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Abstract
Largescale machine learning frameworks can accelerate training of a neural network by per
forming distributed training on a cluster using multiple GPUs per node and multiple nodes.
Because distributed training on a cluster involves many nodes which need to communicate
and load and exchange data, a machine learning framework may at certain times during
training not fully utilize the available hardware of the system. Various techniques are as
sessed in their capability to measure the performance of specific parts of the hardware of
a cluster. We present ML Board, a tool that measures and visualizes the utilization of the
system while training a neural network model using some of the previously assessed tech
niques, and does so without requiring any changes to the used machine learning framework.
ML Board can be used to identify straggling nodes, and by subsequently letting the user
select different nodes using the Slurm job scheduler, can help to decrease the training time
of a ResNet model by between 15 and 45% when using an ImageNet or CIFAR10 dataset.
Furthermore, the energy used by the GPUs can be measured and used to identify and replace
GPUs to reduce the total used energy by between 5 to 16%.
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1
Introduction

In the last decade or so, the increasing amount of data and computational power available,
has caused Machine Learning (ML) to have seen a significant increase in usage to analyze
and make predictions on data. Machine Learning can be applied when a problem is too
complex to be solved by an algorithm. Examples of ML are image classification and se
mantic segmentation for medical [37] and automotive applications [66, 67], face recognition
for surveillance and object detection for navigation and collision avoidance by autonomous
vehicles [5, 22, 23, 39], speech recognition and synthesis in home assistant and IoT de
vices [6, 56], style transfer to generate images [15, 30], and reinforcement learning for AI in
esports [46, 60].

As time passed by, the time to train models and the computation and memory require
ments of these models for inference has been reduced with algorithmic improvements to these
models and by reducing the memory bandwidth that is required. These include using differ
ent building blocks in layers or using a different architecture to reduce the number of hyper
parameters [24, 54], and applying quantization during inference and using quantization
aware training [19]. However, sometimes the amount of data cannot fit into memory all at
once or the distribution of the data does not allow one to train and infer on a single ma
chine. Thus these conditions force the use of multiple machines to parallelize the training
and evaluation of models.

To speed up training models with largescale machine learning frameworks, one can scale
up and scale out. Scaling up involves adding resources to a node, while scaling out means
adding more nodes to the system.

Scaling up can occur by taking advantage of SIMD instruction sets in CPUs like AVX
512 in order to operate on multiple elements at once or to operate on special floatingpoint
formats like bfloat16 [55] and int8 [48], where the reduced precision, compared to single
precision, can be used to speed up computations and reduce memory costs of deep learning
applications [29]. Another way of scaling up is using hardware designed to process data with
multiple hardware threads like Graphics Processing Units (GPU) or specialized hardware like
Google’s Edge Tensor Processing Unit (Edge TPU), which can do inferencing of TensorFlow Lite
models on a USB or PCIe accelerator 1.

To further accelerate training and inference, scaling up can be complemented by scaling
out by adding more nodes to the system. This leads to a distributed system where nodes
need to communicate, synchronize, and exchange data with each other. Input data is also
often ingested from other machines in the data center, or even from remote locations in the
cloud. With a system consisting of multiple machines, latencies exist between these ma
chines, sometimes infinite if a machine or some other hardware struggles or fails completely.
Due to the presence of latencies, nodes may fall idle, reducing the utilization of its hardware.
It may also have an effect on the scalability and the ability to detect and recover from failures
on faulttolerance.
1https://coral.ai/products
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2 1 Introduction

Detecting when and in which components of the system hardware utilization is lower than
expected might help in improving the scalability of the system. Thus the objective of this
thesis is to answer the question: which techniques can measure inefficiencies or bottlenecks
when training models with machine learning frameworks on a distributed system?

The remaining part of this chapter is as follows: Section 1.1 describes the problem and
lists the research questions this thesis will answer, in Section 1.2 the methodology used to
perform the experiments is explained, and in Section 1.3 an outline of the remaining chapters
and the main contributions of this thesis are given.

1.1 Problem Statement
Largescale ML frameworks have the ability to perform distributed training on multiple GPUs
per node and on a cluster of multiple nodes. Because the system consists of multiple parts,
these parts need to communicate and exchange data with each other. This distributed nature
of the system means there are nodes which are idle at certain times, thus making inefficient
use of the hardware of the cluster.

In order to measure inefficiencies, the duration of various parts of largescale ML frame
works needs to be measured. There are currently a few popular ML frameworks used in
research and production, like PyTorch and TensorFlow [1]. Previous work [17] evaluated the
scalability of parameter update strategies using synthetic input data to avoid bias. In this
thesis, instead experiments will be run with various wellknown public datasets and models
to learn whether the input data or model used has an effect on the utilization of the hardware.

To answer the question of what inefficiencies or bottlenecks exist in largescale ML frame
works, the duration of the training and prediction phase and the parts of the system and
the interaction between different nodes needs to be measured. For the training phase, the
forward pass and backward pass needs to be measured. Another aspect is the loading of the
dataset, where not only the size of the dataset is a factor, but also the method of transporting
this data to the parts of the system that are responsible for training or testing the model.

This thesis will focus on the following research questions:

RQ1 Does the hardware utilization depend on the dataset, the model, hyperparameters, or
configuration of the system like number of GPUs and used interconnect?

RQ2 Which parts of the system can be measured and visualized?

RQ3 How much time is spend on communication between nodes, loading data, updating
parameters, and other aspects in popular largescale machine learning frameworks?

RQ4 Which recommendations can be given to speed up training of neural network models?

1.2 Research Approach
The research questions mentioned above are answered by performing empirical research on
a small cluster of nodes with GPUs and different network interconnects available. Exper
iments will use the PyTorch ML framework and use a small set of datasets like CIFAR10
and ImageNet, and wellknown models used in research papers like ResNet [21] and Mo
bileNet V2 [54].

This thesis is inspired by [17], which focused on the scalability and resource usage of
various parameter update strategies during training on CPUs. In this thesis, training is
performed on GPUs instead, which are often used to reduce the time to do training and
inference [61]. While [17] used synthetic data, this thesis does use various public datasets
because the experiments happens on GPUs and because RQ1 tries to answer whether using
different datasets affect the hardware utilization.

To answer RQ1 and RQ3, experiments are run on the DAS5/VU [4] with up to 16 nodes
with 2x E52630 v3 CPUs (16 cores and 32 threads per node) and 1x GeForce GTX TITAN X
GPUs each. Experiments are repeated with 1, 2, 4, 8, and 16 nodes. A few nodes provide 2
or 3 GPUs and separate additional experiments are run with multiple GPUs on these nodes.
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Some experiments will instead use a small number of nodes with 1x or 2x RTX 2080 Ti de
pending on the chipsets that are supported by the various tools of the NVIDIA CUDA toolkit
that is installed on the system. These nodes also have a more modern CPU (Skylake gener
ation). The cluster provides Ethernet and InfiniBand as network interconnect. Libraries like
Gloo and NCCL are used for communication between GPUs and nodes by the ML frameworks.

Answering RQ3 requires measuring the time spend during various phases of the training
and testing workloads by different components of the ML frameworks. In order to measure
the time, the code of the framework may need to be instrumented. Utilization of the hardware
may be measured with the nvidiasmi tool. To limit the scope of the experiments, the thesis
restricts itself to the ML framework PyTorch, which is one of the most popular frameworks
used in research and production [20].

To answer RQ2, several tools and libraries are collected and assessed to which degree
they are capable of measuring certain parts of the system. Useful tools and libraries are
then used to build a new tool, ML Board, tailored to providing insight into the performance
of machine learning workloads. ML Board can then be used to answer RQ3 and RQ4.

1.3 Thesis Outline and Contributions
The remaining of this thesis is structured as follows: in Chapter 2 the background of the
problem is described. Chapter 3 shows the hardware utilization during various experiments
with a single or multiple GPUs, different number of nodes, and network interconnects when
training and evaluating various datasets and models on the GPUs with PyTorch. In Chapter 4
a number of tools and libraries are investigated that can help to build a tool that visualizes the
utilization of the hardware. Chapter 5 describes the framework of ML Board, the monitoring
tool developed during this thesis. In Chapter 6 the tool is evaluated, and Chapter 7 provides
the conclusions and future work. A schematic overview of the chapters is shown in Figure 1.1.

Conclusion (Chapter 7)

Evaluation (Chapter 6)

ML Board (Chapter 5)

Monitoring techniques (Chapter 4)

Initial experiments (Chapter 3)

motivates need to investigate

used to build

Figure 1.1: Overview of the chapters of this thesis.

The main contributions are:

• A prototype of a tool that visualizes the utilization and efficiency of the system, including
hardware like GPUs.

• A survey of monitoring techniques and a list of visualizations that highlight the utiliza
tion of the system.

• Recommendations for the user to speed up training of a neural network model on the
used hardware or to reduce the total used energy needed for training.





2
Background

In this chapter some background information is provided about the used hardware and soft
ware when training and testing neural network models on a distributed system. This chapter
is structured as follows: Section 2.1 gives an overview of the general hardware used by the
experiments in the following chapters. Section 2.2 describes how programs are run on video
cards, and Section 2.3 explains the details of neural networks.

2.1 Modern hardware
2.1.1 Central Processing Units
An application or program is a set of algorithms and is made up of a sequence of instructions,
executed by the Central Processing Unit (CPU). The instructions are loaded by the Operating
System (OS) into main memory and then fetched, decoded, and executed by the CPU. The CPU
keeps track of which instruction to execute using a special register known as the program
counter.

A small CPU like a microcontroller in an embedded system has usually one or two physical
cores that can execute instructions from different threads concurrently. A modern desktop
CPU has between four and 16 cores and server CPUs can have over a 100 cores. Because
some of the instructions operate on different parts of the CPU, a CPU can expose a physical
core as multiple logical cores. This allows multiple threads (from one or more programs) to
run concurrently on one physical core. This technique is called Simultaneous Multithreading
(SMT). Common desktop CPUs support two logical cores per physical core, but some server
CPUs are known to support up to eight logical cores. SMT may increase the efficiency of
the hardware, but running two different applications on the same physical core can have an
impact on security due to the shared use of hardware. A malicious application may exploit
mistakes in the microarchitecture of the CPU to cause a core to inadvertently leak data from
another application.

A CPU core consists of several execution units. These include units like the Arithmetic
Logic Unit (ALU) and FloatingPoint Unit (FPU), which perform arithmetic on integers and
floatingpoint numbers respectively, a unit that is responsible for loading and storing data
from and to memory, and the branch predictor, which is responsible for predicting which
instructions of a program are needed in the near future. Some microcontrollers do not have
an FPU and in this case instructions on floatingpoint numbers need to be emulated.

Besides speeding up execution of a program by parallelizing parts of it so that these parts
can be executed concurrently, known as task parallelism, a program may also use special in
structions that operate on multiple numbers at once (Single Instruction Multiple Data (SIMD)),
which is a form of data parallelism. SIMD extensions to CPU instruction sets were originally
added for Digital Signal Processing (DSP) applications like video and audio decoding and en
coding, but various new variants can be used for all kinds of algorithms, including matrix
multiplication in linear algebra and parsing JSON files [32].
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6 2 Background

At a lower level, a CPU may transparently execute multiple different instructions without
the application being aware of it if these instructions have no dependency on each other
and use different parts (execution units) of the CPU, execute instructions in a different order
than intended by the programmer or compiler, and use pipelining to fetch instructions, while
decoding and executing others.

Parts of the application consists of instructions that must be run sequentially, while other
parts may run concurrently in separate threads of control. This ratio between the sequential
and parallel parts of an application gives an upper bound on the maximum speedup as a
function of the number of CPU cores. For example, if 50% an application is run in parallel,
the maximum speedup is 2, and if 90% is run in parallel, the maximum speedup is 10,
even with an infinite number of CPU cores. This is known as Amdahl’s law1. Fortunately,
Amdahl’s law assumes the application operates on a data set with a fixed size and more cores
can be utilized by increasing the size of the data set on which the application operates.

Caches

After the instructions of a program have been loaded into main memory by the OS, the in
structions are then fetched by the CPU. Because it would be quite slow to fetch each individual
instruction, a window of instructions is fetched in one go. These instructions are stored in
a small piece of memory on the CPU called the L1 instruction cache. Although the cache is
quite small, it is much faster than accessing the main memory. As programs may contains
loops (using an instruction that sets the program counter back to an earlier memory address)
a cache hit will occur if the required instructions are found in the cache. Otherwise a cache
miss will occur, which means the CPU has to fetch the instructions from main memory. Un
fortunately, some parts of the application may not have been loaded into main memory by
the OS yet. If this happens, an exception is raised by the Memory Management Unit (MMU) of
the CPU. The OS is then asked to load the required instructions or data into main memory.

Besides the L1 instruction cache, various caches exist for data as well. Each CPU core has
a small L1 data cache and a larger L2 cache which can contain instructions as well as data.
Most processors also have a large L3 cache that is shared between multiple cores. In general,
as the level of the cache increases, size and latency of it increases as well. Figure 2.1 shows
the CPUs and its caches of a compute node in the DAS5 cluster. Devices like GPUs and
network interfaces are connected to the first NUMA node, and thus CPU cores in the second
node must communicate with the devices through the first node, incurring extra latency.

Trends

One of the continuous trends is to move computations to specialized hardware to increase the
performance [35] and move computations to software when flexibility is needed. Many mobile
and desktop CPUs now have SIMD extensions suitable for many tasks, including DSP. Select
server processors support the AVX512 extensions, of which parts, like BF16 and VNNI, are
designed to accelerate AI tasks. To increase flexibility, many parts of modern systems have
microcontrollers which need firmware to operate.

Another trend is that systems have more and more hardware that can process data in
parallel. With semiconductor companies trying to keep up with Moore’s law, the prediction
that the amount of transistors on a chip would double every two years, physical limits are
being reached as the size of transistors decrease. Other ways to increase the performance
of CPUs is to simply increase the clock frequency. A processor will in this case execute
more instructions per second. Increasing the clock frequency results also in an increase in
power usage, noticeable in the form of heat. There are, however, limits to how much heat
typical cooling solutions can dissipate. Figure 2.2 shows that with the increase in singlecore
performance slowing down in the mid 2000s, CPUs started to get more and more cores.

With CPUs having many cores, applications now need to do parallel programming to take
maximum use of the available computational power. Parallel programming, however, can be
much more difficult than sequential programming and gives rise to problems like deadlock,

1Speedup 𝑆 = 1/(𝑠 + 𝑝/𝑁) where 𝑠 is the sequential part, 𝑝 the parallel part, and 𝑁 the number of CPU cores
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Figure 2.1: Topology of two Skylake CPUs of a compute node in the DAS5 cluster.

where threads try to acquire resources that other threads are unable to release, halting a
program (usually indefinitely). Unless a problem is embarrassingly parallel, communication
and synchronization between threads is needed, which means the maximum speedup will be
less than the increase in the number of cores due to the overhead of the communication.

Just as CPUs contain now more cores to increase the task parallelism, the width of SIMD
registers has doubled several times to increase the data parallelism. The MMX instruction
set, introduced in 1997, uses registers of 64 bits, while SSE from 1999 operates on 128 bits,
and AVX (from 2011) and AVX512 (from 2016) use registers that are 256 and 512 bits wide,
respectively.

2.1.2 Graphics Processing Units
In the mid and late 1990s, specialized tasks used in 3D rendering like transformations and
lighting had moved from the CPU to the Graphics Processing Units (GPU) and in the late 2010s
GPUs gained the ability to hardwareaccelerate ray tracing using AI acceleration hardware
known as tensor cores. More specialized hardware (Application Specific Integrated Circuit
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(ASIC)) exists like Google’s Edge Tensor Processing Unit (Edge TPU) which can do inferencing
(but not training) of some neural network models.

In the early and mid 2000s various parts of the graphics pipeline, a conceptual model that
describes how 3D models are transformed into 2D pictures on the screen, became pro
grammable with shaders, small programs that run on the GPU. Some steps of the pipeline,
like the rasterization of triangles, are still performed using fixedfunction hardware. APIs fo
cused on generalpurpose computing like CUDA and OpenCL, and APIs focused on rendering
like OpenGL and Vulkan, provide access to the raw programmable hardware with compute
shaders, or kernels, as they are called in APIs like CUDA. These kernels, which can read and
write to large buffers, are part of a simpler compute pipeline and avoid hardware used only
for rendering.

The hardware of GPUs will now be explained. While a CPU has a few cores, a GPU has in
the order of tens of Streaming Multiprocessors (SM) (also known as Compute Units). Each SM
can process multiple instructions in groups of 32 or 64 threads (depending on the vendor of
the GPU). Such a group is also known as awarp and its threads are known as lanes. All lanes
of a warp execute the same instruction and thus they operate in lockstep. This is known as
Single Instruction Multiple Threads (SIMT). In total a GPU has often a few thousand threads.
An SM can execute a few warps in parallel and also have multiple warps in flight (since
warps execute multiple instructions). Multiple warp schedulers determine which warps may
execute instructions. If a warp needs to fetch data from memory, the scheduler may switch
to another warp until the data has been fetched. Unlike a context switch on a CPU core from
one program to another, switching between warps is very lightweight because an SM has a
lot of registers for multiple warps.

Differences between the threads of an SM and the cores of a CPU are that CPUs devote a
large amount of their die area to the branch predictor. GPUs instead are throughputoriented
and do not have outoforder execution of instructions and predicting which branch of the
program’s control flow should be taken.
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Because all lanes of a warp share a common program counter, they also must execute
the same branch in the program’s control flow. To handle divergent control flow when some
threads must execute branch A while others must take branch B, the lanes of a warp will
process both branches and use masking to enable or disable specific threads. Modern GPUs
can execute just one branch if all threads decide to take that particular branch [3, 53].

