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other members of my thesis committee, for attending the defense of my thesis and assessing
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Joris Perrenet
The Hague, July 2022

The figure at the cover is Figure 5.1a, displaying an artificial integrand of the Rayleigh integral. In this thesis we
develop various methods to integrate this function, which we then compare at the end.
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Abstract

The goal of seismic imaging is to create a model of the subsurface from samples of a transmitted
wavefield that is reflected in soil layers. The created model can be used to locate storage
possibilities for CO2 or H2 or to find oil and gas reservoirs or other natural resources. Seismic
imaging relies on the propagation of wavefields, which can be computed by evaluating the
Rayleigh integral, a process that often requires a lot of time and resources. In this thesis we
develop methods to reduce error in the computation of the Rayleigh integral whilst remaining
time-efficient. To achieve this we first give the derivation of the Rayleigh integral and provide
a few methods to evaluate integrals numerically using interpolating polynomials. Afterwards,
we adapt the integration methods to the Rayleigh integral and arrive at the main algorithms
for its evaluation, at the end we compare these algorithms.

We present the method that is currently used for the computation of the Rayleigh integral
and a modification that extends the method to samples on a rectilinear grid. The adjusted
version of this method did not perform consistently in our results, although it achieved better
results than the original method on average. Secondly we present a combined interpolation
method (that is, it interpolates the full integrand without taking advantage that one of the
two functions in the integrand is known) named Simpson’s rule, which only performed
better in the high sample points per wavelength range with minimal noise. An alteration
to the method for semi-equidistant grids (see Section 4.2.2 for the definition) also did not
perform consistently and is not worth the extra operations. Next was the separate interpolation
algorithm (this time taking advantage of the known part of the integrand), this method is
difficult to implement and had only slightly better performance than the combined method.
The final method was an extension of the separate interpolation algorithm to non-equidistant
grids, this method performed undoubtedly the best of all presented methods (often better by a
factor of 15 compared to the currently used method), this method is therefore recommended for
evaluating the Rayleigh integral. The amount of operations needed for all presented methods
is approximately the same and the execution time needed for the calculation depends on the
implementation of the problem.

In conclusion, we found that the separate interpolation method for non-equidistant grids
delivered the most accurate approximations of the Rayleigh integral. This method can be used
in seismic imaging to increase the accuracy of models of the subsurface.
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Chapter1
Introduction

Imagine you are walking down the beach, and you look at the horizon. An oil drilling platform
crosses your sight, and you suddenly start to wonder; how do oil companies know where to
drill? How do they know that the drilling platform must be placed at exactly that spot? The
answer lies in using (marine) seismic imaging, a technique based on wavefield propagation, to
produce an image of the subsurface. Using such images it is possible to find storage possibilities
for CO2 or H2 or to locate reservoirs that contain oil and gas or other natural resources.

1.1. Problem description

CO2
Storage

Source Receivers
• ▽ ▽ ▽ ▽ ▽ ▽

Figure 1.1: Simplified version of marine seismic acquisi-
tion to find a potential storage space for CO2. Different
properties of soil layers are denoted by different shades
of brown. Often the source and the receivers are towed by
a survey ship moving with a constant speed to increase
the amount of data, also, the source is usually located in
the midst of the receivers.

In Figure 1.1 we display a simplified version
of marine seismic imaging. A source, typi-
cally an air gun at sea, transmits a wavefield
close to the surface. A fraction of the trans-
mitted wavefield propagates through the dif-
ferent layers of soil (in the figure this is dis-
played using arrows) and only a small part of
the emitted wavefield is reflected in just the
right way to be picked up by the receivers.
Data processing then allows us to reconstruct
a model of the subsurface by propagating the
wavefield backwards, that is, from the col-
lected data at the receivers we try to trace
back the path that the waves took. Specifi-
cally, if we assume that the layers extend hor-
izontally, the Rayleigh integral describes the
propagation of a wavefield from one layer to
the next. The assumption of horizontal layers
is often an acceptable loss as methods without this assumption are overly complicated. In
order to obtain knowledge of the different structural layers of the subsurface it is required to
evaluate this integral multiple times for each layer (as waves can get reflected many times).

This brings us to the problem: evaluating the Rayleigh integral takes a lot of time and
requires a lot of computing power, as it needs to be done many times and the integral itself is
difficult to compute. Also, because the wavefield is propagated numerous times through all
the layers of the subsurface, a small mistake in the beginning can amplify errors at the end.
This leads us to the main research question of this thesis:

1



2 1. Introduction

RESEARCH OBJECTIVE

To find an algorithm that reduces error in the evaluation of the Rayleigh integral com-
pared to existing and currently used methods whilst maintaining (or lowering) the time
complexity.

1.2. Thesis outline
To achieve our objective and explain our results, this thesis contains the following chapters:

• Chapter 2: Deriving the Rayleigh integral. This chapter contains the derivation of the
Rayleigh integral. In order to derive the integral we must first derive the acoustical wave
equation. This is done by combining relations from Hooke’s law and Newton’s law.
Afterwards we transform the wave equation into the Helmholtz equation, which we then
solve by using contour integration. From the solution we derive two main results: the
wavefield of a point-source and the wavefield of a point-sink. A seeming paradox that
there are multiple solutions to the same equation is explained further in Section 2.2.1.
Using our previous results we can then derive the Kirchhoff integral, the predecessor
of the Rayleigh integral. By making an assumption and using a mathematical trick
developed by Rayleigh we can then derive the Rayleigh integral. The integral describes
the propagation from one layer of soil to the next, which is of vital importance for seismic
imaging. In following chapters we seek to find methods that can approximate the integral
numerically.

• Chapter 3: Numerical integration using interpolating polynomials. In this chapter we
propose two methods for approximating a simplified version of the Rayleigh integral.
Both methods are based on interpolating the integrand by polynomials. The first method
makes use of a known part of the integrand (the integrand is a product of two functions,
one of which is known) and the second method does not. The first method is however
more difficult to implement than the second method as it differs greatly from currently
used methods. In the final section of this chapter we provide numerical examples that
use both methods to approximate an integral. The corresponding computer code can be
found in Appendix D. Both methods lay the groundwork for other methods we derive in
the next chapter. The focus of our thesis is to compare both methods (and all methods
that originate from them) to the currently used method.

• Chapter 4: Adapting numerical integration methods for the Rayleigh integral. In this
chapter we get rid of the simplified version of the Rayleigh integral and translate the
developed methods to fit the Rayleigh integral. An assumption made in the previous
chapter, one that the receivers are placed exactly equidistant, is weakened. In the last
section we provide a summary of all the derived methods. This is important because in
the next chapter (Chapter 5) we compare the methods to the one currently used. We note
that by using all the derived methods we can better approximate the Rayleigh integral,
which can in turn be useful for seismic imaging, leading to lower error in models that
can support drilling decisions.

• Chapter 5: Results. This chapter contains the results of the derived methods applied to
synthetically constructed data, similar to the actual Rayleigh integral. At the end of this
chapter we give a comparison of the performance of the methods and compare them to
the method that is currently used. Inconsistencies in the methods are also discussed by
comparing averaged data to single data. This chapter provides the foundation for the
conclusion (Chapter 6) and lists the key results from this thesis.
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• Chapter 6: Conclusion and outlook. In this chapter the main results of our thesis
combined with a short introduction of the problem are given. At the end, we lay out
subjects for future research, both theoretical and experimental.

• Appendices: In Appendix A we discuss a verification of the acoustic wave equation
derived in Chapter 2, the verification is more intuitive than the one given and provides
support for the correctness of the other derivation. In Appendix B we provide proofs
for various statements in Subsection 3.2.2. Appendix C contains the matrices used in
the numerical examples in Section 3.3, whereas Appendix D contains the computer code
used to generate the examples. This appendix also contains the computer code for the
results (Chapter 5).

1.3. Preliminaries and notational conventions
In this section we provide the notational conventions that are used throughout this thesis. Also,
we provide a few Fourier transformations (including the definition) that function as lemmas
for further derivations.

Notation
In general, vectors are three-dimensional and denoted by a bold letter, i.e. v = (vx, vy, vz)

⊺

is a vector whereas ω is not. Also, we define r to be the position vector, thus r = (x, y, z)⊺ =
xx̂ + yŷ + zẑ where x̂, ŷ, and ẑ denote the unit vectors in the x, y, and z-directions, respectively.

Using the same unit vectors we define the gradient of a scalar field f as:

∇ f ∶= x̂
∂ f
∂x
+ ŷ

∂ f
∂y
+ ẑ

∂ f
∂z

.

Note that (∂/∂x) is used to denote the derivative in the x-directions and similar notations are
used for the y and z-directions. The Laplacian of a scalar field f is given as:

∇
2 f ∶= x̂

∂2 f
∂x2 + ŷ

∂2 f
∂y2 + ẑ

∂2 f
∂z2 .

For more information on the gradient or the Laplacian of a scalar field we refer the reader to
Griffiths [1, Sections 1.2.3-1.2.7].

The Dirac delta function is defined by the following two equations:

δ(x) ∶=
⎧⎪⎪
⎨
⎪⎪⎩

0 if x ≠ 0
∞ if x = 0

, ∫

∞

−∞

δ(x)dx = 1 .

In three dimensions this definition extends to

δ(r) ∶= δ(x)δ(y)δ(z) .

Again, for more information the reader is referred to Griffiths [1, Sections 1.5.1-1.5.3].
We use big O notation (also known as Bachmann-Landau notation or asymptotic notation)

to denote the time and space complexity of our algorithms. Below, we give the formal definition,
for more information the reader is referred to Goodrich, Tamassia, and Goldwasser [2, Section
4.3].

Let both f (n) and g(n) be real valued functions. Then f (n) is O(g(n)) if there is a real
constant c > 0 and a real number n0 such that:

f (n) ≤ c ⋅ g(n) , for n ≥ n0 .

We note that notations that are not specified above are defined when they are used.



4 1. Introduction

Fourier transformations
In this subsection we provide a few Fourier transformations together with the definition, we
note that the spatial variant and the temporal variant are both used in this thesis. In order
to signify that we use a spatial Fourier transform we denote the spatial transformation with
F{. . . }(q). The three-dimensional spatial Fourier transformation is defined as [3, Section 3.4]:

F{u}(q) =
1

(2π)3 ∫
∞

−∞

u(r)e−iq⋅rd3r , (1.1)

u(r) = ∫
∞

−∞

U(q)eiq⋅rd3q . (1.2)

With these integrals we mean to denote the integration over all components of r (or q) where
each integral extends from −∞ to∞, also, q ⋅ r represents the dot product between q and r, i.e.
q ⋅ r = qxrx + qyry + qzrz.

