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A new variant of Larmor neutron diffraction, applying only a single precession

arm in the initial beam, is proposed. The single arm, together with the polarizer

and analyser and possible rotators, are mounted in front of the sample. The great

advantage with respect to the case with another precession arm in the reflected

beam is that magnetic samples can now be investigated, because depolarization

and the Larmor phase change of the beam polarization in the sample after the

analyser is no longer of importance for diffraction analysis. The application has

lower resolution than the double-arm precession geometry, but is still better

than conventional diffraction instruments. The differences will be discussed.

1. Introduction
In Larmor diffraction, introduced as Larmor precession in

high-resolution neutron diffraction in 1999 (Rekveldt &

Kraan, 1999; Rekveldt et al., 2001), the wavelength of the

diffracted neutrons is determined by the precession angle in a

field region of known dimensions and known field strength.

The inclinations of the front and end faces of the precession

region are chosen such that, after Bragg reflection of the

neutron beam, the spread in precession angles due to the

spread in wavelengths is greatly reduced, which means that the

precession can be followed to very large precession angles.

The precession angle that can be followed from a reflection on

a specific lattice plane distance d is just the inverse of the

resolution �d/d of that lattice spacing. In the original method,

a double-arm precession geometry (DAG) is used, which

means that the incident and diffracted beams both pass a

precession device, as sketched in Fig. 1. In doing so, as

explained below in more detail, the Larmor precession of a

polarized neutron beam encodes both the wavelength and the

incident neutron direction in such a way as to cancel the

angular and wavelength dependence of the Larmor precession

of the polarization of the diffracted neutrons. In this way the

measured Larmor precession, which can be measured to very

high values, directly yields the lattice spacing with extremely

high precision (�d/d ’ 10�6).

The method has been applied successfully in the determi-

nation of lattice-spacing variations in Al and Si wafers

(Rekveldt et al., 2002), the determination of the absolute

lattice spacing of Si powders and the study of the superalloy

Inconel (Repper et al., 2010), the study of very small lattice-

constant variations in MnSi at low temperatures (Pfleiderer et

al., 2007), the study of the distribution of lattice constants and

the antiferromagnetic moment in high-purity URu2Si2

(Niklowitz et al., 2010), the investigation of the temperature

dependence and distribution of lattice constants in CePt3Si

(Ritz et al., 2010; Sokolov et al., 2011), and most recently the

investigation of the link between structural and magnetic

ordering in the BaM2(XO4)2 family (M = Co, Ni; X = As, P)

(Martin et al., 2012) and of the magnetic ordering in metallic

Ba(Fe1�xMnx)2As2 (Innosov, 2013).

With somewhat less accuracy in lattice-spacing determina-

tion, Larmor diffraction can also be used in a much simpler

setup that is discussed in this article. We will describe and

discuss a single-arm variant (single-arm precession geometry,

SAG), which has different properties but which is simpler to

use and also has important advantages in diffraction studies of

magnetized samples.

2. Instrument description

Although the DAG was historically first, from an instrumental

point of view we prefer to describe here the SAG first and

compare its properties with those of the DAG.

The precession arm consists of a parallelogram-shaped

precession area with induction B perpendicular to that area

and an inclination angle �0 of the front and end faces of the

parallelogram with the main beam direction, and a diffracting

sample with diffraction planes making a well defined angle "

Figure 1
A sketch of the DAG. P and A are, respectively, the polarizer and
analyser producing and analysing the polarization component perpendi-
cular to the precession field B. The precession regions PA have faces
inclined by �0 to the main axis and approximately parallel to the
diffraction plane of the sample S, which makes an angle " with �0.

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ks5385&bbid=BB11
http://crossmark.crossref.org/dialog/?doi=10.1107/S1600576713033839&domain=pdf&date_stamp=2014-01-30


with the inclined faces of the precession area, as sketched in

Fig. 2. To enable precession around B, the polarization vector

created by the polarizer P in general has to be rotated first

over �/2 by a rotator to a direction perpendicular to B in the

precession region and then rotated back before the analyser A

by a second rotator. For simplicity in describing these

elements, the polarizer, analyser and rotators have been drawn

as two units, P and A.

