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Three-Dimensional Contrast Source Inversion-
Electrical Properties Tomography

Reijer L. Leijsen*, Wyger M. Brink, Cornelis A.T. van den Berg, Andrew G. Webb, and Rob F. Remis

Abstract—Contrast source inversion – electrical properties
tomography (CSI-EPT) is an iterative reconstruction method
to retrieve the electrical properties (EPs) of tissues from MR
data. The method is based on integral representations of the
electromagnetic (EM) field and has been shown to allow EP
reconstructions of small structures as well as tissue boundaries
with compelling accuracy. However, to date CSI-EPT has been
implemented for two-dimensional (2D) configurations only which
limits its applicability. In this paper, a full three-dimensional (3D)
extension of the CSI-EPT method is presented, to enable CSI-
EPT to be applied to realistic 3D scenarios. Here, we demonstrate
a proof-of-principle of 3D CSI-EPT and present reconstructions
of a 3D abdominal body section and a 3D head model using
different settings of the transmit coil. Numerical results show
that the full 3D approach yields accurate reconstructions of the
EPs, even at tissue boundaries and is most accurate in regions
where the absolute value of the electric field is highest.

Index Terms—Electrical properties tomography, three-
dimensional contrast source inversion, magnetic resonance
imaging, electromagnetic Green’s tensor field representations.

I. INTRODUCTION

ELECTRICAL properties tomography (EPT) is a non-
invasive reconstruction technique to retrieve the tissue-

dependent electrical properties (EPs) (conductivity σ and per-
mittivity ε) of biological tissue from magnetic fields generated
by radiofrequency (RF) coils in a magnetic resonance imaging
(MRI) scanner. The EPs of tissue are of great interest, since
these properties contribute to specific absorption rate (SAR)
[1], they can be used to aid the discrimination of cancerous
tissue from benign tissue [2], and they can also be used for
the modeling of electromagnetic (EM) fields that are used
in hyperthermia treatment planning [3]. The main benefits of
EPT over other EP reconstruction modalities is that it uses the
RF fields of an MRI system, which can penetrate biological
tissues and it does not make use of surface electrode mounting,
current injection, additional hardware or physical rotation of
the imaged object [4], [5].

The introduction of what is nowadays called EPT was by
Haacke et al. in 1991 [6] and the first application of this

Manuscript received October XX, 201X; revised November XX, 201X;
accepted December XX, 201X. Asterisk indicates corresponding author.

∗R. L. Leijsen, W. M. Brink, and A. G. Webb are with the Department of
Radiology, C.J. Gorter Center for High Field MRI, Leiden University Medical
Center, 2333ZA Leiden, The Netherlands (e-mail: R.L.Leijsen@lumc.nl;
W.M.Brink@lumc.nl; A.Webb@lumc.nl).

C. A. T. van den Berg is with the Imaging Division of the Department
of Radiotherapy, University Medical Center Utrecht, 3508GA Utrecht, The
Netherlands (e-mail: C.A.T.vandenBerg@umcutrecht.nl)

R. F. Remis is with the Circuits and Systems Group, Delft University of
Technology, Faculty of Electrical Engineering, Mathematics and Computer
Science, 2628CD Delft, The Netherlands (e-mail: R.F.Remis@tudelft.nl)

method was in 2003 by Wen [7]. In this method, the transmit
magnetic field, the B+

1 field, is used to directly reconstruct
the EPs based on local field equations. The introduced homo-
geneous Helmholtz equation is still very frequently used as a
starting point in EPT, since it is fast and easy to implement
[1], [8]–[13]. However, in this method a higher order spatial
differentiation operator acts on the measurement data. This
introduces erroneous behavior around tissue interfaces and
makes the method sensitive to noise, leading to long acquisi-
tion times to meet the input signal-to-noise ratio requirements.
Attempts to improve the boundary artifact by including the
spatial gradient of the EPs in the algorithm still suffer from the
noise sensitivity [14]–[16], while recent EPT approaches that
avoid differentiation of the measurement data lack accuracy
near tissue boundaries [17], [18].

Contrast source inversion (CSI)-EPT is a reconstruction
method that avoids the assumption of locally homogeneous
media by making use of a global integral approach instead
of a local differential approach. This makes the method more
reliable near tissue boundaries and, due to the smoothing effect
of the integrals, less sensitive to noise [19], [20]. To date,
however, CSI-EPT has been implemented for two-dimensional
E-polarized RF fields only, which assumes longitudinal invari-
ance of both the sources and the object. The RF coil in such
a configuration excites E-polarized RF waves characterized
by a magnetic field that is purely transverse and an electric
field that has a longitudinal component only. This limits the
applicability of CSI-EPT in experimental conditions where
longitudinal tissue interfaces as well as the finite longitudinal
coverage of the RF transmit coil violate these assumptions.
The issue is illustrated by Balidemaj et al. [21], where the RF
fields present in a 3T system show distinct differences than
those obtained in the corresponding 2D model, which would
lead to erroneous reconstructions when used as an input to 2D
CSI-EPT.

