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Abstract

Over the years, care givers in nursing homes have seen their workload gradually increase. With no end of
this trend in sight, the need for smart support systems increases. Especially systems which decrease the
time spent on menial tasks are valued highly, because this frees more time for high quality and personal
care.

To achieve this, Momo Medical is expanding on its nurse support system. This is a network of integrated
smart solutions aiming at supporting care givers in nursing homes to provide better, faster and more personal
care. The backbone of this nurse support system consists of the BedSenses, sensors which are placed under
mattresses of each resident and can measure a variety of things.

This thesis describes the process of designing and creating a localization algorithm for this nurse support
system. This algorithm can find residents by tracking the panic buttons they wear, so that in case of an emer-
gency or whenever a care giver wants to know where a resident is located, they do not need to undertake a
time consuming search in order to find them. These panic buttons send out an alive signal once every minute
as well as a signal whenever the button is pressed. These signals are received by any nearby BedSenses. The
algorithm looks at the signal strength with which each BedSense receives these signals and uses this to per-
form localization.
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1
Introduction

Momo Medical[1], a startup company, is developing new technologies so that care givers can work more
efficiently in the nursing homes and therefore are able to give more specific and better care to their residents.
At the moment, their main product is a sensorplate, the BedSense, which is placed underneath the mattress
of a bed and together with the corresponding app gives a better insight into the behavior and the needs of the
resident while he/she is sleeping. It notifies the care giver when a resident is about to get out of bed and gives
insight in the state of a residents wellbeing. Also they designed a smart incontinence pad which lets the care
giver know if the incontinence pad is full and needs to be changes. They are always looking for more ways to
help the care givers work more efficiently.

1.1. Problem Definition
Currently most nursing homes are leaving the concept of closed departments behind. In this old system,
residents were locked up in their own department and were not allowed to move freely through the nursing
home. In this case, locked up literally means locking the door between the different departments so that
the residents were not able to leave their own department. As this is ethically questionable, more and more
nursing homes are switching to a system with open departments in which the residents are allowed to move
more freely between different departments. However, this introduces new challenges, such as residents being
able to wander to places they are not allowed to go and that whenever a resident needs help, they are a much
more difficult to find.

One problem regarding the change to open departments, is that some but not all residents are allowed to go
to other departments. Psychogeriatric residents (with severe dementia) are not allowed to leave their depart-
ment while the other residents are allowed to leave. To solve this, a system needs to be designed that is able to
recognize which resident is trying to pass through a door to another department. Depending on whether or
not they are allowed to go there, the system locks or unlocks the door. This system can also notify care givers
when someone, who is not allowed, is trying to pass a door.

In most of these nursing homes, residents wear a panic button, which they can press if they need help. Press-
ing this button will send a signal to the care giver that the resident needs attention. However, as the resident is
no longer confined to a single department, it can be very challenging to find the resident in need. This search
can take up a lot of the care givers’ valuable time. To prevent this loss of time and also decrease the workload
of the care givers, the panic button needs to be localized as this often is the only trackable device the residents
always have with them. By localizing the panic button, care givers will now be able to find the resident faster
when they are in need of help.

1.2. Project Overview
For this project, two systems will be designed for Momo Medical. The first system is an access control system
which will allow or not allow a resident access to other parts of a nursing home. In addition, the system setup
can be used for other goals, e.g. notifying a care giver when a resident is trying to exit his/her room at night.
This system is completely described in its corresponding thesis [2].

1



2 1. Introduction

The second system is a real-time localization system which will determine the location of a resident inside a
nursing home. The care givers can either request the location of the resident, or, whenever the panic button is
pressed, find the location within the message indicating that the resident needs help. In addition, this system
could be set up in a way that it can also localize utilities such as lifting aids and keys. Furthermore, the system
can also be used by care givers whenever they are in need of help themselves.

A schematic overview of the complete project is shown in Figure 1.1. In this figure, a clear division can be
seen between the two different part of the project, which will work together on the localization of a resident.
These two parts, which are different systems, will not communicate directly, but only via the Momo Medical
database. For both systems, data is obtained from the database. For the localization system, this data will also
contain the output of the access control system. The messages for the care givers will come from the server
and will be visible in the Momo Medical app.

Figure 1.1: Schematic project overview.

1.3. Thesis Synopsis
This thesis concerns the localization subgroup that tackles the localization of the panic button within the
walls of a nursing home. Chapter 2 states the program of requirements, gives some optional goals and defines
the scope limitations. Chapter 3 explains the choices made during the design of the prototype using the
theory and gives a detailed explanation of the measurements done. Chapter 4 gives an explanation of the
prototype, its functions and the choices made during programming. Furthermore, Chapter 5 discusses the
results and Chapter 6 concludes the thesis. Finally, Chapter 7 gives recommendations and input for future
works.
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1.4. State-of-the-art Analysis
Within the field of localization, a lot of research is already been done and a lot of different methods can be
used for indoor localization specifically as well. Other methods like GPS (Global Positioning System) cannot
be used due to severe degradation together with indoor environments as the satellite or cellular signals are
interrupted. Partial localization techniques like Time of Flight (ToF), Time Difference of Arrival (TDoA), Angle
of Arrival (AoA) and Received Signal Strength Index (RSSI) are methods which are much better suited for
indoor localization. [3]

Three different algorithms can be used based on these different techniques. Trilateration is based on the
distance measurement between three receivers and a transmitter. This is an algorithm mostly used for ToF,
TDoA and RSSI. Multilateration is similar to trilateration only are more receivers used. The last algorithm is
triangulation which is mostly used in combination with AoA. Here trigonometry laws of sine and cosine are
used to calculate the distance between the transmitters and the receiver.[4]

1.4.1. Localization Techniques
ToF
Both the methods of ToF and TDoA are based on the time it takes for a signal to travel through the medium
from transmitter to receiver. ToF exploits this signal propagation time to calculate the distance between re-
ceiver and transmitter. Then using the same method for at least two other receivers, the location of the trans-
mitter can be determined via trilateration, or multilateration if more than three receivers are used. However
ToF requires a strict synchronization between both transmitter and receiver because the exact time of trans-
mission and receiving must be known. [5]

TDoA
TDoA can be derived by the ToF difference between multiple signals transmitted synchronously [6]. To do this
clock synchronization is needed between the different receivers [5]. By comparing the hyperbolas, the result
of the difference between the ToF signals, a location can be determined via tri- or multilateration [7].

A drawback for both the methods ToF and TDoA is that the signals which are send, are traveling through air
at a speed close to the speed of light. If the receiver has a clock rate in the order of hundreds of MHz or less, it
would not be near fast enough to determine the time of arrival with a high accuracy as the flight time is only
a fraction of the clock period.

AoA
The method of AoA makes use of antenna arrays to determine the angle at which the signal is received [5].
An advantage of AoA is that it is a range-free method of localization. It does however, uses two or more fast-
scanning multi-beam antennas. The intersection of the beams marks an area in which the object should be
located [8, 9]. A drawback of Angle of Arrival is that it can not be used without the correct antenna hardware,
as will be explained in Section 2.2.5.

RSSI
Lastly, RSSI is a widely used method for localization. This method uses the estimate of the signal energy of the
received signal to estimate the distance that the signal has traveled. To estimate this, a path loss exponent, n,
needs to be determined. The relation between the received power and the distance is given in Equation 1.1.
In this equation P̂R X (dBm) is the received signal power, PT X (dBm) is the transmitted power and d̂ (m) is the
estimate of the distance. PL0 (dBm) is the path loss of the reference distance d0 (m). [10, 11, 12, 13]

P̂R X = PT X −10nlog10

( d̂

d0

)
−PL0 (1.1)

The method of RSSI is widely used for localization because, in theory, the accuracy is independent of the
signal bandwidth. This allows for the use of popular, already existing networks like a WiFi network. However
this method also has a lot of drawbacks. One of those is that the path loss exponent n, is unknown and can
only be roughly estimated [10]. Also this exponent differs a lot depending on the environment and what is
in it. For example walls and floors have a big influence on the received signal strength but modeling it in the
past loss exponent has proven to be difficult and inaccurate [14, 15].
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1.4.2. Methods to Improve Localization Techniques
Chapter 4 introduces several algorithms that process RSSI data from BedSenses and data from the ACS. These
algorithms can be improved by adding already existing calculations and methods. Several, widely used meth-
ods are proposed in this section.

Fingerprinting
The method of fingerprinting is based on comparing the received signal strength (RSS) of all receivers in the
space (fingerprint) covered by the real-time localization system (RTLS), with a radio map that was built be-
forehand. This radio map is a collection of RSS values of all receivers for each location within this space.
Creating such a radio map involves manually visiting all locations within the space covered by the RTLS and
annotating the measured RSS values at all receivers, in this case BedSenses. This process is described as col-
lecting fingerprints. For localizing a transmitter, in this case a panic button, the measured fingerprint by a
received signal from the transmitter (online phase) is compared to the radio map (offline phase) for similar-
ities. Then, after several computational steps on the comparisons, the result represents the most probable
location.

However, this method has some problems. Amongst those is the time and human resources needed to build
such a radio map as each location needs to be visited separately. This increases if there is a lack of accurate
indoor maps that either need to be made, or, in their absence, decrease the RTLS accuracy. Furthermore,
effects by reflections and shadowing and dynamic layout changes of the environment (e.g. people moving
around) highly influence the RSS by receivers. These later two problems causes mismatches in fingerprints
over time. [16]

Kalman Filter
The Kalman filter is used to estimate states based on linear dynamic systems. It gives an estimate of the
variable xk , with a state-space system, at a certain time instance k. Here, this estimated variable is the location
of a panic button. The Kalman filter takes an initial estimation, x0 and a series of fresh measurements zi for
time instance k, and combines it with the description of the system in the form of matrices in the state-space
model. The system includes Gaussian distributed white noise as parameters for possible error. Process model
1.2 shows the evolution of the state from time k −1 to k.

kk = F xk−1 +Buk−1 +wk−1 (1.2)

Here, F is the state transition matrix with xk−1 being the previous state vector, B is the control-input matrix
with uk−1 being the control vector, and wk−1 is the process noise vector assumed to be zero-mean Gaussian
distributed. [17]

The relationship between the state and the measurement at time instance k is described by the measurement
model, Equation 1.3.

zk = Hxk +vk (1.3)

Here, zk is the measurement vector, H is the measurement matrix, and v is measurement noise vector as-
sumed to be zero-mean Gaussian distributed. [17]

The Kalman filter method consists out of two stages: prediction and update. In the prediction stage the pre-
vious, updated state is renewed according to the way the filter estimates the state evolution. This estimation
accounts for error by adding error covariance to the prediction of xk,pr ed during the renewing. Next, in the
update stage, the measurement residual yk is calculated. This is the difference between the true measure-
ment zk and the estimated measurement - being the product of the prediction and the measurement matrix,
Hxk,pr ed . The sum of the predicted value and the updated value are multiplied by the Kalman gain Kk , to
form the final estimation of the variable xk,upd by the Kalman filter. [17, 18]



2
Program of Requirements

In order to properly assess the success of the final product, it is imperative to determine a clear set of require-
ments regarding this final product. These objectives are based on the problem definition in Section 1.1. First,
the requirements for the full system (both ACS and localization) are given in Section 2.1. Second, the require-
ments of the localization system are given in Section 2.2. The functional and non-functional requirements
listed in Sections 2.2.1 and 2.2.2 respectively. These requirements are then explained in Section 2.2.3. In Sec-
tion 2.2.4 some optional goals/uses of the project are described. Finally, as is important in every project, is a
clear description on what is not going to be done. This is therefore explained in Section 2.2.5.

2.1. Full System Requirements
As the localization system will work together with the access control system, the combination of both needs
to meet several requirements.

• The possible radio frequency (RF) interference between the two systems must not affect the workings
of each system.

• The system must output the location of the residents at least once a minute.

• The system must not need extensive calibration to work, meaning it has to be plug and play.

• The system must not need adjustments whilst in use.

• The system has to work in indoor environments that can differ in layout and materials used.

2.2. Localization System Requirements
The localization system itself must also meet several requirements of its own.

2.2.1. Functional Requirements
Functional requirements describe the things the final product has to be able to do and how the final product
has to work.

• The location of a resident, represented by a room number, must be present in the message saying that
the resident is in need of help.

• Information of the location of a resident must be presented in textual format.

• The location of a resident must be available when requested in the Momo Medical app.

• The algorithm must be able to communicate in real-time with the Momo Medical database.

• The localization system must work together with the access control system via the Momo Medical
database.

5



6 2. Program of Requirements

• The location of the resident must be three dimensional, that is, it must be able to operate across multi-
ple floors in a building.

2.2.2. Non-functional Requirements
Non-functional requirements state how well the final product must work and which attributes it must have.

• The accuracy of the system is defined such that the maximum error on localizing a resident is allowed
to vary by one room around the actual room.

• The accuracy mentioned at the point above, must be met at least 90 % of the time.

• The location of the resident will be stored under a room number.

2.2.3. Requirement Explanation
The main use of the localization algorithm is to be able to notify care givers about the location of a resident
whenever his/her alarm button is pressed. In other words, when a resident needs help, they can press the
button and the caregiver will receive an alert notification which does not only contain a message about which
resident needs help (current situation), but also where in the building that resident is at that moment. This
information needs to be presented in a textual manner, that is, the care giver will receive a message like:
’Resident of room X needs help and is located in the west wing of the building on the second floor in room
A3’. To a care giver, this format is much more useful than giving a more precise location in a more abstract
format, such as relative coordinates within a building. This means that the precise location is not as relevant
as long as a care giver can find a resident in need. To this end, an accuracy of 5 meters will suffice. On the
other hand, it is imperative that at least the room the resident is in is correctly signified 90 percent of the time
with a maximum error of one room next to the actual location of the resident.

Not only when a resident is in need of help, but also when a care giver needs to know where the resident is, the
location of the resident must be available. This could for example be in case of a fire and all residents need to
be located quickly. In a case like this, the care giver must be able to request the location of a resident.

In order to accomplish this, the final algorithm needs to be able to communicate with the Momo Medical
database, where for each ping the RSSI values from the BedSenses are stored. Also, location data from the
access control system is stored in this database and needs to be accessed in order to make the localization
more accurate. It needs to access the database in real-time and after that it needs to forward its generated
location-text message back to the database. From there the message is linked to the Momo Medical app so
the location can be accessed by care givers. The database is accessed via the Momo Medical server. Commu-
nication to this server happens via internet provided by network signals in a building, to which the BedSenses
are connected either directly or via their integrated mesh-network functionality.

As nursing homes often have multiple floors, the location of the resident must be three dimensional in order
to have a precise location.

Due to privacy reasons, the location of the residents can only be stored under a room number and not under
the name of the resident.

2.2.4. Optional Goals
It is not hard to imagine other uses for the developed localization algorithm. One of those is the localization
of various medical instruments, such as lifting aids. If such instruments are ’tagged’ with a beacon similar to
those in the existing buttons, it is not difficult to see that the localization algorithm can localize those as well.
This would allow care givers to more efficiently access these instruments by consulting the Momo Medical
app that such an instrument is needed, after which the app returns the location of the nearest requested
instrument.

It could also be used by care givers themselves in order to call for help when they cannot provide the care
themselves. If a resident is in need of help and it is to much work for just one care giver, another care giver
could be called by simply pressing the panic button and help will come. This system would also be of use
when a resident becomes aggressive and the care giver is not able to handle the resident alone.

Even though the system must not need extensive calibration to work from the start, it can be equipped with a
self-improvement function where for example the BedSense measures a signal received from a button located
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in the same room as it at night in order to calibrate itself to improve reliability during the day.

2.2.5. Scope Limitations
It is not within the scope of this project to alter the existing hardware in order to improve localization or
other capabilities. This will result in easy integration within the existing system and facilitates a smooth
implementation on location where the BedSenses are already in use.

It might however turn out that other hardware would result in better localization, which can then be recom-
mended to Momo Medical for future iterations of the existing hardware.



3
Design Process

During the design of the prototype, some important design decisions were made. These decisions are de-
scribed in the following chapter. In Section 3.1, the decisions based on the provided devices and systems are
explained. Furthermore, in Section 3.2 the theoretical behaviour of RSSI is explained as well as the decisions
made based on the actual behaviour. Moreover, in Section 3.3, a common layout of a nursing home is de-
scribed and Section 3.4 describes a measurement done in a nursing home. Finally, Section 3.5 the two RTLS
improvement techniques (mentioned in 1.4.2) are evaluated.

3.1. Provided Devices and Systems
For this project Momo Medical provides the transmitter device, an off the shelf panic button [19, 20] spe-
cially designed for nursing homes, and a set of BedSenses [1] (being the main product of Momo Medical).
The 868 MHz antenna module is the most important feature within this project. This antenna is already set
up to communicate in a certain manner with the panic button used. Furthermore, the majority of the nurs-
ing homes where Momo Medical is active have these BedSenses placed under each residents’ bed, capable
of communicating with the panic button. However, there are some important characteristics to these two
devices, the panic button and the BedSense, most of which pose limits.

The BedSenses are not highly time synchronised - not to the order of several nanoseconds. Time of Arrival
(ToA) and Time Difference of Arrival (TDoA) are therefore unsuitable as proper synchronisation is needed to
obtain accurate results using these methods. A solution to this is Time of Flight (ToF) in which three-step
communication takes place: initially, the panic button sends a signal A to a BedSense starting the process.
Upon receiving this signal, the BedSense sends a return signal B back to the panic button, which in turn
responds by sending a third signal C back to the BedSense. The BedSense measures the time between the
moments it sends signal B receives signal C. This measured duration consists of the ToF of signal B, the pro-
cessing time of the button (which is assumed to be known), and the ToF of signal C. From this, the one-way
ToF can be deduced which can be used to determine the distance between the panic button and the BedSense
using the signal’s expected average speed within the building.

Unfortunately, the 868 MHz transceiver in the BedSense has relatively low clock frequency. The implemented
S2-LP transceiver [21] has an internal clock frequency of 50 MHz which converts to a clock period of 20
nanoseconds. RF waves, traveling at approximately speed-of-light, cover a distance of about six meters dur-
ing this 20 ns clock period. This places a serious challenge on the accuracy of the system in case a ToF or TDoA
based algorithm is implemented. The theoretical maximum achievable accuracy of these systems could work
well for this project. However, the clock frequency of the chip should ideally be higher if fluctuations by the
signal due to environmental effects are accounted for. And even if the clock frequency was high enough, the
required communication protocols are not available on the existing hardware, and creation of those exceeds
the project’s scope.

For Angle of Arrival (AoA) based localization, specially designed antennas with high angular dependence are
used to measure the incoming angle of the signal. Theoretically, with just two such antennas localization
could already be performed. However, the existing BedSenses are not equipped with such antennas. There-
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fore, this method is suggested as a possible future implementation, but will not be considered a solution
within the scope of this project.

Currently, the comprehensive software which runs on the BedSense system provides and stores a measure-
ment of the RSSI for each occurring communication between the button and BedSense. As mentioned in
Chapter 1, RSSI can be used for localization and will be further explored in the upcoming sections. Initially,
stored RSSI data can be fetched via the development interface used by Momo Medical called Grafana. In later
stages, a simple additional algorithm can provide real-time reading of these measurements. Before RSSI is
adopted as a starting point for the localization of the panic button, the theoretical and actual RSSI behaviour
between the button and BedSense is numerically and graphically characterized.

3.2. RSSI, a Parameter for Localization
3.2.1. Theoretical Behaviour
Generally, through a lossless medium the power received by an antenna with effective area Ar (m2) as a frac-
tion of the transmitted power by an antenna with effective area At (m2), is described by the Friis Equation
[22].

Pr

Pt
= Ar At

λ2R2 (3.1)

Here λ (m) and R (m) are, respectively, the electromagnetic (EM) wavelength and the far-field line-of-sight
(LoS) distance between the antennas respectively. From Equation 3.1 the path loss (PL) model for ideal cir-
cumstances is derived, Equation 3.2,

P (R) = P0 −10n log10

(
R

R0

)
[dBm] (3.2)

with P0 (dBm) being the power received at the reference distance R0 (m), and n being the path loss exponent.
The later one is to be estimated for the type of environment [23]. For this application, inside a nursing home,
the path loss exponent is initially taken to be 2.4. This value was measured inside an office for a system
operating at 900 mHz by [24].

Meanwhile, the RSS is quite dynamic in itself. Many factors have an effect on RSS over time, such as noise,
interference, and shadowing, but also the changes in device types, orientations, and environmental factors
(e.g., temperature, humidity, open/closed door, and indoor population) [25, 26]. Even if the experimental
setup is not changed, the RSS may vary significantly. The variation of RSSI can be through a Gaussian dis-
tributed random variable [27]. However, there are two practical phenomena that affect the ideal PL model:
the multi-path phenomenon, also referred to as reflections, and the shadowing or large-scale fading phe-
nomenon [18].

Reflections
Whenever a signal is transmitted in a non perfect environment, reflections of the signal can occur due to
discontinuities in the transmission medium. These reflections in wireless transmission in an indoor envi-
ronment can be caused by walls, floors, people and other objects. As the signal is transmitted, it travels in all
directions and at some point it may hit an object which causes a reflection. The signal power hitting the object
is called the incident power. With every reflection, some of the power travels through the object (transmitted
power), while the rest is reflected in another direction (reflected power). The transmitted power is important
for the influence of walls and floors on the received signal strength which will be discussed in 3.2.1. For now,
the reflected power is of interest.

The reflected power (Sr
av (W/m2)), see Equation 3.3, depends on the reflection coefficient of the surface (Γ)

and the incident power (Si
av (W/m2))[28]. As the reflection coefficient is a value between -1 and 1, the re-

flected power will always be lower than or equal to the incident power.

Sr
av =−|Γ|2Si

av (3.3)

The reflection coefficient depends heavily on the surface of the object hit by the signal. For a rough surface,
the reflections are more scattered, which will result in more loss. The roughness of a surface is described by
the Rayleigh criterion, see Equation 3.4. In this equation, hc (m) is the critical height which is the maximum
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Figure 3.1: Reflection from smooth and rough surfaces.[32]

distance between the superficial heights of a given material[29] and λ (m) is the wavelength of the incident
wave. Last, θi is the angle of incidence. It states that if the height of surface (minimum to maximum protu-
berance) is larger than the critical height, the surface is considered rough [30, 31]. Due to the roughness of the
surface, the reflected power is not just reflected in the direction of the reflection angle, but in other directions
as well (diffuse reflection), see Figure 3.1. Subsequently, the scattering loss of the surface is given by Equation
3.5, which accounts for the scattering of the energy in different directions [30].

hc = λ

8cosθi
(3.4)

ρs = exp
[
−8

(πσhcosθi

λ

)2]
(3.5)

The received power Px (W) along the LoS path from the transmitter is given by Lambert’s Equation (Equation
3.6). Here, nT X is the index providing information about the directionality of the emitter. A low index results
in a wide emission lobe whereas a high index results in a small emission lobe. Further, dT X (m) is the LoS
distance from the emitter to the receiver and Ax (m2) is the effective area of power. Moreover,ω is the angle at
which the radiated intensity from the emitter is evaluated with respect to the axial angle of the emitter and γ
is the same principle only then opposite, so the angle of the receiver with respect to axial angle of the receiver.
Finally, PT X (W) is the emitted power. [33]

Px = nT X +1

2π

1

d 2
T X

cosnT X (ω)Ax cos(γ)PT X (3.6)

Practically, the problem of reflections is solved by measuring and averaging the RSSI for some interval T
[18].

