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A B S T R A C T   

To date, the increasing density of water traffic has caused the ship’s navigation environment to deteriorate, 
resulting in frequent water traffic accidents. In addition, a majority of maritime accidents are caused by human 
factors, and one of the important ways to solve the ship accidents caused by human factors is to utilize intelligent 
maneuvering of ships. Based on the actual crews’ operational data from full-task handling simulation platform, 
this study combines a 30,000-ton bulk carrier inbound navigation scenario and uses the decision tree method to 
propose a knowledge learning model under multiple environmental constraints to give intelligent ships the 
ability to make decisions like a human: An intelligent ship Human-like Decision-making Maneuvering Decision 
Recognition (HDMDR) model. The decision-making mechanism for the maneuvering behavior of Officer On 
Watch (OOW) under the influence of the specific water traffic environment in the inbound scenario is analyzed, 
and the OOW’s decision-making knowledge is automatically acquired and represented. The validation tests and 
the comparative analysis with the classic classification algorithms of k-Nearest Neighbours (k-NN) and Support 
Vector Machine (SVM) are performed to demonstrate the accuracy of the proposed HDMDR model. This paper 
provides a feasible basis for the human-like decision-making analysis of intelligent ships.   

1. Introduction 

Driven by economic globalization, the volume of trade between 
countries around the world continues to rise, and higher demands are 
placed on the transportation of goods. Due to its large volume and low 
cost, waterway transportation plays an increasingly important role in 
cargo transportation. It bears the main task of world cargo circulation 
and is the main means of trade transportation. Currently, waterway 
transportation accounts for 95% of total crude oil transportation and 
99% of total iron ore transportation. It is an irreplaceable transportation 
method. However, with the increasing number of vessels and the 
increasingly busy routes, the environmental pollution related to 

waterway transportation, the high labor costs and the lack of safety have 
also received more attention (Lun et al., 2016). In recent years, the 
development of technologies, such as information, computers, commu
nications, networks, new energy, artificial intelligence, application of 
the Internet of Things, big data, integrated bridge systems, and infor
mation physics systems, have greatly advanced the process of ship in
telligence and made real green, safe, efficient and unmanned 
intelligence ships a possibility. 

At the same time, water transportation is recognized as a high-risk 
industry. With the development of the domestic economy and world 
trade, transportation is becoming increasingly busy, the number of ships 
is increasing, ships are becoming larger and more specialized, and the 
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speed of ships is increasing. Coupled with the increase in the trans
portation of dangerous goods, the density of water traffic is increasing, 
and the navigation environment of ships is deteriorating, causing 
frequent water traffic accidents, which causes people to pay more 
attention to the risk of navigation (Akyuz and Celik, 2014; Goerlandt 
and Montewka, 2015). According to statistics (Hanzu-Pazara et al., 
2008), in ship collision accidents, 89%–96% of accidents are caused 
directly or indirectly by human factors, and one of the important ways to 
solve ship accidents caused by human factors is to utilize intelligent 
maneuvering of ships. In addition, the safety of the crew in extreme 
weather conditions in recent years has also become a problem that 
cannot be ignored (Wang et al., 2014). Besides, the number of crews is 
declining recently, while the wages of crew are rising year by year, 
which has become the second largest expenditure item after the fuel 
costs of shipping (Lun et al., 2016). As intelligent ships have outstanding 
advantages in improving the safety management, energy consumption 
management, and operational efficiency of ships, therefore, the re
searches for intelligent ships have become an inevitable trend for future 
ship development, and gained the interest of many researchers in both 
academia and private sectors (Goerlandt and Montewka, 2015). 

In addition, the natural environment is an important factor affecting 
the safety of waterborne traffic (Zhang et al., 2018). Among the natural 
environmental factors surrounding the ship, meteorological conditions, 
walrus conditions, topographical environments and water facilities will 
bring restrictions to the navigation of the ship. These factors affect the 
ship’s navigation and the crew’s decisions by affecting the ship’s 
maneuverability, along with the skill and mentality of the shipper. The 
natural environmental factors that typically affect the safe environment 
of maritime traffic are weather conditions and ocean conditions, spe
cifically, wind, current, and waves. 

Intelligent ships use sensors, communications, Internet of Things, the 
Internet and other technical means to automatically sense and obtain 
information and data on the ship itself, the marine environment, logis
tics, ports, etc. Based on computer technology, automatic control tech
nology, big data processing and analysis technology, it utilizes 
intelligent operation in ship navigation, management, maintenance, 
cargo transportation, etc. (Lazarowska, 2017), making ships safer, more 
environmentally friendly, more economical and more reliable. “Intelli
gent” here can be understood as “human-like thinking”. It can 
comprehensively consider the specific tasks and various information 
obtained and develop a series of optimal decisions that meet the safety 
requirements of the ship’s navigation, economy, and environment. It 
takes a long transition period for an intelligent ship to fully realize un
manned maneuvering. Presently, although the current level of ship 
automation is relatively high, the normal operation of ships is always 
inseparable from human participation (Perera et al., 2015). Even in an 
unattended cabin, the crew must be handled when an emergency occurs. 
Although the ship is maneuvered by satellite navigation, electronic 
compass, electronic channel map and automatic rudder, the bridge has 
not been unmanned. Intelligent ship technology has developed rapidly 
in recent years, however, there are still many problems need to be 
solved. In addition, the existing research does not form a set of theo
retical methods to solve the problem of autonomous learning of the 
intelligent ship for the maneuvering decision-making characteristics of 
Officer On Watch (OOW) and lacks the corresponding theoretical 
methods to solve the problem of intelligent ship human-like maneu
vering decision-making modeling. 

Researchers have proposed several different decision tree algorithms 
(see literature review) for both classification and decision-making 
problems based on different aspects and obtained good results. Based 
on the advantages of the C4.5 algorithm and the ability to analyze the 
characteristics of multifork trees, this paper uses the C4.5 algorithm to 
learn the OOW’s maneuvering decision characteristics. We regard the 
intelligent ship human-like maneuvering decision-making problem as a 
machine learning problem based on the OOW’s experience, the OOW’s 
actual maneuvering data, and the environmental influencing factors, 

such as wind, wave, and current in specific water areas, and the problem 
is converted using the decision tree C4.5 method to learn the OOW’s 
maneuvering decision-making characteristics, thus constructing a 
human-like decision-making model under multiple constraints. 

In summary, this study focuses on the concept of human-like 
maneuvering for the intelligent ship and studies the human-like deci
sion-making method of intelligent ships. By establishing autonomous 
learning method of maneuvering decision-making, the maneuvering 
decision-making rules of typical maneuvering style is explored, and the 
processes of autonomous learning OOWs’ maneuvering decision-making 
characteristics for intelligent ships are studied, and the intelligent ship 
human-like decision-making model is constructed. This study provides a 
new perspective and methodology for the development of intelligent 
ship technology in theory and practice and promotes the application and 
spreading of intelligent ships. The main contributions of this study are as 
follows:  

1) A novel intelligent ship Human-like Decision-making Maneuvering 
Decision Recognition (HDMDR) model is proposed.  