In this paper, we present a three-dimensional implementa-
tion of CSI-EPT in which all EM field components are taken
into account. Consequently, we work with the global Green’s
tensor field representations instead of the scalar integral field
representations used in the two-dimensional E-polarized case.
The basic algorithm used in 2D and 3D are very similar, but
the form of the operators are specific to the dimensionality.
As the discretization of the 3D operators is obviously more in-
volved, details about the discretization procedure are presented
as well as a Kronecker product formulation of the resulting
discretized operators, which allows for a straightforward im-
plementation. A 3D volumetric integral equation approach is
also presented in [22], using the variational Born iterative
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method, but using CSI-EPT has the advantage that it does not
have to solve a computationally expensive forward problem at
every iteration. Furthermore, we focus on inverting B+

1 data
collected at 3T, since in practice EPT is usually applied at
higher field strengths (3T and above). Moreover, we only use
volumetric B+

1 data collected on the body part of interest.
We present three-dimensional CSI-EPT reconstructions of the
abdomen and head of a female body model. The influence
of the magnitude of the electric field strength within the
domain of interest on the reconstructions is also studied by
comparing different excitation settings. Finally, we present
a comparison between two- and three-dimensional CSI-EPT
reconstructions using 3D input data with different levels of
longitudinal invariance, to demonstrate the relevance of the
3D formulation.

This paper is organized as follows. In Section II we
present the basic integral representations of the RF field.
The discretization of these representations is discussed in the
Appendix. In Section III we briefly review the basic CSI-EPT
method, while in Section IV we illustrate the performance
of 3D CSI-EPT through a number of numerical experiments
using volumetric B+

1 data collected inside a female body
model. Finally, the conclusions and a discussion can be found
in Section V.

II. INTEGRAL REPRESENTATIONS OF THE RF FIELD

In this section, we briefly review the basic CSI-EPT integral
representations of the electromagnetic field. Our discussion
will be brief, since formulating these representations is well
documented in the literature (see [23], for example). The
discretization of these representations is discussed in the
Appendix, where we present a Kronecker product formula-
tion that can be conveniently implemented in Matlab using
the kron command. We assume that the conductivity and
permittivity are isotropic at the Larmor frequency ω, we
ignore spatial permeability variations (µ = µ0), since they are
considered small for biological tissue, and we use the time
factor convention exp (jωt), with j the imaginary unit.

Let the antenna (coil) that generates the RF field occupy a
bounded source domain and let an object (e.g. a person) that
is present inside the MR scanner occupy the bounded object
domain Dobj. Both domains are obviously disjoint, since the
antenna is not placed inside the object of interest.

The total electromagnetic field {E,H} that is present in
such a configuration is written as a superposition of an incident
and a scattered field as

E = Einc +Esc and H = Hinc +Hsc, (1)

where {Einc,Hinc} is the incident electromagnetic field that
is present inside the scanner in the absence of the object,
and {Esc,Hsc} is the scattered field due to the presence
of the object. For this scattered field, we have the integral
representations

Esc(x) = (k2b +∇∇·)A(x) (2)

and

Hsc(x) = ηb∇×A (x) , (3)

where A is the vector potential given by

A(x) =

∫
x′∈Dobj

G(x− x′)χ(x′)E(x′) dV (4)

with
G(x) =

exp(−jkb|x|)
4π|x|

, x 6= 0, (5)

the scalar Green’s function of the homogeneous background
medium (air) and χ the contrast function defined as

χ (x) =
η (x)

ηb
− 1. (6)

In the above equations, η = σ+ jωε is the per-unit-length ad-
mittance of the object, with σ and ε the spatially varying con-
ductivity and permittivity profiles of the object, respectively.
Finally, kb = ω/c0 is the wavenumber of the background
medium and ηb = jωε0 with c0 and ε0 the electromagnetic
wave speed and permittivity in vacuum, respectively.

By restricting the position vector x in the integral rep-
resentations of (2) and (3) to the object domain Dobj, we
obtain integral representations of the RF field inside the object
of interest. In particular, (3) relates the scattered magnetic
field strength to the contrast and electric field strength via
the vector potential A, while the electric field strength and
the contrast function inside the object have to satisfy (2).
Consequently, the field representation of (3) for the x- and
y-components of the magnetic field strength can be used to
model B+

1 = (Bx + jBy)/2 data collected inside the body,
while (2) serves as a consistency equation that provides a
relation between the contrast function and the corresponding
electric field strength. Explicitly, by substituting the x- and y-
components of the field representation of (3) in the definition
of the scattered B+

1 field, we obtain

B+;sc
1 (x) =

ω

c20

(
∂+Az − ∂zA+

)
, (7)

where ∂+ is the so-called del-operator defined as ∂+ =
1
2 (∂x + j∂y), and A+ = 1

2 (Ax + jAy). We observe that
the scattered B+

1 field is given by the difference between
transverse variations of the longitudinal component of the
vector potential (∂+Az) and longitudinal variations of the
transverse A+ field (∂zA+).

To summarize, by restricting x to Dobj, (7) provides a data
model for the scattered B+

1 field inside the object of interest
and even though the contrast χ and the electric field strength
E are unknown, we do know that (2) has to be satisfied as
well.

III. 3D CSI-EPT
The CSI method is well described in the literature [24],

[25], [26] and we therefore only give a brief discussion of
this method in the EPT context.