Pr = 1

T

∫ T

0
|Pr (t )|2d t (3.7)

The RSSI measurement by the S2-LP transceiver on the BedSense has a similar built-in functionality. The
total message that is sent by the panic button each time it transmits a signal starts with a SYNC message. The
SYNC message enables the S2-LP to synchronise itself to the rate at which the data, contained in the total
message, is received. By default, the RSSI is registered at the end of the SYNC, after it has been measured for
the duration of the SYNC message.[21]
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Shadowing
Successive to a signal’s reflection on objects there is the transmission through this object that causes the
effect of shadowing. It means that objects (partially) block the transmission medium for the signal. The
signal shows a significantly deviating attenuation when passing these object in comparison to the larger part
of its transmission medium. This effect is accounted for by adding noise to the ideal path loss model, as in
Equation 3.8,

P (R) = P0 −10n log10

(
R

R0

)
+Xg [dBm] (3.8)

According to [34] the measured noise Xg (dBm) is left-skewed distributed. However, in this project it is as-
sumed that Xg is rather normally or Gaussian distributed (log-normally distributed in Watt) [13, 18, 27]:

PdBm(R) ∼N (PdBm(R),σ2) (3.9)

Where PdBm(R) is the average received power and σ2 is the variance of Xg , defined as:

µ= 1

N

N∑
n=1

Pn (3.10)

σ= 1

N −1

N∑
n=1

(Pn −µ)2 (3.11)

Where Pn (dBm) is the nth sample from a set of N static measurements at a static location. [27]

3.2.2. Actual Behaviour
The BedSense is equipped with the ANTX150P116B08683 PCB type antenna B. In the BedSense the antenna
is mounted lying flat on its back. In Figure 3.2 the top of the antenna is visible, this side is thus facing toward
the sky when build into a BedSense. According to the manufacturer, the radiation pattern has a peak offset of
about -7.5 dBi. This peak offset affects signals coming in from above a BedSense.

Figure 3.2: ANTX150P116B08683 PCB type antenna, top point of view. Note. Adapted from [35]

The actual RSSI behaviour of the complete BedSense is investigated by means of taking measurements and
creating polarization mismatch graphs. Figure 3.3 shows measured data of the RSSI at various distances.
These measurements were conducted outside in an empty field, to gain an understanding of this relationship
with minimal interference from obstacles or reflections on walls and the ground. The red line is a trend-
line based on the theoretical approach mentioned above. With an average deviation of 3.23 dBm, the results
correspond rather well, which could make this a viable metric in the final localization algorithm. In prac-
tice, however, this metric might be challenging to use effectively due to the presence of obstacles and walls
distorting this behaviour heavily and irregularly.
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Figure 3.3: The measured RSSI at various distances.

Another important metric to study is the polarization mismatch between the panic button and the BedSense.
In order to do this, they were both mounted at a distance of 150 cm away from each other. Then both were
rotated step-wise whilst the other remained still. The results are displayed in Figure 3.4. Both the button
and the BedSense itself show very little radial variance in their respective RSSI values. Therefore, from here
on, the effect of radial polarization mismatch on the received RSSI is considered to be negligible. To further
strengthen this assumption, the radial sensitivity of the antenna is shown in the datasheet as being roughly
invariant B.

(a) The radial polarization mismatch of the button in the
horizontal plane.

(b) The radial polarization mismatch of the button in the
vertical plane.

(c) The radial polarization mismatch of the BedSense in the
horizontal plane.

(d) The radial polarization mismatch of the BedSense in the
vertical plane.

Figure 3.4: Radial polarization mismatch mapping of both the button and the BedSense
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3.3. Layout of a Nursing Home
In general, within nursing homes there are two types of patients: psychogeriatric and somatic. Psychogeri-
atric residents (severe dementia) live mostly in closed departments. Somatic residents (physical problems
or slight dementia) live in open departments. These two groups are therefore mostly separated from one
another. Also, within a nursing home, the psychogeriatric departments are often smaller than the somatic
departments. Some nursing homes are wide and long, while others, such as Laurens Blijdorp [36], are rather
tall with a lot of floors. In the case of Laurens Blijdorp the psychogeriatric department distributed over the
second until the fourth floor.

In most buildings the basic room layout is symmetric, meaning that neighbouring rooms are equal in size
and structure. Not only is the layout and size of the rooms itself important, the materials that walls and floors
are made of, and their thickness is important, especially concerning RSSI manners.

A schematic overview of the eight floor of Laurens Blijdorps is shown in Figure 3.5. As most of the measure-
ments were performed at this location, this map serves as a foundation for some critical design decisions for
the localization system:

• All rooms are equal in size (a regular phenomena as there is no specific reason to grand residents a
different room size then others).

• The rooms are precisely located in front of, and next to each other. This allows for discretization of the
map, explained in section 4.3.1.

• For the greater part there is a single hallway with rooms on either sides of it, or on only one side.

• Floors are identical in layout.

Figure 3.5: Schematic map of the eight floor of nursing home Laurens in Blijdorp. The stars indicate locations of BedSenses

3.4. RSSI in a Nursing Home
The signal propagation within nursing homes as explained above, has been measured and interpreted. This
behaviour might differ from the expected behaviour by Section 3.2 as the combination of environmental
factors described in that section can lead to cumulative effects.

The measurements have been taken in a nursing home: the Blijdorp location from Laurens, a nursing homes
organization in the Netherlands. Laurens Blijdorp has ten floors: the ground and first floors are open areas,
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the second, third, and fourth floors contain psychogeriatric departments, and the remaining floors contain
somatic departments. The measurements where taken on the sixth, eighth, ninth, and tenth floor, mainly on
the hallway, but also inside several rooms, both in the middle of the room and closer to the bed where the Bed-
Sense is situated. The nursing home was operational during the all measurements, meaning residents and
care takers were present in the building. Furthermore, the panic button used for testing was programmed to
keep transmitting "alive signals" with one second intervals. These alive signals were received by all BedSenses
within reach in the nursing home; each room has one BedSense located under each mattress. Also, the panic
button has a 60 cm cord attached at its top for it to be used as a necklace. For reporting, two laptops were
used.

The test team existed of three people: Person one moved the panic button in a systematic and methodi-
cal manner. Persons two and three manually determined button’s actual location for all timestamps and
recorded this. In order to not heavily influence the transmitted signal from the button, it was attached with
its cord on the one end of a one-meter long, metal pole. The other end of the pole was held by the person
moving the button. As the button transmitted, the RSSI measurements by each BedSense are automatically
stored in a database to which the BedSenses are connected by the internet. After the measurement session,
these data were collected via Grafana, an online tool used to access and process all data contained in the
database. Within the project, the measurement data represents a panic button’s discrete movement through
the building which is encoded in RSSI values measured by the BedSenses.

A number of the visited locations are selected to be studied more thoroughly, so more samples are taken there
by holding the button steady in place for a longer duration of 20 to 30 seconds. The locations of interest, see
the stars in Figure 3.6a, are: in the middle of two opposite rooms’ doors (orange), in between two of these
points (yellow), in the middle a room (purple), within a radius of one meter to the bed (red), and in the
middle of the stairwell (black).

(a) (b)

Figure 3.6:
3.6a: Locations of interest during the measurements.

3.6b: Output of the ratings_on_map algorithm for a single transmitted signal from room 917 (yellow 2).

Raw RSSI measurements were processed with the ratings_on_map algorithm (Appendix A.6) that maps all
received RSSI’s on a floor plan of the building and rates them from high to low. An example of this is shown in
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Figure 3.6b. Here, The output of the ratings_on_map algorithm is shown for a single transmitted signal from
within room 917, located at the yellow 2, in the form of a three dimensional array. From top to bottom the
matrices represent floors six to ten. Zero entries in the matrix represent hallways, 611 to 1020 are rooms with
the corresponding room numbers, and 1 to 40 are RSSI ratings ordered from strongest to weakest. They have
taken the place of the room numbers that used to be present there. For each measurement, such a map has
been generated. Several results have been extracted from these maps:

• It is clear that not all BedSenses received the signals. Some seem to have been offline.

• BedSenses that did receive the signal often significantly differ from each other in RSS.

• There seems to be a trend in the ratings of rooms (with a BedSense) around and neighbouring the room
of the actual location.

• Azimuth orientation of the person carrying the button significantly influences the RSSI measured by
BedSenses located behind the person.

• When standing static at a location for an interval of time, each BedSense’s RSSI measurements fluctuate
significantly during this interval, up to 10 dBm with a roughly calculated variance of about 5 dBm.

While the difference in received RSS is largely the effect of environmental factors, it is also due to differences
or offsets between the devices themselves: an effect that was confirmed by looking at measurements taken
close to the bed, where environmental factors are minimized, for several rooms and comparing those. The
trend in ratings of neighbours of a room X has manually been interpreted, see Table 3.1. To elaborate, take X
as room 814 in Figure 3.5, Table 3.2 shows what neighbours of 814 belong to what group. The BedSenses in the
remaining rooms are often out of the signal’s range, show only low RSSI measurements, and are influenced
too much by noise to be properly rated in this manner.

Table 3.1: General rating of neighbours by RSSI

Group Type

0 Present room (X)

1 Direct neighbours of X sideways (D),
Neighbours directly above and below (B)

2 Direct neighbours of B sideways (BD),
Neighbours two floors directly above and below (BB)

3 Second direct neighbours of X and direct neighbours of D sideways (S),
Neighbours of X sideways with hallway in between (I),
Neighbours of B sideways with hallway in between (BI)

4 Neighbours of B sideways and diagonally with hallway in between (direct neighbours of BI) (BY)

Table 3.2: Example of the observed trend in Table 3.1 applied to room 814

Type Rooms

X 814
D 813, 815
B 714, 914
BD 713, 715, 913, 915
BB 614, 1014
S 812
I 816, 817, 818
BI 717, 917
BY 716, 718, 916, 918
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3.5. Evaluation of RTLS Improvement Techniques
Section 1.4.2 proposes two widely used techniques that can be used to improve localization: fingerprinting,
and the Kalman filter. This section gives an evaluation of the extent to which they can be used.

3.5.1. Fingerprinting
A solution for the described, main problems using the fingerprinting method is implementing a trainable
algorithm using machine learning. However, training, as described in section 2, is out of this project’s scope
and undesirable for the eventual application, since installation of the system should be as non invasive as
possible. On top of that, creating an accurate floor plan and fingerprint of the building is incredibly time
consuming and labour intensive.

From the application point of view, nursing homes are not suited to create a clean, accurate radio map as
these places are highly dynamic. On one hand, they are influenced by residents, care takers and other persons
that move around full time. On the other hand, receivers, BedSenses, are located under the mattress of each
bed. This results in short term effects from people getting in and out of bed, people moving around the bed,
and nursing beds being adjustable in position. It also results in long term effects due to alterations in the
room layout and changes in location of the bed itself.

Though the method of fingerprinting is not considered an option during this project, a similar, but smaller
scale solution is implemented that also uses a radio map, in Section 4.4.1 called the neighbour model. This
solution avoids machine learning and its radio map is created differently and more easily.

3.5.2. Kalman Filter
The Kalman filter estimates a variable for the current time k - here that variable represents the location -
by using measurements of that time instance k and a predicted value for the variable based on its previous
values. This technique requires insight into various parameters and evaluations of the situation at hand. For
example, prediction of the state requires insight into the speed of an elderly person when he or she is moving:
walking through a hallway, passing by one room after the other, the elderly person should for an interval of
time be localized at the nearest room before the system predicts the location being the successive room. This
has everything to do with the elderly person’s speed.

The greatest value of using the Kalman filter comes from looking at previous states of the panic button’s
location. However, because of its accuracy, the main system that is constructed in this project as described
in Section 4.3, will not make much use of a Kalman filter. Localization by the system is accurate up to one
room. Even though that room could as big as 20 by 20 meters, a person walking in or around that room will
each time be localized at that same location, namely, inside that room. However, in later stages of the system,
where the localization should also work for hallways, the Kalman filter could add more value as the accuracy
of the overall system increases.
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Prototype and Validation

This chapter describes the prototype of the localization system and the choices made during programming.
First the data pre-processing stage is described in Section 4.1. Secondly, the multilateration algorithm is
described in Section 4.2. Furthermore, in Section 4.3 the main localization algorithm is explained. Moreover,
the two reliability checks are described in 4.4. Finally, the results of the localization algorithm are discussed
in Section 4.5.

4.1. Data Pre-processing
The pre-processing of data is a vital part of any program working with any data. When data is obtained, it
is seldom exactly in a shape or form which can immediately be used. Pre-processing data is done for many
different reasons, such as for removing imperfect or applying dimensionality reduction, etc. [37]. In the case
of the data used for localization, pre-processing is mostly done because of imperfect data, meaning it has
a lot of missing values and noise that need to be reduced. The data consists of two datasets, the RSSI data
received by the BedSenses and the data received by the Access Control System (ACS) (whether a panic button
is seen by a sensor placed at a door or not). The python code used for pre-processing the data can be found
in Appendix A.2.2.

4.1.1. BedSense Data
The data received by the BedSenses contains at what time, which BedSense has received a signal from a panic
button. A panic button sends a signal to all BedSenses close enough to receive it. This signal is sent every
minute (an alive signal to indicate that the battery is not dead) and whenever the panic button is pressed.
However, the BedSenses do not all receive this signal at the same time, which results in a lot of lines of data
where only a few BedSenses receive a signal. This means that each dataset contains a lot of missing values.
Therefore, the data can be grouped per minute. This however, introduces the problem that sometimes mul-
tiple signals are received by the same BedSense within the same minute and sometimes there is a minute in
which the same BedSense does not receive anything from a certain panic button.

Chosen is to group the data for every 60 seconds. This seems similar to grouping per minute, however group-
ing per minute means from , for example, 12:00:00 till 12:01:00. With grouping per 60 seconds is meant for
example grouping the data from 12:00:25 till 12:01:25. For the grouping to happen, at least 60 seconds should
have passed since the first received signal. In this way all the BedSenses close enough to the panic button will
have received the signal within those 60 seconds.

As for the problem of receiving multiple signals within the same 60 seconds, the maximum value is taken
from all the received signals by one BedSense. The reason for doing this is mainly because of reflections. As
is described in Section 3.2.1, power is lost due to reflections. Therefore, the maximum value received by a
BedSense will be the most reliable as this received signal will most likely have the least amount of reflections.
Another reason for taking the maximum value is the automatic gain control (AGC) of the receiver on the
BedSense. The AGC can decrease the RSSI but cannot increase it, which further emphasises that a high RSSI
is more reliable than a low RSSI.

17
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Sometimes it is also possible for some of the BedSenses to receive a very low RSSI (lower than -90 dBm).
It is assumed that every signal below -90 dBm is influenced by so much noise that it is no longer reliable.
Therefore, all received signals of which the RSSI value is lower than -90 dBm are not taken into account during
localization.

4.1.2. Access Control System Data
The ACS outputs data in a similar way to the data coming from the BedSenses [2]. In other words, the data
coming from ACS states at what time, which door has detected a specific panic button. Only the range of
detection of the ACS is significantly shorter that that of a BedSense. Therefore, the data is also grouped in
a similar way. It is not useful, for every time the panic button is detected by an ACS, to give a location as
this can result in giving a location multiple times within a second. Therefore, as the panic button should
be localized once every minute, this data is also grouped by 60 seconds, for the same reasons described in
Section 4.1.1.

If a panic button is detected multiple times by multiple doors, this needs to be filtered out. As the data is
grouped by 60 seconds, it is no longer useful to look at data from the beginning of the time frame. If the
button is detected in the beginning of the time frame on a certain floor, but at the end of the time frame the
same button is detected at another floor, the first detection is no longer useful. Therefore, only the last time a
panic button is detected near a door within the time frame is used for localization.

4.2. Multilateration
A transmitter can be localized as a point in space represented by its spatial coordinates. In trilateration, a
series of receivers with known locations and measured distances from the transmitter can be used to calculate
the location of the transmitter relative to these receivers. Multilateration is the extension of this system, which
is noting more then systematically combining two or more trilaterations from four or more receivers. For this
project, the transmitter is a panic button and the receivers are the BedSenses. Trilateration is performed with
three receivers and one transmitter. Around each of these receivers, a sphere is created with the distance
between that receiver and the transmitter as its radius. If the three distances are error free, they all intersect
at exactly one point: the location of the transmitter. However, due to fluctuations and effects on the signal
propagation, the measured distances are only approximations of the real distances. That introduces another
two possibilities for the three spheres: they have no common point of intersection, or they have two points of
intersection, see Figure 4.1. In three dimensional space this requires a fourth receiver to reduce the problem
to a one intersection.

Figure 4.1: Three spheres with two points of common intersecting. Note. Adapted from [38]

In the first version of the multilateration algorithm only a single floor is considered. It is assumed that all
receivers and the transmitter are located at the same height, meaning the z-component is abandoned. The
problem reduces to two dimensional space, and the spheres around the receivers become circles instead of
spheres; their common point of intersection gives a two dimensional location. The three types of common
intersection are now as follows: ideally there is a single point point of common intersection, but in reality
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there will often either be no such point or the intersection covers an area, see Figure 4.2,

(a) Ideal situation (b) Reality

Figure 4.2: Intersection of three circles

Each of these circles is defined by the general equation for a circle, Equation 4.1,

r 2 = (x −xc )2 + (y − yc )2 (4.1)

With (xc , yc ) the centre of the circle. The location of the transmitter is analytically found by formulating the
three circles and solving for (x, y). Using [39] the problem is simplified by setting the centre of one circle at
the origin and the centre of another circle on the x-axis, as in Figure 4.2a. This gives the following formulas
for the three circles:

r 2
1 = x2 + y2 (4.2)

r 2
2 = (x −x2)2 + y2 (4.3)

r 2
3 = (x −x3)2 + (y − y3)2 (4.4)

Where ri is the distance between receiver i and the transmitter located at (xt , yt ). Combining Equation 4.2
until 4.4 and solving for x and y in case of a single intersection gives,

xt =
r 2

1 − r 2
2 +x2

2

2x2
(4.5)

yt =
r 2

1 − r 2
3 +x2

3 + y2
3 − (2x3x)

2y3
(4.6)

In reality, where often no single point of intersection exists, [13] proposes to take the minimum value of an
error function as the location of the transmitter.

A simple algorithm to perform multilateration on the incoming BedSense RSSI data has been made and tested
(Appendix A.7). This algorithm uses the path loss model of Equation 3.2 to translate the RSSI into distance
used as radius for each circle. Multiple collected data sets were given as an input to the algorithm, the result
of one of them is discussed in more detail.

A particular measurement was taken at the eight floor of Laurens Blijdorp. A map of this floor including
dimensions and relative locations of BedSenses is shown in Figure 3.5. For this measurement, the algorithm
predicts the locations of the panic button as if it draws random values from a range of locations that lie within
a radius of 500 meters around the building, meaning it does not give any valuable results at all. The reason
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for this erroneous localization is that the RSSI values are highly effected by reflection- and shadowing effects,
as described in Section 3.2, which makes them fluctuate a lot.

To increase the accuracy of the model several improvements are suggested and some of those also tested.
Firstly, in an ideal situation, receivers located far from a transmitter measure a lower RSSI value then receivers
located closer to the transmitter. This follows from the path loss model, which also shows that the decrease
in RSSI close to the transmitter is steeper then the decrease at larger distance, see Figure 3.3. Thus, at larger
distances the normal distributed fluctuation error that is contained in the RSSI creates a stronger error in
calculated distance. Ignoring measured RSSI values below a certain threshold then lowers the effect of high
distance fluctuations. To test, this threshold has been set to −75dB ; a compromise between ignoring too
many measurements and including too many erroneous values. This has significantly improved the results.
As expected, the locations vary within a smaller radius of 80 meters around the building. In addition to that
the localization has became more stable as the determined locations lie relatively closer to each other. This
later conclusion defines that the distance related error is indeed higher at larger distances as ignoring those
larger distances leads to relatively more stable results.

Some other possible improvements. Calibrating the BedSenses to get more equal measurements of RSSI as
there is an offset between BedSenses in the measured RSSI due to device differences. Taking into considera-
tion the effects of reflections and shadowing in translating the RSSI into distance. Lastly, applying the Kalman
filter on the RSSI values or locations to get a more stable localization. However, as described by Section 2.2.2
reporting happens through textual format telling the end-user in which room the person is. The accuracy
is therefor a maximum of one room. Furthermore, the RSSIs from the BedSenses show a reoccurring trend,
to be explained in Section 4.3. By the combination of those two it was chosen to approach localization in a
different manner.

4.3. Nearest BedSense Algorithm
An easy way to determine an approximate location of the panic button, is to simply evaluate all the RSSI val-
ues received by all different BedSenses within the given time frame and take the largest RSSI value recorded.
Then it is reasonable to assume that the panic button is either in or close to the room containing this Bed-
Sense. This is close to what the Nearest BedSense Algorithm (NBSA) does. The localization of the panic button
by the NBSA is performed in two parts, the prediction of the floor and the prediction of the room in a two di-
mensional space. Both of these are done separately as it is more accurate to determine the room than it is to
determine the correct floor just by looking at the RSSI. Therefore, first the floor is determined and after the
room is determined. The python code used for localization can be found in Appendix A.1.

4.3.1. Map Implementation
To be able to perform these checks, a simplification of the map of a nursing home is required which can
be transformed into a simple array. This is useful, because in Python, working with arrays becomes fairly
straightforward. In Figure 4.3 a simplified version, a .xlsx (spreadsheet) file, of the map in Figure 3.5 is shown.
In this simplification each room is simply reduced to one square in a grid and indicated by its room number.
Squares containing zeroes represent the hallways in between rooms. Squares containing staircases will be
represented by a −0.5 and squares containing lifts will be filled with a −1.5. These values were taken negative
to make the easily differentiable from room numbers, which are taken to never be negative. They are not
integer numbers, because those are used by the History Check, described in Subsection 4.4.2, to indicate
distance values. This schematic simplification can then simply be translated into an array. This is done
in map_matrix (Appendix A.3.1) by creating an array with the same dimensions as this schematic map and
placing the values within the squares into the corresponding floor plan array entries. Any empty entries in
Figure 4.3 will be filled up with a N aN (not a number) value in the floor plan array.



4.3. Nearest BedSense Algorithm 21

Figure 4.3: Simplification of the map from Figure 3.5.

For each floor of a nursing home, such an array is created. These arrays are then stacked on top of each other
to create a three dimensional array, creating a simplified three dimensional blueprint of the entire nursing
home. Since every BedSense is coupled to a room number, this blueprint can be used to make predictions
about the interrelationships of various measured data points. These predictions are subsequently used in the
check functions described below in order to improve the error-rate of the overall system.

4.3.2. Prediction of the Floor
To determine the floor on which the panic button is, the data coming from the ACS is analysed. If the panic
button is detected by an ACS, it is confirmed that the panic button is at the same floor as the ACS that has
detected the panic button. This can be assumed as the ACS can only detect the panic button if it is within a
radius of one meter to the ACS’s antenna. As the ACS is used for the determination of the location, the floor
can only be determined when the panic button passed an ACS. If this is not the case, the determined location
of the panic button stays stuck on the floor where the ACS has last seen the panic button. Therefore, it is
required that at every stairwell and every elevator an ACS is placed.

As a security measure if the ACS fails, the floor can also be predicted by taking the mean of the floors on which
the five BedSenses are located which have received the strongest signal. This is done because the floors of the
rooms in which the BedSenses receive the strongest signal are assumed to even out to the floor on which the
panic button is. This can be said as a nursing home can have many floors or just a couple and in both cases
taking the mean of the floors of the five strongest receivers will result in the correctly predicted floor. If the
panic button is on one of the middle floors of a nursing home with many floors, both floors above and below
will receive a strong signal and the mean would result in the actual floor. However, this concept also works if
the button is on the top floor of a nursing home, as the actual floor will always receive some of the stronger
signals, which average out so that the actual floor equals the determined floor.

4.3.3. Prediction of the Room
To predict the room in which the panic button is, first, the five rooms in which the BedSenses receive the
strongest signal are determined. Then the three dimensional location of these five rooms is determined using
the map explained in Section 4.3.1. Using these locations and the predicted floor, the rooms of the strongest
receivers are projected onto the two dimensional map of the predicted floor. This means that the same rooms
are picked as the strongest receivers only sometimes on a different floor (the predicted floor), see Figures 4.4a
and 4.4b. This is done because it was found during testing, see Section 3.4, that in multiple nursing homes
the rooms directly above and below the actual room receive the signal stronger than the neighbours sideways
of the room.