2) The standardization principle of environmental influencing factors 
and maneuvering decision-making factors is developed.  

3) The decision-making mechanism of the OOW’s maneuvering 
behavior is analyzed on the basis of the actual crews’ operational 
data from full-task handling simulation platform, and the OOW’s 
decision-making knowledge under the specific environmental influ
encing factors in the inbound scenario is automatically acquired and 
represented.  

4) Considering the high cost of using the real 30,000-ton ship to carry 
out this kind of experiment, and the low feasibility of collecting the 
data of multiple voyages from the real-world ship, therefore, it is 
unique and very valuable to obtain the experimental data operated 
by an experienced OOW on the full-task handling simulation plat
form in a certain time and space. 

The structure of this paper is organized as follows. Initially, Section 2 
reviews the literature. Section 3 briefly presents the proposed decision- 
making model. The experimental processes are introduced in Section 4. 
Section 5 details the experimental results and the performance of our 
optimization methodology. The conclusions and future directions of 
research are addressed in Section 6. 

2. Literature review 

Data mining is a process that uses analytical tools to extract infor
mation and knowledge, including knowledge that is hidden, unknown, 
or incomplete but potentially useful, from a large amount of incomplete, 
noisy, fuzzy, and random data. Moreover, data mining determines the 
relationship between models and data and uses it to make predictions 
(Aguiar-Pulido et al., 2013; Sanil, 2001). The classification algorithm is 
a data analysis method belonging to predictive data mining. Its goal is to 
find models that accurately describe and distinguish data classes or 
concepts from important sample data sets, such that they can be grouped 
into a data category based on the entity’s attribute values and other 
constraints. The current technologies and methods mainly include de
cision tree algorithms (Calistru et al., 2015; Xie et al., 2003), Bayesian 
classification and Bayesian networks (Baksh et al., 2018), neural net
works (Kheradpisheh et al., 2018), genetic algorithms (Peng et al., 
2015), rough sets (Zhang et al., 2012), etc. 

In the 1960s, decision tree algorithm was initially proposed by Hunt 
et al. (1966) to minimize the cost of classifying an object (Quinlan, 
1986). Decision trees can handle both categorical and numerical data 
and it is good at processing nonnumeric data, which can eliminate a 
significant amount of data preprocessing work when dealing with nu
merical data through algorithms, such as neural networks. In addition, 
the decision tree method is simple in structure and does not need much 
background knowledge in the process of learning. Second, the decision 
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tree model is more efficient and is more suitable for training sample sets 
that have large amounts of data; third, the computational tree algorithm 
has a relatively small amount of computation; then, the decision tree 
method typically does not require knowledge outside the training data 
and is good at processing nonnumeric data; finally, the decision tree 
method has a higher classification accuracy. Therefore, the decision tree 
method is a key research direction in the field of machine learning. 
Muchoney et al. proposed the classification algorithms of decision tree 
(DT), artificial neural network (ANN), and maximum-likelihood to 
analyze the land cover classification problem in central United States, 
and the results show that the decision tree has the highest classification 
accuracy (Muchoney et al., 2010). Borak (1999) used decision trees to 
classify features from a large amount of data. The results show that the 
tree-based classifier can greatly reduce the dimensionality of the input 
data set without affecting the classification accuracy. Calistru et al. 
(2015) proposed a novel parallel decision tree algorithm, namely, 
PdsCART, to process a larger amount of data stream records and 
construct the tree efficiently. Saunier et al. (2011) used decision trees, 
the k-means algorithm, and the hierarchical agglomerative clustering 
method to identify patterns in the traffic event database and analyze the 
relationship between interaction attributes and collision. 

Common decision tree algorithms are Concept Learning System 
(CLS) (Angluin, 1988; Hunt et al., 1966), Iterative Dichotomiser 3 (ID3) 
(Quinlan, 1979, 1986), C4.5 (Quinlan, 1993), C5.0 (Bujlow et al., 2012; 
Pandya and Pandya, 2015), Classification And Regression Trees (CART) 
(Calistru et al., 2015; Friedman et al., 1984), CHi-squared Automatic 
Interaction Detector (CHAID) (Kass, 1975; Rodriguez et al., 2016), etc. 
The internal variables of each subsample are highly consistent, and the 
corresponding variation/impurity falls between different subsamples as 
far as possible. All decision tree algorithms follow this criterion, and the 
data set is partitioned into subsets with different statistical approaches, 
such as Entropy (Lakkakula et al., 2014), Gain Ratio (Prasad and Naidu, 
2013), Gini coefficient (Prasad et al., 2013; V et al., 2013), etc. 

A series of follow-up decision tree programs, such as ID3, C4.5, and 

CART, etc. are all developed from CLS. Among them, the C4.5 algorithm 
developed based on ID3, is currently one of the most famous and popular 
decision tree algorithms (Lu et al., 2015), C4.5 is the most influential 
data mining algorithm identified by the IEEE International Conference 
on Data Mining (ICDM) in December 2006 (Wu et al., 2007). A 
comparative study of C4.5 and other learning algorithms shows that it 
can balance processing speed and error rate well (Lim et al., 2000). C4.5 
can convert the decision tree into an equivalent production rule, solve 
the learning problem of continuous value data, classify multiple cate
gories, increase the Boosting technology, and complete the processing of 
large databases more efficiently. The C4.5 algorithm also deals well with 
continuous and discrete values and attributes with missing attribute 
values (García-Laencina et al., 2015). The C4.5 algorithm solves the 
above problem well; however, the ID3 algorithm tends to favor more 
attributes and the data of discrete value attributes, but not the attributes 
with continuous values nor the samples with missing values, and is 
sensitive to noise (Hssina et al., 2014). C5.0 mainly adds support for 
Boosting, which also uses less memory. Compared with the C4.5 algo
rithm, it builds a smaller rule set; therefore, it is more accurate, but C5.0 
is a commercial software, and the public cannot easily get the source 
code (Witten et al., 2016). CART uses the training set and the 
cross-validation set to continuously evaluate the performance of the 
decision tree to prune the decision tree, thus achieving a good balance 
between training error and test error. However, CART and CHAID only 
supports building binary trees, while C4.5 allows two or more outcomes 
and supports binary or multifork trees (Wu et al., 2007). Several prior 
studies on the C4.5 DT could be found from the literature. A prior study 

Fig. 1. The collision avoidance operation in the encounter scenario of different crossing situations and the decision tree generated from this case.  

Table 1 
The data for the example.  