As a first step, we introduce the contrast source

w(x) = χ(x)E(x) (8)

and use the expression for the total electric field as given in
(1) to write the integral representation for the scattered electric
field strength as

E(x)− (k2b +∇∇·)A(x) = Einc(x). (9)
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Multiplying this equation by the contrast function χ, we obtain
the so-called object or state equation

w(x)− χGobj{w}(x) = χ(x)Einc(x), (10)

where we have introduced the object operator

Gobj{w}(x) = (k2b +∇∇·)
∫
x′∈Dobj

G(x−x′)w(x′) dV. (11)

If χ and w are approximations for the contrast function and
the contrast source, respectively, we introduce the residual of
the object equation that corresponds to these approximations
as

r = χEinc −w + χGobj{w}, (12)

and measure its size through the standard L2-norm on Dobj as

‖r‖obj =

(∫
x∈Dobj

|r(x)|2 dV
)1/2

. (13)

Similarly, by substituting the vector potential of (4) in (7), we
obtain the data equation

B+;sc
1 (x) = Gdata{w}(x), (14)

where we have introduced the data operator

Gdata{w}(x) =
ω

c20
∇̃ ·
∫
x′∈Dobj

G(x− x′)w(x′) dV (15)

with ∇̃ = − 1
2 (ix+ jiy)∂z + iz∂

+ and {ix, iy, iz} the standard
basis for 3D space. If w is an approximation of the contrast
source, then the residual of the data equation that corresponds
to this approximation is introduced as

ρ = B+;sc
1 − Gdata{w} (16)

and its magnitude is also measured using the L2-norm on
Dobj. Note that the incident B+

1 field is simulated from the
known coil geometry and that subtraction of this field from
the measured B+

1 field gives the B+;sc
1 as presented in (16).

In CSI-EPT, we now introduce the objective function

F (w, χ) =
‖r‖2obj

‖χEinc‖2obj
+

‖ρ‖2obj

‖B+;sc
1 ‖2obj

. (17)

to measure the discrepancy in satisfying the object and data
equations and we attempt to find a minimum of this func-
tion by constructing a sequence of contrast functions and a
sequence of contrast sources that converge to a minimum of
the objective function F . Specifically, let χ[n−1] and w[n−1]

be given approximations of the contrast function and contrast
source, respectively. As a first step in CSI-EPT, we keep the
contrast function χ[n−1] fixed and update the contrast source
according to the update formula

w[n] = w[n−1] + α[n]v[n], (18)

where α[n] is the step length and v[n] the update direction. For
these update directions, one usually takes Polak-Ribière up-
date directions, but other choices (Fletcher-Reeves, Hesteness-
Stiefel) are possible as well [27]. To compute the update
directions, the gradient of F (w, χ[n−1]) with respect to w
is required. Explicit expressions for this gradient and the step
length α[n] can be found in [24], for example.

Having updated the contrast source, we subsequently com-
pute the corresponding electric field strength according to (cf.
(9))

E[n](x) = Einc(x) + Gobj{w[n]}(x) (19)

and, finally, update the contrast function using the formula
[24]

χ[n] =
w[n] ·E[n];∗

|E[n]|2
(20)

which holds locally at every point in Dobj and where the
asterisk denotes complex conjugation. Note that CSI-EPT
attempts to reconstruct the electric field strength (see (19))
and therefore allows SAR estimations as well.

Having found an updated contrast function, the above pro-
cess can now be repeated and we arrive at the standard CSI-
EPT method:

CSI-EPT

• Given an initial contrast function χ[0] and contrast source
w[0]

• For n = 1, 2, . . .

1) If F (w[n−1], χ[n−1]) < tolerance then stop
2) Update the contrast source according to (18)
3) Compute the electric field strength corresponding to

the updated contrast source via (19)
4) Update the contrast function according to (20)

The initial guesses in the above algorithm have to be pro-
vided, of course. Many choices are possible and any a priori
information about the dielectric properties can be included.
A general approach that does not take such information into
account is to first determine an initial contrast source w[0] via
backprojection [24] and subsequently determine the electric
field strength and initial contrast via (19) and (20) with n = 0.

By carrying out the above CSI-EPT algorithm, a sequence
of the contrast sources and a sequence of contrast functions is
generated. These sequences terminate as soon as a predefined
tolerance level of the objective function (or a specified number
of iterations) is reached. At iteration n, the dielectric tissue
parameters can be retrieved from the reconstructed contrast
function χ[n] as

σ = Re
[(
χ[n] + 1

)
ηb

]
and ε = Re

[(
χ[n] + 1

)
ε0

]
,

(21)
where Re denotes the real part and ε the absolute permittivity,
which is related to the relative permittivity via ε = ε0εr.