Consider a neutron with wavelength �, entering a single- or

polycrystalline sample at an angle � with respect to the main

axis, that reflects to an angular position x on the detector.

When diffraction takes place from a crystal plane with lattice

spacing d and an orientation �0 + " (where " = "c + "v, with "c a

constant and "v the variable part, varying within �"), then the

following parameters are of relevance for the measured

polarization at x:

x ¼ x0 þ x0 ¼ 2�B � � ¼ 2 �0 þ "c þ "vð Þ þ �;

x0 ¼ 2�B0 � 2 �0 þ "cð Þ;

thus x0 ¼ � þ 2"v:

ð1Þ

The angle � represents the divergence of the incident beam,

which we assume to be Gaussian with a width ��. In the case

of a single crystal, the variable part "v is simply the mosaic

spread, and in a polycrystalline material it is the average

deviation around the constant "c. The variable "v is deter-

mined by both the incident angle � and the detection angle x0.

The latter has an uncertainty �x determined by the detector

uncertainty and the finite size of the sample.

The polarization of the diffracted beam can be derived from

the cosine of the precession angle averaged over � and � in the

SAG

P ¼ cos ’s �; "; d;Bð Þ
� �

av
; ð2Þ

with

’s �; "; d;Bð Þ ¼ c� �; "ð ÞB
L

sin �0 þ �ð Þ

� 2cBLd
sin �0 þ � þ "ð Þ

sin �0 þ �ð Þ

¼ 2cBLd cos "þ sin " cot �0 þ �ð Þ
� �

: ð3Þ

c = �h/m = 4.6368 � 1014 T�1 m�2, where h is the Planck

constant, � the gyromagnetic ratio and m the mass of a

neutron. The precession angle ’s(�, ", d, B) for some lattice

spacing d and magnetic field B is no longer dependent on � but

only on � and ".
We first discuss the situation for a point-like detector with

�x = 0. Then it appears that x0 = 2"v + � must be constant and

"v and � are necessarily coupled variables. We can split the

precession angle ’s(�, ", d, B) into a constant part, ’sc("c, x0, d,

B), and a variable part, ’sv("v, "c , d, B). The former determines

the oscillation frequency in P as a function of B, and the latter

expresses the damping

’scð"c; x0; d;BÞ ¼ 2cBLd cos "c þ sin "c cot �0 �
x0 sin "c

sin2�0

� �
;

ð4Þ

’svð"v; "c; d;BÞ

¼ 2cBLd "v � sin "c þ cos "c cot �0 þ
2 sin "c

sin2�0

� �� 	
; ð5Þ

where we have used the first-order expansion of cot(�0 + �) =

cot�0 � �/sin2�0 for small �. The variable part ’sv can be made

zero at a value of "c = "c0 given by

tan "c0 ¼
cos �0 sin �0

sin2�0 � 2
or 2 tan

x0

2


 �
¼ tan �0: ð6Þ

However, the constant part ’sc(’c, x0, d, B) now varies linearly

in x0.

To compare these results with the case of the DAG, consider

the sketch of the DAG in Fig. 1. We find here for the

precession angle the sum of the precessions through two

regions:

’dð�; "; d;BÞ ¼ c�ð�; "ÞB
L

sin �0 þ �ð Þ
þ

L

sin �0 þ � þ 2"ð Þ

� 	

¼ 2cBLd
sinð�0 þ � þ "Þ

sinð�0 þ �Þ
þ

sinð�0 þ � þ "Þ

sinð�0 þ � þ 2"Þ

� 	
¼ 2cBLd

�
2 cos "