For a temporal Fourier transformation we write a capital function letter, thus

x(t)
F

←→ X(ω) ,

where we used
F

←→ to mark a Fourier transformation. The transformations are then given by
[4, equations 4.8 & 4.9]:

X(ω) ∶= ∫
∞

−∞

x(t)e−iωtdt , (1.3)

x(t) ∶=
1

2π ∫
∞

−∞

X(ω)eiωtdω . (1.4)

We also derive the spatial Fourier transformation of the Dirac delta function centered
around 0 (the origin), as we will use it in Section 2.2.1:

δ(r)
F

←→ F{δ}(q) =
1

(2π)3 ∫
∞

−∞

δ(r)e−iq⋅rd3r

=
1

(2π)3
e−iq⋅0

=
1

(2π)3
. (1.5)

(anti)causality
For Section 2.2.1 we need to establish the definition of causality. We define a system to be
causal if the output of the system at any time solely depends on the values of the input at
present or past times [4, Section 1.6.3]. Similarly, a system is called anticausal if the output of
the system at any time solely depends on the values of the input at present or future times.
Thus, the system y(t) = x(t) is causal as well as anticausal, y(t) = x(t − t0) with t0 ≥ 0 is causal
but not anticausal, and y(t) = x(t2) is neither causal nor anticausal.

Since Section 2.2.1 also uses the time shifting property of the temporal Fourier transform [4,
Section 4.3.2] we derive the property here. We start with equation 1.4 and replace t by t − t0:

x(t − t0) = ∫
∞

−∞

X(ω)eiω(t−t0)dω

= ∫

∞

−∞

[e−iωt0 X(ω)] eiωtdω .

We can thus see that
x(t − t0)

F

←→ e−iωt0 X(ω) . (1.6)

We end this section by noting that in the frequency domain, if we multiply X(ω) (which in
this case denotes the Fourier transform of an input that solely depends on the present) by a
negative exponent (i.e. e−iωt0 with t0 ≥ 0), we get a causal function in the time domain and
vice versa. This will be important when we take on solving the Helmholtz equation in Section
2.2.1.



Chapter2
Deriving the Rayleigh integral

In this chapter we derive the Rayleigh integral. Using this integral we can calculate the pressure
wavefield at different depths in the subsurface, which is crucial for constructing a model of the
subsurface.

The derivation of the integral is rather long, however important, thus we devote this entire
chapter to it. Further information on the derivation can be found in Gisolf and Verschuur [5,
Chapter 3-4] and in Kutscha [6, Appendix A], which provided a basis for this chapter.

We start with deriving the three-dimensional acoustic wave equation, which translates
to the Helmholtz equation in the frequency domain. The Helmholtz equation is then solved,
yielding two cardinal results: the wavefield of a point-source and the wavefield of a point-sink.
Afterwards we derive the Kirchhoff integral, which in combination with our previous results
and a trick developed by Rayleigh allows us to derive the Rayleigh integral.

2.1. Deriving the acoustic wave equation
In this section we derive the three-dimensional acoustic wave equation, since the derivation is
rather algebraic we provide a more intuitive method for deriving the one-dimensional version
in Appendix A. This can also be used as a verification of the algebraic approach.

x

y

z

∆x

∆y
⊙

⊙

⊙

∆z

⊙

⊙

⊙

−p(r3, t)∆y∆z

−p(r1, t)∆x∆z

−p(r5, t)∆x∆y

p(r6, t)∆x∆z

p(r4, t)∆x∆z

p(r2, t)∆x∆y

Figure 2.1: Infinitesimal volume element with dimensions
∆x, ∆y and ∆z, experiencing forces on its six faces due to
excess pressure p(r, t).

We start off by considering an infinites-
imal volume element with ∆V = ∆x∆y∆z,
displayed in Figure 2.1, experiencing a total
pressure ptot(r, t) depending on position and
time on each of its faces.

The total pressure consists of a static part
p0(r) independent of time and a time variant
excess pressure part p(r, t):

ptot(r, t) = p0(r)+ p(r, t) .

From now we only concern ourselves with
the excess pressure field.

If there is such an excess pressure the vol-
ume element ∆V experiences displacement
and deformation. If the pressure on all six
faces does not balance, the volume will experience a net force, causing it to accelerate. We
describe this by using Newton’s (second) law.

5



6 2. Deriving the Rayleigh integral

However, we first look at the situation where the excess pressure does balance, this causes
the volume element ∆V to undergo a change in volume due to confining pressure. This change
can be described by using Hooke’s law.

After deriving relations describing the volume element by using Hooke’s law and Newton’s
law we can combine the relations into the three-dimensional acoustic wave equation. After
solving the equation in the frequency domain we obtain the wavefield of a point-source and
the wavefield of a point-sink. These two equations lay the groundwork for the derivation of
the Rayleigh integral.

2.1.1. Hooke’s law
We start by writing out Hooke’s law, which states that (relative) changes in the volume
of a volume element due to confining pressure are proportional to that pressure (with a
proportionality constant that can be space variant):

p(r, t) = −K(r)
δ∆V
∆V

, (2.1)

where δ indicates a variation with time. To get rid of the factor δ∆V/∆V we define the
displacement vector field of the mass particles in the medium to be

u(r, t) = ζ(r, t)x̂ + η(r, t)ŷ + ξ(r, t)ẑ ,

remembering that x̂, ŷ, and ẑ denote the unit vectors in the x, y, and z-directions, respectively.
After writing ∆ζ = ζ(x +∆x)− ζ(x) and defining ∆η and ∆ξ similarly, the increase in volume
can now be written as

∆V + δ∆V = (∆x +∆ζ)(∆y +∆η)(∆z +∆ξ) .

Bringing ∆V to the other side and writing out the right-hand side whilst omitting negligible
factors (since ∆ζ << ∆x, ∆η << ∆y, and ∆ξ << ∆z for small variations in time we can neglect
factors depending on products of these differences) gives us

δ∆V = (∆x∆y∆z −∆V)+∆x∆y∆ξ +∆x∆z∆η +∆y∆z∆ζ .

Dividing by ∆V and taking the limit for small volume elements ∆V results in

lim
∆V→0

δ∆V
∆V

=
∂ζ(r, t)

∂x
+

∂η(r, t)
∂y

+
∂ξ(r, t)

∂z
= ∇ ⋅ u(r, t) .

This allows us to replace the factor δ∆V/∆V in Hooke’s law (equation 2.1) by a component
relating fields. This gives the equation

p(r, t) = −K(r)∇ ⋅ u(r, t) .

Now, if we have a function q(r, t) describing the “injected” volume into the volume element
(we previously did not take this into account) we can rewrite our previous equation into

∇ ⋅ u(r, t) = −
p(r, t)
K(r)

+ q(r, t) . (2.2)
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2.1.2. Newton’s law
Before deriving the three-dimensional acoustic wave equation we must acquire another relation
using the displacement vector. To do this, we use Newton’s second law, it states that “the
change of motion of an object is proportional to the force impressed” [7, Section 6.2, 8, Section
1.1]. Thus, if the forces on the volume element ∆V do not balance the volume element will
experience acceleration, due to the element having mass and therefore inertia. To put this into
formulas, we work out the net force acting on the volume element in Figure 2.1:

∆Fx = ∆y∆z(p(x, y, z, t)− p(x +∆x, y, z, t)) ≈ −∆x∆y∆z
∂p
∂x

,

∆Fy = ∆x∆z(p(x, y, z, t)− p(x, y +∆y, z, t)) ≈ −∆x∆y∆z
∂p
∂y

,

∆Fz = ∆x∆y(p(x, y, z, t)− p(x, y, z +∆z, t)) ≈ −∆x∆y∆z
∂p
∂z

.

This can be rewritten as
∆F = −∆V∇p(r, t) = ∆ma ,

where it can be noted that the last equality follows from Newton’s second law and that ∆m
denotes the mass of the volume element (which can be written as ρ∆V, where ρ denotes the
space variant mass density). After dividing by ∆V, this yields

−∇p(r, t) = ρ(r)
∂2u(r, t)

∂t2 .

If we now add an external source f(r, t) we get extra forces on the volume element, which
results in a change of the previous formula, we obtain

f(r, t)−∇p(r, t) = ρ(r)
∂2u(r, t)

∂t2 . (2.3)

2.1.3. Combining the two results
In this subsection we combine our results from Hooke’s law and Newton’s law into the
three-dimensional acoustic wave equation.

To bring this about, we continue with equation 2.3, take the divergence and divide by the
mass density:

∇ ⋅
f(r, t)
ρ(r)

−∇ ⋅ [
∇p(r, t)

ρ(r)
] = ∇ ⋅

∂2u(r, t)
∂t2 .

Taking the second time derivative of equation 2.2 results in

∇ ⋅
∂2u(r, t)

∂t2 = −
1

K(r)
∂2 p(r, t)

∂t2 +
∂2q(r, t)

∂t2 .

If we now equate the previous two equations we obtain

∇ ⋅
f(r, t)
ρ(r)

−∇ ⋅ [
∇p(r, t)

ρ(r)
] = −

1
K(r)

∂2 p(r, t)
∂t2 +

∂2q(r, t)
∂t2 . (2.4)

In order to rewrite this equation we define

s(r, t) ∶=
∂2q(r, t)

∂t2 −∇ ⋅
f(r, t)
ρ(r)

.
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After substituting the new definition into equation 2.4 and reorganizing we get

∇ ⋅ [
∇p(r, t)

ρ(r)
]−

1
K(r)

∂2 p(r, t)
∂t2 = −s(r, t) .

If we consider a homogeneous medium, ρ and K will no longer be space variant, yielding
the relation

∇
2 p(r, t)−

1
c2

∂2 p(r, t)
∂t2 = −s(r, t) , (2.5)

with c =
√

K/ρ. This is the three-dimensional acoustic wave equation (for homogeneous media),
an important result as we will solve this equation in the frequency domain in the next section.
Afterwards, we use the solutions to specify a known part of the Rayleigh integral.

2.2. Wavefield of a single point-source
In this section we continue with the acoustic wave equation derived in the previous section
(Section 2.1). First, we transfer it to the frequency domain giving the Helmholtz equation,
which we solve by deriving its Green’s functions in the coming subsection (Subsection 2.2.1).
The result corresponds to a known part of the Rayleigh integral, this part is crucial to derive as
some developed integration methods make use of this.

Taking the three-dimensional acoustic wave equation (equation 2.5) and substituting −s(r, t)
with a single point-source at rs, whilst assuming that the point-source sends out one delta
pulse, gives

∇
2 p(r, t)−

1
c2

∂2 p(r, t)
∂t2 = δ(t)δ(r − rs) . (2.6)

In order to rewrite this equation, we first note that taking the time derivative on both sides of
the inverse Fourier transformation in equation 1.4 results in

∂x(t)
∂t

F

←→ iωX(ω) .

That is, temporal differentiation in the time domain results in multiplication with iω in the
frequency domain. Also, the Fourier transform of a delta function can be derived from equation
1.3:

δ(t)
F

←→ ∫

∞

−∞

δ(t)e−iωtdt = 1 .

Using these relations, the Fourier transform of equation 2.6 can be evaluated in order to obtain
the Helmholtz equation:

∇
2P(r, ω)+

ω2

c2 P(r, ω) = δ(r − rs) . (2.7)

In the next subsection (Subsection 2.2.1) we solve the above equation, however, to set an
objective, we first give the wavefield of a point-source and the wavefield of a point-sink (both
solutions to the equation):

Psrc(r, ω) =
e−iω∣r−rs ∣/c

4π∣r − rs∣
and Psnk(r, ω) =

eiω∣r−rs ∣/c

4π∣r − rs∣
. (2.8)

2.2.1. Solving the Helmholtz equation
In this subsection we prove the validity of equation 2.8 (the equation for the wavefield of
a point-source and a point-sink) by solving the Helmholtz equation (equation 2.7). The
seeming paradox that both equations are solutions to the same equation is also resolved in this
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subsection. The solutions to the equations are used again in Section 2.4 where we derive the
Rayleigh integral.