After having selected the most likely room locations on the predicted floor, the next step is to predict a specific
room. This is done with a number of reliability checks described in Section 4.4. The first check performed is
the history check (Section 4.4.2), which determines the probability of moving from the previously determined
location to the currently predicted location. If the outcome of the history check states that is is likely (> 50%)
for the person to have moved to one of the possible rooms, the rooms meeting this criteria are all saved.
For the rooms that are saved, the second reliability check is performed, the neighbour comparison (Section
4.4.1). The neighbour comparison compares the RSSI values of the neighbours of the predicted room to each
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(a) (b)

Figure 4.4: 4.4a: The ranking of the RSSI (where 1 is the highest and 40 the lowest, room numbers are omitted) from a single
transmission. 0 represents the hallway and 611 up to 1020 are the room numbers.4.4b: The five strongest receivers mirrored to the

predicted floor.

other to determine if they are as expected. Using these comparisons, the room that has the highest neighbour
comparison result will be the determined room.

Furthermore, there are some contingencies in place to prevent the algorithm from failing for example when
none of the most likely locations score higher than 50% on the history check. If this is the case, a multi-
plication will be performed between the outcomes of the history check and the neighbour check, so that a
negative history check can balance with a positive neighbour check and therefore give a more accurate pre-
diction. From the results of the multiplication, the highest value is taken and the room belonging to that
measurement becomes the predicted room.

At last, the location of the panic button is outputted in a statement. This statement consists of the determined
room and the time at which this determination was made. Chosen is to have the statement look like: "The
panic button is closest to room [room number], at time [date and time]. This is done because to any care giver
working in a nursing home, the layout is known. However, if it would be unclear on which floor the rooms are
located, the statement can easily be adjusted to contain the room as well.

To clarify an overview of the total system is shown in Figure 4.5. Here, it can be seen how the NBSA fetches
the required data, processes that data, finds the floor and room, and uses the reliability checks to estimate
the location of the panic button, and report that back to the database.
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Figure 4.5: Overview of the working principle of the total localization system

4.4. Reliability Checks
In this section, the reliability checks mentioned in Section 4.3 are explained in more detail. This also includes
various assumptions and validations performed to ensure a smooth and proper functioning of these checks
in tandem with the main algorithm.

4.4.1. Neighbour Comparison
The trend of certain neighbour groups often receiving the transmitted signal different than others, as de-
scribed in Section 3.4, can be used to check the likelihood of being at a certain location, of all rooms selected
by the NBSA (Section 4.3). The neighbour comparison (Appendix A.4) checks a model of neighbours on the
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simple condition that members of one neighbour group are expected to receive the signal weaker or stronger
than the other neighbour group.

Neighbour model
To this manner the neighbour model has been created and extended several times based on better insight
on this trend between neighbour groups, see Figure 4.6. Here, around the room for which the map is made,
room X, all possible neighbours, of the types introduced in Table 3.1, have been mapped. Orientation is
preserved in this setup, that is, the nursing home map, in the format of an array, explained in Section 4.3.1,
shares its orientation with each room’s neighbour model. Thus, looking at room 814 as in Section 3.4, the
rooms 816, 817, and 818 are on the top of 814 in the map of Figure 3.5. In the neighbour model of room 814
that orientation is preserved by placing room 816 until 818 on the top of room X (room 814). For convenience,
in the algorithm, these five matrices in Figure 4.6 are translated to a single, 70 elements long array according
to five layout matrices in Figure 4.7. In this translation the number of a neighbour in the layout matrices
corresponds to the element’s index in the array. Index 69 - because in Python coding indexes run from 0 to 69
for a 70 long array - represents the floor number.

From the floor plan array it extracts from a building’s map, the map_matrix algorithm (Appendix A.3.1) creates
for each room a neighbour model array. During Real-Time Localizing (RTL) the NBSA, Section 4.3, substitutes
each RSSI for the neighbour’s room number in the floor plan array of a considered room X.

Figure 4.6: Neighbour grouping per floor. The blocks represent floors, from left to right: two floors above room X, one floor above X,
floor of X, floor below X, and two floors below X.

Figure 4.7: Layout of neighbours and their mapping to the neighbour array.

Neighbour model check
By deployment of a neighbour model after the RSSI’s are substituted by the NBSA, the neighbour compari-
son algorithm checks all the to-be-compared neighbour pairs. As explained, there is an expectation about
whether a neighbour receives the signal stronger, about as strong, or weaker than certain other neighbours.
Specifically, to-be-compared neighbour pairs should meet two requirements: firstly, their location separation



4.4. Reliability Checks 25

has to be limited, and secondly, the expectations of RSSI’s - the groups in Table 3.1 to which they belong - dif-
fers enough. The maximum separation follows from the phenomenon that BedSenses in the rooms behind
the person measure a lower RSSI then rooms to its front. Neighbours on each side of a person (front and back)
measure RSSI with differences up to 19 dBm on average. Therefore, it is chosen to compare neighbours, of
the neighbour model in Figures 4.6 and 4.7, only to neighbours lying on a maximum separation of 90 degrees
around room X. Vertically this is implemented by not comparing rooms from higher floors than room X to
rooms from lower floors than room X. For example, room 2 should be compared to rooms 1, 3, 4, 8, 9, 19-21,
11-13, 0, etc., but, by the second requirement, as rooms 3, 4, 8, 9, and 0 are not different (enough) in expected
RSS, these are not compared to room 2 after all. This way the differences due to the effect of the person’s
body between rooms lying further separated then 90 degrees do cause wrongly false comparisons. Within
this 90 degrees separation these differences tend to be less significant and disappear in the RSSI fluctuation
effects.

With respect to these two requirements, all to-be-compared neighbour pairs are linked in a square table in
which a 0 indicates that the corresponding neighbour pair is to-be-compared. This table is shown in Ap-
pendix A.4.4. Two separate functions, comparison_dictionary and comparison_weights (Appendix A.4.2 and
A.4.3) arrange a lookup table (named "dictionary" in Python) according to this table. This dictionary defines
for each neighbour in the neighbour model, what are the to-be-compared neighbours supplemented with
appropriate weights for the comparisons, explained further in Section 4.4.1.

If an RSSI check of two to-be-compared neighbours is as expected, the appropriate weight is summed to a
general variable that keeps track of the check’s score. If the RSSI check is different than expected, the ap-
propriate weight is subtracted from the general variable. Finally, the score is normalized by division of the
general variable by the maximum achievable score for this neighbour model’s neighbour comparison. The
normalized score is a number between -1 and 1. A score of -1 means the RSSI-containing neighbour model is
totally against the expectation, and a score of 1 means it is totally in agreement with the expectation.

Neighbour model check weights
Each to-be-compared neighbour pair has two neighbours from a different group in Table 3.1. These groups
have been formed by interpretation of a trend, and can physically be explained by looking at the transmission
medium. The main influence on the signal propagation that leads to this grouping, is the traveled distance
and the effect of reflections and shadowing, as explained in Section 3.2. Thus, if a comparison is performed
there is only limited certainty that the comparison, whether it is as expected or not, is actually valid when
possible errors in the RSSI are taken into account.

Figure 4.8: Theoretical distance-power curve of the RSSI with several highlighted points representing fictional neighbours of room X
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By Equation 3.8, the further the receiver is removed from the transmitter the weaker the signal becomes, see
Figure 4.8. Due to possible fluctuation, which are assumed to be Gaussian distributed, Section 3.2.1, the
RSSI could at each distance run lower or higher. Visually this would look like plotting a normal distribution
vertically on top of any point in the graph of Figure 4.8. The mean of this normal being the theoretical power
for that distance, and the standard deviation is found by measurements for that distance. On the other hand,
this means that for a certain measured RSSI there is an error in the corresponding distance that is a function
of this fluctuation.

Comparison is done between two neighbours, at different distances, that both received the signal and both
contain this fluctuation error. If the distance from the transmitter to both neighbours becomes larger, the two
normal distributed probability curves move closer to each other. To visualise this, for three combinations
of the fictional neighbours in Figure 4.8, the RSSI distribution is shown in Figure 4.9. Each distribution is
centered at the theoretical RSSI for that neighbour’s distance. The variance is taken as 6. This value was
calculated from measurements inside an office for a system operating at 900 mHz by [24]. Two effects are
visible: Firstly, the error probability curves of neighbours located closer to each other overlap more, compare
Figures 4.9a and 4.9b. Secondly, from two neighbour pairs that have their neighbours separated equally far,
the pair that is located the furthest from the transmitter has its error probability curves overlapping the most,
compare Figures 4.9c and 4.9b.

(a) Overlapping normal distributions for neighbours at 2 and 15 meter

(b) Overlapping normal distributions for neighbours at 10 and 15 meter

(c) Overlapping normal distributions for neighbours at 5 and 10 meter

Figure 4.9: Three examples of two overlapping normal distributions



4.4. Reliability Checks 27

As said, if a comparison is performed there is only a certain probability p that it is actually correct. For conve-
nience the neighbour located further away from the receiver is called the "far neighbour", and the neighbour
located closer to the receiver the "close neighbour". The conditional probability of the close neighbour re-
ceiving a lower RSSI, RSSIclose , than the far neighbour, given that the far neighbour receives a certain RSSI,
RSSI f ar , is,

P (RSSIclose < RSSI f ar | RSSI f ar ) = p f ar (x = RSSI f ar ) ·pclose (x < RSSI f ar ) (4.7)

Where p f ar (x = RSSI f ar ) is the probability density of the far neighbour (in red) receiving RSSI f ar (indicated
by the dashed line), and pclose (x < RSSI f ar ) is probability of the close neighbour (in blue) receiving any RSSI
smaller than RSSI f ar (indicated by the blue area), in Figure 4.9c.

The probability of a comparison being incorrect is equal to the sum of Equation 4.7 for all possible RSSI f ar ,

P (RSSIclose < RSSI f ar ) = ∑
P (RSSIclose < RSSI f ar | RSSI f ar )

= ∑
P f ar (x = RSSI f ar ) ·Pclose (x < RSSI f ar )

=
∫ ∞

−∞
f f ar (x) ·Fclose (x) d x

(4.8)

The probability of the comparison being incorrect is related to it being correct as,

p(cor r ect ) = 1−p(i ncor r ect ) (4.9)

For each neighbour group in Table 3.1 a predefined distance is given as an input for the comparison_weights
algorithm. These distances are known for, or measured in, the nursing home where the RTLS is installed. The
comparison_dictionary algorithm uses the comparison_weights algorithm for each neighbour pair it adds
to the lookup table (the dictionary) the acquire the appropriate comparison weight. This dictionary then is
used by neighbour_comparison to check what are the to-be-compared neighbours and what weights to use
for each of these comparisons in assigning a general score of a room’s neighbour model.

Testing the algorithm
For the purpose of discussing test results, a summary of the actual purpose of the neighbour comparison al-
gorithm: This algorithm checks for a room X to what extend the trend in RSSIs from neighbouring BedSenses
is present expressed in a score between -1 and 1. Room X is selected by the NBSA, and, in fact, that algorithm
selects multiple candidates for room X. Thus, NBSA uses the neighbour comparison algorithm to "choose"
between its selected candidates; according to the neighbour comparison algorithm the candidates with the
highest score has the largest probability of being the estimated location.

Two different tests have been performed, a theoretical test and a test with real data pre-processed by the
NBSA. The first test serves to confirm the working of the algorithm. Being mainly a debugging tool, this test
also gives insight into ratings that are given to different sort of setups. For example, if many neighbours
far away from room X show the expected behaviour and only a few close neighbours show unexpected be-
haviour, the score is heavily lowered by these closer rooms. Furthermore, if only neighbours that are not
to-be-compared to each other are set to have reported an RSSI the comparison returns score "0". This all is,
of course, the intended behaviour of the algorithm, showing it theoretically works.

In the second test, the NBSA selects, for every received ping by the panic button, two candidates. In partic-
ular these two rooms, as they reported the highest and the one but highest BedSense’s RSSI. The following
parameters are used to check the performance of the algorithm when working such real input data: Actual
location: Number of times the correct location is selected, when the correct location is one of the two se-
lected rooms; closest location: Number of times it selected the closest room, of the two selected rooms, to
the correct location; and total checks: Total number of checks performed. Hallways are not differentiated in
the algorithm, meaning that if the button is in the hallway, in front of two rooms, either of those rooms is
considered a correct location estimation. The results are shown in Table 4.1.

The "actual location" and the "closest location" parameters are considered equally strong in the validation
of the algorithm. This and the results in Table 4.1 lead to the overall accuracy of the algorithm for this data
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Table 4.1: Neighbour comparison test results

Parameter Value

Actual location 106
Closest location 84
Total checks 281

to be 67.6%. In 37.8% of the estimations the correct room was estimated, and in 29.9% of the estimations
the closest of the two select rooms was estimated. In the other cases the other of the two selected rooms was
estimated. Often this turned out to be the room located above or below the actual room. Relying on other
checks performed or used by the NBSA, this problem should be solved as only rooms from a one floor are
then selected as candidates. This solution is tested and further discussed in Section 4.5.

Another, possible improvement could be to collect measurements of multiple pings and average these to-
gether. Taking the highest two RSSIs from this set eliminates possible fluctuations in RSSI. These fluctuation
became visible when looking at the rating on map measurements in Section 3.4.

4.4.2. History Check
The second reliability check that is implemented looks at previous localization points and compares those
to the current predicted location. Firstly, the shortest distance between the current measured point and the
previous registered point is taken. This is then compared to the maximum distance that can theoretically
be traveled by a resident of a nursing home within this time frame. The main function of this check is to
enable the localization algorithm to more easily identify measurements where the strongest received signal
comes from a place on a different floor from the actual location of the panic button. This is relevant because
when this is the case, the resident would often have had to move at speeds which are practically impossible,
especially since residents are often of elderly age. The History Check can filter away these erroneous mea-
surements and improve the reliability of the NBSA. The code for the History Check was written in Python and
can be found in Appendix A.5.1.

Distance measurements
The history check algorithm needs two distances. These distances are measured in squares instead of me-
ters to make every different nursing home more general from the algorithms point of view. The first one is
the maximum distance that can be traveled by a nursing home resident within the time since the previous
measurement. This distance is acquired by simply multiplying the time that has passed since the last mea-
surement with the maximum velocity a nursing home resident can move. During experimental testing, an
average top speed of 0,4 m/s was found. This testing, however, was done very roughly and without observing
actual nursing home residents. The estimation of the average top speed of nursing home residents can there-
fore quite easily be improved upon by testing with actual residents. Within the nursing home where most of
our data was recorded, the estimated average top speed translates to 0,05 squares per second. This speed is
based on slow moving elderly, possibly using a walker. There exists however quite some variance in the differ-
ent top speeds even without taking into account that some residents have mobility scooters or wheelchairs
that can be pushed by other more mobile people and therefore drastically increasing their top speed. This
measurement may therefore be improved by implementing a variable, person dependent top speed or, at the
very least, increasing this top speed when the resident uses a mobility scooter or wheelchair.

The second distance value needed by the history check is the minimum travel distance between the two
measured points. This is calculated via a function in Python which uses the map implementation as described
in Section 4.3.1. The function is loosely based on Dijkstra’s algorithm [40] and finds the two measured points
on the map and checks whether or not they are located on the same floor. If this is the case, the distance
between those two points as shown in Figure 4.10 is measured. This is done by starting at the previously
measured point. From there, all horizontally and vertically adjacent hallway squares are filled with a minus
one value. This minus one represents that these squares are a distance of one square away from the start
point. A negative value is used in order to be able to differentiate between a distance value of one and a
room numbered ’1’. The next step is to fill out every hallway square horizontally and vertically adjacent to
the squares containing a minus one with a minus two and so on until the the currently measured point is
reached. When this is the case, the corresponding distance is made positive again and returned.
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Figure 4.10: The shortest route from room 817 to 819.

When the two compared location points are not located on the same floor, the algorithm looks for the closest
staircase which leads either up or down, depending on the position of the currently measured point in relation
to that of the previously measured point. It does this using the same methodology it uses when looking for
its end point on the same floor, but instead of looking for the target location, it looks for the closest viable
staircase. When the distance to this staircase is reached, the algorithm looks to the next floor whichever way
is required to get closer to the floor where the target location is and adds one square to the total distance. It
does this until it either reaches the right floor or until the top or bottom of the staircase has been reached. In
the first case, the history check algorithm measures the distance between the staircase and the target point.
When the staircase ends before the target floor has been reached, the algorithm looks for the next staircase,
measures the distance to it in the same way as before and adds it to the total distance. Then the algorithm
looks at the next floor as before. These steps are repeated until the target floor, which contains the currently
measured point, has been reached. It will then measure the distance to the currently measured point and add
it to the total distance to reach the full minimum traveled distance.

When lifts are present in the building, they are handled in the exact same way as stairs with the exception that
whenever a lift is present, it is always prioritized over the stairs, since most of the residents experience many
difficulties taking stairs or are simply unable to do so because of supporting equipment like wheelchairs or
walkers.

There are some assumptions and simplifications leading to an imperfect physical distance measurement.
These are listed below:

• When a lift is present, the algorithm will always prioritize it over taking the stairs.

• When looking for lifts or staircases, the algorithm always looks for the closest of each to the starting
point instead of the most efficient overall.

• using lifts or stairs adds the same distance tot the total distance as moving one square (namely one). In
practice, a different (higher) value would be more realistic.

• Stairs can only be traveled in the direction that goes to a floor which lies closer to the floor of the end
point. This may lead to problems when for example two wings are only connected by the ground floor,
meaning that in order to reach the other wing, one needs to go down and then back up again.

• Since the array representation of a nursing home is very simplified, the distances determined using it
will be less accurate.

The first of these simplifications is an assumption. Even though from observations in the nursing homes this
assumption seems to be valid, no proper testing was performed as of yet to validate it. The second third and
fourth listings are simplifications to make development easier. In later iterations of the product these may
yet be properly implemented. However, since these simplifications will most often lead to a longer measured
shortest path, they will make the filter wider instead of narrower. This means that no valid measurements are
lost and the ones that unjustly pass through the check, may still be ignored through other means. The last
simplification is an imperfection caused by the general map structure and can therefore not be solved in the
history check itself. To fully eliminate this, an entirely different map structure must be implemented. As this
is not practical for several reasons, it is suggested as a future work.
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Estimating likelihood
The next step in the history check is to determine the likelihood that a measured point is reliable or not
using the aforementioned maximum distance and the minimum traveled distance. Due to measurement
assumptions, imperfections in the model and measurement errors, these distance values are not precise.
Since all errors are assumed to be equally distributed, both curves were assigned a normal distribution. This
means that for both measurements a variance value needs to be determined.

First, the shortest distance calculation is evaluated. There are two contributors to the variance of this calcula-
tion. The first is the error due to simplification of the model and the second is the error in measurement. The
measurement error is easiest to determine by simply comparing the predicted locations at a number of times
to the actual location the test subject was at that time. Then the standard procedure is followed of averag-
ing the sum of squares to reach a variance of 1.3 squares. The variance due to simplification error is linearly
dependant on the shortest distance. The multiplication constant for an estimated set of deviations with an
average of 0.14 squares was empirically determined to be 0.09. Since these two error sources do not influence
each other, the corresponding variances can simply be added.

Secondly, the measured distance is evaluated. Here too, there exist two major contributors to the measure-
ment error, namely the simplification of the model and an inaccuracy in the estimation of the maximum
distance of the resident. The simplification of the model is handled the same way as in the shortest distance
calculation resulting in the same deviation. This velocity error is fairly straightforward to determine based on
the experiment performed in determining the max velocity. The average velocity deviation is then multiplied
with the estimated minimum distance to transform it into a distance deviation. Once again, these two errors
are independent, so their variances can simply be added to arrive at the overall variance. All variance metrics
are presented in Table 4.2. The resulting distributions both have nonzero values at negative distance values,
which at first glance seems to be a problem. These negative distance values can be interpreted as distances
in the negative direction. and be processed accordingly later on.

Table 4.2: Different error sources and their associated variances. d represents the relevant distance values and dmi n and dmax
represent the shortest route distance and the calculated maximum distance respectively. All distances are in squares

Error Variance [squar es2]

Velocity error 0.069 ·d 2

Simplification error 0.09 ·d
Measurement error 1.3

Shortest route 0.069 ·d 2
mi n +0.09 ·dmi n

Maximum distance 0.11 ·dmax +1.3

Using these two normal distributions, a reliability metric can be produced. The first step is determining how
likely it is that the true maximum distance has not yet been reached based on the measured maximum dis-
tance. This is then evaluated for the full range of possible input distance values. In order to accomplish
this, the Probability Density Function (PDF) of the maximum distance distribution is translated into its cor-
responding Cumulative Density Function (CDF) to get a figure representing the likelihood that the maximum
distance has been reached. Because the probability is needed that this is not the case, we subtract this curve
from one resulting in the blue line in figure 4.11. Since the purpose of this curve is to suppress distance mea-
surements that lie outside of the realistic maximum distance travelled, this can be thought of as a low pass
filter in the distance domain with the calculated maximum distance as the cut-off distance. This filter can
then be used to suppress the measured minimum distances which are unlikely to be valid. Since the distribu-
tion for the shortest travel distance also has nonzero values at negative distances, the filter is made symmetric
by mirroring it around the di st ance = 0 axis. This is because these negative values can be interpreted as dis-
tances in the opposite direction from the measured one. Therefore, the same theoretical maximum distance
holds in the negative direction.
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Figure 4.11: The two measures determining the confidence of the history Check

The next step is to determine the probability that the shortest distance traveled is lies within the maximum
distance limit. To achieve this, the CDF based filter figure is multiplied by the shortest distance normal dis-
tribution. Four examples for this are given in Figure 4.12. In these figures, four scenario’s are shown where
in each case the maximum distance is kept constant and the measured distance is varied. For a measured
distance that is much smaller then the calculated maximum distance, the figure is mostly unchanged. When
the measured distance increases approaching the the calculated maximum distance, the height of the curve
decreases. When the distance increases even further, the height of the curve eventually approaches zero. To
translate this curve into a probability that the the measured distance value is realistic, the red line, which is
the result of the multiplication of the shortest distance distribution and the maximum distance filter, is inte-
grated. A value close to one will be present at places where the Gaussian fits neatly underneath the curve, as
in Figure 4.12a, down to a value close to zero when the Gaussian lies mostly outside of the filter, as in Figure
4.12d.

Testing the algorithm
When testing on real pre-recorded data it became immediately clear that an maximum distance offset was
needed. The first reason for this, was that the maximum traveled distance should always be at least one
square, regardless of the time difference between measurements. This was for the simple reason that at high
update frequencies, the person was indicated to not be able to move at all, since the time difference would
not get high enough for the maximum distance to exceed one square at the given maximum velocity. Another
reason an maximum distance offset is needed is because of the fact that the model is not yet able to to differ-
entiate between hallway and rooms. Therefore when on the map in Figure 4.3 the panic button moves from
the hallway in between rooms 813 and 818 to the hallway between rooms 814 and 817, which is a distance
of one square, this would be registered as moving from room 813 to room 814, which is a distance of three
squares. Together these result in a maximum distance offset of three squares.

Furthermore, when testing, it became apparent that the history check outcome should not play a large role
in validating short distance shifts. Therefore it was chosen to only take the history check into account when
its result becomes lower than 50%, as discussed in Section 4.3.3. This is due to the fact that at small displace-
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(a) Measured distance « Maximum Distance. Phi st = 0.79 (b) Measured distance < Maximum Distance. Phi st = 0.65

(c) Measured distance = Maximum Distance. Phi st = 0.50 (d) Measured distance > Maximum Distance. Phi st = 0.30

Figure 4.12: History check probability distributions for varying Measured Distance values. Phi st represents the chance that the
measured distance value is possible using the history check

ment, the other localization steps play a much more vital role, since it is roughly as plausible for a resident to
have moved half is maximum distance as it is to have moved three quarters of it. This is partly already taken
into account in the outcome of the check, but because the deviation in the maximum speed of the elderly res-
idents is relatively high, the variance of the maximum distance is fairly large as well. This result in a steeper
slope in the maximum distance Figure 4.11 far away from the measured maximum distance than ideal. This
can be corrected by reducing the maximum distance variance as suggested in Section 4.4.2, but for now it was
decided to not take the actual outcome of the history check into account if its result is lower than 50%.