No. Crossing orientation (attributes) Class 

1 Left a 
2 Right b  
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Fig. 2. The proposed HDMDR model logic schema.  
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Fig. 3. The designed experimental scenario.  
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(Provost and Domingos, 2003) found that a C4.5 introduction learner 
without pruning and without node “collapsing” (Quinlan, 1993) can 
achieve the best prediction accuracy. A novel VFC4.5 was proposed by 
Cherfi et al. (2018) to build decision trees through reducing the number 
of cut points by using the arithmetic mean and median, this algorithm 
could get excellent accuracy than a C4.5 algorithm. Reumers et al. 
(2013) used C4.5 decision tree-based model to infer activity types from 
Global Positioning System (GPS) traces, the results showed that the 
overfitting was minimal, in addition, the model enables researchers to 
infer activity types directly from activity start time and duration infor
mation obtained from GPS data. Dai and Ji (2014) proposed a parallel 
MapReduce algorithm to implement a typical C4.5 decision tree, the 
experimental results indicated that the algorithm exhibits both time 
efficiency and scalability. 

3. Methodology 

3.1. Decision tree 

A decision tree is a mathematical method that generates decision 
trees or decision tree rules by inductive learning of training samples and 
then classifies new data using decision trees or decision rules. As a su
pervised case-based inductive learning algorithm, decision trees evolved 
from the artificial neural network method, which is a method to solve 
complex decision problems through tree-like logical thinking. It can 
infer the classification rules of the decision tree representation from a set 
of unordered and irregular cases. It typically forms a classifier and a 
prediction model, which can classify, predict and analyze the unknown 
data for knowledge discovery. 

The decision tree consists of a root node, a series of internal nodes, 
and leaf nodes. Each node has only one root node and two or more leaf 

nodes, and the nodes are connected by branches (Yuan and Shaw, 1995). 
Each internal node of the decision tree corresponds to a collection of 
noncategory attributes, with each edge corresponding to each possible 
value of the attribute. The leaf nodes of the decision tree correspond to a 
category attribute value, and different leaf nodes can correspond to the 
same category attribute value. In addition to being represented in the 
form of a tree, a decision tree can also be represented as a set of pro
duction rules in the form of IF-THEN. Each root-to-leaf path in the de
cision tree corresponds to a rule. The condition of the rule is the 
rounding of all node attribute values on the path. The rule’s conclusion 
is the category attribute of the leaf node on the path. Compared with 
decision trees, rules are more concise and easier for people to under
stand, use and modify, which form the basis of the expert system. 
Therefore, in practical applications, more rules are used. 

The decision tree method consists of two main steps. The first step is 
to use the training sample set to build and generalize a decision tree and 
build a decision tree model. This process is actually a process of 
acquiring knowledge from the data and doing machine learning. It is 
usually divided into two phases: building and pruning. The second step 
is the process of classifying new data using a built-in decision tree. 

The input of the decision tree learning algorithm is a set of training 
samples represented by attributes and attribute values, and the output is 
a decision tree (which can also be extended to other representations, 
such as rule sets). Decision tree generation typically uses a top-down 
recursive approach. The optimal attribute is selected as the node of 
the tree by some method, and the attribute values are compared on the 
node, and the branch from the node is judged according to the different 
attribute values that correspond to the training samples. The lower 
nodes and branches are repeatedly established in each branch subset, 
and the growth of the tree is stopped under certain conditions, and the 
conclusions are obtained at the leaf nodes of the decision tree to form a 
decision tree. The decision tree is generated by performing decision tree 
learning on the training samples. The decision tree can classify an un
known sample set according to the value of the attribute, which is the 
decision tree classification. 

Fig. 1(c) shows an example of a typical binary decision tree based on 
the data shown in Table 1. From Fig. 1(c), we can see that a decision 
node/attribute (i.e., Crossing orientation, which represents the position 
of Vessel 2) has two branches/values (i.e., Right section and Left section, 
which represent the unique values for the specific attribute). Leaf node 

Fig. 4. The distribution of OOWs’ age and their piloting experience.  

Table 2 
Participants’ information.   

Number of Participants Age (years) Piloting experience 
(years) 

Mean SD Mean SD 

All 96 38.76 4.13 8.89 2.10 
Captain 35 42.29 2.18 10.74 1.29 
Chief Officer 61 36.74 3.59 7.82 1.69  
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(i.e., Class, which represents the crossing situation) represents the class 
category or decision of each instance. 

Furthermore, according to the COLREGs (International Regulations 
for Preventing Collisions at Sea) navigation rules which provide safe 
operation guidelines for maritime navigation. As shown in Fig. 1(a), if 
vessel 2 is at the left crossing section (Class a), the vessel 2 should turn 
right and vessel 1 should keep its course; if vessel 2 is at the right 
crossing section (Class b), the vessel 1 should turn right, and vessel 2 
should keep its course, shown as Fig. 1(b). Therefore, the final decision 
can also be represented through the form of IF-THEN rule set shown as 
follows: 

Rule 1: IF Crossing orientation ¼ Left THEN Class ¼ a (Vessel 1 keeps 
course and vessel 2 turns right) 
Rule 2: IF Crossing orientation ¼ Right THEN Class ¼ b (Vessel 1 
turns right and vessel 2 keeps course) 

This example indicates a maritime problem of COLREGs situation: 
the decision tree generated from collision avoidance operation in the 
encounter scenario of different crossing situations In this way, the at
tributes taken together provide a zeroth-order language for character
izing objects in the universe (Quinlan, 1986). 

3.2. The proposed HDMDR model 

3.2.1. Theory information 
Shannon (1948) proposed the information theory in 1948, and the 

amount of information on events could be calculated as follows: 

IðSiÞ¼ � pðSiÞlog2pðSiÞ (1)  

where pðSiÞ is the probability of occurrence of event Si. 
Suppose that there are v mutually exclusive events S1;S2; :::;Sv, and 

only one of them happens. The average amount of information can be 
measured as follows: 

IðS1; S2; :::; SvÞ¼ �
Xv

i¼1
pðSiÞlog2pðSiÞ (2)  

When pðSiÞ ¼ 0, then IðSiÞ ¼ � pðSiÞlog2pðSiÞ ¼ 0. 

3.2.2. Information entropy 
Assume that D is the intelligent ship human-like decision-making 

training data set contains a set of m classes, jDj stands for the total 
number of samples in data set D, and jSij is the number of samples in data 
set D that belongs to class Siði ¼ 1;2; :::; mÞ. If we randomly select a 
sample from D, and this sample belongs to class Si, then we can get a 

Table 4 
Standardization principle of environmental influencing factors for inbound 
maneuvering decision-making (input).  

Influencing 
factors 

Meaning Symbolic principle 

Small (a) Medium (b) Large (c) 

Y1 Current 
direction 
(degrees) 

[313.9000, 
315.5000) 

[315.5000, 
317.1000) 

[317.1000, 
318.7001) 

Y2 Current 
speed (knots) 

(1.0107, 
1.0432) 

[1.0432, 
1.0756) 

[1.0756, 
1.1080] 

Y3 Relative 
current 
direction 
(degrees) 

[-60.0000, 
0.0000) 

[-120.0000, 
� 60.0000) 

(-180.0000, 
� 120.0000) 

[0.0000, 
60.0000) 

[60.0000, 
120.0000) 

[120.0000, 
180.0000] 

Y4 Relative 
wave 
direction 
(degrees) 

[-41.5000, 
0.0000) 

[-83.0000, 
� 41.5000) 

(-124.5000, 
� 83.0000) 

[0.0000, 
41.5000) 

[41.5000, 
83.0000) 

[83.0000, 
124.8000] 

Y5 Relative wind 
direction 
(degrees) 

[-59.0205, 
0.0000) 

[-118.0411, 
� 59.0205) 

(-179.7170, 
� 118.0411) 

[0.0000, 
59.0205) 

[59.0205, 
118.0411) 

[118.0411, 
179.8750) 

Y6 Relative wind 
speed (knots) 

(0.0228, 
7.5154) 

[7.5154, 
14.7664) 

[14.7664, 
22.1793)  

Table 3 
Training samples for evaluation of the studied area (partially).  