We solve equation 2.7 by deriving its Green’s functions. Due to symmetry we know that
any Green’s function will only depend on its magnitude of the distance between r and rs. Thus
after denoting r − rs by d, any Green’s function will eventually only depend on ∣d∣. For now,
we define k = ω/c and after noting that we assume k to be constant we rewrite the Helmholtz
equation (equation 2.7) as (we omit the dependency on ω to avoid confusion)

(∇
2
+ k2
)G(d) = δ(d) .

If we apply the spatial Fourier transform in equation 1.1 to the newly rewritten Helmholtz
equation and define ∣q∣2 = q2

x + q2
y + q2

z (remember that the Fourier transform of a delta function
is given by equation 1.5, the differentiation property is given by Čertik [3, Section 3.4.3] and
can be easily verified by taking the derivative of equation 1.1), we get

(k2
− ∣q∣2)F{G}(q) =

1
(2π)3

.

Rewriting this equation and taking the inverse spatial Fourier transform from equation 1.2 we
obtain

G(d) = −
1

(2π)3 ∫
∞

−∞

eiq⋅d

∣q∣2 − k2 d3q , (2.9)

which is of the form

∫

∞

−∞

f (q)eiq⋅dd3q ,

where q is used to denote the magnitude of q, i.e. ∣q∣. Since f (q) does not depend on the
direction of q, this is equivalent to

4π

R ∫
∞

0
q f (q) sin(qR)dq ,

with R = ∣d∣ = ∣r − rs∣. For the proof of this statement the reader is referred to Barton and Barton
[9, Appendix F]. Rewriting equation 2.9 by using the equivalence from above gives us

G(R) = −
4π

(2π)3R ∫
∞

0

q
q2 − k2 sin(qR)dq .

Note that we expected that any Green’s function would only depend on the magnitude of r− rs
(i.e. the newly defined R), which is indeed the case. Since the integrand is even, we write:

G(R) = −
4π

(2π)32R ∫
∞

−∞

q
q2 − k2 sin(qR)dq .

The sine function can be expressed as a linear combination of exponentials:

sin(qR) =
eiqR − e−iqR

2i
,

which after substitution results in the following relation for G(R):

G(R) = −
4π

(2π)34iR
[∫

∞

−∞

qeiqR

(q − k)(q + k)
dq

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
I1

−∫

∞

−∞

qe−iqR

(q − k)(q + k)
dq

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
I2

] . (2.10)
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We wish to find the integrals I1 and I2. First we note that after a substitution of q′ = −q in I2
we get −I1 (the intervals also change due to this substitution resulting in the final minus sign).
Thus, all Green’s function satisfy

G(R) = −
4π

(2π)32iR
I1 = −

1
4π2iR

I1 .

We note that different Green’s functions originate from different values of I1. Its value is
evaluated further by means of contour integration.

We use a contour in the complex q plane. However, due to poles on the real q-axis we first
add the term +iϵ to k and take the limit ϵ → 0:

I1 = lim
ϵ→0
∫

∞

−∞

zeizR

(z − (k + iϵ))(z + (k + iϵ))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

f (z)

dz . (2.11)

We can now see that f (z) has poles at z = k + iϵ and z = −k − iϵ, therefore, we take a contour in
the upper half-plane, denoted by C. To clarify; the contour consists of the interval [−A, A] and
the semicircle CA = {Aeiθ ∣θ ∈ [0, π]}. From the residue theorem we get

∫
C

f (z)dz = 2πi lim
ϵ→0
(Resz=k+iϵ[ f (z)])

= 2πi lim
ϵ→0

(k + iϵ)ei(k+iϵ)R

2(k + iϵ)

= πieikR ,

yielding the relation

I1 +∫
CA

f (z) = πieikR .

We now show that ∫CA
f (z) → 0 as A → ∞. From Jordan’s lemma [10, Section 74] with

f (z) = eizRg(z)where z ∈ CA and R is strictly positive, we get

∣∫
CA

f (z)dz∣ ≤
π

R
max

θ∈[0,π]
∣g(Aeiθ

)∣

=
π

R
max

θ∈[0,π]
∣

Aeiθ

(Aeiθ − k)(Aeiθ + k)
∣

=
π

R
max

θ∈[0,π]

A
∣A2e2iθ − k2∣

=
π

R
A

A2 − k2 .

We can thus see that ∫CA
f (z)→ 0 as A →∞. Hence we have I1 = πieikR. Note that if R = 0 we

get I1 = I2 in equation 2.10 and due to R being in the denominator we get G(0) = δ(0), in this
case, we did not have to use contour integration.

In addition, the option to add −iϵ instead of +iϵ to k in equation 2.11 is also possible, for
that matter, we could even choose to add −iϵ to the first occurrence of k and +iϵ to the second
or vice versa1. All these options correspond to a different propagator, yielding a different result
to the integral [11, Section 3.6]. If we add −iϵ instead of +iϵ we get a pole in C at z = −k+ iϵ, after

1We also could have chosen to evaluate I2. To achieve this, one can take a contour in the lower half plane and apply
an equivalent form of Jordan’s lemma. This removes the minus sign in front of G(R).
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following the same steps as above we get the result I1 = πie−ikR. Since this results comes from
the pole at −k we denote it as I−1 = πie−ikR and the result from above as I+1 = πieikR. The other
two results (from adding −iϵ and +iϵ or +iϵ and −iϵ) are 0 and 2πi cos(kR), respectively (note
that 0 is a correct solution for I1 since we divide by R, which gives G(R) = δ(R), a solution
to equation 2.7). The selected option of adding ±iϵ’s determines the corresponding physical
interpretation [12, Section 11.2.2]. For example, I−1 represents outgoing spherical waves from
rs (causal), whereas I+1 represents incoming spherical waves (anticausal). Note that this is not
the other way around because we are in the (temporal) frequency domain and an exponential
in the frequency domain leads to a time shift in the time domain (equation 1.6, noting that
k = ω/c) [5, Section 4.3]. The other two results (or any different linear combination of I+1 and
I−1 ) are hereafter not used, they do not have an important physical meaning for our purposes.
For more information on this subject the reader is referred to [11, Section 3.6, 12, Section 11.2, 5,
Section 4.3, 13, 14, 15, 16, 17, 18].

From combining these results we obtain the Green’s functions (note that if R = 0 we still
have G(0) = δ(0), the same expression as we derived without contour integration)

G±(R) = −
1

4π2iR
(πie±ikR

)

= −
e±ikR

4πR
.

We have thus shown that

G±(r, ω) = −
e±iω∣r−rs ∣/c

4π∣r − rs∣
(2.12)

are Green’s functions of the Helmholtz equation (equation 2.7). From this we define Psrc(r, ω) =
−G−(r, ω) because it represents outgoing spherical waves and Psnk(r, ω) = −G+(r, ω) because
it represents incoming spherical waves (note that the minus sign in front of these definitions is
chosen because of −s(r, t) in equation 2.5).

2.3. Deriving the Kirchhoff integral

V
S

Ð→n

Figure 2.2: Surface S enclosing
a volume V with normal vector
Ð→n pointed outward (enclosing a
source placed at rs).

After solving the Helmholtz equation we can derive an indepen-
dent result; the Kirchhoff integral. This is the last step before
deriving the Rayleigh integral in Section 2.4.

If we take the Fourier transform of the three-dimensional
acoustic wave equation in the absence of sources, i.e. equation
2.5 with s(r, t) = 0, we get

∇
2P(r, ω)+

ω2

c2 P(r, ω) = 0 . (2.13)

Writing down the same equation for a point-source at rs lo-
cated inside the volume V displayed in Figure 2.2 (which gives
−s(r, t) = −δ(t)δ(r − rs)) while using G to denote the causal
Green’s function from equation 2.8 (i.e. Psrc), we get

∇
2G(r, ω)+

ω2

c2 G(r, ω) = −δ(r − rs) . (2.14)

Now, multiplying equation 2.13 with −G(r, ω) and adding it to equation 2.14 multiplied by
P(r, ω) and afterwards integrating over the volume V, leads to

∫
V

P(r, ω)∇2G(r, ω)−G(r, ω)∇2P(r, ω)dV = ∫
V
−P(r, ω)δ(r − rs)dV = −P(rs, ω) .
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Now Green’s theorem [1, Section 1.3.4] gives the Kirchhoff integral

P(rs, ω) = −∮
S
[P(r, ω)∇G(r, ω)−G(r, ω)∇P(r, ω)] ⋅Ð→n dS . (2.15)

2.4. Deriving the Rayleigh integral

(x, y)

z

VS1

S0
Ð→n

R

•

•

A

A′

rS
0 − rA

′

r S 0
− r A

Figure 2.3: All sources generating the wave-
field P are below the flat plane S0 with radius
R. The semisphere S1 also has radius R and
we consider the case where R →∞. The nor-
mal vector of S0, i.e. Ð→n , is defined outward.
The prediction point is denoted by A, which
lies inside the volume V. The source point
generated by Γ is in A′, which is the mirror
position of A with respect to the plane S0.

In this section we finally derive the Rayleigh inte-
gral, this is done by using a mathematical trick due to
Rayleigh. The integral describes the propagation from
one layer of the subsurface to the next assuming that
the layers extend horizontally, an important result for
(marine) seismic imaging.

Rayleigh’s main idea was that we can add a ho-
mogeneous solution Γ(r, ω) of the partial differential
equation 2.7 to the Green’s function (an inhomoge-
neous solution) to obtain another solution of the dif-
ferential equation. For the remainder of this section
we denote P, G and Γ instead of P(r, ω), G(r, ω) and
Γ(r, ω), respectively, whenever the chance of confusion
is low.

Causality of the Kirchhoff integral in equation 2.15
tells us that the same integral holds if we go from a
source point rs to a prediction point rA [5, Section 4.3]
(that is, instead of transmitting a wavefield in rs we can also predict the wavefield in the same
point, denoted by the prediction point rA). Combining the homogeneous solution Γ with the
abbreviated notation allows us to rewrite equation 2.15 into

P(rA, ω) = −∮
S
[P∇(G + Γ)− (G + Γ)∇P] ⋅Ð→n dS .

If we apply this integral to the situation displayed in Figure 2.3, we can replace S by S0 in the
above integral. This can be justified since as R →∞ the wavefield P generated below S0 can
only propagate outward with respect to the surface S1 and thus can not (causally) contribute
to any knowledge of the wavefield in A.

The trick was to let the field Γ be generated in A′. If we let G(rA, rS0) = −Γ(rA′ , rS0)

everywhere on S0 then G and Γ cancel each other on S0 (if we assume that S0 is indeed a flat
plane). This can be done by making Γ a point sink whenever G is a point-source. Because the
wavefields cancel each other, continuity gives that the normal components of their gradients
must be equal on S0, i.e. ∇G(rS0) = ∇Γ(rS0), which is perfect, as the integral can now be
rewritten into:

P(rA, ω) = −2∮
S0
[P∇G] ⋅Ð→n dS0 .