þ sin " cotð�0 þ �Þ � cotð�0 þ � þ 2"Þ
� �

: ð7Þ

We now also split ’d(�, ", d, B) into a constant part, ’dc("c, x0,

d, B), and a variable part, ’dv("v, "c, d, B), again using 2"v� x0 =

��, to yield

’dcð"c; x0; d;BÞ

¼ 2cBLd

�
2 cos "c þ sin "c cot �0 � cotð�0 þ 2"cÞ

� �
� x0 sin "c

1

sin2�0

�
1

sin2
ð�0 þ 2"cÞ

� 	�
; ð8Þ

’dvð"v; "c; d;BÞ ¼ 2cBLd

�
�2"v sin "c

þ "v cos "c cot �0 � cotð�0 þ 2"cÞ
� �

þ sin "c

2"v

sin2�0

� ��
; ð9Þ
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Figure 2
A sketch of the SAG. P and A are, respectively, the polarizer and analyser
setting and analysing the polarization component (in the plane of the
figure) perpendicular to the precession field B (perpendicular to the
plane of the figure). The precession region has faces inclined by �0 to the
main axis and a distance L between the faces. Intensity is measured on the
detector (Det) at an angle x. The angle " is the deviation angle between
the diffracting plane and the inclination angle �0.



and here it appears that the variable part can be made zero at

"c = 0, while at this value the constant ’dc("c, x0, d, B) also does

not change with varying x0.

The ratio ’dv("v, "c , d, B):’dc("c , x0, d, B) for the SAG and

DAG determines the damping of the measured polarization as

a function of B. This ratio equals the achievable resolution �d/

d of the setups. Fig. 3 shows the results for the SAG and DAG

at x0 = 0 and �0 = �/4. The figure shows that, outside the points

"c0 where ’(s,d)v("v, "c , d, B) is minimal, the resolution is

roughly proportional to the variable part |"v| with a propor-

tionality factor about 0.01 times the deviation of "c from "c0.

The offset angle "c0, where precession damping is minimal,

is dependent on the inclination angle �0, as found from

equation (6). This dependence is shown in Fig. 4, where the

Bragg angle �B0 = �0 + "c0, with minimal damping, is plotted as

a function of the inclination angle �0, together with its values

when the Bragg reflection is out of the drawing plane (see

Fig. 2) at the two angles given in the figure. The offset angle "c0

can be chosen as required for an experiment.

It appears that the focusing condition derived in the scat-

tering plane is present over an angular range greater than 5�

out of the plane. This angle should not be allowed to become

too large, in order to avoid the out-of-plane non-focused

contribution to the Bragg angle becoming significant. This

relatively large out-of-plane range in the detection area may

be useful in studying polycrystalline materials.

Fig. 3 shows that the resolution of the SAG at the proper "c

value is about the same as for the DAG.

Now we will discuss the influence of the uncertainty �x in

the scattering angle x0 on the resolution of both the DAG and

the SAG.

For the DAG, the resolution remains high over a relatively

large angular range x0, because ’dc("c , x0, d, B) is first-order

independent of x0. This is not the case for the SAG, where

’sc("c , x0, d, B) changes linearly with x0 within the uncertainty

�x, so equations (4) and (5) change to

’scð"c; d;BÞ ¼ 2cBLd cos "c þ sin "c cot �0ð Þ; ð10Þ

’svð"v; "c; x0; d;BÞ

¼ 2cBLd "v � sin "c þ cos "c cot �0 þ
2 sin "c

sin2�0

� �
�

x0 sin "c

sin2�0

� 	
:

ð11Þ

The inclusion of the detector uncertainty in ’sv("v, "c , x0, d, B),

which is not present in the DAG case, equations (8) and (9), is

the main advantage of the DAG over the SAG.

For the SAG, at each position x0 = 2(�0 + "c), the damping of

the precession due to a single Bragg reflection can now be

written as

Pð"c; "v; d;BÞ ¼ A �x;�"; ’cð"c; d;BÞ
� �

cos ’cð"c; d;BÞ;

ð12Þ

with

A �x;�"; "c; ’cð"c; d;BÞ
� �

¼ cos ’vð"c; "v; d;BÞ
� �

x0;"v

’ exp �
�ð"c;�";�xÞ’cð"c; d;BÞ

2

� 	2
( )

; ð13Þ

and

�ð"c;�";�xÞ ’
’vð"c; "v; x0; d;BÞ

’cð"c; d;BÞ

� �
x0;"v

; ð14Þ

where we have assumed a Gaussian distribution for the initial

divergence and �("c , "v, �x) is the half-width of the Gaussian

exp[�(’v � ’c /�’c)
2]. The maximum resolution expressed by
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Figure 3
The resolution plotted as a function of "c at �0 = �/4, constant position x0,
and maxima of "v = 0.01 and 0.005 for SAG and DAG, respectively.