No. X Y1 Y2 Y3 Y4 Y5 Y6 

Rudders Order Telegraphs Order 

1 � 1.0697 � 30.0000 318.4000 1.1080 � 173.7550 83.4139 � 77.2000 7.7235 
2 � 1.7666 � 30.0000 318.4000 1.1080 � 173.3871 83.5533 � 77.2000 7.7235 
3 � 2.0000 � 30.0000 318.4000 1.1080 � 173.2907 83.6046 � 77.1954 7.7226 
4 � 2.0000 � 30.0000 318.4000 1.1080 � 172.9988 83.7506 � 77.1000 6.7041 
5 � 2.0000 � 30.0000 318.4000 1.1080 � 172.8908 83.8092 � 77.0954 6.7041 
6 � 2.0000 � 30.0000 318.4000 1.1080 � 172.6508 84.0000 � 77.0000 6.7041 
7 � 2.0000 � 30.0000 318.4000 1.1080 � 172.6000 84.0000 � 77.0000 6.7041 
8 � 2.0000 � 30.0000 318.4000 1.1080 � 172.2018 84.3491 � 76.9313 6.6847 
9 � 2.0000 � 30.0000 318.4000 1.1080 � 172.1000 84.4000 � 76.9000 6.6847 
10 � 2.0000 � 30.0000 318.4000 1.1080 � 171.7163 84.6837 � 76.7582 6.6847 
11 � 2.0000 � 30.0000 318.4000 1.1080 � 171.6000 84.8000 � 76.7000 6.6847 
12 � 2.0000 � 30.0000 318.4000 1.1080 � 171.3069 85.0931 � 76.6334 6.6847 
13 � 2.0000 � 30.0000 318.4000 1.1080 � 171.2000 85.2000 � 76.6000 6.6847 
14 � 2.0000 � 30.0000 318.4000 1.1080 � 170.9000 85.3000 � 76.6000 6.6847 
15 � 2.0000 � 30.0000 318.4000 1.1080 � 170.9000 85.3000 � 76.6000 6.6847 
16 � 2.0000 � 30.0000 318.4000 1.1080 � 170.3351 85.6474 � 76.3763 6.6652 
17 � 2.0000 � 30.0000 318.4000 1.1080 � 170.1000 86.0000 � 76.2000 6.6652 
18 � 2.0000 � 35.9724 318.4000 1.0754 � 169.9281 86.2437 � 76.0806 6.6652 
19 � 2.0000 � 40.0000 318.4000 1.0753 � 169.8000 86.5000 � 76.0000 6.6652 
20 � 2.0000 � 45.6276 318.4000 1.0753 � 169.4059 86.7626 � 75.8687 6.6752 
21 � 2.0000 � 50.0000 318.4000 1.0755 � 169.2000 86.9000 � 75.8000 6.6852 
22 � 2.0000 � 50.0000 318.4000 1.1080 � 168.9564 87.1718 � 75.6761 6.7052 
23 � 2.0000 � 50.0000 318.4000 1.1080 � 168.5000 87.4000 � 75.6000 6.7552 
24 � 2.0000 � 50.0000 318.4000 1.1080 � 168.6957 87.6273 � 75.5497 6.8043 
25 � 2.0000 � 50.0000 318.4000 1.1080 � 169.3000 87.8000 � 75.5000 7.1655 
26 � 2.0000 � 62.0366 318.4000 1.1080 � 168.0185 88.1405 � 75.4000 7.2612 
27 � 2.0000 � 70.0000 318.4000 1.0755 � 167.7000 88.3000 � 75.4000 7.3272 
28 � 1.9030 � 70.0000 318.4000 1.1080 � 167.5368 88.5632 � 75.3000 7.6652 
29 � 1.8120 � 70.0000 318.4000 1.1080 � 167.3000 88.8000 � 75.3000 7.6652 
30 � 1.7090 � 70.0000 318.4000 1.1080 � 166.6993 89.0801 � 75.3000 7.6510 
… … … … … … … … …  
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prior probability of the event as follows: 

pi ¼ jSij=jDj (3) 

The expected information (also referred to as entropy) needed to 
classify D into m classes is defined as: 

IðjS1j; jS2j; :::; jSmjÞ¼ �
Xm

i¼1
pi log2ðpiÞ (4) 

Suppose a feature/attribute A has n distinct values, fa1; a2; :::; ang, 
feature/attribute A partitions D into n subsets, fD1;D2; :::;Dng, 

�
�Dj
�
� is the 

number of samples in subset Djðj ¼ 1; 2; :::; nÞ, and 
�
�
�Si

j

�
�
� stands for the 

number of samples in subset Dj that belongs to class Si. Then, the ex
pected information is defined as: 

EðAÞ ¼
Xn

j¼1

�
�Dj
�
�

jDj
I
��
�
�S1

j

�
�
�;

�
�
�S2

j

�
�
�; :::;

�
�
�Si

j

�
�
�

�
(5) 

Note that the smaller the entropy value is, the higher the purity of the 
subset partition, where m for a given subset Dj, 

I
��
�
�S1

j

�
�
�;

�
�
�S2

j

�
�
�; :::;

�
�
�Si

j

�
�
�

�
¼ �

Xm

i¼1
pij log2

�
pij
�

(6)  

3.2.3. Information Gain and Gain Ratio 
The Information Gain of feature/attribute A is expressed as follows: 

GainðAÞ¼ IðjS1j; jS2j; :::; jSmjÞ � EðAÞ (7) 

Table 5 
Maneuvering decision-making factors and standardization principle (output).  

Attributes Speed control Course control 

Symbolic principle Status Symbol Symbolic principle Status Symbol 

Variety aiþ1 � ai 6¼ 0  Changed C1 b1þ1 � bi 6¼ 0  Changed C2 
aiþ1 � ai ¼ 0  Unchanged U1 biþ1 � bi ¼ 0  Unchanged U2 

Direction ai � 0  Ahead D1 bi � 0  Starboard D2 
ai < 0  Astern T1 bi < 0  Port T2 

Maneuvering factors Decisions Symbols Decisions symbols 

X(Dimensionless) U1D1U2T2 X1 U1D1C2T2 X9 
U1T1U2T2 X2 U1T1C2T2 X10 
U1D1U2D2 X3 U1D1C2D2 X11 
U1T1U2D2 X4 U1T1C2D2 X12 
C1D1C2T2 X5 C1D1U2T2 X13 
C1T1C2T2 X6 C1T1U2T2 X14 
C1D1C2D2 X7 C1D1U2D2 X15 
C1T1C2D2 X8 C1T1U2D2 X16  

Table 6 
Training set with the principle of standardization (partially).  