Once these adaptations were put in place, the history check performed as expected. The localized floor be-
comes much more consistent. Especially the two floor jumps are almost completely removed. especially far
away from a staircase or lift, the floor this effect is very noticeable. This of course also has the drawback that
once a wrong decision has been made, it echoes through in the following decisions. Since it was assumed
that all lifts and staircases are equipped with an ACS, the decision regarding the floor the panic button is on
is based fully on ACS data, since these are assumed to be more reliable. In field testing for the ACS has yet to
be performed however, so this assumption may turn out to be false. If this assumption turns out to be false
or no ACS is installed in a given nursing home, the history check will offer a good alternative. This means
that in the current situation, the history check only filters out large distance differences in a flat area. These
do, however, seldom occur within the used data, meaning that the validity of the history check in this case is
difficult to determine.

4.5. Validation of the Prototype
In Sections 4.4.1 and 4.4.2 the results of testing the NBSA with the individual reliability checks are discussed.
The results of testing the total system, the NBSA with both reliability checks implemented, is discussed in this
section.

The algorithm was tested with a dataset containing an hour of data recorded in nursing home Laurens in Bli-
jdorp. How this data was obtained is explained in Section 3.4. Several elements were used for this validation.
Two coupling files: one to see which BedSense is coupled to which room and another to see which ACS is
coupled to which floor. The map described in Section 4.3.1. Lastly, a test file containing data from the ACS as
the ACS is not yet in place. However, for testing purposes it was vital that this has also been tested.
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As the prototype is not able to distinguish between being in a room or being in the hallway in front of the
room, this error is not accounted for. For validating the results, only the room to which the panic button is
closest to will be checked. In Table 4.3 is stated when a room is seen as correct and when not in combination
with the actual location of the panic button. The decision of when a determined room is indeed the correct
location is based on the map of the nursing home (see Figure 3.5. When the panic button is in the hallway
between for example rooms 813 and 814, rooms 813, 818, 814 and 817 are all correct. But when the panic
button is in the hallway between 813 and 818, only 813 and 818 are correct. Whenever the panic button is
inside of a room, only the room where it is inside, is seen as a correct determination.

Table 4.3: The determined location in comparison to the actual location and whether the combination of both is seen as correct or
incorrect.

Determined location Actual location Correct or incorrect

811 811 in room Correct
811 819 in room Incorrect
811 811-819 hallway Correct
811 811-812 hallway Correct
819 819 in room Correct
819 811-819 hallway Correct
819 811-812 hallway Correct
812 812 in room Correct
812 811-812 hallway Correct
812 812-813 hallway Correct
812 813-814 hallway Incorrect
813 813 in room Correct
813 813-818 hallway Correct
813 813-814 hallway Correct
813 814-817 hallway Incorrect

In Table 4.4, the results of the NBSA can be found. As can be seen in this table, the NBSA often determines the
correct room on the correct floor (with an accuracy of 79.9%). This accuracy is determined by Equation 4.10.
The accuracy of the algorithm with a maximum error of one room on the correctly determined floor is 95.6%,
and is calculated by Equation 4.11.

Table 4.4: The error on the determined room and floor on the dataset from Section 3.4.

Error Amount

Correct room on correct floor 183
One room error on correct floor 35
Two rooms error on correct floor 3
Correct room on one floor above/below 3
Correct room on two floors above/below 5

Total outputs 229
Accuracy (correct room and correct floor) 79.9%
Accuracy (within one room error and correct floor) 95.6%

Accuracy = Correct room on correct floor

Total outputs
(4.10)

Accuracy = Correct room on correct floor+One room error on correct floor

Total outputs
(4.11)



5
Discussion

The primary goal of this project was to create an extension to the existing Momo Medical BedSense design,
that allows for location tracking on residents using panic buttons that are already deployed in the field. There-
fore, an algorithm has been designed that performs localization, using the RSSI of signals transmitted by these
panic buttons. The result is a free of additional hardware system which can attain this location. Chapter 2
presents the full system requirements and localization system requirements, both of these are discussed in
further detail.

Full system requirements
• No trouble is caused by RF interference due to both systems being operative in the same nursing home.

The solution to this requirement is stated in [2], because the solution to this problem is achieved by
them entirely.

• Both systems output their data at least once per minute. For the ACS, this data consists of the tags
registered by each door sensor. For the localization system, this data consists of locations of all panic
buttons that were within the system’s range.

• For the system to work in a nursing home, some installation has to be done. For example, the ACS
sensors need to be placed at every room door and all other passageways. Also, the layout of the rooms
needs to be translated to the map format used by the system. However, no (extensive) calibration is
needed. The ACS does not need any calibration at all and the localization system has been designed
in such a way that it works after giving it general layout parameters, such as the distances to different
types of neighbouring rooms.

• Both systems do not require any training. Once the door sensors are installed and the panic buttons
and tags are coupled to the right rooms, both systems works in an uninterrupted manner.

• Lastly, the ACS system works in every nursing home. The localization system works in the majority of
nursing homes. Due to possible abnormal building layouts, the current map features might not support
functionality of the reliability check algorithms.

Localization system requirements
The localization system requirements are divided into functional and non-functional requirements, as de-
scribed in Chapter 2,

• Every minute, or any other interval that is set between sending alive signals, the system creates a textual
message with a resident’s room number, the current location of that resident, and the current time.

• The location format is clear to any reader familiar with the layout of the nursing home.

• As the localization takes place every minute, it can be sent to the Momo Medical database and thus be
requested by the Momo Medical app.
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• To improve the accuracy of the algorithm, the localization system makes good use of the ACS’ data, that
it fetches from the Momo Medical database where the ACS stores its data.

• The localization system works three dimensional, thus across multiple floors.

Regarding the non-functional requirements,

• Of all performed localizations, 95.6% is within the required accuracy of one room variance around the
actual room.

• 79.9% of all performed localizations are determined correctly, meaning the actual room where the panic
button is present, is estimated by the localization system.

• As said, the messages that are stored in the database, contain a resident’s room number that functions
as their identification.



6
Conclusion

The goal of this Bachelor Graduation Project was to design a real-time localization system to be able to find
residents within the nursing home that they live in. For this, two different approaches were worked out,
tested, and further improved.

Firstly, multilateration was explored. In theory, this seemed very promising, but it turned out to be inade-
quate for implementation within nursing homes. The primary causes of this are the effects by shadowing and
reflections in the transmission medium, the nursing home. It is learned that with these phenomena there is
a need of additional systems, such as filters and other radio frequency signal noise reducing techniques, to
smooth the RSSI measurements for trilateration, and later multilateration purposes.

Secondly, the nearest BedSense algorithm was developed. Due to its different approach to localization com-
pared to multilateration, namely its reliability checks, resulted this system to be much more robust to vari-
ances in RSSI, the main parameter this systems uses for localization. By combining the history check and the
neighbour comparison algorithms within the nearest BedSense algorithm, this system reached an accuracy
of 95.6%, that is, to localize a person within a maximum error of one room next to the actual location.

Acceptable accurate localization with the use of BedSenses, from Momo Medical, within nursing homes, us-
ing a the type of panic button presented in this project, is most easily achieved by translating the RSSI values,
measured by BedSenses, using the NBSA developed throughout this thesis report. For Momo Medical, to fur-
ther implement this system it should be used as peripheral software within their existing nurse supporting
system.
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7
Recommendations and Future Work

In the previous sections the developed localization system is described. As this system has been developed
during a short period of time there is still room to improve the systems performance and widen its employa-
bility. In this section, some suggested recommendations and future work are shorty described.

7.1. Recommendations
Extend the implementation of the path loss model to better account for walls and objects
Buildings can vary in type of materials used. For example, walls can be made of reinforced concrete or plas-
ter. These materials have different influence on the propagation of a signal. The way in which the RSSI from
BedSenses is interpreted, by the different algorithms, can be adjusted to the information on these materi-
als.

Adapt to the difference in the standard RSSI of each BedSense
In a baseline measurement at a single distance each BedSense shows a slightly different RSSI, meaning that
there is an offset between the BedSenses in the ability to receive signals. To solve this, each BedSense should
either be calibrated to receive equal strong RSSI as others, or its offset, in respect to a mean value, should be
registered in a "Room-BedSense coupling" alike file.

Experiment with sending a burst of signals from the panic button to the BedSense for a single localiza-
tion
An attempt to calculate more accurate distances from the RSSI by sending a burst of signals and averaging all
RSSIs that follow from this burst.

Experiment with sending signals from the panic button to the BedSense at different strength
Another attempt to calculate more accurate distances from the RSSI. By the path loss model, close to the
transmitter the signal decreases more heavily than further away from it. By sending two different signal
strengths, two different path loss models are expected, in the sense that one has lower RSSI values than the
other. This may result in different reflections and shadowing effects in both signals, which, by comparison of
the two, could to some extent be recognized and filtered out.

7.2. Future Work
Differentiate between an alive signal and signal due to pressing the panic button
A panic button’s location is computed and stored every x amount of seconds or minutes - depending on the
interval setting for sending an alive signals by the button. However, in case a resident needs help and therefore
presses the button, this situation should only lead to computing a location and storing that. It should also
alert the appropriate caregiver. This later functionality is still to be implemented.

Differentiate between hallway and rooms when localizing a person
The way NBSA uses the reliability checks does not allow for differentiating between the location being in a
hallway or inside a room. Additional steps in interpreting the outcomes from these checks might enable this
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option.

Omnidirectional antenna in panic button
Effects due to polarization mismatches could be reduced by making use of a panic button that has a omnidi-
rectional antenna.

Improve the map implementation to allow for different sizes of rooms and hallways
Currently, the map is build up by squares. Each single square represents a complete room or a (part of a)
hallway irrespective of its size. Locations where sizes of rooms and hallways are significantly different from
each other, might experience a better accuracy if the map allows for a these different sizes. Naturally, the
algorithms that make use of the map will have to be adapted to this change of map layout.

Couple the maximum and average speed of a resident to the panic button he or she carries
While the greatest part of all residents are elderly people that walk at about the same speed, some might
deviate in speed from others. For example, residents moving with a walker tend to be slower than average,
and residents sitting in a wheelchair or even a mobility scooter tend to be faster than average.

Create an functionality for care givers to wear a button as well
This idea came from the care givers themselves during an interview. They suggested to not only have residents
carry these panic buttons, but have care givers carry them too. This way those care givers can, by simply
pressing their button, bleep each other in case they need help. For example after someone fell and needs to
be lifted upright.

Create panic button alike devices for utilities so these can also be localized
Another idea that came from the care givers during the interview. Not only do care givers seek to more easily
get information on the whereabouts of a resident, they would like to more easily find utilities (such as lifting
aids to move people that have to be carried) within the building.
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A
Python Code

A.1. Localization

1 # BAP Q1 2022-2023 Subgroup 2
2 # Localization Algorithm Iteration 7
3 # Enables us to determine to which room the person is closest to (in 3D, by executing

both the history and neighbour comparison check. Grouped by 10 locations and the
most frequent one is picked.

,→
,→

4 # Version 2022/12/18 11:30
5

6 import math
7 from statistics import mode
8 import numpy as np
9 from datetime import datetime

10

11 import Coupling_bed_bedsense_Version_2 as coup
12 import Classes_Room_Version_5 as Class
13 import Data_Version_5
14 import Neighbour_Values_Version_3 as values
15 import Neighbour_Comparison_4_0 as check
16 import History_Check_3 as history
17

18

19 def loc_1():
20 # This function has no inputs
21 # It loads multiple variables from other functions
22 # Predicts the floor on which the panic button is.
23 # For every row in the dataset, take the 5 maximum values received
24 # For all these values, locate then on the map (layout)
25 # For all these locations, find the same room on the predicted floor.
26 # Make a prediction about the location of the panic button
27 # Print this prediction
28 # This function has no outputs
29

30 # Initializing values
31 last_prediction = None
32 last_timestamp = None
33

34 # State directories of the couplings and the map
35 loc = "C:\\Users\\borin\\Documents\\BAP\\koppelingen_laurens_2.csv"

43



44 A. Python Code

36 loc2 = "C:\\Users\\borin\\Documents\\BAP\\Test data subgroup 1 - koppelingen.csv"
37 map_loc = "C:\\Users\\borin\\Documents\\BAP\\textual_map_laurens_blijdorp - Floor

6-10.csv",→
38

39 # Calling the function Couplings to obtain the beds coupled to the bedsenses
40 bed_bedsense, door_floor = coup.Couplings(loc, loc2)
41

42 # Calling the function Classes_Room to obtain a dictionary of all rooms with as
key the bedsense number belongin to the room, and a map of the building,→

43 dictionary, layout = Class.import_rooms(loc, map_loc)
44

45 # Calling the function Data to obtain a grouped by 1 sec dataframe, an array with
bedsense numbers, the data coming from the Access Control System (ACS) and an
array with ACS numbers

,→
,→

46 df, bedsenses, door_data, doors = Data_Version_5.Data()
47

48 time = df[:, 0] # Time column
49 data = df[:, 1:] # Data columns for all bedsenses
50 doortime = door_data[:, 0]
51 door_data = door_data[:, 1:]
52

53 locations = []
54

55 j = 0
56 # Iterate through the data
57 for row in data:
58 nan = np.isnan(row.astype(float)) # Check if a row contains NaN values
59 x = np.all(nan == True) # Check if all values are NaN in a row
60

61 if not x: # If row contains at least one non NaN value then
62 new_row = []
63 for i in range(len(row)):
64 if not math.isnan(row[i]): # If the value is not NaN
65 new_row.append([i, row[i]]) # Add both value and index to a new

list,→
66 listvalues = sorted(new_row, key=lambda x: x[1], reverse=True) # Sort

the list based on the rssi values,→
67 index_array = []
68 for k in listvalues:
69 index_array.append(k[0]) # Add indices to another list
70

71 max_values = index_array[0:5] # Take the 8 strongest bedsenses
72 strongest_bedsenses = []
73 # Predict the floor on which the person is existing
74 floors = []
75 for value in max_values: # For one of the highest values find the

corresponding bedsensenumber and bed,→
76 strongest_bedsense = bedsenses[value]
77 strongest_bedsenses.append(strongest_bedsense)
78 bed = dictionary[str(strongest_bedsense)]
79 floors.append(bed.floor) # From all highest values collect the floor
80

81 door_time_small = []
82 for t in range(len(doortime)):
83 if doortime[t] < time[j]:
84 door_time_small.append(doortime[t])
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85

86 door_data_small = door_data[0:len(door_time_small)]
87

88 door_index = np.where(door_data_small == 1)
89 door_index = list(zip(door_index[0], door_index[1]))
90 if not len(door_index) == 0:
91 door = doors[door_index[-1][1]]
92 floor = door_floor.loc[door_floor['ACS'] == door, 'door'].iloc[0] #

The floor on which we are is the floor on which the ACS is,→
93 else:
94 floor = round(sum(floors) / len(floors))
95

96 row_copy = row.copy() # create a copy of the data row
97 for key in dictionary: # iterate through dictionary
98 if not len(np.where(bedsenses == int(key))[0]) == 0: # if the key

has collected data and therefore is in bedsenses,→
99 bed = dictionary[key] # collect the instance of the key

100 if bed.floor != floor: # if the instance is not on the floor
101 row_copy[np.where(bedsenses == int(key))[0][0]] = np.nan #

set the value registered by the bedsense to nan,→
102 if np.all(np.isnan(row_copy.astype(float))): # If the row now only

contains NaN values, the floor is the mean of the array floors,→
103 floor = round(sum(floors) / len(floors))
104 row_copy = row.copy() # create a copy of the data row
105 for key in dictionary: # iterate through dictionary
106 if not len(np.where(bedsenses == int(key))[0]) == 0: # if the

key has collected data and therefore is in bedsenses,→
107 bed = dictionary[key] # collect the instance of the key
108 if int(bed.floor) is not floor: # if the instance is not on

the floor,→
109 row_copy[np.where(bedsenses == int(key))[0][0]] = np.nan

# set the value registered by the bedsense to nan,→
110 new_copy = []
111 for i in range(len(row_copy)):
112 if not math.isnan(row_copy[i]): # If the value in row_copy is not NaN

(is on the predicted floor and received data) add the data to a
new array

,→
,→

113 new_copy.append([i, row_copy[i]])
114 sorted_copy = sorted(new_copy, key=lambda x: x[1], reverse=True) #sort

the new array based on RSSI value from highest to lowest,→
115

116 bed_floor = []
117 room_floor = []
118 if len(sorted_copy) <= 5: # If less than 5 bedsenses received the signal

from the panic button,→
119 for i in range(len(sorted_copy)): # Find the corresponding instance

and roomnumber,→
120 bed_floor.append(dictionary[str(bedsenses[sorted_copy[i][0]])])
121 room_floor.append(bed_floor[i].roomnumber)
122 elif len(sorted_copy) > 5:
123 for i in range(5): # Find the corresponding instance and roomnumber
124 bed_floor.append(dictionary[str(bedsenses[sorted_copy[i][0]])])
125 room_floor.append(bed_floor[i].roomnumber)
126

127 bed = []
128 room = []
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129 location = []
130 if len(listvalues) <= 5:
131 for i in range(len(listvalues)): # Find the corresponding room,

neighbours, neighbour_values and confidence of the strongest
receivers

,→
,→

132 bed.append(dictionary[str(bedsenses[listvalues[i][0]])])
133 room.append(bed[i].roomnumber)
134 location_array = np.where(layout == float(room[i])) # Find the

location of the room on the layout of the building,→
135 for element in location_array:
136 for i in range(len(element)):
137 location.append(element[i])
138 else:
139 for i in range(5): # Find the corresponding room, neighbours,

neighbour_values and confidence of the strongest receivers,→
140 bed.append(dictionary[str(bedsenses[listvalues[i][0]])])
141 room.append(bed[i].roomnumber)
142 location_array = np.where(layout == float(room[i])) # Find the

location of the room on the layout of the building,→
143 for element in location_array:
144 for i in range(len(element)):
145 location.append(element[i])
146

147 location = [location[n:n + 3] for n in range(0, len(location), 3)] #
Group the location of each bedsense as 3D coordinates,→

148 location_room_floor = []
149 if any(room_floor): # If any room on the predicted floor received a

signal,→
150 location_floor_index = np.where(layout == float(room_floor[0])) #

Find the location of one of those rooms,→
151 # Mirror the strongest receivers to the same rooms on the predicted

floor,→
152 for element in location_floor_index:
153 for i in range(len(element)):
154 location_room_floor.append(element[i])
155 floor_index = location_room_floor[0]
156 floor_room = []
157 for lst in location:
158 lst[0] = floor_index
159 floor_room.append(layout[lst[0]][lst[1]][lst[2]])
160 floor_bed = []
161 neighbours_floor = []
162 confidence_floor = []
163 for i in range(len(floor_room)):
164 if not np.isnan(floor_room[i]):
165 index =

bed_bedsense[bed_bedsense['Bed'].isin([int(floor_room[i])])].to_numpy()[0,
1] # Find the bedsense in dataframe belonging to the
roomnumber

,→
,→
,→

166 room_bedsense = index
167 floor_bed.append(dictionary[str(room_bedsense)]) # Find the

instance belonging to the bedsense number,→
168 neighbours_floor.append(floor_bed[i].map) # Find the

neighbours belonging to the instance,→
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169 values.Neighbour_values(row, floor_bed[i],
neighbours_floor[i], bed_bedsense, bedsenses) # Find the
neighbour values of the instance

,→
,→

170

confidence_floor.append(check.neigh_comp(floor_bed[i].values))
# Find its confidence

,→
,→

171 else: # If the room number has no bedsense and thus the room has
number NaN, add low values (just for indexing),→

172 floor_bed.append(0)
173 neighbours_floor.append(0)
174 confidence_floor.append(-100)
175 timestamp = time[j] / 1000 # Translate time from ms to s
176 date_time = datetime.fromtimestamp(timestamp) # Switch time in

seconds to readable date and time,→
177 if last_timestamp is not None and last_prediction is not None: # if

we have a previous prediction,→
178 histories_floor = []
179 deltat = timestamp - last_timestamp # Calculate the difference in

time from last measurement to current measurement,→
180 for i in range(len(floor_room)):
181 if not np.isnan(floor_room[i]): #Calculate the probability

that the prediction could be possible,→
182 histories_floor.append(history.threeDhistory(deltat,

layout, floor_room[i], last_prediction)),→
183 else:
184 histories_floor.append(0.1) # If roomnnumber is NaN add

value just for indexing,→
185

186 confident_history = []
187 confident_room = []
188 confident_confidence = []
189 for i in range(len(histories_floor)):
190 if histories_floor[i] > 0.5: #Check if the history is

possible (> 0.5),→
191 confident_history.append(histories_floor[i])
192 confident_room.append(floor_room[i])
193 confident_confidence.append([i, confidence_floor[i]])
194

195 if not len(confident_confidence) == 0: # If there are values for
history larger than 0.5,→

196 sorted_confidence = sorted(confident_confidence, key=lambda
x: x[1], reverse=True) # Sort the confidence for highest
to lowest

,→
,→

197 prediction = floor_room[sorted_confidence[0][0]] #The room
prediction is the one with the highest confidence,→

198 else: # If no history is higher than 0.5
199 multiple = []
200 for i in range(len(histories_floor)):
201 multiple.append([i, histories_floor[i] *

confidence_floor[i]]) # Multiply the history and the
confidence

,→
,→

202 multiple_sorted = sorted(multiple, key=lambda x: x[1],
reverse=True) # Sort the multiplication array,→

203 prediction = floor_room[multiple_sorted[0][0]] # The room
prediction is the one with the highest multiplication
value

,→
,→
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204 else: # If is was no previous prediction
205 confident_confidence = []
206 for i in range(len(confidence_floor)):
207 if i > 0: # If the confidence is higher than 0
208 confident_confidence.append([i, confidence_floor[i]])
209 if not len(confident_confidence) == 0: # If there is at least one

confidence higher than 0,→
210 sorted_confidence = sorted(confident_confidence, key=lambda

x: x[1], reverse=True) # Sort the confidences from
highest to lowest

,→
,→

211 prediction = floor_room[sorted_confidence[0][0]] # The room
prediction is the one with the highest confidence,→

212 else: # If there is no confidence higher than 0
213 max_confidence = max(confidence_floor) # Take the highest

confidence,→
214 max_index = np.where(confidence_floor ==

max_confidence)[0][0] # Find the index of the highest
confidence

,→
,→

215 prediction = floor_room[max_index] # The room prediction is
the one with the highest confidence,→

216

217 else: # If there is no room on the predicted floor receiving a signal
218 prediction = room[0] # The room prediction is the room receiving the

strongest signal,→
219

220 locations.append(prediction)
221

222 last_prediction = prediction
223 last_timestamp = timestamp
224 j += 1
225

226 else: #If row contains only NaN value
227 data = np.delete(data, j) #Delete all NaN row
228 time = np.delete(time, j) #Delete the time
229

230 if len(locations) == 10: # If the list locations has 10 elements, give an
output,→

231 localization = mode(locations) # Find the value in locations which is
present most,→

232 print("De drukknop is het dichtst in de buurt bij kamer",
int(localization), "op tijd", date_time) # Print statement,→

233 locations = []
234

235 return

A.2. Data
A.2.1. Data Extraction

1 #BAP Q1 2022-2023 Subgroup 2
2 #Data extraction algorithm version 1
3 #Enables us to load data from the mijn-dev-joey server for the bedsenses of the 8th

floor of Laurens,→
4 #Version 2022/11/23 15:21PM
5 #An example of this code was provided by Momo Medical
6
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7