Figure 4
The average Bragg angle �B0 = �0 + "c0 where minimal damping is present,
plotted as a function of the inclination angle �0, in the drawing plane of
the figure (red), 0.3 rad out of the plane (blue) and 0.5 rad out of the
plane (green).

Figure 5
The resolution function �("c, �x) at �0 = �/4 as a function of "c for two
values of �x and "v in three different combinations, labelled (1), (2) and
(3). For comparison, the resolution that would be achieved in
conventional diffraction for the same angular parameters is shown by
the purple line, labelled (4). Here, the incoming divergence was taken as
�� = 0.01.



�("c , �", �x) is just �x if �x < �". A resolution of �x =

2 � 10�3 may be achievable.

Fig. 5 shows the resolution function �("c, �x) as a function

of "c for two different values of �x and "v in three different

combinations, together with the resolution expected using

conventional diffraction with the same angular parameters.

The figure shows that, at the focusing condition "c0 = �0.32,

the resolution is fully determined by �x and, at "c = 0, it is fully

determined by "v. Depending on the value of "v, we find a

range around "c0 of� 0.33 < "c <�0.25 where the resolution is

more or less constant and only weakly dependent on the initial

divergence ��, which may be much larger [see equations (10)–

(14)]. Knowing the instrumental resolution at a certain

detector position, the extra damping caused by a diffracting

sample as a function of the precession angle directly delivers

the Fourier transform of the line shape of that particular

reflection.

3. Simulations with SAG

3.1. Polarization for a single crystal

Simulations have been performed in the single-crystal case

at different constant angles "c around "c0 , with a mosaic spread

�" = 0.01 rad, and with �x = 10�3 around x0 = 0, on a high-

resolution position-sensitive detector. Fig. 6(a) shows the

amplitude of A(�x, �", "c , ’sc) as a function of the precession

angle ’sc at three different "c values around "c0 . Fig. 6(b)

shows the precession at "c = "c0 at three values of x0 over a

small phase interval, indicating the shift in phase with chan-

ging x0. At "c = "c0 , the precession phase can be followed to

about 150 revolutions, and the lattice spacing and changes

therein can be determined with an accuracy �d/d of about

10�5. Thus, the phase of the damped precession and changes

therein can still be determined with reasonable precision. For

that purpose one does not need to measure the whole B range,

only one period of the precession angle. With a phase accuracy

of 10 mrad the lattice spacing can be determined with a rela-

tive accuracy of �d/d = 10�5.

3.2. Polarization for polycrystalline samples

In this section we wish to show that the SAG can be used as

an inverse-geometry diffractometer. We will use a white beam

as the initial beam, with a normalized wavelength spectrum

given by

I0ð�Þ ¼
4

�1=2

�3
T

�4

� �
exp

�2
T

�2

� �
: ð15Þ

Here �T = h/(mvT), vT = (2kT/m)1/2, T = 300 K, k is the

Boltzmann constant, � is the neutron wavelength and m is the

neutron mass. We measure the polarization of the scattered

beam at various scattering angles. At each scattering angle, the

diffracted intensity of the polycrystal can be considered as

coming from a single crystal with a constant average value "c =

(x0/2) � �0 and a variable part "v with a distribution width

given by

ð�"Þ2 ¼
��

2

� �2

þ
�x

2

� �2

: ð16Þ

We use in our simulations a face-centred cubic (f.c.c.) poly-

crystalline sample as an example, with the following specifi-

cations: lattice planes (111), (200), (220), (311), (222) and

(400), with a lattice spacing of 0.3 nm.