The threads of a warp can communicate with each other using special instructions and
each SM has a small amount of shared memory (around 64 or 96 KB) so that threads of dif
ferent warps can communicate as well. Furthermore, a GPU has a large amount of L2 cache,
and several Texture Mapping Units (TMU), which fetch pixels from textures (ndimensional
images) and apply bilinear filtering in hardware. The automatic filtering can be taken ad
vantage of to reduce the number of texture fetches when applying a convolutional filter to
the pixels of an image [52]. Some other hardware that is used by the graphics pipeline but
not by the compute pipeline is the Raster Operations Pipeline (ROP), which does blending and
antialiasing of framebuffers that are eventually displayed on the screen.

Some GPUs have special hardware optimized for processing matrix multiplications and
additions, known by some vendors as tensor cores. These units can multiply values in a
lower precision format (like FP16 or INT8), and then accumulate the result in the same or
higher format like singleprecision (FP32).

2.1.3 Interconnects
Ethernet and InfiniBand are standards that provide wired networking between different ma
chines. Ethernet uses twisted pairs of copper cables or fiber optic cables. Most consumer
hardware provides speeds of up to 1 Gbit/s, while hardware providing speeds of 10 or 100
Gbit/s is much more common in data centers. Data transmitted over Ethernet is split into
separate packets called frames. Each frame has a source and destination address, called
a MAC address. These addresses must be unique on the local network. Machines com
municate with each other using IP packets, which is wrapped in a frame and transmitted
over the wire. Machines use the ARP protocol to learn which MAC address belongs to an IP
address. Many machines can be connected to one or more network switches, which often
have between 8 and 48 ports. These switches use their contentaddressable memory (CAM)
to quickly lookup the network port on which a frame with some MAC address was last seen.
Special addresses like FF:FF:FF:FF:FF:FF exist to broadcast a frame on all ports, which is
needed for certain protocols.

InfiniBand is an interconnect that is typically used only by supercomputers. It supports
Remote Direct Memory Access (RDMA), which avoids involving the CPU and the OS. This re
sults in a lowerlatency than traffic that goes over the Ethernet interconnect and through the
OS.

2.2 Execution models on GPUs
Programs executed by the CPU have one or more distinct sequence of instructions, each
executed by a different thread of control. On the GPU, a program, better known as a kernel,
is just one sequence of instructions, but run multiple times on up to thousands of threads
instead of just one. Thus the GPU runs a kernel in parallel on a massive number of threads,
with some of the invocations done in concurrently and others done sequentially if the number
of invocations is greater than the number of physical threads provided by the hardware. To
make effective use of these threads, the threads must be logically and physically divided into
a number of groups. Various different APIs for generalpurpose computing, including CUDA,
make use of a hierarchy of two levels:

• Grid of blocks

• Block of threads

Each level or layer has one, two, or three dimensions. The number of dimensions depends
on what the application needs. For example, an application may want to apply elementwise
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transformations to a large data set, and thus will use a 1D grid and block. Another appli
cation may want to apply Computational Fluid Dynamics (CFD) to compute the aerodynamics
of a vehicle and use a 3D grid and block.

Each thread block is scheduled independently to one of the available SMs. No commu
nication can occur between threads in different thread blocks since they may be scheduled
sequentially to the same SM. It is, however, possible to use memory barriers to flush caches
and use multiple kernel launches so that a thread can use data written by another thread in
a previous launch.

All threads of a thread block are run on one particular SM. Because an SM can only hold
a limited number of threads in its registers, there is a limit on the total number of threads
in a block (1024 on NVIDIA GPUs). To achieve good utilization of the threads in an SM, the
total number of threads must be a multiple of the warp size (32 on NVIDIA GPUs). While the
warp size is an implementation detail, programs can take advantage of knowing the size of a
warp to avoid using barriers when exchanging data between the threads in the same warp.

The threads of a thread block can communicate in various: using atomic instructions
to read and write to global memory (this also allows threads from different blocks to modify
data), using shared memory, and using special functions to broadcast data between active
lanes in a warp.

2.2.1 CUDA
CUDA is an API and a set of libraries that applications can use to perform computations
on the GPU. The API can be used to launch kernels and copy data between host and device
memory. Some of the libraries provided by CUDA provide optimized kernels for linear algebra
such as matrixmatrix multiplication by cuBLAS, Fast Fourier Transforms (FFT) by cuFFT,
and kernels for deep learning by cuDNN.

2.3 Neural networks
Supervised machine learning tries to compute an unknown function 𝑓 that maps a set of
inputs 𝑥1, … , 𝑥𝑛, to some output 𝑦:

𝑦 = 𝑓(𝑥1, … , 𝑥𝑛) (2.1)

In regression the output can be a continuous value and in image classification the output
is some discrete value such as a label. In object detection that are multiple labels, each with
a corresponding bounding box that indicates the location of the object. While the function 𝑓
is unknown, the goal of machine learning is to create a network that approximates 𝑓 so that
the error between an output 𝑦 and the predicted �̂� is minimized on average.

Such a function 𝑓 is represented by a neural network, which consists of neurons, grouped
into layers. Each neuron receives the outputs of some or all of the neurons of the previous
layer as inputs, multiplies these with a set of weights, and adds a bias. For example, a 2
dimensional plane can be split into two halves by some straight line using a neural network
that consists of a neuron with two inputs:

𝑦 = 𝑤1𝑥1 +𝑤2𝑥2 + 𝑏 (2.2)

where 𝑤1 and 𝑤2 are the two weights and 𝑏 the bias. A visual representation of the network
in Equation (2.2) is shown in Figure 2.3a. If the output of a neuron in such a network is
greater than zero (𝑦 > 0) then it is a binary classifier and called a perceptron. Singlelayer
perceptrons are used in the branch predictors of CPUs [28] because they are easy to train
with no backpropagation needed.

The first layer of a neural network is called the input layer, the last layer as the output layer,
and the layers inbetween as the hidden layers. The earlier layers compute the most primitive
features and deeper layers learn to recognize more abstract and higherlevel features of the
input composed of features learned by previous layers. A neural network with one input
layer and one output layer is shown in Figure 2.3b. Each node has a bias and each link has
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(a) A network consisting of just one neuron.
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(b) A network with one input layer with two neurons and
an output layer with one neuron.

Figure 2.3: Examples of some small neural networks.

a corresponding weight. More complex networks can have many layers with many neurons.
The number of neurons in the layers indicate the width of the network and the number of
layers indicate the depth.

Computing the values of the weights and biases is known as training a neural network.
A trained neural network can then be used to make predictions by evaluating the function
𝑓 given some inputs. To train a neural network, labels (the desired 𝑦 values) and a lot of
data (the inputs) is needed, hence the name supervised machine learning. Computing the
weights and biases is done in an iterative algorithm called backpropagation [33] in which
error gradients are propagated backwards through the network and which are then used to
update the weights and biases.

There are two major types of neural networks: Convolutional Neural Networks (CNN) and
Recurrent Neural Networks (RNN). A CNN is a neural network with layers that apply convo
lution. This type is often used for classification of images and videos. An RNN is a network
in which the neurons in a layer are fed back to the next neuron in the next iteration. This
allows the network to maintain state and learn from previously seen data. RNNs are often
used for tasks like speech recognition.

2.3.1 Layers
Most neural networks consists of a few type of layers that are used repeatedly. A CNN [34]
uses the convolution operation to transform a set of images to another set of smaller images.
The operation reuses a small set of weights for each pixel in an image. This sharing of weights
reduces the number of parameters that need to be trained to a great extent compared to a
fully connected layer like in Figure 2.3b. An interactive visualization of CNNs is available at
[62]. Other important layers are layers that add nonlinearity and layers that reduce the size
of the images.

2.3.2 Activation functions
Activation functions add nonlinearity to a neural network. Several functions exist, including:

1. Step: returns 1 or 0. Used by perceptrons.

𝑓(𝑥) = {1 if 𝑥 > 0
0 if 𝑥 ≤ 0 (2.3)

2. Sigmoid: converts an output to a probability between 0 and 1.

𝑓(𝑥) = 1
1 + 𝑒−𝑥 (2.4)

3. Softmax: converts 𝑛 outputs to 𝑛 probabilities that add up to 1. It computes the expo
nential and then normalizes it using the sum of all the 𝑛 exponentials.

𝑓(𝑥) = 𝑒𝑥𝑖
∑𝑛𝑗=1 𝑒𝑥𝑗

(2.5)
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4. Tanh: convert an output to a value between 1 and 1.

𝑓(𝑥) = 𝑒𝑥 − 𝑒−𝑥
𝑒𝑥 + 𝑒−𝑥 (2.6)

5. ReLU: clamps values to 0 for 𝑥 ≤ 0.

𝑓(𝑥) =max(0, 𝑥) (2.7)

6. ELU: like ReLU, uses the identity function for 𝑥 > 0, but uses a hyperparameter 𝛼 to
control at which negative value the function saturates. Because it saturates at negative
values, it can allow faster learning than ReLU [8].

𝑓(𝑥) = {𝑥 if 𝑥 > 0
𝛼(exp(𝑥) − 1) if 𝑥 ≤ 0 (2.8)

2.3.3 Convolution
Convolution is the process of applying a small vector or matrix known as a kernel to each
and all or a subset of all pixels (and the surrounding pixels of each pixel) of an image. This
is done by multiplying the entries of the kernel with the pixel and its surrounding pixels,
summing the values, and replacing the value of the pixel with the computed value. For
example, Figure 2.4 shows a 3 × 3 matrix kernel being multiplied with each submatrix of
pixel 𝑝𝑖𝑗 and its immediate surrounding pixels. This submatrix in the input image is called
the receptive field.

Figure 2.4: A convolution operation of a 3×3 kernel to an image of 10×10. No padding was added, thus
the output image has a smaller size of 8×8. The same kernel (consisting of nine weights) is used for each
and all pixels.

The result of the convolution depends on the entries of the kernel. If each of the nine
entries of the 3×3 matrix kernel is 1 / 9, then applying this kernel to the pixels will compute
the average of the pixel and the pixels around it. This is known as a box blur. Repeating
this process will approximate a blur whose kernel has a Gaussian distribution because of
the central limit theorem.

Besides the size of a kernel, a stride will specify the distance between pixels that are used
when applying the convolution to each pixel. For a kernel of 3 × 3, a stride of one will select
a submatrix of 3 × 3 pixels, while a stride of two will select a submatrix of 5 × 5 pixels.
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A padding adds a border of pixels to the input image. This can be used to keep the width
and height of the output image equal to the input image. The bias adds a learnable bias to
the computed pixels.

Another way to perform convolution is to use a 1 × 1 kernel over the depth of the image
(channels or feature maps) instead of the width and height. This is called depthwise separable
convolution [7, 59].

2.3.4 Downsampling and pooling
With several convolution layers allowing the network to recognize more abstract features,
these higherlevel features make less stringent demands on the precise location of recognized
features than the more primitive learned features. Pooling is a form of subsampling to reduce
the spatial resolution of images by reducing the size of the images. This makes the network
more robust to translation and distortion of features. Because of the lower resolution of the
outputs, the number of neurons in the next layer is sometimes increased by the same amount
to keep the computational cost constant. Without it, each successive layer has less and less
parameters (the weights and biases).

There are two often used forms of pooling: max pooling and average pooling. Max pooling
takes the maximum value of a 2× 2 block of pixels. This halves the width and height of each
image. Applying convolution with a stride of 2 effectively halves the size as well and can be
used to avoid separate pooling layers.

2.3.5 Regularization and batch normalization
Regularization helps to prevent overfitting (optimizing the network for the training data and
decreasing the generalization to test data) by driving weights to near or exactly zero. L2 reg
ularization reduces the weights by taking the sum of the square of the weights (Euclidean
distance) into account, while L1 uses the sum of the absolute values of the weights (Manhat
tan distance). Batch normalization [25] (used by network models like ResNet [21]) is another
technique to reduce overfitting.





3
Effect of cluster, datasets, and models on

hardware utilization
In this chapter the effect of the cluster configuration, datasets, and models on the hardware
utilization is examined. A number of experiments will be performed to assess the hardware
utilization and determine to which amount various aspects of the configuration have an effect
on the utilization. Various datasets and models are used to determine whether the hardware
is utilized to different amounts.

This chapter will focus on determining whether and how the performance of distributed
training and inference depends on various aspects or that a new tool could give better insight
in how effective the hardware is used to perform training and inference.

This chapter is structured as follows: Section 3.1 will state the research questions this
chapter will focus on. Section 3.2 explains the setup of the initial experiments, Section 3.3
lists the experiments and their datasets, models, and variables. Section 3.4 shows the results
of the experiments.

3.1 Research questions
This chapter will focus on the following research questions of Section 1.1:

RQ1 Does the hardware utilization depend on the dataset, the model, hyperparameters, or
configuration of the system like number of GPUs and used interconnect?

RQ3 How much time is spend on communication between nodes, loading data, updating
parameters, and other aspects in popular largescale machine learning frameworks?

To answer research questionRQ1, several models will be trained using data parallelism [61]
with several datasets, collective communication backends, interconnects, number of nodes,
and number of GPUs per node. The wallclock time to train and test, as well as the time to
reach a certain accuracy is measured. Due to the very few number of machines with mul
tiple GPUs, it may be difficult to say anything meaningful about the effect of the number of
GPUs on the hardware utilization. A significant difference between a pair of experiments in
which one variable is changed would indicate a lower utilization of the hardware. However,
the absence of any difference does not suggest the hardware is optimally utilized in both
experiments.

Performance profiling of the code of the used machine learning framework should show
possible areas in the code where the frameworks do not make optimal use of the hardware
and help to answer research question RQ3. By instrumenting the code and collecting the
traces in a file, the time spend in and between functions and be analyzed. Although trace
files are collected per process (one process per node), the system time can be recorded in
some event as early as possible in the trace file, so that events in different trace files can be
synchronized with each other.

15
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3.2 Set-up of the experiments
3.2.1 Hardware used
The experiments are run on machines at the VU site of the DAS5 [4] cluster. Each machine
has two sockets containing an Intel Xeon E52630 v3 CPU (Haswell generation) 1 with a total
of 16 cores and 32 threads per node. 15 machines have a single NVIDIA GeForce GTX Titan
X GPU (Maxwell generation) with 24 SMs (3072 threads) and 12 GiB of VRAM, providing
singleprecision processing power of about 6 TFLOPS per GPU 2 or 98 TFLOPS in total. Two
machines have 3 GPUs each, of which 2 per machine are NVIDIA Titan X GPUs (Pascal
generation) with 28 SMs (3584 threads) and 12 GiB of VRAM, providing about 10 TFLOPS of
singleprecision operations due to the 4 extra SMs and the much higher clock speed. This
gives a total of about 40 TFLOPS. A path exists between the two Titan X GPUs via a PCIe
host bridge, and a path with the third GPU (which has a different NUMA affinity) via an SMP
interconnect. The two Titan X GPUs are not connected through NVLink according to the
nvidiasmi application.

Each node in the cluster at the VU site is connected to the other nodes through multiple
interconnects. The network interface ib0 on a node provides access through the InfiniBand
(at a speed of 56 Gbit/s) interconnect and eth0 through the Ethernet (at a speed of 1 Gbit/s)
interconnect. The collective communication backend Gloo of PyTorch supports only Ethernet,
while NCCL supports Ethernet and InfiniBand. Thus some of the experiments can only be
performed using the Ethernet interconnect.

Storage for the datasets is provided on SATA or SAS drives via an LSI RAID storage con
troller and accessible on the compute nodes over the network through NFS via InfiniBand.

3.2.2 Software used
The experiments will be performed with a popular machine learning framework called Py
Torch. Since the experiments are focused on distributed training with GPUs, all of which are
from NVIDIA, the machine learning framework will make use of several software technologies
for GPUs of this vendor. These include CUDA, a platform and API that allows one to write
algorithms that will run on the GPU, and NCCL [26], a collective communication library that
supports multiple interconnect to exchange data between multiple GPUs and multiple nodes.

PyTorch makes use of CUDA through .cu files, which are compiled by CUDA’s nvcc com
piler, in which C++ code that will run on the CPU and kernel code that will run on the parallel
threads of the GPU can be mixed in a single file. The nvcc compiler will generate instruc
tions or CUDA library calls for copying data between host and device memory and launching
kernels on the GPU.

Several backends for collective communications are available in PyTorch3. These include
Gloo, MPI, and NCCL. The MPI backend provides functions for CPU tensors only, and thus
will not be used in the experiments. The documentation of PyTorch mentions that Gloo
should run slower than NCCL when performing distributed training on GPUs, but does not
mention why. The experiments in Section 3.3 should show how much slower Gloo is relative
to NCCL and whether there are any limits to the scalability of training when using the Gloo
backend. NCCL does not support any functions for CPU tensors, while Gloo supports almost
all functions for tensors on the CPU and a few for tensors on the GPU.

Data parallel training on multiple nodes and GPUs is enabled through the
DistributedDataParallel class (DDP) in the torch.nn.parallelmodule of PyTorch. DDP
uses the allreduce function, which is supported by NCCL and is also one of the few functions
supported by Gloo.

Performance profiling is done with Perfetto [16], which provides an SDK for instrumenting
C++ code. After the trace has been written to a .pftrace file, the file can be loaded into the

1https://ark.intel.com/content/www/us/en/ark/products/83356/intelxeonprocessore52630v320mcache240ghz.
html

2https://en.wikipedia.org/wiki/List_of_Nvidia_graphics_processing_units
3https://pytorch.org/docs/stable/distributed.html

https://ark.intel.com/content/www/us/en/ark/products/83356/intel-xeon-processor-e5-2630-v3-20m-cache-2-40-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/83356/intel-xeon-processor-e5-2630-v3-20m-cache-2-40-ghz.html
https://en.wikipedia.org/wiki/List_of_Nvidia_graphics_processing_units
https://pytorch.org/docs/stable/distributed.html
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Perfetto UI4 web application for analysis.