No. X Y1 Y2 Y3 Y4 Y5 Y6 

a b c a b c a b c a b c a b c a b c 

1 X10 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 
2 X10 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 
3 X10 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 
4 X2 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 1 0 0 
5 X2 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 1 0 0 
6 X2 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 1 0 0 
7 X2 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 1 0 0 
8 X2 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 1 0 0 
9 X2 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 1 0 0 
10 X2 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 1 0 0 
11 X2 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 1 0 0 
12 X2 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 1 0 0 
13 X2 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 1 0 0 
14 X2 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 1 0 0 
15 X2 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 1 0 0 
16 X2 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 1 0 0 
17 X2 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 1 0 0 
18 X14 0 0 1 0 1 0 0 0 1 0 0 1 0 1 0 1 0 0 
19 X14 0 0 1 0 1 0 0 0 1 0 0 1 0 1 0 1 0 0 
20 X14 0 0 1 0 1 0 0 0 1 0 0 1 0 1 0 1 0 0 
21 X14 0 0 1 0 1 0 0 0 1 0 0 1 0 1 0 1 0 0 
22 X2 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 1 0 0 
23 X2 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 1 0 0 
24 X2 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 1 0 0 
25 X2 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 1 0 0 
26 X14 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 1 0 0 
27 X14 0 0 1 0 1 0 0 0 1 0 0 1 0 1 0 1 0 0 
28 X10 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 
29 X10 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 
30 X10 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 
… …    … … … … … … … … … … … … … … …  
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The split information is defined as: 

SplitðAÞ¼ �
Xn

j¼1

�
�Dj
�
�

jDj
log2

���Dj
�
�

jDj

�

(8)  

where SplitðAÞ is the information generated by partitioning D based on 
the values of A; it indicates the outcome of the test rather than the class 
to which the sample belongs. 

The Gain Ratio could be calculated by the following: 

GainRatioðAÞ ¼
GainðAÞ
SplitðAÞ

(9)  

3.2.4. Constructing the C4.5 decision tree 
C4.5 is an extension of ID3 and was presented by Quinlan (1993). 

ID3 selects the attribute with the largest Information Gain value as the 
node of the tree, as also shown by Xue et al. (2019). However, C4.5 
introduces the concept of Information Gain Ratio and selects the attri
bute with the largest Information Gain Ratio. Moreover, each possible 
value is used as a branch of this node to recursively form a decision tree, 
In addition, C4.5 adds significant functions compared to ID3, such as 
rules generation, uncertainty processing functions and attribute dis
cretization. C4.5 overcomes the shortcomings of the ID3 algorithm using 
Information Gain to select attributes when biasing the selection of more 
attributes and can build a decision tree with as simple a structure as 
possible while ensuring the accuracy of training set classification. Al
gorithm 1 depicts the procedures of the process of construction of the 
proposed maneuvering C4.5 decision tree of intelligent ship Human-like 
Decision-making Maneuvering Decision Recognition (HDMDR) model. 

Algorithm 1 Construct the proposed C4.5 decision tree of HDMDR 
model. 

3.2.5. Pruning the decision tree 
The initial construction of the C4.5 decision tree is often complicated 

by the inclusion of a large number of classification attributes and 
branches, and there are inevitably some errors, namely, noise. This noise 
gradually accumulates in the decision classification process, which will 
eventually cause the C4.5 decision tree to have a large deviation from 
the classification of the actual sample, and the accuracy is reduced, i.e., 
over-fitting. Thus, the C4.5 decision tree generated by the training set is 
very good for classifying the training set, but it may not be ideal to use it 
to classify the new data set that does not participate in the decision tree 
generation process. Therefore, the preliminary constructed C4.5 deci
sion tree needs to be pruned, and the purpose of pruning is to optimize 
the C4.5 decision tree or simplify the generated rules. There are two 
kinds of decision tree pruning methods: prepruning and postpruning. 

For the problem of over-fitting, this study uses postpruning methods 
to eliminate branching anomalies caused by noise data and isolated 
points. Quinlan (1993) proposed using pessimistic error pruning to 
compensate for optimistic bias in tree generation during pruning (Due to 

the decision tree is generated from the training data set, in most cases, 
the decision tree is consistent with the training data set. However, when 
the decision tree is used to classify data other than the training data, it is 
obvious that the error rate will be greatly increased). 

The postpruning rule adopts the principle of minimum expected 
error rate, i.e., starting from the root node of the tree, and calculating the 
expected error rate that may occur for each branch node pruning/no 
pruning: If the node is clipped, resulting in a higher expected error rate, 
the subtree is retained. Otherwise, the subtree is clipped, and finally, the 
C4.5 decision tree with the smallest expected error rate is obtained. 

In this paper, the upper limit of the quality confidence interval is 
used as the erroneous estimation under pessimistic conditions. Given a 
confidence level α (0.25 in the C4.5 algorithm), the total number of 
errors obeys the Bernoulli distribution; then, there is a probability 
equation: 

P

"
jf � qj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qð1 � qÞ=N

p > μ1� α

#

¼ α (10)  

where N is the total number of instances under the pruned subtree, E is 
the number of error instances that occur after pruning, f ¼ E=N is the 
actual observed error rate, and q is the estimated error rate. Let z ¼ μ1� α, 
taking the upper bound of the confidence interval as the pessimistic 
error rate estimate of this node. Then, the formula for calculating the 
false positive rate of the node: 

q ¼
f þ z2

2N þ z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f
N �

f 2

N þ
z2

4N2

q

1þ z2

N

(11)  

Where f ¼ E=N is the actual observed error rate, and q is the estimated 
error rate. 

Set the maximum value of the expected false positive rate to C. If the 
estimated false positive rate q after pruning is higher than C, the original 
subtree is retained. Otherwise, the subtree is cut and replaced with 
leaves. After the pruning, the inbound human-like decision-making tree 
is shown in Fig. 6. Fig. 2 is the basic process and framework for our 
proposed HDMDR model. 

4. Experiments 

4.1. Scenario design and data collection 

In our experiment, the simulator scenario was the Shanghai Wai
gaoqiao wharf, and the ship was downstream of the berthing into the 
port. We use a 30,000-ton bulk carrier as our experimental ship OS1 
(33089.0 t, 182.9 m long, 22.6 m wide). We define the process as when 
the ship’s stern leaves the main channel near the port side of the 

Input: The training dataset D of the maneuvering factor (X) and environmental factors 
(Y1~Y6 in our case; new factors can be upgraded here); attribute A.
Output: A proposed maneuvering C4.5 decision tree.