Because in a polycrystal at each angle x there are lattice

planes in reflection, we find for the average polarization by all

precession angles ’sc("c , d, B) from equations (10)–(14) using

"c = (x0/2) � �0 the average of the Nd weighted contributions

from the different lattice planes:

Pðx0;B;�x;�"Þ ¼
nX

d

NdIð�dÞ cos ’sc

x0

2
� �0; d;B


 �

� A �x;�";
x0

2
� �0; ’sc

x0

2
� �0; d;B


 �h io
�X

d

NdIð�dÞ; ð17Þ

with

A �x;�";
x0

2
� �0; ’sc


 �

¼ exp �
� x0=2� �0;�x;�"ð Þ’sc

2

� 	2
( )

: ð18Þ
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Figure 6
(a) The amplitude A = A(�x, �", "c , ’sc) plotted as a function of the
precession phase in the SAG with �0 = �/4, �x = 2 � 10�3 and �" = 0.01
for three different "c values as indicated in the key. (b) The polarization
plotted as a function of the precession phase in a small phase interval with
�’sc = ’sc � 1000 rad at x0 = 0 (red line), x0 = 0.0005 (green line) and x0 =
�0.0005 (blue line). Here, "c = "c0 = �0.32.



Here, �d = 2dsin(x0/2) and Nd is the multiplicity factor of plane

d in an isotropic distribution in 4�, for which we use N111 =

N222 = 8, N220 = 12, N200 = N400 = 6 and N311 = 24. Note that the

damping as a function of B will be different for each Bragg

reflection, meaning that for larger B values the oscillations

from the smaller d values are predominantly present. The

measured polarized intensity in the detector range �x is

Iðx0;B; tÞ ¼ Vðx0; tÞ
1þ Pðx0;B;�x;�"Þ

2

� 	
; ð19Þ

with

Vðx0; tÞ ¼ Iw0Apbhbwd�ðx0Þ cot
x0

2


 �
��Rt

X
d

Nd ð20Þ

and

d�ðx0Þ ¼
hd

Ld sin x0

: ð21Þ

Here, V(x0, t) contains the initial intensity of the white beam

Iw0 with a wavelength spectrum given by equation (15) using

�T = 0.2 nm, losses at the polarizers Ap, the beam height bh ,

the beam width bw, the wavelength region d�/� = cot(x0/2)��
contributing to each plane reflection, the reflectivity R per

plane, the measuring time t per field point B in seconds, and

the quantity d� determining the fraction of the total scattered

neutrons captured by the detector of height hd and width

equal to the beam width at a distance Ld from the sample. In

our simulation we took the parameters as given in Table 1.

This results in

Vðx0; tÞ ¼ 0:032t
P

d

Nd ¼ 20:4t: ð22Þ

Using these numbers, Fig. 7 shows the simulated intensity as a

function of the precession magnetic field B (in mT) at various

values of x0 around 2(�0 + "c0). For the distance L between the

inclined precession faces, we used L = 1 m. In the intensity

I(x, B, t) we included a random number with amplitude �I =

I(x, B, t)1/2 to account for the expected statistical spread at

each point.

From Fig. 7 one sees that, for B > 20 mT, the damping

becomes considerable for detector angles deviating more than

0.1 rad from the optimal x = 2(�0 + "c0) = 0.93 rad. The number

of visible Larmor precessions is inversely proportional to the

observable line width. By Fourier transforming the spectra of

Fig. 7, we find the wavelength-dependent intensities shown in

Fig. 8.

In the simulation, the instrumental parameters of Table 1

are used with a data-collection time of 10 000 s for 50 similar

spectra simultaneously over a total detector angular range of

6�, 50 times the detector width used in the calculations. When

the spectra are plotted against �/sin(x0/2) and averaged over

the whole angular range, the shown spectrum represents the

average measured in only 200 s. It has already been shown in

x2 that, if a detector height ten times larger is used, the

focusing condition in "c0 changes by a maximum of the order

of 1% (see Fig. 4), which means that in an optimal detector

design the shown spectrum can be obtained in about 20 s

measuring time with a resolution much higher than in

conventional diffraction.

