
A lightweight quadrotor
autonomy system

To navigate in densely cluttered forest
environments

A. Zwanenburg
A solution to safe planning-based navigation
Full autonomy on a 400grams quadrotor
Without the use of GPS, SLAM, or motion-capture systems

A lightweight quadrotor
autonomy system
To navigate in densely

cluttered forest
environments

by

A. Zwanenburg

to obtain the degree of Master of Science
at the Delft University of Technology,

to be defended publicly on Monday January 22, 2024 at 2:00 PM.

Student number: 5413494
Project duration: Januari 5, 2023 – January 22, 2024
Thesis committee: Prof. dr. ir. M. Wisse, TU Delft, Biorobotics, supervisor

Dr. ir. S. Hamanza, TU Delft, BioMorphic Intelligence Lab
Ir. D. Benders, TU Delft, Cognitive Robotics, drone specialist

This thesis is confidential and cannot be made public until January 22, 2024.

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Preface
Welcome to my thesis project about flying small drones autonomously in the rainforest of Singapore.
I was fortunate enough to be asked to assist team Biodivix, a team from TU Delft and multiple other
universities, in building an autonomy system for a competition in which the rainforest’s biodiversity has
to be measured.

Looking back, creating single-handed an autonomous drone capable of executing missions in the rain-
forest was an ambiguous task. Although the developed drone did not function properly in Singapore,
the results of this project are still impressive. Moreover, I learned many things, not only about drone
autonomy, but also about testing and debugging real-world missions in the wild. I took the cover photo
of this report bu myself by another drone in Singapore. This photo emphasizes how wild and diverse
the Singapore Rainforest is.

I am grateful for the opportunity to have gone to Singapore for this competition. In this competition
setup, I was able to see and learn many things about data collection and visualization within a multi-
disciplinary team of roboticists, biologists, and data analysts.

I want to thank Martijn, my supervisor from Robotics, for his support and feedback in the structure and
reports during the project. I would also like to thank Salua, my supervisor at the MAVlab, for her in-
spiration and guidance on this topic, and for arranging the competition in Singapore. Also, I would like
to thank Liming and Seamus, fellow students with whom I worked on the competition, for their support
and pleasant company in the lab and in Singapore.

Lastly, I would like to express my sincere gratitude to Erik, the drone specialist at MAVlab, for his un-
wavering support throughout the project. He assisted me with materials, software issues, supervising
outdoor testing, and provided valuable insights for the drone competition. Erik is also a source of in-
spiration for me in terms of my future aspirations.

I have written this report to help you understand the methods used to obtain the results. My intention is
to present technical details of the methods and results, while providing enough background information
tomake it understandable for those who are technically proficient but not necessarily experts in robotics.
I acknowledge the use of AI in this work. But only to refine text to be clear and coherent, not to create
content.

A. Zwanenburg
Delft, January 2024

1

Abstract

Tropical rainforests, facing imminent threats from deforestation, species extinction, and climate change,
demand effective monitoring solutions. Automated robots, particularly drones, hold promise for ef-
ficiently covering expansive and remote rainforest terrain. This study addresses that challenge by
developing a lightweight autonomy system for rainforest exploration, with a focus on the Rainforest
Competition by the Xprize Foundation.

A comprehensive review of competition rules, challenges, and existing literature on autonomous drone
navigation creates the selection of a dead-reckoning planning-based navigation algorithm. The report
shows the subsequent design, construction, and testing of the drone, emphasizing lightweight engi-
neering for prolonged flight times. Observations from the rainforest competition provide context for an
in-depth investigation into downscaling autonomous navigation and evaluating performance and safety
through simulations based on real forest flights.

The study contributes to autonomous drone navigation in dense and cluttered environments, such as
rainforests, filling a gap in existing literature. The implemented dead-reckoning method showcases
operational efficiency, offering insights for future missions. Research shows the impact of downscaled
autonomy on performance, revealing a tradeoff between processor utilization, obstacle map resolution,
and the resulting navigable gap size. Advancements in downsizing enhance exploration effectiveness,
but limitations like reduced flight speed are acknowledged.

The research highlights the potential for cost-effective drones and extended flight times, emphasizing
the need for future refinement in practical applications for rainforest environments. This work lays the
groundwork for continued improvements in downscaling autonomous drone systems, contributing to
both technological capabilities for autonomous flight and environmental conservation efforts for rain-
forests.

Key findings indicate that safe navigation is achievable through dead-reckoning navigation for down-
scaled autonomous drone navigation with path planning. Increasing obstacle mapping resolution most
effectively reduces processor and memory loads but compromises the drone’s performance in navigat-
ing through narrow gaps.

Contents

1 Introduction 7

2 Background & related work 8
2.1 Objectives and requirements . 8
2.2 Background Xprize Rainforest Competition . 9
2.3 Known challenges for navigation in the rainforest . 10
2.4 Localisation . 10
2.5 Trajectory planning . 11
2.6 Conclusions from literature review. 12

3 System integration 13
3.1 Hardware component selection . 13
3.2 Hardware Autonomy backpack design . 17
3.3 Software for autonomous navigation . 20
3.4 Additional software for outdoor missions in competition 24
3.5 General overview . 29

4 Testing and calibration 31
4.1 Testing system integration . 31
4.2 Outdoor testing and calibration in Dutch forests . 33
4.3 Airworthyness test Xprize Competition Singapore . 34

5 Difficulties in rainforest environments 36
5.1 Environment . 36
5.2 Connectivity. 37
5.3 Sensors . 37
5.4 Mission . 38
5.5 Requirements. 38
5.6 Challenges summarised . 39

6 Downscaling: the tradeoff between performance and processor load 40
6.1 Performance metrics . 40
6.2 Dataset recording. 49
6.3 Running simulations . 53
6.4 Data analysis . 55
6.5 Downscaling applied . 63
6.6 Conclusions on downscaling. 63

7 Conclusion 64

References 66

A Literature research - relevant path planning methods 67
A.1 FASTER-Planner . 67
A.2 EGO-Planner . 69
A.3 Swarm in the wild. 70
A.4 REAL-Planner . 71

B Design Autonomy Backpack 72
B.1 Mechanical design . 72
B.2 Electric design . 74
B.3 Software design . 75
B.4 Outdoor mission components . 77

1

Contents 2

C Dataset creation 79
C.1 Record dataset indoors . 79
C.2 Record dataset outdoors . 81
C.3 Content of dataset recordings . 82
C.4 Localisation comparison . 87

D Analysis EGO-planner processes 89
D.1 Algorithm structure . 89
D.2 CPU load . 89
D.3 Memory usage and map size . 90
D.4 Loop duration for sub-processes . 92
D.5 Simulation visual comparison performance . 97

E Further considerations 98
E.1 EGO-planner and drone improvement for use in the wild 98
E.2 Downscaling research .100

F Downscaling applied 101
F.1 Module design .101
F.2 Software adaptations and configuration .103
F.3 Results .104

Nomenclature
BVLOS Beyond Visual Line of Sight

CAAS Civil Aviation Authority of Singapore

CAD Computer Aided Design

CPU Central Processing Unit / processor

CTR Control (air)Traffic Zone

DNN Deep Neural Network

eDNA environmental DNA

EMC Electromagnetic Compliance

ENU East, North, Up coordinate system

GPS Global Position System

IMU Internal Measuring Unit

LLA Latitude, Longitude, Altitude coordinate system

MAV Micro Air Vehicle

NED North, East, Down coordinate system

NN Neural Network

QP Quadratic program

RC Radio Controller

ROS Robot Operating System

RRT Rapidly-exploring Random Tree

RVIZ ROS Visualiser

SLAM Simultaneous Localisation And Mapping

SSH Secure Shell, communicate protocol

VINS Visual Inertial location estimator

VPN Virtual Private Network

3

List of Figures

2.1 Rainforest vegetation layer categories, from competition guidelines [3] 9
2.2 Illustration of EGO-planner functionality [18]. 12

3.1 Odroid XU4 [22] . 15
3.2 3D model of autonomy backpack . 17
3.3 Exploded view of mechanical design Autonomy Backpack. With component annotations 18
3.4 Compact version wiring diagram and connection scheme Odroid XU4 20
3.5 Drone system architecture for autonomous navigation in the rainforest 20
3.6 Voxel-grid map examples with cluttered environment on the left and structured environ-

ment on the right . 22
3.7 Visualisation of mapping, path generation, and path tracking 23
3.8 Singapore Airspace visualizer by Garuda Robotics [26] 25
3.9 Geofencing kill function for redundancy. Example overlay on an image from Google Earth. 26
3.10 Illustration of GPS waypoint to Cartesian goal conversion 28

4.1 Testing and calibration of autonomy system in Dutch forest 34

6.1 Illustration of depth image projection [27] . 42
6.2 Illustration of skipping 2 out of 3 pixels in the projection step 42
6.3 Illustration of raycasting process. After being raycasted, the red blocks are removed

from the obstacle map. 44
6.4 Illustration of local map range problem with wide obstructions where navigation goes into

infinite loop . 45
6.5 Illustration of minimum gap size for a set of configurations 46
6.6 Illustration of minimum gap size for a gap diagonal to the grid axis 47
6.7 GPS spectrum analysis for antenna atop electronics (blue line) and antenna outside

drone frame (black line) . 51
6.8 VINS feature tracking in the infrared image . 52
6.9 The drone’s 3D position estimation of VINS-fusion and IMU visualized alongside the

tracked features. 52
6.10 Image of drone flying autonomously in the forest for the forest dataset recording 53
6.11 Screenshot RVIZ - ego-planner visualisation for forest dataset 53
6.12 Example of running automated simulations on the drone’s processor by a tablet with

SSH terminal . 54
6.13 Data structure of simulation results for analysis in Python 55
6.14 CPU load distribution example. Left: time graph for CPU in simulation set. Middle: CPU

load distribution per simulation, with perception only. Right: CPU load distribution per
simulation, with planning . 56

6.15 CPU load vs minimum solvable gap size for path planning [varying voxelgrid 0.05m-0.20m] 57
6.16 Memory load vs minimum solvable gap size for path planning [varying voxel grid 0.05m-

0.20m] . 58
6.17 CPU load vs minimum guaranteed detectable object size 58
6.18 CPU load vs maximum solvable obstruction width . 59
6.19 CPU load vs maximum time delay for reactiveness collision detection 60
6.20 Tradeoff Safety-vs-Performance, with the Pareto-fronts for utilisation of different percent-

ages of the processor . 61
6.21 Obstacles in forest dataset (grey), with overlays of localisation by IMU (red dots), VINS

(green line), and GPS (purple dots) . 62
6.22 Solidworks 3D model of Tello drone with autonomy system 63

4

List of Figures 5

A.1 FASTER-planner method illustrated [29]. Unexplored space is light blue, obstacles are
orange. One obstacle is unknown indicated by a dotted line. 68

A.2 EGO-planner functionality illustrated [18]. The trajectory is planned by utilizing the gra-
dient fields of obstacles to navigate around them. 69

A.3 Preserving and reforming drone swarm formation to avoid obstacles in a forest, as seen
from a top-down view [19]. 70

A.4 REAL [20] sampling peacock trajectories (purple and blue) and selecting the one with
the highest reward to the goal. 71

B.1 3D backpack design screenshot in Solidworks . 72
B.2 Rendering of 3D backpack design in Solidworks . 73
B.3 Wiring scheme Odroid XU4 . 74
B.4 Connection scheme Odroid XU4, exclusive USB modules 75
B.5 Drone system architecture for autonomous navigation in the rainforest 75
B.6 ROS RQT Graph, which shows the network structure for nodes and topics 76
B.7 Alternative created ground station for flight monitoring 77
B.8 Alternative created geofencing plotted on satellite image map 78

C.1 Varying gap size test (60cm), top-view, in Cyberzoo for indoor dataset 80
C.2 Reactive flight test, slow (0.5 m/s), top-view, in Cyberzoo for indoor dataset 80
C.3 Image of drone flying autonomously in the forest for the forest dataset recording 81
C.4 Screenshot RVIZ - ego-planner visualisation for forest dataset 82
C.5 Infrared image from dataset at 18.1 seconds . 85
C.6 Depth image from dataset at 18.1 seconds . 85
C.7 Top-view of mapped 3D environment in dataset and the flown path 86
C.8 Side-view of mapped 3D environment in dataset and the flown path 86
C.9 Front-view of mapped 3D environment in dataset and the flown path 86
C.10 Tracking features in image with VINS . 87
C.11 Mapping 3D tracked points with VINS . 87
C.12Drone system architecture for autonomous navigation in the rainforest 88

D.1 Psuedo code for collision detection and path rebound by [18] 89
D.2 CPU load EGO-planner for 1 core. Varying voxel grid resolution 90
D.3 CPU load EGO-planner for 1 core. Varying depth image resolution 90
D.4 Loop durations sub-processes EGO-planner perception. Varying voxel grid resolution . 92
D.5 Loop times sub-processes EGO-planner perception. Varying depth image resolution . . 93
D.6 Loop durations sub-processes EGO-planner planning. Varying voxel grid resolution . . 94
D.7 Loop durations sub-processes EGO-planner planning. Varying depth image resolution . 95
D.8 Loop durations sub-processes EGO-planner collision check. Varying voxel grid resolution 96
D.9 Loop durations sub-processes EGO-planner collision check. Varying depth image reso-

lution . 96
D.10 Two simulations overlaid in Rviz with different local-planner-range configurations 97

F.1 Raspbery Pi Zero2w [30] . 101
F.2 Arducam TOF depth camera [31] . 102
F.3 DJI Tello drone [32] . 102
F.4 DC step-up converter 5V 2A [33] . 102
F.5 Solidworks 3D model of Tello drone with autonomy system 103
F.6 Topview of test environment with Tello drone . 105
F.7 Rviz with depth image, obstacle mapping, and planned trajectories for Tello drone . . . 106
F.8 Rviz screenshot. Tello drone plans a path over a plant. 106

List of Tables

3.1 Comparison Speedybee and Bebop 2 drone platform. score 1 (worst) to 5(best) 15
3.2 Weight and cost overview for autonomy backpack . 19

4.1 Observed position estimate drift over different lengths of time 31

6.1 Per performance test, the settings and variations for the simulations 49

D.1 Test memory usage for total map size . 91

F.1 Measured flight times for Bebop and Tello drone with different payloads for autonomy . 104

6

1
Introduction

Tropical rainforests are vital ecosystems that face numerous threats, including deforestation, species
extinction, and the consequences of climate change. Protecting these indispensable ecosystems is cru-
cial for global well-being. Measuring biodiversity in these environments is essential for understanding
and preserving their delicate balance. However, monitoring rainforests’ expansive and rugged terrain
is a challenging task. The dense vegetation and complex topography present significant obstacles to
researchers and conservationists seeking to gather comprehensive data on the diverse flora and fauna
within these ecosystems.

Robots, specifically drones, have emerged as a promising solution to cover extensive and remote ar-
eas efficiently. While aerial imagery captures valuable insights from above, the dense canopy layer
conceals the majority of biodiversity. Navigating inside or beneath this layer poses a significant chal-
lenge due to the dense vegetation. Drones equipped to explore and measure the diverse environment
under the canopy must navigate adeptly without mishaps, given the challenging recovery options in
these remote areas.

This report details a thesis project that aimed to develop a lightweight quadrotor autonomy system
for safely navigating densely cluttered forest environments. The project involved creating a drone for
measuring biodiversity in the rainforest of Singapore, where researchers face numerous challenges
when trying to collect data. The necessity for these robots is underscored by the Xprize Foundation,
which created the Rainforest Competition in Singapore to assess biodiversity in remote rainforest ar-
eas. Using small autonomous systems for rainforest navigation is crucial for improving exploration
efficiency. Previous studies have shown adequate results in autonomous flights in forest conditions.
However, limited research exists on autonomous flight in rainforests, which has its unique complexities.

The primary focus of this research is to develop a lightweight autonomy system capable of safe nav-
igation in rainforest environments with complete onboard processing. A more lightweight system can
either work on the same drone and prolong the flight time or be built on a smaller drone system to be
safer and more cost-effective. The project involved in-depth research on downscaling the autonomous
navigation system on a drone, specifically in rainforest conditions.

In the following chapters, this report will delve into the background and related work, the challenges
encountered in rainforest environments, the methods used in designing and testing the autonomous
drone, downscaling the autonomous navigation, and the conclusions drawn from the project. Through
this comprehensive exploration, the report aims to provide valuable insights for future researchers and
engineers seeking to deploy robotics in challenging natural settings, such as tropical rainforests. By
providing more context on the importance of measuring biodiversity in the rainforest and the challenges
researchers face, this report aims to help readers understand the significance of the work done in this
project.

7

2
Background & related work

To set the stage for this research, a thorough literature review was conducted, aiming to clarify the con-
text of the research question. This involved examining publications related to the research topic and
summarizing the key findings. Delving into the background of the research question was particularly
crucial to meet the specific requirements of the rainforest competition. Understanding the competition
environment, requirements, and team objectives was essential in shaping the research question.

First, the objectives and requirements are elaborated upon. Then the following sections give more
background information on these objectives and requirements. The background and related work re-
search present the best localisation and navigation methods and what challenges to expect in the
rainforest. The primary goal of the literature review is to ensure that the project builds upon and ex-
ploits state-of-the-art technologies, preventing duplication of existing work. The chapter concludes with
a brief summary, highlighting the most promising methods for this project’s work. For an in-depth ex-
ploration of the literature reviewed, please refer to the complete and comprehensive literature report
[1].

2.1. Objectives and requirements
To elaborate on the objectives and requirements mentioned in the introduction, this section details the
objectives, hypothesis, requirements and constraints for this project.

Objective and hypothesis
The objective is to create an autonomous system which is lightweight, can navigate safely, and fits the
Xprize Rainforest challenge requirements. This system must be computationally efficient as it will have
limited computational resources. The goal is to find relations between flight performance and system
downscaling to make the system lightweight and computationally efficient. For this downscaling it is
taken into account the system must navigate safely through dense, cluttered environments, finding
paths through narrow gaps.

Based on previous work, the hypothesis is for the drone to fly with an average speed of 1m/s through
dense vegetation. Also, the drone is expected to find a route through the canopy where the gap is
70cm or wider. Examples from previous work show that a flight time of approximately 15 minutes is the
maximum one can get with a drone containing all resources required to perform the required task.

Requirements and constraints with planning-based navigation
To create a solution for autonomously guiding a drone through a rainforest, some basic assumptions
and limitations are defined to address the challenge effectively.

A crucial requirement is to ensure the drone’s avoidance of crashes. A crash significantly negatively
impacts the team’s score and entails retrieving the drone only after 24 hours of competition. Crashing
potentially leads to a complete system loss due to exposure to rain, dirt, or a significant fall. Concerning
trajectory planning, all obstacles within the rainforest are assumed to be stationary. This simplification

8

2.2. Background Xprize Rainforest Competition 9

reduces the complexity of planning the drone’s path, consequently lowering the computational work-
load.
Another requirement is that the drone is capable of running all computations onboard. Wireless com-
munication with the operator is only for supervising the flight. The drone should be able to continue
operations even when wireless communication drops out.

2.2. Background Xprize Rainforest Competition
This section addresses the complexities of autonomous navigation for drones within the context of the
Xprize competition [2]. It provides a comprehensive overview of the specific constraints imposed by
the Xprize challenge, delineates the tasks expected of the drone, and elucidates the key challenges
associated with drone navigation in this unique scenario.

The primary objective of the Xprize challenge is to evaluate biodiversity in a rainforest environment, ne-
cessitating the detection of various species across different forest layers—ground, understory, canopy,
and emergent layers. These layers are illustrated in figure 2.1. Teams must deploy robots, including
drones or ground robots, to collect data remotely, preferably autonomously, due to restricted access to
the forest area [3]. The competition covers a 100-hectare area, launching robots from a small jungle
hut, and spans 24 hours for exploration and data collection, followed by 48 hours for data processing
and result publication. Because of the fixed competition date, teams have to cope with all weather
conditions.

Figure 2.1: Rainforest vegetation layer categories,
from competition guidelines [3]

The drone developed in this project’s final goal is ex-
ploring the rainforest and collecting image data via its
cameras to identify plant species. In the competition,
dense vegetation compromises GPS reliability under the
canopy; this necessitates the integration of an alter-
native localization method. This chapter underscores
the critical issue of determining a suitable localization
method in a rainforest environment lacking GPS function-
ality.

Given the weak and interrupted signals while flying through
the forest’s understory layer, and the impracticality of re-
mote human piloting, the drone is designed to navigate au-
tonomously. Three primary navigation methods found in the
literature research for autonomous navigation are reactive-
based, neural-network-based, and planning-based naviga-
tion.

As reasoned in the literature research, planning-based
navigation emerges as the most reliable solution for nav-
igating dense vegetation. It demonstrates a high suc-
cess rate in finding a path solution in complex envi-
ronments and a safe method to avoid collisions—a cru-
cial aspect in the Xprize competition. However, this
method demands significantly higher computation com-
pared to neural-network-trained and reactive-based naviga-
tion.

While neural-network-based navigation can facilitate agile
and fast drone movement through complex environments
[4] [5], its efficacy relies on substantial training data from the
specific environment, which is unavailable in this project.
Moreover, its success rate of avoiding collisions is around
80%, falling short of the competition standards.

2.3. Known challenges for navigation in the rainforest 10

Reactive-based navigation, like planning-based navigation, exhibits reliable obstacle avoidance [6].
Related work indicates its efficacy in spacious environments with relatively lightweight sensor and pro-
cessor hardware solutions. However, as environments become denser and more cluttered, this method
faces challenges in finding solutions to traverse further into the forest.

To navigate the understory and canopy layers of the forest with planning-based navigation, specific
system hardware and software components are required. Most related work structures their algorithms
around two main components: mapping of obstacles and path planning. Obstacles are detected using
lidar or depth cameras, and an onboard processor computes collision-free paths. The calculated de-
sired path is then sent to the drone flight controller.

In the subsequent sections, related work on mapping and trajectory planning is presented and com-
pared. To comprehend the most relevant features, the specific requirements and constraints for the
drone in the competition are summarized first.

Conclusion
In conclusion, for the competition, the drone is required to fly under the canopy layer of the rainforest.
Flying under the canopy brings its challenges, such as a dense and cluttered environment in which
navigation needs to find small openings to traverse. Also, under the canopy, the GPS signal is blocked;
thus, another localisationmethod has to be found. Based on previous works, localisation and navigation
will most likely be done with Simultaneous Localisation And Mapping, and with trajectory planning.
The objective of this project is to create an autonomous system that navigates safely through dense,
cluttered environments, finding paths through narrow gaps. Due to unreliable signals in forests, the
drone has to compute all autonomy onboard, and for simplicity, all obstacles are assumed to be static.

2.3. Known challenges for navigation in the rainforest
From related work found in the literature study, some challenging conditions are worth noticing because
these might influence mission performances during testing and the rainforest competition. This section
addresses the relevant challenges described in the literature.

The main challenges highlighted by found literature are poor signal qualities and the cluttered environ-
ment [7] [8] [9]. Poor signal qualities are caused by rapidly degrading radio signals due to humid air
and plants with high water content. The water and moisture adsorb, scatter, and reflect radio signals.
Therefore, GPS signals are scattered and damped, resulting in poor or no reception. This phenomenon
also negatively impacts the signals between the GCS and the drone to send control inputs or receive
telemetry and video data from the drone.

The rainforest environment is can be extremely cluttered, especially the ground and the area up to 5
meters in height. When attempting to navigate a path to reach a destination, the drone must locate
narrow openings to pass through. There is also a possibility that the drone may encounter consecutive
gaps, only to realize it has reached a dead end. In such a cluttered environment, obstacles can also be
difficult to detect since they can be of any color, size, or shape. Tiny objects or objects with low contrast
might not be detected by the depth camera, leading the drone to follow an inefficient path. Moreover,
if the object is detected too late or not at all, the drone might hit the object and crash. The two primary
challenges are blocked GPS signals and the presence of cluttered objects.

2.4. Localisation
Effective navigation relies on trajectory planners utilizing obstacle information to compute collision-free
paths in unmapped forests, crucial for drones [10]. Mapping involves accurately placing 3D scans (lidar
or a 3D camera) in an accumulating map, particularly challenging in areas with limited GPS reception
[11, 12, 13]. What localisation methods are suitable for the drone in this project, and what would be the
best method?

2.5. Trajectory planning 11

Simultaneous Localization and Mapping
Simultaneous Localization and Mapping (SLAM) integrates mapping and localization, estimating the
drone’s position by comparing obstacle maps with recent observations, contributing to continuous map-
ping [14]. In SLAM research, three primary methods are identified: RGB-D data compares depth ob-
servations with the map; Visual SLAM tracks landmarks in images, estimating the camera’s trajectory;
Visual-inertial-SLAM combines camera and IMU data for robust tracking, adaptable to various cameras
[15].

The optimal combination for this project remains undetermined. While color/stereo cameras may en-
hance tracking precision, the risk of processor overload leading to errors must be considered. Incor-
porating IMU data reduces workload, aiding feature tracking without significant impact. RGB-D data
significantly increases computational demands, involving an extensive search to align depth observa-
tions with the 3D map through numerous iterations and minimization of Euclidean distances.

In conclusion, in the rainforest competition, visual-inertial-SLAM appears promising. However, every
3D SLAM method appears to have a high computational demand on the processor. Whether the pro-
cessor can handle visual-inertial-SLAM has to be tested. The potential consequences of processor
overload, which leads to position estimation errors, highlight this challenge’s significance.

Dead reckoning localisation
As an alternative localisation method, dead reckoning might be an option that requires less compu-
tational power. In navigation, dead reckoning involves determining the current location of a moving
object based on a previously known position (fix) and considering estimates of speed, direction, and
time elapsed [16]. Is this method suitable for autonomous navigation in rainforest conditions on a pro-
cessor with limited resources?

This method is susceptible to accumulating errors. Modern advancements in navigation, such as accu-
rate position information from systems like the Global Positioning System (GPS), have largely rendered
traditional human dead reckoning obsolete for most practical purposes. Nevertheless, inertial naviga-
tion systems, leveraging precise directional data, continue to utilize dead reckoning and find extensive
applications.

2.5. Trajectory planning
Based on the found literature, three categories of trajectory planning methods are compared. These
are random-tree search, gradient-based navigation, and trajectory sampling. These are based on the
work of FASTER-planner [17], EGO-planner [18], SWARM-WILD [19], and REAL-planner [20]. A one-
page description of each algorithm from the literature studies is added in Appendix A The comparison
considers computational efficiency, robustness, and safety in forest conditions based on information
from the literature. This section outlines which method is best for navigating rainforest environments
where safe navigation by small processors and sensors is required.

Computational Efficiency
To provide context for the relative computational efficiency, let’s examine the operational mechanisms
of these trajectory planning methods.

REAL-planner excels in computational efficiency by employing a hybrid approach combining sampling-
based and optimization-based techniques. This minimizes the computational load, producing smooth
trajectories without additional optimization steps.
In contrast, both EGO-planner and FASTER-planner demonstrate slightly lower computational effi-
ciency. EGO-planner uses Bayesian optimization for global optimization, while FASTER-planner intro-
duces a dependency on roadmap connectivity. The latter may requiremore iterations in low-connectivity
scenarios, impacting computational demands.

2.6. Conclusions from literature review 12

Robustness in the rainforest
Robustness in a rainforest environment depends on factors like complexity and density. Therefore, the
distinctive characteristics of each method’s approach are investigated.
EGO-planner uses Bayesian optimization, potentially showcasing robustness in rainforest environ-
ments. FASTER-planner employs a receding horizon planning method, offering potential robust per-
formance. REAL-planner, while highly efficient, may face challenges in rainforest settings due to its
sampling-based optimization approach.

Safety in Rainforest Conditions
Examining the unique safety considerations of each approach, EGO-planner’s Bayesian optimization
offers robust safety. FASTER-planner combines global and local optimization, holding promise for
safety. REAL-planner’s safety performance may face challenges due to its reliance on sampling in
cluttered environments.

Figure 2.2: Illustration of EGO-planner functionality
[18].

Conclusions
In conclusion, among the trajectory planning methods as-
sessed, EGO-planner appears strong, emphasizing safety
through Bayesian optimization, making it particularly suit-
able for rainforest environments. While REAL-planner ex-
cels in efficiency, its reliance on sampling may pose chal-
lenges in cluttered environments. FASTER-planner, though
promising, depends on factors like roadmap quality. The
emphasis on safety through Bayesian optimization makes
EGO-planner the preferred option for navigating challeng-
ing and densely vegetated environments. Further empirical
testing in such conditions is essential to confirm its perfor-
mance.

Figure 2.2 shows an illustration of the EGO-planner. In this
illustration by [18], the gradient fields of voxel map obstacles
are visualised, and how the planner re-routes the path to
find a jerk-optimised obstacle-free trajectory.

2.6. Conclusions from literature review
After reviewing the available literature, some conclusions can be drawn that support further research
on autonomous quadrotor navigation in the rainforest.
To begin with, various algorithms exist for SLAM (simultaneous localisation and mapping). This method
is mostly applied in GPS-denied environments. While drones commonly use this method to estimate
pose and position in 3D space, it requires a powerful processor board and cannot easily run on an
embedded chip in real-time.

Furthermore, multiple methods exist for trajectory planning that plans acceleration or jerk-optimised
trajectories in 3D for quadrotors. Among the found path planners, the EGO planner appears to be the
most suitable algorithm for generating safe trajectories in dense and cluttered environments on a small
processor, based on its paper description.
For estimating pose and position, the accumulative estimate of the IMU sensor could be used, also
known as dead-reckoning navigation. As every trajectory planning method relies on a position esti-
mate, and SLAM would be too computationally intensive, this might offer a solution. Although this
method is known for its drift over time, testing can determine whether this causes significant problems
or not.