IV. NUMERICAL RESULTS

To test the 3D CSI-EPT algorithm, we reconstruct the
dielectric tissue maps of different parts of the female body
model Ella from the IT’IS Foundation with an isotropic voxel
size of 2.5 mm [28]. In our first 3D simulation, we select
a region of 72-by-124-by-41 voxels around the pelvis region
from which we compute B+

1 data. The size of this domain can
be chosen as large as desired, but the computational costs will
increase with larger data domains. Furthermore, we use 16 z-
directed short dipoles uniformly positioned on a circle, with a
radius of 0.2 meters, that is situated around the center of the
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Fig. 1. Representation of the antenna positions around the objects of the
two studied configurations. Transversal (left) and coronal view (right). The
rectangular box is the object domain Dobj, the dots and lines represent the
dipoles.

object. The dipoles are 0.3 meters long, infinitely thin, have
a trapezoidal current distribution, and operate in quadrature
(circularly polarized) mode driven at 128 MHz (corresponding
to the operating frequency of a 3T MRI system). The centers
of the dipoles are positioned next to the transverse midplane
of the domain of interest as shown in the top row of Fig. 1.
With this dipole arrangement, we aim to mimic the integrated
body coil of a 3T MR system, while at the same time such a
setup allows for an easy comparison with 2D reconstruction
and for flexible driving conditions. We stress that our 3D CSI-
EPT method is not restricted to this chosen setup and other
antenna configurations can be implemented as well.

To obtain the initial contrast source and contrast function,
we start the CSI-EPT reconstruction with the backprojec-
tion procedure as described in Section III, followed by the
computation of the contrast source via (8) and the electric
field again via (19), since this improves the reconstruction
results at the first few iterations. Furthermore, during the
reconstruction we take a priori information into account as
well. Specifically, since the position of the body is known,
we set the contrast function to zero outside its support at
every iteration. Moreover, during the reconstructions we set
the minimum conductivity and relative permittivity to 0 and
1, respectively, and the maxima slightly higher than the values
that can be found in the body part of interest.

Fig. 2 compares the actual female contrast model with the
reconstruction of the contrast function at different iteration
counts. The first row of Fig. 2 shows a section of the 3D
reconstruction, cut off for illustration purposes at sagittal plane
position 36 of 124. We observe that increasing the number of
iterations results in a closer agreement with the actual model.
Moreover, we observe that more iterations are required to
retrieve the tissue maps of the center slices than for slices
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Fig. 2. Different representations of the three-dimensional reconstruction
results of the abdominal region of Ella at different number of iterations.
Original contrast (first column), reconstruction after 100 iterations (second
column), after 1000 iterations (third column), and after 10000 iterations (last
column). (j)-(l) show the magnitude of the contrast along the line indicated
in (i), while (n)-(p) show the magnitude along the line indicated in (m).

further away from the center.
The second row shows the sagittal plane from the top

row. From these subfigures we can more clearly observe the
difference in reconstruction accuracy of the different slices. It
shows that there are large deviations from the actual model
around the center slices, while the reconstruction is more
accurate in slices away from the transverse midplane. The third
and fourth rows show the reconstruction values over a single
horizontal and vertical line in the sagittal plane, respectively,
again after a different number of iterations. In the third row
we observe that the reconstruction results improve when the
number of iterations is increased and that the reconstruction
is very accurate at edges and at transitions between different
tissue interfaces. In the fourth row we observe similar results
again, however, with a large deviation around the center slice.

From the above reconstruction results we observe that, given
our antenna setup, the tissue maps of the center slices are
difficult to retrieve and require the largest number of CSI-
EPT iterations. To investigate this issue further, we show the
magnitude of the original contrast function (Fig. 3a) and the
magnitude of its reconstruction after 10000 iterations (Fig. 3b)
in the coronal plane at the center of the object, along with
the absolute error (Fig. 3d). Also shown is the magnitude
of the electric field (Fig. 3f). These figures illustrate the
correspondence between the magnitude of the electric field
and the quality of the contrast reconstructions in the coronal
plane throughout the center of the object. The error in the
reconstruction is the largest at the center in the longitudinal
direction, which corresponds to locations with low |E|.

To further illustrate the influence of the electric field on the
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Fig. 3. Magnitude of the contrast of the model (a), the reconstruction
after 10000 iterations (b,c), the corresponding absolute error (d,e) and the
magnitude of the electric field strength (f,g) in the coronal plane at the
center of the object with the sources operating in quadrature (left column)
and operating with equal phase (right column).

reconstruction, we change the antenna settings by removing
the phase shift between the sources. The sources no longer
operate in quadrature mode and have an equal phase. This
adjustment eliminates the low electric field strength in the
transverse midplane as shown in Fig. 3g and its effect on the
reconstruction is shown in Fig. 3b. From Fig. 3e we observe
that equal phase excitation improves the reconstruction around
the center, however, at the cost of a slight degradation of the
reconstruction at slices away from the transverse midplane.