1: for every attribute A do
2: Calculate the Information Gain Ratio for using A to splitting D; 
3: end 
4: if GainRatio> threshold then
5: return A degenerated tree with only one node
6: end
7: Construct a root node with the selected environmental factor;
8: for every subtree do
9: Move all samples belonging in the subtree to a continuous memory area;
10: Recursively call C4.5 to construct the subtrees, using the subset of training

samples as its training set;
11: end
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boundary line in the electronic chart (Fig. 3(b) shows the initial 
boundary) to the ship berths docked at the end of the cable (Fig. 3(c) 
shows the end boundary) as a complete berthing process. The experi
mental scenario is shown in Fig. 3. 

We collect the data from the full-task handling simulation platform 
(Navi-Trainer Professional 5000, which conforms to the IMO STCW78/ 
10 convention and the Det Norske Veritas (DNV)) from the Maneuvering 
Simulator Laboratory in Wuhan University of Technology Waterway 
Road Traffic Safety Control and Equipment Ministry of Education En
gineering Research Center. 

We collect the operational data of the exercises and assessment 
exams as our experimental data (unlimited navigational class crew, 4 
groups of 96 people, 32–45 years old, skilled maneuvering level, cap
tain/chief officer). From Table 2, we can get the average age of the crew 
participating in this experiment is 38.76 years old and their average 
piloting experience is 8.89 years. The captains’ average age and piloting 
age are both higher than those of chief officers’. From Fig. 4, we can get 
the distribution of OOWs’ age and their piloting experience. The ship 
handing and environment, including inside and outside multisource 
information, were collected on the ship’s berthing process, including the 
environment (wind, current, wave, etc.), control (rudder order, marine 
telegraph order - 2 factors). Table 3 lists some of the training samples. 

It should be noted that, in our case, the OOW is the captain or chief 
officer, although, in the real situation, the captain is not on duty. The 
captain will go to the bridge only in special circumstances, and if 
necessary, the captain may take over the duty of the OOW to maneuver 
the ship, but it is an assessment and evaluation scenario in our experi
ment; therefore, the captain also acts as the OOW. In addition, we regard 
the tugboat as a power plant system of target ship OS1 to facilitate the 
ship’s overall situation of a simplified analysis and we consider the tugs 
and the ship OS1 as a whole dynamic model. Under the premise of this 
hypothesis, the ship OS1 completes the inbound operation through the 
combination of rudder orders and telegraph orders, according to the 
actual navigational situation of its force and movement. 

4.2. Standardization principle setting 

Maneuvering decision-making processes are often influenced by 
multisource information, such as human, ship and environmental fac
tors. These influencing factors act together to determine the next action 
strategy of the ship’s OOW. 

For a particular person-ship unit, the overall reliability is constant for 
a certain period of time or during a trip; therefore, the person and ship 
factors have less influence on maneuvering decisions. With the opera
tion of the ship, the OOW’s waterway and the environment will change 
with time and space, and the changing waterway and environmental 
factors will have a greater impact on maneuvering decisions. In this 
research, we mainly focus on the environmental influencing factors and 
study their effect on the decision-making of the OOW. Based on the 
strategy and the current maneuvering environment, the experienced 
OOW can quickly and accurately make maneuver decisions, thus laying 
the foundation for the study of human-like maneuvering behavior for 
the application to intelligent ships. We select six environmental influ
encing factors as the input of our proposed HDMDR model to study the 
decision-making mechanisms for different maneuvering behaviors. 

In order to let the maneuvering decision-making knowledge to be 
automatically obtained and expressed along with higher decision- 
making knowledge effectiveness. It is typically necessary to divide the 
number of linguistic terms by experience (Yuan and Shaw, 1995). In this 
paper, experimental data of each maneuvering decision-making factor 
are trisected into three levels, namely, small (a), medium (b), and large 
(c), see Table 4, to objectively describe the characteristics of each 
influencing factor, and make it easier to describe how each factor in
fluences final maneuvering decisions. We select six environmental 
influencing factors as the input of our proposed model to study the 
decision-making mechanisms for different maneuvering behaviors: 

Current direction, current speed, relative current direction, relative 
wave direction, relative wind direction, relative wind speed (In other 
cases, the other new factors can also be upgraded according to Algo
rithm 1 in section 3.2.4 using specific standardization principle). 

The OOW maneuvers the ship by operating different telegraph and 
rudder orders to change ship’s speed and direction and to complete the 
ship’s control. Table 5 shows the combining telegraph and rudder orders 
(speed and course control respectively); this control is a multidynamic 
process. Moreover, it should be noted that, in combination with the 
actual situation of the experimental scenario, unlike the ship sailing on 
the open sea, the OOW needs to call the rudder and telegraph orders 
frequently in the inbound decision-making ship handing process; 
therefore, in this paper, we do not consider “Midships” and “Stop en
gine,” regardless of the rudder angle and if the power output is 0. Table 5 
shows the standardization principle for output maneuvering decision- 
making factors. 

5. Results and discussion 

5.1. Standardizing of training set 

The data in Table 3 are standardized according to the principle of 
standardization of maneuvering decision influencing factors in Tables 4 
and 5; the results are shown in Table 6. 

5.2. Constructing and pruning the decision tree 

The C4.5 algorithm can be divided into two phases. First, a certain 
attribute is selected according to the criterion of maximum Information 
Gain to divide the training set, and the recursive call is performed until 
all the examples in each division belong to the same class; then, the 
established tree is pruned, i.e., the branch established above the noise 
data is cut. In the decision tree analysis, approximately 80% of the data 
is randomly selected as the training set, and the remaining 20% is used 
as the test set. Then, through Eqs. (3)–(11), we could obtain the decision 
tree structure, as shown in Fig. 6, partitioned into 3 parts, Part I, II and 
III. The number and proportion of different decisions are shown in Fig. 5. 

5.3. Establishing maneuvering decision classification rules 

The result of our proposed HDMDR model is a set of classification 
rules in the form of IF-THEN. Each path from the root node to the leaf 
node constitutes a rule. The characteristics of the internal nodes of the 
path correspond to the conditions of the rule, and the classification of 
the leaf nodes corresponds to the conclusion of the rule. As a result, we 
can easily extract the human-like decision-making knowledge using the 
decision tree and rule set. The optimized maneuvering decision 

Fig. 5. The number and proportion of different decisions.  
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recognition rule set is shown in Table 7. 
From Figs. 5 and 6, and Table 7, we can draw the following 

conclusions:  

1) It can be seen from the generated decision tree that Y2 as the root 
node, i.e., current speed, is the most informative attribute of all 
samples. In other words, in the environment of the simulation 

experimental scenario, the current speed in the environmental 
influencing factors has the most significant impact on the OOW’s 
maneuvering decision-making, followed by the relative current di
rection and current direction.  

2) The ordering of environmental factors provides the OOW with a set 
of variables for decision-making reference, which has certain guiding 
significance for the formulation of maneuvering decisions.  