Finally, little literature describes the challenges of a rainforest environment, but we can summarize two
main takeaways. The forest is a dense, unstructured space where obstacles can occur at any location
and can also be any size and shape. Additionally, the GPS position cannot be used as the primary
position estimate because the GPS signal is poor or unavailable.

3
System integration

An autonomous quadcopter drone has to be built and programmed to navigate through complex tropical
rainforest environments. From examples and suggestions in the literature and the competition require-
ments, a perception is created of what modules are required for such a system and how this should
work efficiently as a whole. From this perception, together with some try-and-error iterations, a system
that fulfils the autonomous obstacle avoidance task in foresty environments is created. A note to make
is that in literature, the state-of-the-art solutions used multiple expensive parts like high-precision flight
controllers and processor boards that fell outside the budget for this project. Therefore, for the realisa-
tion of this drone, lower-performing parts are chosen that were either available in the lab, or inside the
budget to purchase.

What does the created design look like? In this chapter, the details on component choice, CAD design,
and assembly are given on how the hardware is built as lightweight as possible. After that, the software
for autonomous navigation is discussed, which the drone uses to traverse autonomously through un-
known rainforest environments. Finally, there is a list of ten extra flight systems that are built for outdoor
missions in the competition. These are all flight systems not directly related to obstacle avoidance but
with connectivity, control, mission planning, safety features, and debugging.

3.1. Hardware component selection
In this section, the selection of hardware components is explained. Every part is carefully chosen based
on its weight and energy consumption to maximise the flight time on a single battery charge. First, the
drone platform and processor are discussed on which all hardware and software is built in this project.
Thereafter, the choice of sensors used for autonomous navigation is highlighted. In the sensor choices,
the additional hardware required to fly missions in the rainforest is explained.

3.1.1. Drone platform
The initial goal of this project was to implement and test the autonomous navigation on a drone also
used in another project. In the other project, the drone autonomously has to detect and perche on a
randomly suitable branch in the rainforest. The combined autonomous navigation and perching would
result in a fully autonomous system that explores the rainforest, chooses a branch, perches on the
branch, records data, and returns home. Due to time and complexity constraints, autonomous navi-
gation and perching have been developed separately. As the drone platform for the perching was not
ideal for early-stage testing and had low availability, another drone platform was chosen to implement
autonomous navigation. This section answers the question of which platform is the best choice within
a set of available platform options and for a set of requirements.

The aspects of safety, weight, robustness, control ability, and flight time must be considered when
choosing a suitable drone platform for implementing and testing autonomous navigation. Safety, or in
inherent safety, is important to consider as testing operators include many close encounters, possibly
with some collisions. Preferably, the collision damage with obstacles is minimal. Also, in some testing
conditions, the human pilot/supervisor is not in a protected area. Therefore, if the drone platform is
inherently safe, injuries to the pilot are minimal. The drone’s weight has a big influence on the collision

13

3.1. Hardware component selection 14

impact as propellers are stronger, bigger, and spin faster on a more heavy drone. Therefore, safety
increases when the weight of the drone is minimised. Also, to follow the same objective as the au-
tonomous perching project regarding drone size, the weight should stay below 800 grams.

A robust drone platform is preferred when collisions are likely to occur during testing. Higher impact
resistance reduces downtime during testing. For example, when a drone breaks something on average
after 10 crashes, instead of after 2 crashes, testing can continue 5 times longer before having to leave
to the workshop. This increased robustness also increases progress on the project as, otherwise, re-
pairs generally take a lot of time and interrupt the testing sessions. Even greater so when the testing
session is at a remote place, for example, in a forest, where travel time and costs are significantly large
compared to the tests.

Additionally, it’s essential to have the ability to control the drone using software that’s either provided
through a Software Development Kit (SDK) or open-source. This is necessary to allow the external au-
tonomy system to guide the drone’s movements. Control commands and feedback to external systems
can vary per system. How agile and accurate the system is can, in part, be influenced by the available
control choices, the feedback it receives, and how quickly it communicates. Agility and accuracy con-
tribute to higher flight speeds in complex terrain. Therefore, the drone can cover more distance in the
same amount of time.

Lastly, maximising flight time will improve the distance that can be covered during exploration, which
is primarily important for the Rainforest competition. The drone has to fly with the additional payload of
the autonomous system and its energy consumption.

Three options are considered when choosing a drone platform. These three options were available in
the lab, can carry the payload, and weigh below 800 grams. These are a PX4-based 5” quadcopter
and the Parrot Bebop 2 with factory or Paparazzi UAV software.

Speedybee drone
The considered PX4-based quadcopter includes a 5-inch Speedybee frame and a Pixracer pro flight
controller. This is the drone setup used in the perching project. This drone has more powerful engines,
designed for drone racing or freestyle flight. The drone size is 24x24x7cm, and without accu, it weighs
400 grams. The accu size is free to choose, but would typically weigh 200 grams. Flight time without
extra payload is 8 to 13 minutes. This Pixracer flight controller has the ability to communicate and be
controlled by an external processor via MAVlink protocol. The drone can be configured with many dif-
ferent parts as this is a do-it-yourself design. The configuration as is available in the lab with the frame,
motors, flight controller, propellers, and 1 battery is around 500 euros. Spare parts are available online.
In the lab, not many spare parts are available, except for spare propellors.

Parrot Bebop 2 drone
The Bebop 2 drone, released in 2015, has been used in the MAVlab since 2017 and is known for its
robustness, stability, and decent 20 minutes of flight time. In the lab, every spare part of the drone is
available in case repairs are required, and all parts are accessible for replacement. Also, the drone
has a nifty body design where flexion of the body absorbs the impact of a crash without breaking. The
only parts that breaks frequently are the plastic one-euro propellers, absorbing the impact of a crash.

Further, the drone is not only well-stabilised by mechanical and control-loop design, but it can also
hover still without drifting. By the use of a low-resolution bottom camera, the drone can hover without
drifting by using optic flow [21]. Two conditions that have to be met are a ground surface with enough
colour texture and sufficient light. There are not many off-the-shelf drones available comparable to the
size (30x30x10cm), weight (400gram), flight time (20-25 minutes), and have at the same time some
onboard Software-Development-Kit (SDK) options. And neither of the drones that come close to these
specifications can compete with the 300 euro price (only available on the second-hand market nowa-
days).

3.1. Hardware component selection 15

Table 3.1: Comparison Speedybee and Bebop 2
drone platform. score 1 (worst) to 5(best)

Aspect Speedybee Parrot
Bebop 2

Safety 1 4
Weight 2 3
Robustness 3 4
Control Ability 4 2
Flight Time 2 5
Availability and
Price

4 4

The two platform comparisons are summarized as
scores from 1 (worst) to 5 (best) in table 3.1 on
the right. This comparison shows that the Bebop 2
platform would be a better choice compared to the
Speedybee based on the aspects compared. The
only aspect where the Speedybee outperforms the
Bebop 2 is control availability because the Bebop
components cannot be modified or reconfigured, and
the commands to the flight controller are more re-
stricted.

Thus, the Bebop 2 is the better choice as drone platform.
It has a significantly longer flight time, better off-the-shelf
stability, is safer, and is available in the lab with many spare parts.

3.1.2. Processor board

Figure 3.1: Odroid XU4
[22]

To read all sensor inputs, map the environment, generate the trajectory, and
send commands to the drone, an onboard processor board is required. As the
autonomy systems have to be run completely onboard the drone, the proces-
sor board has to be able to process all data and send outputs at sufficient loop
rates.

In literature, most often, a processor board of the Nvidia Jetson series is
chosen as these have the most processing capability on an embedded sys-
tem that fits on a small drone. The processor itself is 24 grams and con-
sumes 7.5 to 15 watts. The downside is that it requires cooling and a carrier
board, making the complete set heavy (130 grams) and voluminous (100*80*29
mm) for a small drone. The Nvidia Jetson board (TX2, as [18]) with cool-
ing and carrier board cost about 800 euros, which does not fit the bud-
get.

For these reasons, a less powerful processor board was chosen, the Odroid
XU4, shown in figure 3.1. This board has results comparable to the Raspberry Pi 4B (Rpi4B), and
multiple were available in the lab for the project, unlike the Rpi4B due to the chip shortage. This board
is half the volume of the Nvidia Jetson board (83*58*20 mm), and also less than half the weight (60
grams). Thereby, weight is significantly reduced, and the drone has increased flight time. This board
costs 80 euros, which is 10% of the Jetson board. Multiple of these boards were available in the lab,
which is helpful for the challenge as spare parts for every part were not a must but highly recommended.

3.1.3. Sensors and communication
Examples from the literature are used to select the appropriate sensors and communications for au-
tonomous navigation. Typically, GPS, IMU, and a depth camera sensors are used to achieve robust
autonomous navigation on a drone platform. Since the drone already contains several sensors like
IMU, barometer, and GPS, these can be utilized for autonomous navigation.
This section highlights the considerations for different depth cameras. In addition, to support flight mis-
sions in the wild, extra modules are required onboard the drone for receiving and transmitting signals.
These modules are an RC receiver, a 4G dongle, and a secondary GPS module. In the lightweight
module for the drone, these components are carefully chosen regarding size, weight, energy consump-
tion, and signal strength.

Depth camera
Further, a depth camera is required for the chosen path planner, which will be discussed in section
3.3.3. By the authors of the used path-planner [18], and the rest of the top three literature sources
mentioned in chapter 2, the Realsense D435i depth camera [23] is used. This camera is popular in re-
search projects as it has compatible drivers in ROS, the robot software that will be used. The 72-gram
camera is heavy for a small drone, but as smaller cameras with the same accuracy, robustness, and

3.1. Hardware component selection 16

range are not available, the D435i is still the preferred choice.

In this project, the D435i camera will be used. But, as the authors of EGO-planner did, the camera
will be stripped of all heavy, unnecessary components to reduce the weight to about 30 grams. Heavy
components removed from the camera are the metal housing and frame that functions as a heatsink.
A 3D-printed frame replaces these components to keep all camera parts together and give some pro-
tection. As the initial frame also functioned as a heatsink for electronic components, smaller heatsinks
are placed on the specific components (chips) that generate heat during operation.

The Arducam TOF depth camera [24] was also considered. This camera has a weight of only 8 grams
and a compact size of 40x40x5mm, which is 9 times lighter than the Realsense Camera. However, its
maximum range is only 4 meters, which is half of the range of the Realsense camera. Despite the lim-
ited range, this camera is an attractive option due to its lightweight design. Unfortunately, the camera
drivers for Linux have compatibility issues and are only available for RaspberryPi-OS Bullseye. ROS-1
cannot be installed on this operating system, making it impossible to use one of the ROS packages for
autonomous navigation. Due to limited time and uncertainty about how well this camera would perform
for drone navigation, we did not attempt to solve the driver compatibility issues and instead chose the
Realsense camera.

GPS
In Chapter 2, it was found that the forest hinders GPS reception, and the drone’s 2015 internal M8 GPS
is outdated. To address this, a lightweight HGLRC M100 GPS (weighing 2.4 grams) with a UBlox-M10
chip was chosen.

The M100 GPS outperforms the previous version in several ways. Its 3dB higher antenna gain allows
operation in weaker signal conditions. It tracks four satellite constellations (GPS, Galileo, GLONASS,
and BeiDou), automatically selecting the best in view. The M10 chip consumes five times less energy,
and improves true position error confidence by 95% compared to the M8 series.

To optimise reception, the additional GPS antenna is placed atop the hardware, ensuring good recep-
tion from all sides. This is crucial since the internal GPS, positioned in the nose above propeller height,
may face signal blockage from added autonomy hardware.

RC receiver
The RC receiver reads signals from the pilot’s remote controller, which is used to fly the drone manually
and switch to autonomous mode. This RC receiver has to be lightweight and compact as it has to be
carried onboard the drone. Also, the receiver has to receive weak signals when the RC is further away,
preferably as far as possible.

The FrSky R-XSR is chosen as the receiver, only weighing 1.5 grams. This component is the smallest
16-channel receiver compatible with the SBUS protocol used on the available RC, the Radiomaster
TX12. This module also supports telemetry being sent back to the RC from the drone. But, this is not
used as telemetry is monitored via 4G.

4G module
To establish a 4G connection, a module is essential to link the onboard processor with cell towers.
Three options were considered to connect the onboard processor to cell towers: a 4G USB dongle, an
LTE modem, and a PCB 4G module.
The preferred option is to use a 4G USB dongle, connecting the processor board to the internet via the
USB port. Despite being larger and heavier than the serial PCB, the USB dongle is more compact and
lightweight than the ethernet modem. Additionally, the bandwidth over the USB protocol is significantly
superior to that over a serial port by the PCB module.

The Huawei E3372-325 4G LTE USB dongle is selected for 4G communication on the drone. This 58-
gram module, though relatively heavy, proves to be the most robust solution, combining compactness,
high signal strength, and compatibility with the onboard system. The dongle, twice the size of a USB

3.2. Hardware Autonomy backpack design 17

drive, comes with an internal antenna and accommodates a standard-size sim card. Optionally, the
dongle can be equipped with two external 3DBi 3G/4G LTE antennas for enhanced signal strength,
each weighing an additional 6 grams.

For debugging, indoor, or with close-range testing, the 4G dongle can be substituted with aWiFi dongle.
This 20-gramWi-Fi-module is significantly lighter than the 4G dongle but only gives a stable connection
upto about 20 meters.

3.2. Hardware Autonomy backpack design
This section discusses the hardware design that facilitates autonomy and mission processing. The
design integrates all components from the previous section into one device, named the ’autonomy
backpack’, which snaps on top of the Bebop drone. Multiple 3D-printed parts are designed to integrate
all components.

When selecting the hardware and designing the 3D-printed parts, each component is placed on a weigh
scale to optimize for low weight. A weight budget table is created, which lists the weight of every part
added to the system. You can see the weight budget table in 3.2 below. The total weight of the au-
tonomy backpack is 202 grams. As an indication, the new-price of the used components is also listed.
Most components were used from the lab, but the components’ total price would be around 432 euros.
For cheap components, like nuts, bolts, and zipties, aminimum price of 2 euros is calculated in the table.

Although the table also mentions the price and weight of the Bebop drone and its battery, these are
not included in the calculations for total price and weight because these are considered not to be part
of the autonomy backpack. The table indicates which components were fixed and which had design
freedom, providing insights into the system’s design flexibility.
The upcoming sections will discuss CAD design, 3D printing, and electrical design.
The following section presents how all these components are integrated into one module that can easily
be mounted and unmounted from the drone. Thereafter, the wiring of all electronics within the module
is discussed. Also, a table with an overview of all components, weights, and costs is given. Then, the
software design for the autonomy system is discussed for navigation and, additionally, the software
required for outdoor missions in the competition.

3.2.1. CAD design & 3D printing
All the chosen hardware components must be put together in the drone. So, a ’backpack design’ is
created to neatly attach them to the drone. This design strategically places components to optimize
their performance, considering dimensions and weight distribution. The main structure of this design
is 3D printed, ensuring a lightweight and secure housing for all components on the drone.

Figure 3.2: 3D model of autonomy backpack

The backpack module is designed to let the drone fly
backwards. The drone’s built-in sensors, like the cam-
era, IMU, compass, and GPS, are located at the front.
To minimize interference with the compass and GPS,
the backpack is on the drone’s back on top of the bat-
tery. The camera faces backwards to avoid blocking
its line of sight by parts of the drone body. Conse-
quently, the autonomous system is programmed to navi-
gate backwards. Beyond aerodynamics, which isn’t cru-
cial at expected flight speeds, a quadrotor’s flight di-
rection is assumed to not notably affect stability or effi-
ciency.

Components are placed close to the drone’s centre to main-
tain stability and energy efficiency. Reducing the moment
of inertia makes the drone respond quicker and use less

3.2. Hardware Autonomy backpack design 18

energy in roll, pitch, and yaw. A lightweight design reduces
inertial factors and lowers the thrust needed for the drone to hover, significantly increasing flight time.
According to literature sources, implementing autonomy on a quadrotor that weighs less than 1 kg could
potentially reduce flight time by half or one-third. This suggests that even a small weight reduction of
10% could result in a significant increase in flight time, up to 20-30%.

The 3D-printed structure is lightweight due to specific design choices that were made. The walls are
thin, and ridges and profiles add stiffness and durability. Components are mounted with minimal sup-
porting structure, minimizing the need for fasteners. The used fasteners are plastic. All components
except the antennas are enclosed by the frame, which absorbs impacts during crashes, reducing repair
time and costs. Antennas are placed partly outside the frame for clear transmission. They are flexible
and assumed not to pose significant risks in a crash.

Considering the possibility of rain during the rainforest competition, the drone might encounter water
droplets from trees. While it is not designed to fly in the rain, waterproofing is necessary to protect
electronics in the backpack from water above. To keep the waterproof cover lightweight and compact,
the backpack design’s polygon shape must be compact. USB cables connecting components are
shown to be the limiting factor for compactness, and a solution is presented in the following section.
In Figure 3.2 above, the autonomy backpack’s 3D CAD model is shown. Apart from the cables, this
mechanical design includes all components that will be mounted on top of the drone.

To give a more detailed view of how and where
all components are mounted in the design, Figure
3.3 shows an exploded view. The components are
given unique colours for the exploded view to make
the parts distinguishable. The relevant components
are annotated in the exploded view as:

1. Mounting for backpack on drone - 3D printed

2. Processor board - Odroid XU4

3. Frame for electronics - 3D printed

4. Frame for Depth camera - 3D printed

5. Stereo Camera - Depth module Realsense
D430

6. Depth processor - Realsense vision proces-
sor D4

7. GPS module - HGLRC M100 (Ublox M10)

8. USB 4G dongle - Huawei E3372

9. 4G antennas - 5dBi CRC9

10. RC-reciever - FrSky R-XSR

11. Electronics protection - 3D printed Figure 3.3: Exploded view of mechanical design Auton-
omy Backpack. With component annotations

Enlarged images with annotations of the mechanical design are included in appendix B.1. Table 3.2
below provides details on the type, weight, and costs of components integrated into the autonomy
backpack. The autonomy backpack, including a 4G module for the rainforest mission, weighs 202
grams. The Bebop drone itself, with a battery, weighs 500 grams, and its stable payload capacity is
250 grams, which was tested. Above 250 grams of payload, the bebop can still deliver the total thrust
to compensate for gravity, but motors start to saturate, resulting in loss of yaw/pitch/roll authority for

3.2. Hardware Autonomy backpack design 19

position control. The 202 grams of the autonomy backpack remain within this limit. Without the 4G
module, the backpack weighs 167 grams. The total weight, including the drone, is 702 grams with the
4G module and 667 grams without. The estimated cost for components and 3D prints is approximately
432 euros, rising to around 932 euros when the drone is included.

In comparison, the drone used in the EGO-planner paper [18] is estimated to cost 2000 to 3000 euros
and estimated to weigh 800 to 1000 grams. This means the cost is factor 2-3 lower, and the weight is
roughly reduced by 1/3rd in this first design step. In chapter 6, the weight and costs will be optimised
to reduce these more.

Table 3.2: Weight and cost overview for autonomy backpack

Part Type Weight
(grams)

Price
(Euro)

Design
variable Note

Drone platform Parrot Bebop 2 (259) (500,-) No Not included in calculation of ’autonomy backpack’
Drone battery Parrot Bebop 2 (240) (60,-) No Not included in calculation of ’autonomy backpack’
Depth camera Realsense D430 16 120,- Yes

Depth processor Realsense vision
processor D4 5 60,- Yes

Depth camera frame and cooling 3D printed and
10x10x5mm alu heatsinks 9 6,- Yes

Processor board Odroid XU4 60 55,- No
Backpack mounting 3D printed 20 6,- Yes
Backpack frame electronics 3D printed 7 2,- Yes Combination of multiple parts
Backpack protections 3D printed 2 2,-
Backpack bolts and nuts plastic 4 2,- Yes
Backpack zipties Plastic, 4.8mm 2 2,- Yes
4G module Huawei E3372 35 60,- Yes Only used in Singapore
Wifi usb dongle TL-WN725N 2 12,- Yes
4G antenna 2x 5dBi CRC9 10 16,- Yes
RC receiver FrSky R-XSR 2 23,- Yes
Power converter 12v to 5v BlueSky UBEC 5V 3A 6 7,- Yes
External GPS receiver HGLRC M100 3 30,- Yes
Cable drone to processor Custom soldered cable 8 8,- Yes

Cable camera to processor 8cm flatcable with 90deg
usb plugs 5 15,- Yes

Cable 4G receiver to processor Custom soldered cable 4 6,- Yes
Total 202 432

3.2.2. Electrical wiring
To facilitate power distribution to the drone’s modules, a system of wiring is required. The modules have
different connectors such as USB-A, micro-USB, Molex-JST, and more. Every connection requires a
cable with the correct connector at both ends. Rare connector types or rare connector combinations
within a cable limit the choice of standard cables. To minimise weight and make the backpack most
compact, cables are preferably exactly the required length. Longer cables add extra weight, make the
backpack more bulky, and increase interference with radio signals.

As standard commercially available cables with the correct combination of connectors on both ends
are not found in the required lengths, longer cables are bought. These longer cables are cut to the
required length and soldered back together. On the compact system with multiple wireless commu-
nications, EMC shielding is important to prevent signal interference. Therefore, all bought cables are
shielded, and the shielding is restored when soldering to the correct lengths.

There are some exceptions where no standard cable is used. For connecting the 4G module, it was
found that the connector of the standard cable did not fit well in the backpack design, making the com-
plete backpack more voluminous and, therefore, harder to cover with waterproofing. So, a custom
cable is soldered with pcb-type USB connectors and a shielded USB cable. This minimalist approach,
often referred to as ”bare-bone,” is highly effective in achieving significant weight reduction. Addition-
ally, this custom soldering process affords the flexibility to create angled connectors, ensuring that the
cables do not protrude sideways, thereby allowing for a more compact assembly that is better suited
for applying a waterproofing cover.
Figure 3.4 provides a compact overview of the wiring diagram and connection scheme. In appendix
B.2, the full-scale diagram and scheme are shown in more detail. In the wiring scheme, all modules
connected to the processor board are shown with the proper colour coding. The camera, 4G module,

3.3. Software for autonomous navigation 20

and drone connect to the board by USB standards. These modules also receive their power supply
via USB and have no additional connections. For simplicity, the USB modules are not shown in the
diagram. The diagram illustrates the distribution of power to the various modules via the board, using
black and red cables. The board powers itself via the drone battery through a step-down regulator,
which converts the 11.1-volt DC input to a stabilized 5-volt DC output.

Figure 3.4: Compact version wiring diagram and connection scheme Odroid XU4

The radio-controller (RC) receiver connects to a serial port at pin 6 (on the CON10 header). The GPS
receiver, on the other hand, requires a TTL level-shifter module to convert its 5V serial output to the 3.3V
serial input on the board’s serial console port. Both the RC receiver and GPS receiver only connect with
their serial transmit (TX) port to the board and not with the serial receive (RX) port, as bi-directional
communication is not required. The connection scheme shows the same connections between the
modules and the board as shown in the wiring diagram. The connection scheme elaborates on which
pins with specific name coding are connected.

3.3. Software for autonomous navigation
The drone is now equipped with all the necessary systems to communicate and fly in the wild. However,
in order for the drone to fly autonomously, navigation and control software is required. This is the
most challenging and essential part of the project. In this section, the software created specifically for
collision-free navigation is discussed. Additionally, there is an outline of all other flight support systems
for remote communications, mission planning, safety, and more in the following section.

Figure 3.5: Drone system architecture for autonomous navigation in the rainforest

3.3. Software for autonomous navigation 21

Figure 3.5 provides an overview of the system’s different modules and how they communicate with
one another. The diagram highlights whether the communication between modules is unidirectional
or bidirectional, as well as whether it is a wired or wireless connection. The dotted square represents
the systems that are integrated inside the autonomy backpack. The drone’s internal flight controller
and sensors, in addition to the autonomy backpack, form all the onboard systems on the drone. In this
overview, the communication from the ground control centre to the drone is assumed to be 4G. In the
case of aWi-Fi connection, instead of 4G, the ”4Gmodem” is replaced by the ”Wi-Fi modem”. Appendix
B.3 shows an enlarged version of this system overview, together with the automatically generated ROS
RQT-graph.

The upcoming subsections will explain the process of building the system software. To start with, there
will be a brief introduction to ROS and how the drone’s SDK functions with ROS. Following that, the
generation and monitoring of collision-free trajectories using the EGO-planner will be explained.

3.3.1. Robot Operating System
At the heart of the extra onboard processor, ROS (Robot Operating System) is used to run read all sen-
sors, process all data, and produce navigation commands to navigate autonomously through rainforest.
ROS is an open-source framework that facilitates the development of robotic systems. It provides tools,
libraries, and conventions for creating and managing distributed and modular software components.
ROS enables module communication with tasks like sensor data processing, control algorithms, and
simulations.

Multiple open-source software packages, such as drivers and algorithms, are available in ROS. There-
fore, ROS can be used to quickly integrate a new type of sensor or test/simulate someone else’s
algorithm as long as a package is available. As ROS is the most used robotic operating system world-
wide, popular sensor drivers and algorithms also have community support for bug fixes, improvement
suggestions, and compatibility updates.

3.3.2. Parrot Software Development Kit & Bebop Autonomy
As a drone platform is used with SDK-enabled functionalities, some communication interface is required
to link the drone flight controller and the extra onboard computer that processes the autonomous nav-
igation. Bebop Autonomy is an open-source ROS-package that links a ROS network to the Parrot
Bebop SDK. The SDK only supports high-level controls at low rates (max 10 Hz).
The Parrot SDK combined with Bebop Autonomy supports the following functions:

• Takeoff, land, kill-motors.
• Roll, pitch, yaw, and vertical speed. (as controlled from a RC)
• Goto GPS waypoint.
• Flip, go home, start/stop recording, take photo.
• sensor data: GPS position, accelerometer, and camera stream.

During early tests, it was discovered that indoor position control is inaccurate because the Bebop au-
tonomy driver only estimates the (cartesian) X,Y, and Z position of the drone by integrating the ac-
celerometer readings at 10 Hz. In comparison, most flight controllers which use this method integrate
measurements at 200 Hz. Therefore, due to the low rate, the integration for the position estimate is
less accurate and drift quickly occurs.
The Parrot SDk supported a GoTo (relative) X,Y,Z,Yaw position, which was not integrated into the Be-
bop autonomy driver. For this project, the open-source driver is extended to enable this functionality.
Now, the drone can move to a relative position and hover still at that position as long as lighting condi-
tions are sufficient for the drone’s optic flow camera.

The other option to link the Bebop drone flight controller would be to load Paparazzi control software
from the MAVlab into the flight controller. Paparazzi is a flight system software that does low-level flight
control and is also capable of some high-level control within the processor capacity of the drone itself.
When Paparazzi software is loaded into the drone, it replaces the default control software provided by

3.3. Software for autonomous navigation 22

the factory. Paparazzi is developed by drone labs, including the TU Delft MAVlab, to test agile low-level
control at high rates at a component level.

The main reasons Parrot SDK combined with Bebop Autonomy is chosen over Paparazzi are imple-
mentation time constraints and the reliability of the system. The chosen option was already compatible
with ROS and was, therefore, less work to integrate. If Paparazzi had been used, a driver for ROS
had to be programmed from scratch, which would have cost engineering time that was not available.
Also, the default software is well-developed and bug-fixed by the factory, while the Paparazzi software
can have many factors of instability or unreliability. Thereby, the default software has a reliable optic
flow to hover still in a situation without GPS, while Paparazzi has not yet a proven optic flow in the
position controller. Thus, with Paparazzi, the drone slowly drifts away, possibly into an obstacle, when
it assumes to hover at a fixed position.

The use of Paparazzi would also have had some benefits. The biggest benefit would be the integrated
mission planning with safety sequences and a user interface to supervise the drone. These features
were initially lacking in the ROS system and were programmed minimalistically for the purpose of the
Rainforest competition, described in section 3.4.6.

3.3.3. Collision-free trajectory planning
As was concluded from the related work research, the EGO-planner is used for trajectory planning.
This planner is a ROS package that also includes obstacle detection and mapping. The underlying
methods for the trajectory planner are already discussed in chapter 2.

Input
The planner relies on the drone’s odometry and depth image from the camera as its inputs. The odom-
etry, which is obtained from the drone driver at a rate of 5 to 10Hz, uses the dead-reckoning method
for localization. It consists of the position and velocities in 6 dimensions, which are the x,y,z directions
and rotation around the x,y,z axis. The depth image input has a resolution of 720x480 and provides a
depth value for each pixel. The depth image is captured at a rate of 15Hz.

Mapping
The EGO-planner detects and maps obstacles. The mapping and planning are based on voxel-grid
maps, which define a real-world map with specific dimensions in x, y, and z, and a size per voxel cube.
Figure 3.6 shows an example of such a voxel-grid map. In this example, two scenarios are shown: one
mapping of cluttered objects, such as vegetation, and one mapping with structured objects, such as
walls.

Figure 3.6: Voxel-grid map examples with cluttered environment on the left and structured environment on the right

For each depth image received, every pixel is projected onto a 3D space and translated to the real-
world position using the drone’s pose and position estimate. For the voxel block where the 3D detection
is assigned to, the likelihood of an obstacle in that block is increased. The probability of obstacles is
simultaneously reduced in the voxel blocks between the drone and detection. Since the camera can-
not see through obstacles, it assumes that there are no obstacles between the camera and a detected
point. This process is called raycasting. This report explains these projection and raycasting processes

3.3. Software for autonomous navigation 23

in more detail in section 6.1.