In our second numerical experiment we select an object
domain of 87-by-71-by-73 voxels containing the upper part
of the head of the Ella body model, which is strongly in-
homogeneous and has many small tissue interfaces. In this
configuration we place the center of the dipoles at the lower
end of the object domain, next to the nose (see Fig. 1).
Fig. 4 shows a 3D visualization of a section of the contrast
reconstructions obtained after 100, 1000, and 10000 CSI-
EPT iterations, together with the conductivity and relative
permittivity maps of slice 45 (at the higher end of the object
domain) of a total of 73 slices. The 3D representation of the
reconstruction of the head of Ella after 100 iterations clearly
shows that the slices behind the eyes and nose are the most
difficult to reconstruct, again corresponding to low electric
field (not shown). Note that the air in the nasal cavity gives no
B+

1 data and therefore leaves a gap in the 3D visualization.
After 1000 iterations, we observe that the tissue structures
become visible in the reconstruction of the contrast function.
Extracting the dielectric tissue maps from the reconstructed
contrast function provides us with a fairly good reconstruction
of the conductivity profile, while the relative permittivity
profile is of a lower quality. Increasing the number of iterations
to 10000, however, we obtain a good overall agreement with
the true model, in which the small tissue transitions are clearly

Original

(a)

100

(b)

1000

(c)

10000

(d)

0

100

200

300

[S/m]

(e) (f) (g) (h)
0

1

2

(i) (j) (k) (l)

50

100

Fig. 4. Reconstruction of the conductivity and relative permittivity maps of
the Ella head model. The top row shows a section of the three-dimensional
representation of the magnitude of the contrast, and the second and third row
show the corresponding conductivity and relative permittivity maps of slice 45,
respectively. The original contrast is shown in the first column, the CSI-EPT
reconstructions after 100 iterations in the second column, reconstructions after
1000 iterations in the third column, and reconstructions after 10000 iterations
in the fourth column.

visible. Furthermore, we observe from Fig. 4h and Fig. 4l that
the quality of the conductivity reconstruction is higher than
the quality of the relative permittivity reconstruction, which
might be due to a larger influence of the conduction current
(σE) to the B+

1 field than the displacement current (jωεE) at
3T.

Finally, in the third experiment we return to the first
experimental setup with the transmit antennas operating in
quadrature mode. We compare reconstruction results of a
single slice obtained with 3D CSI-EPT with reconstruction
results obtained via the 2D CSI-EPT algorithm of [19]. For
the 3D algorithm, we shift the object domain, such that
the transversal slice is 4.5 cm away from the transversal
midplane. For the 2D algorithm, we increase the object domain
with 15 cm on the top and bottom of the model, and we
simulate 3D B+

1 data in the transverse midplane, which we
use together with 2D incident fields for the reconstructions.
The original profile is shown in Fig. 5a, the reconstruction
result of this slice with 3D CSI-EPT after 10000 iterations is
shown in Fig. 5b and the 2D CSI-EPT reconstruction result
obtained after 1000 iterations is shown in Fig. 5c. The 2D
reconstruction shows large artifacts at the center and also at
tissue transitions, especially at the outer edge. Since the 2D
algorithm assumes that the sources and object are invariant
in the longitudinal direction, we first replace all slices of the
object in this longitudinal direction by the transverse midplane.
By simulating B+

1 data in the midplane of the resulting
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Fig. 5. Illustration of the shortcomings of a 2D reconstruction based on 3D
B+

1 data due to longitudinal invariance assumptions. The magnitude of the
original contrast of the transverse midplane (a), the reconstruction of the same
slice with 3D CSI-EPT after 10000 iterations with the slice away from the
midplane (b) and the reconstruction with 2D CSI-EPT after 1000 iterations
using the B+

1 field of the transverse midplane (c). Furthermore, the results
after increasing the longitudinal invariance in the model step-by-step by first
making the object homogeneous in the longitudinal direction (d), second
by applying a uniform current distribution on the sources (e), and third by
changing the length of the object from 40 to 80 cm (f).

cylindrical object and using this data as input for 2D CSI-EPT,
we obtain the reconstruction result shown in Fig. 5d, which
slightly improves the reconstruction. A further improvement
is observed if the currents in the z-direction are also set to be
uniform (Fig. 5e), and reconstructions improve even further if
we increase the voxel length in the z-direction from 2.5 mm
to 5 mm (Fig. 5f). We stress that Fig. 5c is obtained by
applying 2D CSI-EPT on 3D data, while Figs. 5d-f are only
included to demonstrate that the 2D CSI-EPT reconstructions
improve as the complete configuration approaches an idealized
2D implementation. From these experiments we conclude that
2D CSI-EPT is appropriate under very specific conditions only,
while 3D CSI EPT is not based on any invariance assumptions
and generally applicable.

V. DISCUSSION AND CONCLUSION

In this paper we have presented a proof of principle of
three-dimensional CSI-EPT. The method takes the volumetric
integral representations for the RF field as a starting point
and is able to successfully reconstruct strongly inhomogeneous
3D tissue profiles based on B+

1 data collected within the
domain of interest. The method does not rely on any particular
field structure and, as opposed to the two-dimensional im-
plementation presented in [19], invariance in the longitudinal
direction is not assumed. However, the current 3D method is
computationally much more intensive than its 2D counterpart,
since full 3D structures are inverted based on volumetric B+

1

data. Moreover, the number of iterations required to arrive

at a reconstruction of sufficient quality is generally fairly
large, which is characteristic for gradient methods such as
CSI-EPT. Typical run times of a Matlab implementation of
3D CSI-EPT take several hours for large voxel sizes, while
the computation times increases for more refined models. For
example, 10000 iterations of the fine-scaled head model of Fig.
4 requires around 11 hours on a standard laptop or pc. Future
work will therefore focus on preconditioning techniques that
reduce the number of CSI iterations without significantly
increasing the total computational costs. Including a priori
information through constraints or using this information to
construct an improved initial guess will also be investigated.
Reconstructions obtained from other EPT methods (such as
the direct EPT method from Haacke [6]) can be used as an
initial guess for CSI-EPT as well.