8 def extract_data():
9

10 import datetime
11 import pytz
12

13 from momo_data_analysis.io.tsdb import MomoTSDB
14

15 tsdb = MomoTSDB(url="https://mijn-dev-joey.momomedical.com/", api_key="PASSWORD")
16

17 starttime = int(datetime.datetime(2022, 11, 15, 15, 34, 48).timestamp())
18 endtime = int(datetime.datetime(2022, 11, 15, 15, 49, 2).timestamp())
19

20 query = f"""SELECT rssi, device_id
21 FROM "momo"."autogen"."peripheralState"
22 WHERE ("peripheral_id" = '04680808' AND ("device_id" = '11025609' or

"device_id" = '11025610' or "device_id" = '11025572' or "device_id" = '11025571'
or "device_id" = '11025612' or "device_id" = '11025611' or "device_id" =
'11025608' or "device_id" = '11025575' or "device_id" = '11025574' or "device_id"
= '11025573'))

,→
,→
,→
,→

23 AND time >= {starttime * 1000000000} AND time <= {endtime *
1000000000}""",→

24 df = tsdb._api.query_influx(query)
25 df_2 = df.pivot_table(index='time', columns='device_id')
26 df_2.columns = df_2.columns.droplevel(0)
27 df_final = df_2.rename_axis(None, axis=1).reset_index()
28 return df_final

A.2.2. Data Pre-processing

1 #BAP Q1 2022-2023 Subgroup 2
2 #Data processing algorithm version 5
3 #Enables us to preproces and group data being send within a timeframe from the data

loaded from the server,→
4 #Also it enables us to group and filter a dataframe coming from the access control

system,→
5 #Version 2022/12/18 11:30
6

7 import pandas as pd
8 import numpy as np
9 import re

10

11 import Extract_data_Version_1 as extract
12

13

14 def Data():
15 #This function does not have an input
16 #Function that extracts the dataframe of bedsense data (from the server) from the

function extract data,→
17 #It creates a numpy array containing all bedsenseID's that collected data
18 #It creates a numpy array containing all DoorID's that collected data
19 #It groups the bedsense data based on a timeframe, if multiple datapoints are

collected in timeframe, the maximum value of each bedsense will be used,→
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20 #It groups the door data based on a timeframe, if multiple datapoints are
collecteed in timeframe, the ever last recorded value will be stored (all
other data in timeframe is discarded only the last door to see button is
saved)

,→
,→
,→

21 #It creates a new numpy array containing the grouped bedsense data
22 #it creates a new numpy array containing the grouped door data
23 #This function has as output the new data (grouped), the array of bedsenseID's,

the data of the door (grouped en filtered) and an array of doorID's,→
24

25 # To load the data
26 df = extract.extract_data()
27 df = df.apply(pd.to_numeric, errors='coerce') # To convert all unknowns to NaN

values,→
28

29 data = open("C:\\Users\\borin\\Documents\\BAP\\Test data subgroup 1 - full.csv")
30 sub1 = pd.read_csv(data)
31

32 # Creating the bedsense names
33 column_names = list(df.columns) # Extracting headers from dataframe
34 bedsenses = [] # Create empty list for bedsenses
35 for name in column_names:
36 new_name = re.sub('\D', '', name) # Delete all non numeric characters from

list of headers,→
37 bedsenses.append(new_name) # Add new headernames to bedsenses list
38

39 bedsenses[:] = [bed for bed in bedsenses if bed] # Delete all empty headers
40 bedsenses = [eval(bed) for bed in bedsenses]
41 bedsenses = np.array(bedsenses) # Transform bedsenses list into numpy array
42 df = df.to_numpy() # Converting dataframe to a numpy array
43

44 #Creating door names
45 door_ids = list(sub1.columns)
46 doors = []
47 for door in door_ids:
48 new_door = re.sub('\D', '', door)
49 doors.append(new_door)
50 doors[:] = [door for door in doors if door]
51 doors = [eval(door) for door in doors]
52 doors = np.array(doors)
53 sub1 = sub1.to_numpy()
54

55 # Setting all values below -90 to zero, as it is no longer useful to work with
56 df[df < -90] = np.nan
57

58 # Variables
59 timestamp = [0]
60 door_timestamp = [0]
61 timeframe = 1000
62 time = df[:, 0]
63 door_time = sub1[:, 0]
64 new_door_data = []
65 new_data = []
66 j = False
67 m = False
68 k = 0
69 l = 0
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70

71 for t in time:
72 i = 1 # Counter
73 t_index = np.where(time == t) # Find the index of t
74 t_index = int(t_index[0]) # Setting the index of t to an integer value
75

76 if j == True: # If we ran out of space j is set to true so that we break out
of the for loop because we're out of space,→

77 break # Break out of the loop
78 elif t_index - 1 < timestamp[-1]: # When the index is lower than the index

value in the timestamp list, pass the iteration,→
79 pass # Skip iteration
80 else:
81 while (time[t_index + i - 1]) - t < timeframe: # While the time

difference between time t and the time at index of t + i:,→
82 if t_index + i + 2 > len(time): # To determine if we run out of the

column,→
83 j = True
84 break # If statement above is true break out of while loop
85 else:
86 i += 1
87 else: # If the while condition is no longer true, we add the latest

index t_index + i to the timestamp list for saving,→
88 timestamp.append(t_index + i) # Add index to timestamp list
89 minute = df[timestamp[k]: timestamp[k + 1]] # Take a slice of the

dataframe containing 1 sec of data,→
90 k += 1
91 new_row = [] # A new row for all maximum values per bedsense per

timestamp,→
92 for column in minute.T: # Iterate through columns of matrix minutes
93 max = np.nanmax(column) # Find maximum value of a column
94 new_row.append(max) # Add value to list
95 new_data.append(new_row) # Add row of maximum values per bedsense to a

new list containing more rows like this for every timestamp,→
96 new_data = np.array(new_data, dtype=object) # Transform data to numpy array
97

98 for t in door_time:
99 i = 1 # Counter

100 t_index = np.where(door_time == t) # Find the index of t
101 t_index = int(t_index[0]) # Setting the index of t to an integer value
102

103 if m == True: # If we ran out of space j is set to true so that we break out
of the for loop because we're out of space,→

104 break # Break out of the loop
105 elif t_index - 1 < door_timestamp[-1]: # When the index is lower than the

index value in the timestamp list, pass the iteration,→
106 pass # Skip iteration
107 else:
108 while (door_time[t_index + i - 1]) - t < timeframe: # While the time

difference between time t and the time at index of t + i:,→
109 if t_index + i + 2 > len(door_time): # To determine if we run out of

the column,→
110 m = True
111 break # If statement above is true break out of while loop
112 else:
113 i += 1
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114 else: # If the while condition is no longer true, we add the latest
index t_index + i to the timestamp list for saving,→

115 door_timestamp.append(t_index + i) # Add index to timestamp list
116 door_minute = sub1[door_timestamp[l]: door_timestamp[l + 1]] # take

a slice of door dataframe containing 1 sec of data,→
117 l += 1
118 new_door_row = [] # a new row for all maximum values per door per

timestamp,→
119

120 for column in door_minute.T: #for each doorID in door_minute
121 max = np.nanmax(column) # Find maximum value of a column
122 new_door_row.append(max) # Add value to list
123 new_door_data.append(new_door_row)
124 new_door_data = np.array(new_door_data, dtype=object) #transfrom new_door_data to

numpy array,→
125

126 del timestamp[0] # Delete start value
127 del door_timestamp[0]
128

129 return new_data, bedsenses, new_door_data, doors

A.2.3. Coupling

1 #BAP Q1 2022-2023 Subgroup 2
2 #Coupling between bed and bedsense and between ACS and floor
3 #Enables us to determine which bedsense is coupled to which bed and which ACS is

coupled to which floor,→
4 #Version 2022/12/09 11:43AM
5

6 import pandas as pd
7

8 def Couplings(Directory, sub1directory):
9 #This function has as input the directory to both the coupling files

10 #Function that extracts the columns containing the roomnumber and the bedsenseID
from the file,→

11 #Function extracts the dataframe containing floor and the ID of the ACS
12 #This funtion has as output a dataframe containing only the roomnumbers and the

corresponding bedsenseID's and the dataframe containing the floors and
corresponding ACS ID's

,→
,→

13

14 #Open the file at the given directory
15 data = open(Directory)
16 df = pd.read_csv(data)
17

18 sub1data = open(sub1directory)
19 sub1df = pd.read_csv(sub1data)
20

21 #Extracting columns containing beds and bedsenses from complete dataframe
22 coupling = df.iloc[:, :2]
23

24 return coupling, sub1df
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A.3. Map
A.3.1. Map Matrix

1 # BAP Q1 2022-2023 Subgroup 2
2 # Map to matrix
3 # Find neighbour model for all rooms on a map with multiple floors
4 # Version 5 (each neighbour model is a 1-D array of length 70, floor at index -1)
5 # 2022/12/09 10:45
6

7 import numpy as np
8 import pandas as pd
9

10

11 def map_matrix(data):
12 global floor_plan # this becomes a global variable
13 data = open(data)
14 df_blueprint = pd.read_csv(data, header=None) # load building's "blueprint" from

csv into dataframe,→
15 blueprint = df_blueprint.to_numpy() # transform dataframe to np.array
16

17 floor_height = (np.shape(blueprint)[0] - 1) / blueprint[0, 0] # height of each
individual map,→

18 floor_plan = []
19 for i in range(int(blueprint[0, 0])):
20 floor_plan.append(blueprint[int(i * floor_height + 1):int((i + 1) *

floor_height + 1), :]) # stack floor maps,→
21 floor_plan = np.array(floor_plan) # 3-D array of entire floor plan (stacked 2-D

floor maps of each floor),→
22

23 # The neighbour map (per floor):
24 # - X: the room itself
25 # - d: direct neighbour
26 # - s: second direct neighbour
27 # - i: indirect neighbours (with hallway)
28 # - b, a: neighbour directly below/above the room itself
29 # - bd, ad: direct neighbour on floor below/above
30 # - bi, ai: indirect neighbours on floor below/above (with hallway)
31 # - bb, aa: neighbour two floors directly below/above the room itself
32 # |----|----------------|---------------|----------------|----|
33 # | | | i i i | | |
34 # | | bi bi bi | s | ai ai ai | |
35 # | | bi bd bd bd bi | i d d d i | ai ad ad ad ai | |
36 # | bb | bi bd b bd bi | i s d X d s i | ai ad a ad ai | aa |
37 # | | bi bd bd bd bi | i d d d i | ai ad ad ad ai | |
38 # | | bi bi bi | s | ai ai ai | |
39 # | | | i i i | | |
40 # |----|----------------|---------------|----------------|----|
41 #
42 # Lay-out matrix (3-D) (2-below - below - level - above - 2-above)
43 # |---|----------------|----------------------|----------------|----|
44 # | | | 46 35 36 | | |
45 # | | 21 10 11 | 31 | 67 56 57 | |
46 # | | 20 9 2 3 12 | 45 30 23 24 37 | 66 55 47 49 58 | |
47 # | 0 | 19 8 1 4 13 | 44 34 29 22 25 32 38 | 65 54 47 50 59 | 68 |
48 # | | 18 7 6 5 14 | 43 28 27 26 39 | 64 53 52 51 60 | |
49 # | | 17 16 15 | 33 | 63 62 61 | |
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50 # | | | 42 41 40 | | |
51 # |---|----------------|----------------------|----------------|----|
52 #
53 # Lay-out array
54 # [0-68 (rooms), 69 (floor)]
55

56

57 rooms = [] # map for each room at each floor (4-D)
58 m = np.shape(floor_plan)[0] # size of floor plan
59 r = np.shape(floor_plan)[1]
60 c = np.shape(floor_plan)[2]
61 for l in range(m): # iterate matrices (floors)
62 for i in range(r): # iterate rows (y)
63 for j in range(c): # iterate columns (x)
64 neighbours = [np.nan]*70 # empty neighbours list of a room at (l, i,

j),→
65 if not(np.isnan(floor_plan[l, i, j])) and (floor_plan[l, i, j] > 0):

# if element is room find neighbours,→
66 neighbours[69] = l + blueprint[0, 1] # floor number
67

68 ### check on floor
69 # current room
70 neighbours[22] = floor_plan[l, i, j]
71

72 ## check diagonal, direct or indirect
73 # check upper left
74 if -1 < i - 1 < r and -1 < j - 1 < c:
75 if floor_plan[l, i - 1, j - 1] == 0:
76 if -1 < i - 2 < r and -1 < j - 1 < c and floor_plan[l, i

- 2, j - 1] > 0:,→
77 neighbours[46] = floor_plan[l, i - 2, j - 1]
78 if -1 < i - 1 < r and -1 < j - 2 < c and floor_plan[l, i

- 1, j - 2] > 0:,→
79 neighbours[45] = floor_plan[l, i - 1, j - 2]
80 elif floor_plan[l, i - 1, j - 1] > 0:
81 neighbours[30] = floor_plan[l, i - 1, j - 1]
82

83 # check upper right
84 if -1 < i - 1 < r and -1 < j + 1 < c:
85 if floor_plan[l, i - 1, j + 1] == 0:
86 if -1 < i - 2 < r and -1 < j + 1 < c and floor_plan[l, i

- 2, j + 1] > 0:,→
87 neighbours[36] = floor_plan[l, i - 2, j + 1]
88 if -1 < i - 1 < r and -1 < j + 2 < c and floor_plan[l, i

- 1, j + 2] > 0:,→
89 neighbours[37] = floor_plan[l, i - 1, j + 2]
90 elif floor_plan[l, i - 1, j + 1] > 0:
91 neighbours[24] = floor_plan[l, i - 1, j + 1]
92

93 # check lower right
94 if -1 < i + 1 < r and -1 < j + 1 < c:
95 if floor_plan[l, i + 1, j + 1] == 0:
96 if -1 < i + 2 < r and -1 < j + 1 < c and floor_plan[l, i

+ 2, j + 1] > 0:,→
97 neighbours[40] = floor_plan[l, i + 2, j + 1]
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98 if -1 < i + 1 < r and -1 < j + 2 < c and floor_plan[l, i
+ 1, j + 2] > 0:,→

99 neighbours[39] = floor_plan[l, i + 1, j + 2]
100 elif floor_plan[l, i + 1, j + 1] > 0:
101 neighbours[26] = floor_plan[l, i + 1, j + 1]
102

103 # check lower left
104 if -1 < i + 1 < r and -1 < j - 1 < c:
105 if floor_plan[l, i + 1, j - 1] == 0:
106 if -1 < i + 2 < r and -1 < j - 1 < c and floor_plan[l, i

+ 2, j - 1] > 0:,→
107 neighbours[42] = floor_plan[l, i + 2, j - 1]
108 if -1 < i + 1 < r and -1 < j - 2 < c and floor_plan[l, i

+ 1, j - 2] > 0:,→
109 neighbours[43] = floor_plan[l, i - 1, j - 2]
110 elif floor_plan[l, i + 1, j - 1] > 0:
111 neighbours[28] = floor_plan[l, i + 1, j - 1]
112

113 ## check horizontal/vertical, direct, second-direct or indirect
114 # check upper middle
115 if -1 < i - 1 < r and -1 < j < c:
116 if floor_plan[l, i - 1, j] == 0:
117 if -1 < i - 2 < r and -1 < j < c and floor_plan[l, i - 2,

j] > 0:,→
118 neighbours[35] = floor_plan[l, i - 2, j]
119 if -1 < i - 2 < r and -1 < j - 1 < c and floor_plan[l, i

- 2, j - 1] > 0:,→
120 neighbours[46] = floor_plan[l, i - 2, j - 1]
121 if -1 < i - 2 < r and -1 < j + 1 < c and floor_plan[l, i

- 2, j + 1] > 0:,→
122 neighbours[36] = floor_plan[l, i - 2, j + 1]
123 elif floor_plan[l, i - 1, j] > 0:
124 neighbours[23] = floor_plan[l, i - 1, j]
125 if -1 < i - 2 < r and -1 < j < c and floor_plan[l, i - 2,

j] > 0:,→
126 neighbours[31] = floor_plan[l, i - 2, j]
127

128 # check middle right
129 if -1 < i < r and -1 < j + 1 < c:
130 if floor_plan[l, i, j + 1] == 0:
131 if -1 < i < r and -1 < j + 2 < c and floor_plan[l, i, j +

2] > 0:,→
132 neighbours[38] = floor_plan[l, i, j + 2]
133 if -1 < i - 1 < r and -1 < j + 2 < c and floor_plan[l, i

- 1, j + 2] > 0:,→
134 neighbours[37] = floor_plan[l, i - 1, j + 2]
135 if -1 < i + 1 < r and -1 < j + 2 < c and floor_plan[l, i

+ 1, j + 2] > 0:,→
136 neighbours[39] = floor_plan[l, i + 1, j + 2]
137 elif floor_plan[l, i, j + 1] > 0:
138 neighbours[25] = floor_plan[l, i, j + 1]
139 if -1 < i < r and -1 < j + 2 < c and floor_plan[l, i, j +

2] > 0:,→
140 neighbours[32] = floor_plan[l, i, j + 2]
141

142 # check lower middle
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143 if -1 < i + 1 < r and -1 < j < c:
144 if floor_plan[l, i + 1, j] == 0:
145 if -1 < i + 2 < r and -1 < j < c and floor_plan[l, i + 2,

j] > 0:,→
146 neighbours[41] = floor_plan[l, i + 2, j]
147 if -1 < i + 2 < r and -1 < j + 1 < c and floor_plan[l, i

+ 2, j + 1] > 0:,→
148 neighbours[40] = floor_plan[l, i + 2, j + 1]
149 if -1 < i + 2 < r and -1 < j - 1 < c and floor_plan[l, i

+ 2, j - 1] > 0:,→
150 neighbours[42] = floor_plan[l, i + 2, j - 1]
151 elif floor_plan[l, i + 1, j] > 0:
152 neighbours[27] = floor_plan[l, i + 1, j]
153 if -1 < i + 2 < r and -1 < j < c and floor_plan[l, i + 2,

j] > 0:,→
154 neighbours[33] = floor_plan[l, i + 2, j]
155

156 # check middle right
157 if -1 < i < r and -1 < j - 1 < c:
158 if floor_plan[l, i, j - 1] == 0:
159 if -1 < i < r and -1 < j - 2 < c and floor_plan[l, i, j -

2] > 0:,→
160 neighbours[44] = floor_plan[l, i, j - 2]
161 if -1 < i + 1 < r and -1 < j - 2 < c and floor_plan[l, i

+ 1, j - 2] > 0:,→
162 neighbours[43] = floor_plan[l, i - 1, j - 2]
163 if -1 < i - 1 < r and -1 < j - 2 < c and floor_plan[l, i

- 1, j - 2] > 0:,→
164 neighbours[45] = floor_plan[l, i - 1, j - 2]
165 elif floor_plan[l, i, j - 1] > 0:
166 neighbours[29] = floor_plan[l, i, j - 1]
167 if -1 < i < r and -1 < j - 2 < c and floor_plan[l, i, j -

2] > 0:,→
168 neighbours[34] = floor_plan[l, i, j - 2]
169

170

171 ### check on floor below
172 if -1 < l - 1 < m:
173 # above current room
174 if -1 < i < r and -1 < j < c and floor_plan[l - 1, i, j] > 0:
175 neighbours[1] = floor_plan[l - 1, i, j]
176

177 ## check diagonal, direct or indirect
178 # check upper left
179 if -1 < i - 1 < r and -1 < j - 1 < c:
180 if floor_plan[l - 1, i - 1, j - 1] == 0:
181 if -1 < i - 2 < r and -1 < j - 1 < c and floor_plan[l

- 1, i - 2, j - 1] > 0:,→
182 neighbours[21] = floor_plan[l - 1, i - 2, j - 1]
183 if -1 < i - 1 < r and -1 < j - 2 < c and floor_plan[l

- 1, i - 1, j - 2] > 0:,→
184 neighbours[20] = floor_plan[l - 1, i - 1, j - 2]
185 elif floor_plan[l - 1, i - 1, j - 1] > 0:
186 neighbours[9] = floor_plan[l - 1, i - 1, j - 1]
187

188 # check upper right
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189 if -1 < i - 1 < r and -1 < j + 1 < c:
190 if floor_plan[l - 1, i - 1, j + 1] == 0:
191 if -1 < i - 2 < r and -1 < j + 1 < c and floor_plan[l

- 1, i - 2, j + 1] > 0:,→
192 neighbours[11] = floor_plan[l - 1, i - 2, j + 1]
193 if -1 < i - 1 < r and -1 < j + 2 < c and floor_plan[l

- 1, i - 1, j + 2] > 0:,→
194 neighbours[12] = floor_plan[l - 1, i - 1, j + 2]
195 elif floor_plan[l - 1, i - 1, j + 1] > 0:
196 neighbours[3] = floor_plan[l - 1, i - 1, j + 1]
197

198 # check lower right
199 if -1 < i + 1 < r and -1 < j + 1 < c:
200 if floor_plan[l - 1, i + 1, j + 1] == 0:
201 if -1 < i + 2 < r and -1 < j + 1 < c and floor_plan[l

- 1, i + 2, j + 1] > 0:,→
202 neighbours[15] = floor_plan[l - 1, i + 2, j + 1]
203 if -1 < i + 1 < r and -1 < j + 2 < c and floor_plan[l

- 1, i + 1, j + 2] > 0:,→
204 neighbours[14] = floor_plan[l - 1, i + 1, j + 2]
205 elif floor_plan[l - 1, i + 1, j + 1] > 0:
206 neighbours[5] = floor_plan[l - 1, i + 1, j + 1]
207

208 # check lower left
209 if -1 < i + 1 < r and -1 < j - 1 < c:
210 if floor_plan[l - 1, i + 1, j - 1] == 0:
211 if -1 < i + 2 < r and -1 < j - 1 < c and floor_plan[l

- 1, i + 2, j - 1] > 0:,→
212 neighbours[17] = floor_plan[l - 1, i + 2, j - 1]
213 if -1 < i + 1 < r and -1 < j - 2 < c and floor_plan[l

- 1, i + 1, j - 2] > 0:,→
214 neighbours[18] = floor_plan[l - 1, i - 1, j - 2]
215 elif floor_plan[l - 1, i + 1, j - 1] > 0:
216 neighbours[7] = floor_plan[l - 1, i + 1, j - 1]
217

218 ## check horizontal/vertical, direct, second direct or
indirect,→

219 # check upper middle
220 if -1 < i - 1 < r and -1 < j < c:
221 if floor_plan[l - 1, i - 1, j] == 0:
222 if -1 < i - 2 < r and -1 < j < c and floor_plan[l -

1, i - 2, j] > 0:,→
223 neighbours[10] = floor_plan[l - 1, i - 2, j]
224 if -1 < i - 2 < r and -1 < j - 1 < c and floor_plan[l

- 1, i - 2, j - 1] > 0:,→
225 neighbours[21] = floor_plan[l - 1, i - 2, j - 1]
226 if -1 < i - 2 < r and -1 < j + 1 < c and floor_plan[l

- 1, i - 2, j + 1] > 0:,→
227 neighbours[11] = floor_plan[l - 1, i - 2, j + 1]
228 elif floor_plan[l - 1, i - 1, j] > 0:
229 neighbours[2] = floor_plan[l - 1, i - 1, j]
230

231 # check middle right
232 if -1 < i < r and -1 < j + 1 < c:
233 if floor_plan[l - 1, i, j + 1] == 0:
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234 if -1 < i < r and -1 < j + 2 < c and floor_plan[l -
1, i, j + 2] > 0:,→

235 neighbours[13] = floor_plan[l - 1, i, j + 2]
236 if -1 < i - 1 < r and -1 < j + 2 < c and floor_plan[l

- 1, i - 1, j + 2] > 0:,→
237 neighbours[12] = floor_plan[l - 1, i - 1, j + 2]
238 if -1 < i + 1 < r and -1 < j + 2 < c and floor_plan[l