When the probability of a voxel block exceeds a certain threshold, it is marked as an obstacle on the 3D
map. In the trajectory planning algorithm, the drone is assumed to be infinitely small. To avoid collision
with the drone’s body and plan a path with sufficient clearance around obstacles, all obstacles in the
map must be inflated.

Inflation means adding a certain number of blocks around each obstacle block in all directions. The
number of blocks added is determined by the inflation distance, and the resulting map is called the
inflated obstacle map. The planner uses this map to create trajectories that avoid colliding with any of
the inflated obstacle blocks.
An important feature of the EGO-planner is the local updating and usage of the map within a specific
range around the drone. By updating and using only a local map, the obstacle detection and trajectory
generation processes consume fewer processor resources. This feature enables the drone to operate
more efficiently and conserves processing power.

Path generation
As described in Chapter 2, the EGO-planner follows a three-step process to generate a path. First, it
samples potential paths using an A* algorithm [25] on an inflated obstacle map. Second, it chooses the
path with the lowest cost using a specific cost function. Finally, it optimizes this path using the expected
improvement (EI) criterion. The optimization process involves sampling the path N times and returning
the B-spline trajectory with the lowest cost. However, each sampled path is checked for collision, and
discarded if a collision is detected. Figure 3.7 shows an example where obstacles are mapped, a path
is generated, and the drone follows the path.

Figure 3.7: Visualisation of mapping, path generation, and path tracking

The following section will explain how the drone follows the generated trajectory.
Themaximum number of iterations, cost functions, andmaximum planning time/distance configurations
are tested and tuned during indoor and outdoor tests on the built drone platform in forest conditions.
These tests will be discussed in the next chapter.

3.3.4. Execute trajectories
When a navigation system determines the path for a drone to follow, a control system ensures that the
drone accurately follows the computed trajectory. Without a control system, the drone could only move
along a straight path to a single waypoint. State-of-the-art planners generate a trajectory that includes
a list of timestamps with desired positions, velocities, and accelerations for each timestamp.

When a system needs to follow computed trajectories, it has two options: it can either follow a trajectory
relative to the drone’s position or follow a trajectory relative to the map/world frame. If the first option is
chosen, accumulating drift by position control errors will cause the end position to be inaccurate. The
flown track will correspond the shape of the calculated trajectory, but the drone will not be following the
position of the trajectory. On the other hand, with trajectory following based on the world frame, the
system aims to compensate for the position error. This means that the accuracy of the end position is
likely to be better.

3.4. Additional software for outdoor missions in competition 24

The Bebop SDk cannot take the desired position, velocity, and acceleration as input to track a path
such as PX4 autopilots do, as in [18]. The Bebop SDK can only take in a desired x,y,z,yaw position
relative to the drone’s current position and heading. To work by this limitation, a ROS node publishes
the desired position on the trajectory for a second in advance every second. This approach may suffice
for basic trajectory requirements, but it increases the risk of collisions as the drone may take shortcuts
and collide with obstacles.

3.4. Additional software for outdoor missions in competition
For the Xprize competition’s missions, additional critical flight operation modules complement obstacle
avoidance. This section elaborates on these modules.
Firstly, strategic 4G cellular connectivity extends the operational range and ensures signal robustness
in dense vegetation. Next, the explanation covers live drone telemetry streaming, which is essential
for compliance with Singapore’s air traffic control regulations. The third part introduces redundant RC
control, integrating both USB-wired and wireless radio controllers.

The redundancy extends to duplicate GPS localization, integrating a second GPSmodule for enhanced
accuracy, detailing GPS switching logic, HDOP values, and ROS packages. Subsequently, redundant
geofencing is discussed, emphasizing compliance with safety requirements. For ground-control-station
mission planning and monitoring, ROS modules cover telemetry, geofencing, waypoint mission plan-
ning, video streaming, and live map monitoring.

To enable autonomousmissions, waypoint goals are integrated into the EGO-planner, providing insights
into GPS goal translation and handling sporadic GPS positions. Then, the section highlights the logging
strategy to meet competition requirements and analyze drone performance, encompassing both flight
controller data and ROS logging. This section concludes by discussing the automated startup of all
software modules.

3.4.1. 4G cellular connectivity via VPN
To achieve extended range and overcome potential signal loss issues in dense vegetation, 4G connec-
tivity was chosen for supervising the drone in the rainforest. The cellular coverage in Singapore’s rain-
forest made 4G seem to be the most reliable option for the competition. Extensive research identified
the ”M1” sim card provider as having the best coverage, further confirmed by the Xprize organisation.
As described in section 3.1.3, the Huawei e3372 LTE USB dongle was chosen to provide 4G connec-
tivity to the laptop and drone.

To connect the laptop and drone’s ROS network while utilizing 4G, a VPN was established using
Tailscale. Tailscale creates a mesh-VPN network, eliminating the need for a designated host or server
and enhancing system robustness. Alternative solutions like fixed IP sim cards were considered but
were less practical due to encryption, costs, and ROS integration challenges.

Installing Tailscale VPN software on all devices created a virtual connection to the same local network.
This allowed SSH, ping, and ROS networking features between devices, including laptops, smart-
phones, and tablets. In emergencies, terminal commands can be sent to the drone from any device
connected to the same VPN network. Examples of created terminal commands are ”bebop_home”
(auto-return-home), ”kill_drone”, ”land”, and ”takeoff”.

3.4.2. Drone telemetry streaming to web server
To ensure the safety of all air traffic in Singapore, every drone was required to stream live telemetry
data to a server of the competition host, Garuda Robotics. Garuda offered two solutions: streaming
the data via a 4G network to the server via HTTP, or using a GPS tracker device from Garuda that will
send the data automatically.

As the built drone was already connected via 4G, and the external tracker would add another 80 grams,

3.4. Additional software for outdoor missions in competition 25

the data was streamed to the server via API. To implement this, data had to be sent in specific formats,
specific decimal values, and correct timestamps in an HTTP request to their server. To annotate which
drone was sending the data, every registered drone for the competition had its own 20-digit hexadeci-
mal code, which was shared with the server on initial contact. Garuda provided documentation on the
required order and format of the data sent to the server.

To stream the data from ROS, the ”rosbridge-server” package was used to create the HTTP request.
This package is adapted to stream from the right sources, convert the data into the right formats, and
fill it in the correct fields for the HTTP request. Figure 3.8 shows the airspace visualisation of the server
to which the data is sent.

Figure 3.8: Singapore Airspace visualizer by Garuda Robotics [26]

3.4.3. Redundant RC control
Initially, the drone was operated using a USB-wired universal game controller connected to the laptop.
Joystick inputs were translated into desired attitude commands (roll, pitch, yaw, and vertical speed).
These commands were then sent to the drone through a ROS topic via a WiFi connection.
This direct communication with the drone bypasses the laptop and Wi-Fi connection.

The ROS package Sbus-serial was utilized to read the receiver’s serial signal on the drone’s proces-
sor. As the Sbus protocol works by inverted serial data, some soldering work on the RC receiver was
required to retrieve standard serial data. The ROS package maps the RC channels to appropriate
commands for the ROS Bebop driver such as roll, pitch, yaw, thrust, takeoff, land, kill, autopilot on/off,
and set new goal.

Considering the dual-controller setup, priority settings were implemented. Each ROS node that reads
controller topics received inputs from both controllers. The wireless RC has priority during normal op-
erations, while the wired RC kicks in when the other wireless RC fails or goes out of range. A switch
on the wired controller can also force the system to listen to that controller.

If one controller becomes unavailable, the system automatically switches to the other. The added
benefit is that the second RC isn’t tethered to the laptop by a USB cable, providing the pilot with freedom
of movement and better visibility of the surroundings for safer operations. And, when flying beyond
visual line of sight (BVLOS), the wired controller is used via the 4G connection while the pilot supervises
the drone from the laptop.

3.4.4. Redundant GPS localisation
As described in section 3.1.3, the system uses a second GPS receiver for higher accuracy and more
reliable reception in poor signal conditions. The ROS nodes that use GPS listen to both this and the
drone’s internal module.

3.4. Additional software for outdoor missions in competition 26

Priority switching makes sure the best GPS location estimate is used. If both modules give a GPS
reading, the GPS value of the module with a valid fix and the lowest estimated error is chosen. For
the estimated error, the GPS fix’s horizontal dilution of precision (HDOP) is used. Also, a hysteresis
value of 0.2m HDOP is used to prevent switching too often between the GPS sources if the accuracy
is about the same. Due to time constraints, the GPS input only switches as described. A Kalman filter
with the input of both GPS modules and IMU values would give a more precise location estimate.

The second GPS module is read over a serial port on the processor board. The raw NMEA strings
going over the serial port are interpreted by a ROS module named nmea-navsat-driver. This package
processes the raw data and publishes ROS topics with the GPS position, speed, and time reference.

3.4.5. Redundant Geofencing with kill-function
To fly a drone in the Netherlands under the TU/Delft MAVlab, extra safety measures are required be-
yond what the Dutch government requires. The drone must have a geofencing system that makes it
land or shut down in case of a fly-away, regardless of pilot input or autonomy system commands.

Most consumer drones, like the Bebop 2, have geofencing that prevents them from flying outside a
maximum-distance-from-home circle but doesn’t land or shut down in case it breaches this distance.
To meet MAVlab’s specific requirements, the drone requires land or killing functionality, even if most
modules fail. The geofencing should work independently of the remote control, ROS, processor board,
and the connection between the processor and drone.

Fortunately, the drone operates on a Linux-based system, allowing one to create custom scripts for
added functionality. However, the flight controller code is precompiled, limiting script accessibility. As
a result, the geofencing had to be implemented in a separate bash script, making it harder to access
system data like GPS and send commands like landing or shutdown.
In the drone’s Linux system, a bash script is created that checks the drone’s GPS position and distance
at 4Hz. During startup, the script establishes the average of the first 100 GPS fixes as the origin. The
loop calculates the difference in latitude and longitude from this origin and translates it to meters. If the
drone’s distance from the origin exceeds the configured maximum distance, the script triggers a reboot,
shutting down all motors. Figure 3.9 below shows an example of this situation with the geofencing
overlaid over a satellite image from Google Earth.

Figure 3.9: Geofencing kill function for redundancy. Example overlay on an image from Google Earth.

The script also filters out invalid checksums, non-valid fixes, outliers, and Dilution of Precision from the
raw GPS data, preventing the drone from shutting down due to inaccurate readings. Although imple-
menting these calculations and checks in a Bash script presented challenges, it proved to be the most
suitable solution for the drone’s minimalistic processor.

The bash script is triggered by a double button press on the drone’s power button instead of running
automatically at startup. This prevents potential issues like the drone getting stuck in an infinite reboot

3.4. Additional software for outdoor missions in competition 27

loop when the script fails. In that example, the drone’s operating system could never be accessed
again to fix the bug, rendering the drone useless. An alternative approach was considered, such as
introducing a one- or two-minute delay before activating the geofencing automatically. However, this
posed a risk of the drone taking off during that time, potentially resulting in a fall if the geofencing acti-
vates and exceeds the limits.

For the competition, a polygon-shaped geofencing would have been preferable to cover all parts of the
competition region. Although this feature is standard in PX4 flight controllers, implementing this in a
bash script was deemed too complex, and even in ROS, it would have presented significant challenges.

3.4.6. Ground-Control-Station mission planning and monitoring
A standard ground control station (GCS), like the commonly used Qgroundcontrol with PX4, provides
features for configuring waypoint missions, handling system failures, and implementing geofencing. It
displays telemetry, live video, error messages, waypoints, and geofencing details.

Due to hardware choices, many functionalities had to be developed in ROS from scratch as no com-
patible GCS was available in this project. The GCS features are crucial for safely monitoring au-
tonomous operations and will be checked during the airworthiness test by the Garuda Robotics com-
pany. This section covers telemetry, geofencing, waypoint mission planning, video feed streaming,
and live satellite-view map monitoring.

Telemetry
Telemetry broadcasts real-time drone diagnostics, including speed, battery level, signal quality, and
warnings. The list of required telemetry values includes:

• Speed & heading
• Battery level & expected remaining flight time
• Signal quality to GCS.
• Low battery warning
• Signal lost warning
• Nearby/at/outside geofencing warning
• Sensor failure warning
• switched autonomous/manual flight-mode warning

These values are displayed in a command-line box where a telemetry node pulls the necessary data
from the ROS network. Error messages are triggered by a script checking for specific conditions, meet-
ing competition requirements inspired by various GCS software packages.
Apart from the values directly read from ROS in the drone, the drone’s 4G connectivity for telemetry
and video streaming measures ping time between the GCS and drone, providing insights into signal
quality as well.

Waypoint mission planning
Autonomous missions require detailed planning, including mission-specific parameters and emergency
protocols. The competition requires that at least these planning and emergency protocols are visible
on the GCS:

• Waypoint list
• Waypoint route for mission
• Maximum altitude
• Maximum distance from home
• Geofenicing configuration
• Minimum Battery level before auto-return-home
• Return home altitude

3.4. Additional software for outdoor missions in competition 28

• Maximum speeds (return home, waypoint mission, manual flight)
• Auto landing at sensor failure
• Protocol for signal loss

Ideally, these configurations would be in a user-friendly menu on the GCS. But, due to time constraints,
these are hard-coded in the script or a configuration file.

Video stream and live map
The competition requires a live video stream and live drone position on the map during beyond visual
line of sight (BVLOS) flights.
ROS incorporates video streaming within the same VPN network as the GCS. The 4G network con-
nection enables this video stream, with a delay of 500 to 1000 milliseconds.
Displaying the live drone location on a map is not possible due to compatibility issues. During the
competition, the Singapore government’s website was used to track all drones’ positions on a map.
Geofencing settings were displayed on a satellite image during the pre-flight check, as implementing
them elsewhere on a live map on short notice was not feasible. This solution was acceptable to the
competition organization.

Geofencing
Geofencing ensures the drone stays within the operation area, activating specific procedures when
breached. Our drone, supporting only circular geofencing, uses a hardcoded solution in the flight con-
troller to stay within defined boundaries.

Appendix B.4 shows a screenshot of the created ground control centre interface and created geofenc-
ing. In conclusion, the mission planning and monitoring section highlights the adaptation of standard
ground control station functionalities, like Qgroundcontrol with PX4, to our project’s unique needs. With
no compatible GCS, the development of essential features in ROS became imperative. The teleme-
try system ensures real-time monitoring of critical drone parameters, while waypoint mission planning
involves configuring various parameters for mission execution and safety. Geofencing safeguards the
drone’s operational boundaries, and the use of 4G connectivity for telemetry and video streaming intro-
duces novel considerations. Despite challenges, the section underscores the effective implementation
of these elements, meeting competition requirements and ensuring the successful monitoring and con-
trol of the drone during autonomous operations.

3.4.7. GPS waypoints to planner goals in EGO-planner

Figure 3.10: Illustration of GPS way-
point to Cartesian goal conversion

To explore the rainforest, the drone must follow waypoints, which
can be a single destination or a route. But, the EGO-planner
can only use 3D cartesian waypoints instead of GPS coordi-
nates, therefore translating GPS locations to cartesian is re-
quired.

At each new GPS fix, the planner recalculates the cartesian goal
relative to the drone. It calculates NED (North, East, Down) co-
ordinates from the drone’s GPS location to the desired waypoint.
The new cartesian goal is then added to the drone’s location es-
timated by IMU, with the NED coordinate added. By this ap-
proach, the relative position from the drone to the waypoint is cor-
rect at that moment, no matter what the drift was in the dead-
reckoning localisation. This concept is illustrated in Figure 3.10 on
the right.

When autonomously navigating with obstacle avoidance, the drone’s
low speed limits its range, travelling at around 1 m/s compared to its
maximum speed of 16 m/s. When flying at an altitude safely above
all canopy, obstacle avoidance is not necessarily required. Therefore,
flying without obstacle avoidance to a waypoint is also incorporated.

3.5. General overview 29

Flying straight to a waypoint without obstacle avoidance allows the drone to fly at 10 m/s, having a
more extended reach on a single battery charge.

3.4.8. Logging
To track the performance of the flight tests, fulfil the Xprize requirements, and debug test flights, system
data is logged. In ROS at the processor board, the Rosbag functionality records data passing through
predefined topics. In the drone itself, a black-box logger records all flightcontroller data.

By using ROS Launch file, the topics that need to be logged are defined and started logging. Logging
all topics is unnecessary, generating larger log files and slowing down the system. The log files can be
used for analysis later. They can be plotted in graphs, printed in tables, and replayed as datasets as if
the system is live running.

For debugging and getting flight performance insights, the ROSbag files can be used to playback data.
This data can be visualised, such as plotting tracking error, rates of trajectory planning and localisation
drift. This data can be used to measure the performance of the system. Also, telemetry data must be
recorded for the competition. This requirement can be met by logging with ROSbag files.

Inside the Linux system of the drone itself, a black-box recording can be enabled. In this recording,
most low-level control values, such as attitude, body rates, individual motor thrust, etc, are logged in
a CSV file format. This log can write up to a rate of 200 Hz. The CSV file can be extracted from the
drone after flight to inspect the low-level data if required.

3.4.9. Automated startup of all flight systems
In the field, ensuring swift and straightforward battery replacements is crucial. To streamline this pro-
cess, the startup and initialization of all software systems in ROS is automated. This automation elim-
inates the need to manually launch individual scripts in a specific order, making it more efficient and
robust, especially in challenging field-testing conditions without a dedicated workspace, power supply
for the laptop, and potential exposure to adverse weather conditions.

The user can activate this automation process via a ROS Launchfile, which executes a set of scripts
with a single shell command. Via the WiFi or 4G+VPN connection, from any device with an ssh termi-
nal, this Launchfile can be started.
Dependencies are carefully managed to ensure that each script is launched only when the preceding
one is successfully running. Furthermore, the automated startup sequence includes a validation step,
ensuring the proper functioning of every required process within the ROS network. If any abnormalities
are detected, such as a malfunctioning camera connection, the system promptly halts the automated
startup process.

The automated startup defines how and when a failing process needs to be restarted to restore the
process in case a module failure occurs during flight. During recovery, the drone receives no new
input and stays in a stable hovering state. When the drone does not receive any input from the RC or
autonomy system for a period of 30 seconds, the drone can activate auto-return-home, depending on
the mission. These comprehensive automation and fail-safe mechanisms ensure the robustness and
reliability of the drone’s software systems in dynamic field conditions.

3.5. General overview
To summarise what the mechanical, electrical, and software design of the autonomy backpack looks
like, this section gives a general overview.
First, the drone platform, processor board, and sensors are chosen. These are:

• Parrot Bebop 2 drone
• Odroid XU4 processor
• Realsense D435i depth camera
• external GPS receiver

3.5. General overview 30

• USB 4G dongle
• Receiver for wireless manual controller

Thereafter, multiple frames are modelled to integrate all components compactly, lightweight, and pro-
tected on the drone. To show how all systems should be wired, an electrical design is shown with
diagrams.

A software architecture is created in ROS to make the drone fly autonomously. The software com-
ponents share information interactively with each other to process sensor data, map the environment,
plan an obstacle-free route, and command the drone to follow this route. To map the environment and
plan routes, functionalities of the EGO-planner are utilised. The drone’s software development kit is
used to read onboard sensors and control the drone.

In addition, to not only avoid obstacles but also perform a complete outdoor mission in the rainforest
the following modules are implemented in the software:

• 4G cellular connection via VPN
• Drone telemetry streaming to webserver
• Redundant RC control
• Redundant GPS localisation
• Redundant Geofencing

• Ground control monitoring and mission plan-
ning

• GPS waypoints missions for planner
• Logging
• Automated system startup

4
Testing and calibration

In order to ensure the robustness of the system integration discussed in the previous chapter, several
tests were conducted. These tests, which strived towards a robust system for the competition, are
discussed in this chapter. Additionally, the demo and test flights that took place in Singapore will also
be discussed at the end of this chapter.

4.1. Testing system integration
To validate all systems work properly, several tests are conducted, and calibrations are applied where
necessary. Within this project, testing and calibration can be split into two categories: flight operation
support systems and autonomous navigation with obstacle avoidance.
As various flight operation support systems are required and mandatory to operate the drone in the
wild, these systems have to be tested to see if they work individually and also integrate correctly with
the other systems onboard the drone. In this chapter, the hardware and software for these systems are
addressed. Testing methods are shown, and results and/or complications are addressed.
The autonomous navigation with obstacle avoidance is tested to integrate correctly with all systems
onboard the drone. And optimised to work as efficiently as possible for the competition within the given
time to create the system. This section shows the test methods and results for this system.

4.1.1. Localisation, obstacle detection, and mapping
Testing the drone’s mapping system for accuracy and reliability involves testing its localization and
obstacle detections. The drone’s localization was tested by monitoring its IMU position estimate over
time. The drone was flown manually in the Cyberzoo for different durations, while being kept in motion
as much as possible with a speed of roughly 1.5 meters per second.

Table 4.1: Observed position estimate drift over dif-
ferent lengths of time

Flight duration X Y Z
60 seconds -0.56 0.26 0.43
120 seconds 0.95 -0.67 0.94
180 seconds 1.39 -1.43 1.82

Dead-reckoning localisation
During these tests, the drone took off from the exact cen-
tre of the Cyberzoo and landed manually at the same lo-
cation after each test. After landing, the drone’s x, y, and z
position estimates were then documented. Ideally, the po-
sition estimate should have been close to zero. However,
the IMU position estimate of the Bebop driver drifted over
time, resulting in a position estimate not close to zero. The
observed drift is shown in table 4.1 on the right.

The table does not show a consistent relation between flight time and drift, which was also not ex-
pected. What the table does show is that the drift accumulates over time, thus creating a bigger drift
if the flight time is longer, which follows the hypothesis. It is important to mention that the Cyberzoo
environment significantly interferes with magnetic fields due to many devices, transmitters and metal
parts, which may affect the drone’s heading estimate and potentially worsen the X and Y position drift.

31

4.1. Testing system integration 32

Obstacle detection and mapping
During testing of obstacle detection and mapping, several objects, including trees, were placed in the
Cyberzoo. The mapping behaviour was observed in RVIZ during manual test flights.

The system was tested to see if it would map all branches of the fake trees. To test this, the point cloud
from the depth camera was compared to the actual shape of the tree. The point cloud displayed in
RVIZ was then compared to the voxel mapping created by the planner’s algorithm. Based on human
assessment, the voxel map was deemed accurate in terms of the shape and size of the obstacle.

Next, the mapping was tested by flying the drone around in the Cyberzoo and observing obstacles from
various angles while moving back and forth from/to it. It was found that the voxel map would sometimes
shift the blocks representing an obstacle. During further investigation, a pattern was detected, and it
was discovered that the transformation matrix between the camera’s and the drone’s centre did not
include the mounted offset of the camera. The shift of obstacles was solved when the camera mounting
offset of 70mm was included in the matrix. Over time, some shifting in obstacles occurred, which is
inevitable when localisation drifts in dead-reckoning.

4.1.2. Path planning and tracking
To test the tracking capabilities of generated paths, the first focus lies on testing the drone’s position
control functionality. This involves evaluating the GoTo functionality within the Parrot Software Devel-
opment Kit (SDK). Subsequently, the tracking of the path, guided by this position control, is tested.
In this test, the trajectory server must publish GoTo commands to the drone to follow the generated
trajectory as accurately as possible.

Bebop GoTo by Parrot SDK
The drone is programmed to follow a specific path by receiving cartesian goals relative to its position and
orientation. In ROS, the trajectory-server divides the calculated path into multiple points and passes
them with the correct timing to the drone’s GoTo function. First, the functionality of the GoTo function
is tested to ensure its accuracy and whether the trajectory server passes the coordinates correctly in
the Bebop’s coordinate frame. The Bebop’s coordinate frame is X=forward, Y=left, and Z=down.

In this experiment, the drone was commanded to GoTo positions [-8, -8, 0] and [+8, +8, 0] repeatedly.
The drone uses its IMU and the optic flow of the bottom camera for positioning in this case. Diagonal
flights through the Cyberzoo were repeated ten times in one minute using a looping bash script. After
ten iterations, the drone drifted about one meter, which was better than expected.

When given a GoTo command, the drone quickly accelerates to reach cruising speed (10m/s) within
the first 2 meters, decelerates slowly when arriving at the goal, and then makes a quick stop at the
goal without overshooting. Although it would have been useful to add to the report, the positioning and
acceleration of this test were not measured by Optitrack.

Tracking paths with the trajectory server
After validating the functionality of the GoTo function, the trajectory server needs to be tested to ensure
that it provides the correct goals at the right time. To achieve this, the EGO-planner is used to test the
trajectory server. A simple object is placed in the middle of the Cyberzoo, and the planner calculates a
path, which is followed by the drone.

The EGO-planner is not yet well-calibrated for this test as it is the first time using this planner. The
default settings are used, except for the maximum flight speed and acceleration, which are set to 0.5
m/s and 0.5 m/s². Additionally, the planner is set to generate only one path and execute it instead of
continuously updating the path. This helps to compare the flown path with the generated path.

During the test, it was observed that the drone lags behind significantly to the desired position on the
trajectory. This is due to the GoTo command incorporating acceleration and deceleration to the goal,
which creates a delay of 1 to 2 seconds since the distance is short. Due to the delay, it cuts corners of
the trajectory, which could result in a collision with the obstacle.

4.2. Outdoor testing and calibration in Dutch forests 33

To overcome this issue, the GoTo command is multiplied by two, which means that it only accelerates
to the goal and does not plan a deceleration to a full stop. This reduced the bebop’s lagging behind
the desired position to about half a second delay. And, by following the path’s curves instead of cutting
corners, the drone improved its performance. The multiplication of the GoTo command is made into a
system variable that can be fine-tuned in future testing and calibration.

Creating feed-forward control or implementing a PID position controller was considered to increase the
tracking performance. However, due to limited time, it was not incorporated. Moreover, the drone’s IMU
is only published at 5 to 10hz in ROS, which is problematically low to create a good position controller.
Meanwhile, the GoTo command is processed in the drone’s flight controller, which provides stable and
reliable results. The GoTo command also uses the drone’s optic flow camera, from which the data
cannot be accessed in ROS for position control.

4.1.3. Telemetry streaming via Garuda server
As described in section 3.4.2, streaming telemetry data to air traffic control is required for the Xprize
competition. This streaming requires a test in advance of the competition. The test would check if
all required data is sent, with exactly the required decimal places for every value. For the test, the
organisation gave the following instructions:

• Start sending telemetry
• Fly a 200m*200m square in four minutes
• Do some other movements to make a flight of 10 minutes in total
• Land the drone
• Repeat one more time this flight
• Send the organisation an email with the specific date and time the test flight was conducted.

This test is executed a month before the competition. The test took place outdoors at a big empty
parking lot which had enough space to fly the big square. After the test, the Xprize organisation was
emailed to validate the results on their server. The organisation then validated the data and replied to
the email that the telemetry was correctly sent.

4.2. Outdoor testing and calibration in Dutch forests
Multiple tests were carried out in Dutch forest environments to assess the effectiveness of obstacle
avoidance, refine obstacle mapping settings, and determine the optimal configurations for computa-
tional efficiency and flight speed. Various locations were utilized to simulate diverse forest scenarios.
Due to restricted airspace in Delft and the absence of a forest in the MAVlab’s outdoor test field, most
tests took place near Breskens in Zeeland.

Conducting tests in forests provided valuable insights into flight operations in natural environments.
As previously mentioned, forests lack facilities for repairing the drone or charging equipment. With no
tables or chairs available, ground operations had to be conducted directly on the forest floor. Due to
the limited number of functional batteries (only four), each trip to the forest yielded approximately four
flights lasting around 10 minutes each, after which the batteries needed recharging.

Figure 4.1 illustrates a test flight in Breskens, where the 4G dongle’s latency and bandwidth were eval-
uated. The test also involved observing the visualization of autonomous navigation, latency in the
camera live stream, and control via the 4G network.

From the Dutch forest tests, three key findings emerged. Firstly, the drone easily exceeded the defined
map size, leading to unresponsive autonomy. Careful consideration of map size within the processor’s
memory limit is crucial to cope with this issue. A challenge encountered was the drift in height estimate,
causing the drone to breach the virtually defined map’s border. As shown in table 4.1 in section 4.1,
the drone has significant drift over time. The map size in the x and y directions is a couple of hundred
meters, but in the z-direction, only a couple of meters lower the map’s memory usage. In theory, the

4.3. Airworthyness test Xprize Competition Singapore 34

Figure 4.1: Testing and calibration of autonomy system in Dutch forest

drone needs only a couple meters above ground level to explore the forest, but when it drifts about
1m every 2 minutes, the map might need 15m in the z-direction not to exceed the map’s borders with
the localisation drift. Appendix D.3 shows how rapidly the map size, for example, in the z direction,
increases the use of RAM memory of the processor board.

The second finding revealed that flying under a dense canopy with low light intensity caused distur-
bances in the drone’s internal optic flow camera, affecting stable position control. Consequently, the
drone showed unexpected instability in these scenarios, posing a risk of crashing. It’s important to note
that low light conditions did not notably affect the depth camera used for obstacle detection.

The third finding highlighted that additional weight distribution on the drone and imu localization drift
leads to excessive drift when doing many yaw rotations. In dense environments, when the drone strug-
gled to navigate and generated paths with significant yaw rotations, it tended to drift into obstacles.
Although the depth camera prevented collisions with visible obstacles, the 270-degree region not cov-
ered by the camera was susceptible to crashing.