4. Experiments on single crystals

Experiments have been carried out on an improvised Larmor

diffractometer at the reactor institute in Delft, as sketched in

Fig. 9. The setup makes use of the resonance technique, where

the precession angle is determined by the resonance fields B in

research papers

440 M. T. Rekveldt et al. � Larmor neutron diffraction J. Appl. Cryst. (2014). 47, 436–442

Figure 7
The simulated intensity, in counts per 10 000 s, collected in one detector
pixel of �x = 2 mrad, plotted as a function of B at various detector angles.
150 has been added to each spectrum to make them more readily
distinguishable from each other. Note the different damping of the
spectra at the various x values indicated in the figure.

Figure 8
The simulated intensity of an f.c.c. polycrystal plotted as a function of the
wavelength � at three detector positions around the optimal x = 2(�0 +
"c0) = 0.93 rad. The spectra were obtained by Fourier transformation of
the simulated intensities of Fig. 7. The dash–dotted line shows the
wavelength spectrum used in the simulations.

Table 1
Instrumental parameters used in the simulations.

Iw0 Ap bh bw hd Ld d� �x �0 �� R

106 cm�2 s�1 0.25 2 cm 2 mm 2 cm 1 m 0.003 0.002 �/4 0.01 0.1

Figure 9
A sketch of the improvised Larmor diffractometer, where P and A are the
polarizer and analyser consisting of two polarizing mirror systems, R1 and
R2 rotate the polarization direction from the initial polarization along z to
the xy precession plane and back, M1 and M2 are magnets generating the
resonance fields B in the resonance coils C1 and C2, and S is the sample
single crystal to investigate. The precession angle is varied by changing
the length Lc by shifting the position of magnet M1.



two coils a distance Lc apart, similar to what was described by

Dalgliesh et al. (2011). The precession angle ’s(�, �, B) =

2cBLcdcos�B is varied in large steps by the resonance field B

and in smaller steps by the distance Lc between the magnets

by shifting M1 in the direction of M2.

Because we could not vary the resonance frequency auto-

matically, we varied the distance Lc only between 80 and 40 cm

at various constant fields B and corresponding resonance

frequencies to obtain a large enough range of precession

angles. At the sample position we placed successively an Si

crystal and an Fe3Si single crystal, at the same scattering angle

� = 2�0 = 84� and with different mosaic spreads. Fig. 10 shows

the results for the Si crystal. The Si crystal consisted of a stack

of thin wafers with nearly the same orientation, bent around

an axis in the scattering plane to increase the diffracted

intensity by deformation. For the damping constant � of the

amplitude of the precession defined in equation (13), we found

�(...) = 4.7 � 10�3 using an initial polarization of 0.7, shown

also in the figure. In the figure the measurements at different

fields overlap, which means that in the top part of the figure

the measurement at 5 mT is fully hidden by the neighbouring

fields.

This �(...) value corresponds to an uncertainty in the wafer

orientation of 0.28 mm over the diameter of 50 mm, which is a

mosaic spread that may be expected for a stack of separately

polished wafers.

Next, we investigated how the amplitude of the precession

changes with deviation of the Bragg angle from the inclination

angle (Fig. 11). With a fixed open detector over about 10�, we

measured the reflected intensity and polarization as a function

of the change in Bragg angle, ��B0. At the minimum and

maximum values of ��B0 , where the intensity drops, the

polarization amplitude is increased by the effectively smaller

angle range contributing to polarization in the detector. In the

range where the intensity is roughly constant, the polarization

amplitude changes from about 0.1 to 0.05, which corresponds

to a change in �(...) of 4.7 to 5.4 � 10�3.

Next, we investigated the reflected intensity and polariza-

tion of an Fe3Si single crystal at the same Bragg angle of 42�.

Before measuring the field-dependent polarization, we

adjusted the crystal by hand to optimize the detector intensity.