If the surface S0 is assumed to be in the x,y-plane we get ∇G ⋅ n = −∂G/∂z due to an outward
pointing normal vector. Hence, the integral becomes:

P(rA, ω) = 2∮
S0

P
∂G
∂z

dS0 . (2.16)

Remember that the (causal) Green’s function is given by equation 2.8:

G(rA, r; ω) =
e−iω∣r−rA ∣/c

4π∣r − rA∣
.
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After defining ∆r = ∣r − rA∣z=0 =
√
(x − xA)

2 + (y − yA)
2 + z2

A, we note that

∂

∂z
(∣r − rA∣)z=0 =

⎡
⎢
⎢
⎢
⎣

(z − zA)
√
(x − xA)

2 + (y − yA)
2 + (z − zA)

2

⎤
⎥
⎥
⎥
⎦z=0

=
−zA

∆r
,

giving us the ability to compute the derivative with respect to z in the x,y-plane of the (causal)
Green’s function:

(
∂G
∂z
)

z=0
=

⎡
⎢
⎢
⎢
⎢
⎣

4π∣r − rA∣
∂
∂z(e

−iω∣r−rA ∣/c)− e−iω∣r−rA ∣/c ∂
∂z(4π∣r − rA∣)

(4π∣r − rA∣)
2

⎤
⎥
⎥
⎥
⎥
⎦z=0

=
∆r ∂

∂z(−iω∣r − rA∣/c)z=0 e−iω∆r/c + e−iω∆r/c zA
∆r

4π∆r2

=
∆riω zA

∆r /c +
zA
∆r

4π∆r2 e−iω∆r/c

=
zA(1+ iω∆r/c)

4π∆r3 e−iω∆r/c .

Plugging this in the integral from equation 2.16 gives us the long-sought Rayleigh integral:

P(rA, ω) =
zA

2π ∫
∞

−∞
∫

∞

−∞

P(x, y, 0; ω) (1+ iω
∆r
c
)

e−iω∆r/c

∆r3 dxdy . (2.17)

Often, however, the far-field approximation is used (a valid approximation if the prediction
point is numerous wavelengths away from the source), which is the result of dropping the 1+
term in the above equation:

P(rA, ω) =
iωzA

2πc ∫
∞

−∞
∫

∞

−∞

P(x, y, 0; ω)
e−iω∆r/c

∆r2 dxdy .





Chapter3
Numerical integration using

interpolating polynomials

In Chapter 2 we derived the Rayleigh integral, whereas the goal of our thesis is to find
algorithms that can compute the integral (whilst reducing error and being time-efficient). To
find these algorithms we first simplify the integral. Afterwards we interpolate the integrand
(or a part of it) by polynomials, which we can then integrate to approximate the simplified
integral. In the next chapter (Chapter 4) we extend these simplified methods to the Rayleigh
integral and in Chapter 5 we look at results from those methods. This chapter thus forms a
basis for the numerical integration methods used throughout this thesis.

First, we present the simplification of the Rayleigh integral (equation 2.17):

We consider an integral on the interval [xL, xR], where we define f ∶ R→ R, g ∶ R→ R

with f (x) = g(x) = 0 for x ∉ [xL, xR]
a and let a ∈ R, the simplification is to evaluate the

integral (which is a function of a)

∫

xR

xL
f (x)g(x + a)dx . (3.1)

aWe make this approximation (it is an approximation since the wavefield is small for large distances away
from the source) due to limitations of our algorithms. Also, in reality, the wavefield for the pressure must
be measured/sampled and for this only a finite grid of sensors is used (so for the pressure function this
assumption is the best we can do).

Note that the Rayleigh integral (equation 2.17) is also an integral over the product of two
functions, that is, the derivative of Green’s function and the function for the pressure at z = 0,
where the Green’s function gets shifted after changing the prediction point rA (this must be
done repeatedly in seismic imaging since we need to propagate the wavefield from each layer
to the subsequent, needing roughly the same grid of points where the pressure is known),
which translates to changing the constant a in the above integral. To clarify, in the above
integral f (x) represents the pressure part of the Rayleigh integral and g(x) represents the
derivative of the Green’s function. We also note that the derivative of Green’s function (and
therefore g(x) in our simplification) is known.

The first section of this chapter presents an algorithm based on separately interpolating
the two parts of the integral (i.e. the known part g(x) and the unknown part f (x)) before
integrating, Subsection 4.1.1 will continue on this subject. The second section will focus on
the derivation of a formula that evaluates the above integral by interpolating the product of
the two parts, Subsection 4.2.2 discusses the extension of this method to the Rayleigh integral.

15
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Specifically, in the second section, we derive the 2nd-order Newton-Cotes equation called
Simpson’s rule, afterwards we will discuss a more general version of this equation. In the
third and final section we present numerical examples for the evaluation of integrals using the
methods from the previous two sections, which can be used as an example for future research
planning to implement the methods for the evaluation of the Rayleigh integral. Also, this is
done to clarify the methods described.

Only basic methods of polynomial interpolation are discussed, mostly due to our main
focus to approximate the above integral. For more information on interpolatory methods the
reader is referred to Kythe and Schäferkotter [19] and Vuik et al. [20, Chapter 2].

3.1. Separate interpolation
To approximate the simplified integral in equation 3.1, we will interpolate the functions f (x)
and g(x) separately.

To achieve this, the interval [xL, xR] is first partitioned into ℓ equally large subintervals
[x0, x1], [x1, x2], . . . , [xℓ−1, xℓ]. That is, x1 − x0 = x2 − x1 = ⋯ = xℓ − xℓ−1 and xL = x0 and xR = xℓ.
Because we are integrating, closed and open intervals are not distinguished and are therefore
always denoted as closed intervals.

For each interval [xi, xi+1]with 0 ≤ i ≤ ℓ−1 both function are interpolated by polynomials, in
Section 3.2.1 there is a simple method to achieve this, but other methods like spline interpolation
[20, Section 2.5] can also be used. We write

fi(x) =
n f

∑
j=0

bijxj , gi(x) =
ng

∑
k=0

cikxk

for each interval [xi, xi+1]where fi(x) and gi(x) are polynomials of degree at most n f th and
ngth, respectively. Using the fact that the intervals are equidistant the interpolation can be
achieved with a time complexity of O(n2

f ℓ + n2
gℓ) [21]. Furthermore, since we need to store all

values of bij and cik the space complexity is O(n f ℓ + ngℓ).
We assume the prediction points (the points corresponding to different values of a in

equation 3.1) are spaced equidistantly (this is often the case). Therefore, we let a be a multiple
of the interval width (x1 − x0), we can assume this because the integral width was previously
arbitrary. Provided that we write a = m(x1 − x0) with m ∈N and 0 ≤ m ≤ s, where s denotes the
number of prediction points (i.e. the number of sensors), the integral in equation 3.1 becomes
(remember that f (x) = g(x) = 0 for x ∉ [xL, xR])

∫

xR

xL
f (x′)g(x′ + a)dx′ = ∫

xR−a

xL−a
f (x − a)g(x)dx

≈
ℓ−m
∑
i=0
∫

xi+1

xi

fi(x − a)gi(x)dx

=
ℓ−m
∑
i=0
∫

xi+1

xi

fi+m(x)gi(x)dx

=
ℓ−m
∑
i=0
∫

xi+1

xi

n f

∑
j=0

ng

∑
k=0

bi+m,jcikxj+kdx

=
ℓ−m
∑
i=0

n f

∑
j=0

ng

∑
k=0

bi+m,jcik ∫
xi+1

xi

xj+kdx

=
ℓ−m
∑
i=0

n f

∑
j=0

bi+m,j

ng

∑
k=0

cik
xj+k+1

i+1 − xj+k+1
i

j + k + 1
. (3.2)
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Storing the values of

dij =

ng

∑
k=0

cik
xj+k+1

i+1 − xj+k+1
i

j + k + 1
, (3.3)

for all i and j then allows us to rewrite equation 3.2, giving

∫

xR

xL
f (x)g(x + a)dx ≈

ℓ−m
∑
i=0

n f

∑
j=0

bi+m,jdij . (3.4)

After storing the values of (xj+k+1
i+1 − xj+k+1

i )/(j + k + 1) for all j + k and i with a space and time
complexity of O(n f ℓ + ngℓ), we can calculate the values of dij with a time complexity of
O(n f ngℓ) and a space complexity of O(n f ℓ).

To compute the space and time complexity of approximating the integral, we note that
initializing this algorithm can be done in O((n f + ng)

2ℓ) time and O(n f ℓ + ngℓ) space. The
algorithm would then step through all the prediction points s, calculating the sum in equation
3.4, having an overall time complexity of O(n f ℓs) and a total space complexity of O(n f ℓ +
ngℓ + s) since we need to store the results as well.

Note that the final time complexity is independent of ng. Since the (derivative of) Green’s
function is known, we could interpolate it by using a polynomial of a high degree. This is
an important result as we can make use of it to improve the accuracy of our approximation.
Also, we can increase the domain on which we interpolate the derivative of Green’s function,
reducing the approximation made in the simplified version of the Rayleigh integral.

3.2. Combined interpolation
In this section we present another method of finding the integral in equation 3.1, the method
relies on interpolating the product of the functions f (x) and g(x).

The method is based on the Newton-Cotes equations and implementing these equations
is generally simple. Furthermore, by using this method, we can reduce the space complexity
compared to the method in Section 3.1. However, in some situations we present in Section 3.3
and Chapter 5 the accuracy of this method is lacking. Nevertheless, this method still provides
a cornerstone for one of the two methods used to evaluate an artificial Rayleigh integral in
Chapter 5.

In the first subsection we derive the 2nd-order Newton-Cotes equation commonly known as
Simpson’s rule, the derivation, however, requires knowledge of interpolating with polynomials,
for which Newton polynomials are used. In the next subsection we discuss the generalization
of the Newton-Cotes equations, which can be described by the Cotesian numbers. Then, we
present a method to go from the (generalized) equations to approximating integrals, where we
introduce notation that will also be used in following chapters.

3.2.1. Derivation of Simpson’s rule
To derive the 2nd-order Newton-Cotes equation named Simpson’s rule, we first need to be
able to interpolate 3 points by a parabola (or a polynomial of lower order). Below we present
the general method of Newton polynomials that allows us to interpolate n + 1 points by a
polynomial.