- 1, i + 1, j + 2] > 0:,→
239 neighbours[14] = floor_plan[l - 1, i + 1, j + 2]
240 elif floor_plan[l - 1, i, j + 1] > 0:
241 neighbours[4] = floor_plan[l - 1, i, j + 1]
242

243 # check lower middle
244 if -1 < i + 1 < r and -1 < j < c:
245 if floor_plan[l - 1, i + 1, j] == 0:
246 if -1 < i + 2 < r and -1 < j < c and floor_plan[l -

1, i + 2, j] > 0:,→
247 neighbours[16] = floor_plan[l - 1, i + 2, j]
248 if -1 < i + 2 < r and -1 < j + 1 < c and floor_plan[l

- 1, i + 2, j + 1] > 0:,→
249 neighbours[15] = floor_plan[l - 1, i + 2, j + 1]
250 if -1 < i + 2 < r and -1 < j - 1 < c and floor_plan[l

- 1, i + 2, j - 1] > 0:,→
251 neighbours[17] = floor_plan[l - 1, i + 2, j - 1]
252 elif floor_plan[l - 1, i + 1, j] > 0:
253 neighbours[6] = floor_plan[l - 1, i + 1, j]
254

255 # check middle right
256 if -1 < i < r and -1 < j - 1 < c:
257 if floor_plan[l - 1, i, j - 1] == 0:
258 if -1 < i < r and -1 < j - 2 < c and floor_plan[l -

1, i, j - 2] > 0:,→
259 neighbours[19] = floor_plan[l - 1, i, j - 2]
260 if -1 < i + 1 < r and -1 < j - 2 < c and floor_plan[l

- 1, i + 1, j - 2] > 0:,→
261 neighbours[18] = floor_plan[l - 1, i - 1, j - 2]
262 if -1 < i - 1 < r and -1 < j - 2 < c and floor_plan[l

- 1, i - 1, j - 2] > 0:,→
263 neighbours[20] = floor_plan[l - 1, i - 1, j - 2]
264 elif floor_plan[l - 1, i, j - 1] > 0:
265 neighbours[8] = floor_plan[l - 1, i, j - 1]
266

267 ### check on floor above
268 if -1 < l + 1 < m:
269 # above current room
270 if -1 < i < r and -1 < j < c and floor_plan[l + 1, i, j] > 0:
271 neighbours[47] = floor_plan[l + 1, i, j]
272

273 ## check diagonal, direct or indirect
274 # check upper left
275 if -1 < i - 1 < r and -1 < j - 1 < c:
276 if floor_plan[l + 1, i - 1, j - 1] == 0:
277 if -1 < i - 2 < r and -1 < j - 1 < c and floor_plan[l

+ 1, i - 2, j - 1] > 0:,→
278 neighbours[67] = floor_plan[l + 1, i - 2, j - 1]
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279 if -1 < i - 1 < r and -1 < j - 2 < c and floor_plan[l
+ 1, i - 1, j - 2] > 0:,→

280 neighbours[66] = floor_plan[l + 1, i - 1, j - 2]
281 elif floor_plan[l + 1, i - 1, j - 1] > 0:
282 neighbours[55] = floor_plan[l + 1, i - 1, j - 1]
283

284 # check upper right
285 if -1 < i - 1 < r and -1 < j + 1 < c:
286 if floor_plan[l + 1, i - 1, j + 1] == 0:
287 if -1 < i - 2 < r and -1 < j + 1 < c and floor_plan[l

+ 1, i - 2, j + 1] > 0:,→
288 neighbours[57] = floor_plan[l + 1, i - 2, j + 1]
289 if -1 < i - 1 < r and -1 < j + 2 < c and floor_plan[l

+ 1, i - 1, j + 2] > 0:,→
290 neighbours[58] = floor_plan[l + 1, i - 1, j + 2]
291 elif floor_plan[l + 1, i - 1, j + 1] > 0:
292 neighbours[49] = floor_plan[l + 1, i - 1, j + 1]
293

294 # check lower right
295 if -1 < i + 1 < r and -1 < j + 1 < c:
296 if floor_plan[l + 1, i + 1, j + 1] == 0:
297 if -1 < i + 2 < r and -1 < j + 1 < c and floor_plan[l

+ 1, i + 2, j + 1] > 0:,→
298 neighbours[61] = floor_plan[l + 1, i + 2, j + 1]
299 if -1 < i + 1 < r and -1 < j + 2 < c and floor_plan[l

+ 1, i + 1, j + 2] > 0:,→
300 neighbours[60] = floor_plan[l + 1, i + 1, j + 2]
301 elif floor_plan[l + 1, i + 1, j + 1] > 0:
302 neighbours[51] = floor_plan[l + 1, i + 1, j + 1]
303

304 # check lower left
305 if -1 < i + 1 < r and -1 < j - 1 < c:
306 if floor_plan[l + 1, i + 1, j - 1] == 0:
307 if -1 < i + 2 < r and -1 < j - 1 < c and floor_plan[l

+ 1, i + 2, j - 1] > 0:,→
308 neighbours[63] = floor_plan[l + 1, i + 2, j - 1]
309 if -1 < i + 1 < r and -1 < j - 2 < c and floor_plan[l

+ 1, i + 1, j - 2] > 0:,→
310 neighbours[64] = floor_plan[l + 1, i - 1, j - 2]
311 elif floor_plan[l + 1, i + 1, j - 1] > 0:
312 neighbours[53] = floor_plan[l + 1, i + 1, j - 1]
313

314 ## check horizontal/vertical, direct, second direct or
indirect,→

315 # check upper middle
316 if -1 < i - 1 < r and -1 < j < c:
317 if floor_plan[l + 1, i - 1, j] == 0:
318 if -1 < i - 2 < r and -1 < j < c and floor_plan[l +

1, i - 2, j] > 0:,→
319 neighbours[56] = floor_plan[l + 1, i - 2, j]
320 if -1 < i - 2 < r and -1 < j - 1 < c and floor_plan[l

+ 1, i - 2, j - 1] > 0:,→
321 neighbours[67] = floor_plan[l + 1, i - 2, j - 1]
322 if -1 < i - 2 < r and -1 < j + 1 < c and floor_plan[l

+ 1, i - 2, j + 1] > 0:,→
323 neighbours[57] = floor_plan[l + 1, i - 2, j + 1]



60 A. Python Code

324 elif floor_plan[l + 1, i - 1, j] > 0:
325 neighbours[48] = floor_plan[l + 1, i - 1, j]
326

327 # check middle right
328 if -1 < i < r and -1 < j + 1 < c:
329 if floor_plan[l + 1, i, j + 1] == 0:
330 if -1 < i < r and -1 < j + 2 < c and floor_plan[l +

1, i, j + 2] > 0:,→
331 neighbours[59] = floor_plan[l + 1, i, j + 2]
332 if -1 < i - 1 < r and -1 < j + 2 < c and floor_plan[l

+ 1, i - 1, j + 2] > 0:,→
333 neighbours[58] = floor_plan[l + 1, i - 1, j + 2]
334 if -1 < i + 1 < r and -1 < j + 2 < c and floor_plan[l

+ 1, i + 1, j + 2] > 0:,→
335 neighbours[60] = floor_plan[l + 1, i + 1, j + 2]
336 elif floor_plan[l + 1, i, j + 1] > 0:
337 neighbours[50] = floor_plan[l + 1, i, j + 1]
338

339 # check lower middle
340 if -1 < i + 1 < r and -1 < j < c:
341 if floor_plan[l + 1, i + 1, j] == 0:
342 if -1 < i + 2 < r and -1 < j < c and floor_plan[l +

1, i + 2, j] > 0:,→
343 neighbours[62] = floor_plan[l + 1, i + 2, j]
344 if -1 < i + 2 < r and -1 < j + 1 < c and floor_plan[l

+ 1, i + 2, j + 1] > 0:,→
345 neighbours[61] = floor_plan[l + 1, i + 2, j + 1]
346 if -1 < i + 2 < r and -1 < j - 1 < c and floor_plan[l

+ 1, i + 2, j - 1] > 0:,→
347 neighbours[63] = floor_plan[l + 1, i + 2, j - 1]
348 elif floor_plan[l + 1, i + 1, j] > 0:
349 neighbours[52] = floor_plan[l + 1, i + 1, j]
350

351 # check middle right
352 if -1 < i < r and -1 < j - 1 < c:
353 if floor_plan[l + 1, i, j - 1] == 0:
354 if -1 < i < r and -1 < j - 2 < c and floor_plan[l +

1, i, j - 2] > 0:,→
355 neighbours[65] = floor_plan[l + 1, i, j - 2]
356 if -1 < i + 1 < r and -1 < j - 2 < c and floor_plan[l

+ 1, i + 1, j - 2] > 0:,→
357 neighbours[64] = floor_plan[l + 1, i - 1, j - 2]
358 if -1 < i - 1 < r and -1 < j - 2 < c and floor_plan[l

+ 1, i - 1, j - 2] > 0:,→
359 neighbours[66] = floor_plan[l + 1, i - 1, j - 2]
360 elif floor_plan[l + 1, i, j - 1] > 0:
361 neighbours[54] = floor_plan[l + 1, i, j - 1]
362

363

364 ### check on two floors below
365 if -1 < l - 2 < m:
366 # check middle middle
367 if -1 < i < r and -1 < j < c and floor_plan[l - 2, i, j] > 0:
368 neighbours[0] = floor_plan[l - 2, i, j]
369

370 ### check on two floors above
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371 if -1 < l + 2 < m:
372 # check middle middle
373 if -1 < i < r and -1 < j < c and floor_plan[l + 2, i, j] > 0:
374 neighbours[68] = floor_plan[l + 2, i, j]
375

376 # neighbours.insert(0, l + 6) # register current floor at index
0,→

377

378 rooms.append(neighbours) # save list
379

380 rooms = np.array(rooms) # convert list of lists to numpy array
381 return rooms

A.3.2. Class Room

1 #BAP Q1 2022-2023 Subgroup 2
2 #Room classes Version 5
3 #Coupling between bed, bedsense, organization and the room's neighbours
4 #Enables us to see which room is connected to which bedsense and what the room's

neighbours are.,→
5 #Version 2022/12/09 15:00
6

7 import csv
8 import numpy as np
9

10 import Map_Matrix_5
11

12

13 class Room:
14 #Define the variables which are directly given as input to the instances from the

file,→
15 def __init__(self, roomnumber, bedsensenumber, organization):
16 self.roomnumber = roomnumber
17 self.bedsense = bedsensenumber
18 self.organization = organization
19

20 #Define the variable floor which contains the floor of the room
21 def set_floor(self, floor):
22 self.floor = floor
23

24 #Define the variable map which contains the map with the neighbours of the room
25 def set_neighbours(self, neighbour):
26 self.map = neighbour
27

28 # Define the variable bedsenses which contains the map with the neighbours of the
room in bedsense numbers,→

29 def set_neighbourbedsenses(self, bedsenses):
30 self.bedsenses = bedsenses
31

32 # Define the variable values which contains the map with the values received by
the neighbours of the room,→

33 def set_neighbourvalues(self, values):
34 self.values = values
35

36

37 def import_rooms(Directory, map):
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38 #This function has as input the directory to the coupling file and the directory
to the map file,→

39 #Function that creates an instance for each room, containing the roomnumber,
bedsensenumber and organization,→

40 #Also the variable map is defined for every instance based on the list of maps
coming from Map_Matrix,→

41 #These instances are zipped in a dictionary with as key the bedsensenumber
42 #As output has this function the dictionary and the complete layout of the

building,→
43

44 maps = Map_Matrix_5.map_matrix(map)
45 layout = Map_Matrix_5.floor_plan
46 all_rooms = []
47 i = 0
48 with open(Directory) as d:
49 reader = csv.reader(d)
50 data = list(reader)
51 data = data[1:]
52 bedsensenumbers = np.array(data)[:, 1]
53 for row in data:
54 all_rooms.append(Room(row[0], row[1], row[2]))
55 for neighbour_map in maps:
56 if neighbour_map[22] == float(row[0]):
57 all_rooms[i].set_floor(neighbour_map[69])
58 all_rooms[i].set_neighbours(np.delete(neighbour_map, 69))
59 i += 1
60 all_rooms_dict = dict(zip(bedsensenumbers, all_rooms))
61 return all_rooms_dict, layout

A.3.3. Neighbour Values

1 import math
2 import numpy as np
3

4

5 def Neighbour_values(row, bed, neighbours, bed_bedsense, bedsenses):
6 #This function has as input a row of the grouped data, a Room instance, the

neighbour matrix of the instance, the coupling between bed and bedsense and
the numpy array containing all bedsenseID's

,→
,→

7 #Function that places the neighbour bedsenseID's in a new matrix at the same
place as its corresponding roomnumber,→

8 #Is then places the value received by a bedsense at the same place in a new
matrix as its bedsenseID was,→

9 #Both these matrices are stored in the instance
10 #This function has no outputs
11

12 neighbour_bedsenses = neighbours.copy() #create a copy of the neighbours array
13 for o in range(len(neighbours)):
14 if not math.isnan(neighbours[o]): #check if neighbours[o] is existing
15 index =

bed_bedsense[bed_bedsense['Bed'].isin([int(neighbours[o])])].to_numpy()[0,
1] # Find the rows in dataframe belonging to the neighbours

,→
,→

16 neighbour_bedsenses[o] = index # Add bedsense number to numpy array at
the same location as the roomnumber was,→

17 bed.set_neighbourbedsenses(neighbour_bedsenses) # Add matrix to class instance
bed,→
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18

19 neighbour_values = neighbours.copy() #create a copy of the neighbours array
20 for j in range(len(neighbour_bedsenses)):
21 bed_index = np.where(bedsenses == neighbour_bedsenses[j]) #find index of

neighbour_bedsenses[j] in bedsenses array, which corresponds to index
of rssi received by bedsense in row

,→
,→

22 if np.any(bed_index[0]): #check if bedsense collected any data at all and
thus is existing in row,→

23 neighbour_values[j] = row[bed_index[0]] #add value to new matrix at
same location as bedsense number was,→

24 bed.set_neighbourvalues(neighbour_values) #add matrix to class
25

26 return

A.4. Neighbour Comparison
A.4.1. Neighbour Comparison

1 # BAP Q1 2022-2023 Subgroup 2
2 # Neighbour comparison
3 # Compare measured neighbour RSSI values with each other against the expected

behaviour of neighbour RSSI's,→
4 # Version 4.0 (works with (RSSI-filled) array from Map_Matrix_5_0)
5 # 2022/12/09 10:45
6

7 import numpy as np
8

9

10 def neigh_comp(neighbour_rssi):
11 neighbour_rssi = neighbour_rssi[:69] # make sure floor number is removed
12 neighbour_rssi = [-200 if 0 < i != np.nan else i for i in neighbour_rssi] # if

value is roomnumber, room received signal weakly, say -200dB,→
13

14 dict_neighbours = {
15 0: [[1, -0.5479832539398328], [10, 0.6466971013818766], [11, 0.7220582450858175],

[12, 0.7220582450858175],,→
16 [13, 0.6466971013818766], [14, 0.7220582450858175], [15,

0.7220582450858175], [16, 0.6466971013818766],,→
17 [17, 0.7220582450858175], [18, 0.7220582450858175], [19,

0.6466971013818766], [20, 0.7220582450858175],,→
18 [21, 0.7220582450858175], [23, -0.5479832539398328], [24,

-0.5479832539398328], [25, -0.5479832539398328],,→
19 [26, -0.5479832539398328], [27, -0.5479832539398328], [28,

-0.5479832539398328], [29, -0.5479832539398328],,→
20 [30, -0.5479832539398328], [31, 0.6466971013818766], [32,

0.6466971013818766], [33, 0.6466971013818766],,→
21 [34, 0.6466971013818766], [35, 0.6466971013818766], [36,

0.6466971013818766], [37, 0.6466971013818766],,→
22 [38, 0.6466971013818766], [39, 0.6466971013818766], [40,

0.6466971013818766], [41, 0.6466971013818766],,→
23 [42, 0.6466971013818766], [43, 0.6466971013818766], [44,

0.6466971013818766], [45, 0.6466971013818766],,→
24 [46, 0.6466971013818766]],
25 1: [[2, 0.5479832539398328], [3, 0.5479832539398328], [4, 0.5479832539398328],

[5, 0.5479832539398328],,→
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26 [6, 0.5479832539398328], [7, 0.5479832539398328], [8, 0.5479832539398328],
[9, 0.5479832539398328],,→

27 [10, 0.6904005902711063], [11, 0.7610035763163452], [12,
0.7610035763163452], [13, 0.6904005902711063],,→

28 [14, 0.7610035763163452], [15, 0.7610035763163452], [16,
0.6904005902711063], [17, 0.7610035763163452],,→

29 [18, 0.7610035763163452], [19, 0.6904005902711063], [20,
0.7610035763163452], [21, 0.7610035763163452],,→

30 [31, 0.6904005902711063], [32, 0.6904005902711063], [33,
0.6904005902711063], [34, 0.6904005902711063],,→

31 [35, 0.6904005902711063], [36, 0.6904005902711063], [37,
0.6904005902711063], [38, 0.6904005902711063],,→

32 [39, 0.6904005902711063], [40, 0.6904005902711063], [41,
0.6904005902711063], [42, 0.6904005902711063],,→

33 [43, 0.6904005902711063], [44, 0.6904005902711063], [45,
0.6904005902711063], [46, 0.6904005902711063]],,→

34 2: [[10, 0.6466971013818766], [11, 0.7220582450858175], [12,
0.7220582450858175], [13, 0.6466971013818766],,→

35 [19, 0.6466971013818766], [20, 0.7220582450858175], [21,
0.7220582450858175], [31, 0.6466971013818766],,→

36 [32, 0.6466971013818766], [34, 0.6466971013818766]],
37 3: [[10, 0.6466971013818766], [11, 0.7220582450858175], [12,

0.7220582450858175], [13, 0.6466971013818766],,→
38 [31, 0.6466971013818766], [32, 0.6466971013818766]],
39 4: [[10, 0.6466971013818766], [11, 0.7220582450858175], [12,

0.7220582450858175], [13, 0.6466971013818766],,→
40 [14, 0.7220582450858175], [15, 0.7220582450858175], [16,

0.6466971013818766], [31, 0.6466971013818766],,→
41 [32, 0.6466971013818766], [33, 0.6466971013818766]],
42 5: [[13, 0.6466971013818766], [14, 0.7220582450858175], [15,

0.7220582450858175], [16, 0.6466971013818766],,→
43 [32, 0.6466971013818766], [33, 0.6466971013818766]],
44 6: [[13, 0.6466971013818766], [14, 0.7220582450858175], [15,

0.7220582450858175], [16, 0.6466971013818766],,→
45 [17, 0.7220582450858175], [18, 0.7220582450858175], [19,

0.6466971013818766], [32, 0.6466971013818766],,→
46 [33, 0.6466971013818766], [34, 0.6466971013818766]],
47 7: [[16, 0.6466971013818766], [17, 0.7220582450858175], [18,

0.7220582450858175], [19, 0.6466971013818766],,→
48 [33, 0.6466971013818766], [34, 0.6466971013818766]],
49 8: [[16, 0.6466971013818766], [17, 0.7220582450858175], [18,

0.7220582450858175], [19, 0.6466971013818766],,→
50 [20, 0.7220582450858175], [21, 0.7220582450858175], [31,

0.6466971013818766], [33, 0.6466971013818766],,→
51 [34, 0.6466971013818766]], 9: [[10, 0.6466971013818766], [31,

0.6466971013818766], [34, 0.6466971013818766]],,→
52 10: [[11, 0.5841603716167574], [12, 0.5841603716167574], [20,

0.5841603716167574], [21, 0.5841603716167574],,→
53 [23, -0.6904005902711063], [24, -0.6904005902711063], [25,

-0.6904005902711063], [29, -0.6904005902711063],,→
54 [30, -0.6904005902711063]],
55 11: [[13, -0.5841603716167574], [23, -0.7610035763163452], [24,

-0.7610035763163452], [25, -0.7610035763163452],,→
56 [35, -0.5841603716167574], [36, -0.5841603716167574], [37,

-0.5841603716167574], [38, -0.5841603716167574]],,→
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57 12: [[13, -0.5841603716167574], [23, -0.7610035763163452], [24,
-0.7610035763163452], [25, -0.7610035763163452],,→

58 [35, -0.5841603716167574], [36, -0.5841603716167574], [37,
-0.5841603716167574], [38, -0.5841603716167574]],,→

59 13: [[14, 0.5841603716167574], [15, 0.5841603716167574], [23,
-0.6904005902711063], [24, -0.6904005902711063],,→

60 [25, -0.6904005902711063], [26, -0.6904005902711063], [27,
-0.6904005902711063]],,→

61 14: [[16, -0.5841603716167574], [25, -0.7610035763163452], [26,
-0.7610035763163452], [27, -0.7610035763163452],,→

62 [38, -0.5841603716167574], [39, -0.5841603716167574], [40,
-0.5841603716167574], [41, -0.5841603716167574]],,→

63 15: [[16, -0.5841603716167574], [25, -0.7610035763163452], [26,
-0.7610035763163452], [27, -0.7610035763163452],,→

64 [38, -0.5841603716167574], [39, -0.5841603716167574], [40,
-0.5841603716167574], [41, -0.5841603716167574]],,→

65 16: [[17, 0.5841603716167574], [18, 0.5841603716167574], [25,
-0.6904005902711063], [26, -0.6904005902711063],,→

66 [27, -0.6904005902711063], [28, -0.6904005902711063], [29,
-0.6904005902711063]],,→

67 17: [[19, -0.5841603716167574], [27, -0.7610035763163452], [28,
-0.7610035763163452], [29, -0.7610035763163452],,→

68 [41, -0.5841603716167574], [42, -0.5841603716167574], [43,
-0.5841603716167574], [44, -0.5841603716167574]],,→

69 18: [[19, -0.5841603716167574], [27, -0.7610035763163452], [28,
-0.7610035763163452], [29, -0.7610035763163452],,→

70 [41, -0.5841603716167574], [42, -0.5841603716167574], [43,
-0.5841603716167574], [44, -0.5841603716167574]],,→

71 19: [[20, 0.5841603716167574], [21, 0.5841603716167574], [23,
-0.6904005902711063], [27, -0.6904005902711063],,→

72 [28, -0.6904005902711063], [29, -0.6904005902711063], [30,
-0.6904005902711063]],,→

73 20: [[23, -0.7610035763163452], [29, -0.7610035763163452], [30,
-0.7610035763163452], [35, -0.5841603716167574],,→

74 [44, -0.5841603716167574], [45, -0.5841603716167574], [46,
-0.5841603716167574]],,→

75 21: [[23, -0.7610035763163452], [29, -0.7610035763163452], [30,
-0.7610035763163452], [35, -0.5841603716167574],,→

76 [44, -0.5841603716167574], [45, -0.5841603716167574], [46,
-0.5841603716167574]],,→

77 22: [[23, 0.7610035763163446], [24, 0.7610035763163446], [25,
0.7610035763163446], [26, 0.7610035763163446],,→

78 [27, 0.7610035763163446], [28, 0.7610035763163446], [29,
0.7610035763163446], [30, 0.7610035763163446],,→

79 [68, 0.7967594858586314]],
80 23: [[35, 0.6904005902711063], [36, 0.6904005902711063], [37,

0.6904005902711063], [38, 0.6904005902711063],,→
81 [44, 0.6904005902711063], [45, 0.6904005902711063], [46,

0.6904005902711063], [56, 0.6904005902711063],,→
82 [57, 0.7610035763163452], [58, 0.7610035763163452], [59,

0.6904005902711063], [65, 0.6904005902711063],,→
83 [66, 0.7610035763163452], [67, 0.7610035763163452], [68,

0.5479832539398328]],,→
84 24: [[35, 0.6904005902711063], [36, 0.6904005902711063], [37,

0.6904005902711063], [38, 0.6904005902711063],,→
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85 [56, 0.6904005902711063], [57, 0.7610035763163452], [58,
0.7610035763163452], [59, 0.6904005902711063],,→