Because here we have contributions of different order

reflections with different wavelengths, Fig. 12 shows the

measured polarization as a function of fd = 2cLBsin�B0 ,

together with the calculated polarization of the three order

reflections of Bragg planes (200), (300) and (400) of Fe3Si in a

field of 2.5 mT. The quantity fd is related to the Larmor phase

’d of each reflection from the lattice plane dhkl by ’d = fdd. The

polarization of the sum of the three orders, P(fd), fits perfectly

with the measured data, with a fitted intensity ratio for the

orders I200:I300:I400 = 30:15:13, a lattice constant d100 =

0.565 nm and polarization amplitude damping according to
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Figure 10
Measured polarization of the reflected beam and amplitude fit on a stack
of Si(100) wafers of dimension 50 � 0.3 mm (diameter � thickness). The
scattering angle of 84� was twice the inclination angle (42�) of the
precession region. The colours and insets refer to the different B fields
and resonance frequencies used in the precession region. The lower two
figures show P(’) in two small ’ ranges at different B values in mT
according to the key shown in the inset.

Figure 11
(a) Measured intensity as a function of the change in Bragg angle ��B0 =
". (b) Polarization derived from (a) at a fixed field of 5 mT and distance L
between the resonance coils of 80 cm, corresponding to a precession
angle of 600 rad at ��B0 = 0. (c) The change in precession angle derived
from (b).

Figure 12
Measured polarization as a function of fd of the sum of the three order
reflections (200), (300) and (400) of an Fe3Si single crystal (red solid line),
together with the calculated polarization (blue dotted line).



PðfdÞ ¼
X
hkl

cosðdhkl fdÞ exp �
�ð:::Þdhklfd

2

� 	2
( )

: ð23Þ

Here, �(...) is again the uncertainty in the Bragg angle, being

the mosaic spread of the crystal. In the fit we have used �(...) =

4.4 � 10�3, close to the damping factor found in the Si

diffraction in Fig. 10. For the measurement accuracy of the

found lattice spacing, which is only dependent on the phase of

the measured polarization, we estimate from this preliminary

experiment with three contributing reflections �d100 =

5 � 10�4 nm.

5. Discussion

A comparison of the single-arm Larmor diffractometer with

the double-arm geometry shows that the DAG is applicable

with very little damping at large precession angles and rela-

tively large deviation angles "c around "c0 = 0, while the SAG

is applicable with somewhat more damping around "c0 6¼ 0,

albeit with the precession angle linearly dependent on x,

making this mode strongly dependent on a high-resolution

position-sensitive detector and small angular dimensions of

the sample. Note that the resolutions of both modes are, to the

first order, independent of the incoming beam divergence ��.
The value of "c0 can be chosen by adjusting the inclination

angle �0. Both the DAG and the SAG may be candidates for

an inverse-geometry diffraction instrument with an initial

white beam, with excellent resolution for the DAG and a still

high resolution for the SAG, but the latter can have much

better counting statistics because it has a much larger angular

region x around "c0 and a high angular region perpendicular to

the plane determined by the angle x. The latter may be

problematic using the DAG because a polarization analyser

should also be applied over the large angular region. The large

detector solid angle may make the SAG an excellent candidate

for an inverse-geometry diffraction instrument with an initial

white beam for studying polycrystalline samples, because its

resolution and intensity promise to be better than those of

conventional diffraction instruments. In comparison with the

DAG, the SAG has an advantage for the field arrangement

around the precession regions, because it needs only one

precession region in front of the sample, and no field

arrangements around the sample and detector positions that

are fully outside the precession region. As a consequence, the

SAG can also be used for magnetic samples without difficult

modifications of the setup. The SAG is especially applicable in

magnetic and non-magnetic samples. We estimate that suffi-

cient accuracy can be obtained to study relative lattice plane

changes larger than 10�5. The SAG is more flexible than the

DAG and can be built as a special tool to be implemented in

the primary beam of a diffractometer. To compare the DAG

and SAG with normal diffraction, both can work with a white

beam, thus much higher intensity. Using a large detection

angle, in principle all wavelengths of the initial white beam are

used in the data collection. Using the latter option, one may

concentrate on the variation of different lattice spacings

simultaneously by measuring the change in the precession

phases of the different lattice spacings in a small field range at

high field, thus saving much measuring time in comparison

with standard diffraction.
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