Newton Polynomials

Theorem
Let f ∶ R → R denote the function that we want to interpolate on the points x0, x1, . . . , xn.
For compacter notation we write fi instead of f (xi) from now ona.
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After writing
x0 f0

f1− f0
x1−x0

x1 f1

f2− f1
x2−x1

−
f1− f0
x1−x0

x2−x0
f2− f1
x2−x1

⋱

x2 f2 ⋮

⋮ ⋱

⋮ ⋮ ⋯
fn− fn−1
xn−xn−1

xn fn

(3.5)

the top row read from left to right form the constants of the interpolating polynomials.
That is, the interpolating polynomial p(x) is given by:

p(x) = f0 +
f1 − f0

x1 − x0
(x − x0)+

f1− f0
x1−x0

−
f2− f1
x2−x1

x2 − x0
(x − x0)(x − x1)+⋯ . (3.6)

Proof: We will prove this result by using induction on the number of points n we
interpolate. The induction base with n = 1 is easily verified, as the interpolating polynomial
is just the horizontal line p(x) = f0. For the induction hypothesis we assume that we can
interpolate n points by constructing a Newton polynomial according to the recurrence
relation in equation 3.5, we now seek to prove that we can interpolate n + 1 points whilst
still using the same recurrence to determine all coefficients.
Let p interpolate f at {x0, x1, . . . , xn−1} and let q interpolate f at {x1, x2, . . . , xn}, which is
possible due to the induction hypothesis. Also, denote the coefficient of xn−1 in p and q by
pn−1 and qn−1, respectively. We define

r(x) =
(x − x0)q(x)+ (xn − x)p(x)

xn − x0

and note that r(xi) = f (xi) for i ∈ {0, 1, . . . , n}. Also, the coefficient of xn in r is given by
(qn−1 − pn−1)/(xn − x0), following the recurrence relation in equation 3.5 (note that the other
coefficients are the same as those of p and thus can be computed using the same relation).
Thus, we have shown the induction step, proving the theorem.

Example
Let us say that we want to interpolate the following points (1, 5

4), (
8
5 ,− 4

5), (3, 7
2)(

7
2 , 3)with

a polynomial. We first construct the same triangle as in equation 3.5 with the above
coordinates:

x0 = 1 f0 =
5
4

−
4
5−

5
4

8
5−1
= −41

12

x1 =
8
5 f1 = −

4
5

43
14+

41
12

3−1 =
545
168

7
2+

4
5

3− 8
5
= 43

14
−

15
7 −

545
168

7
2−1

= − 181
84 .

x2 = 3 f2 =
7
2

−1− 43
14

7
2−

8
5
= − 15

7
3− 7

2
7
2−3
= −1

x3 =
7
2 f3 = 3
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After inserting the coefficients in equation 3.6 we obtain the formula for the interpolating
polynomial:

p(x) =
5
4
−

41
12
(x − 1)+

545
168
(x − 1)(x −

8
5
)−

181
84
(x − 1)(x −

8
5
)(x − 3) . (3.7)

The figure below illustrates that the above formula (equation 3.7) indeed interpolates the
points.

aThe notation is adapted from Wikipedia contributors [22].

Let us now derive Simpson’s rule. We define three equally spaced points (with step size h)
and denote them as x0, x1 = x0 + h and x2 = x0 + 2h and their corresponding function values
by f0, f1 and f2, respectively. To form the Newton polynomial, we first write the points in the
form of equation 3.5:

x0 f0
f1− f0

h
x1 f1

f0+ f2−2 f1
2h2

f2− f1
h

x2 f2

.

The interpolating polynomial then becomes

p(x) = f0 +
f1 − f0

h
(x − x0)+

f0 + f2 − 2 f1

2h2 (x − x0)(x − x1) .

Integrating from x0 to x2 (keeping in mind that x1 − x0 = h and x2 − x0 = 2h) now gives us
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Simpson’s rule:

∫

x2

x0
p(x)dx = [ f0x +

f1 − f0

2h
(x − x0)

2
+

f0 + f2 − 2 f1

2h2 (
x3

3
− (x0 + x1)

x2

2
+ x0x1x)]

x2

x0

= 2h f0 + 2h( f1 − f0)+
f0 + f2 − 2 f1

2h2 (
x3

2 − x3
0

3
− (x0 + x1)

x2
2 − x2

0

2
+ 2hx0x1)

= 2h f1 +
f0 + f2 − 2 f1

2h2 (
8h3

3
+ 2x2

0h + 4x0h2
− (2h2

+ 2hx0)(2x0 + h)+ 2hx0(x0 + h))

= 2h f1 +
f0 + f2 − 2 f1

2h2 (
2h3

3
+ 4x2

0h + 2x0h2
− 2hx0(2x0 + h))

= 2h f1 +
f0 + f2 − 2 f1

2h2
2h3

3

= 2h f1 +
h
3
( f0 + f2 − 2 f1)

=
h
3
( f0 + 4 f1 + f2) .

In Subsection 3.2.3 we explain how one can use this result to approximate integrals, together
these section form the basis for the combined interpolation method in Chapter 4.

3.2.2. Cotesian numbers
Instead of interpolating 3 points by a parabola, we can also interpolate n + 1 points by an
nth-order polynomial (we note that the order can be lower than n), by doing this, we obtain
the Cotesian numbers used in Newton-Cotes equations. Higher order equations can be more
accurate in approximating integrals than Simpson’s rule.

We will denote the Cotesian numbers as c0, c1, . . . , cn, which are defined such that after
defining points x0, x1, . . . , xn and function values f0, f1, . . . , fn the integral over the interpolated
polynomial can be approximated by h(c0 f0 + c1 f1 +⋯+ cn fn), where h is the distance between
two points xi and xi+1.

To calculate the Cotesian numbers, we can solve the following system of equations (the
proof of this statement is in Appendix B as the proof of Theorem 2):

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 ⋯ 0
1 1 1 ⋯ 1
1 2 22 ⋯ 2n

⋮ ⋮ ⋮ ⋱ ⋮

1 n n2 ⋯ nn

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⊺
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

c0
c1
c2
⋮

cn

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

n/1
n2/2
n3/3
⋮

nn+1/(n + 1)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where the matrix on the left-hand side is the Vandermonde matrix. Since the inverse of the
Vandermonde matrix exists in closed form (see Lemma 1 in Appendix B), the matrix can be
brought to the other side [23]. After denoting the signed Stirling numbers of the first kind as
s(n, k) and doing just that we get a non-recursive formula for the coefficients ci for 0 ≤ i ≤ n
(Theorem 6 in Appendix B):

ci =
1

(n − 1)!
(

n
i
)

n
∑
j=0

n−j

∑
m=0

imnj (−1)i+ns(n + 1, j +m + 1)
j + 1

.

For simplicity, one can also look these numbers up, since they constitute a sequence in the
OEIS (the On-Line Encyclopedia of Integer Sequences, http://oeis.org/). In terms of

http://oeis.org/
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these sequences1 we can write the Cotesian numbers as:

nh
A002176(n)

[
n
∑
i=0

A100642(
n(n + 1)

2
+ i) fi] .

The Cotesian numbers then determine the Newton-Cotes equations that can be used for
approximating integrals:

h
2
( f0 + f1)

h
3
( f0 + 4 f1 + f2)

3h
8
( f0 + 3 f1 + 3 f2 + f3)

2h
45
(7 f0 + 32 f1 + 12 f2 + 32 f3 + 7 f4)

5h
288
(19 f0 + 75 f1 + 50 f2 + 50 f3 + 75 f4 + 19 f5)

h
140
(41 f0 + 216 f1 + 27 f2 + 272 f3 + 27 f4 + 216 f5 + 41 f6)

7h
17280

(751 f0 + 3577 f1 + 1323 f2 + 2989 f3 + 2989 f4 + 1323 f5 + 3577 f6 + 751 f7) .

⋰ ⋮ ⋮ ⋮ ⋱ (3.8)

More information on this subject is only referenced [24, 25].

3.2.3. From Newton-Cotes equations to integrals
We now give the method for extending the Newton-Cotes equations to evaluate integrals. Let
us integrate over the interval [xL, xR]. Partitioning this interval into the subintervals [x0, x1],
. . . , [xi, xi+1], . . . [xℓ−1, xℓ] with x0 = xL and xℓ = xR, whilst noting that the subintervals do
not have to be equidistant, allows us to approximate the integral over each subinterval by
applying an nth-order Newton-Cotes equation (note that the order is allowed change for
different subintervals) to that subinterval by defining the function values to be f0 = f (xi),
f1 = f (xi +

xi+1−xi
n ), . . . , fk = f (xi + k xi+1−xi

n ) . . . , fn = f (xi+1).
If we partition the original interval [xL, xR] into equidistant subintervals and always apply

Simpson’s rule to the subinterval, we get the same effect as the following equation (where we
evaluated the function at points x0, . . . , xn with x0 = xL and xn = xR)

∫

xR

xL
f (x)dx ≈

h
3
( f0 + 4 f1 + 2 f2 + 4 f3 + ⋅ ⋅ ⋅ + 2 fn−2 + 4 fn−1 + fn) .

This way, between every 3 points f2i, f2i+1, f2i+2 we interpolate the points by a parabola, inte-
grate the parabola from x2i to x2i+2, and we add up the results to approximate our integral.

Provided that we can split up the subintervals into the number of equidistant parts needed
for the Newton-Cotes equations, we can also use vector notation to approximate the integral,
for the above example this works out to be

∫

xR

xL
f (x)dx ≈ cf⊺ ,

1For the corresponding sequences we refer the reader to OEIS Foundation Inc. (2022), Denominators of Cotesian
numbers, Entry A002176 and Numerators of Cotesian numbers, Entry A100642 in The On-Line Encyclopedia of
Integer Sequences, http://oeis.org/A002176 and http://oeis.org/A100642.

http://oeis.org/A002176
http://oeis.org/A100642
http://oeis.org/A002176
http://oeis.org/A100642
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with

c =
h
3
[1 4 2 4 . . . 2 4 1] and f = [ f0 f1 . . . fn] . (3.9)

3.3. Examples
In this section we give numerical examples of approximating integrals using the methods
described in previous sections of this chapter. The examples provide an overview of the
described methods and give an idea of what their accuracy is and where we can find room
for improvement. This section can also function as a tool to check the implementation of
other researchers wanting to implement these methods themselves (note that the code to our
implementation can be found in Appendix D).

We start by interpolating functions using various types of polynomials. The first type
is N1, the 1st-order Newton-Cotes equation known as the trapezoidal rule (this uses linear
interpolation) for which the integral can be found at the top in equation 3.8. This type is
currently most commonly used for evaluating the Rayleigh integral and is therefore added as a
benchmark. The second type is N2, the 2nd-order Newton-Cotes equation known as Simpson’s
rule. The third type is S3, a cubic spline interpolation. Results of the interpolation can be seen
in Figure 3.1.

(a) Interpolation of h1(x). (b) Interpolation of h2(x).

(c) Difference between interpolated functions and h1(x). (d) Difference between interpolated functions and h2(x).

Figure 3.1: Interpolation of h1(x) = 1/(1+ ∣x∣3/20) and h2(x) = cos(
√
(x − 1)2/4+ 1) ⋅ sin(

√
(x − 2)2/4+ 1) using 7

and 9 sample points of the function, respectively.

The integrals over the various interpolation types are listed in Table 3.1, where a few are
calculated explicitly later on in this section. To illustrate how polynomials of higher order
behave we have added a fourth type: N6 (and the type N1−6−1, which is the same as N6 enclosed
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by two N1’s to account for the number of sample points), being the 6th-order Newton-Cotes
equation.

From Table 3.1 and Figure 3.1 we can see that N1 got lucky with good approximation for
the integral over function h1(x), since although N1(x)− h1(x) (Figure 3.1c) has the greatest de-
flections the resulting integral is very close to the actual integral because the average deflection
is coincidentally close to zero. However, with the other function (h2(x)) the interpolation is
less lucky, as other methods now give significantly better approximation to the integral.