Our reconstruction results indicate that accurate conductiv-
ity and relative permittivity reconstructions are most difficult
to obtain in regions where the magnitude of the electric field
is relatively low. The normalized root-mean-square error of
the dielectric reconstructions (normalized over the range of
the dielectric properties), corresponding to the 25% of voxels
with the lowest up to the 25% of voxels with the highest
electric field magnitude in quadrature setting inside the object
corresponding to Fig. 3, are 0.23, 0.13, 0.10 and 0.06 for the
conductivity and 0.39, 0.25, 0.20 and 0.10 for the relative
permittivity reconstruction, respectively. Similar results were
obtained for 2D CSI-EPT in [19], and it shows similarities with
the problem of low convection field discussed in [14], which
corresponds to regions with low conduction and displacement
current. Low electric fields amplitudes result in low induced
electric currents and the impact of these currents on the total
B+

1 field is small. Our CSI-EPT reconstruction technique
therefore requires many iterations to reconstruct the dielectric
tissue maps of regions with a low E-field amplitude. Removing
the phase shift between the sources, even though this is not a
realistic setting in practice due to nulling of the magnetic field,
clearly shows the influence of the antenna settings and the
electric field strength on the reconstructions again indicating
that the magnitude of the electric field strength should be
sufficiently large to readily reconstruct the local dielectric
tissue maps. Reconstructions in low E-field regions can be
improved by incorporating complementary antenna settings or
through active or passive shimming [19], [29].

In this paper, we have assumed noiseless B+
1 data. In a real

experiment, however, the amplitude and phase of the B+
1 field

are measured separately and each is contaminated by noise
and other perturbations in the data. To take perturbations due
to noise into account, noise suppression techniques such as
total variation can be included [19], [30]. Moreover, in phase
measurements, only the transceive phase can be measured,
which is the superposition of the phase of the B+

1 field and the
phase of the B−1 field. To obtain an estimate of the B+

1 phase,
the transceive phase approximation can be implemented [4],
[5]. However, this approximation does not always produce an
accurate B+

1 phase and leads to reconstruction artifacts [31]. In
future work we will therefore also focus on handling transceive
phase along with total variation noise suppression techniques.

Finally, we address the fact that the iterative method requires
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the incident field to be known. In this work we considered
this field to be determined solely by the known coil geometry.
In practice, the loading from a human subject inside the RF
coil slightly influences the incident, and thus the scattered
and total fields. Any difference between the modeled and
actual applied incident field will result in distortion in the
reconstructed EP maps. An extreme example of the effects
of an incorrect incident field is shown in [20]. The loading
effect on the incident field can easily be estimated from more
thorough simulations, such as finite-difference time-domain
methods, based on a few different loading conditions. In this
paper, we presented a dipole antenna configuration, but other
antenna arrangements can also be implemented, such as the in-
built birdcage body coil that is used on practically every MRI
system. In practice, one would use the antenna configuration
that resembles the actual setup as closely as possible.

APPENDIX

The spatial discretization of the integral representations for
the RF field closely follows [32] except that here we present
the discretized equations in Kronecker product form to obtain
global discretized representations for the fields.

We start by extending the object domain to a rectangular
computational domain Dcomp with side lengths `i > 0, i =
x, y, z, such that Dobj ⊆ Dcomp. This can always be achieved,
since the contrast function vanishes outside the object domain
Dobj. Subsequently, the computational domain is subdivided
into nonoverlapping discretization cells

Dpqr = {pδx <x < (p+ 1) δx,

qδy <y < (q + 1) δy,

rδz <z < (r + 1) δz},
(22)

for p = 0, 1, . . . , P + 1, q = 0, 1, . . . , Q + 1, and r =
0, 1, . . . , R+1, where P ≥ 1, Q ≥ 1, and R ≥ 1 are integers.
Cells with an index p = 0, p = P + 1, q = 0, q = Q + 1,
r = 0, or r = R+1 are referred to as boundary cells, while all
other cells are called interior cells. Obviously, the side lengths
of a discretization cell are given by

δx =
lx

P + 2
, δy =

ly
Q+ 2

, and δz =
lz

R+ 2
, (23)

and the position vector of the midpoint of a discretization cell
is given by

xpqr = xpix + yqiy + zriz, (24)

with

xp =
δx
2

+ pδx for p = 0, 1, . . . , P + 1, (25)

yq =
δy
2

+ qδy for q = 0, 1, . . . , Q+ 1, (26)

and

zr =
δz
2

+ rδz for r = 0, 1, . . . , R+ 1. (27)

Note that the total number of discretization cells is
(P + 2) (Q+ 2) (R+ 2).