86 [68, 0.5479832539398328]],
87 25: [[35, 0.6904005902711063], [36, 0.6904005902711063], [37,

0.6904005902711063], [38, 0.6904005902711063],,→
88 [39, 0.6904005902711063], [40, 0.6904005902711063], [41,

0.6904005902711063], [56, 0.6904005902711063],,→
89 [57, 0.7610035763163452], [58, 0.7610035763163452], [59,

0.6904005902711063], [60, 0.7610035763163452],,→
90 [61, 0.7610035763163452], [62, 0.6904005902711063], [68,

0.5479832539398328]],,→
91 26: [[38, 0.6904005902711063], [39, 0.6904005902711063], [40,

0.6904005902711063], [41, 0.6904005902711063],,→
92 [59, 0.6904005902711063], [60, 0.7610035763163452], [61,

0.7610035763163452], [62, 0.6904005902711063],,→
93 [68, 0.5479832539398328]],
94 27: [[38, 0.6904005902711063], [39, 0.6904005902711063], [40,

0.6904005902711063], [41, 0.6904005902711063],,→
95 [42, 0.6904005902711063], [43, 0.6904005902711063], [44,

0.6904005902711063], [59, 0.6904005902711063],,→
96 [60, 0.7610035763163452], [61, 0.7610035763163452], [62,

0.6904005902711063], [63, 0.7610035763163452],,→
97 [64, 0.7610035763163452], [65, 0.6904005902711063], [68,

0.5479832539398328]],,→
98 28: [[41, 0.6904005902711063], [42, 0.6904005902711063], [43,

0.6904005902711063], [44, 0.6904005902711063],,→
99 [62, 0.6904005902711063], [63, 0.7610035763163452], [64,

0.7610035763163452], [65, 0.6904005902711063],,→
100 [68, 0.5479832539398328]],
101 29: [[35, 0.6904005902711063], [41, 0.6904005902711063], [42,

0.6904005902711063], [43, 0.6904005902711063],,→
102 [44, 0.6904005902711063], [45, 0.6904005902711063], [46,

0.6904005902711063], [56, 0.6904005902711063],,→
103 [62, 0.6904005902711063], [63, 0.7610035763163452], [64,

0.7610035763163452], [65, 0.6904005902711063],,→
104 [66, 0.7610035763163452], [67, 0.7610035763163452], [68,

0.5479832539398328]],,→
105 30: [[35, 0.6904005902711063], [44, 0.6904005902711063], [45,

0.6904005902711063], [46, 0.6904005902711063],,→
106 [56, 0.6904005902711063], [65, 0.6904005902711063], [66,

0.7610035763163452], [67, 0.7610035763163452],,→
107 [68, 0.5479832539398328]],
108 31: [[47, -0.6904005902711063], [48, -0.6466971013818766], [49,

-0.6466971013818766], [50, -0.6466971013818766],,→
109 [54, -0.6466971013818766], [55, -0.6466971013818766], [68,

-0.6466971013818766]],,→
110 32: [[47, -0.6904005902711063], [48, -0.6466971013818766], [49,

-0.6466971013818766], [50, -0.6466971013818766],,→
111 [51, -0.6466971013818766], [52, -0.6466971013818766], [68,

-0.6466971013818766]],,→
112 33: [[47, -0.6904005902711063], [50, -0.6466971013818766], [51,

-0.6466971013818766], [52, -0.6466971013818766],,→
113 [53, -0.6466971013818766], [54, -0.6466971013818766], [68,

-0.6466971013818766]],,→
114 34: [[47, -0.6904005902711063], [48, -0.6466971013818766], [52,

-0.6466971013818766], [53, -0.6466971013818766],,→
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115 [54, -0.6466971013818766], [55, -0.6466971013818766], [68,
-0.6466971013818766]],,→

116 35: [[47, -0.6904005902711063], [57, 0.5841603716167574], [58,
0.5841603716167574], [66, 0.5841603716167574],,→

117 [67, 0.5841603716167574], [68, -0.6466971013818766]],
118 36: [[47, -0.6904005902711063], [57, 0.5841603716167574], [58,

0.5841603716167574], [68, -0.6466971013818766]],,→
119 37: [[47, -0.6904005902711063], [57, 0.5841603716167574], [58,

0.5841603716167574], [68, -0.6466971013818766]],,→
120 38: [[47, -0.6904005902711063], [57, 0.5841603716167574], [58,

0.5841603716167574], [60, 0.5841603716167574],,→
121 [61, 0.5841603716167574], [68, -0.6466971013818766]],
122 39: [[47, -0.6904005902711063], [60, 0.5841603716167574], [61,

0.5841603716167574], [68, -0.6466971013818766]],,→
123 40: [[47, -0.6904005902711063], [60, 0.5841603716167574], [61,

0.5841603716167574], [68, -0.6466971013818766]],,→
124 41: [[47, -0.6904005902711063], [60, 0.5841603716167574], [61,

0.5841603716167574], [63, 0.5841603716167574],,→
125 [64, 0.5841603716167574], [68, -0.6466971013818766]],
126 42: [[47, -0.6904005902711063], [63, 0.5841603716167574], [64,

0.5841603716167574], [68, -0.6466971013818766]],,→
127 43: [[47, -0.6904005902711063], [63, 0.5841603716167574], [64,

0.5841603716167574], [68, -0.6466971013818766]],,→
128 44: [[47, -0.6904005902711063], [63, 0.5841603716167574], [64,

0.5841603716167574], [66, 0.5841603716167574],,→
129 [67, 0.5841603716167574], [68, -0.6466971013818766]],
130 45: [[47, -0.6904005902711063], [66, 0.5841603716167574], [67,

0.5841603716167574], [68, -0.6466971013818766]],,→
131 46: [[47, -0.6904005902711063], [66, 0.5841603716167574], [67,

0.5841603716167574], [68, -0.6466971013818766]],,→
132 47: [[48, 0.5479832539398328], [49, 0.5479832539398328], [50,

0.5479832539398328], [51, 0.5479832539398328],,→
133 [52, 0.5479832539398328], [53, 0.5479832539398328], [54,

0.5479832539398328], [55, 0.5479832539398328],,→
134 [56, 0.6904005902711063], [57, 0.7610035763163452], [58,

0.7610035763163452], [59, 0.6904005902711063],,→
135 [60, 0.7610035763163452], [61, 0.7610035763163452], [62,

0.6904005902711063], [63, 0.7610035763163452],,→
136 [64, 0.7610035763163452], [65, 0.6904005902711063], [66,

0.7610035763163452], [67, 0.7610035763163452],,→
137 [68, 0.5479832539398328]],
138 48: [[56, 0.6466971013818766], [57, 0.7220582450858175], [58,

0.7220582450858175], [59, 0.6466971013818766],,→
139 [65, 0.6466971013818766], [66, 0.7220582450858175], [67,

0.7220582450858175]],,→
140 49: [[56, 0.6466971013818766], [57, 0.7220582450858175], [58,

0.7220582450858175], [59, 0.6466971013818766]],,→
141 50: [[56, 0.6466971013818766], [57, 0.7220582450858175], [58,

0.7220582450858175], [59, 0.6466971013818766],,→
142 [60, 0.7220582450858175], [61, 0.7220582450858175], [62,

0.6466971013818766]],,→
143 51: [[59, 0.6466971013818766], [60, 0.7220582450858175], [61,

0.7220582450858175], [62, 0.6466971013818766]],,→
144 52: [[59, 0.6466971013818766], [60, 0.7220582450858175], [61,

0.7220582450858175], [62, 0.6466971013818766],,→
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145 [63, 0.7220582450858175], [64, 0.7220582450858175], [65,
0.6466971013818766]],,→

146 53: [[62, 0.6466971013818766], [63, 0.7220582450858175], [64,
0.7220582450858175], [65, 0.6466971013818766]],,→

147 54: [[56, 0.6466971013818766], [62, 0.6466971013818766], [63,
0.7220582450858175], [64, 0.7220582450858175],,→

148 [65, 0.6466971013818766], [66, 0.7220582450858175], [67,
0.7220582450858175]],,→

149 55: [[56, 0.6466971013818766], [65, 0.6466971013818766], [66,
0.7220582450858175], [67, 0.7220582450858175]],,→

150 56: [[57, 0.5841603716167574], [58, 0.5841603716167574], [66,
0.5841603716167574], [67, 0.5841603716167574],,→

151 [68, -0.6466971013818766]], 57: [[59, -0.5841603716167574], [68,
-0.7220582450858175]],,→

152 58: [[59, -0.5841603716167574], [68, -0.7220582450858175]],
153 59: [[60, 0.5841603716167574], [61, 0.5841603716167574], [68,

-0.6466971013818766]],,→
154 60: [[62, -0.5841603716167574], [68, -0.7220582450858175]],
155 61: [[62, -0.5841603716167574], [68, -0.7220582450858175]],
156 62: [[63, 0.5841603716167574], [64, 0.5841603716167574], [68,

-0.6466971013818766]],,→
157 63: [[65, -0.5841603716167574], [68, -0.7220582450858175]],
158 64: [[65, -0.5841603716167574], [68, -0.7220582450858175]],
159 65: [[66, 0.5841603716167574], [67, 0.5841603716167574], [68,

-0.6466971013818766]],,→
160 66: [[68, -0.7220582450858175]],
161 67: [[68, -0.7220582450858175]],
162 68: []
163 }
164

165 comparison_max = 0
166 comparison = 0
167

168 for i in range(len(dict_neighbours)): # for all possible rooms
169 if not(np.isnan(neighbour_rssi[i])): # ... if they exist in current

neighbour model,→
170 for j in range(len(dict_neighbours[i])): # compare them with the

to-be-compared neighbours,→
171 if not(np.isnan(neighbour_rssi[dict_neighbours[i][j][0]])): # ... if

those exist,→
172 weight = dict_neighbours[i][j][1] # appropriate weight for

comparison,→
173 comparison_max += abs(weight) # count for max achievable weight
174

175 if neighbour_rssi[i] >= neighbour_rssi[dict_neighbours[i][j][0]]:
# compare room...,→

176 comparison += weight # comparison as expected -> associate
appropriate weighted TRUE,→

177 else:
178 comparison -= weight # comparison not as expected ->

associate appropriate weighted FALSE,→
179

180 if comparison_max > 0:
181 return comparison/comparison_max # normalized comparison
182 else:
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183 return 0 # if no neighbours exist or could be compared

A.4.2. Comparison Dictionary

1 # BAP Q1 2022-2023 Subgroup 2
2 # Comparison dictionary
3 # Create dictionary to specify which neighbours should be compared with which

neighbours and what weight,→
4 # Version 2.0 (works for Neighbour_Comparison_5_0)
5 # 2022/12/09 00:00
6

7 import numpy as np
8 import pandas as pd
9

10 from Comparison_Weights_4_1 import get_weight
11

12

13 def get_dict_neighbours(data):
14 data = open(data)
15 df_data = pd.read_csv(data, header=None)
16 combi = df_data.to_numpy() # matrix with what neighbours should be compared to

which neighbours,→
17

18 dict_neigh = {} # dictionary containing each neighbour complemented with the
to-be-compared-to neighbours,→

19 for i in range(1, np.shape(combi)[0] - 1): # for each neighbour i
20 rooms = [] # list of neighbours to-be-compared with this neighbour i
21 for j in range(1, np.shape(combi)[1] - 1): # check which neighbours j should

be compared to this neighbour i,→
22 if combi[i, j] == 0: # if it should be compared
23 weight = get_weight(combi[i, -1] + 1, combi[-1, j] + 1) # get weight

of this comparison (roomnumber+1 due to layoutmatrix in
get_weight)

,→
,→

24 if weight: # if neighbours are not expected to be compared at equal
strength -> compare this neighbour,→

25 rooms.append([int(combi[-1, j]), weight]) # save that neighbour
and corresponding comparison weight,→

26

27 dict_neigh[int(combi[i, -1])] = rooms # key for neighbour j with all the
to-be-compared neighbours in "rooms",→

28

29 print("process = %d%%" % (int(i / (np.shape(combi)[0] - 2) * 100))) # print
process as percentage,→

30

31 return dict_neigh
32

A.4.3. Comparison Weights

1 # BAP Q1 2022-2023 Subgroup 2
2 # Compute comparison weights
3 # Compute weight for a comparison of two points depending on their distance to

midpoint using normal distribution for error in RSS,→
4 # Version 4.1 (works with Comparison_Dictionary_2_0) (log-normal instead of normal

distribution),→
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5 # 2022/12/09 00:00
6

7 import math
8 import numpy as np
9 from scipy.stats import norm

10 from scipy.integrate import quad
11

12

13 def probability(dis1, dis2): # it is supposed to be dis1 < dis2
14

15 # [P]
16 # ^ "
17 # |
18 # | "
19 # 0 ---"--dis1---_dis2-------> [x]
20 # | " | |
21 # | - - - -* |
22 # | " |
23 # | - - - - - - - -*
24 # | "
25

26 s1 = 1
27 mean1 = -20 * math.log(dis2, 10) # bigger distance means smaller power
28 var1 = 3
29 s2 = 1
30 mean2 = -20 * math.log(dis1, 10) # smaller distance means larger power
31 var2 = 3
32

33 prob_wrong = quad(lambda x: norm.pdf(x, s1, loc=mean1, scale=var1) * norm.cdf(x,
s2, loc=mean2, scale=var2), -np.inf, np.inf) # probability dis1 > dis2,→

34 prob_correct = 1 - prob_wrong[0] # probability dis1 < dis2
35

36 return prob_correct
37

38

39 def get_weight(room1, room2):
40 # Lay-out matrix (3-D) (2-below - below - level - above - 2-above)
41 # |---|----------------|----------------------|----------------|----|
42 # | | | 46 35 36 | | |
43 # | | 21 10 11 | 31 | 67 56 57 | |
44 # | | 20 9 2 3 12 | 45 30 23 24 37 | 66 55 47 49 58 | |
45 # | 0 | 19 8 1 4 13 | 44 34 29 22 25 32 38 | 65 54 47 50 59 | 68 |
46 # | | 18 7 6 5 14 | 43 28 27 26 39 | 64 53 52 51 60 | |
47 # | | 17 16 15 | 33 | 63 62 61 | |
48 # | | | 42 41 40 | | |
49 # |---|----------------|----------------------|----------------|----|
50

51 # Expectation matrix
52 # - X : 0
53 # - d, a&b : 1
54 # - bd&ad, bb&aa : 2
55 # - s, bi&ai, i : 3
56 # - by&ay : 4
57 # |----|----------------|---------------|----------------|----|
58 # | | | i i i | | |
59 # | | by bi by | s | ay ai ay | |
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60 # | | by bd bd bd by | i d d d i | ay ad ad ad ay | |
61 # | bb | bi bd b bd bi | i s d X d s i | ai ad a ad ai | aa |
62 # | | by bd bd bd by | i d d d i | ay ad ad ad ay | |
63 # | | by bi by | s | ay ai ay | |
64 # | | | i i i | | |
65 # |----|----------------|---------------|----------------|----|
66

67

68 layout_matrix = np.array([[[0, 0, 0, 0, 0, 0, 0],
69 [0, 0, 0, 0, 0, 0, 0],
70 [0, 0, 0, 0, 0, 0, 0],
71 [0, 0, 0, 1, 0, 0, 0],
72 [0, 0, 0, 0, 0, 0, 0],
73 [0, 0, 0, 0, 0, 0, 0],
74 [0, 0, 0, 0, 0, 0, 0]],
75

76 [[0, 0, 0, 0, 0, 0, 0],
77 [0, 0, 22, 11, 12, 0, 0],
78 [0, 21, 10, 3, 4, 13, 0],
79 [0, 20, 9, 2, 5, 14, 0],
80 [0, 19, 8, 7, 6, 15, 0],
81 [0, 0, 18, 17, 16, 0, 0],
82 [0, 0, 0, 0, 0, 0, 0]],
83

84 [[0, 0, 47, 36, 37, 0, 0],
85 [0, 0, 0, 32, 0, 0, 0],
86 [46, 0, 31, 24, 25, 0, 38],
87 [45, 35, 30, 23, 26, 33, 39],
88 [44, 0, 29, 28, 27, 0, 40],
89 [0, 0, 0, 34, 0, 0, 0],
90 [0, 0, 43, 42, 41, 0, 0]],
91

92 [[0, 0, 0, 0, 0, 0, 0],
93 [0, 0, 68, 57, 58, 0, 0],
94 [0, 67, 56, 49, 50, 59, 0],
95 [0, 66, 55, 48, 51, 60, 0],
96 [0, 65, 54, 53, 52, 61, 0],
97 [0, 0, 64, 63, 62, 0, 0],
98 [0, 0, 0, 0, 0, 0, 0]],
99

100 [[0, 0, 0, 0, 0, 0, 0],
101 [0, 0, 0, 0, 0, 0, 0],
102 [0, 0, 0, 0, 0, 0, 0],
103 [0, 0, 0, 69, 0, 0, 0],
104 [0, 0, 0, 0, 0, 0, 0],
105 [0, 0, 0, 0, 0, 0, 0],
106 [0, 0, 0, 0, 0, 0, 0]]])
107

108 expectation_matrix = np.array([[[0, 0, 0, 0, 0, 0, 0],
109 [0, 0, 0, 0, 0, 0, 0],
110 [0, 0, 0, 0, 0, 0, 0],
111 [0, 0, 0, 2, 0, 0, 0],
112 [0, 0, 0, 0, 0, 0, 0],
113 [0, 0, 0, 0, 0, 0, 0],
114 [0, 0, 0, 0, 0, 0, 0]],
115
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116 [[0, 0, 0, 0, 0, 0, 0],
117 [0, 0, 4, 3, 4, 0, 0],
118 [0, 4, 2, 2, 2, 4, 0],
119 [0, 3, 2, 1, 2, 3, 0],
120 [0, 4, 2, 2, 2, 4, 0],
121 [0, 0, 4, 3, 4, 0, 0],
122 [0, 0, 0, 0, 0, 0, 0]],
123

124 [[0, 0, 3, 3, 3, 0, 0],
125 [0, 0, 0, 3, 0, 0, 0],
126 [3, 0, 1, 1, 1, 0, 3],
127 [3, 3, 1, 0, 1, 3, 3],
128 [3, 0, 1, 1, 1, 0, 3],
129 [0, 0, 0, 3, 0, 0, 0],
130 [0, 0, 3, 3, 3, 0, 0]],
131

132 [[0, 0, 0, 0, 0, 0, 0],
133 [0, 0, 4, 3, 4, 0, 0],
134 [0, 4, 2, 2, 2, 4, 0],
135 [0, 3, 2, 1, 2, 3, 0],
136 [0, 4, 2, 2, 2, 4, 0],
137 [0, 0, 4, 3, 4, 0, 0],
138 [0, 0, 0, 0, 0, 0, 0]],
139

140 [[0, 0, 0, 0, 0, 0, 0],
141 [0, 0, 0, 0, 0, 0, 0],
142 [0, 0, 0, 0, 0, 0, 0],
143 [0, 0, 0, 2, 0, 0, 0],
144 [0, 0, 0, 0, 0, 0, 0],
145 [0, 0, 0, 0, 0, 0, 0],
146 [0, 0, 0, 0, 0, 0, 0]]]) # expectation in the

order of distance,→
147

148 distances = [1, math.sqrt(2), 1.5, math.sqrt(3.25), 2] # distance from X at
expectation [0, 1, 2, 3, 4] respectively,→

149

150 exp_room1 = expectation_matrix[np.where(layout_matrix == room1)][0] # find
expectation of neighbour...,→

151 exp_room2 = expectation_matrix[np.where(layout_matrix == room2)][0] # ...
152 # print(room1, exp_room1, room2, exp_room2)
153

154 if exp_room1 < exp_room2:
155 return probability(distances[exp_room1], distances[exp_room2]) # prob of

room1 is closer/stronger then room2 (is pos),→
156 elif exp_room1 > exp_room2:
157 return -probability(distances[exp_room2], distances[exp_room1]) # prob of

room1 is closer/stronger then room2 (is neg),→
158 else:
159 return False
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A.4.4. The Comparison Table

Figure A.1: The comparison table used by the comparison_dictionary algorithm to determine all to-be-compared neighbour pairs
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A.5. History Check
A.5.1. History Check

1 # History Check
2 # BAP Q1 2022-2023 Subgroup 2
3 # 2022/11/30
4 # Version 3.0
5

6 # Calculates whether ot not it is possible that a resident can be at a given location
based on the previous location.,→

7 # This is accomplished by stating at the previous location and filling the hallway
with the distance from the start,→

8 # point (starting at 0, descending) until it reaches its destination. It then checks
this distance against the,→

9 # maximum achievable distance based on velocity and difference in time
10

11 import numpy as np
12 import pandas as pd
13

14 # Shows which coordinates are the direct neighbours of the current point (2D)
15 def lookaround(x, y, dimensions):
16 neighbours = [(x - 1, y), (x + 1, y), (x, y - 1), (x, y + 1)]
17 # Prevents going out of bounds
18 for n in neighbours:
19 if not 0 <= n[0] <= dimensions[0] - 1 or not 0 <= n[1] <= dimensions[1] - 1:
20 neighbours.remove(n)
21 return neighbours
22

23

24 # Determines the shortest distance between two points in a two-dimensional map by
filling the hallway squares with,→

25 # distances from the start point until it encounters the end point, after which it
returns its current distance counter.,→

26 # Inputs: Nursingmap = the two-dimensional matrix map of the target floor of
the nursing home,→

27 # CurLoc, PrevLoc = the two-dimensional coordinates of the start and end
points,→

28 def distancecalc(Nursingmap, CurLoc, PrevLoc):
29 disCounter = 0 # The distance from the start point (starts at 0, descending)
30 dimensions = Nursingmap.shape # Extract the dimensions of the map matrix
31 completed = 0 # Indicates whether the algorithm has finished running and exits

the loop,→
32 TimeoutCounter = 0 # tracks the number od runs to detect infinite loops
33 checkList = list() # List to be filled with hallway coordinates
34 # Skip entire calculation if start and end points are the same and return

distance = 0,→
35 if CurLoc == PrevLoc:
36 pass
37 else:
38 # Go through the entire matrix
39 for i in range(dimensions[0]):
40 for j in range(dimensions[1]):
41 # Determine start location based on previously measured point
42 if (i, j) == (PrevLoc):
43 startCord = (i, j)
44 # And save the locations of the hallways
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45 elif Nursingmap[i, j] == 0:
46 extension = (i, j)
47 checkList.append(extension)
48

49 # Start the first iteration from the start point
50 firstit = lookaround(startCord[0], startCord[1], dimensions)
51 for s in firstit:
52 if Nursingmap[s] == 0:
53 Nursingmap[s] = disCounter - 1
54 disCounter -= 1
55

56 # Walk through every point along the hallway (0) and keep track of how many
steps were taken,→

57 while completed == 0:
58 # Go through checklist with hall points
59 for k in checkList:
60 # If they are at the edge of the mapped field
61 if Nursingmap[k] == disCounter:
62 # Look around
63 itpoints = lookaround(k[0], k[1], dimensions)
64 for i in itpoints:
65 # Check if the target room is encountered
66 if i == CurLoc:
67 # If true, exit the loop
68 completed = 1
69 break
70 # Check if point is a hallway
71 elif Nursingmap[i] == 0:
72 # Assign a new distance
73 Nursingmap[i] = disCounter - 1
74 disCounter -= 1
75 TimeoutCounter += 1
76

77 # Return 0 if timed out
78 if TimeoutCounter >= 1000:
79 disCounter = 10000000
80 break
81 return abs(disCounter)
82

83

84 # Main algorithm When start and end are on the same floor, it simply finds the
shortest route using the distancecalc,→

85 # function. If start and end points are on different floors, we first find the
closest staircase that leads in the,→

86 # right direction and enter the next floor. Then we will go to the next floor and
repeat until we are on the same floor.,→