3.2.3 Execution on the cluster
Experiments are scheduled using the SLURM job scheduler [57]. Each .job file contains
several #SBATCH instructions to allocate the required resources, set environment variables,
and then run a shell script on the compute node to launch the machine learning frame
work which then performs training and testing of a model. For experiments that use NCCL,
various NCCL_* environment variables are set. The shell script is executed by srun and,
in the case of PyTorch, the actual Python script is then executed via the Python module
torch.distributed.launch with one process per node. PyTorch will use Python’s multi
processing module to load the dataset using a configurable number of child processes (the
Python script that does the actual training and testing uses a default of 8).

The power draw, temperature, and memory and SM utilization of the GPUs is measured
with the nvidiasmi utility.

3.3 Experiments
3.3.1 Metrics
For all experiments, the following metrics are collected on each node and per epoch:

• Wallclock time time to train the DDP model and then run the forward and backward
pass.

• Wallclock time to evaluate the trained model.

• Accuracy obtained after evaluating the model.

The metrics are printed to standard output on each node and collected to a single .out
file by the Slurm system. Afterwards the .out files are processed and grouped into folders
based on the communication backend, interconnect, dataset, and model. The first 5 epochs
are used to warmup the nodes and are not used in the figures that show the boxplots.

Memory and SM utilization of the GPUs is measured once per second using the nvidia
smi tool.

3.3.2 Datasets
All experiments are run with a small set of wellknown of datasets. These include: CI
FAR10 [31], ImageNet [12], and QMNIST [63]. All datasets are stored in a folder in /var/scratch/
that is accessible over the network. The datasets are loaded by PyTorch’s CIFAR10, Image
Folder, and QMNIST classes in the torchvision.datasets module. The ImageNet images
were downloaded using the ImageNetDatasetsDownloader5 repository on GitHub.

3.3.3 Models and hyperparameters
For the experiments in this chapter, a ResNet [21] model is used. Due to time constraints
imposed by the DAS5 cluster, a ResNet18 model, an instance of ResNet with just 18 layers,
is used for most of the experiments. All models are represented by the corresponding classes
in PyTorch’s torchvision.models module.

Each dataset used during various experiments uses specific values for certain hyperpa
rameters. These hyperparameters include the number of epochs, which controls for how
many iterations the model is trained and evaluated, the batch size, which is used by the
DataLoader from the torch.utils.data module, and the momentum, learning rate, and
weight decay, which are used by the SGD optimizer from the torch.optim module. The spe
cific values that have been used are shown in Table 3.1.
4https://ui.perfetto.dev/
5https://github.com/mf1024/ImageNetDatasetsDownloader

https://ui.perfetto.dev/
https://github.com/mf1024/ImageNet-Datasets-Downloader
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Table 3.1: Hyperparameters used by data loader and SGD optimizer during the experiments with various
datasets.

Dataset

Hyperparameter CIFAR10 ImageNet QMNIST

Epochs 80 80 20
Batch size (train) 1024 1024 64
Batch size (test) 32 128 64
Learning rate 0.1 0.1 0.1
Momentum 0.9 0.9 0.9
Weight decay 1e5 1e5 1e5

Some of the experiments use different batch sizes for the training phase. These include
the sizes 256, 512, 1024, 2048, and 4096.

3.3.4 Experiments
The following experiments have been performed:

• Comparing the collective communication backends Gloo and NCCL

– On between 1 and 15 nodes with 1 GPU on each node. This experiment should
show how well each communication backend scales as a function of the number of
nodes and the difference in utilization between the backends.

– On 1 and 2 nodes with 1 or 2 GPUs on each node. This experiment should show if
there is any difference between the backends in a setup with n nodes with k GPUs
each. This experiment is of little value because the maximum n is very small.

• Comparing InfiniBand and Ethernet interconnects

– On between 1 and 15 nodes with 1 GPU each.
– On nodes with a single GPU and nodes with multiple GPUs.

• Comparing different batch sizes for the training phase

Because the Gloo backend does not support InfiniBand, the experiments that involve this
backend are all run over an Ethernet interconnect. Experiments that compare InfiniBand
with Ethernet are run using the NCCL backend.

3.4 Results
3.4.1 Collective communication backends

Single-GPU multi-node set-up

Figures 3.1 and 3.2 shows the average wallclock time needed to test and train a ResNet18
model on a CIFAR10 dataset with PyTorch on between 1 and 15 nodes with 1 GPU each
using DistributedDataParallel from the torch.nn.parallel module.

The top row of each figure shows the time needed to evaluate the trained model while the
bottom row shows the time needed to train the model. A column represents an experiment
with a given number of nodes (between 1 and 15). Each cell shows one or multiple boxplots,
one for each node. A boxplot displays the median, quantiles, and outliers of the measured
wallclock times of the 75 epochs. The boxplots are sorted by the mean of each plot. Above
each cell the average mean and the average standard deviation of the boxplots is displayed,
as well as the number nodes, total number of GPUs, and epochs. The number of nodes and
GPUs above each column is equal since 1 GPU per node was used.
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Figure 3.1: Wallclock time for testing and training when using the Gloo communication backend, on
nodes with 1 GPU per node, Ethernet interconnect, ResNet18 model, and CIFAR10 dataset.
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Figure 3.2: Wallclock time for testing and training when using the NCCL communication backend, on
nodes with 1 GPU per node, Ethernet interconnect, ResNet18 model, and CIFAR10 dataset.

Comparing the average mean of the top rows of these two figures shows that there is lit
tle difference between the Gloo and NCCL backends during testing. Both figures show that
roughly 2.8 seconds is needed irrespective of the number of nodes or the communication
backend used. The bottom rows show the time needed for training. A large difference be
tween the two communication backends can be seen in the figures. While there is negligible
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Table 3.2: Speedup of training time in Figures 3.1 and 3.2 compared to training on a single node. Each
node has 1 GPU and communication happens over the Ethernet interconnect. The percentages indicate
the percentage of the maximum speedup (based on the total number of nodes). Closer to 100% is better.

Nodes NCCL Gloo

1 1.00 (100%) 1.00 (100%)
2 1.77 (89%) 0.99 (50%)
4 2.98 (75%) 1.31 (33%)
8 4.61 (58%) 1.96 (25%)

15 6.30 (42%) 2.91 (19%)

difference when training occurs on a single node (training takes about 12 seconds on a single
node), with multiple nodes the wallclock time decreases much more as the number of nodes
used increases when the NCCL library is used than when the Gloo backend is used. Table 3.2
shows the speedup, compared to the case with one node, of the average training time over
all the nodes used in an experiment when using NCCL and Gloo as a communication back
end. The table clearly shows that the NCCL backend scales much better with the number
of nodes than Gloo, giving speedups closer to the theoretical maximum. On 8 nodes, the
average wallclock time needed to train the model during one epoch using NCCL is ≈ 21.7% of
the time needed on a single node (ideally ≈ 12.5%), while Gloo requires ≈ 51.0% (1.0/1.96) of
the time of a single node for the case with 8 nodes. For the case with 2 nodes, Gloo is actually
no faster than training on a single node. These experiments were run with a fixed batch size,
and a greater speedup for synchronous SGD might be possible when increasing the batch
size as a function of the number of nodes due to less collective communication operations,
according to [27, 65].

Figure 3.3 shows the accuracy as a function of the time when using Gloo and NCCL with
the CIFAR10 dataset. Interestingly, the accuracy converges slower when training with 15
nodes than with 8 nodes when using the NCCL backend while this behavior does not occur
with the Gloo backend. For the Gloo backend, the accuracy had a few sharp drops when
training on 8 nodes (these drops are smoothed in the figure because of the median filtering
that has been applied). This behavior does not seems to occur for the ImageNet dataset, as
shown in Figure A.2. Comparing Figures 3.3 and 3.4 shows that the accuracy decreases as
the number of nodes increases for the CIFAR10 dataset, while for the ImageNet dataset this
effect is much weaker and the accuracy is generally greater than for the case of a single node.
Also, for the CIFAR10 dataset, the accuracy obtained with 8 or 15 nodes is no better than
for the case of a single node.

Figures showing the accuracy as a function of the epoch for the CIFAR10 and ImageNet
datasets can be found in Appendix A.1.

Multi-GPU multi-node set-up

Figures 3.5 and 3.6 shows the training time when using Gloo and NCCL on nodes with a single
or two GPUs with the CIFAR10 dataset. (Results for ImageNet can be found in Figure A.5)
The first column in both figures shows one node with one GPU. The second and third columns
show the experiments with two GPUs in total, divided over one (second column) or two nodes
(third column). The fourth and last column shows four GPUs in total, divided over two nodes.

Figure 3.6 shows that NCCL scales well with respect to the total number of GPUs that were
used with both CIFAR10 and ImageNet datasets. The average training time shown above
the cells in the bottom row show correlation with the total number of GPUs that were used;
it decreases when more GPUs are used. In particular the training time of the second (4.37
seconds) and third column (4.65 seconds) is nearly equal, with the time of the third column
slightly higher, most likely due to communication between the two nodes.

Gloo, shown in Figure 3.5, however, does not seems to scale with respect to the number
of nodes available. Lower or equal training times are achieved on a single node with two
GPUs (5.14 seconds) than on two nodes with one GPU each (12.27 seconds). This shows that



3.4 Results 21

0 200 400 600 800 1000 1200
Time (s)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
A

cc
u
ra

cy

Accuracy (results-eth0-gloo-cifar10-resnet)

1 GPUs over 1 nodes

2 GPUs over 2 nodes

4 GPUs over 4 nodes

8 GPUs over 8 nodes

15 GPUs over 15 nodes
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Figure 3.3: Accuracy as a function of time on 1, 2, 4, 8, or 15 nodes, with 1 GPU per node, using the
Ethernet interconnect, and ResNet18 model with CIFAR10 dataset. The accuracy as a function of the
epoch is shown in Figure A.1.
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Figure 3.4: Accuracy as a function of time on 1, 2, 4, 8, or 15 nodes, with 1 GPU per node, using the
Ethernet interconnect, and ResNet18 model with ImageNet dataset.

communication between nodes adversely affects the training times with Gloo.
Table 3.3 shows the speedups that were achieved. Comparing the values on the second

row (doubling the number of GPUs on one node), the two datasets gave similar speedups
between the two communication backends.

For Gloo, the training times decrease as the number of GPUs per node increases, but the
training time takes a severe hit when increasing the number of nodes with the CIFAR10
dataset. The two red percentages in the third and fourth row are lower than 50% and 25%,
respectively. This shows that more time was needed than for the case of one GPU on a single
node. For NCCL this difference in speedup was not observed when increasing the number
of nodes used.

Figure 3.7 clearly shows a higher accuracy on the CIFAR10 dataset is achieved more
quickly with the Gloo backend when there is no communication between different nodes.
Using the NCCL does not appear have a detrimental effect (compared to the case of a single
node with a single GPU) on the time needed to achieve a certain accuracy as the number of
nodes and GPUs increase. With the ImageNet dataset, shown in Figure 3.8, the difference
between two GPUs on a single node or on two nodes is much smaller when using the Gloo
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Figure 3.5: Wallclock time for testing and training on 1 and 2 nodes when using the Gloo communication
backend, with 1 and 2 GPUs per node, using an Ethernet interconnect, and ResNet18 model with CIFAR
10 dataset.
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Figure 3.6: Wallclock time for testing and training on 1 and 2 nodes when using the NCCL communication
backend, with 1 and 2 GPUs per node, using an Ethernet interconnect, and ResNet18 model with CIFAR
10 dataset.

backend. However, the accuracy for four GPUs (over two nodes) is still smaller relative to the
experiment with two GPUs (over one or two nodes), while the NCCL communication backend
shows a higher accuracy in this case.
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Table 3.3: Speedup of training time in Figures 3.5, 3.6 and A.5 compared to training on a single node
with a single GPU. Each node has 1 or 2 GPUs and communication happens over the Ethernet interconnect.
The column with the number of GPUs shows the total number of GPUs in the cluster used during training.
The percentages indicate the percentage of the maximum speedup (based on the total number of GPUs).
Closer to 100% is better.

NCCL Gloo

Nodes GPUs CIFAR10 ImageNet CIFAR10 ImageNet

1 1 1.00 (100%) 1.00 (100%) 1.00 (100%) 1.00 (100%)
1 2 1.78 (89%) 1.44 (72%) 1.68 (84%) 1.40 (70%)
2 2 1.67 (84%) 1.46 (73%) 0.70 (35%) 1.33 (67%)
2 4 2.68 (67%) 2.41 (60%) 0.91 (23%) 1.53 (38%)
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Figure 3.7: Accuracy as a function of time on 1 and 2 nodes, with 1 and 2 GPUs per node, using the
Ethernet interconnect, and ResNet18 model with CIFAR10 dataset. The accuracy as a function of epoch
is shown in Figure A.3.
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Figure 3.8: Accuracy as a function of time on 1 and 2 nodes, with 1 and 2 GPUs per node, using the
Ethernet interconnect, and ResNet18 model with ImageNet dataset. The accuracy as a function of epoch
is shown in Figure A.4.
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3.4.2 Interconnects

Single-GPU multi-node set-up

Figure A.6 shows the wallclock time needed for testing and training a ResNet18 model with
a CIFAR10 dataset when communicating over Ethernet and InfiniBand. Because Gloo does
not support InfiniBand, NCCL is used with both interconnects. To force NCCL to use Ethernet
for communication, the environment variables NCCL_IB_DISABLE=1 and NCCL_P2P_DISABLE=1
are used in the SLURM job scripts to prevent NCCL from detecting and switching to Infini
Band.

Comparing the top rows of the two subfigures shows there is no difference between the two
interconnects when testing the model, while training the model over InfiniBand is between 1
and 3 % faster than over Ethernet depending on how many nodes take part in the training.

Figures showing the accuracy as a function of the elapsed time for the CIFAR10 and
ImageNet datasets when communicating over Ethernet and InfiniBand using the NCCL com
munication backend can be found in Appendix A.3.

Multi-GPU multi-node set-up

Figures A.9 and A.10 show that training an ImageNet or CIFAR10 dataset with NCCL on
both types of interconnect achieves a given accuracy in an almost similar time.

3.4.3 Batch sizes
Previous experiments showed that a lower accuracy was obtained as a model was trained on
more GPUs. According to [65] a higher batch size would make more efficient use of the avail
able hardware and suggests the batch size needs to be increased for each epoch. However, in
PyTorch a DataLoader object is constructed given a fixed batch size and then iterated over
for each epoch. Therefore, each experiment will use a fixed batch size for the data used to
train the models for all epochs. The previous experiments all used a batch size of 1024 for
the CIFAR10 and ImageNet datasets (see Table 3.1), but in the following experiments sizes
of 256, 512, 1024, 2048, and 4096 are used.
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Figure 3.9: Accuracy as a function of the epoch on 1, 8, and 15 nodes, with a single GPU per node, using
NCCL communication backend and the Ethernet interconnect, and a ResNet18 model.

Figures 3.9 and 3.10 show the accuracy for the CIFAR10 and ImageNet datasets during
training on 1, 8, or 15 nodes with a single GPU each. The line graphs for the experiments
with 8 and 15 nodes in Figure 3.10 end much earlier than the one with a single node be
cause in all cases an equal number of epochs were used. For both datasets, a lower batch
size during training results in a higher accuracy as a function of the epoch and elapsed time.



3.5 Performance profiling 25

0 200 400 600 800 1000
Time (s)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
A

cc
u
ra

cy

Accuracy (results-ib0-nccl-cifar10-resnet)

1 GPUs on 1 nodes, batch: 1024

8 GPUs on 8 nodes, batch: 256

8 GPUs on 8 nodes, batch: 512

8 GPUs on 8 nodes, batch: 1024

8 GPUs on 8 nodes, batch: 2048

8 GPUs on 8 nodes, batch: 4096

15 GPUs on 15 nodes, batch: 256

15 GPUs on 15 nodes, batch: 512

15 GPUs on 15 nodes, batch: 1024

15 GPUs on 15 nodes, batch: 2048

15 GPUs on 15 nodes, batch: 4096

(a) CIFAR10 dataset.

0 200 400 600 800 1000 1200
Time (s)

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

A
cc

u
ra

cy

Accuracy (results-ib0-nccl-imagenet-resnet)

1 GPUs on 1 nodes, batch: 1024

8 GPUs on 8 nodes, batch: 256

8 GPUs on 8 nodes, batch: 512

8 GPUs on 8 nodes, batch: 1024

8 GPUs on 8 nodes, batch: 2048

8 GPUs on 8 nodes, batch: 4096

15 GPUs on 15 nodes, batch: 256

15 GPUs on 15 nodes, batch: 512

15 GPUs on 15 nodes, batch: 1024

15 GPUs on 15 nodes, batch: 2048

15 GPUs on 15 nodes, batch: 4096

(b) ImageNet dataset.

Figure 3.10: Accuracy as a function of the elapsed time on 1, 8, and 15 nodes, with a single GPU per
node, using NCCL communication backend and the Ethernet interconnect, and a ResNet18 model.

Interestingly, for the CIFAR10 dataset, a better accuracy was obtained during the experi
ments with 15 nodes for a size of 512 compared to 256, but any size higher than 512 would
result in a worse accuracy. This was not observed with the ImageNet dataset or with any of
the experiments with 8 nodes.