4.3. Airworthyness test Xprize Competition Singapore
To assess the airworthiness of a custom-made drone, the Singapore flight authorities required an ex-
amination of the drone. The requirements were extra strict for Beyond Visual Line of Sight (BVLOS)
operations, which would be most missions in the forest. The evaluation included pre-flight, in-flight,
and post-flight procedures, overseen by the organization and two representatives from the Civil Avia-
tion Authority of Singapore (CAAS).

Originally, the tests were scheduled for Saturday morning but were postponed to Sunday due to persis-
tent rain. However, Sunday had rain and thunder warnings all day, which caused further delays. The
final opportunity for the airworthiness tests was granted on Monday morning, just before the start of the
competition. Fortunately, the weather on Monday was favourable, allowing the flight tests to proceed.

On Monday morning, the weather conditions were sunny, with a temperature of approximately 35 de-
grees Celsius. The test flight field was soaked and damp, resulting in 95% to 100% humidity—typical for
rainforest areas post-showers but untested conditions for the drone. The pre-flight checks involved ver-
ifying telemetry data, live video streaming, drone mapping, geofencing configurations, and other flight
settings on the Ground Control Station (GCS). Despite challenging conditions, including wet grass and
a lack of power sources, these pre-flight checks were successfully completed. Battery conservation of
the laptop and drone was challenging but crucial due to the unavailability of charging options.

The in-flight checks included a flight mission of the following aspects:

• Takeoff
• Hover still for a minute in the same place without user input

4.3. Airworthyness test Xprize Competition Singapore 35

• Fly a 20 by 20 meters square for 4 minutes as a waypoint mission
• Fly the drone to the (closely set) geofencing and try to breach the geofencing manually
• Activate the auto-return-home function

During takeoff, the drone showed instability and difficulty maintaining a hover. When manually piloted
toward the geofencing, the drone initially appeared to halt, but then unexpectedly breached the ge-
ofencing and continued outside the designated area. Manual piloting it back to the take-off position
required significant effort. Due to these safety concerns, the drone was landed. The planned square
waypoint-mission and auto-return-home functions were omitted. The post-flight check, which would
have included validating correct flight log recordings, did not occur. Because of a drained laptop bat-
tery and limiting time to the start of the competition, it was decided not to debug the problem and not
to redo the airworthiness test. Therefore, the drone did not pass the test on Monday morning and was
not used in the actual competition.

Analysis of the flight logs revealed unstable and likely incorrect readings from multiple sensors. The
magnetometer and GPS, crucial for attitude calculation and positioning, showed abnormal fluctuations
and inaccuracies. Exposure to intense sunlight, high temperature, and maximum humidity during the
tests likely contributed to these failures. Unfortunately, there was no opportunity for private testing in
these conditions in Singapore before the CAAS evaluation. The airworthiness test was the drone’s first
and last flight in Singapore.

Despite enabling black-box data logging on the Bebop drone, attempts to retrieve and analyze this
data from the test flight failed. The black-box file had been overwritten in the drone’s internal system,
resulting in the loss of all sensor data from the flight.
Appendix E.1 lists some thoughts about future work to improve the EGO planner to be used in the wild.

5
Difficulties in rainforest environments

This chapter highlights the complexities of deploying autonomous robots in unpredictable natural set-
tings. The chapter particularly focuses on challenges experienced in the Xprize rainforest competition
discussed in the preceding sections. This chapter carefully examines the challenges encountered in the
competition in Singapore’s rainforest. It provides valuable insights for future researchers and engineers
to deploy robotics in these scenarios.
Rainforests, known for their dense vegetation, high humidity, and variable climates, present unique
challenges for autonomous systems. This chapter explores the impact of temperature and humid-
ity on electronics, the difficulties of navigating cluttered terrain, connectivity constraints within thick
foliage, and the limitations of lightweight sensors on drones. This chapter also delves into mission
planning complexities, including slow progress, uncertain distances, and the nuances of regulatory re-
quirements, notably Beyond Visual Line Of Sight (BVLOS) operations in forested environments.
This comprehensive examination serves as a foundational resource for engineers and researchers
aiming to deploy autonomous systems in the diverse and challenging ecosystems of our natural world.

5.1. Environment
Robots in industrial environments often have mostly repetitive tasks, with nearly identical products and
few variable environmental conditions. When deployed in nature, however, the working conditions
are unknown when the robot is designed and often also unknown when deployed. When the robot
is teleoperated, the design of the robot should be able to withstand all environmental conditions and
obstacles. With autonomous operations, there is an even more complex task for engineers to design
the autonomous system such that it finds solutions in all possible cases, and can also detect when
there is no solution available. Unknown challenging conditions can be found in any form of nature,
like deserts, oceans, mountains, snowland, or forests. This article focuses on rainforest conditions as
these challenges are encountered by the author.

In the rainforest, dense vegetation can be found in a tropical, humid, and warm environment. Of
all places, rainforests have the most varying biodiversity and are, therefore, a place of interest for
researchers. Rainforests are also threatened by deforestation and climate change. Therefore, re-
searchers would like to map and keep track of the biodiversity over time. As the rainforest often is a big
area that is hard to access for humans, robots like drones and rovers can be deployed to scan the area
remotely. These robots have to deal with the environmental conditions, but also connectivity, sensor,
mission, and requirement issues that come along with these environmental conditions.

The environmental conditions are for now grouped into temperature, humidity and the dense cluttered
environment. To start with temperature, this varies from 20 degrees at night to 30 degrees Celsius av-
erage air temperature during the day. When exposed to direct sunlight, objects can get much warmer
depending on their colour and material. When exposed to the sun, electronics can easily get up to 60
degrees Celsius. Electronics have trouble working in these temperatures, mainly because the proces-
sor chips cannot be cooled anymore inside the electronic devices, causing failure, incorrect data, or
blackouts.

36

5.2. Connectivity 37

Humidity is another factor that compromises the functionality of electronic devices. In rainforests world-
wide, the average humidity is 77 to 88 per cent, often reaching 100 per cent after rain showers. In
environments where the humidity is higher than 50%, electronics are susceptible to damage. Firstly,
at high humidity, water droplets might condense onto components, causing short circuits. Secondly,
humidity causes sensors to give wrong readings due to changes in material properties. Lastly, the
humidity causes strong interference in wireless signals, this will be covered later in this article.

Where temperature and humidity are mostly related to the functionality of the electronic components
of the robotics, the dense, cluttered environment is more related to the teleoperated or autonomously
operated mission of the robot. The dense environment makes it hard for the robot to move through the
forest in or under the canopy. As obstacles are densely populated and often only narrow open places
to move through the forest exist, the openings might be hard to find for an operator or autonomous sys-
tem. Also, the margins in which the robot has to operate not to hit and crash into an obstacle are narrow.

How wide the openings in the vegetation are to navigate through depends on the region, altitude, and
vegetation type, and is a big uncertainty in the robot design and mission deployment. Where a rover is
limited to the openings at ground level, the drone can vary altitude to find the openings. Our experience
from the rainforest is that the varying altitude is a must for a drone to find openings. Navigating at a
fixed altitude is nearly impossible, even if the jungle is less dense. The cluttered environments cause
the openings to appear in rather unpredictable places. Also, the robot might have to move to some
opening first to find out if the space behind this vegetation gives solutions to move further. This common
occlusion makes mapping and navigating through the dense cluttered forest a slow process. For a
drone, which has limited battery life, this slow process with big uncertainty of finding a solution to the
goal and, even more important, finding a way back home, the slow process is challenging.

5.2. Connectivity
As mentioned in the previous paragraph, the humidity of the air causes interference in wireless signals.
In addition, the dense vegetation with many leaves causes even more interference, mainly because
the leaves contain much water. The water in the vegetation and air causes the signals to block/absorb,
scatter and reflect the signals. As most robots rely on radio signals for control and/or supervision by
the operator, this interference is a significant problem.

The more vegetation between the operator and the robot, the more the signal degrades. Therefore,
there is a severe limitation on how far the robot can get into the forest. More powerful transmitters and
directional antennas improve this range, but no more than a factor of two. On small robots like drones,
this option might not be feasible due to weight and power limitations. Adding cellular connectivity to
a robot is a common approach to support an unlimited range, but the coverage of cellular towers in
rainforests is poor or sometimes non-existent. One factor that makes all wireless signals even a lot
worse is rain. When it is raining, or when it just stopped raining, all vegetation in the forest is wet,
causing even more absorption and scattering of the signals.
GPS signals from satellites are relatively weak signals. When the air is humid, the vegetation is dense
and possibly wet, the signals are interfered so badly that a GPS fix is not possible or otherwise far from
accurate. Inaccuracies of 50 meters are no exception in these conditions. Therefore, robotic solutions
cannot fully rely on GPS localization when operating under the dense canopy layer. Other solutions for
localization are challenging and make the robot often more complex.

5.3. Sensors
When the goal is autonomous navigation, multiple sensor difficulties have to be taken into considera-
tion. Most probably, the robots engineered to find their way through the dense vegetation are compact
to fit through the narrow openings. Therefore, the choice of sensors is limited as these need to be
compact and lightweight to fit on a small-sized robot. The lighter weight sensors often have a more
limited measuring range, accuracy, and signal-to-noise ratio. These factors make accurate mapping
for navigation more challenging.

In addition, the available processing resources onboard the drone are limited because of the same

5.4. Mission 38

reasons. When more noisy signals have to be pre-processed on a smaller processor, the response
time will be longer and the update frequency lower. At the same time, the measuring range is shorter,
which causes the system to look less far ahead. The result is less efficient path planning as new
obstacles occur later in the system. Lastly, when the sensor accuracy is lower, the planner might have
to re-adjust the trajectory more often while the drone is closing in on obstacles. For all these reasons,
the drone has to move slower through the environment, compared to a system with higher quality
sensors, to process detected obstacles and generate a safe collision-free trajectory reliably.

5.4. Mission
When performing a mission under the canopy or in the canopy layer, some difficulties arise that are
worth mentioning. Firstly, most drone systems have a return-to-home sequence as a standard solution
for error handling, such as signal loss or low battery. When this sequence triggers, the drone will (1)
vertically ascend to a predefined altitude, normally safe above all obstacles, (2) fly horizontally straight
home to the takeoff location, (3) descend and land. If there occurs any obstacle above the drone during
the ascend, like tree vegetation or a branch, the drone might crash. If the drone has omnidirectional
obstacle avoidance, as higher-segment DJI drones have, it might bypass the obstacle and find a safe
route home. With omnidirectional obstacle avoidance, this problem can be tackled when flying in the
canopy layer where there are openings to escape the forest. But, when flying under the canopy layer,
there is a probability no gaps exist or can be found. In this case, a normal return-to-home sequence is
not feasible.

As mentioned before, the progress of movement by robots through the dense forest is slow. Where,
for example, most drones fly 15 meters per second from waypoint to waypoint in the open sky, a highly
advanced drone in a dense forest might only fly 1 to 4 meters per second when avoiding obstacles.
As the flight speed is depended on the density of the forest and the ease of finding openings to fly
through, the distance that can be covered in a certain time is highly uncertain. Therefore, when the
drone flies under the canopy, big margins in mission planning have to be planned on battery life when
to return home. As the battery life for drones that perform difficult autonomous flight tasks in the forest
is already limited to 5 to 10 minutes, the maximum distance from takeoff the drone can reach limits to
some tens or hundreds of meters. Pushing the design of the drone to be most agile, fast computing and
manoeuvring as possible will lower the flight time performance. The same holds visa-versa. Therefore,
exploration in a big forest area is not very efficient. Flying over a part of the forest to explore an area
under the canopy further away from the takeoff location is an option, but it is still bound to the limited
flight time.

Trapping environments is another reason why the distance that can be covered under the canopy is
highly uncertain. Under the canopy, different types of plants and other vegetation occur. In some
places, gaps might be relatively wide and easy to spot, while in other places, gaps are hard to detect,
too small, or non-existent. Also, the robot might follow a sequence of feasible gaps that are narrowing
towards the end, ending up in a place with no gap or a too-narrow gap as the only option leading to the
goal. For an autonomous system, these situations might be hard to escape from. In any way, manually
piloted or autonomous flight, the drone loses crucial time flying into a narrow space and back out of
this trapping space without making progress in flying to the goal or back home.

5.5. Requirements
Lastly, the robot design and operator might be subjected to requirements from governments or landown-
ers. For ground robots, like rovers, there are often fewer regulations as a risk to the environment by
a rover is assumed to be minimal. For drones, on the other hand, there are by default already tens of
requirements, but also some more strict ones introduced by the type of operation expected in foresty
environments.

For drones, flying Beyond Visual Line Of Sight (BVLOS) has, for nearly any country worldwide, an extra
set of requirements. This BVLOS operation occurs as soon as the drone is out of the pilot’s sight behind
some tree or other vegetation. Therefore, BVLOS requirements must be considered for operations in
foresty conditions.

5.6. Challenges summarised 39

Some examples of requirements BVLOS might add to the operation are more advanced geofencing,
additional pilot training, transponder for aviation, and real-time video streaming. BVLOS often has to
be requested a couple of days in advance to be approved by the flight authorities. These will check
the pilot’s licences and the risk assessment of the drone in combination with the location of operations.
BVLOS might not only be more costly due to the requests and extra pilot training but also, the required
hardware on the drone might add extra weight. This additional weight can have a significant impact
on small drones with only a couple hundred grams of payload, greatly reducing the flight time. Every
region has its own set of requirements and limitations that should be checked.

5.6. Challenges summarised
To wrap up the highlighted challenges in this chapter, the rainforest presents unique challenges for
autonomous systems with its dense vegetation, high temperature and high humidity. The temperature
and humidity significantly impact the functionality of electronics. Sensor readings can be affected to
give wrong values, causing the system to function incorrectly or even unstable. Also, connectivity is
significantly impacted by the humidity. Signals scatter and degrade through the humid air and even
more by thick and wet foliage. This potentially causes signal loss earlier than expected.

Missions under the canopy in this complex terrain have their challenges as well. Slow traverse, poor
or no GPS localisation, and returning home before the battery dies are examples thereof. In addition,
flying under the canopy will commonly be Beyond Visual Line Of Sight (BVLOS) missions. BVLOS
missions have higher restrictions on supervision, while the signal to stream video and control the drone
is worse under the canopy. Therefore, meeting these requirements when flying under the canopy while
monitoring the drone remotely is hard.
Appendix E.1 lists some thoughts about future work to improve the EGO planner to be used in the
rainforest as required by the Xprize competition.

6
Downscaling: the tradeoff between
performance and processor load

Multiple research gaps are found at this stage of the research. From those gaps, the one that shows
the strongest relation to the topic and objectives of this research was chosen to study. This research
gap is downscaling hardware and algorithms towards small sub-250-gram drones while optimising for
a prolonged flight time, and, at the same time, having a robust system which can safely traverse to
its goal in environments with narrow gaps and cluttered obstacles. The study aims to provide guide-
lines and insights for researchers and engineers on how autonomous navigation performs on smaller
processors. The feasibility of applying a state-of-the-art path-planning algorithm to smaller systems is
assessed through systematic testing with various configurations.

Downscaling a drone improves many factors of autonomous rainforest exploration. First, a more
lightweight autonomy system extends the maximum flight time, which helps to explore more terrain.
Additionally, the weight reduction potentially reduces environmental impact as it does less harm on
impact when crashing, and it also produces less noise as it uses less thrust.
Secondly, the smaller form factor enables the drone to navigate through smaller gaps and denser en-
vironments, increasing accessibility and improving the drone’s ability to work in more versatile terrain.
And lastly, downscaling components down to a certain level reduces costs. Reducing costs makes the
system more accessible to deploy on a large scale.

While adjusting algorithm settings may reduce processor load, potential performance trade-offs are ac-
knowledged. To quantify and compare performance, dedicated metrics are established to assess con-
figurations’ effectiveness in robustly navigating a rainforest environment. These metrics offer insights
into environmental density, sensitivity to obstacles, resolution of trapping conditions, and response time
to emerging obstacles, establishing a direct link between processor load and performance changes.

Simulations on one specific dataset from outdoor flights are used for benchmarking and evaluating the
planner’s performance across various configurations. The uniform scenario ensures consistent testing
conditions for diverse planner setups. Then, data is processed into Python format, and analysis and
visualization are executed through a Python script. The script generates plots of CPU and memory
load per simulation, performance metrics, and combined CPU load against performance metrics, ac-
companied by explanations of observed trends.

6.1. Performance metrics
In order to determine the optimal settings for path planning on a processor with limited resources,
benchmark tests and measurements are conducted. During the tests, the CPU and memory load of
the processors can be measured. However, to accurately describe the performance of navigation and
obstacle avoidance, certain metrics are required to make the performance measurable and compara-
ble. This section outlines the metrics that have been designed for this purpose.

40

6.1. Performance metrics 41

As this research focuses on safe navigation in dense and cluttered environments, themetrics have been
designed with these objectives in mind. Four metrics have been developed and presented, namely ’re-
activeness time’, ’solvable obstruction width’, ’minimum detectable object size’, and ’minimum solvable
gap size’. In this section, the differences between perception and planning are highlighted to provide
a better understanding of the reasoning behind the metrics. The metrics are then explained in detail,
with background information, illustrations, and formulas. Finally, this section describes how the metrics
will be tested on the benchmark simulation.

6.1.1. Perception vs Planning in Relation to Performance Metrics
Autonomous planning for robotics involves two essential components: perception and planning. The
perception step processes the robot’s environment perception and the generation of a map for subse-
quent planning. The planning step utilizes this map to navigate around obstacles and lead the robot
toward its goal. In this research, the EGO-planner integrates both perception and planning steps.

Understanding the influence of different configurations on the path planner is crucial. Notably, the
study’s initial findings revealed that processing load is more significantly impacted by perception config-
urations than planning configurations. Moreover, the performance metrics designed to achieve reliable
flight in the rainforest are closely linked to perception configurations rather than planner configurations.

Perception configurations, such as depth image rate and resolution, influence the processing load sig-
nificantly. Additionally, certain configurations are used in both the perception and planning modules,
such as voxel grid resolution and local map size. On the other hand, planner configurations encompass
parameters related to the cost function, maximum iterations, and replanning requirements. These con-
figurations are important for performance but are assumed not to significantly change processor load.

By aligning the discussion of perception and planning with the performance metrics, this section pro-
vides valuable insights into the differences, similarities, and relations between these components and
their impact on the overall performance of autonomous flight in challenging environments.

6.1.2. Depth image projection
In depth-image projection, the 2D depth image, provided by the camera, is translated to 3D detections.
This is done by using the camera’s intrinsic and extrinsic matrices [20] to determine the position of each
depth pixel in relation to the camera coordinate frame.

To translate the detection to the coordinate frame of the obstacle map, we use the position and pose
estimation of the drone coordinate frame, as well as the transformation from the drone’s coordinate
frame to the camera’s coordinate frame. After this translation, each detection point is assigned to the
appropriate grid block, and the obstacle probability of this specific block is increased.
Figure 6.1 provides an illustration of how image pixels are projected into 3D detection points in the
world coordinate frame.

6.1. Performance metrics 42

Figure 6.1: Illustration of depth image projection [27]

As part of the simulation, we will be lowering the resolution of the depth camera to understand how
it impacts the drone’s perception performance. This is particularly interesting because using a high-
resolution camera, but only using a fraction of the pixels, may impact CPU and memory load. In addi-
tion, this also simulates the effect of using lower-quality hardware that, by default, may output lower-
resolution depth images. Therefore, we want to explore how the CPU and memory load are related to
the perception performance with different resolution configurations.
However, it is important to note that when skipping pixels, small obstacles may be missed if they only
appear in the skipped pixels. To illustrate this point, figure 6.2 below provides a side-view 2D illustration
highlighting the ”blind zones” caused by skipping pixels.

Figure 6.2: Illustration of skipping 2 out of 3 pixels in the projection step

To calculate this minimal size, first, the original pixel size has to be calculated. This represents the pro-
jection of a single pixel at a certain distance from the camera. By using either the camera’s horizontal
resolution and horizontal field-of-view, or the camera’s vertical resolution and vertical field-of-view, and
the camera range, the pixel projection size at maximum distance can be determined.

To estimate the size of a potentially missed object at maximum camera distance, formula 6.1 below
can be used as a rule of thumb. In this formula, 𝑃𝑃𝑚𝑎𝑥 is the maximum pixel projection, FOV the
camera’s field of view, 𝐶𝑅𝑚𝑎𝑥 the camera range, 𝑂𝑅 the original resolution, 𝑆𝑃 the number of pixels
that is skipped, and 𝑆𝑀𝑚𝑎𝑥 the maximum object size that can be missed. To determine the minimum
size, first calculate the original pixel projection using either horizontal or vertical resolution and field-of-
view, along with camera range. For small objects, multiply the projection size by the number of skipped
pixels.

6.1. Performance metrics 43

Note: To be safer, assume the object is at the edge of pixels and add two extra pixel sizes. The diagonal
distance between pixels should be calculated for geometrically correct dimensions.

𝑃𝑃𝑚𝑎𝑥 =
tan (FOV2) ⋅ 𝐶𝑅𝑚𝑎𝑥 ⋅ 2

𝑂𝑅
𝑆𝑀𝑚𝑎𝑥 = 𝑆𝑃 ⋅ 𝑃𝑃𝑚𝑎𝑥

(6.1)

The pixel projection scales linear with the range from the camera. Therefore, at half the maximum
camera range, objects twice as small can be detected.

Hypothesis
The hypothesis is that reducing the number of pixels will decrease the CPU load as there will be fewer
points to project into 3D space and raycast. Consequently, if we need to detect smaller obstacles at a
certain distance, we may experience a higher CPU load.

Depth image frequency and reactiveness
Besides skipping pixels in an image, depth image frequency can be varied to potentially reduce the pro-
cessor load. By only processing one out of every N-received depth image, the ego planner can simulate
a lower depth image frequency. This technique is particularly useful in simulating lower-performance
camera hardware, which might have a lower depth image frequency. Therefore, it is important to test
the system’s performance on this variation. For instance, the standard depth image output frequency
of the used Realsense Depth camera is 15Hz. By skipping one out of every two images, a rate of 7.5Hz
can be tested. Similarly, by skipping two out of every three images, a rate of 5Hz can be tested.

Reducing the frequency of depth images can have a downside as it may affect the planner’s reactive-
ness. Reactiveness refers to the time it takes for the planner to detect an obstacle on the generated
path and realize that the current path will collide with it. When the algorithm receives fewer images per
second, the time interval between each image is longer, which may cause delays in processing new
inputs. Additionally, the probability function for mapping obstacles in the voxel grid requires N iterations
before reaching the threshold that considers the obstacle.

Assuming that the loop times for perception are much smaller than the time period between two depth
images, the reactiveness time is only added once. Perception loop time includes projection, raycast,
and update loop times. To calculate the total reactiveness time, we need to calculate the time taken by
the probability function (which is the number of images multiplied by the camera delay) and add the time
taken by the perception and collision check loop. This can be written as a rule of thumb as in formula
6.2 below. In this formula, 𝑃𝐼 is the number of iterations until the threshold is reached, 𝑃𝑡 and 𝑃𝑖 are
respectively the probability threshold and probability increase, 𝑅𝑐𝑎𝑚 the camera rate, and 𝑇𝑝𝑟𝑜𝑗, 𝑇𝑟𝑎𝑦,
𝑇𝑢𝑝𝑑, 𝑇𝑐𝑜𝑙 the loop times for projection, raycasting, updating, and collision check. The square brackets,
also known as the ceiling brackets, indicate that the decimal number inside should be rounded up to
the nearest whole number.

𝑃𝐼 = ⌈𝑃𝑡𝑃𝑖
⌉

𝑇𝑟𝑒𝑎𝑐𝑡 = 𝑃𝐼 ⋅
1

𝑅𝑐𝑎𝑚
+ 𝑇𝑝𝑟𝑜𝑗 + 𝑇𝑟𝑎𝑦 + 𝑇𝑢𝑝𝑑 + 𝑇𝑐𝑜𝑙

(6.2)

As described in the later section 6.4, during testing, it was found that the loop times for perception and
collision checks were 10 to 100 times lower than the delay caused by the depth image rate. Therefore,
the reactiveness time can be simplified by removing the perception and collision check loop times
from the equation. This simplified formula provides an approximate value for the reactiveness time, as
shown in formula 6.3 below.

𝑇𝑟𝑒𝑎𝑐𝑡 ≈ ⌈
𝑃𝑡
𝑃𝑖
⌉ ⋅ 1
𝑅𝑐𝑎𝑚

(6.3)

Hypothesis
It is expected that when the reactive performance is plotted against CPU load, the CPU load will be

6.1. Performance metrics 44

highest for the highest depth image rate, resulting in the best reactiveness. As the image rate de-
creases, the CPU load will also decrease, resulting in longer reaction times. It is uncertain whether the
relationship between CPU load and reactiveness will be linear or a higher degree polynomial. There is
no direct relationship expected between memory load and the probability function or camera rate, as
these do not influence matrix dimensions in the code.

6.1.3. Raycasting process
When creating a 3D map from a depth image, the raycasting algorithm checks if previously detected
obstacles should be removed from the map. The algorithm makes the assumption that if the drone
detects an obstacle at point B from point A, there can’t be any other obstacle on the line between point
A and point B. Therefore, every block on that line (also called ray) that was previously marked as an
obstacle will now be updated towards free space. The algorithm does this by lowering the obstacle
probability.

For every grid block within the drone’s range, there is a value between 0.0 and 1.0. This value is updated
using a probability function that increases or decreases it. A threshold value determines whether a
block is marked as free space or an obstacle. Figure 6.3 below illustrates the raycasting step. In
this example, both the solid and dotted blocks were previously marked as obstacles. Now, the drone
raycasts through the dotted blocks, causing the blocks to have a lower probability of being obstacles
and potentially being removed from the map.

Figure 6.3: Illustration of raycasting process. After being raycasted, the red blocks are removed from the obstacle map.

In a perfect world, where the drone knows its exact position and pose, and obstacles are static, there
would be no need for raycasting as every obstacle can be accurately mapped. Unfortunately, the po-
sition and pose estimation with dead-reckoning drift are not very accurate, which makes raycasting an
essential process to keep updating the map.

For example, when the drone is in front of a narrow gap, and it drifts to the right, the left edge of the
gap becomes an obstacle, making the gap smaller. In such a situation, the raycasting step detects that
the first part of the right edge has disappeared and updates the obstacle map. Consequently, the gap
has roughly the same width as before the drift. Therefore, raycasting plays a crucial role in navigation
while flying dead-reckoning with drift in the position estimate.

6.1.4. Local planner range
The ego planner is a local planner that considers only a limited set of obstacles for navigation. In
contrast, a global planner maps and considers all obstacles and can plan a route through them all,
thereby using more memory and processor. The ego planner’s obstacle avoidance algorithm stores
and considers obstacles up to a certain distance from the drone’s location. Additionally, all camera
detections within the maximum camera range are included in the obstacle avoidance algorithm. The
maximum camera range can also be configured in the ego planner.
A smaller local planner rangemeans fewer obstacles to consider, resulting in potentially lower CPU load

6.1. Performance metrics 45

and memory usage. However, as the planner takes fewer obstacles into account, it may not efficiently
plan for obstacles ahead, resulting in less feasible or less efficient routes.
Choosing a local planner range smaller than half the obstacle width can result in the drone being unable
to find a solution. This issue is illustrated in an example in figure 6.4 below.

Figure 6.4: Illustration of local map range problem with wide obstructions where navigation goes into infinite loop

As mentioned earlier, all obstacles from the local map and within the camera range are considered in
the trajectory planner. In the illustrated example, when the goal is behind a wall having a certain width,
the drone might never reach the goal. When the camera range is bigger than the local planner range,
the drone sees a longer wall ahead compared to the area behind the drone. Now the planner thinks
the best path is turning around and flying to the goal. After turning around, the camera now detects
a new piece of the wall. Also, everything behind the drone, outside the local map, is again forgotten.
The planner now thinks turning around and trying the other way is better. From experience by testing,
it can be recalled the navigation can stay forever in this loop, never reaching the goal.

When the local planner range is equal to or bigger than the camera range, this problemmight still occur.
When the obstruction, which can be a set of obstacles, in between the drone and the goal is wider than
the local planner range, the same situation can exist, as shown in figure 6.4.
As a rule of thumb, formula 6.4 can be used to determine what obstruction width can be solved by
the algorithm. In the formula, 𝐷𝑖𝑛𝑓𝑙 is the inflation distance, 𝐷𝑚𝑖𝑛 the minimum inflation distance, GR
the voxel grid resolution, 𝑅𝑙𝑜𝑐 the local range, and 𝑆𝑂𝑊 the solvable obstruction width. The square
brackets, also known as the ceiling brackets, indicate that the decimal number inside should be rounded
up to the nearest whole number.

𝐷𝑖𝑛𝑓𝑙 = ⌈
𝐷𝑚𝑖𝑛
𝐺𝑅 ⌉ ⋅ 𝐺𝑅

𝑆𝑂𝑊 = 𝑅𝑙𝑜𝑐 − 2 ⋅ 𝐷𝑖𝑛𝑓𝑙
(6.4)

Hypothesis
The hypothesis for solvable obstruction width performance is an increase of CPU load by an increase
of obstruction width. Both the perception and planner algorithms have to process more voxel blocks
when the local map is bigger. Also, when the local map is bigger, the voxel map contains more blocks
and, therefore, increases the processor memory load. Whether the relations for CPU and memory load
with the solvable obstruction width are linear or a higher polynomial is unsure.