Having introduced our computational grid, we now dis-
cretize the integral representations of (2) and (3). Using the

definition of the scattered field and writing these equations out
in components, we have

Ex = Einc
x + k2bAx + ∂2xAx + ∂x∂yAy + ∂x∂zAz, (28)

Ey = Einc
y + k2bAy + ∂y∂xAx + ∂2yAy + ∂y∂zAz, (29)

Ez = Einc
z + k2bAz + ∂z∂xAx + ∂z∂yAy + ∂2zAz, (30)

and

Hx = H inc
x + ηb (∂yAz − ∂zAy) , (31)

Hy = H inc
y + ηb (∂zAx − ∂xAz) , (32)

Hz = H inc
z + ηb (∂xAy − ∂yAx) . (33)

We only discuss the discretization of (28), since all other
equations can be handled in a similar manner.

As a first step, we require that (28) holds at the midpoints
of the inner discretization cells, that is, for x = xpqr with
p = 1, 2, . . . , P , q = 1, 2, . . . , Q, and r = 1, 2, . . . , R. In
other words, we require that

Ex (xpqr) = Einc
x (xpqr) + k2bAx(xpqr)

+ ∂2xAx

∣∣∣∣∣x=xp
y=yq
z=zr

+ ∂x∂yAy

∣∣∣∣∣x=xp
y=yq
z=zr

+ ∂x∂zAz

∣∣∣∣∣x=xp
y=yq
z=zr

,

(34)

for p = 1, 2, . . . , P , q = 1, 2, . . . , Q, and r = 1, 2, . . . , R.
Second, we follow [32] and approximate the spatial derivatives
by second-order central finite-difference formulas. To imple-
ment these formulas using Kronecker products, we introduce
the first-order differentiation matrix with respect to the x-
coordinate as

X =
1

2δx


−1 0 1

−1 0 1
. . . . . . . . .

−1 0 1

 , (35)

where the elements that are not shown are zero. First-order
differentiation matrices Y and Z with respect to the y- and
z-coordinate are defined in a similar manner, but with δx
replaced by δy and δz , respectively. Furthermore, second-order
differentiation matrices are introduced as

Li =
1

(δi)
2


1 −2 1

1 −2 1
. . . . . . . . .

1 −2 1

 , (36)

for i = x, y, z. The matrices Lx and X are P -by-(P + 2), Ly
and Y are Q-by-(Q+ 2), and Lz and Z are R-by-(R+ 2).
Note that larger or filter kernels could also be introduced, for
example for noisy data [4]. Subsequently, for each slice in the
z-direction we introduce a (P + 2)-by-(Q + 2) matrix A

[r]
x

with elements given by(
A[r]
x

)
pq

= Ax (xp, yq, zr) , r = 0, 1, . . . , R+ 1. (37)
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The above formula defines a collection of R+2 matrices A[0]
x ,

A
[1]
x , . . . , A

[R+1]
x containing the x-component of the vector

potential at the midpoints of all discretization cells. These
matrices can be turned into vectors by stacking their columns
from left to right using the vec-operation [33]. We write

a[r]x = vec
(
A[r]
x

)
, (38)

for r = 0, 1, . . . , R + 1. Matrices and vectors for the y-
and z-components of the vector potential as well as for all
components of the electric field strength are defined similarly.
Finally, we introduce the restriction operators in each Cartesian
direction as

Rk =
[
0 Ik 0

]
, k = P,Q,R, (39)

of sizes P -by-(P + 2), Q-by-(Q+ 2), and R-by-(R+ 2) for
RP , RQ, and RR, respectively and with Ik the identity operator
of order k.

Having introduced all these matrices, the discretized form
of (34) can be written for every slice r = 1, 2, . . . , R in the
z-direction as

RPE
[r]
x RT

Q = RPE
inc;[r]
x RT

Q + k2bRPA
[r]
x RT

Q

+ LxA
[r]
x RT

Q + XA[r]
y YT

+

[
1

2δz
XA[r+1]

z RT
Q −

1

2δz
XA[r−1]

z RT
Q

]
.

(40)

Applying the vec-operation to this equation, using the linearity
of this operator, and the property [33]

vec
(
AXBT) = (B⊗ A) vec (X) , (41)

where ⊗ denotes the Kronecker product, we obtain

(RQ ⊗ RP )e
[r]
x = (RQ ⊗ RP )e

inc;[r]
x + k2b (RQ ⊗ RP )a

[r]
x

+ (RQ ⊗ Lx)a
[r]
x + (Y ⊗ X)a[r]y

+

[
1

2δz
(RQ ⊗ X)a[r+1]

z − 1

2δz
(RQ ⊗ X)a[r−1]z

]
,

(42)

for r = 1, 2, . . . , R. Finally, we stack the vectors a
[0]
x ,

a
[1]
x , . . . , a

[R+1]
x of all slices in one large total vector for

the x-component of the vector potential. This defines the
(P + 2) (Q+ 2) (R+ 2)-by-1 vector

ax =

[(
a[0]x

)T
,
(
a[1]x

)T
, . . . ,

(
a[R+1]
x

)T
]T

(43)

and total vectors for the y- and z-components of the vector
potential and all components of the electric field strength are
defined similarly. With the introduction of these total vectors
and using the properties of the Kronecker product, the R
equations of (42) can be written as a single global equation

Ĩex = Ĩeinc
x + k2b Ĩax

+ (RR ⊗ RQ ⊗ Lx)ax + (RR ⊗ Y ⊗ X)ay

+ (Z⊗ RQ ⊗ X)az,

(44)

with Ĩ = (RR ⊗ RQ ⊗ RP ). Notice that the sparse restriction
matrices Rk, k = P,Q,R, and the sparse differentiation
matrices X, Y, Z, and Li, i = x, y, z are easily implemented

in any programming language, while the Kronecker products
can be carried out using any Kronecker product routine such as
the kron command in Matlab. Finally, we note that the global
discretized equation (44) is similar in form as its continuous
counterpart as given by (28).