3) Through the analysis of the rule set, this designed scenario outputs a 
number of standardized maneuvering decision operations: X1 (12/ 
50) and X3 (23/50), X1 (U1D1U2T2) maneuvering decision knowl
edge can be interpreted and conceptualized into linguistic term or 
operation order: {Keep the propeller-ahead and keep the current 
rudder angle-port}, the same, X3 (U1D1U2D2): {Keep the propeller- 
ahead and keep the current rudder angle-starboard}, which is 
consistent with actual ship maneuvering experience. 

4) The specific factors and decision rule sets in a specific scenario ob
tained by the HDMDR model proposed in this paper can be used as an 
important reference for the intelligent ship human-like decision- 
making and can also be used to create a knowledge base of expert 
systems. It has a high reference value and practical value for the 
development of intelligent ship’s maneuvering algorithm. 

5.4. Performances assessment 

5.4.1. Applying rules for classification 
We use the maneuvering decision-making model proposed in this 

paper to identify the decision-making data to be identified in Table 8. 
We compare the recognition results with the actual ship maneuvering 
decisions and use the accuracy of the recognition to verify the validity of 
the model. The standardized maneuvering decision-making data are 
identified in Table 8, using classification rules 33, 29, and 37, and the 
recognition result is X13, X13, X13, X9, X9, and X15. This result is 
consistent with actual maneuvering decisions and demonstrates high 
reasoning efficiency. 

The test data set was evaluated and validated using the generated 
decision tree model. There were 135531 samples participating in the 
test, accounting for 20% of the overall data set. To assess the accuracy of 
the HDMDR model, the data in the test data set is used for prediction, 
and the degree of agreement between the test results and the actual 
situation is compared. The accuracy of the proposed module (ACC) 
could be calculated as: 

ACC ¼
TN þ TP

TN þ TPþ FN þ FP
(12)  

where TN is true negatives, TP is true positives, FN is false negatives, and 
FP is true positives. 

The classification accuracy of our proposed HDMDR model using 
C4.5 decision trees based on the test data set can reach more than 81.6%. 

Fig. 6. The decision tree structure.  

Table 7 
Maneuvering decision classification rule set.  

No. Maneuvering decision classification rule set 

1 IF Y2¼a AND Y3¼a AND Y6¼a THEN X¼X1 
2 IF Y2¼a AND Y3¼a AND Y6¼b AND Y5¼b THEN X¼X1 
3 IF Y2¼a AND Y3¼a AND Y6¼b AND Y5¼c AND Y1¼c AND Y4¼a THEN X¼X1 
4 IF Y2¼a AND Y3¼a AND Y6¼c AND Y5¼c THEN X¼X1 
5 IF Y2¼a AND Y3¼a AND Y6¼c AND Y5¼b AND Y1¼c AND Y4¼a THEN X¼X1 
6 IF Y2¼a AND Y3¼b AND Y6¼a AND Y5¼b/c AND Y1¼c AND Y4¼a THEN 

X¼X3 
7 IF Y2¼a AND Y3¼b AND Y6¼b/c AND Y1¼c AND Y4¼a AND Y5¼c THEN 

X¼X3 
8 IF Y2¼a AND Y3¼c AND Y6¼a AND Y1¼c AND Y4¼a AND Y5¼c THEN X¼X1 
9 IF Y2¼a AND Y3¼c AND Y6¼b AND Y5¼b THEN X¼X1 
10 IF Y2¼a AND Y3¼c AND Y6¼b AND Y5¼c AND Y1¼c AND Y4¼a THEN X¼X13 
11 IF Y2¼a AND Y3¼c AND Y6¼c THEN X¼X1 
12 IF Y2¼b AND Y3¼a AND Y5¼b AND Y6¼a AND Y1¼c AND Y4¼a THEN X¼X9 
13 IF Y2¼b AND Y3¼a AND Y5¼b AND Y6¼b AND Y1¼c AND Y4¼a THEN X¼X3 
14 IF Y2¼b AND Y3¼a AND Y5¼b AND Y6¼c THEN X¼X1 
15 IF Y2¼b AND Y3¼a AND Y5¼c AND Y6¼a AND Y1¼c AND Y4¼a THEN X¼X9 
16 IF Y2¼b AND Y3¼a AND Y5¼c AND Y6¼b AND Y1¼c AND Y4¼a THEN X¼X7 
17 IF Y2¼b AND Y3¼a AND Y5¼c AND Y6¼c AND Y1¼c AND Y4¼a THEN X¼X11 
18 IF Y2¼b AND Y3¼b AND Y5¼b AND Y6¼a AND Y1¼c AND Y4¼a THEN X¼X3 
19 IF Y2¼b AND Y3¼b AND Y5¼b AND Y6¼b AND Y1¼a/b THEN X¼X3 
20 IF Y2¼b AND Y3¼b AND Y5¼b/c AND Y6¼b AND Y1¼c AND Y4¼a THEN 

X¼X13 
21 IF Y2¼b AND Y3¼b AND Y5¼b AND Y6¼c AND Y1¼c AND Y4¼a THEN X¼X3 
22 IF Y2¼b AND Y3¼b AND Y5¼c AND Y6¼a AND Y1¼b THEN X¼X1 
23 IF Y2¼b AND Y3¼b AND Y5¼c AND Y6¼a/c AND Y1¼c AND Y4¼a THEN 

X¼X7 
24 IF Y2¼b AND Y3¼b AND Y5¼c AND Y6¼b AND Y1¼a AND Y4¼a THEN X¼X3 
25 IF Y2¼b AND Y3¼b AND Y5¼c AND Y6¼b AND Y1¼b THEN X¼X11 
26 IF Y2¼b AND Y3¼c THEN X¼X1 
27 IF Y2¼c AND Y1¼a THEN X¼X3 
28 IF Y2¼c AND Y1¼b AND Y5¼b AND Y6¼a/c AND Y3¼a AND Y4¼a THEN 

X¼X3 
29 IF Y2¼c AND Y1¼b AND Y5¼b AND Y6¼b AND Y3¼a AND Y4¼a THEN X¼X9 
30 IF Y2¼c AND Y1¼b AND Y5¼c AND Y3¼a AND Y6¼a THEN X¼X3 
31 IF Y2¼c AND Y1¼b AND Y5¼c AND Y3¼a AND Y6¼b/c AND Y4¼a THEN 

X¼X3 
32 IF Y2¼c AND Y1¼b AND Y5¼c AND Y3¼b AND Y6¼a AND Y4¼a THEN X¼X3 
33 IF Y2¼c AND Y1¼b/c AND Y5¼c AND Y3¼b AND Y6¼b AND Y4¼a THEN 