6.1. Performance metrics 46

6.1.5. Minimum solvable gap size
To guarantee a path-planning solution from a perception perspective, the drone requires a minimum
gap size which ensures at least one grid block of free space in the middle of the gap. This minimum
gap size is used as a performance metric. In most cases, depending on the voxel grid’s initialization,
it is possible to find a more narrow gap than this minimum requirement is based on. But as this does
not hold for all cases, these more narrow gaps cannot be guaranteed. This section assumes the worst
alignment of pixels and grid blocks that can occur.

When obstacles are mapped into the local map, the centre of the depth image pixel is projected to 3D
space and assigned to one of the voxel blocks in the grid. This projection represents a cross-section of
the ray from the camera that corresponds to a specific pixel. The size of the projection varies depending
on the distance from the camera; it is relatively small up close and relatively large when far away. This
is illustrated in section 6.1.2, figure 6.2.
If the projection of a pixel is mostly outside of an obstacle, but not completely, the pixel can still repre-
sent the obstacle by giving it the depth of the obstacle. In cases where the pixel projection is located
on the edge of an obstacle, half the pixel-projection-width narrows the gap at both edges.

After projecting the centre of the pixel to the 3D space and assigning it to a voxel block, it might be on
the edge of a voxel that mostly lies towards the gap’s centre. At worst, this would narrow the gap by
one grid size on both sides in the obstacle map.

Up until now, we have only talked about the grid blocks present in the obstacle map. However, inflating
the obstacles is a crucial step towards ensuring a safe flight. The inflation of obstacles defines the mar-
gin that the trajectory planner maintains between the centre of the drone and the mapped obstacles.
For the inflated obstacle map that the planner uses, each voxel in the obstacle map is inflated in all
three directions (X, Y, and Z), both negative and positive, by a value known as the minimum inflation
- parameter. The inflation value is always a multiple of the voxel grid size. For instance, if the grid size
is 15cm, then the inflation value could be 30cm or 45cm. If the inflation value is not a multiple of the
voxel grid size, the planner will automatically choose the next bigger multiple.

In order for the planner to find a solution, there must be at least one obstacle-free grid block in the
middle of the gap on the inflated obstacle map. To calculate the width of the gap, we can take into
account the following factors: half a pixel projection width from each edge towards the middle of the
gap, plus one grid block width, and finally adding the inflation width. In the middle of the gap, there
should be one grid block of free space as well. This is illustrated in figure 6.5 below.

Figure 6.5: Illustration of minimum gap size for a set of configurations

6.1. Performance metrics 47

The above reasoning applies only when the drone is facing a gap that is perpendicular to the x, y, or z
axis. However, in cases where the gap is rotated relative to the axis, the reasoning is no longer valid.
When the gap is diagonal to the axis, the obstacle mapping and inflation remain the same, but the
span of the grid block becomes wider. In such cases, the width of the grid block is equal to the diagonal
span of the voxel block, instead of the resolution of the voxel grid map. Figure 6.6 below provides an
illustration of a diagonally oriented gap with respect to the grid axis.

Figure 6.6: Illustration of minimum gap size for a gap diagonal to the grid axis

From these conclusions, we can make a rule of thumb for the minimum gap size that a drone can
navigate through with numerical certainty. This rule of thumb is formula 6.5 below. In the formula, 𝑃𝑆 is
the pixel size, 𝐹𝑂𝑉 the camera’s field of view, 𝑅𝑐𝑎𝑚 the camera range, 𝐶𝑟𝑒𝑠 the camera resolution, 𝐷𝑖𝑛𝑓𝑙
the inflation distance, 𝐷𝑚𝑖𝑛 the minimum inflation distance, 𝐺𝑅 the voxel grid resolution, and 𝐺𝑆𝑚𝑖𝑛 the
minimum solvable gap size. 𝐴 refers to the dimensioning illustrated in figure 6.6. The square brackets,
also known as the ceiling brackets, indicate that the decimal number inside should be rounded up to
the nearest whole number.

𝑃𝑆 =
tan (𝐹𝑂𝑉2) ⋅ 𝑅𝑐𝑎𝑚 ⋅ 2

𝐶𝑟𝑒𝑠
𝐷𝑖𝑛𝑓𝑙 = ⌈

𝐷𝑚𝑖𝑛
𝐺𝑅 ⌉ ⋅ 𝐺𝑅

𝐴 = 𝑃𝑆
2 + √2 ⋅ (𝐺𝑅)2 +√2 ⋅ (𝐷𝑖𝑛𝑓𝑙)2

𝐺𝑆𝑚𝑖𝑛 = 𝐴 ⋅ 2 + √2 ⋅ (𝐺𝑅)2

𝐺𝑆𝑚𝑖𝑛 = 𝑃𝑆 + 3 ⋅ √2 ⋅ (𝐺𝑅)2 + 2 ⋅ √2 ⋅ (𝐷𝑖𝑛𝑓𝑙)2

(6.5)

Hypothesis
The hypothesis for the minimum gap size that can be guaranteed to be solvable is that the CPU load
increases with decreasing gap sizes. This is because a smaller gap requires the planner to process a
higher-resolution voxel grid, which then means more voxel blocks have to be processed. Additionally,
a higher image resolution for a smaller gap may also increase the CPU load since more pixels have to
be processed.

For the processor memory load, the hypothesis is that a higher voxel grid resolution will require more
memory to store the local obstacle and inflation map. No significant memory difference is expected for
variations in image resolution as this does not affect the 3D matrix of the obstacle map.

6.1. Performance metrics 48

6.1.6. Configuration variations
In order to compare the performance of the planner with the processor and memory load, configura-
tions of the planner will be varied over a set of simulations. This section explains which configurations
can be varied and why they are chosen or not. The number of parameters to vary is limited to six, as
testing more would take too much time to process and analyze the data. To make the final results more
readable, we will eliminate variations that show no significant difference. The six parameters to vary
are voxel grid resolution, local map range, depth camera range, skip pixels, and image rate. These are
described below.
This section also covers briefly why certain parameters are not chosen to vary. At the end of this sec-
tion, a table is given with an overview of the planned variations.

The voxel grid resolution refers to the block size in meters used to cluster the detections of obsta-
cles in a map. This parameter relates to the performance of minimal gap size and solvable obstruction
width. This parameter significantly affects the processor and memory loads, as a finer grid requires
more iterations to map the obstacles, generate trajectories and check for collisions. In addition, a finer
grid results in a larger matrix representing the same volume, thus increasing the memory load.
Intuitively, for minimal gap size and solvable obstruction width, the variation is chosen to be [0.05m,
0.10m, 0.15m, 0.20m].

The local map range is the area around the drone that the local planner uses to create new trajecto-
ries. If the range is larger, there are more grid blocks to consider as obstacles, which increases the
number of iterations and processor load. The local update range also limits the maximum width of an
obstruction that the drone can navigate without getting stuck in a loop, which impacts its performance.
For solvable obstruction width, the variations on the local map range are chosen to be 1 meter up to
35 meters, with steps of 1 meter.

The depth camera range refers to the farthest distance that the camera can detect obstacles or the
distance limit set in the code. This affects the minimal gap size, maximum obstruction width, and min-
imal object size.
One of the goals is to use a smaller, lower-performance depth camera that can detect obstacles up to
3 to 4 meters instead of 6 to 8 meters. Therefore, it is crucial to measure the difference in performance
when using a camera with a smaller range because the drone will not be able to detect obstacles as
far in advance.
The depth camera range is chosen to be [4m, 6m, 8m] to simulate both the performance by using the
current camera, as well as the performance by using the lower-performance camera.

Depth image skip pixels is the number of pixels skipped by the mapping algorithm. For example, a
value of 1 means it moves to the next pixel without skipping any. A value of 4 means it skips three
and moves to the fourth pixel. If the skip value is set to 4 on a 720x480 pixel image, the algorithm
divides the rows and columns by 4, resulting in an image size of 180x140 pixels. Reducing the number
of depth pixels reduces the points to project and raycast in the obstacle map, which affects the algo-
rithm’s performance of the minimum obstacle size it can detect.
To analyze the parameter’s effect, skip-pixels will be varied with [1, 2, 3, 4] pixels, which represent a
full, half, one-third, and quarter-sized depth image.
Keep in mind that in a half-sized image, half of the rows and half of the columns remain. In this exam-
ple, therefore, there is only a quarter of the pixels left to process.

Skip depth image refers to the number of depth images that are skipped before the next one is pro-
cessed. The planner receives these depth images from the camera. By skipping a certain number of
images, such as 2, only 1/3rd of the original rate remains.
For instance, if the camera captures images at 15Hz and skips two images, the rate will drop to 5Hz.
This rate has an impact on the planner’s responsiveness performance.
Initially, this parameter was not present in the EGO-planner code. However, it was later introduced to
simulate a low-performance camera that captures images at a lower rate.
For the reactiveness test, there are four variations of skip-pixel [0, 1, 2, 3, 4]. These values correspond
to image rates of 15Hz, 7.5Hz, 5Hz, 3.8Hz, and 3Hz, respectively.

6.2. Dataset recording 49

A maximum of 2 parameters is varied per test. If more than two parameters influence a specific per-
formance, the two most influential variations are chosen for simulation. Table 6.1 below summarizes
the variation settings for each performance test for the five parameters that will be changed during
simulations.

Table 6.1: Per performance test, the settings and variations for the simulations

Perfromance test Voxelgrid
resolution [m]

Local map
range [m]

Camera
resolution [-]

Camera
rate [Hz]

Gap size [.05 .10 .15 .20] 10 [1 1/2 1/3 1/4] 15
Obstacle size 0.10 10 [1 1/2 1/3 1/4] 15
Obstacle width [.05 .10 .15 .20] [1 2 ... 34 35] 1 15
Reactiveness 0.10 10 1 [15 7.5 5 3.8 3]

The EGO-planner has other parameters that can be modified to manipulate its behaviour. Below are
the parameters that are not varied, with a brief explanation of why they are not chosen for variation.

• The total size of the map in the x, y, and z directions is a fixed parameter. This parameter is
determined by the available memory on the processor board, which sets the maximum size that
can be used. While it does limit the operation range of the drone at some point, it does not directly
affect the performance of safe and robust flight in the forest.

• The maximum velocity and acceleration, as well as the cost function for the trajectory planner,
will not be varied. The parameters specific to the planner have not been chosen, as they have a
smaller impact on safe and robust flight in a forested area. However, these planner parameters
might have delivered some interesting results in terms of flight performance for metrics other than
the four designed metrics in this research.

• The minimal inflation is not varied as this is determined by the size of the drone platform, plus an
extra margin for obstacle avoidance defined by the user.

• The parameters for mapping probability are kept static. However, this can affect the system’s
responsiveness by changing the number of iterations required for an obstacle to be marked.

6.2. Dataset recording
Creating a dataset for simulations involves several steps. Firstly, it is necessary to modify ROS nodes
to produce real-time data that can be used to analyze the status of specific processes. In addition, ex-
tra measures are taken to gather ground-truth data during the dataset collection process. Afterwards,
the dataset collection has to be planned. This includes deciding on the location of obstacles and the
drone’s movement during the recording. This section will discuss the steps taken to create the outdoor
dataset in detail. The recording of the indoor dataset can be read in appendix C.1 but is not described
in this section as this dataset is not used in further steps. Appendix C gives more details on the creation
of the datasets, with some enlarged figures.

6.2.1. Prepare ROS to output measured performance
To prepare for data processing after the dataset collection, several nodes and topics are added to the
system. These are necessary to calculate and measure performance. This section focuses on the
changes made to the planner algorithm and explains how processor and memory load are measured.

Extract planner information
In a robotic system using ROS, multiple nodes process specific information and communicate by pass-
ing data through a network. Once the system is designed, debugged, and ready to use, the nodes can
be combined into one. This makes the system work smoothly and eliminates the need for the ROS
network. However, in the ego-planner code, the merging process has already been done, making it
difficult to monitor data traffic between different functions without modifying the code. To measure and

6.2. Dataset recording 50

keep track of algorithm performance, ROS publishers are added to the algorithm, allowing specific data
from inside the algorithm to be shared. Reverting the ego-planner to a setup with multiple nodes and
topics would require a lot of work, and the outcome would be similar to the current solution, with the
addition of extra publishers.
Publishers added to the ego-planner algorithm to measure performance per function:

• Trajectory planner

– Initialisation step. Loop time (seconds)
– Optimisation step. Loop time (seconds)
– Refining step. Loop time (seconds)
– Replanning average time. Loop time (seconds)
– Replanning iterations before finding a valid trajectory. (-)
– Total time to generate the valid trajectory. (seconds)
– Collisioncheck of current trajectory. Loop time (seconds)

• Environment planner (mapping)

– Projection of depth image to voxel grid. Loop time (seconds)
– Raycasting of new voxel grid on total voxel grid. Loop time (seconds)
– Local map updating step. Loop time (seconds)

Measure processor and memory load
In order to measure the processor load and active memory usage, a ROS package called ’cpu_monitor’
[28] is used. This package contains a ROS node that reads the CPU and memory load for each ROS-
related process running on the hosting system and publishes the values to corresponding topics. The
node is programmed to read and publish these values at a pre-set interval of 200 milliseconds.

6.2.2. Creating ground truth position data
As one of the research objectives is to measure the performance of a path-planning drone system using
dead-reckoning, it is useful to collect ground-truth data to monitor the drift. However, different meth-
ods need to be used for indoor and outdoor scenarios as indoor ground-truth methods cannot be used
outdoors and vice versa. In this section, the collection of position data using motion-capture systems,
GPS, and Visual-inertial tracking are discussed.
For indoor scenarios, motion-capture data is themost logical choice due to its high precision and consis-
tency. On the other hand, for outdoor ground-truth position data, both GPS and visual-inertial methods
are applied side by side since it is unclear which method gives the best result. By using both methods
simultaneously, the best method can be chosen during data analysis.

Motion-capture data
During indoor tests, ground-truth position data is obtained an Optitrack system. This motion-capture
system estimates the position and pose of the drone by analyzing markers on the drone through cam-
eras at different angles. The position estimate provided by this system has an accuracy that ranges
between 5mm to 1mm.
To input this data onto the ROS network, the laptop connected to the drone is also connected to the
Optitrack network via Ethernet. The data is then sent onto the ROS network using the ROS package
’Mocap_Optitrack’ and can be read by the drone .

GPS position data
The first method to record the drone’s location outdoors involves using an accurate GPS, which pub-
lishes LLA and NED (in XYZ) coordinates on the ROS network. For this dataset recording, a UBLOX
F9P GPS with a helix antenna is used. The used helix antenna has a high sensitivity to receive poor
or scattered satellite signals in the forest, as a result of which the GPS module is able to get a better
location estimate. The ROS node used to read the GPS module is a part of the ’gps_navsat_driver’
package. The package was adapted to make the processor work with an I2C GPS module. This adap-
tation to the I2c protocol was necessary due to the shortage of free serial ports on the drone’s onboard

6.2. Dataset recording 51

processor board.

During implementation and testing it was found that mounting the the GPS atop of the electronics gave
a poor signal and bad accuracy. Upon further research, it was found that the used helix antenna was
sensitive to EMC-radiation of the electronics and would therefore give no accurate reading. A spectrum
analysis was performed to give insights in the signal strength and noise. Figure 6.7 shows the analysis
results of mounting the GPS antenna atop the electronics and 30cm away from the electronics. During
the spectrum analysis, it was observed that the GPS signal strength was 2-3 times stronger (blue line)
when the antenna was placed away from the electronics than when it was mounted atop the electronics
(black line). The difference between the blue and black lines is assumed to be signal noise at the GPS
frequency generated by EMC radiation.

Figure 6.7: GPS spectrum analysis for antenna atop electronics (blue line) and antenna outside drone frame (black line)

To record the best possible GPS location on this drone, the GPS antenna is mounted on a carbon rod,
at least 30cm away from these electronics, to reduce the influence of EMC radiation. Figure 6.10 in
section 6.2.3 shows this GPS and carbon rod mounted on the drone. Now that the GPS is mounted
with an offset to the centre of the drone, a transformation matrix is required to translate the GPS fix and
drone heading into the actual GPS position of the drone.

Visual-inertial position data
A second method for obtaining outdoor ground truth position data is through visual-inertial odometry
by the ROS ’VINS-fusion’ package [21], as was used by the authors of EGO-planner. Due to its CPU-
intensive nature, this method could not be utilized for real-time position input for the planner’s onboard
computing. Nonetheless, it can be run on a laptop with the best settings to obtain ground-truth infor-
mation in post-processing.
To process the visual-inertial odometry, the recorded ROSbag file can be played back on the laptop.
During the playback, by using the ROS ’VINS-fusion’ package, the position can be estimated using fea-
ture tracking in the infrared images of the camera, combined with the camera’s IMU. To achieve this,
the correct ROS topics must be published and recorded. As a result, the depth camera is programmed
to publish its IMU, infrared-left and right camera. These topics are also recorded in the dataset.

The figures below demonstrate how the images are post-processed to estimate the position of the
object. Figure 6.8 shows the VINS-fusion algorithm’s visualization of tracking the landmarks in the
image. On the left, the optic flow between two consecutive images being processed is visualised with
the red and blue dots. On the right, the landmark points are projected into 3D space. By keeping track
of the landmarks in 3D space, the algorithm can estimate the positional and orientational changes
between consecutive images.

6.2. Dataset recording 52

Figure 6.8: VINS feature tracking in the infrared image

In figure 6.9, the landmarks tracked in 3D space are represented as white dots. The VINS-fusion
algorithm uses optic flow and landmark tracking to estimate the trajectory, which is shown as a green
line. The red-green-blue icons in the figure represent the position estimates by the drone’s IMU in
real-time. In section 6.4.7, the estimated locations of VINS-fusion, GPS, and IMU are compared.

Figure 6.9: The drone’s 3D position estimation of VINS-fusion and IMU visualized alongside the tracked features.

6.2.3. Record dataset outdoors
For the outdoor dataset, a forest is chosen to fly in and record sensor data. The forest was selected due
to the relatively low height of its trees, which allows for GPS ground-truth position data. Additionally, a
video of the test can be recorded from above with another off-the-shelf drone. To navigate through the
forest, a walking trail with cluttered branches and multiple gaps of 1 meter was chosen. The drone has
to navigate through a zigzag in the trail, which is approximately 20 meters long in total.
To record this dataset, first, a manual flight over the trail has been recorded without running the ego-
planner. Afterwards, the drone navigated autonomously over the same trail using the planner. Since
all autonomous flight tests over the trail were successful, the data from one of the autonomous runs
was chosen to create the forest dataset.
The logged flight for the forest dataset had the ego-planner set to a maximum speed of 1m/s, maximum
acceleration of 0.3m/s, and inflation of 0.3m.
In figure 6.10, an image is shown of the entrance to the zigzag trail to give an impression. In figure
6.11, a screenshot shows a top-view of the mapped trail to give an idea of its shape.

6.3. Running simulations 53

Figure 6.10: Image of drone flying autonomously in the forest for the forest dataset recording

Figure 6.11: Screenshot RVIZ - ego-planner visualisation for forest dataset

6.3. Running simulations
To simulate a drone flight, the planner algorithm can now be run with different configurations using the
recorded datasets. The ROS network receives sensor input from the dataset instead of the actual sen-
sors, allowing processing to be done at a desk without the drone actually flying. This section describes
the necessary steps to prepare the datasets, run the simulations, and extract the data for analysis.

6.3.1. Create a dataset for simulation
When using the logged data from a real flight as a dataset, it is essential to filter it to keep only the sensor
input data. Additionally, the dataset needs to be trimmed to keep only the best usable 90-second frag-
ment from the total time of the log. In this example, we will use the forest dataset to explain the process.

To find the best fragment, the ROSbag from the entire test flight is replayed and visualised in RVIZ. A
fragment of 90 seconds is selected. For the beginning and end of this fragment, the time-of-week is
noted. We then filter this fragment within these timestamps by using:
$ rosbag filter bos_6.bag bos_6_r4.bag ”t.secs>=1531425960 and t.secs<=1531426050”

6.3. Running simulations 54

The resulting ROSbag is now 90 seconds long but still needs to be filtered to keep only the sensor data.
To accomplish this, the topics have to be specified that need to be included. These are depth-image
and drone odometry. In addition, for ground truth, these are also included: GPS-position, camera-imu,
camera-infrared-left, and camera-infrared-right. The following commands are used to filter the ROSbag
to only keep the specified data:
$ FilterArgs=
”topic == ’/bebop/odom’
or topic == ’/camera/depth/image_rect_raw’
or topic == ’/camera/depth/camera_info’
or topic == ’/camera/infra1/image_rect_raw’
or topic == ’/camera/infra2/image_rect_raw’
or topic == ’/camera/imu’
or topic == ’/gps/gps_position_NWU’ ”

$ rosbag filter bos_6_r4.bag bos_6_r4_filtered.bag FilterArgs

A dataset named ”bos_6_r4_filtered.bag” has now been created to simulate the ego-planner. This
dataset provides the advantage of repeatability and eliminates the need for field tests. It also offers a
realistic representation of the planner’s performance in real forest environments.

6.3.2. Automated simulations and data generation
A bash script is created to run the planner on a dataset multiple times while varying the configurations.
This script automatically loops over the variations and directly processes the results into Python data for
analysis. The script enables the drone’s processor to run all desired simulations in sequence without
requiring user input. It can be run via any device connected to the processor through WiFi, which
can open an SSH terminal. This automated process improves the efficiency of simulation and analysis.
For example, it enables batch execution of simulations overnight, ensuring timely availability of analysis
data in the morning. This example is shown in figure 6.12 below.

Figure 6.12: Example of running automated simulations on the drone’s processor by a tablet with SSH terminal

First, in the bash script, the user specifies the dataset to be used and the parameter variations required.
Thereafter, the user specifies the number of times the entire set of variations must be repeated. This
feature is helpful in verifying the consistency of the outcomes.

The script utilizes nested for-loops to loop over the variations. During the simulations, the bash script
prints progress updates in the terminal. Each simulation generates an output file in ’nohup’ format that
can be used to trace bugs or issues. Furthermore, every simulation is logged into a ROSbag file, which
is, after the simulation, filtered by required topics for data analysis. The bash script produces a folder
containing ’nohup’ logs, a ROSbag file for each simulation and a ROSbag file with filtered data. Finally,
the filtered ROSbag files are processed into a single ’pickle’ file. A pickle file is a file format compatible
with Python data analysis to store data structures. This pickle file is named by the date-time stamp

6.4. Data analysis 55

when the simulation was started, and by the name of the used dataset.

Due to the limited 1.5Gb RAM available on the processor board, it is unable to handle excessively large
data files. Therefore, when the total number of variants exceeds 15, multiple pickle files are created.
These pickle files have the same name but are numbered sequentially.

6.4. Data analysis
The generated Python data from the simulated variations can now be analyzed to draw conclusions.
This section covers the steps involved in getting results and insights from the data. First, the data is
imported and processed. Next, methods and plots for data visualization are presented. Subsequently,
the reasoning behind the results and conclusions is explained in detail. Lastly, the localization accuracy
of dead-reckoning is compared, as it was an important factor in the chosen navigational method. Ap-
pendix D shows additional results not shown in this section but used as useful insights on the complete
downscaling research.

6.4.1. Data post-processing & analysis
When using Python to process the data off-board, for instance, on a Windows PC, the data produced
by the simulations needs to be imported. During the simulation step, all data is prepared into a single
large pickle file. During the processing step, this data can be easily imported by extracting this pickle file.

For the analysis, it is also possible to import multiple pickle files from different simulation sets. These
sets can be merged into a single Panda’s Dictionary, which contains the data from all imported pickle
files. Inside this dictionary, each simulated run has its own designated Panda Dataframe, which con-
tains all of the logged data from one specific simulation.
Each Dataframe has a timestamp index and various columns with every logged ROS topic. The struc-
ture of the data can be visualized as a tree structure, as shown below.

For the analysis, importing multiple pickle files from
different simulation sets is also possible. These
sets can be merged into a single Panda’s Dictio-
nary, which contains the data from all imported
pickle files. Inside this dictionary, each simulated
run has its own designated Panda Dataframe,
which contains all of the logged data from one
specific simulation.

Each Dataframe has a timestamp index and various
columns with every logged ROS topic. The struc-
ture of the data is shown in here in figure 6.13 Figure 6.13: Data structure of simulation results for anal-

ysis in Python

When running a simulation, each Dataframe with logged data consists of 62 columns with about 30,000
time-stamped data points for a 90-second dataset. So, each Dataframe contains 1.86 million data
points. If multiple variations per dataset are loaded into the analysis script, the total data becomes a
multiple of the data within one Dataframe. Therefore, loading multiple simulation logs into the analysis
script requires a reasonably powerful PC with sufficient RAM memory. If this would be an issue, the
logs can be analyzed individually to extract necessary information and delete the rest.

The analysis of all data is handled in a single Python script. To calculate the performance and analyze
it in comparison to the processor load, function definitions are written with the formulas for performance
as described in section 6.1. These formulas include pixel size, minimum gap size, maximum obstruc-
tion width, minimum obstacle size, and reactiveness.

To analyze the CPU load of a simulated run, it is important to understand the difference between the
scanning and planning phases when measuring the CPU load. During the scanning phase, the algo-

6.4. Data analysis 56

rithm only processes depth images to update the local map. On the other hand, during the planning
phase, the load peaks while the algorithm samples, optimizes, and refines a path. Once the first trigger
is activated, a path is known, and the system checks continuously if the path collides with updated
versions of the obstacle map. At every detected collision or trigger for a new path, a peak in the load
is expected. Figure 6.14 provides an example of how CPU load is distributed during a simulation run.

Figure 6.14: CPU load distribution example. Left: time graph for CPU in simulation set. Middle: CPU load distribution per
simulation, with perception only. Right: CPU load distribution per simulation, with planning

In the example figure, a red dotted line is shown in the left graph, which separates the time graph into
two parts - running perception-only and running perception, planning, and collision check. For visual-
isation purposes, this graph is smoothed by a running average filter of 1 second. For the middle and
right plot, raw data is used. The middle boxplot indicates the distribution of CPU load from the start of
the simulation up to the red dotted line. Since the load remains relatively steady during this state, the
distribution also has a relatively narrow spread. On the other hand, the boxplot on the right represents
the CPU load distribution from the red dotted line up to the end of the simulation. Due to the load’s
peak during path generation, the distribution is more spread out than the middle boxplot.

Peak loads pose a greater risk of system interruption and overload; therefore, these define
the CPU load metrics over a simulation. Since CPU load logs also exhibit extreme outliers, the
upper sigma-2 of the standard deviation is specifically chosen as load over a complete simulation. This
sigma-2 encompasses 95% of the load measurements closest to the average load, filtering out the top
2.5% of the highest and lowest loads. To determine the maximum load within the sigma-2, the function
cpu_load.quantile([0.9544]) is used in Python.
The following sections compare this CPU peak load with the designed performance metrics. To gen-
erate the necessary data points for the comparisons, the simulated variations are analysed per perfor-
mance metric. The parameters that are not varied are carefully selected so that the processor does not
easily saturate at 100%. If the processor saturates, there will be no variation in load to measure, and
the results will not show by what factor the load increases or decreases compared to other variations.

6.4.2. Results gap size performance
For the gap size performance test, the CPU load is measured for a varying voxel grid size of 0.05 to
0.20 meters per grid block. To get a better visualization of the trend, and possibly detect outliers, more
variations are tested than initially designed. 40 variations in total.
The grid is varied width [.05 .06 .07 .08 .09 .10 .12 .15 .17 .20].
And the image resolution is varied by [full half 1/3rd 1/4th].

In figure 6.15 below, the CPU load on the vertical axis is plotted against the minimum solvable gap
size on the horizontal axis. To interpret this figure: a smaller minimum gap size is a better gap size
performance.
The plot indicates a non-linear relationship between gap size performance and processor load. When
the planner is set to find smaller gaps, the CPU load increases, which aligns with the hypothesis that

6.4. Data analysis 57

an increase in gap size performance results in an increase in CPU load.

Figure 6.15: CPU load vs minimum solvable gap size for path planning [varying voxelgrid 0.05m-0.20m]

The plot displays the full, half, and quarter image resolutions. However, since there was no significant
difference, the 1/3rd resolution was excluded to simplify the plot. To emphasize which image resolu-
tions belong to the same voxel grid variation, dots are connected. These connected groups show a
relatively small difference in CPU load for a large gap size, but a significant difference for a smaller
minimum gap size.

The plot shows that for a fixed image resolution, there is a non-linear relationship between an 80cm gap
and a one-meter gap. Even a small change in voxel-grid resolution can lead to a significant drop in CPU
load. This happens because the obstacle grid map has three dimensions. When the grid resolution
doubles, the number of grid blocks increases eightfold as 23 equals 8. For gap sizes of one meter and
larger, the plot indicates a mostly linear trend. The CPU load remains relatively stable compared to gap
sizes below one meter. This linear trend is due to the grid’s significance in relation to other parameters.
When the grid size becomes more coarse, other parameters such as image rate and resolution start
playing a more significant role in CPU load.

Memory load
The resolution of the voxel grid significantly affects processor memory usage. Therefore, the gap size
against memory usage is also plotted, shown in 6.16 below. As in the plot for CPU load, the sets of
measurements with the same voxel grid resolution are connected.

Not so surprisingly, the memory usage follows the same trend shape as the CPU load. The same
reasoning can explain this. Specifically, the memory usage for the voxel map increases by a factor of 8
when the grid resolution scales up by a factor of 2. Once the gap size reaches a particular threshold, the
map size becomes less significant compared to other variables and processes that also use memory.
At this point, the trend appears to be linear.