87 # From there we walk from the staircase to the desired end point.
88 # Inputs: deltaT = time since last measurement
89 # threeDmap = the three-dimensional matrix map of the nursing home
90 # CurLoc, PrevLoc = the room numbers of the current and the previous

locations,→
91 # It outputs whether it is possible to travel the calculated route in the given time

(1) or not (0),→
92 def threeDhistory(deltaT, threeDmap, CurLoc, PrevLoc):
93 velocity = .05 # Velocity in squares per second
94 Nursingmap = threeDmap.copy() # Store a copy of the inputted map
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95 dimensions = Nursingmap.shape # Extract the dimensions of the map matrix
96 maxDistance = 3 + (velocity * deltaT) # Evaluates the maxed distance traveled in

Delta T,→
97 stairList = list() # List to be filled with stairway coordinates
98 liftlist = list() # List to be filled with lift coordinates
99 distance = 0 # the total distance between two points

100

101 data = "C:\\Users\\borin\\Documents\\BAP\\Hist_Dictionary.csv"
102 df_map = pd.read_csv(data, header=None) # load map from csv
103 dictionary = df_map.to_numpy()
104

105 # If the location has not changed, it is always possible
106 if float(CurLoc) == float(PrevLoc):
107 Checkresult = 1
108 else:
109 # Go through the entire matrix
110 for h in range(dimensions[0]):
111 for i in range(dimensions[1]):
112 for j in range(dimensions[2]):
113 # Determine start location based on previously measured point
114 if Nursingmap[h, i, j] == float(PrevLoc):
115 startCord = (h, i, j)
116 # Determine end location based on currently measured point
117 elif Nursingmap[h, i, j] == float(CurLoc):
118 endCord = (h, i, j)
119 # Save the locations of the stairways
120 elif Nursingmap[h, i, j] == -0.5:
121 extension = (h, i, j)
122 stairList.append(extension)
123 # Save the locations of the lifts
124 elif Nursingmap[h, i, j] == -1.5:
125 extension = (h, i, j)
126 liftlist.append(extension)
127

128 # Transform start and end coordinates to 2D, also save the start floor map
and the floor number,→

129 begin = (startCord[1], startCord[2])
130 finish = (endCord[1], endCord[2])
131 floor = startCord[0]
132 floormap = Nursingmap[floor, :, :]
133

134 # If start and end points are on the same floor
135 if startCord[0] == endCord[0]:
136 # Perform 2D distancecalc
137 distance = distancecalc(floormap, begin, finish)
138 else:
139 # Set current location to begin
140 currentlocation = begin
141 while floor != endCord[0]:
142 # Look for the lifts and stairs on the same floor which goes in the

desired direction,→
143 # Create empty lists to be filled with (2D) lifts and staircases on

the same floor,→
144 lifts = list()
145 staircases = list()
146 # Find all lifts that go in the right direction
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147 for lift in liftlist:
148 if lift[0] == floor:
149 # convert coordinates to 2D
150 samefloorlift = (lift[1], lift[2])
151 # If target is above current floor
152 if endCord[0] < floor:
153 # And lift below exists
154 liftexitsts = liftlist.count((floor - 1, lift[1],

lift[2])),→
155 if liftexitsts > 0:
156 # Append to lifts list (2D)
157 lifts.append(samefloorlift)
158 newfloor = floor - 1
159 # If target is below current floor
160 else:
161 # And lift above exists
162 liftexitsts = liftlist.count((floor + 1, lift[1],

lift[2])),→
163 if liftexitsts > 0:
164 # Append to lifts list (2D)
165 lifts.append(samefloorlift)
166 newfloor = floor + 1
167

168 # Find all stairs that go in the right direction
169 for stair in stairList:
170 if stair[0] == floor:
171 # convert coordinates to 2D
172 samefloorstair = (stair[1], stair[2])
173 # If target is above current floor
174 if endCord[0] < floor:
175 # And stair below exists
176 stexitsts = stairList.count((floor - 1, stair[1],

stair[2])),→
177 if stexitsts > 0:
178 # Append to staircases list (2D)
179 staircases.append(samefloorstair)
180 newfloor = floor - 1
181 # If target is below current floor
182 else:
183 # And stair above exists
184 stexitsts = stairList.count((floor + 1, stair[1],

stair[2])),→
185 if stexitsts > 0:
186 # Append to staircases list (2D)
187 staircases.append(samefloorstair)
188 newfloor = floor + 1
189

190 # Now we have created a list of lifts and stairs on the current floor
191 # Search for the closest viable lift and take it if it exists
192 closestobjectdistance = 10000 # Distance to the closest staircase

(initially set far away),→
193 # Search for the closest viable staircase to the current position
194 for elevator in lifts:
195

196 tdist = distancecalc(floormap, currentlocation, elevator)
197 if tdist <= closestobjectdistance:
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198 closestobjectdistance = tdist
199 # Remember the 2D coordinates of this stair
200 closestobject = elevator
201 # If no (close) lifts were encountered, find the closest stair
202 if closestobjectdistance == 10000:
203 # Search for the closest viable staircase to the current position
204 for stcase in staircases:
205 tdist = distancecalc(floormap, currentlocation, stcase)
206 if tdist <= closestobjectdistance:
207 closestobjectdistance = tdist
208 # Remember the 2D coordinates of this stair
209 closestobject = stcase
210 # Change location parameters the closest object (lift or stair)
211 floor = newfloor # Move to the new floor
212 currentlocation = closestobject # Set location to the

location of the object,→
213 distance += closestobjectdistance + 1 # Increase the distance

accordingly,→
214 floormap = Nursingmap[floor, :, :] # Load floormap of new floor
215

216 # Walk over the current floor to the end point
217 distance += distancecalc(floormap, currentlocation, finish)
218

219 # If somewhere something timer out, return -1
220 if distance >= 10000000:
221 Checkresult = -1
222 # Check if measured distance is realistic
223 # if distance <= maxDistance:
224 # Checkresult = 1
225 else:
226 # print("Measured distance is", distance, " and Max distance is",

maxDistance),→
227 Checkresult = dictionary[int(round(maxDistance, 0))][distance]
228 return Checkresult
229

A.5.2. History Probability

1 # History Probability
2 # BAP Q1 2022-2023 Subgroup 2
3 # 2022/12/06
4 # Version 1.1
5 #
6 # Takes the values for measured distance and max distance from the History Check

file. Then it plots a normal,→
7 # distribution around the measured distance to create a probability density function

of this measured distance. This is,→
8 # then multiplied it with a filter function based on the calculated maximum distance

and integrates it to obtain an,→
9 # overall likelihood

10

11 import math
12 from scipy.stats import norm
13 from scipy.integrate import quad
14

15



A.6. Ratings on Map 79

16 # The main function, functionality described above
17 def hist_prob(measureddistance, max_distance):
18 # The variance of the normal distribution
19 var = 1.3 + 0.09 * measureddistance
20 # The integration range
21 r = measureddistance + 100
22 # The main function
23 p_x = quad(lambda x: cdf_maxdist(x, max_distance) * norm.pdf(x,

loc=measureddistance, scale=var), -r, r),→
24 return p_x[0]
25

26

27 # Creates a maximum distance filter based on the actual statistical properties
associated with it,→

28 def cdf_maxdist(p, maximumdistance):
29 # The variance of the PDF
30 vartwo = 0.069 * (maximumdistance**2) + 0.09 * measureddistance
31 # Translates PDF into CDF
32 p_x = quad(lambda m: norm.pdf(m, loc=maximumdistance, scale=vartwo), -100, p)
33 return 1 - p_x[0]

A.5.3. History Dictionary

1 import numpy as np
2 import Hist_probability_1_1 as prob
3

4 # Creates a dictionary of precomputed hist_prob values in order to significantly
speed up real time calculations,→

5 def hist_lib(d_meas_it, d_max_it):
6 d_library = np.empty((d_max_it, d_meas_it))
7 for d_max in range(d_max_it):
8 for d_meas in range(d_meas_it):
9 p = prob.hist_prob(d_meas, d_max)

10 print(p)
11 d_library[d_max][d_meas] = p
12 return d_library

A.6. Ratings on Map
A.6.1. Map Rating

1 # BAP Q1 2022-2023 Subgroup 2
2 # Ratings RSSI on floor plan
3 # Create .csv with all rooms that received the signal replaced by the index

indicating the order in which they received,→
4 # Version 1.0
5 # 2022/12/04 12:30 Corné
6

7 import numpy as np
8 import pandas as pd
9 from datetime import datetime

10

11 from Coupling_bed_bedsense_2 import Couplings
12 from Data_2 import Data
13 from Map_FloorPlan_1 import map_floorplan
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14

15

16 def map_rating(data_couplings, data_measurements, data_map):
17 # Get some data
18 coupling = Couplings(data_couplings) # get coupling data
19 measurements, bedsenses = Data(data_measurements) # get measurement data
20 floor_plan = map_floorplan(data_map) # get floor plan data
21

22 time = measurements[:, 0] # time column
23 data = measurements[:, 1:] # RSSI columns
24

25 ratings_on_map = [[], []] # final list of time with RSSI rated map
26

27 for i in range(len(data)):
28 floor_plan_copy = floor_plan.copy() # copy of floor_plan to fill ratings for

current measurement,→
29 row = np.nan_to_num(data[i].astype(float), nan=-200) # set all NaN values to

very low RSSI value,→
30

31 row_isorted = np.flip(np.argsort(row)) # create index array of sorted (big
-> small) current-measurement-row,→

32

33 for j in range(len(row_isorted)): # for each measurement (big -> small)
34 if row[row_isorted[j]] > -200: # check if value was measured at all

(note, -200 was NaN),→
35 index_couplings = int(np.where(coupling[:, 1] ==

bedsenses[row_isorted[j]])[0]) # find bedsense in couplings...,→
36 room = coupling[index_couplings, 0] # and find belonging room number
37

38 for k in range(len(floor_plan)): # find room number in floor_plan
(np.where() not working here...),→

39 for l in range(len(floor_plan[0])):
40 for m in range(len(floor_plan[0, 0])):
41 if floor_plan[k, l, m] == room:
42 floor_plan_copy[k, l, m] = j + 1 # put strength of

measurement in floor_plan_copy,→
43

44 timestamp = datetime.fromtimestamp(time[i]/1000) # set timestamp to
date-and-time,→

45

46 ratings_on_map[0].append(timestamp) # save time of measurement
47 ratings_on_map[1].append(floor_plan_copy) # save rating of measurement
48

49 return ratings_on_map
50

51

52 np.set_printoptions(suppress=True) # get rid of scientific E-notation
53 print("processing data")
54

55

56 # ADJUST THIS ...
57 data_measurements = "/Users/corneploumen/Desktop/BAP/Data/Floor 6 - grouping 5s (max)

- 16.50.19-17.05.16.csv",→
58 output_filename = "Floor 6 - grouping 5s (max) - 16.50.19-17.05.16"
59

60
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61 # DO NOT ADJUST #################
62 data_map = "/Users/corneploumen/Desktop/BAP/Data/textual_map_laurens_blijdorp - Floor

5-10.csv",→
63 data_couplings = "/Users/corneploumen/Desktop/BAP/Data/koppelingen_laurens (w.o. 416B

and 719rechts).csv",→
64

65 ratings_on_map = map_rating(data_couplings, data_measurements, data_map) # Calling
the function,→

66

67 print("exporting")
68 df = pd.DataFrame(ratings_on_map)
69 df.to_csv("Rating on map - %s.csv" % (output_filename))

A.6.2. Couplings (adjusted)

1 # BAP Q1 2022-2023 Subgroup 2
2 # Coupling bed bedsense
3 # Return np.array with room number in column 0 and bedsense number in column 1
4 # Version 2.0
5 # 2022/12/04 12:30 Corné
6

7 import pandas as pd
8

9

10 def Couplings(directory):
11 data = open(directory)
12 df = pd.read_csv(data)
13 coupling = df.to_numpy()[:, :2]
14

15 return coupling

A.6.3. Data (adjusted)

1 # BAP Q1 2022-2023 Subgroup 2
2 # Data
3 # Extract bedsenses and RSSI values in two separate arrays
4 # Version 2.0
5 # 2022/12/04 12:30 Corné
6

7 import pandas as pd
8 import numpy as np
9 import re

10

11

12 def Data(directory):
13 # To load the data
14 data = open(directory) # This directory if different for everyone so change it

when running the code,→
15 df = pd.read_csv(data)
16 df = df.apply(pd.to_numeric, errors='coerce') # To convert all unknowns to NaN

values,→
17

18 # Creating the bedsense names
19 column_names = list(df.columns) # Extracting headers from dataframe
20 bedsenses = [] # Create empty list for bedsenses
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21 for name in column_names:
22 new_name = re.sub('\D', '', name) # Delete all non-numeric characters from

list of headers,→
23 bedsenses.append(new_name) # Add new headernames to bedsenses list
24

25 bedsenses[:] = [bed for bed in bedsenses if bed] # Delete all empty headers
26 bedsenses = [eval(bed) for bed in bedsenses]
27 bedsenses = np.array(bedsenses) # Transform bedsenses list into numpy array
28

29 df = df.to_numpy() # Converting dataframe to a numpy array
30

31 # Setting all values below -90 to zero, as it is no longer useful to work with
32 df[df < -90] = np.nan
33

34 return df, bedsenses

A.6.4. Map Floorplan (adjusted version of Map Matrix)

1 # BAP Q1 2022-2023 Subgroup 2
2 # Map to floor plan
3 # create floor_plan 3-D array
4 # Version 1.0
5 # 2022/12/04 12:30 Corné
6

7 import numpy as np
8 import pandas as pd
9

10

11 def map_floorplan(data):
12 data = open(data)
13 df_blueprint = pd.read_csv(data, header=None) # load building's "blueprint" from

csv into dataframe,→
14 blueprint = df_blueprint.to_numpy() # transform dataframe to np.array
15

16 floor_height = (np.shape(blueprint)[0] - 1) / blueprint[0, 0] # height of each
individual map,→

17 floor_plan = []
18 for i in range(int(blueprint[0, 0])):
19 floor_plan.append(blueprint[int(i * floor_height + 1):int((i + 1) *

floor_height + 1), :]) # stack floor maps,→
20 floor_plan = np.array(floor_plan) # 3-D array of entire floor plan (stacked 2-D

floor maps of each floor),→
21

22 return floor_plan

A.7. Multilateration
A.7.1. Multilateration

1 # BAP Q1 2022-2023 Subgroup 2
2 # Localization Algorithm Iteration
3 # Using trilateration, find button's location using every set of 3 bedsenses and

taking the mean of all resulting locations,→
4 # Version 3.0
5 # 2022/11/06 17:00 Corné
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6

7 import numpy as np
8 from datetime import datetime
9

10 import Coupling_bed_bedsense_1_1 as coup
11 import Data_1_0 as sort_data
12 import Trilateration_1_0 as trilat
13 import Inverse_Square_Law_1_0 as isl
14

15

16 def loc_1(loc, directory):
17 # Calling the function Couplings to obtain the beds coupled to the bedsenses
18 coupling, pos = coup.couplings(loc)
19

20 # Calling the function Data to obtain a sorted by 10 sec dataframe and an array
with bedsense numbers,→

21 df, bedsenses = sort_data.data(directory)
22

23 time = df[:, 0] # Time column
24 data = df[:, 1:] # Data columns for all bedsenses
25

26 t = 0
27 j = 0
28 avg_location = np.array([0., 0.])
29 for row in data:
30 mean_location = np.array([0., 0.])
31 i = 0
32 nan = not(np.isnan(row.astype(float))) # Highlight non NaN values in row
33

34 if np.count_nonzero(nan) > 2: # Check if row has more than 2 non NaN values
35 for m in range(len(row)-2): # Itterate over all sets of three bedsenses

measurements,→
36 for n in range(m+1, len(row)-1):
37 for o in range(n+1, len(row)):
38 if m != n and m != o and n != o:
39 tri_dis = np.array([[row[m]], [row[n]], [row[o]]]) #

Distances to button for triangle of bedsenses k, k+1,
and l

,→
,→

40

41 if not(np.any(np.isnan(tri_dis))): # Check if all
distances are non NaN,→

42 pos1 =
pos[pos['Bedsense'].isin([bedsenses[m]])].to_numpy()[0,
1:] # Read coordinates of three bedsenses

,→
,→

43 pos2 =
pos[pos['Bedsense'].isin([bedsenses[n]])].to_numpy()[0,
1:]

,→
,→

44 pos3 =
pos[pos['Bedsense'].isin([bedsenses[o]])].to_numpy()[0,
1:]

,→
,→

45 tri_dis = np.array([np.append(pos1,
isl.inverse_square(tri_dis[0])), np.append(pos2,
isl.inverse_square(tri_dis[1])), np.append(pos3,
isl.inverse_square(tri_dis[2]))]) # Create array
with coordinates + distances

,→
,→
,→
,→

46
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47 location = trilat.trilaterate(tri_dis) # Trilaterate
button with three bedsenses,→

48 if not(np.any(np.isnan(location))): # If
trilateration does not result NaN values,→

49 mean_location += location # Add location to
50 i += 1
51

52 if i > 0:
53 mean_location /= i # Average the locations found by all

trilaterations,→
54 avg_location += mean_location
55 j += 1
56

57 timestamp = datetime.fromtimestamp(time[t]/1000) # Translate time
from milisec to date & time,→

58 t += 1
59

60 print("De drukknop is op ", mean_location, " op tijd ", timestamp)
61

62 else: # If row contains less than three non NaN values
63 data = np.delete(data, t) # Delete row
64 time = np.delete(time, t) # Delete corresponding time
65

66 if j > 15:
67 avg_location /= j
68 j = 0
69

70 timestamp = datetime.fromtimestamp(time[t] / 1000) # Translate time from
milisec to date & time,→

71 t += 1
72

73 print("De drukknop is geschat op ", avg_location, " op tijd ", timestamp)
74 avg_location = np.array([0., 0.])
75 return

A.7.2. Trilateration

1 # BAP Q1 2022-2023 Subgroup 2
2 # Trilateration algorithm
3 # Trilaterate, aka. locate a point in 2D using a set of three ankers
4 # Version 1.0
5 # 2022/11/06 17:00 Corné
6

7 import numpy as np
8

9

10 # Optional alternative (not yet investigated):
https://pypi.org/project/easy-trilateration/,→

11 def trilaterate(distances):
12 p1 = np.array(distances[0, :2]) # Coordinates of each bedsense
13 p2 = np.array(distances[1, :2])
14 p3 = np.array(distances[2, :2])
15

16 r1 = distances[0, -1] # Distance between button and each bedsense
17 r2 = distances[1, -1]
18 r3 = distances[2, -1]
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19

20 # This block applies the basic trilateration math from wikipedia_1 to any case_2
21 # 1: https://en.wikipedia.org/wiki/True-range_multilateration
22 # 2: https://stackoverflow.com/questions/9747227/2d-trilateration
23 v1 = p2-p1
24 v2 = p3-p1
25 e_x = v1/np.linalg.norm(v1)
26 i = np.dot(e_x, v2)
27 e_y = (v2-(i*e_x))/(np.linalg.norm(v2-(i*e_x)))
28 d = np.linalg.norm(v1)
29 j = np.dot(e_y, v2)
30

31 x = ((r1**2)-(r2**2)+(d**2))/(2*d)
32 y = (((r1**2)-(r3**2)+(i**2)+(j**2))/(2*j)) - ((i/j)*x)
33 position = p1+(x*e_x)+(y*e_y)
34

35 return position

A.7.3. Path Loss Model

1 # BAP Q1 2022-2023 Subgroup 2
2 # Path Loss Model
3 # Translate RSSI in dBm to distance (aka the radius of the sphere intersecting the

button and bedsense as its centre),→
4 # Version 1.0
5 # 2022/11/07 15:00
6

7 import math as m
8

9

10 def inverse_square(P_dBm):
11 G = 0.000002 # empirically determined
12 P_tx = 1
13

14 distance = m.sqrt( 1/(4*m.pi) * G * P_tx * 10**(2-P_dBm/10) )
15

16 return distance
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FFEEAATTUURREESS  &&  BBEENNEEFFIITTSS  

 The smallest PCB antenna in 
the market 

 Miniature design allows users 
to save required space 

 Double-side adhesive tape 
makes it easy to install in 
device 

 Ranges of types of connector 
and cable provide a flexible 
design options 

 Halogen free and RoHS 
compliant 

 

AAPPPPLLIICCAATTIIOONNSS  

 Tablet / Desktop PC 

 Internet TV / STB /  
Game console / Camera 

 WiFi network devices  
(IEEE 802.11b/g/n) 

 Bluetooth / ZigBee devices 

 Car Infotainment 

 Smart meter 

 Lighting control 

 POS terminal 

 Wireless Industrial Control 

 

OORRDDEERRIINNGG  IINNFFOORRMMAATTIIOONN  --  GGLLOOBBAALL  PPAARRTT  NNUUMMBBEERR,,  PPHHYYCCOOMMPP  

CCTTCC  &&  1122NNCC  

All part numbers are identified by the series, packing type, material, 
size, antenna type, working frequency and packing quantity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

YYAAGGEEOO  BBRRAANNDD  oorrddeerriinngg  ccooddee  

GLOBAL PART NUMBER (PREFERRED) 

ANT   X150   P   116   B    0868   3  
   (1)    (2)     (3)    (4)    (5)     (6)     (7)   

(1) FAMILY  

ANT = Antenna products 
 

(2) CONNECTOR & CABLE LENGTH (MM) 

X = I-PEX 

150 = 150mm 
 

(3) ANTENNA TYPE 

P=PCB 
 

(4) SERIAL NUMBER 

116 = SERIAL NUMBER 116 
 

(5) PACKAGE TYPE 

B = Bulk 
 

(6) WORKING FREQUENCY 

868 = 860~880MHz 
 

(7) CABLE TYPE 

3 = 1.13mm diameter Mini-Coaxial Cable 
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DESCRIPTION VALUE 

Working Frequency 860~880MHz 

VSWR 2.5:1 max  

Peak Gain 2dBi 

Polarization Linear 

Radiation Pattern Omni-directional 

Impedance 50 Ω Nominal 

Operating Temperature –40 °C to 85 °C 

Maximum Power 1 W 

Dimension 34mm x 7mm x 0.95mm 

Radio Connector I-PEX (20278-112R-13) 

Cable Diameter / Length / Color 1.13mm / 150mm / Black 

Mounting Adhesive Tape (HF-DS) 

 

Table 1    

 

 

OOUUTTLLIINNEESS  

  

 
 

 

Fig. 1 Antenna outlines 

 

 

 

 

DDIIMMEENNSSIIOONNSS  

 

DIMENSION VALUE 

L (mm) 150+-3.00 

W (mm) 34+-0.30 

H (mm) 7+-0.30 

T (mm) 0.95+-0.15 

A (mm) 2.30 Max 

 

Table 2  Mechanical 

Dimension 
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Fig. 2   Return loss & VSWR Measurement 

RREETTUURRNN  LLOOSSSS  &&  VVSSWWRR  

Frequency (GHz) 

Return Loss (dB) 

VSWR 
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Fig. 3   Antenna radiation patterns at 868 MHz 

 

 

 

 

 

Device Coordinates 

AANNTTEENNNNAA  RRAADDIIAATTIIOONN  PPAATTTTEERRNNSS  

AANNTTEENNNNAA  GGAAIINN  &&  EEFFFFIICCIIEENNCCYY  

 

FREQUENCY (GHz) AVERAGE GAIN (dBi) EFFICIENCY (%) PEAK GAIN (dBi) 

860 -2.2 60.4 2.0 

868 -2.0 62.6 2.0 

875 -2.4 57.6 1.6 

880 -2.6 55.6 1.4 

    

 

X-Y Plane 

X-Z Plane Y-Z Plane 

Table 3    

 

 

Scale: 5 dBi / div     Max  : 5 dBi     Min   : -20 dBi 
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REVISION DATE CHANGE NOTIFICATION DESCRIPTION 

Version 0  Jan. 15, 2018 - - New data sheet for PCB type antenna, 860~880MHz application 
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