Func. Integral Abs. diff. Rel. diff.
h1(x) 6.02845 - -

N1 5.97902 0.04943 0.820%
N2 5.95426 0.07419 1.23%
N6 6.00540 0.02305 0.382%
S3 5.92113 0.10732 1.78%

Func. Integral Abs. diff. Rel. diff.
h2(x) 0.79728 - -

N1 0.82342 0.02615 3.28%
N2 0.78280 0.01448 1.82%

N1−6−1 0.88535 0.08807 11.0%
S3 0.79930 0.00203 0.254%

Table 3.1: Various interpolations of function h1(x) on the left side and h2(x) on the right side together with the
absolute difference and the relative difference between the integral and the correct integral.

The large error in the approximation using N1−6−1 is due to the boundaries of N6. These
have great deflections causing an inaccurate result. A method to remove the error would be to
derive the coefficients using the integral, but instead of integrating over the full interval we
can integrate over a subsection of it. For the 6th-order Newton-Cotes equation we can take
the integral from x1 to x5, resulting in the following formula (the original one can be found in
equation 3.8):

2h
945
(−4 f0 + 171 f1 + 612 f2 + 332 f3 + 612 f4 + 171 f5 − 4 f6) . (3.10)

We can then evaluate the integral of h2(x) again with an N2−6∗−2 interpolation (we need to
pad with two N2’s since the new N6∗ is integrated over fewer points), also we note that in the
above formula the endpoints ( f0 and f6) are weighted less since they do not directly contribute
to the integral, only indirectly by interpolation. The approximation for the integral becomes
0.77928, with an absolute difference of 0.01800 and a relative difference of 2.26%. This is a huge
improvement compared to the relative error of 11.0% from using N1−6−1. However, we do not
investigate these methods further as the method still performes worse than N2 and S3 (this
is instead left to future research in Section 6.2) and only polynomials up to the 2nd-order are
used hereafter.

The best methods from above are therefore N2 and S3, however, since this is still combined
interpolation (Section 3.2) the integrals can also be approximated using separate interpolation
(Section 3.1).

We compare the combined interpolation using S3 (thus we interpolate f (x) ⋅ g(x) by a
cubic spline) and the separate interpolation using S3 (thus we interpolate f (x) and g(x)
separately where we interpolate f (x) by a cubic spline and g(x) to a high degree since it
is known and combine the results by the method described in Section 3.1). The difference
between the functions and their interpolations can be seen in Figure 3.2, where we note that
h2(x) = f2(x) ⋅ g2(x) but that h1(x) ≠ f1(x) ⋅ g1(x) due to the function that was chosen. The
corresponding differences are listed in Table 3.2, and the calculation of S3 – S can be found at
the end of this section.
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Method Abs. diff. Rel. diff.
S3 – C 0.001156 0.0251%
S3 – S 0.0001215 0.00264%

(a) The integral is approximately 4.60931999.

Method Abs. diff. Rel. diff.
S3 – C 0.00202819 0.254%
S3 – S 0.00174655 0.219%

(b) The integral is approximately 0.79727674.

Table 3.2: The absolute difference and the relative difference between the integral and the correct integral using
combined and separate interpolation techniques. For the functions we used f1(x) ⋅ g1(x) on the left-hand side and
f2(x) ⋅ g2(x) on the right-hand side, see the caption of Figure 3.2 for the corresponding functions.

The separate interpolation method is better than the combined method as can be seen in
Figure 3.2 and Table 3.2. However, the large difference from the second function on the left
side of the interval was not compensated, resulting in a high overall difference that does not
do the method justice.

(a) Difference between interpolation and f1(x) ⋅ g1(x). (b) Difference between interpolation and f2(x) ⋅ g2(x).

Figure 3.2: In these figures f1(x) = 1/(1 + x2/10), g1(x) = 1/(1 + (x + 1)2/10) and f2(x) = cos(
√
(x − 1)2/4+ 1),

g2(x) = sin(
√
(x − 2)2/4+ 1). Interpolation was done on 11 and 9 samples points, respectively, by means of a

separate interpolation method denoted by S3 – S and a combined interpolation method denoted by S3 – C.

Calculating the integrals using the Newton-Cotes equations by interpolating h2(x)
We provide example calculations of using various Newton-Cotes equations to approximate the
integral over h2(x), the general methods are presented in Section 3.2.

The function values of h2(x) at the 9 samples points from Figure 3.1b written in vector
notation are:

f = [0.73018 0.24998 −0.26794 −0.02706 0.4321 0.44099 0.14023 −0.43006 −0.70876] .

The value for h can be calculated by dividing the total width of the interval by the total number
of subintervals (which is one less than the number of sample points):

h =
12

9− 1
=

3
2

.

Now, for all different interpolating polynomials N1, N2, N1−6−1, and N2−6∗−2 we determine the
corresponding vector from equation 3.9 (note that the coefficients can be found in equations
3.8 and 3.10):

c1 =
3
4
[1 2 2 2 2 2 2 2 1] , c2 =

1
2
[1 4 2 4 2 4 2 4 1] ,

c1−6−1 = [
3
4

3
4 +

3⋅41
280

3⋅216
280

3⋅27
280

3⋅272
280

3⋅27
280

3⋅216
280

3⋅41
280 +

3
4

3
4] ,
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c2−6∗−2 = [
1
2 2− 3⋅4

945
1
2 +

3⋅171
945

3⋅612
945

3⋅332
945

3⋅612
945

3⋅171
945 +

1
2 − 3⋅4

945 + 2 1
2] .

Now, we can finally approximate the integral by determining the integral over N1, N2, N1−6−1,
and N2−6∗−2, this can thus be done without ever having to interpolate the function:

c1f⊺ ≈ 0.823425 , c2f⊺ ≈ 0.782800 , c1−6−1f⊺ ≈ 0.885348 , c2−6∗−2f⊺ ≈ 0.779280 .

Verifying the results in Table 3.1 and below.

Calculating the integral over f2(x) ⋅ g2(x) using separate spline interpolation
To replicate the results from Table 3.2 we first write f2(x) and g2(x) without subscripts, i.e.
f (x) and g(x), to avoid confusion later on. In this example we have used n f = 3 and ng = 5.

To avoid rounding errors we modify the method in Section 3.1, avoiding any high powers
of xi when calculating the various values of dij. The modification of the method is to shift all the
subintervals [xi, xi+1] to [x4, x5] = [0, 3

2] and carry out the interpolation for all the subintervals
on this new domain. Using this method we only need to calculate powers of x4 = 0 and x5 =

3
2

instead of powers of xi and xi+1, this speeds up the process and avoids multiplying by large
numbers resulting in less rounding errors in our answer. For the shifted interpolation the
coefficients of the interpolating polynomial of f3(x) (i.e. b3j) are now the coefficients after
interpolating f3(x− 3

2) on the interval [0, 3
2]. Similarly, the coefficients for b1j are the coefficients

from interpolating f1(x − 3 ⋅ 3
2) on the interval [0, 3

2]. To obtain the correct answer using these
shifted interpolation coefficients we need to make a second adjustment to our method. This is
for calculating the values of dij (equation 3.3). We need to use the values x4 and x5 repeatedly
instead of xi and xi+1, respectively. Since x4 = 0 this results in calculating and storing the values
of xj+k+1

5 /(j + k + 1) for all values of j + k before calculating (and storing if we have multiple
sensors) the values of

dij =

ng

∑
k=0

cik
xj+k+1

5

j + k + 1
.

All things considered, these modifications improve the accuracy of our results as they avoid
rounding errors.

The function f3(x − 3
2) interpolated on [x4, x5] = [0, 3

2] is given as:

f3 (x −
3
2
) ≈ −0.02998+ 0.39005x − 0.03051x2

− 0.014518x3 ,

resulting in row 3 of matrix B,

b3j = [−0.02998 0.39005 −0.03051 −0.014518] .

Continuing this process to calculate all elements of B and C we can calculate the elements of D
and use equation 3.4 to approximate the integral. In Appendix C we listed all values of the
matrices. We note that the method seems like a lot of work, but after we initialize it we can
easily calculate the sum in equation 3.4 again with a shift to approximate the integral for a
different sensor.

Taking everything into account, using this method we get a value of 0.79902 for the
evaluation of the integral, which corresponds to an absolute difference of 0.00175 and a relative
difference of 0.219%. Without the method of shifting the intervals we would have obtained
the value 0.79958 with a relative difference of 0.289%, due to rounding errors resulting from
multiplying by a factor of (xj+k+1

i+1 − xj+k+1
i )/(j + k + 1).

The obtained value can be improved upon (by a tiny fraction) by increasing the order of
the spline (or polynomial) used to interpolate g(x), i.e. increasing ng.





Chapter4
Adapting numerical integration

methods for the Rayleigh integral

In this chapter we adapt the numerical methods from Chapter 3 to better fit the Rayleigh
integral (equation 2.17). The methods we develop will be compared in Chapter 5, the results of
this thesis.

The first section will generalize both methods derived in the previous chapter (Section
3.1 for separate interpolation and Section 3.2 for combined interpolation) to complex, double
integrals. In the next section we present a variation to the combined interpolation method
(Section 3.2), in specific Simpson’s rule, to evaluate integrals on non-equidistant intervals
(single integrals) and semi-equidistant grids (double integrals), weakening the assumption
made in Chapter 3 of an equidistant grid. In the last section we summarize all the derived
methods and their qualities for the next chapter, where we present the results of evaluating an
artificial Rayleigh integral using those methods.

4.1. From single to double integrals
The Rayleigh integral is not a real-valued, single integral. It is a complex valued, double
integral. Therefore, in this section, we present methods that extend the algorithms from
Sections 3.1 and 3.2 to complex-valued, double integrals. Using these new methods we can
approximate the Rayleigh integral in three dimensions, giving us the ability to propagate a
wavefield from one layer of soil to the next.

4.1.1. Separate interpolation
This argument is very similar to the one in Section 3.1. However, since this is a key element
of the implementation of this thesis we will write it out. This extension does not include the
complex-valued integral. We note that to calculate it one could use the method described
below for the real-real values of f and g, the imaginary-real, the real-imaginary and the
imaginary-imaginary (as a consequence the initialization of the algorithm only takes twice as
long whereas the evaluation takes 4 times as long), after combining the results one finds the
integral.

The interval [xL, xR]× [yL, yR] is partitioned into ℓx ⋅ ℓy equally large subintervals

[x0, x1]× [y0, y1] [x0, x1]× [y1, y2] ⋯ [x0, x1]× [yℓy−1, yℓy]

[x1, x2]× [y0, y1] [x1, x2]× [y1, y2] ⋯ [x1, x2]× [yℓy−1, yℓy]

⋮ ⋮ ⋱ ⋮

[xℓx−1, xℓx]× [y0, y1] [xℓx−1, xℓx]× [y1, y2] ⋯ [xℓx−1, xℓx]× [yℓy−1, yℓy]

,

27
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that is, x1 − x0 = ⋯ = xℓx − xℓx−1, xL = x0, and xR = xℓx and y1 − y0 = ⋯ = yℓy − yℓy−1, yL = y0, and
yR = yℓy .