6.4. Data analysis 58

Figure 6.16: Memory load vs minimum solvable gap size for path planning [varying voxel grid 0.05m-0.20m]

6.4.3. Results obstacle size performance
Simulations were performed to test the CPU load for the minimum detectable obstacle size at the max-
imum camera range. In the simulation, the depth image resolution setting is varied by full, half, 1/3rd
and 1/4th resolution.
Initially, with 10cm voxel grid blocks, the CPU load remained almost unchanged with different image
resolutions. To validate this observation, the voxel grid resolution was also varied as this is the most
CPU-load influencing parameter.
Subsequently, with three different voxel grid resolutions, the plot showed an almost linear relationship
between the CPU load and the minimum detectable object size. Furthermore, for higher grid resolu-
tions, there was a significant drop in CPU load when the depth image resolution was lowered.

Figure 6.17: CPU load vs minimum guaranteed detectable object size

6.4. Data analysis 59

To interpret the plot in figure 6.17, a smaller minimum detectable object size represents better perfor-
mance. In the plot, the measurements related to the same image resolution are connected to empha-
size their relationship. As the varied voxel grid resolution does not influence the minimum detectable
obstacle size, the measurements per image resolution do vertically align.

Reducing the image resolution was assumed to result in a lower CPU load. However, the drop in CPU
load is significant only with a high-resolution voxel grid while it is minimal with a lower-resolution voxel
grid.

An explanation for this significant impact with a high-resolution voxel grid is the number of voxels that
need to be processed per new image. When the camera detects numerous obstacles, many pixels have
to be processed. Regardless of the voxel grid resolution, the 3D projection takes the same amount of
time for each loop. However, the raycasting and local map update step processes scale exponentially
by the power of 3 based on the voxel grid resolution. This means that increasing the image resolution
will significantly increase the CPU load at a faster rate with a higher voxel grid resolution.

6.4.4. Results obstruction width performance
The plot below, Figure 6.18, displays the relationship between the CPU load and the maximum solvable
obstruction width. The local map size was varied from 1 to 35 meters in steps of 1 meter, while the
voxel-grid resolution was varied for values of 0.10, 0.13, 0.15, and 0.20.
To understand the plot, note that a larger maximum solvable obstruction width indicates better perfor-
mance. The results where local maps were similar in size are connected to highlight their relationship.

Figure 6.18: CPU load vs maximum solvable obstruction width

The plot shows a clear linear trend between increasing CPU load and increasing solvable obstruction
width, with the exception of a few outliers. This trend supports the hypothesis. When the local map is
made bigger, a higher voxel grid resolution leads to a stronger increase in CPU load.

However, when the voxel grid is made coarser, the CPU load does not significantly increase beyond a
certain resolution, even for larger solvable obstruction widths. Similarly, as with the minimum gap size

6.4. Data analysis 60

performance, the influence of other parameters might become more significant beyond a certain point.
Since those other parameters were not varied in this test, the variance of CPU load flattens out for this
parameter at coarser voxel grid resolutions.

6.4.5. Results reactiveness perfromance
The last result is the reactiveness performance. In other words, the time it takes for the planner to
detect a new occurring obstacle and detect a collision. To measure reactiveness, the depth-image rate
was varied between 15Hz, 7.5Hz, 5Hz, 3.8Hz, and 3Hz. Additionally, voxel grid resolution was varied
between 0.05, 0.10, and 0.15 meters to test different system loads.
Figure 6.19 shows the CPU load on the vertical axis and reactiveness on the horizontal axis. A lower
reactiveness time indicates better performance. The measurements with the same image rate are con-
nected in the plot to show their relationships. Also, the image rate is displayed for every connected
group.

Figure 6.19: CPU load vs maximum time delay for reactiveness collision detection

According to the plot, reducing the image rate only leads to a slight decrease in CPU load, which results
in a longer reaction time. Only when the system is under high load conditions, as with a voxel resolution
of 0.05, does lowering the image rate seem to have a significant impact on the CPU load.
While the trend shown in the plot aligns with the hypothesis, its significance falls short of expectations.
One plausible explanation for the limited variation in CPU load is that the image rate solely impacts the
perception, not the path planner. A higher image rate increases the perception’s constant CPU load.
Nonetheless, the path planner, responsible for peak loads, operates with the same voxel grid and map,
thereby maintaining a consistent additional peak load.

6.4.6. Tradeoff safety-vs-performance
The previous sections have indicated the CPU load for various configurations of 4 metrics. Now is
explored how safety and performance relate to each other when the CPU is utilized either half or fully.
For performance, from minimum gap size and solvable obstacle width, the minimum gap size is cho-
sen as the most important metric to fly in a rainforest. And, for safety, from reactiveness and minimum

6.4. Data analysis 61

detectable obstacle size, reactiveness is chosen as the most important to fly in a rainforest.

Seventy-two simulations were conducted with twelve variants of voxel resolution (ranging from 0.03 to
0.20) and six variants of depth-camera rate (ranging from 3hz to 15hz). The peak loads were plotted
in figure 6.20 by the corresponding reactiveness and gap size. In the figure, for every result, the peak
load is annotated.

For practical reasons, a CPU load of 90% was assumed to represent full utilization. Simulations with
higher loads showed unclear behaviour, possibly due to CPU resource saturation. The results are
grouped by colours. The yellow group shows the simulations where the peak load was between 50%
and 90% CPU utilization. The purple group shows the simulations where the peak load was below
50% CPU utilization. For both groups, a Pareto-front is drawn through the results that show the best
performance-safety relation.

Figure 6.20: Tradeoff Safety-vs-Performance, with the Pareto-fronts for utilisation of different percentages of the processor

The Pareto-front shows the maximum performance for a limited CPU utilization. Within that maximum
performance, there is a tradeoff between either performance or safety at the cost of the other. What
was already known from the previous sections is that the gap size, mainly influenced by the voxel grid
resolution, had the most significant variation. Again, this plot shows that the gap size has a significantly
higher impact on the CPU load compared to the reactiveness.

The two main conclusions from these results are the following:

• Downscaling does negatively impact the safety and performance
The Pareto-front for full utilisation lays closer to a small gap and lower reaction time than com-
pared to half utilisation.

• There is a clear tradeoff between safety and performance within half or full CPU utilisation
For full utilisation, there is a tradeoff in the range of combinations of [230ms reaction time & 0.78m
gap size] to [880ms reaction time & 0.65m gap size].
For half utilisation, the tradeoff shows a range of combinations of [210ms reaction time & 1.08m
gap size] to [830ms reaction time & 0.78m gap size].

6.4. Data analysis 62

• No significant gap size improvement for a depth image rate lower than 3.75hz
Above 900ms reaction time, corresponding to 3.75 Hz depth-image rate, the Pareto-front shows
no significant difference in gap size.

For example, at half utilisation, the drone could react four times quicker if it is acceptable to increase
the minimum solvable gap size from 0.78m to 1.08m.
Or, visa-versa; for example, for full utilisation, the drone can find a gap of 0.65m instead of 0.78m if it is
acceptable the drone’s reaction time is 880ms instead of 230ms. These examples show the extremes.
For product deployment, a healthy balance should be found within this range.

6.4.7. Analysis ’dead-reckoning’ position estimate
In this project, dead-reckoning position estimation replaces the visual-inertial position estimate used
in the ego-planner paper. This significantly reduces CPU load (more than every other adaptation in
this research) and thereby enables running ego-planner on the smaller processors. But this adaptation
negatively impacts the quality of perception and planning, as described in 2.4. Therefore, now the
results of the simulations are known, the ground-truth position data is extracted from the dataset to
compare with the dead-reckoning position estimate.

Figure 6.21 below shows a top-view of the GPS, Visual-inertial, and IMU-based localisation estimates
plotted over the flown path in the forest dataset. In the plot, the red dots represent the estimated location
by the IMU, which is used for dead-reckoning navigation. The green line indicates the location estimated
by the visual-inertial method, generated in post-processing as discussed in section 6.2.2. The purple
circles represent GPS fixes, estimated by the added GPS module, also discussed in section 6.2.2. The
grey contours in the figure signify the obstacles detected by the camera for the height ranging from
0.3m to 2.5m. These contours can help in better understanding the flown path and also illustrate the
obstacle density within the mapped range, which might explain the GPS inaccuracy halfway through
the visualised track. Lastly, the grid shown in the background is 1x1m, providing a reference of scale
in this overview.

Figure 6.21: Obstacles in forest dataset (grey), with overlays of localisation by IMU (red dots), VINS (green line), and GPS
(purple dots)

During the 90-second flight recorded in the dataset, the IMU and visual-inertial path show similar pat-
terns and do not diverge significantly. Adding GPS to the data did not provide any useful insights into
which path drifted the least. This highlights the limitations of GPS for localization in forest environments,
even in low and open forests.
Based on these observations, it can be concluded that the IMU localization is suitable for a local planner
as it did not show any significant drift during the test. However, it is still unclear whether visual-inertial
localization is better than dead-reckoning for precise localization.

6.5. Downscaling applied 63

6.5. Downscaling applied

Figure 6.22: Solidworks 3D model of Tello
drone with autonomy system

In appendix F, an example shows how this downscal-
ing can be applied to a small processor on a small
drone. In this example, a 100-gram drone can fly au-
tonomously, similar to the Bebop used in this project, but
with reduced performance. The autonomy of this sys-
tem uses a 10-gram Raspberry Pi Zero 2w processor
board, which costs 15 euros. In addition, another type
of camera is used, which only weighs 8 grams but has
half the range of the camera used on the Bebop drone.
Figure 6.22 shows the integrated design of the system
in Solidworks, this figure is shown enlarged in the ap-
pendix.

6.6. Conclusions on downscaling
In this chapter, the research is focused on the tradeoff between autonomous flight performance in
the rainforest and processor load for small processors. The challenges of navigation in the forest are
highlighted, leading to the design of four performance metrics to measure the autonomous quadrotor
navigation system’s performance in the forest. These performance metrics include the minimum de-
tection size of obstacles, the reactiveness of the system to newly occurring obstacles, the maximum
solvable width of obstructions, and the minimum solvable gap size.

The study involves testing various planner configurations to understand how four metrics relate to CPU
load. Preparing data and simulating variations on a drone’s processor in a real-world forest scenario
can be done without the need for actual flights. The logged data from simulations is analyzed, and plot-
ted against CPU load to reveal trends in performance metrics. These trends are analyzed in relation
to the hypothesis and discussed in terms of their plausibility.

The tests analyzed in this chapter show that for narrower gap configurations, the CPU load andmemory
increase exponentially. However, for smaller detectable obstacles, the CPU load increase is negligi-
ble, except when the system is already under high load. The CPU load to solve wider obstructions
increases gradually and linearly. Lastly, reactiveness only shows a significant increase in CPU load for
the highest range of tested voxelgrid resolutions.

By the known influences of the metrics on CPU load, a final simulation test is run to show the maxi-
mum safety and performance on a half-and full utilisation of the processor load. This results of this test
show firstly the negative impact on safety and performance by downscaling the processor capacity,
and secondly, the tradeoff between better safety or better performance. This tradeoff shows how the
reaction time of the system can be four times quicker when increasing the minimum navigable gap size
by 0.15m to 0.30m.

In addition, the accuracy of the position estimate in dead-reckoning has been analyzed for the forest
dataset created, and it has been compared to GPS and visual-inertial position estimates. The analy-
sis shows that there is no significant divergence between the dead-reckoning (IMU) estimate and the
visual-inertial estimate. GPS localization, however, was found to be significantly less accurate. Al-
though a sporadic GPS fix may be useful in the rainforest to find back the home location, this analysis
proves that it is not (solely) suitable as a localisation estimate for navigation.
To showcase the downscaling, thismethod is applied to fly a 100-gram drone successfully autonomously
with all path planning computed onboard. Appendix E.2 lists some thoughts for future work on how
downscaling can be improved further.

7
Conclusion

While examining the impact of downscaling the autonomy system on performance, a critical factor
emerges: the resolution of the obstacle map. This significantly impacts the drone’s ability to navigate
safely through densely grown forest areas, and is critical for the choice of hardware. The choice of
hardware consequently impacts the system weight and, thus, the maximum flight time. Tests reveal
a noteworthy relationship between processor utilization and the drone’s minimum navigable gap size.
Fully utilizing the processor used in this project (Odroid XU4) enables successful navigation through
gaps as small as 70cm, whereas with only utilising a quarter of the processor, the smallest navigable
gap is limited to 120cm or larger. This underscores the tradeoff between downscaling the processor,
the obstacle map resolution, and influencing the drone’s performance in navigating challenging rain-
forest terrains.

This research worked towards a lightweight autonomy system for prolonged and safe flight under
the rainforest’s canopy layer. The results contribute to autonomous drone navigation, particularly in
the challenging context of rainforest environments, advancing both technological capabilities for au-
tonomous flight and environmental conservation efforts for rainforests. Literature on autonomous drone
flight in dense and cluttered terrains, such as rainforests, is limited. Real-world tests conducted in this
project revealed challenges not covered in previous research.

The implemented navigationmethod for dead-reckoning flight showcases an efficient operational frame-
work. This strengthens the reliability of future fully autonomous drone missions in rainforest-like envi-
ronments. Applying the insights of the downscaling research to this system integration not only mini-
mizes the system size but also has the potential to yield more cost-effective drones and extended flight
times. This method increases exploration effectiveness and safety and makes a valuable contribution
to the broader field of autonomous drone technology.

While this research demonstrates significant improvements in reducing system size, it is important to ac-
knowledge certain limitations. Limitations include a notably lower flight speed due to the limited update
speed of the algorithm as well as potential inaccuracies in geo-tagging collected data and home-return
positioning under the canopy. These challenges, inherent to downscaled autonomy, point to areas for
refinement in future research.

In conclusion, this research advanced the development of a lightweight autonomy system for safe and
prolonged rainforest drone flights. The downscaling process, while introducing trade-offs in flight speed
and finding smaller gaps, delivers insights for enhancing the drone’s cost-effectiveness and flight dura-
tion. Recognizing the limitations, particularly in dead-reckoning and sporadic GPS fixes, underscores
the challenges inherent in downscaled autonomy. Future research should address the identified limi-
tations, focusing on refining the system’s practical applications in rainforest environments.

64

References
[1] Andreas Zwanenburg. Literature Review - Autonomous MAV navigation through a dense tropical

rainforest. Tech. rep. Delft: TU/Delft, July 2023.
[2] XPRIZE. XPRIZE Rainforest | XPRIZE Foundation. 2023. URL: https://www.xprize.org/

prizes/rainforest.
[3] XPRIZE. XPRIZE Rainforest Competition Guidelines. Tech. rep. 2023.
[4] Antonio Loquercio et al. “Learning high-speed flight in the wild”. In: Science Robotics 6.59 (Oct.

2021), p. 5810. URL: https://www-science-org.tudelft.idm.oclc.org/doi/10.
1126/scirobotics.abg5810.

[5] M Kisantal. Deep Reinforcement Learning for Goal-directed Visual Navigation. Tech. rep. 2018.
URL: http://resolver.tudelft.nl/uuid:07bc64ba-42e3-4aa7-ba9b-ac0ac4e0e7a1.

[6] Javier Antich Tobaruela et al. “Reactive navigation in extremely dense and highly intricate envi-
ronments”. In: (2017). DOI: 10.1371/journal.pone.0189008. URL: https://doi.org/
10.1371/journal.pone.0189008.

[7] Eric Hyyppä et al. “Under-canopy UAV laser scanning for accurate forest field measurements”.
In: ISPRS Journal of Photogrammetry and Remote Sensing 164 (June 2020), pp. 41–60. DOI:
10.1016/J.ISPRSJPRS.2020.03.021.

[8] A. Pirti. “Using GPS near the forest and quality control”. In: Survey Review 38.298 (Feb. 2012),
pp. 286–298. DOI: 10.1179/003962605790586572.

[9] Tiberiu Paul Banu et al. “The Use of Drones in Forestry”. In: Journal of Environmental Science
and Engineering B 5.11 (Nov. 2016). DOI: 10.17265/2162-5263/2016.11.007.

[10] Takafumi Taketomi et al. “Visual SLAM algorithms: a survey from 2010 to 2016”. In: IPSJ Trans-
actions on Computer Vision and Applications 9 (2017), p. 16. DOI: 10.1186/s41074-017-
0027-2.

[11] 3D Tree Segmentation using Deep Learning and Lidar. URL: https://interpine.nz/
improvements-in-3d-tree-segmentation-using-deep-learning/.

[12] Manuel Rucci. AGeneral Purpose Control Design For Vision Based Autonomous Quadrotor Nav-
igation. Tech. rep. 2017.

[13] Julio A Reyes-Munoz et al. “A MAV Platform for Indoors and Outdoors Autonomous Navigation in
GPS-denied Environments”. In: 2021 IEEE 17th International Conference on Automation Science
and Engineering (CASE) (2021). DOI: 10.1109/CASE49439.2021.9551409.

[14] Andréa Macario Barros et al. A Comprehensive Survey of Visual SLAM Algorithms. Feb. 2022.
DOI: 10.3390/robotics11010024.

[15] Chi Zhang et al. “A Lightweight and Drift-Free Fusion Strategy for Drone Autonomous and Safe
Navigation”. In: Drones 7.1 (Jan. 2023), p. 34. DOI: 10.3390/drones7010034.

[16] Artur Shurin et al. “QDR: A quadrotor dead reckoning framework”. In: IEEE Access 8 (2020),
pp. 204433–204440. DOI: 10.1109/ACCESS.2020.3037468.

[17] Jonghoek Kim. “Fast Path Planning of Autonomous Vehicles in 3D Environments”. In: Applied
Sciences 2022, Vol. 12, Page 4014 12.8 (Apr. 2022), p. 4014. DOI: 10.3390/APP12084014.
URL: https://www.mdpi.com/2076-3417/12/8/4014/htm%20https://www.mdpi.
com/2076-3417/12/8/4014.

[18] Xin Zhou et al. “EGO-Planner: An ESDF-free Gradient-based Local Planner for Quadrotors”. In:
(Aug. 2020). URL: http://arxiv.org/abs/2008.08835.

[19] Xin Zhou et al. Swarm of micro flying robots in the wild. Tech. rep. 2022, p. 5954. URL: https:
//www.science.org.

65

https://www.xprize.org/prizes/rainforest
https://www.xprize.org/prizes/rainforest
https://www-science-org.tudelft.idm.oclc.org/doi/10.1126/scirobotics.abg5810
https://www-science-org.tudelft.idm.oclc.org/doi/10.1126/scirobotics.abg5810
http://resolver.tudelft.nl/uuid:07bc64ba-42e3-4aa7-ba9b-ac0ac4e0e7a1
https://doi.org/10.1371/journal.pone.0189008
https://doi.org/10.1371/journal.pone.0189008
https://doi.org/10.1371/journal.pone.0189008
https://doi.org/10.1016/J.ISPRSJPRS.2020.03.021
https://doi.org/10.1179/003962605790586572
https://doi.org/10.17265/2162-5263/2016.11.007
https://doi.org/10.1186/s41074-017-0027-2
https://doi.org/10.1186/s41074-017-0027-2
https://interpine.nz/improvements-in-3d-tree-segmentation-using-deep-learning/
https://interpine.nz/improvements-in-3d-tree-segmentation-using-deep-learning/
https://doi.org/10.1109/CASE49439.2021.9551409
https://doi.org/10.3390/robotics11010024
https://doi.org/10.3390/drones7010034
https://doi.org/10.1109/ACCESS.2020.3037468
https://doi.org/10.3390/APP12084014
https://www.mdpi.com/2076-3417/12/8/4014/htm%20https://www.mdpi.com/2076-3417/12/8/4014
https://www.mdpi.com/2076-3417/12/8/4014/htm%20https://www.mdpi.com/2076-3417/12/8/4014
http://arxiv.org/abs/2008.08835
https://www.science.org
https://www.science.org

References 66

[20] Eungchang Mason Lee et al. “REAL: Rapid Exploration with Active Loop-Closing toward Large-
Scale 3D Mapping using UAVs”. In: (Aug. 2021). URL: http://arxiv.org/abs/2108.
02590.

[21] GitHub - HKUST-Aerial-Robotics/VINS-Fusion: An optimization-based multi-sensor state estima-
tor. URL: https://github.com/HKUST-Aerial-Robotics/VINS-Fusion.

[22] Odroid XU4. URL: https://botland.store/odroid- computers- modules/6314-
odroid-xu4-samsung-exynos5422-octa-core-20ghz14ghz-2gb-ram-5904422365707.
html.

[23] Depth Camera D435i – Intel® RealSense™Depth and Tracking Cameras. URL: https://www.
intelrealsense.com/depth-camera-d435i/.

[24] TOF Camera - Arducam Wiki. URL: https : / / docs . arducam . com / Raspberry - Pi -
Camera/Tof-camera/TOF-Camera/.

[25] Standford. Introduction to A*. 2020. URL: https://theory.stanford.edu/~amitp/
GameProgramming/AStarComparison.html.

[26] Airspace Visualizer | MyDroneFleets. URL: https://mydronefleets.com/airspace-
visualizer/.

[27] Ma Weinmann et al. “Fast and automatic image-based registration of TLS data”. In: ISPRS Jour-
nal of Photogrammetry and Remote Sensing 66.6 SUPPL. (Dec. 2011). DOI: 10.1016/j.
isprsjprs.2011.09.010.

[28] GitHub - alspitz/cpu_monitor: ROS node that publishes all nodes’ CPU and memory usage. URL:
https://github.com/alspitz/cpu_monitor.

[29] Jesus Tordesillas et al. “MIT: Fast and Safe Trajectory Planner for Flights in Unknown Environ-
ments”. In: (). URL: https://github.com/jtorde.

[30] Raspberry Pi Zero 2 W – Raspberry Pi. URL: https://www.raspberrypi.com/products/
raspberry-pi-zero-2-w/.

[31] Time of Flight (ToF) Camera - Arducam. URL: https://www.arducam.com/time-of-
flight-camera-raspberry-pi/.

[32] DJI Tello. URL: https://store.dji.com/nl/product/tello?vid=38421.
[33] Step-up Boost Converter - 2A - 5V. URL: https://www.tinytronics.nl/shop/nl/

power/spanningsconverters/boost-(step-up)-converters/dc-dc-step-up-
boost-converter-2a-5v-output.

http://arxiv.org/abs/2108.02590
http://arxiv.org/abs/2108.02590
https://github.com/HKUST-Aerial-Robotics/VINS-Fusion
https://botland.store/odroid-computers-modules/6314-odroid-xu4-samsung-exynos5422-octa-core-20ghz14ghz-2gb-ram-5904422365707.html
https://botland.store/odroid-computers-modules/6314-odroid-xu4-samsung-exynos5422-octa-core-20ghz14ghz-2gb-ram-5904422365707.html
https://botland.store/odroid-computers-modules/6314-odroid-xu4-samsung-exynos5422-octa-core-20ghz14ghz-2gb-ram-5904422365707.html
https://www.intelrealsense.com/depth-camera-d435i/
https://www.intelrealsense.com/depth-camera-d435i/
https://docs.arducam.com/Raspberry-Pi-Camera/Tof-camera/TOF-Camera/
https://docs.arducam.com/Raspberry-Pi-Camera/Tof-camera/TOF-Camera/
https://theory.stanford.edu/~amitp/GameProgramming/AStarComparison.html
https://theory.stanford.edu/~amitp/GameProgramming/AStarComparison.html
https://mydronefleets.com/airspace-visualizer/
https://mydronefleets.com/airspace-visualizer/
https://doi.org/10.1016/j.isprsjprs.2011.09.010
https://doi.org/10.1016/j.isprsjprs.2011.09.010
https://github.com/alspitz/cpu_monitor
https://github.com/jtorde
https://www.raspberrypi.com/products/raspberry-pi-zero-2-w/
https://www.raspberrypi.com/products/raspberry-pi-zero-2-w/
https://www.arducam.com/time-of-flight-camera-raspberry-pi/
https://www.arducam.com/time-of-flight-camera-raspberry-pi/
https://store.dji.com/nl/product/tello?vid=38421
https://www.tinytronics.nl/shop/nl/power/spanningsconverters/boost-(step-up)-converters/dc-dc-step-up-boost-converter-2a-5v-output
https://www.tinytronics.nl/shop/nl/power/spanningsconverters/boost-(step-up)-converters/dc-dc-step-up-boost-converter-2a-5v-output
https://www.tinytronics.nl/shop/nl/power/spanningsconverters/boost-(step-up)-converters/dc-dc-step-up-boost-converter-2a-5v-output

A
Literature research - relevant path

planning methods
This appendix provides more background details on the topics that are highly relevant for deploying au-
tonomous navigation in the rainforest. It is a recapitulation of some of the topics that were discussed in
chapter 2, but with more in-depth information. The background information presented in this appendix
has been sourced from the Literature Research [1], which was conducted prior to this research. Some
of the information has been directly copied from the literature research into this appendix to make it
easier for readers to access the most significant background information in detail.

In the literature research, four papers were found with relevant methods that relate to the research
question what method or algorithm would be best for autonomous flight in the wild. In this selection,
all requirements, such as onboard computation, are considered. For example, methods that are not
feasible to compute onboard on a small drone are not filtered out.
The four found methods all relate to a research paper. In this appendix section, the four methods are
explained below in more detail than in the report itself. Also, illustrations of the methods are shown to
give a better insight into the method.

A.1. FASTER-Planner
FASTER is a trajectory planner, published in 2019 byMIT [29]. The trajectory planner is focused on safe
navigation through unknown environments. The planner combines rapidly exploring random tree (RRT)
with a safety module that searches for reachability to ensure that the planned trajectory is collision-free.

The RRT explores the environment by sampling random points and connects these to the tree struc-
ture. The safety module continuously looks for a backup path with the highest probability of being
collision-free. This way, the drone always has a backup trajectory to follow, considering acceleration
constraints to break in time before hitting an obstacle. If the drone cannot calculate a new trajectory
for some reason, for example, when the system is overloaded, the safe trajectory always ensures safe
deceleration for the drone from forward flight into hovering.

Compared to previous state-of-the-art algorithms, the efficiency improvement of this algorithm is the
dynamic adjustment of the RRT sampling region based on the drone’s current position and orientation.
This makes the algorithm focus on the areas most likely to contain a path to the goal while not wasting
computation time in unlikely areas.

Figure A.1 below illustrates the functionality of the FASTER-planner. The planning horizon is shown as
a black circle. First, with RRT, the planner finds a feasible path (yellow line). The planner then calculates
polygons around the feasible path in the mapped environment that are completely in the explored free
space (green area) and polygons in the unexplored possibly free space (red area). The optimised
trajectory is generated within the red, possibly obstacle-free polygon (red line). Also, a safe trajectory
is calculated (blue line) in the completely explored free space as a backup in case an obstacle might
occur in the not yet explored space, such as the orange obstacle with the dotted line in this example. For

67

A.1. FASTER-Planner 68

visualisation purposes, the illustration shows the functionality of the planner in 2D, but all calculations
and optimisations in the FASTER planner are in 3D.

Figure A.1: FASTER-planner method illustrated [29]. Unexplored space is light blue, obstacles are orange. One obstacle is
unknown indicated by a dotted line.

The FASTER planner is tested in simulation and real-world environments. Code is open-source and
available on GitHub, and Youtube videos are included with proof that the drone can safely manoeuvre
through complex environments. A note to make is that the conducted tests shown in the paper and
videos are only in a dense but structured environment. For example, a simulation in a dense forest,
only with perfectly cylinder-shaped objects. And a real-world test with perfectly square boxes, densely
placed with narrow corridors to pass through.

A.2. EGO-Planner 69

A.2. EGO-Planner
EGO-planner is a trajectory planner, published in 2020 by ZJU-Fastlab [18]. This gradient-based plan-
ner uses the expected improvement criterion to generate safe and smooth drone trajectories.
The expected improvement (EI) criterion is Bayesian optimization, used in multiple state-of-the-art plan-
ners, that balances the tradeoff between exploration and exploitation. In exploration, the algorithm
searches for promising regions, while in exploitation, it samples points around the current best solu-
tion. By balancing this tradeoff, the EI criterion efficiently identifies the optimal solution.

The planner first creates a probabilistic model of the environment and predicts the cost of potential tra-
jectories. It then selects the trajectory with the highest expected improvement in cost and optimises this
trajectory. This process is repeated to generate a sequence of trajectories to guide the drone towards
its goal while minimizing cost.

Figure A.2 below illustrates the functionality of the EGO-planner. The gradients are only calculated for
the region of the colliding obstacles. Then the smoothed b-spline trajectory deviates from the original
straight path with the help of the gradient map until the trajectory is collision-free.

Figure A.2: EGO-planner functionality illustrated [18]. The trajectory is planned by utilizing the gradient fields of obstacles to
navigate around them.

One of the key advantages of EGO-Planner is that it can handle complex and dynamic environments
with uncertain and time-varying constraints. The algorithm can generate trajectories optimized for
different objectives, such as speed, energy efficiency, or safety.
The EGO planner has been tested in simulation and real-world scenarios. Also, similar to the FASTER
planner, source code is available on Github and videos are published on Youtube.

A.3. Swarm in the wild 70

A.3. Swarm in the wild
Based on the EGO-planner, ZJU-Fastlab proposed in 2022 a method to fly a swarm of drones in a bam-
boo forest [19]. This swarm aims to efficiently explore, map, and plan through new environments by
exploiting the most out of the total group effort and data. To elaborate on this, there are a couple of key
features in this method, these are formation flight, joint mapping, and multi-agent trajectory planning.

The swarm of drones has a predefined formation that the group aims to preserve. The spread and
shape of the formation helps to map the environment efficiently and get better localization. Every
drone in the swarm has a radio beacon and a receiver. With this technology, the group knows their
relative distances from each other. This is used to preserve the shape and distances of the formation
and improve the location estimate.