While [65] uses ever increasing batch sizes for a fixed number of processors, the experi
ments performed on the DAS5 showed that an increased batch size was detrimental for the
obtained accuracy when training on an increasing amount of GPUs. [64] shows that a differ
ent training algorithm than synchronous SGD is needed to avoid achieving a lower accuracy
as the batch size increases. The results in this section do not provide any clue to an optimal
size for the given hardware and number of nodes.

3.5 Performance profiling
Instrumenting the PyTorch code base with Perfetto proved to take too much time because
of the amount of code in PyTorch that needed to be patched. Additionally, functions from
Perfetto’s SDK that provide objects with RAII semantics would not correctly register their
finalization in the trace file. To work around this issue, all exit points of an instrumented
PyTorch function (the lines in the source code where a function returns) would require man
ually recording the exit in the trace file. The training and testing phase were recognizable in
the trace viewer tool, Perfetto UI, but the trace files still showed a lot of empty gaps, caused
by missing instrumentation. Profiling tools like pyspy6 were able to visualize the loading of
data with Python’s multiprocessing package, but did not visualize the training and testing
phases of PyTorch. Furthermore, these tools can only identify the utilization of the CPU, but
not of the GPUs themselves. Chapter 4 will show that there are other ways to collect these
metrics.

3.6 Discussion
Section 3.4.1 shows that NCCL achieves better training times than Gloo when scaling the
number of nodes or GPUs. NCCL also shows little or no difference when using a number
of GPUs on less or more nodes, while in the case of Gloo, it is preferred to have a higher
GPUs per node ratio. For both collective communication backends, the accuracy seems to
decrease when training on more GPUs. This requires one to repeatedly adjust the batch
size to improve the accuracy. The figures provide no insight into why different datasets like
6https://github.com/benfred/pyspy

https://github.com/benfred/py-spy
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CIFAR10 and ImageNet behave differently. No difference was observed between the Ethernet
and InfiniBand interconnects when using the NCCL communication backend with the used
datasets. The nvidiasmi tool was of little use due to only being able to report very few
metrics and at a low resolution (no more than once per second).

The experiments performed in this chapter partially answer research question RQ1; the
hardware utilization seems to depend on the used dataset and configuration of the system,
including the number of nodes and number of GPUs per node, and the used collective com
munication backend. The results, however, do not explain why certain behavior, like the
values shown in Table 3.3, was observed and what measures can be taken to reduce the time
needed to train and test the used models. Successful instrumentation of the code would have
helped answering research question RQ3, and in turn provide insight into the measures that
can be taken to reduce the time spend.
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Monitoring techniques

Chapter 3 showed that various aspects like the used communication backend and the num
ber of nodes had a significant effect on the time needed for training and inference. However,
no insight was gained into possible causes for the shown behavior. Instrumentation could
have helped but would require extensive modifications to the code to be effective.

In this chapter various techniques are investigated that may help to monitor the utilization
of the system. These techniques may then be used as part of a new tool that helps the user
gaining insight into how the system is performing.

This chapter is structured as follows: Section 4.1 describes the research questions this
chapter will focus on. Section 4.2 lists the various tools that are available to perform mon
itoring. Section 4.3 lists the metrics that can be gathered using these tools. Section 4.4
provides a discussion of the usefulness of these metrics.

4.1 Research questions
This chapter will focus on the following research questions of Section 1.1:

RQ2 Which parts of the system can be measured and visualized?

To answer research question RQ2, various tools and libraries available on the system will
be investigated and checked whether they are suitable to be used for measuring how much
and when certain parts of the system are utilized.

Some of the tools and libraries that appear to be suitable are then investigated in depth to
see whether they impose any limitations on the capabilities of the tool developed in the next
chapter.

4.2 Tools and libraries
Before a list of potentially suitable tools can be gathered, it is necessary to determine which
parts of the system can be measured. Two major aspects of the system need to be measured:

1. (Singlenode) Utilization of the hardware of a node. This includes the kernels launched
on the GPU as well as the interaction between the CPU and GPU.

2. (Multinode) Interaction, including the communication and exchange of data, between
nodes over the network.

See Figure 4.1 for an overview of the DAS5 cluster. Each node has one or more CPU
sockets and one or two GPUs. The master node has a RAID storage controller with multiple
disks attached. Because of the storage controller, the disks are visible to the system as a
single disk of tens of terabytes, hiding the throughput and latency of the individual disks. Its

27
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Figure 4.1: A schematic overview of the DAS5 cluster.

storage is accessible to the compute nodes through the NFS filesystem over the InfiniBand
interconnect. Each compute node also has a small RAID0 array for local storage. The nodes
are connected to one of several InfiniBand switches, which form a star topology.

Table 4.1 shows the tools that were investigated for use on the DAS5 cluster. Elevated
privileges means that, in order to use the tool, the user invoking the tool needs to have special
Linux kernel capabilities like CAP_SYS_ADMIN, which is an overloaded capability, unlikely to
be granted by the system administrators of a cluster. Instrumentation means that the code
of the machine learning framework must be modified. Most of the tools found are focused on
giving insight into the utilization of the hardware of a single node.

Table 4.1: A list of tools investigated for use on the DAS5 cluster. Elevated privileges means that the tool
requires root access or certain Linux capabilities (● = for most/all features, ◑ = for some features). Code
means that either instrumentation of the C++ code is needed or Python bindings must be used (● = Python
bindings/code, ◑ = thin Python bindings, ◑ = some C/C++ code required or feasible to create thin Python
bindings, ● = requires C/C++ code). Type refers to the aspects mentioned in Section 4.2.

Name Elevated privs. Code Measures Type

nvidiasmi ○ ○ GPU device 1
NVML ○ ◑ GPU device 1
Nsight Compute ○ ○ GPU kernel 1
Nsight Systems ○ ○ CUDA, GPU kernel 1
perf ● ○ Application 1
perf_event_open ◑ ● Application 1
eBPF ● ◑ System 1, 2
psutil ○ ● System 1, 2
Perfetto ○ ● Application 1
CUPTI ○ ◑ CUDA, GPU kernel 1
Netintercept ○ ○ Network traffic 2
sysfs ○ ○ Network statistics 2
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4.2.1 nvidia-smi
nvidiasmi is a utility that can be used to periodically poll the selected GPU for the following
metrics:

• SM and memory utilization in percentage.

• Processor and memory clock speed.

• Temperature and power usage and limits.

• PCIe read and transfer speed in MB/s.

These metrics can be queried by executing nvidiasmi q x to produce XML output
containing all metrics or a single or few metrics can be queried with nvidiasmi –query
gpu=<metrics> –format=csv.

4.2.2 NVML
The NVIDIA Management Library (NVML) [45] (via nvidiamlpy on PyPI) is a library which
can be used to programmatically query information about the GPU. It provides access to the
same information as the nvidiasmi utility since that utility uses NVML internally. It is also
used by the Slurm resource manager [57, 58].

4.2.3 Nsight Compute
NVIDIA’s Nsight Compute [42] is an application that is used to profile the kernels launched
by an application and gather a detailed set of metrics of up to over 160 metrics. To gather the
required metrics, kernels need to be replayed individually or by restarting the whole applica
tion. The latter is not feasible when training for many epochs. Even with only a handful of
metrics selected, profiling using the ncu application causes a tremendous slowdown, unless
profiling is limited to only specific CUDA kernels or invocations.

Metrics are grouped into several sections, see Table 4.2. Sections or individual metrics can
be selected for profiling. The metrics of the section LaunchStats provide similar information
as the metrics provided by Nsight Systems, discussed in Section 4.2.4.

Table 4.2: A list of sections into which metrics gathered by Nsight Compute are grouped. A detailed set
can be selected and consists of all sections mentioned below. A full set includes MemoryWorkloadAnal
ysis_Chart and MemoryWorkloadAnalysis_Tables as well.

Default Name Notable metrics

ComputeWorkloadAnalysis Utilization SM
InstructionStats Executed/issued instructions

3 LaunchStats Block/grid size, threads, waves/SM
MemoryWorkloadAnalysis Mem. throughput/bandwidth, L1/L2 hit rate

3 Occupancy Achieved occupancy, active warps/SM
SchedulerStats
SourceCounters

3 SpeedOfLight Utilization DRAM, L1, L2, SM
SpeedOfLight_RooflineChart
WarpStateStats Active threads/warp

4.2.4 Nsight Systems
NVIDIA’s Nsight Systems [43] is an application to gather traces of CUDA API calls, execution
of kernels, and memory operations. Because no detailed metrics per launched kernel are
gathered, the overhead of profiling an application using the nsys application is much less
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than the overhead created by the ncu application. On the other hand, only a small number
of metrics are available:

• Grid and block size

• Registers per thread

• Memory transferred to/from the device

• Start and end time of API calls, kernels, and memory operations

Some of these metrics are similar to those of the section LaunchStats of Nsight Compute.
See Table 4.2.

4.2.5 perf
The perf program can provide detailed statistics of the CPU such as branch misses, cache
misses, as well as profiling function calls and syscalls of the kernel. It is mainly useful for
performance profiling of applications running on the CPU, but not on the GPU. Systemwide
profiling using perf requires elevated privileges, which makes it largely unusable for regular
users.

4.2.6 perf_event_open

The Linux system call perf_event_open1 allows an application to set up performance mon
itoring. This can be used to measure events provided by the kernel such as context switches
and page faults, kernel tracepoints, and hardware performance counters to measure the
number of hardware instructions, cache usage, and cache and branch misses. Some fea
tures require kernel capabilities like CAP_SYS_ADMIN or CAP_PERFMON (Linux 5.8 or higher).

4.2.7 eBPF
The Linux system call bpf can be used to create and load eBPF programs into the ker
nel [9, 18]. This requires the system to have a recent Linux kernel (4.1 or later, and 4.9 or
later for stacktraces) and the required kernel capabilities CAP_SYS_ADMIN or CAP_BPF and
CAP_NET_ADMIN in recent versions of the Linux kernel. eBPF programs are able to trace var
ious things, including operations on filesystems like NFS, device I/O, and network traffic.
Programs are written in a restricted subset of C and then compiled to eBPF bytecode. The
BCC toolkit [9] provides Python bindings to compile and load these eBPF programs and to
collect the results.

4.2.8 psutil
psutil [47] is a Python library to query the state and utilization of the system. This includes
the CPU utilization, used memory, sensors, running processes, and disks and network I/O
counters. psutil uses the proc and sysfs filesystems mounted to /proc and /sys.

4.2.9 Perfetto
Perfetto [16] is an SDK that can be used to profile C++ code by instrumenting it. Performance
profiling by Perfetto was found to be inadequate due to the large amount of code that needed
to be instrumented. Trace files could be loaded in the trace viewer tool, Perfetto UI, but would
show too many gaps (missing function calls) to be useful. Section 3.5 discussed this in more
detail.

1https://man7.org/linux/manpages/man2/perf_event_open.2.html

https://man7.org/linux/man-pages/man2/perf_event_open.2.html
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4.2.10 CUPTI
The NVIDIA CUPTI [44] library is a library that provides a C API to perform tracing (similar
to nsys) and profiling (similar to ncu). It provides APIs which can be used to collect a large
number of metrics. There appears to be no official Python bindings, which means that these
need to be created or a machine learning framework like PyTorch must be modified in order
to use its Cbased API. This is in contrast to, for example, a Python package like nvtx2 on
PyPI, which can be used by end users to annotate functions and loops in their code. These
annotations are recorded by CUPTI and nsys and displayed in various tools.

4.2.11 Netintercept
The netintercept library [49] uses the LD_PRELOAD environment variable to override functions
used by programs to send and receive network packets. It can be used to reconstruct net
work packets (TCP and UDP) and write the packets to .pcap files, so that it can be read and
processed by tools like Wireshark. From the .pcap files it is clear that the nodes use the Ring
AllReduce operation to communicate with each other, as shown in Figure 4.2. A disadvan
tage of the library is that it only captures traffic over Ethernet interfaces and that it stores
the reconstructed packets in a .pcap file, which can become very large, in the order of hun
dreds of megabytes to a few gigabytes. It does not capture traffic that uses the InfiniBand
interconnect (for example when using NCCL) because applications using InfiniBand use a
verbs API instead of the Berkeley socket API. The NCCL backend over eth0 interface showed
very little data to be exchanged, about a few kilobytes between each two nodes in the first
few seconds, followed by a few packets in the last few seconds of the file. When using the
Gloo communication backend, Wireshark showed many malformed packets after 30 seconds
after the start of the capture.

1 2 3 4

Figure 4.2: Network packets in a .pcap file show that each node communicates with the other nodes
using several rings.

4.2.12 sysfs
Because a user on the DAS5 has no elevated privileges, there is no way to measure how
much traffic an application is sending and receiving to and from specific hosts. However, it is
possible to gather systemwide aggregated statistics of traffic over specific network interface.
While NFS traffic is served over InfiniBand on the ib0 interface, collective communication can
be done over the eth0 Ethernet interface with either NCCL or Gloo.

The Linux kernel provides a filesystem called sysfs, which is normally mounted to /sys,
and which, when mounted, contains many virtual files that can be read or written to query
or modify parts of the state of the kernel.

In the virtual folder /sys/class/net/<iface>/statistics various files exist that can
be read by regular users:

• rx_bytes

• rx_packets

• tx_bytes

2https://github.com/NVIDIA/NVTX/tree/dev/python

https://github.com/NVIDIA/NVTX/tree/dev/python
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• tx_packets

These files count only traffic that goes through the TCP/IP stack in the kernel and can
also be gathered programmatically using psutil, described in Section 4.2.8.

To measure data that is sent and received over InfiniBand using the verbs API, the files
in the virtual folder /sys/class/infiniband/<device>/ports/<port>/countersmust be
read instead. This folder contains the following files that can be used:

• port_rcv_data

• port_rcv_packets

• port_xmit_data

• port_xmit_packets

4.3 Metrics
Measuring the performance of two aspects of the system, Singlenode and Multinode, re
quires collecting different metrics. Singlenode requires metrics that deal with the hardware
of a single node. This includes behavior of the program on the CPU, the GPU, systemmemory,
and the network interfaces. Local disks are not taken into consideration since it is assumed
that data is read from over the network.

• CPU: Total CPU utilization, thread migration, L1 and L2 cache hits/misses, branch
mispredictions.

• GPU: Various metrics (see below), power draw and/or energy used.

• Memory: Available (free) memory, cached memory.

• Network: Throughput.

Measuring the utilization of the CPU cores may help to determine whether the CPU is a
potential bottleneck. While this is unlikely to be the case given the large number of CPU
cores of nodes in the DAS5 cluster, this may matter when a CPU with a small number of
cores, like in virtual machines in the cloud, is used. Thread migration and the L1 and L2
cache hit rate may indicate inefficient use of the CPU cache. Thread migration may move a
thread to a core on a NUMA node that is not directly connected to various PCIe devices like
network interfaces and video cards.

Many metrics for the GPU can be collected that provide insight into the utilization of the
hardware and the computational efficiency of the kernels executed on the GPU. Metrics for
the GPU that might be useful to the user are:

• SM and warp occupancy, stall reasons, bank conflicts.

• Amount of data read and written to device and system memory, over PCIe and NVLink.

• Throughput and utilization of device memory and L1 and L2 caches.

• Usage of specific hardware like shared memory, tensor cores, and NVLink.

These metrics can help to determine the utilization of the SM’s, the usage of specific parts
of the hardware like the tensor cores or instructions that operate on data with a reduced
precision, potential performance problems in kernels, and the number of data transfers to
different pieces of memory.

The block and grid size of a kernel launch, and the required registers per thread and
amount of shared memory used by kernel, determine the theoretical occupancy, while at
runtime the achieved occupancy is measured. The numbers of warps (groups of 32 threads)
and blocks that can be in flight on an SM, limit the theoretical occupancy. The block size is
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often a multiple of the warp size to avoid inactive threads. A large grid of many smaller blocks
increases parallelism and reduces the number of inactive SM’s during the last wave [11]. (A
wave is a number of blocks per SM in flight times the number of SM’s).

Several metrics exist which show the usage of various parts of the memory subsystem
of the GPU. These include the amount of data read and written to device, peer, or system
memory, the L1 and L2 throughput and cache hit rate per request. The amount of used
and free device memory can indicate whether it is feasible to adjust certain hyperparameters
which would require the use of more memory on the GPU. Other metrics show the amount
of data sent and received over PCIe or NVLink.

Many GPUs have separate instructions that operate on data with a reduced precision like
FP16, and a few also support formats like BF16 and TF32, which are more appropriate for
machine learning tasks than FP16. Recent GPUs also have hardware for processing matrix
multiplications and additions, known by some vendors as tensor cores. Several metrics exist
that show the usage by kernels of execution units in the hardware for these formats.

CUDA kernels can have three potential performance problems:

1. Divergent warps

2. Uncoalesced memory access

3. Memory bank conflicts

[40] implements a tool that performs static analysis of the .cu files of the CUDA kernels.
The tool provides predictions and upper bound for some of the metrics (conflicts and sectors),
but requires access to the source code and is thus useful only during development. The
‘conflict’ metric overestimates compared to what would be measured by Nsight Compute.
Furthermore, without the source code, end users do not learn how well a neural network
model runs on the actual hardware.

A number of metrics count the number of warps per cycle that were stalled for various
reasons. These include warps waiting for barriers due to diverging control flow, memory bar
riers, memory operations to complete when kernels write to device memory, waiting because
of the usage of shared memory or presence of bank conflicts, or a nonbalanced use of the
various math pipelines. Other metrics count the number of data bank conflicts. These set of
metrics can indicate the previously mentioned potential performance problems in kernels.