X¼X13 
34 IF Y2¼c AND Y1¼b AND Y5¼c AND Y3¼b AND Y6¼c AND Y4¼a THEN X¼X3 
35 IF Y2¼c AND Y1¼c AND Y5¼b AND Y3¼a AND Y4¼a THEN X¼X3 
36 IF Y2¼c AND Y1¼c AND Y5¼c AND Y3¼a AND Y6¼a AND Y4¼a THEN X¼X9 
37 IF Y2¼c AND Y1¼c AND Y5¼c AND Y3¼a AND Y6¼b AND Y4¼a THEN X¼X15 
38 IF Y2¼c AND Y1¼c AND Y5¼c AND Y3¼a AND Y6¼c AND Y4¼a THEN X¼X3 
39 IF Y2¼c AND Y1¼c AND Y5¼c AND Y3¼b AND Y6¼a AND Y4¼a THEN X¼X2 
40 IF Y2¼c AND Y1¼c AND Y5¼c AND Y3¼b AND Y6¼c AND Y4¼a THEN X¼X1  
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5.4.2. Comparative analysis 
To further validate the effectiveness of the HDMDR model, in this 

paper, we compare the performance of the proposed C4.5 decision tree 
algorithm with two classic classification algorithms: k-Nearest Neigh
bours (k-NN) and Support Vector Machine (SVM). In our case, we use the 
Radial Basis Function (RBF) to conduct the SVM and k ¼ 1 in the K-NN. 
Besides, we use classification accuracy, shown as Eq. (12), to measure 
the proposed C4.5 algorithm. In addition, in this paper, the code for the 
basic versions of k-NN and SVM classifiers is adopted from the Waikato 
Environment for Knowledge Analysis (WEKA), which is open source 
data mining software (Hall et al., 2009). WEKA is a comprehensive 
software that implements many state-of-the-art machine learning and 
data mining algorithms. 

We conduct a ten-fold cross-validation (10-CV) experiment using the 
data from training set. 10-CV breaks data into ten sets equally, then 
trains the classifier on nine data sets and uses it to test the remaining one 
data set. Repeating ten times like this, and finally taking an average 
accuracy, thus to compare the performance of the proposed C4.5 deci
sion tree algorithm with k-NN and SVM. The performance of different 
classifier algorithms on our data set is shown in Table 9 and Fig. 7. 
According to the classification accuracy results, the proposed method 
can achieve the highest accuracy among these three algorithms. 

6. Conclusions 

With the development of the economy, the continuous advancement 
of technology, and the continuous increase of labor costs, it has become 
an urgent trend to realize intelligent maneuvering of ships. The purpose 
of this research is to recognize the automatic acquisition and represen
tation of the OOW’s decision-making knowledge and to provide a basis 
and reference for the development of decision-making algorithms for 
intelligent ships. 

In this paper, a intelligent ship Human-like Decision-making 
Maneuvering Decision Recognition (HDMDR) model and a novel stan
dardization principle of maneuvering decision-making factors are 

proposed for the learning of human-like decision-making mechanisms of 
intelligent ships. By establishing an autonomous learning method of 
maneuvering decision-making, the processes of autonomous learning 
OOWs’ maneuvering decision-making characteristics are studied. In 
addition, it is unique and very valuable to obtain experimental data 
operated by an experienced OOW on the full-task handling simulation 
platform in a certain time and space. To validate the performance and 
effectiveness of our proposed model, the assessment of applying rules for 
classification and the comparative analysis with the k-NN and SVM are 
compared. According to the results, the classification accuracy of our 
proposed HDMDR model can reach more than 81.6%. In addition, the 
proposed method is superior to the representative classification 
algorithms. 

This study provides a new perspective and methodology for the 
development of intelligent ship maneuvering decision-making technol
ogy in theory and practice, promotes the application and spreading of 
intelligent ships under specific scenarios, and is conducive to the 
development of water transportation in the direction of safety, sustain
ability and economy. 

Nevertheless, the HDMDR model still has some shortcomings which 
need to be improved in further research.  

1) The proposed method/model is a data-driven method. We need more 
data to further train the machine learning model and improve 
recognition accuracy. Besides, the feedback loop to inform the effect 
of this model still need to be optimized.  

2) The application scenarios of the proposed model still need to be 
enriched, and more environmental influencing factors which may 
affect piloting decisions need to be added as well considering the 
specific situation, thus to make the proposed model more widely 
applicable. 

3) The standardization principle of maneuvering decision-making at
tributes need to be further detailed according to the actual naviga
tion situation, and more suitable for the real-world ship-handing 

Table 8 
Maneuvering decision data to be identified and its standardization.  

Maneuvering Decision Data to Be Identified 

No. X (Actual Maneuvering Decision) Y1 Y2 Y3 Y4 Y5 Y6 

Rudders Order Telegraphs Order 

1 � 35.0000 16.3207 315.3000 1.0802 � 65.1521 � 1.2042 121.7873 9.5846 
2 � 35.0000 18.9076 315.3000 1.0802 � 62.0192 � 0.9383 120.5850 9.5745 
3 � 35.0000 20.0000 315.3000 1.0802 � 60.9662 � 0.8662 119.8690 9.5714 
4 � 10.0000 20.0000 315.3000 1.0802 � 59.8343 � 0.6030 117.7910 9.5586 
5 � 5.0000 20.0000 316.5000 1.0802 � 59.7830 � 0.4652 116.2045 9.5551 
6 10.0000 5.3301 317.2000 1.0802 � 59.5314 0.0373 118.1805 9.5551  

Standardized Maneuvering Decision Data to Be Identified 

No. X Y1 Y2 Y3 Y4 Y5 Y6 

Rudders Order Telegraphs Order a b c a b c a b c a b c a b c a b c 

1 � 35.0000 16.3207 0 1 0 0 0 1 0 1 0 1 0 0 0 0 1 0 1 0 
2 � 35.0000 18.9076 0 1 0 0 0 1 0 1 0 1 0 0 0 0 1 0 1 0 
3 � 35.0000 20.0000 0 1 0 0 0 1 0 1 0 1 0 0 0 0 1 0 1 0 
4 � 10.0000 20.0000 0 1 0 0 0 1 1 0 0 1 0 0 0 1 0 0 1 0 
5 � 5.0000 20.0000 0 1 0 0 0 1 1 0 0 1 0 0 0 1 0 0 1 0 
6 10.0000 5.3301 0 0 1 0 0 1 1 0 0 1 0 0 0 0 1 0 1 0  

Table 9 
The performance of different classifier algorithms with 10-fold cross-validation.  

Classifier Algorithms Accuracy (performance measures in %) 

F 1 F2 F3 F4 F5 F 6 F7 F 8 F 9 F 10 Average 

k-NN 75.36 73.79 73.81 74.62 72.87 76.86 72.37 75.72 74.89 75.66 74.60 
SVM 70.26 72.62 75.43 73.62 77.79 72.83 70.29 71.63 74.13 73.09 73.17 
Proposed method 80.33 79.88 83.42 76.59 79.16 83.76 79.78 82.56 81.86 78.43 80.58  
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orders (specifically the combined rudder orders and telegraph or
ders), thus further increasing the applicability of the model. 

In the subsequent research, we will study the classification of the 
influencing factors, the fuzzy processing of data sets, the detailed 
connection of our model with human behavior and their performance in 
specific navigational scenarios, the application of multi-navigation 
scenarios, etc. Besides, we will further collect the relevant data from 
the tugs and add the data to the model analysis, to further optimize our 
proposed algorithm. 
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