In this swarm method, visual-inertial SLAM is used for localisation. This uses camera images onboard
the drone to measure movements, thereby estimating the location. Every drone in the swarm runs this
localisation, and every individual will have some estimate error. But, by using the relative distances in
the swarm, the swarm can reduce each other errors and get a more robust position estimate.
The Swarm merges their mapping data and creates a more accurate map. Occlusion of obstacles is
a general problem with mapping. But, merging the different viewpoints of the drone’s depth sensors
reduces occlusions. Therefore the obstacles will be mapped more accurately, which is beneficial for
trajectory planning.

The trajectory planning is based on the EGO-planner, but now multiple agents (drones) must plan in the
same space. By optimising the objective of the complete swarm, the drones communicate how to plan
around obstacles or through a narrow gap. The objective of the swarm is to preserve the formation and
minimise the group’s energy effort to reach the goal. Figure A.3 shows a top-down view of the swarm
flying in a bamboo forest with a specific formation shape. Also, the planned trajectories for every drone
is plotted.

Figure A.3: Preserving and reforming drone swarm formation to avoid obstacles in a forest, as seen from a top-down view [19].

Although all benefits of using a swarm do not apply to the drone in the Xprize rainforest challenge, this
paper has some valuable information. The deployment of the EGO-planner is better explained than
in the original EGO-planner paper. And the effectiveness is shown in a forest environment. Also, the
paper explains how their method can be used on a single drone.

The paper is, as one of the few, fully reproducible. The exact parts list and building scheme of the
used drones are published. And the algorithm, including all options and variations, is published on
their GitHub repository, including detailed documentation.

A.4. REAL-Planner 71

A.4. REAL-Planner
The Rapid Exploration with Active Loop-Closing (REAL) is a planner that focuses on large-scale 3D
mapping and is published by the Urban drones Lab [20]. This planner does rapid exploration in a
GPS-denied environment with a quadrotor drone. The planner is optimised to generate and exploit
large scaled maps and uses loop-closure to refine the map and the drone its position estimate. The
paper proposes a method to apply rapid exploration, loop-closing, and active optimization techniques
to improve the efficiency and accuracy of 3D mapping using a drone. The paper describes the different
components used in this system, including the drone, cameras, and software to process the data.

The Peacock Trajectory Planner used in this paper is based on the concept of a probabilistic roadmap.
This is a graph structure that is constructed by sampling the configuration space of the drone. In this
graph, nodes represent valid configurations of the drone and edges represent feasible paths between
those configurations. The Peacock planner extends this concept by considering not only the configura-
tion space of the drone, but also the space of trajectories that the drone can follow. Figure A.4 shows
a screenshot of a real-world test where the drone samples multiple trajectories.

Figure A.4: REAL [20] sampling peacock trajectories (purple and blue) and selecting the one with the highest reward to the goal.

The Peacock Trajectory Planner uses a two-stage process to generate collision-free paths for the drone.
In the first stage, it generates a roadmap of trajectories by sampling the space of feasible trajectories.
The planner uses a probabilistic model to evaluate the likelihood that a given trajectory will be collision-
free. In the second stage, the planner searches the roadmap for a collision-free path between the start
and goal configurations of the drone. The planner uses an A* search algorithm [25] to find the shortest
path between the start and goal configurations, taking into account the likelihood of collision along each
trajectory.
Overall, the Peacock Trajectory Planner is a powerful and efficient planning algorithm that is, accord-
ing to the authors, well-suited for quickly exploring complex environments and generating collision-free
paths for drones.

The method is tested in simulation and real-world environments. The authors did not provide an open-
source code repository. But as the paper describes how best to combine different open-source available
ROS packages, the project still seems reproducible. The authors did also provide multiple youtube
videos that demonstrated the functionality of the method and compare this to other related previous
work. A note to make is that the proposed drone in this paper is a factor 2 larger and heavier than
the drone that will be used for the rainforest challenge. The presented drone uses a Realsense D435i
depth camera and a Realsense T265 pose-tracking camera for pose estimation, which is a significant
benefit for localisation. But this camera is 60 grams which too heavy to add to the drone in the rainforest
project.

B
Design Autonomy Backpack

This appendix shows more details on the autonomy-backpack design. The design of this module, that
snap-fits on top of the Bebop 2 drone, is divided into three categories which are mechanical, electric,
and software design. These designs are discussed in this appendix in that order.

The mechanical design section details where the chosen parts are located in the design and how these
are mounted together with the help of 3D-printed frames. The electric design section gives enlarged
diagrams of how components are wired to the processor board. Lastly, the software design shows the
structure of the software in ROS in more detail.

B.1. Mechanical design
The mechanical design is modelled in Solidworks
in 3D. By drawing all parts in 3D, standard com-
ments and custom parts, the assembly is created.
To optimize the design for a compact form factor
and lightweight, this assembly is crucial. In the as-
sembly, the frame is designed to mount all parts
compactly and validate that all parts will fit. In the
3D assembly, it is also validated that electric ca-
bles and connectors have enough space. But, the
cables and connectors are not included in Solid-
works for simplicity.

In this section, the assembled 3D design is shown
in Figure B.1. Thereafter, the same design is
shown as an exploded view in Figure B.2 to show
how all components fit together in the design, fol-
lowed by a name list of all components annotated
in the exploded view.

Figure B.1: 3D backpack design screenshot in Solidworks

72

B.1. Mechanical design 73

Figure B.2: Rendering of 3D backpack design in Solidworks

1. Mounting for backpack on drone - 3D printed
2. Processor board - Odroid XU4
3. Frame for electronics - 3D printed
4. Frame for Depth camera - 3D printed
5. Stereo Camera - Depth module Realsense

D430
6. Depth processor - Realsense processor D4

7. GPS module - HGLRC M100 (Ublox M10)
8. USB 4G dongle - Huawei E3372
9. 4G antennas - 5dBi CRC9
10. RC-receiver - FrSky R-XSR
11. Electronics protection - 3D printed

B.2. Electric design 74

B.2. Electric design
To give an overview of how all components are connected to the processor board, electric wiring di-
agrams are drawn in Fritzing software. This section gives enlarged diagrams of the illustrated wiring
diagram in figure B.3 and the official wiring diagram in figure B.4 to which pins the components connect.

Figure B.3: Wiring scheme Odroid XU4

B.3. Software design 75

Figure B.4: Connection scheme Odroid XU4, exclusive USB modules

B.3. Software design
To highlight the software design in more detail, figure B.5 below shows an enlarged overview of the
system architecture for communications between the modules of the system.

Figure B.5: Drone system architecture for autonomous navigation in the rainforest

Figure B.6 shows the ROS node and topic architecture. This automatically generated graph shows
how data (square blocks) is shared between different processes (oval blocks).

B.3. Software design 76

Figure B.6: ROS RQT Graph, which shows the network structure for nodes and topics

B.4. Outdoor mission components 77

B.4. Outdoor mission components
In the competition, the organisation assigned a company named Garuda Robotics to conduct airwor-
thiness tests beforehand and supervise drone operations during the competition. Specifically, the self-
made drones had to be examined extensively in this airworthiness test. The airworthiness check had
a big checklist with requirements that were not shared with the competitors beforehand, although the
team asked for these requirements. In Singapore, in the days of calibration and airworthiness checks,
the checklist showed multiple requirements that were not incorporated in the drone. The system com-
ponents described in this section were implemented on short notice in the 48-hour window of the air-
worthiness checks.

Some of the main points that were required but not yet implemented were a ground control station
(laptop or RC controller with screen) on which the drone’s camera live stream was shown, a live map
with the drone’s position, and basic drone telemetry data. To fix this before the competition, a ground
station interface was improvised on the laptop with multiple windows showing the different information.
An example is shown in figure B.7 below. In this image, taken at the competition’s airworthiness check,
on the left is the live map with the drone’s position and the positions of other drones and aircraft. On
the bottom right, the live stream of the drone, with a 1.0-second delay, was acceptable apparently.
On the top-right, the telemetry of the drone with attitude, altitude, ground speed, heading, battery %,
expected remaining flight time, and the signal speed/strength. This data for the ground control station
was streamed via 4G.

Figure B.7: Alternative created ground station for flight monitoring

In addition, before takeoff, the drone pilot needed to show aGaruda safety officer the applied geofencing
overlaid on a satellite image map. As the ground station used the interactive map in the browser from
a 3rd-party service, the geofencing lines could not be drawn on this map. Although not ideal, but
acceptable, the applied geofencing of the drone was plotted over a satellite screenshot by a python
script. The python script extracts the geofencing data from the drone to draw over the image. Figure
B.8 below shows an image from this geofencing plot at the airworthiness check in Singapore. The blue
square is where the drone will kill the motors, defined by north and east bounds. The green circle is the
maximum distance from the takeoff position what the drone will not exceed in normal flight operations,
either manually or on autopilot.

B.4. Outdoor mission components 78

Figure B.8: Alternative created geofencing plotted on satellite image map

C
Dataset creation

To benchmark different configurations of the path planning algorithm on exactly the same sensor input,
and thus the same scenario, datasets are created. These datasets are recorded in a real flight and
collected the data spread over the ROS network. From this data, sensor data is filtered and injected
into the system in a simulation to see how the path planner algorithm performs.

At first, a dataset indoors was created to see the performance of the algorithm in a specifically controlled
scenario. Thereafter, an outdoor dataset was created to test the performance of the algorithm in real
and varying foresty conditions. The creation of these datasets is discussed in this order in the following
sections. Lastly, the content of the outdoor dataset is shown to give insight what data is recorded.

C.1. Record dataset indoors
To record the dataset indoors, the first step is to create a desired setting with obstacles. Then, multi-
ple recording methods are initiated, in ROS, and externally with a top-view camera. Multiple runs are
recorded to have multiple datasets to choose from. These steps are discussed in this section.

Two different tests need to be recorded to evaluate the planner’s performance in an indoor environ-
ment. In the first test, the drone is trapped inside a non-convex cube-shaped obstacle. The planner
has to escape the cube through a single narrow opening. The second test is the reactiveness test,
which checks how long it takes for the planner to detect a collision in the generated path and replan
accordingly. The reactiveness test covers the complete 8x8m space of the indoor test facility. There-
fore, the two tests are split into two different datasets. In both recordings, all sensors required for the
ego-planner are logged. The ego-planner itself is not executed. For data recording, the flights are
manually flown since the planner will only be tested in simulation for this scenario.

During the cube-escape recording, the drone is placed inside a cube of 3x3x2 meters (l*w*h). Three
of the walls are solid, while the fourth one has fake trees. The wall with the trees has an opening in the
middle with a gap size of 100cm. At the beginning of the dataset, the drone takes off from the centre
of the cube, facing one of the solid walls with the camera. Then, the drone performs a one-and-a-half
rotation scan by yawing at a constant speed of 90 degrees per second while staying in the centre of
the cube. The scan ends with the camera facing one of the solid walls again. After the scan, the drone
continues to hover in the middle of the cube for 20 seconds before landing. These last 20 seconds are
used to sample paths during the simulations.
During the recording of indoor datasets, top-view/iso-view cameras positioned at the ceiling are used
to record videos for future validation or presentations. Figure C.1 shows the varying gap size test with
a gap of 60cm.

79

C.1. Record dataset indoors 80

Figure C.1: Varying gap size test (60cm), top-view, in Cyberzoo for indoor dataset

During the reactive flight test, the drone is flown towards a set of fake trees in a straight line at constant
speed. The test begins with the drone taking off from one corner of the test facility. It then flies at a
constant speed towards the diagonally opposite corner. Just before the drone reaches the obstacles, it
stops and hovers for five seconds before landing. The obstacles are placed 8 meters from the takeoff
position, so they can only be detected when the drone is already in motion. This test is conducted
at three different speeds, namely low speed (approximately 0.5m/s), medium speed (approximately
1.0m/s), and fast speed (to be determined by +-1.8m/s).

During simulation, the aim is that the planner detects the obstacles as soon as possible and replans
from the initial path, which is straight to the goal, to a new collision-free path around the obstacles,
towards the goal behind the obstacles. Figure C.2 shows the setup of this test with the drone flying
and the desired trajectory from start to goal drawn in red.

Figure C.2: Reactive flight test, slow (0.5 m/s), top-view, in Cyberzoo for indoor dataset

C.2. Record dataset outdoors 81

C.2. Record dataset outdoors
For the outdoor dataset, a forest is chosen to fly in and record sensor data. The forest was selected
because of the relatively low height of its trees, which allows for GPS ground-truth position data. Ad-
ditionally, a video of the test can be recorded from above with another off-the-shelf drone. To navigate
through the forest, a walking trail with cluttered branches and multiple gaps of 1 meter was chosen.
The drone has to navigate through a zigzag in the trail, which is approximately 20 meters long in total.

To record this dataset, first, a manual flight over the trail has been recorded without running the ego-
planner. Afterwards, the drone navigated autonomously over the same trail using the planner. Since all
autonomous flight tests over the trail were successful, one of the autonomous runs is chosen to create
the forest dataset from.
The logged flight for the forest dataset had the ego-planner set to a maximum speed of 1m/s, maximum
acceleration of 0.3m/s, and inflation of 0.3m.

In figure C.3, an image of the zigzag trail’s entrance is shown to give an impression. In this image, also
the setup of the drone is visible with the external GPS module on a carbon rod. As described in the
report, this GPS mounted on a rod reduces EMC interference from the processor and camera onto the
sensitive helix GPS antenna.

Figure C.3: Image of drone flying autonomously in the forest for the forest dataset recording

Figure C.4 shows the infrared and depth image recorded in the forest dataset. As the drone flew
autonomously during the recording of this dataset, not only the sensor input is available, but also the
obstacle detection, mapping, and trajectory planning. These are also shown in figure C.4. In the
figure, annotations are made to get a better impression of what is shown in this screenshot from the
RVIZ viewer.

C.3. Content of dataset recordings 82

Figure C.4: Screenshot RVIZ - ego-planner visualisation for forest dataset

C.3. Content of dataset recordings
In the data recordings applied in the two above-described methods, all data communicated over the
ROS network (topics) is saved onboard the drone at the SD card. To give insight in the recorded
topics and the number of stored data points, the content of the outdoor dataset file is shown below
in code listing C.1. This overview of the dataset content is created by using the bash command ros-
bag_info_bos_6_r4_GPS_VINS.bag. This dataset does not only contain the data from the outdoor
flight, it also contains the post-processed position data of VINS-fusion.

Code Listing C.1: Content Rosbag dataset outdoors

path : bos_6_r4_GPS_VINS . bag
vers ion : 2.0
du ra t i on : 1:38s (98s)
s t a r t : Nov 08 2023 10:53:43.22 (1699437223.22)
end : Nov 08 2023 10:55:21.58 (1699437321.58)
s ize : 1.5 GB
messages : 106857
compression : none [1412/1412 chunks]
t op i c s :

/ bebop / bebop / nodele t / manager / bond 188 msgs
/ bebop / cmd / ve l 470 msgs
/ bebop / f i x 94 msgs
/ bebop / goto 79 msgs
/ bebop / j o i n t / s ta tes 466 msgs
/ bebop /odom 466 msgs
/ bebop / s ta tes / ardrone3 / P i l o t i n gS t a t e / Al t i tudeChanged 467 msgs
/ bebop / s ta tes / ardrone3 / P i l o t i n gS t a t e / Att i tudeChanged 467 msgs
/ bebop / s ta tes / ardrone3 / P i l o t i n gS t a t e / FlyingStateChanged 10 msgs
/ bebop / s ta tes / ardrone3 / P i l o t i n gS t a t e / Posit ionChanged 94 msgs
/ bebop / s ta tes / ardrone3 / P i l o t i n gS t a t e / SpeedChanged 467 msgs
/ bebop / s ta tes /common/ CommonState / BatteryStateChanged 12 msgs
/ bebop / yaw 466 msgs
/ bebop / guidance / v i s u a l i s a t i o n 79 msgs
/ broadcast / bsp l i ne 87 msgs
/ camera / depth / camera / i n f o 1412 msgs
/ camera / depth / co l o r / po in t s 1412 msgs
/ camera / depth / image / r e c t / raw 1412 msgs

C.3. Content of dataset recordings 83

/ camera / depth / image / r e c t / raw / compressed 1412 msgs
/ camera / depth / metadata 1412 msgs
/ camera / imu 18863 msgs
/ camera / i n f r a 1 / camera / i n f o 1411 msgs
/ camera / i n f r a 1 / image / r e c t / raw 1411 msgs
/ camera / i n f r a 1 / image / r e c t / raw / compressed 1411 msgs
/ camera / i n f r a 1 / metadata 1411 msgs
/ camera / i n f r a 2 / camera / i n f o 1412 msgs
/ camera / i n f r a 2 / image / r e c t / raw 1412 msgs
/ camera / i n f r a 2 / image / r e c t / raw / compressed 1412 msgs
/ camera / i n f r a 2 / metadata 1411 msgs
/ camera / realsense2 / camera / manager / bond 188 msgs
/ c o l l i s i o n / check / du ra t i on 1769 msgs
/ cpu / moni tor / bebop / bebop / nodele t / cpu 161 msgs
/ cpu / moni tor / bebop / bebop / nodele t /mem 161 msgs
/ cpu / moni tor / bebop / bebop / nodele t / manager / cpu 163 msgs
/ cpu / moni tor / bebop / bebop / nodele t / manager /mem 163 msgs
/ cpu / moni tor / bebop / robot / s t a t e / pub l i she r / cpu 163 msgs
/ cpu / moni tor / bebop / robot / s t a t e / pub l i she r /mem 163 msgs
/ cpu / moni tor / bebop / guidance / cpu 163 msgs
/ cpu / moni tor / bebop / guidance /mem 163 msgs
/ cpu / moni tor / camera / realsense2 / camera / cpu 163 msgs
/ cpu / moni tor / camera / realsense2 / camera /mem 163 msgs
/ cpu / moni tor / camera / realsense2 / camera / manager / cpu 161 msgs
/ cpu / moni tor / camera / realsense2 / camera / manager /mem 161 msgs
/ cpu / moni tor / drone / 0 / ego / p lanner / node / cpu 163 msgs
/ cpu / moni tor / drone / 0 / ego / p lanner / node /mem 163 msgs
/ cpu / moni tor / drone / 0 / t r a j / server / cpu 163 msgs
/CPU/ moni tor / drone / 0 / t r a j / server /mem 163 msgs
/ cpu / moni tor / gps / gps / to / pose / convers ion / node / cpu 163 msgs
/ cpu / moni tor / gps / gps / to / pose / convers ion / node /mem 163 msgs
/ cpu / moni tor / gps / i 2c / gps / node / cpu 163 msgs
/ cpu / moni tor / gps / i 2c / gps / node /mem 163 msgs
/ cpu / moni tor / gps /nmea / t op i c / d r i v e r / node / cpu 163 msgs
/ cpu / moni tor / gps /nmea / t op i c / d r i v e r / node /mem 163 msgs
/ cpu / moni tor / gps / se t / gps / re ference / node / cpu 163 msgs
/ cpu / moni tor / gps / se t / gps / re ference / node /mem 163 msgs
/ cpu / moni tor / record /1696598434779780845/cpu 163 msgs
/ cpu / moni tor / record /1696598434779780845/mem 163 msgs
/ cpu / moni tor / robot / s t a t e / pub l i she r / cpu 163 msgs
/CPU/ moni tor / robot / s t a te / pub l i she r /mem 163 msgs
/CPU/ moni tor / rosout / cpu 163 msgs
/ cpu / moni tor / rosout /mem 163 msgs
/ cpu / moni tor / sbus / cmd / ve l / cpu 163 msgs
/ cpu / moni tor / sbus / cmd / ve l /mem 163 msgs
/ cpu / moni tor / sbus / node / cpu 163 msgs
/CPU/ moni tor / sbus / node /mem 163 msgs
/CPU/ moni tor / t o t a l / a c t i ve /mem 163 msgs
/ cpu / moni tor / t o t a l / a va i l ab l e /mem 163 msgs
/ cpu / moni tor / t o t a l / bu f f e r s /mem 163 msgs
/ cpu / moni tor / t o t a l / cached /mem 163 msgs
/CPU/ moni tor / t o t a l /CPU 163 msgs
/CPU/ moni tor / t o t a l / f r ee /mem 163 msgs
/CPU/ moni tor / t o t a l / i n a c t i v e /mem 163 msgs
/ cpu / moni tor / t o t a l / shared /mem 163 msgs
/ cpu / moni tor / t o t a l / s lab /mem 163 msgs

C.3. Content of dataset recordings 84

/ cpu / moni tor / t o t a l / used /mem 163 msgs
/ d iagnos t i cs 466 msgs
/ drone / 0 / ego / p lanner / node / ego / r e s u l t / average / t ime 87 msgs
/ drone / 0 / ego / p lanner / node / ego / r e s u l t / i n i t / t ime 87 msgs
/ drone / 0 / ego / p lanner / node / ego / r e s u l t / op t im ise / t ime 87 msgs
/ drone / 0 / ego / p lanner / node / ego / r e s u l t / r e f i n e / t ime 87 msgs
/ drone / 0 / ego / p lanner / node / f i n a l / t r a j e c t o r y 100 msgs
/ drone / 0 / ego / p lanner / node / g loba l / l i s t 2 msgs
/ drone / 0 / ego / p lanner / node / g r i d /map/ occupancy 855 msgs
/ drone / 0 / ego / p lanner / node / g r i d /map/ occupancy / i n f l a t e 855 msgs
/ drone / 0 / ego / p lanner / node / g r i d /map/ p r o j e c t / image / t ime 1411 msgs
/ drone / 0 / ego / p lanner / node / g r i d /map/ raycas t / image / t ime 1411 msgs
/ drone / 0 / ego / p lanner / node / g r i d /map/ upd / l o c a l /map/ t ime 1411 msgs
/ drone / 0 / ego / p lanner / node / i n i t / l i s t 120 msgs
/ drone / 0 / ego / p lanner / node / op t ima l / l i s t 107 msgs
/ drone / 0 / p lann ing / bsp l i ne 89 msgs
/ drone / 0 / p lann ing / data / d i sp lay 8141 msgs
/ enable / a u t o p i l o t / w i re less / rc 428 msgs
/ gps / ecef 43 msgs
/ gps / f i x 43 msgs
/ gps / gps / pos i t i o n /NED 43 msgs
/ gps / gps / pos i t i o n /NED/ o f f s e t 43 msgs
/ gps / gps / pos i t i o n /NWU 43 msgs
/ gps / gps / t rans form 43 msgs
/ gps /nmea / sentence 138 msgs
/ gps / t ime / re ference 43 msgs
/ i t t e r a t i o n s / t r a j e c t o r y 87 msgs
/move / base / simple / goal 2 msgs
/ new / v a l i d / t r a j e c t o r y 87 msgs
/ pos / se t po i n t 8848 msgs
/ pos i t i o n / cmd 8848 msgs
/ rosout 1794 msgs
/ rosout / agg 2004 msgs
/ sbus 470 msgs
/ t f 975 msgs
/ t r a j e c t o r y / c o l l i s i o n 71 msgs
/ ve l / se t po i n t 8848 msgs
/ v ins / f us ion / camera / pose 702 msgs
/ v ins / f us ion / camera / pose / v i s ua l 702 msgs
/ v ins / f us ion / e x t r i n s i c 702 msgs
/ v ins / f us ion / image / t r ack 1410 msgs
/ v ins / f us ion / key / poses 701 msgs
/ v ins / f us ion / keyframe / po in t 518 msgs
/ v ins / f us ion / keyframe / pose 518 msgs
/ v ins / f us ion / margin / c loud 705 msgs
/ v ins / f us ion / odometry 702 msgs
/ v ins / f us ion / path 702 msgs
/ v ins / f us ion / po i n t / c loud 705 msgs

C.3. Content of dataset recordings 85

To give a better understanding how the environment is perceived and recorded by the drone in the
forest dataset, a series of images below shows images and the obstacle map.

Figure C.5 below first shows an infrared image taken from the drone at 18.1 seconds in the dataset.
Thereafter, figure C.6 shows the depth image taken from the drone at the same location and at the
same time.

Figure C.5: Infrared image from dataset at 18.1 seconds

Figure C.6: Depth image from dataset at 18.1 seconds

The following three screenshots from Rviz show all mapped obstacles together from the start to the
end of the simulation. In the Rviz visualisation, the obstacle voxels’ colours change in the z-direction
to make the height differences more visible. The green line in the screenshots shows the drone’s flown
path in the dataset. The grid at the bottom is the ground plane, with a 1x1m grid size as a reference for
dimensions. Figure C.7 shows a top-down overview of the mapped environment. Figure C.8 shows a
side view where the heights are better visible. Figure C.9 shows a front view from the location where
the drone took off and entered the narrow passage in the forest.

C.3. Content of dataset recordings 86

Figure C.7: Top-view of mapped 3D environment in dataset and the flown path

Figure C.8: Side-view of mapped 3D environment in dataset and the flown path

Figure C.9: Front-view of mapped 3D environment in dataset and the flown path

C.4. Localisation comparison 87

C.4. Localisation comparison
When recording the dataset, GPS and image data is additionally recorded to compare different locali-
sation techniques. This is described in section 6.2.2. This section shows some enlarged figures from
these localisation methods.

Figure C.10 shows VINS-fusion localisation with optic flow detection on the left and feature tracking on
the right.

Figure C.10: Tracking features in image with VINS

C.11 shows the tracked features in a 3D map where the drone traverses the forest. In this figure, the
green line shows the localisation estimate from VINS-fusion, while the red-green-blue axis represents
the drone’s position estimated by dead-reckoning.

Figure C.11: Mapping 3D tracked points with VINS

C.4. Localisation comparison 88

C.12 shows the localisation of GPS (purple balls), VINS-fusion (green line), and dead-reckoning (red
dots) overlaid in one figure with on the background the mapped obstacles of the forest where the drone
flew.

Figure C.12: Drone system architecture for autonomous navigation in the rainforest

D
Analysis EGO-planner processes

In this appendix, additional results of the downscaling research are shown. First, the process of the
planning algorithm is shown to give a better inside in its functionality. Then, the CPU and memory
load are shown for varying planner configurations. Thereafter, loop durations for specific processes
inside the planning algorithm are visualised and compared for varying planner configurations. And,
lastly, some visual comparison is shown on different behaviour of the trajectory planning when varying
planner configurations.

D.1. Algorithm structure
To give insights in the functionality and structure of the EGO-planner, this section shows the pseu-
docode of the algorithm by [18]. Figure D.1 below shows the Psuedo code for checking which points of
the path are inside mapped obstacles (algorithm 1) and the pseudocode to rebound the path outwards
of the obstacle until it does not collide anymore (algorithm 2).

Figure D.1: Psuedo code for collision detection and path rebound by [18]

D.2. CPU load
To give insights into how different configurations of the EGO-planner load the processor board, the CPU
load of the EGO-planner process in Linux is measured and stored in the Rosbag file. In the analysis,
for every simulation, a time series plot is created with the processor load over the simulation and a
boxplot with the statistics of this data. The variation of voxel grid resolution gives the most significant
change in processor load. For this variation, the processor load plots are shown below in figure D.2.
To generate this data, the planner is simulated with these settings: skip-pixels=2, voxel-grid=[0.05 0.10
0.15 0.20], local-map=6.0m, camera-rate=15Hz.

89

D.3. Memory usage and map size 90

Figure D.2: CPU load EGO-planner for 1 core. Varying voxel grid resolution

To give contrast to how other variations affect the CPU load, figure D.3 below shows the load for a
varying depth image resolution. The difference in CPU load is less significant compared to the voxel
grid resolution variation but also shows a clear pattern of load reduction. Where the load varied from
20 to 100% in the first plot, this plot from 17 to 24% load. Note here the scale of this plot only goes from
0% to 40% CPU load, while the previous plot goes up to 105% CPU load. To generate this data, the
planner was used with the following settings: skip-pixels=[1 2 3 4], voxel-grid=0.10, local-map=4.0m,
and camera-rate=15Hz.

Figure D.3: CPU load EGO-planner for 1 core. Varying depth image resolution

D.3. Memory usage and map size
Table D.1 below shows a comparison of measured RAM memory usage. The table first shows how,
for limited memory usage, the map size can increase when the voxel grid resolution is more coarse.
Thereafter, the table shows how memory usage can change when the map size (in meters) is constant
for different voxel grid resolutions.

D.3. Memory usage and map size 91

Table D.1: Test memory usage for total map size

Variation voxel grid Total map size Voxel blocks Memory usage
Constant number of voxel blocks

SP=2, VR=0.05, LR=6, CR=0 50x50x2.5m 1000x1000x50 8.631*10e8 Bytes
SP=2, VR=0.10, LR=6, CR=0 100x100x5m 1000x1000x50 8.618*10e8 Bytes
SP=2, VR=0.15, LR=6, CR=0 150x150x7.5m 1000x1000x50 8.611*10e8 Bytes
SP=2, VR=0.20, LR=6, CR=0 200x200x10m 1000x1000x50 8.606*10e8 Bytes

Constant map size
SP=2, VR=0.05, LR=6, CR=0 50x50x2.5m 1000x1000x50 8.631*10e8 Bytes
SP=2, VR=0.10, LR=6, CR=0 50x50x2.5m 500x500x25 2.042*10e8 Bytes
SP=2, VR=0.15, LR=6, CR=0 50x50x2.5m 333x333x16 1.378*10e8 Bytes
SP=2, VR=0.20, LR=6, CR=0 50x50x2.5m 250x250x12 1.224*10e8 Bytes

D.4. Loop duration for sub-processes 92

D.4. Loop duration for sub-processes
To give insights into the intermediate computing steps in the EGO planner, the loop durations are reg-
istered during test flights and simulations. This gives a better understanding of how the individual pro-
cesses vary in computation time when varying planner parameters. This section shows some results
of these loop durations, which were insightful in determining the parameters that impact performance
and processor load the most.