The throughput per used network interface indicates whether a node can send and receive
data fast enough such that the network interconnect is not a bottleneck for training a model.

To measure how different nodes of the system interact with each other, Multinode, the
following metrics are needed:

• GPU: The total duration of various sets of launched kernels.

• Network: Total send/received bytes and packets, source and destination addresses of
packets sent/received by the application.

Dividing the launched CUDA kernels into distinct sets can be used to show howmuch time
the GPU uses to perform various tasks like evaluating the network, updating the gradients,
and perform tasks related to collective communication.

The source and destination addresses of network packets give insight into which nodes
are communicating with each other and when they communicate. While these metrics nor
mally require elevated privileges, alternative ways exist to obtain them; one way is to override
functions of the Berkeley socket API, verbs API, or the functions of the collective communi
cation backend using the LD_PRELOAD environment variable. Another way is to measure the
changes in the number of sent and received bytes over a network interface in separate files
per node, and then find correlations in the various files. Although this would be less reliable
than using the LD_PRELOAD.

Without using LD_PRELOAD, it is still possible to determine which nodes will communicate
with each other, but not when they communicate and only when using the NCCL backend, by
setting the environment variable NCCL_DEBUG to INFO and parsing the text printed by NCCL.
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Different rings are constructed depending on how many nodes are involved in the Ring
AllReduce operation to exchange the gradients during training. Training on four or eight
nodes will cause NCCL to construct a single unidirectional ring, shown in Figure 4.3 (for the
case with eight nodes). For 16 nodes, the graph shown in Figure 4.4 shows various smaller
rings each consisting of three to five nodes.
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Figure 4.3: A ring of eight nodes constructed by NCCL. The colored areas represent the IB switches
(● = #2, ● = #5).
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Figure 4.4: A ring of 16 nodes and a tree constructed by NCCL. The colored areas represent the IB
switches (● = #2, ● = #5, ● = #4).
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While in the case of four or eight nodes, all edges of the ring are unidirectional, in the
case of 16 nodes, most edges are bidirectional and a few are unidirectional. However, the
unidirectional edges are between nodes such that these edges and nodes are part of one
unidirectional outer ring and the remaining bidirectional edges are part of a tree.

Each node is connected to one of various InfiniBand switches and the switches are con
nected to each other in a star topology. The central switch has a handful of nodes connected
to it, but none of its nodes participated in the training, and is thus not shown. The red, blue,
and orange colored areas represent the switch to which the nodes in an area are connected.
The thick edges indicate that communication between two nodes travels along (in this case)
three switches instead of one (for the nodes in the same area).

The various metrics for the GPU are measured by tools like nsys, ncu, or CUPTI. Some
of the metrics for the CPU, system memory, or the network interfaces can be obtained using
psutil or by reading specific files in virtual filesystems like procfs and sysfs. nvidiasmi and
NVML can be used to query the state of the GPU. Some of these will now be investigated more
in depth in the remainder of this section.

4.3.1 nvidia-smi and NVML
nvidiasmi and NVML can be used to query various information about the GPU. Executing
the nvidiasmi binary, using the function run of Python’s subprocessmodule in a separate
thread, showed that it would often take more than a hundred milliseconds to complete the
execution and in several occasions the execution blocked for up to a few seconds. Spawning
a new process with subprocess.run requires the original process to be forked and this
contributes to the high overhead of measuring the metrics this way.

Instead of running the nvidiasmi command, Python bindings for the NVML library allow
the library to be used directly. The package nvidiamlpy on PyPI provides the Python
module pynvml, which contains various functions whose names map directly to the names
of the C functions exported by the NVML library. For this thesis, an extra Python wrapper
was created in the form of a class called NvmlDevice which internally invokes the functions
provided by pynvml and by providing a Python context manager to automatically initialize
and shutdown NVML and to yield a list of NvmlDevice objects. This would allow various
metrics to be taken in a separate thread in about 2 milliseconds in total per iteration.

Figure 4.5 shows themeasurements of several metrics obtained using NVMLwhile training
and evaluating a ResNet18 model on the CIFAR10 dataset for two epochs on two nodes.
The various metrics, like power usage and the utilization of the GPU and its memory, were
sampled at an interval of 100 milliseconds. Figure 4.5a shows the power usage in Watt and
the utilization of the GPU (the SM’s). While the power drawn by the GPU can be measured
more than ten times per second, at least, and is therefore a good indicator of whether the GPU
is executing kernels, the utilization can be measured no more than once per second and only
shows the percentage of time that at least one kernel was running on the GPU. The power
draw is measured with a resolution of 1 mW while the utilization is in whole percentage. The
figure also shows that the power drawn during testing has a small variance while the power
used during training of the neural network shows larger fluctuations. Figure 4.5b show the
measured utilization of the GPU and its memory. Because of the large sampling interval, the
two measured values do not necessarily always increase or decrease at the same time for all
nodes.

4.3.2 psutil
Figure 4.6 shows the network traffic measured by psutil on several network interfaces. This
traffic was measured while training and evaluating a ResNet18 model on the CIFAR10
dataset for eight epochs on a single node, using the NCCL communication backend, con
figured to transmit directly over InfiniBand using the verbs API. A sampling interval of 1 mil
lisecond was used to obtain the measurements.

Text printed to standard output by the script is transmitted over the eth0 interface, but
all print() function calls in the Python script were removed prior to running the experiment
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Figure 4.5: Power usage and the utilization of the SM’s and the memory of a single GPU of one of the
nodes, measured by NVML.

via the Slurm scheduler. Parts of an ML framework like the NCCL communication backend
may print a few lines of text at the beginning of the output. The four spikes of network traffic
over Ethernet in the figures are most likely transmitted by some system daemon running
on the nodes. On the DAS5 two of such daemons are listening on the eth0 interface. This
shows that other processes running on the system may cause noise in the results and, if the
user were to have elevated privileges, other techniques such as eBPF could be used to gather
more accurate measurements.
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Figure 4.6: Traffic measured by psutil when training on a single node using NCCL for communication.
Because psutil has no special support for InfiniBand, it measures only IP packets that go through one of
the Ethernet interfaces.

The Python script used to perform training using PyTorch framework was wrapped in the
nsys tool for tracing the CUDA API calls and kernels. The usage of the nsys tool explains
why, on a single node, a very small amount of traffic over InfiniBand is observed per epoch for
all eight epochs. Figure 4.6a shows the traffic observed on a new node. The relatively large
amount of traffic is not observed when repeating the experiment as shown in Figure 4.6b,
likely due to the files of the dataset being cached in one of the caches used by the Virtual File
System (VFS) layer of the OS. A similar change may be observed when measuring I/O traffic to
local disks. For repeatability, the caches should be flushed prior to running the experiment.
Otherwise different techniques such as overloading several system calls using LD_PRELOAD or
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overriding Python methods of the DataLoader from PyTorch would be necessary. The latter
option is not optimal for a tool that wishes to be framework agnostic.

When running the experiment on two nodes, the observed traffic shows almost no traffic is
measured by psutil over InfiniBand except about 1 kilobyte in the first few seconds of themea
surements. Setting the environment variable NCCL_DEBUG to INFO and NCCL_DEBUG_SUBSYS
to ALL shows that NCCL uses the Broadcast and AllReduce operations to communicate
with the other nodes and that psutil is able to measure IP packets send over the Infini
Band interconnect, but not InfiniBand packets themselves, even though the information is
available in the virtual files in /sys/class/infiniband/. This is because the IP packets
go through the TCP/IP stack in the kernel and are therefore counted by the files in /sys/
class/net/ib0/statistics.

psutil can still be used to measure collective communication using the NCCL backend
when NCCL is forced to use IP packets by setting the environment variable NCCL_IB_DISABLE
to 1. However, this will cause traffic to go through the TCP/IP kernel stack, incurring extra la
tency. Figure 4.7 shows the throughput in megabit per second (Mbit/s) and the accumulated
size in mebibytes (MiB) of one of two nodes when training the same model and dataset as be
fore for two epochs instead of eight. The average throughput is about 7340 Mbit/s, which is
much less than the maximum speed of 56.25 Gbit/s of the 4x FDR InfiniBand interconnect.
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(b) Accumulated size of observed traffic over time.

Figure 4.7: Throughput and accumulated size of IP packets over InfiniBand measured by psutil when
training on two nodes for two epochs using the environment variable NCCL_IB_DISABLE=1. The use of
nsys was disabled.

4.4 Discussion
Many of the utilities and libraries listed in Table 4.1 focus on the utilization of the hardware
of a single node and few can be used to monitor the interaction between nodes.

Perfetto and Netintercept were not usable because they required either instrumentation
or produced large files. Netintercept could potentially be modified to transfer reconstructed
packets or the headers of these packets to another process using some form of interprocess
communication (IPC). Other tools like perf, perf_event_open, and eBPF require elevated
privileges. eBPF programs, created with the BPF Compiler Collection (BCC) toolkit [9], may be
useful on systems where a user can obtain the necessary Linux kernel security capabilities.
psutil, files exposed by sysfs in /sys, and NVML can be used to measure network traffic and
query information about the GPU and have low overhead. nvidiasmi provides access to the
same information as NVML, but cannot be used in Python to query at high frequency. psutil
can measure InfiniBand traffic only when sent over the ib0 interface via IP sockets. Nsight
Systems (nsys) and Nsight Compute (ncu) are powerful applications for tracing and profiling,
but ncu has high overhead because of the many metrics it gathers. A disadvantage of tools



38 4 Monitoring techniques

like nsys and ncu is that they do not allow for realtime analysis of gathered metrics. These
tools periodically write their collected data to temporary files, which, after the user’s Python
script has finished executing, are exported to another format, which can subsequently be
processed and analyzed by a tool such as the one described in the next chapter, Chapter 5.
CUPTI is useful as the programmatic counterpart of nsys and ncu.

Answering research question RQ2, which parts of the system can be measured, depends
mostly on whether Linux kernel capabilities can be obtained and whether C/C++ code or
Python bindings are required. Table 4.3 shows different sets of tools and libraries that can
be used together to build a new tool. Set A requires elevated privileges because of eBPF,
which runs small programs in the kernel, while B requires modifying Netintercept to avoid
writing large .pcap files or creating a new library which overrides various functions, and the
creation of Python bindings for CUPTI. Set C uses the nsys or ncu tools, and thus require
processing files exported by these tools after the training of a model has completed. Set
D requires creating Python bindings for CUPTI, but may allow for collecting and analyzing
metrics in realtime instead of afterwards. Due to the Linux kernel used on the DAS5 and the
missing capabilities, and the lack of Python bindings for CUPTI, set C has chosen to build
the tool. However, commercial cloud services may provide virtual machines or containers
and provide customers with a user with elevated privileges. In this case a tool build using
the technologies of set A may be able to gather more precise metrics and thus provide more
detailed analysis of the system.

Table 4.3: Different combinations of tools and whether they require Linux kernel security capabilities or
whether C/C++ code or Python bindings are required. See Table 4.1 for an explanation of the symbols.

Set Tools Elevated privs. Code

A eBPF, NVML, CUPTI ● ◑
B LD_PRELOAD, NVML, CUPTI ○ ●
C psutil, NVML, nsys/ncu ○ ◑
D psutil, NVML, CUPTI ○ ◑



5
ML Board

In Chapter 4 various techniques and libraries were investigated that could be used to create a
tool called ML Board 1 that provides the user with insight into how effective a neural network
model is trained and used on a cluster of multiple nodes with GPUs. This chapter describes
the features and architecture of the tool.

This chapter is structured as follows: Section 5.1 describes the research questions this
chapter answers. Section 5.2 lists the objectives of the tool, describing which parts of the
system will be measured and visualized. Section 5.3 explains how the objectives are met by
several visualizations displayed by the tool. Section 5.4 provides a description of the software
architecture of the tool. Section 5.5 provides a discussion of the tool.

5.1 Research questions
This chapter answers the following research questions of Section 1.1:

RQ3 How much time is spend on communication between nodes, loading data, updating
parameters, and other aspects in popular largescale machine learning frameworks?

To answer research question RQ3, a tool is presented that can visualize the performance
of various parts of the system. The tool will gather the set of metrics mentioned in Section 4.3
and visualize these in a web application.

5.2 Objectives
There are already a few existing tools that can do performance profiling of GPUs. However,
these tools often have a perspective that is focused on the hardware of the GPU of only a
single node instead of having a focus on the system as a whole or on the application, the
training and evaluation of a neural network model.

ML Board should be able to help the user to determine how well a neural network model
makes use of the system when it is trained on GPUs in a cluster of nodes. It will focus on
the following objectives:

1. (Idleness) Identifying periods during training and testing of the model where some or
all parts of the system (on different nodes) show reduced utilization or are completely
idle or unused.

Identifies parts of the system that are less utilized at times than other parts. A low uti
lization may indicate that the model or the machine learning framework itself does not
make optimal use of all of the available hardware. The user could then make changes

1The Git repository of ML Board can be found at https://github.com/markpk/mlboard
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to the model, swap it for a larger model, or change the hyperparameters. If used on
resources of a commercial cloud service, the user might decide to switch to a cheaper
lower tier of a resource, or trade it in for a resource with different specifications which
may be more suitable for training or testing the model on the given dataset. A very high
utilization might indicate that some parts of the system are a potential bottleneck.

2. (Utilization per layer) Showing the utilization of various parts of the GPU for the layers
of a neural network model.

Helps the user to determine whether specific layers of a model utilize the various parts of
the GPU like the Streaming Multiprocessors (SM’s), usage of the L1 and L2 caches, PCIe
bandwidth, etc. Parts of the GPU that show high utilization may indicate a bottleneck.

3. (Common tasks) Showing when the machine learning framework is loading data, com
municating with other nodes, or performing computations, and whether there is any
overlap.

Shows the user what the parts of the system are doing. This includes evaluating the
model on the GPU, exchanging and updating parameters, and loading datasets from
local disks or over the network. This may help the user to identify whether the various
tasks that a machine learning framework performs is done concurrently.

4. (Power and energy) Determining the power and energy usage of the system.

Would show the energy required to perform training or testing a model. A high power
usage would mean a higher utilization, but does not mean the hardware is used effi
ciently.

As mentioned in Section 4.2, when monitoring the performance of the system, one can
look at utilization of the hardware of a specific node as well as the interaction between the
nodes that participate in training or testing a model. Table 5.1 shows which aspects of the
system are taken into account by an objective.

Table 5.1: A list of objectives and which aspects of the system they measure and visualize.

Objective Singlenode Multinode

Idleness 3 3
Utilization per layer 3
Common tasks 3
Power and energy 3

5.3 Visualizations
Various visualizations displayed by the tool help to achieve the objectives mentioned in the
previous section. Objective 1 is addressed in Section 5.3.1, Objective 2 in Sections 5.3.2
and 5.3.3, and Objectives 3 and 4 in Section 5.3.4.

5.3.1 Idle time between kernels
Evaluating or training a neural network requires launching multiple kernels due to the many
layers of a network. Launching a kernel has overhead and gapsmay exist between two kernels
in the trace if API calls do not happen quickly one after another, which could cause the GPU
to become idle. Thus the total duration from the first to the last kernel might be reduced if
the whole graph of kernels is known in advance and spawned with a single API call instead
of multiple.
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Figure 5.1: A timeline showing several API calls and launched kernels. The text in the tooltip shows the
total duration of the sequence of launched kernels that are visible and how much it can be decreased.
The tooltip shows that the sequence of launched kernels that can be shorten by up to 16%.

Figure 5.1 shows some examples of a timeline showing the execution of CUDA API calls,
kernels running on the GPU, and memory operations. In the row of API calls (the first row),
orange represents cudaLaunchKernel() call, yellow is used for calls that allocate, free, set,
or copy memory, magenta is used for calls related to events, red for calls that perform syn
chronization, cyan for CUDA streams (not visible in the figures), and brown for anything else
(also not shown in the figures).

The second row is used to display the kernels running on the GPU, represented by the
green rectangles. The thin orange and red line shows the total duration from the first to
last kernel that was launched in the visible part of the timeline. The red part represents
that maximum fraction of this duration that could be saved (or shortened) if the overhead
of launching the kernels on the CPU were to be reduced. The latency between a call to
cudaLaunchKernel() and its corresponding kernel launch on the GPU is assumed to remain
the same and only the gaps between two API calls and the two kernels are taken into account.

For example, if there are two subsequent calls to cudaLaunchKernel() divided by a dura
tion of 200 μs but their kernels are divided by just 100 μs, then the API and its corresponding
kernel execution can be shifted no more than 100 μs. In this case the maximum shift to the
left is limited by the duration of the kernels on the GPU. This scenario is shown in Figure 5.2.

𝐴1 𝐴2 𝐴3

𝐾1 𝐾2

(a) Original sequence of API calls and kernels.

𝐴1 𝐴2 𝐴3

𝐾1 𝐾2

(b) A sequence without any gaps between the kernels.

Figure 5.2: The maximum shift of 𝐴𝑖+1 and its kernel is limited by the duration of the kernel corresponding
to API call 𝐴𝑖. In Figure 5.2b the presence of the additional API call 𝐴2 has no effect on the maximum shift
of the kernel 𝐾2 launched by 𝐴3.

Between two calls to cudaLaunchKernel() there can be zero or more other API calls,
which limits howmuch the second call to cudaLaunchKernel() (and its corresponding kernel
launch) can be shifted to the left. This is shown in Figure 5.3. Without the API calls 𝐴2 and
𝐴3, the call 𝐴4 and its kernel 𝐾2 would be shifted further to the left.

