeon
2

Average of
surgeons

Neuroradiologist
1

Neuroradiologist
2

Average of
radiologists Algorithm

Accuracy, with P valuea 0.520–0.073 0.457–0.002 0.489 0.690–0.720 0.574–0.266 0.632 0.693
AUC 0.580 0.449 0.515 0.830 0.792 0.811 0.723
Sensitivity 0.370 0.459 0.415 0.610 0.459 0.535 0.732
Specificity 0.820 0.455 0.638 0.840 0.795 0.818 0.617
aStatistical comparison (McNemar) of accuracy between clinical experts and algorithm.
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algorithm. As such, this study is the first to demonstrate that
the performance of a radiogenomics algorithm in predicting the
1p/19q codeletion status of presumed LGG based on MR images
was robust and matched expert clinical performance. Further-
more, we were also able to show which image features were
important in the classification, increasing the clinical understand-

ing of the machine learning algorithm and potentially aiding
better acceptance, as well as furthering fundamental research into
understanding of glioma pathophysiology.

Although other studies did already investigate the noninvasive
prediction of the molecular subtype of LGG, these often focused
on IDH mutations only and did not consider the 1p/19q codele-
tion status (11, 28, 29). In comparison with studies that did look
at the 1p/19q codeletion, we used a larger cohort and an external
validation dataset (10, 13, 14, 30, 31), which makes our results
more robust and generalizable, respectively. Although one study
by Lu and colleagues (12) did use an independent dataset, this
study used only 5 patients to externally validate the 1p/19q
codeletionpredictive performance of the algorithm,which severe-
ly limits the reliability of its predictive performance. In addition,
that specific study retrospectively selected patients with histo-
pathologically defined LGGonly,which represents the diagnosis–
treatmentworkflow in clinical practice less accurately. The starting
point of decision making on the optimal treatment strategy for
LGG is the initial diagnosis on first MRI, when a non–contrast-
enhancing space occupying lesion is seen, at which point knowl-
edge on the histopathologic grade is not yet available.

The optimal timing and effect of surgical treatment of LGG are
extensively being debatedwithin literature andhave recently been
reevaluated in the light of molecular subclassification after the
introduction of WHO 2016 criteria (5, 6, 32, 33). Currently, the
molecular subtype based on 1p/19q codeletion and IDH muta-
tion can be diagnosed only after obtaining tissue with biopsy or
surgery. Indeed, as our results suggest, it is even for experienced

Figure 2.

ROC curves of clinical expert and algorithm performance. For the
performance of the algorithm, the 95% confidence interval is plotted as
well (shaded gray), representing the uncertainty due to randomness in
model training.

Figure 3.

A and B, Frontally located glioma. It is
nonenhancing on post–contrast T1-weighted
MR image (A). A heterogeneous signal
intensity with indistinct border is visible on the
T2-weighted MR image (B). Correctly
predicted as a 1p/19q codeleted glioma
(oligodendroglioma) by the algorithm. C and
D, Parietally located glioma. It is
nonenhancing on post–contrast T1-weighted
MR image (C). A homogeneous signal
intensity with sharply demarcated border is
visible on the T2-weighted MR image (D).
Correctly predicted as a 1p/19q intact glioma
(astrocytoma) by the algorithm.
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neuro-oncologic surgeons and radiologists a challenge to accu-
rately predict the codeletion status of nonenhancing tumors
based on preoperative MR images (AUC of 0.45–0.83).

There are two scenarios in which preoperative, noninvasive
prediction of the 1p/19q codeletion status based on MRI would
be clinically relevant. First, some patients are not eligible for
surgical resection or diagnostic biopsy due to older age, poor
neurologic condition, or tumor localization in eloquent brain
areas or basal ganglia (33). However, knowledge of themolecular
LGG subtypemight add to amore appropriate (timing of) chemo-
and/or radiotherapy regimes (immediate postoperative therapy
vs. watchful waiting; ref. 34). Therefore, noninvasive, accurate
prediction of the molecular subtype on imaging could help
clinicians select the optimal treatment when tissue diagnosis is
difficult to obtain. Second, it is suggested that postsurgical resid-
ual 1p/19q intact, IDH-mutated tumor has a more negative
impact on survival than residual 1p/19q codeleted, IDH-
mutated (oligodendroglioma) tumor (5, 6). With presurgical
knowledge of the specific molecular subtype, the surgeon can
make a better informed decision on whether or not to push the
limits of resection at the timeof surgery, avoiding on the one hand
reresection in case of residual 1p/19q intact, IDH-mutated tumor
and less-justified postsurgical deficits in 1p/19q codeleted tumor
on the other hand. Clearly, the diagnostic accuracy of our algo-
rithm is as yet too low to rely on for clinical practice. However, the
results are promising because they generalize through multiple
datasets, encouraging future research in this direction.

Our study had a few limitations. First, for this study, only the
T1-weighted and T2-weighted images were used, whereas diffu-
sion-weighted and perfusion imaging also contain relevant fea-
tures for the 1p/19q status. These sequences were not included in
the development of the present algorithm, as these were scarcely
available in both datasets.

Second, the IDH mutation status was undetermined in all of
the TCIA cases and in 35 cases of the EMC/HMC dataset.
Because molecular subclassification according to the WHO
2016 guidelines is based on both the 1p/19q codeletion status
and IDH mutation status, it is important to predict both.
Therefore, for our future work, we are expanding our database
with more patients in whom the tumor IDH status is known
to eventually be able to predict all clinically relevant subtypes
of presumed LGG.

There was an imbalance between the EMC/HMC dataset
and the TCIA dataset in terms of the number of codeleted
and intact cases. Despite this imbalance, our algorithm still
shows similar performance between the cross-validation result
of the EMC/HMC dataset and the performance on the TCIA
test dataset.

In conclusion, our results suggest that our algorithm can
noninvasively predict the 1p/19q codeletion status of presumed
LGG with a performance that in general outperforms oncological
neurosurgeons. We evaluated our algorithm on an independent,
multicenter dataset, which demonstrated that our algorithm is
robust and generalizable. The prediction of the 1p/19q codeletion
status by our algorithm can eventually add value to clinical
decision making by tailoring the treatment strategy for patients
with presumed LGG even prior to surgery.
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