For each interval [xix , xix+1]× [yiy , yiy+1]with 0 ≤ ix ≤ ℓx − 1 and 0 ≤ iy ≤ ℓy − 1 both functions
are interpolated by polynomials [26]:

fix ,iy(x, y) =
n f

∑
jx=0

m f

∑
jy=0

bix iy jx jy xjx yjy , gix ,iy(x, y) =
ng

∑
kx=0

mg

∑
ky=0

cix iykxky xkx yky .

Using the fact that the intervals are equidistant the interpolation can be achieved with a time
complexity of O(n2

f m2
f ℓxℓy + n2

gm2
gℓxℓy), we also need O(n f m f ℓxℓy + ngmgℓxℓy) space.

We assume the prediction points (the points corresponding to different values of ax, ay)
are spaced in an equidistant grid (this is often the case). We write ax = mx(x1 − x0) and
ay = my(y1 − y0)with mx ∈N, my ∈N, 0 ≤ mx ≤ sx and 0 ≤ my ≤ sy, where sx denotes the number
of prediction points in the x-direction and sy those in the y-direction, such that the integral
becomes (we make the same assumption that f (x, y) = g(x, y) = 0 for (x, y) ∉ [xL, xR]× [yL, yR]):

∫

yR

yL
∫

xR

xL
f (x′, y′)g(x′ + ax, y′ + ay)dx′dy′

= ∫

yR−ay

yL−ay
∫

xR−ax

xL−ax
f (x − ax, y − ay)g(x, y)dxdy

≈
ℓx−mx

∑
ix=0

ℓy−my

∑
iy=0
∫

yiy+1

yiy
∫

xix+1

xix

fix ,iy(x − ax, y − ay)gix ,iy(x, y)dxdy

=
ℓx−mx

∑
ix=0

ℓy−my

∑
iy=0
∫

yiy+1

yiy
∫

xix+1

xix

fix+mx ,iy+my(x)gix ,iy(x)dx

=
ℓx−mx

∑
ix=0

ℓy−my

∑
iy=0
∫

yiy+1

yiy
∫

xiy+1

xix

n f

∑
jx=0

m f

∑
jy=0

ng

∑
kx=0

mg

∑
ky=0

bix+mx ,iy+my,jx ,jy cix iykxky xjx+kx yjy+ky dxdy

=
ℓx−mx

∑
ix=0

ℓy−my

∑
iy=0

n f

∑
jx=0

m f

∑
jy=0

ng

∑
kx=0

mg

∑
ky=0

bix+mx ,iy+my,jx ,jy cix iykxky ∫

yiy+1

yiy
∫

xix+1

xix

xjx+kx yjy+ky dxdy

=
ℓx−mx

∑
ix=0

ℓy−my

∑
iy=0

n f

∑
jx=0

m f

∑
jy=0

bix+mx ,iy+my,jx ,jy

ng

∑
kx=0

mg

∑
ky=0

cix iykxky

xjx+kx+1
ix+1 − xjx+kx+1

ix

jx + kx + 1

yjy+ky+1
iy+1 − yjy+ky+1

iy

jy + ky + 1
.

Storing the values of

dix iy jx jy =

ng

∑
kx=0

mg

∑
ky=0

cix iykxky

xjx+kx+1
ix+1 − xjx+kx+1

ix

jx + kx + 1

yjy+ky+1
iy+1 − yjy+ky+1

iy

jy + ky + 1
,

for all ix, iy and jx, jy, then allows us to rewrite the equation, giving:

∫

yR

yL
∫

xR

xL
f (x, y)g(x + ax, y + ay)dxdy ≈

ℓx−mx

∑
ix=0

ℓy−my

∑
iy=0

n f

∑
jx=0

m f

∑
jy=0

bix+mx ,iy+my,jx ,jy dix iy jx jy .

The final space and time complexity are given by the initialization, which uses O((n f +

ng)
2(m f +mg)

2ℓxℓy) time and O(n f m f ℓxℓy + ngmgℓxℓy) space and by the computation, using
O(n f m f ℓxℓysxsy) time and O(n f m f ℓxℓy + ngmgℓxℓy + sxsy) space.

Note that the final time complexity is again independent of ng and mg.
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4.1.2. Combined interpolation
In this section we extend the combined interpolation method from Section 3.2 (the majority
of the used notation is adapted from this section as well) to complex-valued double integrals.
Luckily, the Newton-Cotes equations are easier to extend.

For the 2nd-order Newton-Cotes equation we can write

C =
hxhy

9

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 4 2 4 ⋯ 2 4 1
4 16 8 16 ⋯ 8 16 4
2 8 4 8 ⋯ 4 8 2
4 16 8 16 ⋯ 8 16 4
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮

2 8 4 8 ⋯ 4 8 2
4 16 8 16 ⋯ 8 16 4
1 4 2 4 ⋯ 2 4 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

which is the same as
C = c⊺xcy .

If we let the matrix F be the matrix of function values, i.e. Fij = f (xi, yj) for all i, j, we can
approximate a complex-valued, double integral by

∫

xR

xL
∫

yR

yL
f (x, y)dxdy ≈ ⟨C, F⟩F = cxFc⊺y .

Note that ⟨A, B⟩F denotes the Frobenius inner product of A and B, i.e. the sum over the
elements of the pointwise (or Hadamard) product of both matrices.

4.2. Uncertainty in gridpoints
In all previous described methods we have made an assumption: the gridpoints are spaced
equidistantly. This assumption speeds up the calculation, but it is still only approximately
true; if we measure the pressure wavefield on certain gridpoints we will never space the
sensors exactly the same distance apart each time. However, in general the corrections to
the gridpoints are often known. In this section we thus present a revision to Simpson’s rule
to interpolate the data. The first subsection (Subsection 4.2.1) does this for single integrals
with non-equidistant intervals. The second subsection (Subsection 4.2.2) does this for double
integrals with semi-equidistant gridpoints (in the section we also define semi-equidistant). We
note that these adjustments are also possible for higher-order Newton-Cotes equations, but
these will not be derived and are left to future research (Section 6.2).

4.2.1. Single integral alterations
Like in our previous derivation of Simpson’s rule in Section 3.2.1, we start by interpolating
just 3 points. The modification is that we now interpolate the points x0, x1 + δ and x2 in order
to account for non-equidistant intervals. The corresponding function values are f0, f1 and f2,
respectively. The interpolating polynomial can be derived from the top row of:

x0 f0
f1− f0
h+δ

x1 + δ f1
h( f2+ f0−2 f1)+δ( f2− f0)

2h(h2−δ2)
f2− f1
h−δ

x2 f2

,
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where the fraction on the right can be seen to hold from observing that

f2− f1
h−δ −

f1− f0
h+δ

2h
=

f2− f1
h−δ +

f0− f1
h+δ

2h

=

(h+δ)( f2− f1)+(h−δ)( f0− f1)

(h−δ)(h+δ)

2h

=
(h + δ)( f2 − f1)+ (h − δ)( f0 − f1)

2h(h2 − δ2)

=
h( f2 + f0 − 2 f1)+ δ( f2 − f0)

2h(h2 − δ2)
.

The interpolating polynomial thus becomes

p(x) = f0 +
f1 − f0

h + δ
(x − x0)+

h( f2 + f0 − 2 f1)+ δ( f2 − f0)

2h(h2 − δ2)
(x − x0)(x − x1) .

Again, integrating from x0 to x2 whilst keeping in mind that x1 − x0 = h + δ and x2 − x0 = 2h
now gives us our desired result:

∫

x2

x0
p(x)dx

= [ f0x +
f1 − f0

2(h + δ)
(x − x0)

2
+

h( f2 + f0 − 2 f1)+ δ( f2 − f0)

2h(h2 − δ2)
(

x3

3
− (x0 + x1)

x2

2
+ x0x1x)]

x2

x0

= 2h f0 +
f1 − f0

2(h + δ)
(2h)2 +

h( f2 + f0 − 2 f1)+ δ( f2 − f0)

2h(h2 − δ2)
(

x3
2 − x3

0

3
− (x0 + x1)

x2
2 − x2

0

2
+ 2hx0x1)

=
2h(h2 − δ2) f0

h2 − δ2 +
2h2(h − δ)( f1 − f0)

h2 − δ2

+
h( f2 + f0 − 2 f1)+ δ( f2 − f0)

2h(h2 − δ2)
(

2h3

3
+ 4x2

0h + 2x0h2
− 2hx0(2x0 + h)− 2δh2

)

=
2h(h2 − δ2) f0

h2 − δ2 +
2h2(h − δ)( f1 − f0)

h2 − δ2 +
h( f2 + f0 − 2 f1)+ δ( f2 − f0)

2h(h2 − δ2)
(

2h3

3
− 2δh2

)

=
6h(h2 − δ2) f0 + 6h2(h − δ)( f1 − f0)+ {h( f2 + f0 − 2 f1)+ δ( f2 − f0)}(h2 − 3δh)

3(h2 − δ2)

=
δ2h{−6 f0 − 3( f2 − f0)}

3(h2 − δ2)
+

δh2{−6( f1 − f0)− 3( f2 + f0 − 2 f1)+ ( f2 − f0)}

3(h2 − δ2)

+
h3{6 f0 + 6( f1 − f0)+ ( f2 + f0 − 2 f1)}

3(h2 − δ2)

=
δ2h{−3( f0 + f2)}

3(h2 − δ2)
+

δh2{(2 f0 − 2 f2)}

3(h2 − δ2)
+

h3{ f0 + 4 f1 + f2}

3(h2 − δ2)

=
h(−3δ2( f0 + f2)+ 2δ( f0 − f2)h + h2( f0 + 4 f1 + f2))

3(h2 − δ2)
. (4.1)

This results in Simpson’s rule for a single integral on a non-equidistant interval (consisting of 3
points). We note that filling in δ = 0 gives the regular Simpson’s rule derived in Section 3.2.1.

This method can be extended to approximate integrals similarly to Section 3.2.3, whilst
only noting that this time all h and all δ are dependent on the x coordinate, so they can not
be placed in front of the vector. Because for full integrals we cannot fuse Simpson’s rule on
different intervals, this method requires more operations than before (a factor 3

2 more).
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4.2.2. Double integral alterations

f00

f01

f02

f10

f11

f12

f20

f21

f22

2hx

2hyδy

δx0

δx1

δx2

Figure 4.1: A semi-equidistant grid, we note that in this
case δy0 and δx1 are both negative.

We now derive similar modifications to the
method for evaluating double integrals. First
we define semi-equidistant gridpoints. Note
that this method will yield the exact result for
2nd-order polynomials in two dimensions if
the sample points are semi-equidistant. To
define semi-equidistant gridpoints we refer
to Figure 4.1. The restrictions compared to
a non-equidistant grid are that f00, f20, f22
and f02 are forced to lie on a rectangular grid
and f01, f11 and f21 are restricted to the same
height (which is shifted δy from the middle of
the rectangle). Also, f10 and f12 are restricted
to lie on the rectangle, although the former
can have a shift δx0 in the x-direction and the
latter can have a shift of δx2 in the x-direction.
The middle point f11 can also have a shift
of δx1 in the x-direction. We note that this
grid has a “preferred” direction; the most
uncertainty in the gridpoints can be in the x-direction, therefore we advise orienting the axis
so that the direction with the most uncertainty is oriented in the x-direction.