The third and last row shows the memory operations. Copying data from the GPU’s global
memory to another location in its memory (called device to device) is colored green, while
data transfers from the CPU to the GPU (host to device) are colored orange, and back from
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𝐴1 𝐴2 𝐴3 𝐴4

𝐾1 𝐾2

𝑀1

(a) Original sequence of API calls, kernels, and memops.

𝐴1 𝐴2 𝐴3 𝐴4

𝐾1 𝐾2

𝑀1

(b) A sequence without any gaps between the API calls.

Figure 5.3: The maximum shift of 𝐴𝑖+1 and its kernel is reduced because of other API calls between 𝐴𝑖
and 𝐴𝑖+1.

GPU to CPU (host to device) are shown using red rectangles.
Most of the sequences of API calls and launched kernels show a maximum shift of roughly

13 to 16%. Some of the sequences take more time than usual and thus can be shifted more
than 13 to 16%, such as the sequence shown in Figure 5.4. A nonzero maximum shift
suggests there is potential to decrease the total duration of an iteration and decreasing the
chance that the training time of an epoch is limited by the computations instead of the com
munications. The maximum shift of the iterations can be summarized and displayed by some
boxplots, such as the ones shown in Figure 5.9. The overhead of the multiple cudaLaunchK
ernel() call can be avoided in certain cases by using CUDA Graphs [41]. The launching of
the kernels is recorded in a graph once and the whole graph can then be launched multiple
times with a single call to cudaGraphLaunch(). There is a higher cost upfront, but any re
currence of the sequence of calls (which is the case because the neural network is executed
many times for different input) would avoid a lot of the overhead of launching the individual
kernels.

Figure 5.4: A timeline showing several API calls and launched kernels. The tooltip shows that the
sequence of kernels that can be shorten by up to 27%.

5.3.2 Statistics of launched kernels
Figure 5.5 is a screenshot of the tool showing a list of kernels that were launched on the GPU
while training or testing a model of a neural network. By default, only the top ten of kernels
that spend the most time on the GPU are shown. The user can press a button in the lower
right corner to expand the table so that all launched kernels are displayed on the screen. For
each kernel, the number of launches, total time spend on the GPU, and the average duration
per launch is shown. Different launches of a kernel can use a different number of threads
(block size) or different number of thread blocks (grid size), but are grouped by the name of
the kernel. Each column shows a progress bar displaying the percentage of the measured
value compared to the total amount of all values in the same column, and the measured
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Figure 5.5: The top ten of launched kernels that have spend the most time on the GPU. The user can use
the widgets in the upper right corner to select which kernels must be displayed.

value itself. The user can hover over a value to display a tooltip with the percentage and the
number of standard deviations from the mean of all values in the same column or from the
mean of the values of the same kernel on all the nodes.

Values that are sufficiently higher than other values in the same column are shown in a
red color and values which are sufficiently lower are shown in green. To determine whether
a value is considered to be sufficiently different, first the mean and the standard deviation of
each column is computed. A value in a column is then considered to be sufficiently different
if the ratio of its demeaned value to the standard deviation of a column is greater than a
threshold selected by the user. If a kernel has a column with a value that is sufficiently
different, then the name of the kernel is shown in a red color as well. The progress bars and
the red colored values can help the user to quickly determine which kernels can have the
most benefit from being optimized.

The upper right corner of the card contains several widgets, which the user can interact
with to change which information is to be displayed. The first widget is a group of buttons that
can be toggled. This allows the user to select which node whose kernels must be displayed
in the table. Only one node can be selected at a time.

The second widget is a group of toggle buttons which represent the CUDA streams to
which the traced kernels belong. When training using the PyTorch framework and the NCCL
collective communication backend, there exist two CUDA streams; one for the kernels which
evaluate and train the network, and one for the NCCL kernels.

The third widget shows a slider to select the threshold needed to display kernel names
and values in a red or green color, and whether the standard deviation must be computed for
each column (values of different kernels) or layer (values in the same cell for different nodes)
using the two buttons on the right of the slider. The slider allows changing the threshold
between 1 and 6 standard deviations (using a default of 3).

When choosing to compute the standard deviation per column, the slider can be set to a
threshold between 1 and 6 for a few kernels to be displayed in a red color. When choosing
to compute per layer, a much lower threshold of 1 must be selected. In this case quite many
kernels light up in red with demeaned values which are between 1 and 2 times the standard
deviation. However, this often happens only for specific nodes (and appears to correlate with
other visualizations explained in Section 5.3.4). Other nodes display values in the table which
do not deviate significantly according to the threshold set by the user.
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In Figure 5.5 it can be clearly seen that the kernel vectorized_elementwise_kernelwas
launched many times (close to 333 × 103 times or 54.7% of all launches), but took very little
time in total and per launch. In contrast, the kernel dgrad2d_alg1_1was launched relatively
few times (close to 1.58 × 103 times or 0.3% of all launched kernels), but used nearly 25.4%
of the time on the GPU and a significant amount of time per launch (compared to the other
kernels). This means that any optimizations applied to the kernel dgrad2d_alg1_1 would
decrease its absolute average and total time more than optimizations applied to kernels like
vectorized_elementwise_kernel, and therefore have the greatest effect on decreasing the
time of an epoch to train the model.

5.3.3 GPU utilization per node
A graph of a ResNet18 model is shown in Figure 5.6. The rendering of the graph is performed
by Cytoscape.js [13, 14], a library to visualize and analyze graphs. The gray compound nodes
representing the basic or bottleneck blocks (see Figure 5 in [21]) of a ResNet model can be
collapsed. The first block of the third layer (conv3_1 in Table 1 in [21]) has been expanded
and shows the extra convolution and batch normalization steps performed for blocks that
downsample the size of the data in the right side of the compound node.

Some machine learning frameworks specify the graph of the model explicitly, while oth
ers, like PyTorch, construct it implicitly during the execution of the forward phase. This
prevents retrieving a graph representation directly from an instance of a model like torchvi
sion.models.ResNet in Python code outside of the framework. However, many frameworks
can export a computation graph of a neural network model to open standards like ONNX [36]
or frameworkspecific formats.

Without the availability of an neural network model exported to a standard format, the
tool would need to contain graph representations of various popular models and then match
each of the models with the traced CUDA kernels of an iteration of an epoch to detect which
model is being used. The names, ordering and number of occurrences of the kernels, and
various metrics like the grid size can be used to test which of the predefined models most
closely matches with the traced kernels.

Using ncu, a recent version of nsys (not available on the DAS5), or by using CUPTI,
several of the metrics mentioned in Section 4.3 can be gathered for each kernel. These
metrics can then be displayed in the table in Figure 5.5 or visualized in the graph of the
model by making use of colors, for example to highlight nodes in the graph which have some
of the mentioned potential performance problems which CUDA kernels can have, or by using
a variable width for the edges between two adjacent nodes depending on the amount of data
read and written to memory. However, the computational graph does not show kernels used
by the backward phase like the kernels which compute the gradients, and is thus less useful
than simply displaying various metrics in a table.

5.3.4 Common tasks of machine learning frameworks
All machine learning frameworks perform various common tasks to train a model on multiple
nodes, including running kernels on the GPU for the forward phase, updating gradients on
the GPU, performing collective communication, loading data, and idling. To train a neural
network, first, input data must be loaded locally from disks or over the network and fed to the
neural network in order to compute an output, the prediction. Then, a loss function is used
to compute the error between the desired output and the predicted output, which is then
propagated backwards through the network of the model. In distributed training on multiple
nodes, the updates to the model must be exchanged by the machine learning framework
with the other nodes using a collective communication backend, which uses a primitive like
AllReduce to exchange data between multiple GPUs. During each epoch the whole dataset is
processed in multiple iterations consisting of small batches of input samples.

ML Board should show the following common tasks performed during each epoch:

• Communication: Collective communication primitives on the GPU and sending and
receiving data over the network.
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Figure 5.6: A visualization of the graph of the network architecture of a ResNet18 model. The basic
blocks in most of the layers have been collapsed, except for the first block of the third layer.

• Computations: Evaluating the neural network model and updating gradients during
each epoch.

• Loading data: Loading data from disks or over the network.

Additionally, it should show when there is overlap between the tasks mentioned above
and when the system is idle.

Figure 5.7 displays another view of the timeline, showing several iterations of one of the
epochs of a run of a Slurm job. For every epoch, the Python script used by the Slurm job
tests the test dataset on the network to determine its accuracy followed by training of the
network on the available nodes in the cluster. The epochs can be detected using a set of
heuristics such as the idle time between two API calls or the presence of specific API calls
like cudaStreamSynchronize(). To detect the testing and training parts of the epochs, an
idle gap of about 25 milliseconds is used. The iterations are detected using a smaller idle gap
of about 2 milliseconds. In the bottom part of the timeline, the network traffic for collective
communication is shown. The line graph shows the ratio of the throughput to the maximum
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speed of the interconnect. The maximum speed of the 4x FDR InfiniBand interconnect of the
DAS5 cluster is 64/66 ⋅ 56.25 Gbit/s. The traffic was sent and received by NCCL using an IP
socket so that it could be measured with psutil. A sampling time of 1 millisecond was used
to obtain the measurements. The red line graph shows the throughput of the traffic that was
sent by the node and the purple colored line graph shows the traffic that was received from
other nodes.

Figure 5.7: A timeline showing several iterations of one of the epochs during which the model is trained.

Figure 5.7 shows that network traffic is sent and received concurrently with each iteration
of the training phase of an epoch. Each iteration first evaluates the network (forward phase)
and then updates the gradients during the backward phase.

This view shows rather detailed and raw measurements, from which it is difficult to draw
conclusions regarding the highlevel behavior of the workload. It is therefore needed to reduce
the amount of information presented to the user by analyzing the measurements of multiple
nodes and summarizing it in the tool.

Figure 5.8 shows the mean of the ratio of the time spent on each task during the epochs.
The dark and light orange bars represents the total duration of the computation of the forward
and backward phases of the neural network model when it is either updating the gradients or
doing some other task like batch normalization or convolution, while the blue bar represents
the collective communication performed on the GPU by backends like NCCL. These two tasks
are performed by different CUDA streams, which means they are running concurrently on
the GPU. The dark and light green bars shows the overlap of the two tasks.

Detailed statistics in the form of a boxplot and a violin plot for the probability density
function for several metrics are shown in Figure 5.9. The following metrics can be chosen:

• Ratio and absolute total duration in seconds for the common tasks mentioned above.

• Idle time before epochs either evaluate or train the network.

• Total duration of an epoch (training or evaluation).

• Ratio and amount of time that the duration of an epoch can be decreased if no idle gaps
would exist between kernels.

• Average power drawn in Watts and energy spent in Joules.
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Figure 5.8: A chart showing for each node a bar stack of the tasks performed by the machine learning
framework during training. communication refers to kernels launched by the collective communication
backend, computation_grads and computation_other by other kernels which either update the gra
dients or do any other task such as batch normalization and convolution, overlap_grads and over
lap_other when these two types overlap with the communication kernels, and other when no kernels
are running.

In Figure 5.9 it is clearly visible that node078 spends more time on collective communica
tion than the other two nodes. The box plots for the total duration of an epoch when training
shows similar results. In contrast, the median of the duration of epoch which only evaluate
the model are within 0.2 seconds of each other. This is likely due to no communication hap
pening between the nodes for these epochs. The total duration of the computation tasks is
within 0.1 seconds for the three nodes.

Figure 5.9: A chart showing a box plot and violin plot for each node for one of several metrics.
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5.4 Architecture
This section provides an architectural description (IEEE Standard 1471 [38]) of the archi
tecture of ML Board using a number of views based on the viewpoints documented by [50].
A viewpoint specifies how to describe a certain aspect of the architecture. The following
viewpoints are used:

• Context: Documents the relationship between the system and its environment.

• Functional: Documents the functions of the system.

• Concurrency: Documents which parts of the system operate concurrently and how
they communicate and synchronize.

5.4.1 Context

Scope and responsibilities

As mentioned in Section 5.2, the system, ML Board, should be able to help the user to
determine how well a neural network model makes use of the system when it is trained on
GPUs in a cluster of nodes. See the mentioned section for a list of objectives.

The system reads and analyzes various trace files and provides the results with statistics
and other visualizations to the user.

External entities

The following external entities interact with the system:

• Trace files. A data provider and consumer. Files containing metrics described in Sec
tion 4.3. Multiple files exist for each Slurm job and node in the cluster.

• nsys profile. A data provider. Collects various metrics and stores the metrics in
.qdrep files.

• Trace agent. A data provider. Entity which is invoked by the the Python code that
performs the training. The entity performs collection of various metrics not collected by
nsys profile.

• nsys export. A service provider. Converts .qdrep files to .sqlite files, which uses the
SQLite format. The conversion depends on the amount of data that has been collected
and can take several seconds per file. Interaction between this entity and the system
occurs when the system detects new .qdrep files or when the user interacts with the
system.

The system and the external entities are shown in Figure 5.10. The trace agent is an
external entity, but is considered part of the ML Board tool.

nsys profile

User

≪system≫
ML Board

≪data≫
Trace files

nsys export

Trace agent

ML framework

Figure 5.10: Context diagram of ML Board, showing the system and its environment.
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5.4.2 Functional

Functional elements

The functional structure of the system is shown in Figure 5.11. The Web Browser is responsi
ble for showing the visualization described in Section 5.3, while the Web Server is responsible
for providing the data needed to display the visualizations. The Web Server asks the Trace
Processor to analyze the traces and metrics it has gathered and return the data needed for
the visualizations.

Web BrowserWeb Browser

Web ServerWeb Server Trace ProcessorTrace Processor

nsys profilensys profile

Trace AgentTrace Agent

psutilpsutil NVMLNVMLnsys exportnsys export

WebInterface

Analyze

Traces

Metrics

GatherMetricsQueryState

ExportTraces

Figure 5.11: Component diagram showing the functional structure of the system.

Interfaces

The following interfaces (data and control flow between elements) and their operations are
used:

• WebInterface: A Single Page Application (SPA) which fetches the data needed to display
the various visualizations of a job, the current job reservations and a list of completed
jobs.

• Analyze: A request which asks the Trace Processor to provide the analysis of the col
lected traces andmetrics. The operation will cause the Trace Processor to start analyzing
the data it has if needed.

• GatherMetrics: A request to gather and return metrics of a node using the Python
psutil library.

• QueryState: A request to query and return the state of the GPU using the NVML library.

• Traces and Metrics: The traces and metrics collected by the Trace Agent and nsys
profile. This data is received automatically while the respective functional elements
are active.

• ExportTraces: A request to export the traces to a format suitable for analysis.
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Connectors

The functional elements, providing the previously mentioned interfaces, use several connec
tors to exchange data and service requests:

• REST API calls over HTTP: used by the WebInterface of Web Server. The response
contains data in the JSON format.

• Procedure calls: used by Analyze of Trace Processor, GatherMetrics of psutil, and
QueryState of NVML. The latter two requests are expected to have submillisecond re
sponse times, while the first may take several seconds.

• File transfers: used by Metrics of Trace Agent and Traces of nsys profile. Files may
be written during or only just before termination of the respective functional element.
The Trace Processor is notified of the response (the files) through the filesystem events
using the inotify API of the Linux kernel or by querying the presence of the files on the
file system at a regular interval.

5.4.3 Concurrency

Processes and threads

The concurrency model of the system is shown in Figure 5.12. The system consists of several
processes running on different nodes of the cluster; the main application of ML Board runs
on a node accessible to the user, such as the master node. The other part of the system
consists of a group of processes, one for each compute node. Each compute node runs a
Slurm job which runs nsys profile and a Python user script. This script runs the ML
framework and uses a thread pool for the functional element Trace Agent, which collects
metrics using several other functional elements like psutil and NVML. The Trace Agent uses
Python’s threading.Event and queue.Queue to be notified by the main thread that the
framework has started and stopped training in a new epoch.

The process of the main application on the master node contains the embedded web server
to handle HTTP requests from the SPA running in the user’s browser. The web server may
use one or more threads, but the exact details are hidden by the web server library. The
functional element Trace Processor is called by the web server and reads and analyzes the
trace files written by nsys and the Trace Agent. The Trace Processor uses one or more threads
to process the files.

Scalability

Due to training of many nodes results in many data files (one per node written by nsys and
one or more by the Trace Agent), the Trace Processor must easily scale to all available CPU
cores on the machine on which it is running. The data files of each node can be analyzed in
parallel. For each node, several queries to obtain the traced CUDA API calls, GPU kernels,
their names, and information about the used GPUs can be executed concurrently. Subse
quently, detection of each epoch must be done sequentially. Detailed analysis of each epoch
can then happen in parallel.

While an earlier prototype of the main application of ML Board was written in Python,
the software was ported to the Ada 2012 programming language to obtain the needed perfor
mance for the Trace Processor element. Ada 2012 is a systems programming language often
used in safetycritical and realtime systems, defining concurrency profiles for increased de
terminism, absence of deadlocks and priority inversion, and various scheduling algorithms.
None of these features, meant for realtime systems, are of interest for the application, how
ever, and it is rather the strong typing, designbycontract, and its general concurrent pro
gramming constructs for which the language is used. (The 2022 revision of the language adds
support for parallel programming (using syntax instead of pragmas or library calls), but the
latest version of GCC at the time of writing does not yet support this) For example, variables
of an array of a task type can be defined for parallel computations. When the variable goes
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Figure 5.12: Concurrency diagram showing the processes, threads, and IPC.

out of scope, the tasks are synchronized; the runtime system waits for all tasks to terminate
before the task which defined the variable is allowed to continue. Tasks may be created in
the declarative part of packages (a namespace), procedures and functions, blocks, and tasks.
Creating tasks inside other tasks can be used for recursion. On Linux tasks are implemented
using POSIX Threads. The variable Processors on line 12 in Listing 5.1 creates 32 tasks
(each stored in a record (a struct)), which are activated when the begin keyword is reached
on line 13. At line 15 the main task waits for all 32 local tasks to finish processing their data
and terminate. This forkjoin model is used to process files, some queries, and the detected
epochs in parallel. In ML Board the record type Processor contains additional fields for
input and output data. A function is used to initialize and return a Processor_Array.