D.4.1. Perception
Figure D.4 below shows loop durations for the drones perception with variations of voxel grid resolu-
tions. In this figure, plots are shown for the three sub-processes (3D projection, ray-casting, and map
update) within the drone’s obstacle mapping. To generate this data, the planner is simulated with these
settings: skip-pixels=2, voxel-grid=[0.05 0.10 0.15 0.20], local-map=6.0m, camera-rate=15Hz.

Figure D.4: Loop durations sub-processes EGO-planner perception. Varying voxel grid resolution

The loop duration boxplots show a pattern in the relation between voxel grid resolution and durations.
Raycasting and local-map-update durations reduce exponentially when the resolution is reduced from
0.05m to 0.20m, with loops getting nearly 10 times shorter. Meanwhile, the 3D pixel projection boxplot
shows no significant variation in loop duration.

The pattern of similar durations for 3D pixel projection is expected as for every new received depth
image the same amount of pixels coordinates has to be transformed from 2D to 3D, no matter the
voxel grids’ resolution. It is unclear why the 3D pixel project shows high peaks. Every pixel from the
depth image is transformed to a 3D coordinate by exactly the same matrix, so this gives no reason for

D.4. Loop duration for sub-processes 93

variation. But, given the significantly lower scale than the raycasting and local-map-update, peaks in
the graph are still non-significant longer durations.
When using raycasting at a higher resolution, the computation time to update the voxels increases be-
cause more voxels are crossed. Similarly, for local-map-update, the computation time increases when
more voxels have to be updated with a higher resolution. For instance, if the resolution doubles, the
number of blocks in the x, y, and z directions is twice as much, resulting in eight times more voxels to
update.

Figure D.5 below shows plots of loop times for perception, but this time for different camera resolutions
instead of varying voxel grid resolution. To generate this data, the planner was used with the following
settings: skip-pixels=[1 2 3 4], voxel-grid=0.10, local-map=4.0m, and camera-rate=15Hz. To clarify the
number of skipped pixels, 1 out of every N (skipped pixels) is used for obstacle mapping. So with 1
skipped pixel, 1 out 1 pixel is used, thus all pixels. With 4 skipped pixels, 1 out of 4 columns and rows
is skipped when iterating over all pixels in the image. Therefore, with 4 ’skipped pixels’, only 1/8th of
all pixels remain. Thus, an image with 480x270 pixels is used as an image with 120x68 pixels.

Figure D.5: Loop times sub-processes EGO-planner perception. Varying depth image resolution

In the shown plot, the 3D pixel projection boxplot shows an exponential reduction in loop duration when
the number of pixels is reduced. As both rows and columns are skipped, the total number of pixels to
project in 3D space reduces quadratically. Therefore, the curve in the boxplot is as expected.

The raycasting shows a near-linear reduction in loop duration whenmore pixels are skipped. This curve
was expected to have an exponential shape as it has quadratically fewer pixels to process, as with the
3D projection. One potential reason the relation is near linear is that the 3D projected points are first
clustered in the voxel grid. So, multiple detections that cluster in the same voxel cube will only be
raycasted once, as the raycast function raycasts the voxel’s centre. Therefore, with a high-resolution

D.4. Loop duration for sub-processes 94

image, more detections will be clustered in the same voxel and thus there are fewer ray-casted points
than the number of 3D detections.

The local-map-update loop was expected to show a near-constant duration for the different image
resolutions. But in the boxplot, there is a slight reduction visible in duration for lower image resolutions.
The most likely found explanation is that by the low-resolution image, fewer obstacles are mapped,
and, therefore, there are fewer voxels to inflate for the inflated obstacle map.

D.4.2. Planning
As with the perception section, this section starts with simulation results for a varying voxel grid reso-
lution and the other parameters fixed. The time series and boxplot are plotted below in figure D.6 for
a varying voxel grid resolution. And the same plots are shown in figure D.7 for a varying depth image
resolution.

For the varying voxel resolution, the initialisation and optimisation duration doubles. The initial hypoth-
esis was that a more course voxel grid would give less computation and, therefore, a shorter duration.
When inspecting the simulation, it was found that the mapping of 0.20m voxel size barely shows an
opening on the forest’s trail for the planner to find. Due to the coarse resolution, the gaps were hard or
invisible to detect and plan a route through. Other than that, the plots show no significant variation in
loop duration. Note the y-axis scale for the plots.

Figure D.6: Loop durations sub-processes EGO-planner planning. Varying voxel grid resolution

D.4. Loop duration for sub-processes 95

For the varying depth image resolution, a small, non-significant duration decrease is visible for a lower
resolution. Note the scale of the y-axis. This research does not clearly answer why this decreases as
image resolution has only direct effect on the mapping process.
One possible reason can be that some obstacles are missed, and therefore, the mapping contains
fewer obstacles and lets the planner find a path more easily, although possibly with collisions.
Another reason could be that the lower resolution gives the mapping process a lower duration and the
CPU a lower load. The parallel running threads on the processor might affect the duration of other
processes, also when the CPU is not fully utilised.

Figure D.7: Loop durations sub-processes EGO-planner planning. Varying depth image resolution

D.4. Loop duration for sub-processes 96

D.4.3. Collision check
To observe the loop duration for the collisioncheck, this is recorded in the ROSbag file during simula-
tion and plotted in a time-series and boxplot graph. Figure D.8 shows the plots for a varying voxelgrid
resolution. And figure D.9 shows the plots for a varying depth image resolution.

In the collision check loop, the active trajectory is checked with the obstaclemap if there are no collisions
with mapped obstacles. The planner tries to find a trajectory, and once one is found, only a new one is
generated when this is triggered in the system, for example, when the collision check finds a collision
in the future. The mapping runs continuously in a separate thread and updates at every new received
depth image. The collision check function is called after every update of the obstacle mapping.

Figure D.8: Loop durations sub-processes EGO-planner collision check. Varying voxel grid resolution

Figure D.9: Loop durations sub-processes EGO-planner collision check. Varying depth image resolution

No significant increase or decrease is visible in duration for the varied voxel grid resolution and depth
image resolution. After some investigation of the code, the collision check was found to only check
collisions for the control points, which are points spread over the line at a defined distance. Therefore,
the hypothesis is that the collision check would only vary significantly when the number of control
points is varied. This parameter is outside the scope of this research but might be interesting for future
research.

D.5. Simulation visual comparison performance 97

D.5. Simulation visual comparison performance
Although the path and obstacles are prerecorded in the dataset, the behaviour of the mapping and
planner are different over the different parameter variations. The setup with a dataset for simulation
gives the opportunity to improve the desired responses of the path planner in certain pre-recorded sit-
uations.

In figure D.10 below, the RVIZ simulation is shown with the behaviour of two different configurations.
The green line shows the generated trajectory for a configuration in which the local planner range was
5 meters in the xy direction. This is marked in the figure by the outer dotted square.
The blue/red line shows the generated trajectory for a configuration in which the local planner range
was 3 meters. This is marked in the figure by the inner dotted square.
The coloured blocks are the mapped obstacles for the simulation of the red/blue line with the smaller
local planner range. The grey blocks are all mapped obstacles that exist in the simulation. The coloured
and grey blocks within the outer dotted square are used for the simulation with the green line. That
simulation might have mapped more obstacles than shown in the figure, as the blocks in the screenshot
belong to the other simulation.

This screenshot displays two simulations overlaid on each other. It shows that in this particular example,
the planner with the longer range plans around obstacles farther ahead, resulting in increased efficiency
for the drone in terms of speed and energy consumption. The simulation with the blue and red lines
would also successfully avoid the obstacles, but it requires the drone to make more deceleration and
acceleration manoeuvres. It is worth noting that this image is only showing one frame, and in reality,
the blue/red line simulation would evade the obstacles approximately two seconds ahead of what is
displayed.

Figure D.10: Two simulations overlaid in Rviz with different local-planner-range configurations

The figure above was created by first running the simulation with the longer range and recording the
output of the generated trajectories. Thereafter, the simulation with the shorter planner range was run,
and the Rosbag file with the previously generated and recorded trajectories was replayed at the same
time. When plotting the trajectories in different colours, the performance can be compared in Rviz.

E
Further considerations

During the project, some ideas and thoughts came up that were not followed up as they were outside
the project’s scope, mostly due to time constraints. This appendix briefly summarizes these ideas and
thoughts for future inspiration.

E.1. EGO-planner and drone improvement for use in the wild
First, the ideas and thoughts on improving the drone and ego-planner for use in the wild are listed in this
section. This section covers centralising the local planner, the ground control station, adaptive reactive
and planning-based navigation, path backtracking, drone and sensor choice, the uncertainty of unseen
areas, and SLAM by Raycasting.

E.1.1. Centeralise obstacle map and planner around the drone
When launching the EGO planner, a voxel grid world map with a defined size is created to map obsta-
cles. From the world map, a small section around the drone’s position is used to map local obstacles
and plan trajectories around these local obstacles. The obstacles stored in the world map are not meant
to be used by the local planner at a later moment when the drone returns to the same location because
the ego planner then resets and remaps these obstacles. There is some global planner incorporated
in the ego planner, which uses the complete world map, but this does not seem fully functional.

The world map is a big 3D matrix stored in RAM memory, like the other variables in C++. At a high-
resolution voxel grid, a bigger matrix is required to define the same 3D volume. The available RAM
memory on the processor board limits the voxel grid resolution and size of the world map in x,y, and
z directions. Therefore, the ego-planner cannot freely explore because it will stop working when it
reaches the edge of the map.

For a processor board like the Odroid XU4 (2gb RAM) and the PiZero2w (0.5gb RAM), at a 0.1m vox-
elgrid resolution, the map limits to 250x250x5m and respectively 125x125x5m. At startup, the drone
initialises in the middle of this map and at zero altitude. So, after flying 125m, respecably 62m, in one
direction, the drone reached the border. Increasing the RAM with Swap memory (using an SD card
to dump memory overflow) does not work well. This is tested, but it seems to crash the ego-planner.
Possibly because every variable in Swap first goes back into RAM before it is used by the system. If
the single matrix does not fit in the entire RAM, it might, therefore, crash the system.

To solve this problem, the ego-planner code can possibly be rewritten to only use a local planner with
the drone always centred in this local map. To achieve this, first, the local obstacle map has to shift
the currently mapped obstacles regarding the drone’s change of position. Secondly, the planner’s tra-
jectories must be transformed to the drone’s position shift for the rebound and collision check functions.

When a world map is still required for some additional purpose, this can be stored as sectors in different
smaller files stored on the SD card. Then, when the drone flies into another sector, the current sector
of the world map is saved to the SD card and another sector is loaded.

98

E.1. EGO-planner and drone improvement for use in the wild 99

A workaround solution for the limited map problem would be to re-initialise the ego-planner at the
centre of the map every time the drone reaches the limit of the map. The drone can then either remap
all obstacles from scratch or, more nicely, the latest local map of obstacles is copied towards the centre
of the map where the drone is relocated.

E.1.2. Adaptive navigation able to switch between reactive navigation and planning-
based navigation

Although most drones can fly at speeds over 10m/s, autonomous drones with planning-based naviga-
tion tend to fly at 1m/s to max 4m/s. The most important reason is the reaction time of the planner
when an obstacle occurs within the sensor range. The sensing range of the mostly used depth camera
(Realsense D435) is 6m. When a drone is flying at 10m/s, and an obstacle occurs in the camera frame
6m ahead, the drone has about 0.6 seconds to compute a collision, generate a response (break), and
decelerate to a complete standstill. In this example, the reaction time would be too short, and the drone
would most likely crash.

But, if the drone had a long-range sensor (10-20m), like a single-array TOF sensor or ultrasound sensor,
the obstacle could be detected earlier. When flying in open space, the drone could switch to reactive-
based navigation, enable the long-range sensor, and fly at higher speeds while still ensuring safe flight.
In addition, the depth camera can be a smaller, more lightweight sensor with a shorter detection range.
The drone would then still be able to solve complex scenarios with the ego-planner but at a bit lower
speeds, and it can fly fast and effectively in open space with reactive-based navigation.

E.1.3. path backtracking and adaptive margins
To find a route back home in the rainforest, taking the takeoff position as a goal and trying to navigate
back from the current position is a significant risk. When the drone cannot find a path before the battery
dies, it will crash in the rainforest and likely be lost.

Following the same path back as it came seems to be a safe solution in which the drone knows exactly
the distance to fly back home. Although, after considering many ideas to solve this during the project,
this seems to be the most simple and robust solution, it comes with some challenges.

To apply this, firstly, the position estimate of the drone drifts over time, as is explained in the report. So,
the drone thinks this path is elsewhere than where it has flown. For this problem, SLAM, preferably with
loop closure, seems to be the most obvious solution. But this requires about 2 times the processing
power as what the complete EGO-planner uses.

Secondly, as the drone still needs safe obstacle avoidance, the EGO-planner should keep running when
it flies back. So the ego-planner has to be adapted to imitate the flown path. One possible solution can
be to incorporate this in the cost function of the planner, where the weight is zero when the drone is
exploring, and the weight is high when the drone has to return home.

E.1.4. unsafe to fly around corners into unseen areas
In contrast to the FASTER-planner [17], the EGO-planner [18] does not take into account whether free
voxel-blocks in the mapping are free because there is no obstacle or free because the obstacle has
not been mapped yet. When flying around a corner into new unexplored space, there is a risk that
obstacles occur just around the corner, and the drone has little response time to stop before it crashes.

This functionality could be implemented into the EGO planner in 2 steps. The first step is initialising
voxels as unknown, and marking voxels as free-space when they are crossed during the raycasting
process. In the EGO planner, the probability of the voxels in the map being an obstacle is now a value
between 0.00 and 1.00. The probabilities could be initialised at -1 and set to 0 or higher when they are
first raycasted or marked for obstacles to store the information for unknown voxels in the same matrix.
The second step is actively using this information in the path planner. For example, reducing the speed
at the trajectory it plans in unknown voxels. The same function used for the collision check could be
used to check if the generated trajectory is in an unknown space.

E.2. Downscaling research 100

E.1.5. use raycasting to estimate/correct the position drift
In this project’s research, SLAM was found to be too computationally intensive to run on the small pro-
cessor implemented in the drone. Visual-inertial SLAM was found to be the most lightweight but still
showed 2 times more processor load than the path planner itself. Using the obstacle map and the point
cloud from the camera for SLAM is also a robust method, but it uses significantly more CPU resources.
This method checks how all points from the camera’s point cloud match best with the mapped obstacles
by a function named iterative-closest-point.

During testing, it was found that when the voxel grid resolution is high enough, a significant drift in a
short time is visible in the raycasting and mapping. A flow of obstacles is visible where some obstacles
disappear on one side and grow on the other side. Instead of using the iterative-closest-point, the flow in
the mapping might be detectable in the same way that visual SLAM uses optic flow to see how a scene
changes. This thought is not extensively investigated, and it might already be applied by someone.

E.2. Downscaling research
During the downscaling research in chapter 6, some thoughts arose. This section shares thoughts on
the possibilities of the simulation method, using different hardware, and the processor tasking man-
agement.

E.2.1. Possibilities with the used downscaling method and analysis
In the downscaling research, a method was created in which data is first recorded in a forest, filtered,
and a dataset is created. This dataset is then processed by the ego-planner using a specific setup, and
the planner’s responses are recorded. The recorded data is then filtered and translated into Python
data. The entire process of feeding the dataset into the ego-planner with different configurations and
generating Python data is fully automated. With this automation, it is possible to run 100 simulations
with varying configurations in just a few hours. All the data obtained can be plotted and compared in a
Python script for analysis. Moreover, if a particular simulation yields remarkable results, the simulation’s
ROSbag file can be replayed to determine the cause of such results.//
This method works efficiently to test many variations of algorithm configurations on a specific scenario
(the dataset). This method has the benefit of simulating a computer-simulated environment in that it
represents the real world best, as the sensor input is literally from the real world. And, the same as with
a computer-simulated environment, there is no damage by crashing if one configuration does not work
well. Another benefit is that two simulations with different results can be overlaid, for example, in Rviz,
to see the difference and learn the impacts of varying the planner’s configurations. When flying the
drone in the real world, comparing performance for small changes in the configuration is more difficult.
For this method, the dataset can already be created before the implementation of the planner works. It
only has to record the sensor data from the drone and depth camera, while the drone can be manually
piloted.

E.2.2. Downscaling on different hardware
In the shown downscaling results, the performance and CPU load reductions are shown to apply the
planning-based navigation on a smaller system. However, it’s important to note that changing the
hardware from the used Odroid XU4 processor to a different processor, such as the Raspberry Pi
Zero2w, might result in different scaling of performance and load. This relationship may look slightly
different when using different hardware configurations, such as 32-bit vs. 64-bit, different RAM, CPU
cores, or Linux OS.

E.2.3. Processor tasking management
When the EGO-planner process is initiated according to the algorithm’s design, the C++ script runs as
a single task on a single core of the CPU. This could be problematic for a smaller system, as it may
not be able to utilize all available computational resources. Although it may seem like a safe choice
to reserve the remaining cores for other ROS and non-ROS processes, running the EGO planner on
only one core limits its performance. The algorithm could benefit from running some computations in
parallel, which would improve its efficiency.

F
Downscaling applied

These days, people see more and more applications for drones, including monitoring rainforests to pro-
tect plant and animal species. However, drones face challenges when navigating through the dense
and cluttered vegetation of the forest. These environments necessitate advanced autonomous de-
tection and navigation to make the drone traverse robustly and fly safely. In addition, the forest brings
extra challenges, such as blocked signals for GPS localisation, remote control, and remote supervising.

In this thesis project, a drone is designed, built, and programmed to navigate autonomously in the
rainforest with complete onboard computing and no GPS localisation. This 500-gram drone is being
extensively tested and optimized in real forest conditions, and a dataset is being created from its au-
tonomous flights to simulate various configurations of the path-planning algorithm. The results of these
simulations on this dataset are then used for thorough research on how the algorithm can downscale
to smaller systems and how this affects performance.

By using the results of this research on downscaling, a 100-gram drone is built and programmed to fly
in forest conditions with complete onboard computation. Challenging on this small-size drone is the use
of low-quality lightweight sensors and processor. The processor only weighs 10 grams, and the depth
camera weighs 8 grams. Unique on this small drone is the 3D path planning fully computed onboard
and the implementation of a new type of depth camera.

This appendix covers the design for the system onboard the 100-gram drone, which enables it to fly
autonomously. This design covers the hardware and software. Thereafter, the results show that this
100-gram drone is actually flying.

F.1. Module design
To make autonomy on a small drone, components have to be small. Different components are chosen
for this design compared to the autonomous 500-gram drone. This section covers the chosen compo-
nents and the 3D integrated design thereafter.

F.1.1. Components
This section covers the components chosen for the lightweight autonomy system, which are the pro-
cessor board, depth camera, drone, power regulator and RC receiver.

Figure F.1: Raspbery Pi Zero2w [30]

PiZero2w
To calculate the required autonomy on a small-scale drone,
the lightweight and cheap Raspberry Pi Zero 2w [30] is cho-
sen. This board weighs 10 grams and costs 15 euros. The
board has only 0.5 GB RAM and a 1GHz quad-core, 64-
bit ARM Cortex-A53 CPU processor. Therefore, this board
can show the true potential of the downscaling applied as this
is about 1/4 of the RAM and 1/2 of the processor power

101

F.1. Module design 102

compared to the Odroid XU4 processor used on the 500-
gram drone in this project. And an even bigger gap com-
pared to the Jetson xavier nx processor used in the origi-
nal EGO-planner paper [18]. Figure F.1 shows the Pi zero
2w.

TOF camera

Figure F.2: Arducam TOF depth cam-
era [31]

To detect obstacles, a lightweight sensor is required for the
drone to be able to lift the payload of the autonomy sys-
tem. As the the 60 grams of the Realsense D430 used on
the 500gram drone would be too heavy, another approach is
tested. A new camera model named Arducam TOF camera
is tested. This camera weighs only 8 grams, has a small
formfactor, and costs 60 euros. In contrast to the heavy Re-
alsense camera, this TOF camera can only measure 2 to 4m
depth.

After emitting an infrared flash, the camera measures for 240×180
pixels the time for the flash to return. From the time of flight
(TOF), the camera calculates the depth per pixel. This method
has been used in the industry before but has never been seen
in this small form factor before with comparable image resolu-
tion and weight. No literature is found where this camera is
used for navigation on a drone. Figure F.2 shows the TOF cam-
era.

Figure F.3: DJI Tello drone [32]

Tello drone
The DJI Tello drone is chosen to showcase the small and lightweight
autonomy system on a small drone. This drone is 10x10x5cm,
weighs 80 grams, and costs 100 euros. The main reason this
drone was chosen was its availability and because it was control-
lable via an SDK. In addition, the drone has out-of-the-box stable
position control by using its bottom and forward camera for optic
flow.

The DJI Tello drone also powers the camera and the processor. To ac-
commodate this, a positive and ground wire is soldered to the drone’s
battery connector inside. As Tello’s single-cell lithium battery provides
around 3.8 volts, a step-up power regulator is used to convert the bat-
tery voltage to the required 5V. Figure F.3 shows the small Tello drone.

Figure F.4: DC step-up
converter 5V 2A [33]

power regulator
As a step-up power regulator to supply 5V and max 2A is chosen to convert the
variable +- 3.8V of the drones’ battery to a stable 5V for the electronics. The
regulator board is 20x10x5mm and weighs around 4 grams. Figure F.4 shows
the regulator board.

FrSky receiver
To receive remote controller commands, the same receiver is used as on the
500-gram drone in this project. This receiver is the FrSky R-XSR model, which
is small and weighs 2.4 grams.

F.2. Software adaptations and configuration 103

F.1.2. 3D integrated design
To build and mount the autonomy system compactly and lightweight on the Tello drone, a 3D design
is made. This model contains all the components mentioned above, a mount to attach the processor
board to the drone, and a mount to attach the depth camera to the processor board. Figure F.5 below
shows a screenshot from the Solidworks model in which all components are integrated.

Figure F.5: Solidworks 3D model of Tello drone with autonomy system

In the integrated design, the mount for the processor board on the drone sticks to the drone’s top cover
with double sided tape. This 3D printed mount is printed as a flat sheet and bend into shape to achieve
better strength with the 3D printed layer directions. Holes in this mount are tapped to M3 and the board
is attached with plastic M3 bolts.

The depth camera is clamped to the processor board edges with 3D prints. These clamps, in light-blue
in the figure, are designed such that they clamp tighter when the bolts on the camera are fastened.

F.2. Software adaptations and configuration
To make the software, initially designed for the 500-gram drone, work on the smaller processor board,
some adaptations were required. In this section, these adaptations are briefly mentioned.

ROS driver for Tello drone
To control the Tello drone via the ROS architecture, a ROS node is required to communicate with the
drone’s SDK. This ROS node has to send control commands to the drone received from other nodes
and share telemetry data with other nodes. Multiple Tello drivers (node package) were open-source
available, but none had the exact set of features required for this project. Ideally, the Tello driver has
input and output data identical to the Bebop drone used in this project (the 500-gram drone). Therefore,
a Tello driver for ROS was made from scratch using the DJI-TelloPy Python library. This ROS node
communicates with data similar to the Bebop driver.

Remapping the ROS network
To make the Tello drone work in the same ROS architecture structure as used with the Bebop drone,
some connections between topics and nodes have to be remapped. All nodes connected to Bebop-
related topics have to be connected to Tello-related topics. Further, some processes are removed from
the system such as a GPS driver and a waypoint mission planning node.

F.3. Results 104

Configurations for path-planning
To make the path planning run on the small processor board, configurations are changed based on the
downscaling research. For the tests with the 100-gram drone, the configurations are set as follows:

• Voxelgrid resolution = 0.1m

• Local planner range = 4.0m

• Depth image resolution = 120x90 pixels

• Depth image rate = 10 Hz

F.3. Results
With some tests performed indoors and outdoors, the Tello drone appeared to perform decently with
the added payload for the autonomy system. This section gives a comparison of flight times with this
payload. The ROS system functioned as expected, similar to the system of the 500-gram drone. The
camera used in this drone has a shorter detection range, and the configuration is downscaled, resulting
in lower performance in obstacle detection and route planning compared to the 500-gram drone. This
section shows the most relevant performance. Lastly, this section shows some difficulties with the high
processor load during testing.

Flight times
Having lightweight autonomy on a 100-gram drone might have some applications, but the biggest
advantage is expected to have a bigger autonomous drone with prolonged flight time. With this in
mind, the flight time of the Tello drone and Bebop drone are compared with the original autonomy
payload described in this report, the newly introduced autonomy payload described in this appendix,
and no payload. Table F.1 shows the measured flight times for both drones. For the Tello drone, the
original autonomy system could not be tested because the drone cannot lift this weight at all. The flight
times shown are rounded to whole minutes, except for the duration below 5 minutes. Also, the flight
times are measured with 100% down to 10% battery. The last 10% of battery is not used as lipo and
lithium batteries can damage by deep discharge.
Although the flight time of the Tello drone reduced significantly to about 1/3rd with the new lightweight
autonomy, the same payload attached to the Bebop reduced the flight time by about 15% compared to
no payload.

Table F.1: Measured flight times for Bebop and Tello drone with different payloads for autonomy

Payload Bebop drone Tello drone
With Autonomy backpack 202 gram 11 minutes -
With downscaled autonomy 29 gram 21 minutes 3.5 minutes
Without payload - 25 minutes 11 minutes

Autonomous navigation performance
The configurations applied to the EGO planner can be used to derive the performance as described by
the performance metrics of the downscaling research.
By applying formula 6.1 from the downscaling research, the theoretical minimum detectable obsta-
cle size can be determined. Filling in: field-of-view=65 (horizontal), camera-range=4.0m, original-
resolution=240 (horizontal), skip-pixels=2, gives a minimum object size of 4.2cm that can theoretically
not be missed.

By applying formula 6.4 from the downscaling research, the maximum solvable obstacle width can be
determined. Filling in inflation=0.1m, voxel-grid-resulution=0.1m, and local-planner-range=4.0m gives
a maximum solvable obstacle width of 3.8m.

F.3. Results 105

By applying formula 6.5 from the downscaling research, the minimum (guaranteed) solvable gap width
can be determined. Filling in the same values as mentioned above, the minimum solvable gap width
is 0.75m.

The reaction time cannot be estimated at this point because logging loop rates was difficult with this
setup. This is described below in this section.
Screenshots of the planner in action during a test flight in the Cyberzoo are shown at the end of this
appendix.

High processor load
The processor board runs at a high load with the chosen configuration. The system tends to crash
when running another process in parallel, such as data logging or data streaming over WiFi. There-
fore, logging data or live-streaming the planner visualisation is difficult without further downscaling the
system’s performance.

Testflight screenshots
In figure F.6 below, the test environment used in the Cyberzoo for the results that follow is shown.

Figure F.6: Topview of test environment with Tello drone

F.3. Results 106

Figure F.7 below shows a screenshot in Rviz. On the left, the depth image is shown for that time
instance. In this depth image, a plant is visible nearby on the left, and two poles are visible more in
the back. On the right in the figure, the mapped obstacles are shown and the trajectories the drone
is planning. Blue and red are sampled paths that change often until a valid path is found. Blue is the
initial path, the collision-free path, and red is the smoothed path. But at this time instance, the sampled
path is not yet a final path. The green path is the last calculated valid path that the drone is following.

Figure F.7: Rviz with depth image, obstacle mapping, and planned trajectories for Tello drone

In figure F.8 below, a screenshot in Rviz is shown from the same flight but at another time instance. In
this screenshot, a plant is visible in the depth image. And, the planner has planned a path over this
plant, shown on the right. The mapped obstacles on the right also include two poles, which the drone
just passed, no longer visible to the camera.

Figure F.8: Rviz screenshot. Tello drone plans a path over a plant.

	Introduction
	Background & related work
	Objectives and requirements
	Background Xprize Rainforest Competition
	Known challenges for navigation in the rainforest
	Localisation
	Trajectory planning
	Conclusions from literature review

	System integration
	Hardware component selection
	Hardware Autonomy backpack design
	Software for autonomous navigation
	Additional software for outdoor missions in competition
	General overview

	Testing and calibration
	Testing system integration
	Outdoor testing and calibration in Dutch forests
	Airworthyness test Xprize Competition Singapore

	Difficulties in rainforest environments
	Environment
	Connectivity
	Sensors
	Mission
	Requirements
	Challenges summarised

	Downscaling: the tradeoff between performance and processor load
	Performance metrics
	Dataset recording
	Running simulations
	Data analysis
	Downscaling applied
	Conclusions on downscaling

	Conclusion
	References
	Literature research - relevant path planning methods
	FASTER-Planner
	EGO-Planner
	Swarm in the wild
	REAL-Planner

	Design Autonomy Backpack
	Mechanical design
	Electric design
	Software design
	Outdoor mission components

	Dataset creation
	Record dataset indoors
	Record dataset outdoors
	Content of dataset recordings
	Localisation comparison

	Analysis EGO-planner processes
	Algorithm structure
	CPU load
	Memory usage and map size
	Loop duration for sub-processes
	Simulation visual comparison performance

	Further considerations
	EGO-planner and drone improvement for use in the wild
	Downscaling research

	Downscaling applied
	Module design
	Software adaptations and configuration
	Results