A. Weakened vector potential
The final step in our discretization procedure consists of

relating the vector potential to the electric field strength at
the midpoints of the discretization cells. Recall that in a
continuous setting this relation is given by (4). With x ∈ Dobj,
the Green’s function is singular when x′ = x, which may lead
to difficulties when discretizing the integral on a computational
grid. To circumvent this problem, we follow [34] and replace
the Green’s function by the weakened Green’s function Gw

that satisfies the equation

(∇2 + k2b )G
w = −f(x), (45)

where

f(x) =

{
3

4πa3 , if x ∈ Dball,

0, if x 6∈ Dball,
(46)

with Dball a ball of radius a = min {δx, δy, δz} /2 centered at
the origin. In addition to (45), Gw is required to satisfy the
Sommerfeld radiation condition [35].

The weakened Green’s function can be computed explicitly
for x 6= 0 as

Gw(x) =
exp(−jkb |x|)

4π|x|
3

(kba)2

[
sin(kba)

kba
− cos(kba)

]
,

(47)
and for x = 0 as [34]

Gw(0) =
3

4πk2ba
3
[(1 + jkba)exp(−jkba)− 1] . (48)

Note that

Gw(x) = G(x)
{
1 +O[(kba)

2]
}

for x 6= 0 as kba ↓ 0,
(49)

showing that with the particular choice for the radius a, the
weakening procedure is consistent with the second-order accu-
rate finite-difference approximations for the spatial derivatives.

Replacing the Green’s function in the expression for the
vector potential by its weak form, we arrive at the weakened
vector potential

Aw(x) =

∫
x′∈Dobj

Gw(x− x′)χ(x′)E(x′) dV (50)

and if we assume that the contrast function is constant within
each discretization cell, that is, χ(x) = χpqr if x ∈ Dpqr, then
we can write

Aw(x) =

P+1∑
p=0

Q+1∑
q=0

R+1∑
r=0

χpqr

∫
x′∈Dpqr

Gw(x− x′)E(x′) dV.

(51)
Finally, the remaining integral can be approximated by the
midpoint rule, which results in

Aw(x) ≈ δxδyδz
P+1∑
p=0

Q+1∑
q=0

R+1∑
r=0

χpqrG
w(x− xpqr)E(xpqr)

(52)
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and since the vector potential is required at the midpoints xijk,
we arrive at

Aw(xijk)

= δxδyδz

P+1∑
p=0

Q+1∑
q=0

R+1∑
r=0

Gw(xijk − xpqr)χpqrE(xpqr),
(53)

for i = 0, 1, . . . , P + 1, j = 0, 1, . . . , Q + 1 and k =
0, 1, . . . , R+1. Storing the vector potential and electric field
strength approximations in the previously introduced vectors
ai and ei, i = x, y, z, we arrive at the discretized counterpart
of the weakened vector potential

ai = GCei, i = x, y, z, (54)

where G is a square matrix of order (P + 2)(Q + 2)(R +
2) representing the summations with the weakened Green’s
function in (53) including multiplication by δxδyδz and C is a
diagonal matrix with the contrast values of the discretization
cells on its diagonal. Finally, we note that the electric field
strength approximations are defined on interior discretization
cells only (note the range of the indices in (34)), while the
vectors ei contain elements corresponding to boundary cells
as well. These elements are included so that the vectors ai
and ei have the same number of elements and the action of
matrix G on a vector can be computed using the Fast Fourier
Transform (FFT).

Putting everything together, we arrive at the discretized
counterpart of (28) as

Ĩex = Ĩeinc
x + k2b ĨGCex

+ (RR ⊗ RQ ⊗ Lx)GCex + (RR ⊗ Y ⊗ X)GCey

+ (Z⊗ RQ ⊗ X)GCez.

(55)

Equations (29) and (30) can be discretized in a similar manner
and combining the resulting discretized equations with (55),
the discretized counterpart of the object operator can be
identified as

Gobj =
[
k2b

(
I3 ⊗ Ĩ

)
+ D

]
(I3 ⊗ G) , (56)

where D is the discretized gradient-divergence operator given
by

D =

RR ⊗ RQ ⊗ Lx RR ⊗ Y ⊗ X Z⊗ RQ ⊗ X
RR ⊗ Y ⊗ X RR ⊗ Ly ⊗ RP Z⊗ Y ⊗ RP
Z⊗ RQ ⊗ X Z⊗ Y ⊗ RP Lz ⊗ RQ ⊗ RP

 .

(57)
The discretized counterpart of the data operator can be ob-
tained by following similar steps as above.
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