Listing 5.1: Creating 32 tasks in a block to process data in parallel.

1 declare
2 type Processor;
3 task type Processor_Task (Data : not null access Processor);
4
5 type Processor is limited record  Input/output fields not shown
6 T : Processor_Task (Processor’Access);
7 end record;
8
9 task body Processor_Task is begin ... end Processor_Task;

10
11 type Processor_Array is array (Positive range <>) of Processor;
12 Processors : Processor_Array (1 .. 32);
13 begin
14 null;
15 end;
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Interprocess communication

The Trace Agent and nsys profile ‘communicate’ with ML Board through files on shared
file storage. This mechanism is imposed by nsys and requires the file storage to be able to
store many large files (several per node).

Replacing nsys with using CUPTI directly in the Trace Agent would avoid this file storage
requirement and would allow part of the Trace Processor moved to the compute nodes. This
would severely decrease the needed bandwidth between the master nodes and the compute
nodes because only the results of the analysis need to be transmitted. Furthermore, this
would allow realtime continuous monitoring of the training instead of after the user script
has finished executing. Replacing the use of nsys with CUPTI would be future work and the
prototype of ML Board for this thesis uses nsys.

5.5 Discussion
The tool fulfills the objective Idleness (Identifying when parts of the system show a reduced
utilization or idle) in the user interface mostly for the total amount of idleness between GPU
kernels and API calls. This indicates potential increased performance when using, for ex
ample, CUDA graphs. The time that it does not make use of the network, CPU utilization,
or system and video memory is not considered. Objective Utilization per layer (Showing the
utilization of parts of the GPU for the layers of a model) is implemented by showing various
metrics in a table and a visualization of the graph of a neural network model. Because ncu
cannot be used because it causes a severe slowdown, no detailed metrics of CUDA kernels
can be obtained and displayed in the user interface. ML Board can display various statistics
of common tasks required by objective Common tasks (Showing when a ML framework is
loading data, communicating with other nodes, or performing computations, and whether
there is any overlap). The power drawn and energy used, as required by objective Power
and energy (Determining the power and energy usage of the system can be displayed for the
forward and backward phases.

During this thesis, a competing tool 2 specifically for PyTorch was developed by a team
at Facebook and Microsoft. It has a similar scope as ML Board, but can show a bit more
detailed metrics for kernels due to its use of CUPTI and its integration with PyTorch.

2https://pytorch.org/blog/pytorchprofiler1.9released/

https://pytorch.org/blog/pytorch-profiler-1.9-released/
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Evaluation

In Chapter 5 the ML Board tool was developed to visualize the utilization of the hardware of
a cluster when training a neural network model.

This chapter will evaluate the tool and determine which recommendations can be made
to improve the performance of training a model.

This chapter is structured as follows: Section 6.1 describes the research questions this
chapter will focus on. the tool is evaluated against different sets of nodes in Section 6.2,
datasets in Section 6.3, models in Section 6.4, and batch sizes in Section 6.5. Section 6.6
explains one or more use cases for which ML Board can be used. Section 6.7 provides a
discussion of the evaluations.

6.1 Research questions
This chapter will evaluate ML Board to determine in which degree the following research
questions of Section 1.1 can be answered:

RQ1 Does the hardware utilization depend on the dataset, the model, hyperparameters, or
configuration of the system like number of GPUs and used interconnect?

RQ3 How much time is spend on communication between nodes, loading data, updating
parameters, and other aspects in popular largescale machine learning frameworks?

RQ4 Which recommendations can be given to speed up training of neural network models?

For the evaluation, experiments are run in which different datasets, models, batch sizes,
and nodes are used.

6.2 Sets of nodes
ML Board will now be evaluated for two sets of nodes, in two different partitions on the DAS
5: three nodes, each with an RTX 2080 Ti, and sixteen nodes, each with a Titan X. Both
sets of nodes trained a ResNet18 model on the CIFAR10 dataset and communicated using
NCCL over InfiniBand.

3 nodes

When training on three nodes, 70, 71, and 78, each with a single RTX 2080 Ti, Figure 6.1a
shows node 78 spends much more time on the ncclAllReduceRingLLKernel_sum_f32 and
ncclBroadcastRingLLKernel_copy_i8 than the other nodes, like node 71 shown in Fig
ure 6.1b.

To highlight kernels for a node whose average or total duration deviate from the mean, the
user must select computing the mean and standard deviation across nodes instead of kernels
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(by clicking the horizontal arrow pointing to the right in the user interface) and decrease
the standard score (or zscore) threshold by moving the slider to the lowest value of 1.0.
Experiments show that the zscore of red colored values are often between 1.0 and 2.0.

These differences are visible in the Communication tab in the Statistics card in Fig
ure 6.2b, where the median time spend on the collective communication operations is 5.5
seconds on node 78, while nodes 70 and 71 require between 3.0 and 3.5 seconds. The time
spent on communication is greater than the time needed for evaluating and updating the
weights (shown in Figure 6.2a), meaning that the training time, shown in Figure 6.2d, is
bound by the (kernels for) communication, not the computation. The idle time before the
training phase of the epoch, shown in Figure 6.2c, is inversely related to the training time.

(a) Node 78.

(b) Node 71.

Figure 6.1: GPU kernels launched by NCCL on nodes 71 and 78. Two of the kernels launched by NCCL
on node 78 require significant more time than on the other nodes (zscore > 1.0).

When selecting the computation kernels in the Kernels card, many kernels for node 78 will
be displayed in a red color (except for dgrad2d_alg1_1 which is shown in green), indicating
that node 78 also spends more time than the other two nodes on most computation kernels.
However, the absolute difference in seconds is very small and the time spent per epoch on
computations, shown in Figure 6.2a, is very similar for all three nodes.

16 nodes

Figure 6.3a shows the time spent executing kernels on the GPU (excluding those launched
by NCCL). Most nodes spent less than 0.8 seconds, except node 2, which needs an additional
0.3 seconds. This node repeatedly needed more time for computations in several Slurm jobs.

Figure 6.3b shows the communication time and clearly shows the nodes can be grouped
into different sets with a similar median time. Most of the nodes in the sets can be mapped to
different parts of the ring constructed by NCCL (see Figure 4.4), except node 4, which spent
much less time on communication compared to its neighbors (node 3 and 5) in the ring, and
node 47, which needs more time than its neighbors (node 46 and 48). The conclusion that
node 1, 2, 3, and 47 are relatively slow is confirmed by the lower idle time before training
(shown in Figure 6.3c) and the higher training time (shown in Figure 6.3d).
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(a) Computation time. (b) Communication time.

(c) Idle time before training. (d) Training time.

Figure 6.2: Statistics of 3 nodes, of which node 78 requires more time to train an epoch due to it spending
more time on communication than the other two.

(a) Computation time. (b) Communication time.

(c) Idle time before training. (d) Training time.

Figure 6.3: Statistics of 16 nodes, which can be divided into 3 groups based on the time spend on
communication. Node 2 spends more time on evaluating and updating the network, but has no effect on
the node’s training time.
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6.3 Datasets
Figure 6.4 shows the Statistics card for two jobs training the ResNet18 model using the
ImageNet and CIFAR10 datasets for 8 epochs on 16 nodes with a Titan X GPU. Both jobs
use the NCCL communication backend over InfiniBand. 6.4a and 6.4b clearly show that for
both datasets node 2 takes between 30 to 40% more time for the computations. For CIFAR
10, in 6.4d, 6.4f and 6.4h it is easy to divide the nodes into three groups, while for ImageNet,
in 6.4c, 6.4e and 6.4g, the separation is less clear, especially between nodes 446 and 4852.

(a) Computation time (ImageNet). (b) Computation time (CIFAR10).

(c) Communication time (ImageNet). (d) Communication time (CIFAR10).

(e) Idle time before training (ImageNet). (f) Idle time before training (CIFAR10).

(g) Training time (ImageNet). (h) Training time (CIFAR10).

Figure 6.4: Statistics card of two jobs using the ImageNet (left column) and CIFAR10 (right column)
datasets.
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6.4 Models
Figure 6.5 shows that when training a CIFAR10 dataset on 8 nodes with a Titan X GPU
using the NCCL backend, the difference between the nodes for the communication kernels
slightly differs depending on the used variant of the model: the relative difference between
faster and slower nodes when training a ResNet50 model (6.5c) is slightly less than when
training the ResNet18 (6.5a) or ResNet34 (6.5b) models. The absolute difference of nodes 5
and 24 is roughly 2 seconds compared to the other nodes for all variants.

(a) ResNet18. (b) ResNet34.

(c) ResNet50.

Figure 6.5: Communication time per epoch when training one of the variants of the ResNet model.

Table 6.1 shows the wallclock time when training several ResNet models on different sets
of nodes for the CIFAR10 and ImageNet datasets. For CIFAR10, the extra time needed for
the nodes of set B, compared to set A, to train a model increases much more for the larger
models than for the smaller models, while for ImageNet the effect is more modest. Thus it is
important and beneficial to select the nodes of set A when submitting a job to the Slurm job
scheduler.

Interestingly, another set of nodes, set C, gives a similar decrease in performance com

Table 6.1: Wallclock time in seconds after training the CIFAR10 and ImageNet datasets on 8 nodes for
8 epochs, using NCCL over InfiniBand interconnect. Set A = 4, 24, 49, 5, 48, 50, 51, 52, B = 1, 2, 3, 5,
48, 50, 51, 52, and C = 1, 2, 3, 5, 6, 7, 25, 47. Percentages indicate the extra time relative to set A.

Model

Dataset Nodes ResNet18 ResNet34 ResNet50

CIFAR10
A 75.1 108.7 144.7
B 85.8 (+14.2%) 155.6 (+43.1%) 263.7 (+82.2%)
C 76.5 (+1.86%) 150.3 (+38.3%) 263.2 (+81.9%)

ImageNet
A 53.4 59.4 69.2
B 57.5 (+7.67%) 71.4 (+20.0%) 80.0 (+15.6%)
C 51.7 (3.18%) 62.3 (+4.71%) 71.2 (+2.89%)
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pared to set A for the larger models, ResNet34 and ResNet50, with the CIFAR10 dataset,
while for ImageNet, the ResNet18 is slightly faster than set A and only a few percent slower
for the larger models. Figure 6.6 shows that the durations of ResNet50 with ImageNet for
set B and C in Table 6.1 is caused by the difference in the time needed for communication,
which is surprisingly lower for nodes 1 to 5 in set C (6.6b) than in set B (6.6a). This shows
that, although in nearly all cases the set of nodes A results in the lowest wallclock time, set
A is not necessarily the only ‘fast’ set.

(a) Set B. (b) Set C.

Figure 6.6: Communication time of ResNet50 using ImageNet, trained on nodes of set B and C used in
Table 6.1.

6.5 Batch sizes
In the next experiments, a ResNet18 model was trained using the ImageNet dataset with the
NCCL backend over InfiniBand on two sets of 3 nodes, each with a single RTX 2080 Ti GPU.
The first set consists of the nodes 69, 70, and 71, and the second set of the nodes 70, 71, and
78. Training occurred with a batch size between 64 and 4096 and the energy, power usage,
and memory and GPU utilization were measured with NVML at an interval of 10 milliseconds.
In both cases the results for nodes 70 and 71 were very similar and are therefore shown only
once in the tables below.

6.5.1 Energy
Table 6.2 shows the energy spent per epoch and the efficiency, the energy per second. 6.2a
shows that the time and energy needed to train a model for one epoch increases sharply for
very small batch sizes like 64 and 128. For larger batch sizes, the energy and time decrease
quickly and reach the lowest value for a batch size of 1024.

6.2b shows that, for larger batch sizes, the energy efficiency improves for certain nodes

Table 6.2: Energy (J) and time (seconds) per epoch, and energy per second (J/s). The least amount of
energy or used time is shown in black and the most in red.

(a) Energy (J) and time (seconds) per epoch.

Nodes

Size 69 70 71 78 Time

64 2224 1395 1559 1306 67.8
128 1159 741 819 685 35.1
256 659 430 472 382 19.3
512 397 285 317 259 12.2
1024 316 257 279 229 10.6
2048 333 294 323 258 12.6
4096 428 432 469 372 20.0

(b) Energy per second (J/s).

Nodes

Size 69 70 71 78

64 32.866 20.559 23.058 19.407
128 33.225 21.345 23.286 19.558
256 34.078 22.095 24.615 20.381
512 32.855 23.382 25.640 21.466
1024 29.841 23.916 26.342 21.717
2048 26.416 23.566 24.906 20.527
4096 20.089 21.165 22.914 19.569
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Table 6.3: Total energy (J) per node over 16 epochs and the sum of the total energy of all 3 nodes that
participated in the training. The least energy spent is shown in black and the most in red.

Nodes Sum

Batch size 69 70 71 78 {69, 70, 71} {70, 71, 78}

64 38103 25536 28435 23560 92074 (+18.6%) 77635
128 21048 14726 16413 13465 52187 (+18.3%) 44130
256 12795 9632 10522 8625 32949 (+15.1%) 28620
512 8690 7278 8020 6552 23988 (+10.3%) 21742
1024 7299 6651 7382 6075 21332 (+6.33%) 20063
2048 7389 7347 8107 6500 22844 (+5.66%) 21621
4096 9030 9955 11024 8683 30009 (+4.84%) 28624

like node 69, but not for others like nodes 70 and 78, whose measured values have a fairly
low standard deviation (less than 1.35 J/s). Table 6.3 shows the total energy of each node
over 16 epochs, as well as the sum of the total energy of all 3 nodes. A batch size of 1024 will
result in the least amount of energy spent by the GPUs and a lower total energy usage can be
obtained (for any batch size) by replacing node 69 with 78. However, a larger batch size will
result in a worse obtained accuracy (0.143, 0.145, 0.135, 0.118, 0.112, 0.135, and 0.094 for
a batch size from 64 to 4096). Thus an appropriate batch size would be a size between 256
and 1024 (in the case of ImageNet).

6.5.2 Power
The minimum and maximum power drawn by the GPU during training (per epoch) is dis
played in Table 6.4. 6.4b shows that for all nodes the maximum power that is drawn in
creases as the batch size increases. In the case of node 69, the node draws between 50 to
110 W extra compared to the other nodes.

Table 6.4: Minimum and maximum power (W) per epoch.

(a) Minimum power (W) per epoch.

Nodes

Size 69 70 71 78

64 94.8 61.5 68.3 60.8
128 94.3 61.6 68.1 59.3
256 94.2 61.7 68.0 59.0
512 59.5 61.6 68.2 58.6
1024 57.8 61.6 67.9 58.9
2048 56.7 61.5 68.0 58.2
4096 23.1 61.2 68.0 58.5

(b) Maximum power (W) per epoch.

Nodes

Size 69 70 71 78

64 123.1 72.2 81.4 70.8
128 135.2 77.1 86.5 76.5
256 161.2 87.7 97.0 87.4
512 199.3 108.8 120.0 110.0
1024 248.9 142.5 154.7 146.9
2048 262.0 152.3 164.6 155.8
4096 261.3 156.2 166.2 157.7

The increase in power, as the batch size increases, does not occur for the average power
drawn, shown in Table 6.5. For nodes 70, 71, and 78, the highest average power drawn
occurs for a batch size of 512, while for node 69 the highest average occurs for a smaller
batch size of 256. In the case of node 69, the average generally decreases as the batch size
increases.

The values in Tables 6.2b and 6.5 show a similar curve; the peak value (J/s or W) is
obtained for a batch size between 512 to 1024, while the lowest and highest batch sizes give
a lower value.
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Table 6.5: Average power (W) per epoch.

Nodes

Batch size 69 70 71 78

64 111.417 66.669 75.619 65.192
128 113.184 67.468 76.334 66.057
256 115.224 69.187 77.454 67.369
512 108.844 70.441 79.409 68.580
1024 95.552 70.206 78.481 68.349
2048 78.549 68.150 75.668 65.533
4096 60.994 64.598 71.887 62.085

6.5.3 Memory and GPU utilization
The average memory utilization (data read or written) per epoch is shown in Table 6.6. The
maximum of the measured memory utilization is 1% for batch sizes between 64 and 512, and
2, 3, and 5% for a batch of 1024, 2048, 4096. As explained in Section 4.3.1, the reported
memory and GPU utilization has a low resolution of whole percentages. The measured values
still indicate that the maximum utilization increases as the batch size increases. However,
the average utilization is highest for a batch size of 512.

Table 6.6: Average memory utilization (%).

Nodes

Batch size 69 70 71 78

64 0.556 0.563 0.544 0.985
128 0.619 0.609 0.605 0.971
256 0.652 0.705 0.692 0.892
512 0.737 0.705 0.735 1.174
1024 0.681 0.701 0.636 1.026
2048 0.499 0.468 0.449 0.683
4096 0.276 0.218 0.237 0.379

Table 6.7 shows the average and minimum GPU utilization (percentage of sample period
at least one kernel was running) per epoch. (The maximum utilization is between 98 to 100%
for any batch size and node). 6.7b shows that for a batch size of 512 or larger, the GPUs
become idle at times during training.

Table 6.7: Average and minimum GPU utilization per epoch (%).

(a) Average GPU utilization per epoch (%).

Nodes

Size 69 70 71 78

64 93.0 94.7 95.5 94.6
128 92.7 92.4 93.2 96.6
256 88.8 86.4 88.1 91.4
512 76.2 74.4 74.4 78.1
1024 52.8 49.0 49.1 52.4
2048 24.7 25.4 23.3 26.4
4096 8.8 13.3 11.2 12.4

(b) Minimum GPU utilization per epoch (%).

Nodes

Size 69 70 71 78

64 71.5 42.5 54.0 86.5
128 53.0 33.5 41.5 64.5
256 15.5 0.0 15.0 33.0
512 0.0 0.0 0.0 0.0
1024 0.0 0.0 0.0 0.0
2048 0.0 0.0 0.0 0.0
4096 0.0 0.0 0.0 0.0
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6.6 Use cases
In this section ML Board is evaluated for some use cases: identifying straggling nodes, deter
mining the power and energy usage of individual GPUs, and recommending an appropriate
batch size.

6.6.1 Identifying straggling nodes
In the following experiments, ML Board is evaluated to see whether enough information can
be obtained to identify straggling nodes, nodes of which the duration of the training phase
of each epoch is higher than for other nodes. Excluding these nodes and replacing them
with other nodes should then decrease the total duration of training a model for several
epochs. Two experiments will be run on eight nodes, with some of the nodes, those which
are identified as straggling nodes, replaced by others in the second experiment.

In the following two experiments (called job A and job B), a ResNet18 model is trained on a
CIFAR10 dataset for eight epochs on eight nodes with one GPU per node (an NVIDIA GeForce
GTX Titan X GPU (Maxwell generation)), using the NCCL communication backend over the
InfiniBand interconnect. Both jobs evaluate a neural network model, followed by performing
distributed training of the model. Only the training phase of each epoch is detected and
displayed in the Tasks and Statistics cards in ML Board. For both jobs, boxplots of the
computation time, communication time, idle time before the training phase of an epoch, and
the duration of the training phases can be viewed in the Statistics card.

The results of job A are shown in the left column of Figure 6.8. Job A uses nodes 1 up
to 7 and 25. In 6.8a it can be clearly seen that node 2 spends about 2.6 seconds per epoch
on evaluating and training the network, while the other nodes need roughly 1.5 seconds per
epoch. (Kernels responsible for the longer duration of node 2 are shown in the Kernels card
in Figure 6.7) However, this does not necessarily mean the duration of the training phase
of an epoch is bound by the time spend on computation. In fact, the other subfigures (in
particular 6.8c and 6.8g) suggest it is bound by the duration of the GPU kernels launched
by the NCCL communication backend of PyTorch. The durations shown in 6.8e and 6.8g are
often inversely related; the nodes which need less time to train a model are often more idle
before the start of a training phase.

Figure 6.7: Node 2 spends (in particular) more time than other nodes on kernels wgrad_alg1_engine
and vectorized_elementwise_kernel (≈ 2.6 and 1.5 seconds extra compared to the other nodes).
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From 6.8g it can be concluded that nodes 1, 2, and 3 need more time to train the model
(between 5.7 and 6.2 seconds) than the other nodes (most have a median between 5.3 and
5.5 seconds), and thus they are good candidates for replacement by three other nodes. For
job B the nodes 1, 2, and 3 have been replaced by nodes 48, 51, and 52. (These three
nodes were selected using Figure 6.3d) Results of job B are displayed in the right column of
Figure 6.8.

(a) Computation (A). (b) Computation (B).

(c) Communication (A). (d) Communication (B).

(e) Idle time before training (A). (f) Idle time before training (B).

(g) Time of training phase (A). (h) Time of training phase (B).

Figure 6.8: The Statistics card of jobs A and B, each with eight nodes with one GPU per node. Three
nodes (1, 2, and 3) of job A are replaced by three other nodes (48, 51, and 52) for job B.
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The measured wallclock time of the last epoch shows that the time has decreased by about
5.8% from 81.4 seconds (job A) to 76.6 seconds (job B). Repeating the experiments with the
same two sets of nodes consistently shows the time decreases by between 5 and 6%.

6.6.2 Reducing total energy usage
A second use case for the tool is to determine the power and energy usage of the GPUs in
order to compute the total energy spent on training a model. Being able to determine if certain
GPUs draw much more power than others, can help the user to select a different node or to
replace a GPU to lower the total energy spent on training. For this use case the experiments
in Section 6.5 are used.

Table 6.2 shows that the energy and energy efficiency can be determined after every epoch
and that the GPU of node 69 requires much more energy than the other GPUs, especially for
batch sizes of 1024 and lower. Table 6.3 shows that the combination of nodes 69, 70, and
71 requires 4.8% to 18.6% more energy when training a ResNet18 model on the ImageNet
dataset compared to the set in which node 69 was replaced by node 78.

On GPU of the old generations, like the Titan X GPUs, the energy cannot be measured.
In this case it is still possible to compare the average power (Table 6.5) and maximum power
(Table 6.4b), which is much higher for node 69 than the other nodes.

6.6.3 Selecting a batch size
A third use case is to recommend an appropriate batch size for training a model. This can
be done based on the energy spent per epoch (Table 6.2), which recommends a batch size
between 512 and 2048 for the lowest amount of energy spent. However, the obtained accu
racy after a fixed number of epochs may be lower for larger batch sizes, thus some heuristic
should be used to select a lower one.

One such heuristic could be the average or minimum GPU utilization. Table 6.7b shows a
batch size of 256 as the largest batch size for which no node has a zero minimum utilization
rate, while Table 6.7b shows the average utilization is greater than 74% for batch sizes of 512
or lower. Using this information, ML Board could recommend a batch size of 256 or 512.

6.7 Discussion
Answering research question RQ3, several of the previous experiments shows that training
time is determined by the communication time, not the time needed to evaluate the neural
network and updating the gradients. Most nodes have a fairly consistent (among nodes)
duration of the computation kernels, except node 2, which repeatedly needed 30 to 60%
extra time (See Figures 6.3a, 6.4a and 6.8a) because it spends more time than other nodes
on certain kernels (See Figure 6.7).

To answer RQ1, Section 6.3 showed that, for the CIFAR10 dataset, the nodes can be
clearly split into groups using the time needed for communication or the full training time
(per epoch), while for the ImageNet dataset the distinction is less clear. Comparing NCCL
to Gloo was not possible since Gloo does not execute CUDA kernels on the GPU. Since the
current prototype of ML Board does not show the network and GPU memory utilization, it is
not yet possible to determine whether model or batch size has any effect.

Section 6.6.1 showed that straggling nodes can be identified and the training time can be
decreased between a few percent for smaller models up to roughly 14 to 45% for larger models
(depending on the dataset, see Table 6.1) by choosing the right set of nodes. Section 6.6.2
showed that by replacing node 69 with node 78, the total amount of energy needed to train
a small model is lowered by 4.6% to 15.7%. In Section 6.6.3 it was shown that based on the
energy spent per epoch and the GPU utilization, a batch size of 256 or 512 should be chosen.
These are some of the recommendations the tool can make to answer RQ4.
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Conclusion

The last few years has seen a large amount of research in the field of machine learning.
However, most research is focused on increasing the accuracy of neural network models, and
less on reducing the inefficiencies of distributed training with some of the popular machine
learning frameworks.

This thesis has focused on examining and assessing various techniques to measure the
performance of the hardware of a HPC cluster while training neural network models with
the PyTorch machine learning framework. Some techniques like instrumentation require
extensive modifications to a particular framework, making it unsuitable for an application
that intends to be frameworkagnostic. Other tools may generate files that have a wellknown
format, making it easy to parse and extract the information that is needed. Often though,
these generated files can become very large, which puts a limit on the maximum duration or
number of epochs when monitoring the system while training a model. The command line
interface is often, but not necessarily, the only way to specify the behavior of a tool and must
be done before starting the tool, while libraries can provide functions to change the behavior
of the library during runtime. A library which gathers metrics can use callbacks instead of
exporting its data to a file. This makes libraries more flexible than external tools and makes
it feasible to perform realtime monitoring of the hardware of the system. Another possible
limitation of a technique, is that some metrics can only be gathered when a process has the
required kernel security capabilities. Without it, only aggregate metrics of some parts of the
system can be gathered.

Several of the tools and libraries have been used inML Board 1, a prototype of a framework
agnostic tool that measures and visualizes the utilization of parts of the system. ML Board
uses the NVML library to measure GPU memory utilization, power draw, and energy usage of
each GPU, and nsys to trace CUDA kernels used to evaluate a neural network model, update
the gradients, and collective communication when using the NCCL communication backend.
However, it was not able to measure communication when using the Gloo backend, because
Gloo did not launch any CUDA kernels. ML Board provides various visualizations to give
insight into the utilization of the system. First of all, it can display a table which shows the
launched CUDA kernels per node and which of the launched kernels needed the most time in
total or on average. The user interface provides the means to compare kernels launched by
a node with the same kernels launched by other nodes and to highlight kernels which need
much more or much less time than most other nodes. This makes it easy for a user to find
nodes which spent more time than others on computations and communication, and which
kernels are responsible for the extra time needed by a node. If ML Board were to use CUPTI
or a recent version of nsys (which was not available on the DAS5/VU), it would be able to
gather additional and more detailed metrics per kernel and display these in the table, and
it would be able to avoid having to export large files (created by nsys) and perform realtime
monitoring of the training instead of providing an analysis of a limited number of epochs after

1The Git repository of ML Board can be found at https://github.com/markpk/mlboard
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training has completed. Furthermore, the ratio of common tasks performed during training,
such as evaluating a model, updating gradients, and performing collective communication
can be displayed in ML Board. Additionally, statistics in the form of a boxplot and a violin
plot (which shows the distribution) can be displayed per node for several metrics, including,
among others, the computation and communication durations, and the total duration to
train a model per epoch. This gives the user another way to compare how different nodes
perform with respect to a specific metric.

ML Board was evaluated to determine which recommendations to the user could be pre
sented using the information gathered about the system. One of the use cases is that the
tool can be used to identify straggling nodes. Selecting different nodes to be used by subse
quent Slurm jobs can decrease the training time at least a few percent up to between 14 to
45% depending on the used dataset and model. Another use case is measuring the energy
used by the GPUs when training a model. Replacing a GPU by selecting a different node can
reduce the energy needed for training by between 5 to 16%. A third use case is identifying an
appropriate batch size based on the used energy and the GPU utilization. With ML Board it is
shown that the performance of the hardware of the system can be measured and that analy
sis of the measurements can be used to adapt the training and the usage of the hardware (by
changing hyperparameters or by replacing hardware) to each other, potentially dynamically
at runtime (in future work).

7.1 Discussion of research questions
The following is a summary of the conclusions of the research questions from Section 1.1:

RQ1 Does the hardware utilization depend on the dataset, the model, hyperparameters, or
configuration of the system like number of GPUs and used interconnect?

The hardware utilization depends on the dataset, number of nodes, the number of GPUs
per node, and the used collective communication backend. Tables 3.2 and 3.3 shows
that the collective communication backend has a large effect on the achieved speedup
(based on the number of nodes or total number of GPUs). Furthermore, NCCL is able
to use NVLink, which would speed up communication between two GPUs on the same
node. For some datasets like CIFAR10, some nodes spend more time on communica
tion than other nodes, while this effect is less strong for other datasets like ImageNet.
The difference is also less for larger models like ResNet50 than for a smaller model
like ResNet18. The used interconnect did not appear to cause any difference when us
ing the NCCL backend because of the efficient bandwidth usage of the Ring AllReduce
operation.

RQ2 Which parts of the system can be measured and visualized?

The use of nsys or CUPTI provides the ability to trace CUDA kernels launched on the
GPU, including those launched by NCCL. CUPTI should be able to provide detailed met
rics of launched kernels, while NVML can be used to measure the power usage and
memory utilization. Because Gloo uses the CPU instead of executing kernels on the
GPU, its usage is not so easy to measure, and may require instrumentation of the spe
cific ML framework in order to be able to measure it.

Whether parts of the system like the network interfaces and the file systems can be
measured and visualized depends partly on whether Linux kernel capabilities can be
obtained.

Without kernel capabilities, aggregated statistics of the network interfaces can still
be gathered using sysfs, but not which nodes communicate with each other and when.
More detailed statistics can be measured by using LD_PRELOAD to intercept calls to
shared libraries like NCCL. sysfs can also be used to measure main memory usage.

With kernel capabilities and a recent version of Linux, eBPF can be used for detailed
collection of metrics related to network traffic as well as file systems for measuring the
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loading of files. While the needed capabilities for eBPF are unlikely to be given to regular
users on a shared system like the DAS5, virtual machines provided by commercial
cloud services may provide a root user. Therefore, a future version of ML Board would
benefit from using the combination of tools in set A instead of C in Table 4.3.

RQ3 How much time is spend on communication between nodes, loading data, updating pa
rameters, and other aspects in popular largescale machine learning frameworks?

Most time during training of ResNet models is spent on collective communication, rather
than the evaluation of the network and updating of the gradients itself.

RQ4 Which recommendations can be given to speed up training of neural network models?

ML Board is able to show which nodes that participate in the training are straggling
and can be candidates for replacement by other nodes in future scheduled jobs. Ta
ble 6.1 shows that selecting the right nodes can have a profound effect on the runtime
of a job, with some sets of nodes having a runtime which is between 14.2% and 82.2%
greater than other sets. However, not all environments allow the user to manually select
the used nodes. In this case, if realtime monitoring is supported (see Section 7.2), ML
Board is at least able to show whether certain nodes are straggling after a few epochs.
Using this information, the user can then quickly decide whether to continue running
the job or to restart it, depending on the scheduler of the environment to select different
set of nodes.

7.2 Future Work
This thesis has investigated various techniques and proposed a tool to measure the perfor
mance of a system running machine learning workloads. There are several aspects of the
tool that could be improved in the future:

1. One limitation of the current prototype of ML Board is that it makes use of various
technologies from NVIDIA due to the omnipresence of NVIDIA GPUs in data centers
such as the DAS5/VU. To extend the tool to systems using AMD GPUs or Intel’s new
discrete GPUs, support for AMD’s ROCm and Intel’s oneAPI software stacks could be
added. Alternatively, direct support for Vulkan or OpenCL could be added if they have
the necessary extensions to measure the performance of the GPUs.

2. ML Board visualizes the utilization of GPUs only. It would be useful to also be able to
visualize the utilization of specialized hardware like Google’s Edge TPUs. These can do
inferencing of some neural network models and can be connected to the system through
USB or as a PCIe accelerator.

3. On modern systems with a recent Linux kernel, ML Board could be modified to use eBPF
through the use of the BCC toolkit [9]. This would allow ML Board to more precisely
measure the performance of the network, block devices like hard drives, and (network)
file systems. However, eBPF requires elevated privileges, which may require architec
tural changes to ML Board such as splitting part of it into a separate process that runs
as a daemon or with setuid access rights.

4. The current prototype of ML Board requires offline processing of some of the collected
data. As explained in Section 5.4.3, using CUPTI would avoid storing large files on disks
and would enable realtime continuous monitoring of the training of a model. Further
more, with realtime monitoring, an API could be provided that would give applications
feedback so that they can make adjustments during training.

5. Machine learning frameworks which use AllReduce for collective communication do not
provide faulttolerance to handle straggling or failing nodes. Support for the Parameter
Server (PS) architecture could be added to ML Board. This would allow it to measure and



68 7 Conclusion

visualize communication and staleness of nodes which run frameworks which use PS
instead of AllReduce. With support for Parameter Servers and CUPTI, ML Board would
be able to provide more detailed metrics of the performance of machines and their GPUs
when running frameworks such as KubeML [2] on Kubernetes2 clusters.

2https://kubernetes.io/

https://kubernetes.io/
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(b) NCCL communication backend.

Figure A.1: Accuracy as a function of epoch on 1, 2, 4, 8, or 15 nodes, with 1 GPU per node, using the
Ethernet interconnect, and ResNet18 model with CIFAR10 dataset.
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(b) NCCL communication backend.

Figure A.2: Accuracy as a function of epoch on 1, 2, 4, 8, or 15 nodes, with 1 GPU per node, using the
Ethernet interconnect, and ResNet18 model with ImageNet dataset.
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Figure A.3: Accuracy as a function of epoch on 1 and 2 nodes, with 1 and 2 GPUs per node, using the
Ethernet interconnect, and ResNet18 model with CIFAR10 dataset.
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Figure A.4: Accuracy as a function of epoch on 1 and 2 nodes, with 1 and 2 GPUs per node, using the
Ethernet interconnect, and ResNet18 model with ImageNet dataset.
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Figure A.5: Wallclock time for testing and training on 1 and 2 nodes, with 1 and 2 GPUs per node, using
an Ethernet interconnect, and ResNet18 model with ImageNet dataset.
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(b) InfiniBand interconnect.

Figure A.6: Wallclock time for testing and training on 1, 2, 4, 8, or 15 nodes, with 1 GPU per node, using
the NCCL library for communication, and ResNet18 model with CIFAR10 dataset.
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Figure A.7: Accuracy as a function of time on 1, 2, 4, 8, or 15 nodes, with 1 GPU per node, using the
NCCL library for communication, and ResNet18 model with CIFAR10 dataset.
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Figure A.8: Accuracy as a function of time on 1, 2, 4, 8, or 15 nodes, with 1 GPU per node, using the
NCCL library for communication, and ResNet18 model with ImageNet dataset.
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Figure A.9: Accuracy as a function of epoch on 1 and 2 nodes, with 1 and 2 GPUs per node, using the
NCCL library for communication, and ResNet18 model with CIFAR10 dataset.
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Figure A.10: Accuracy as a function of time on 1 and 2 nodes, with 1 and 2 GPUs per node, using the
NCCL library for communication, and ResNet18 model with ImageNet dataset.
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