Now, to derive the adjustment for double integrals on semi-equidistant grids we first
interpolate the function. We do this in two steps, first in the x-direction whilst fixing y and
afterwards in the y-direction for all values of x. We denote fij = f (xi, yj) as the function value
at the point (xi, yj) (for clarity we omit δ in this notation) for all i, j and fxi = f (x, yi) as the
function values whilst fixing yi for all i and list the interpolating polynomials:

f (x, y0) = fx0 = f00 +
f10 − f00

hx + δx0
(x − x0)+

hx( f20 + f00 − 2 f10)+ δx0( f20 − f00)

2hx(h2
x − δ2

x0)
(x − x0)(x − x1) ,

f (x, y1) = fx1 = f01 +
f11 − f01

hx + δx1
(x − x0)+

hx( f21 + f01 − 2 f11)+ δx1( f21 − f01)

2hx(h2
x − δ2

x1)
(x − x0)(x − x1) ,

f (x, y2) = fx2 = f02 +
f12 − f02

hx + δx2
(x − x0)+

hx( f22 + f02 − 2 f12)+ δx2( f22 − f02)

2hx(h2
x − δ2

x2)
(x − x0)(x − x1) .

The final interpolating polynomial can now be written as (note that we essentially interpolate
f (x, y0), f (x, y1), and f (x, y2) for all values of x with known function values at y0, y1 + δy, and
y2, resulting in interpolation similar to a single integral)

f (x, y) = fx0 +
fx1 − fx0

hy + δy
(y − y0)+

hy( fx2 + fx0 − 2 fx1)+ δy( fx2 − fx0)

2hy(h2
y − δ2

y)
(y − y0)(y − y1) .

After defining

ai ∶= ∫
x2

x0
f (x, yi)dx = ∫

x2

x0
fxidx

=
hx(−3δ2

xi( f0i + f2i)+ 2δxi( f0i − f2i)hx + h2
x( f0i + 4 f1i + f2i))

3(h2
x − δ2

xi)
,



32 4. Adapting numerical integration methods for the Rayleigh integral

the final integral becomes (the second step can be seen from equation 4.1)

∫

x2

x0
∫

y2

y0
f (x, y)dydx

= ∫

x2

x0

hy(−3δ2
y( fx0 + fx2)+ 2δy( fx0 − fx2)hy + h2

y( fx0 + 4 fx1 + fx2))

3(h2
y − δ2

y)
dx

=
hy(−3δ2

y(a0 + a2)+ 2δy(a0 − a2)hy + h2
y(a0 + 4a1 + a2))

3(h2
y − δ2

y)
.

We note that the rectangle in Figure 4.1 only encloses the area of 4 full circles, that is, in the
case where we can connect Simpson’s rule in an infinite grid, we only need 4 operations per
grid to approximate the integral. Since we cannot join the grids any longer we now require (at
least) 9 operations per grid to approximate the integral.

4.3. Summary of used methods
In this section we recapitulate all derived methods, in the next chapter we then use those
methods to evaluate an artificial Rayleigh integral.

The implementation of these methods is in Appendix D, for the implementation we made
use of Python3.10. Specifically the packages matplotlib (visualizing), NumPy (mathematical
computation) and SciPy (interpolating functions) were used.

For notation we use sx to denote the number of prediction points in the x-direction and
likewise we define sy to denote the number of prediction points in the y-direction. We consider
approximating the Rayleigh integral on ℓxℓy sample points.

Basic method
The current method to evaluate the Rayleigh integral is a combined interpolation method
where the trapezoidal rule is used and uncertainty in gridpoints is ignored. Also, the time
complexity of this method is O(ℓxℓysxsy), whereas the space complexity is O(sxsy). Complex
integrals will require twice as many operations since we need to do this for the real part and
the imaginary part separately (if we do not so explicitly the computer will do this internally
resulting in the same factor).

Altered basic method
Although this variation was not previously discussed it is quite simple. In this alteration we
weaken the assumption that the gridpoints are regularly spaced. Instead, we assume that
the gridpoints are spaced in rectangles (see the outer points of Figure 4.1, this is often called
rectilinear) where hx and hy can vary along the grid.

This method is implemented by calculating cx, cy (equation 3.9) without the common
factors hx or hy in front, as they can vary at different positions. Again, the time complexity of
this method is O(ℓxℓysxsy) and the space complexity is O(sxsy). Also, for complex integrals
the same argument holds and this will take twice as long.

Separate interpolation method
For this method we interpolate the pressure function by 2 dimensional cubic splines (i.e.
n f = m f = 3 in Section 4.1.1). In our implementation of this method (computer code in
Appendix D) we assume that the derivative of the Green’s function is interpolated to such a
high degree that it corresponds to the exact function1.
1This is generally a good approximation to compute results, but it definitely does not correspond to a fast
implementation in our case since integrals over subintervals are computed by dividing them into subsubintervals.
Normally, taking ng = mg = 5 or ng = mg = 6 results in approximately the same answer with much faster
computation.

https://www.python.org/downloads/release/python-3100/
https://matplotlib.org/
https://numpy.org/
https://scipy.org/
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We differentiate two methods:

• We assume that the pressure wavefield is measured on an equidistant grid and discard
any uncertainty. The method is now completely described in Section 4.1.1 with an ini-
tialization time complexity of O((n f + ng)

2(m f +mg)
2ℓxℓy) and an initialization space

complexity of O(n f m f ℓxℓy + ngmgℓxℓy). The computation then takes O(n f m f ℓxℓysxsy)

time and O(n f m f ℓxℓy + ngmgℓxℓy + sxsy) space. Also, for complex integrals the initializa-
tion will take twice as long and the computation will take 4 times as long.

• We do not assume that the wavefield is sampled on an equidistant grid. First, we
interpolate the non-equidistant grid by cubic splines (for this Clough-Tocher interpo-
lation can be used), then, we determine the function values for an equidistant grid by
evaluating the interpolated splines. We then approximate the integral by the method
described above. Note that this method has to do the interpolation on a non-equidistant
grid for the initialization phase. Although the time complexity for the interpolation
is the same for an equidistant grid the number of operations increase significantly [27,
scipy/scipy/interpolate/interpnd.pyx], therefore this method is only advis-
able for large numbers of sx and sy, so initialization costs can be neglected. The space
complexity is the same as the other separate interpolation method because the first inter-
polation on a non-equidistant grid can be discarded when starting with the interpolation
on an equidistant grid.

Combined interpolation method
We use the method described in Subsection 4.1.2 to approximate the Rayleigh integral. Due
to large deflections at the boundaries we do not use higher-order Newton-Cotes equations
to approximate the integral, this is instead left to future research in Section 6.2. Also, the
time complexity of this algorithm is the same as the basic method (i.e. a time complexity
of O(ℓxℓysxsy) and a space complexity of O(sxsy)), since this method only uses different
weighting factors in front of the function values.

We assume that the grid is spaced equidistantly in this method. We do not use the method
to first interpolate the data by splines after determining the function values on an equidistant
grid as this supersedes the advantages of the method, it is fast and implementation is easy.
Complex integrals can be evaluated in twice the time.

Altered combined interpolation method
This method is described in Subsection 4.2.2; the grid is now assumed to be spaced semi-
equidistantly (see Figure 4.1) and other uncertainties are discarded. As discussed in Subsection
4.2.2 we need at least 9

4 times as many operations to approximate the integral since we cannot
fuse adjacent grids (since we need to calculate fractions and use function values multiple times
the extra amount of operations will be much larger in our implementation). The time and
space complexity are, however, still the same as the combined interpolation method (i.e. a
time complexity of O(ℓxℓysxsy) and a space complexity of O(sxsy)). Complex integrals will
take twice as long.





Chapter5
Results

In this chapter we approximate an artificial Rayleigh integral. The settings to synthetically
construct the integral are listed in Section 5.1, and the integrand is displayed in Figure 5.1.
Table 5.1 contains performance data of the evaluation of a single integral, whereas Table 5.2
contains averaged data of the computation of multiple integrals. We compare various methods
to approximate the integral in Section 5.2 (the methods are listed in Section 4.3). Also, the
computer code used to generate these results can be found in Appendix D.

5.1. Settings
The settings used for generating the results and constructing the artificial integral are as
follows:

• We integrate on the interval [−25, 25]× [−35, 35], the integrand can be seen in Figure 5.1.

• To simulate a wavefield we used multiple sources placed at (xs, ys, zs) = (10, 0, 2),
(0, 15, 1.5), (1,−5, 1.7) and (−13, 13, 2.3).

• In all results we used k = ω/c = 2π/λ = 0.5, thus λ = 4π (note that λ denotes wavelength).

• In Table 5.1 we used a prediction point located at (xA, yA, zA) = (0.9,−1.4,−10), in
Table 5.2 we used multiple prediction points located at (xA, yA, zA) = (0.9,−1.4, 10),
(2,−1, 9), (−1, 2, 11), (−3, 4, 11.5), (0.1, 1.4, 9.5), (0.5,−1.5, 10), (2.1,−1.1, 9), (−1.1, 2.1, 11),
(−3.1, 4.1, 11.5), and (0.2, 1.5, 9.5). The motivation to use multiple prediction points
and average them was that the generated table (Table 5.1) has coincidences where the
calculated integral is really close to the actual integral because deflections cancelled each
other (thus a method could get lucky and have a better result than a method that is better
in general), taking an average ironed (some of) these coincidences out.

• We calculated the points per wavelength from the number of sample points, the following
numbers of sample points were used: (samplesx, samplesy) = (19, 9), (29, 29), (49, 49), (69,
69), (99, 99), (199, 199) and (499, 499), respectively. We then used the following formula
(dependent on direction) to calculate the points per wavelength (note that we let i denote
the direction and hi the width of the interval in that direction):

(points/λ)i =
λ(samplesi − 1)

hi
.

5.2. Discussion
Upon inspecting Figure 5.2a with approximately 1.44 points per wavelength we can see that
there is no hope left to approximate the integral. Whereas using approximately 5 sample points

35
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per wavelength in Figure 5.2b seems doable, resulting in relatively close integrals (see Table
5.1 and Table 5.2).

(a) Real part of P∇G (the integrand) (b) Imaginary part of P∇G (the integrand)

(c) Real part of P∇G (the integrand) at x = 0 (d) Imaginary part of P∇G (the integrand) at x = 0

Figure 5.1: The integrand of the artificial Rayleigh integral for a prediction point at (xA, yA, zA) = (0.9,−1.4,−10)
and sources at locations described in Section 5.1. The Figures (a) and (b) are rotated such that the y-direction is
horizontal and the x-direction is vertical. The Figures (c) and (d) can be extracted from Figures (a) and (b) by
looking at the intensity of the wavefield in the middle, horizontal line (where x = 0).

(a) Real part of P∇G (the integrand) at x = 0 with 9 sample
points, i.e. approximately 1.44 sample points per

wavelength.

(b) Real part of P∇G (the integrand) at x = 0 with 29 sample
points, i.e. approximately 5.03 sample points per

wavelength.

Figure 5.2: Figure 5.1c, displayed with varying amounts of sample points (per wavelength).
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Noise
(points/λ)x 4.52 7.04 12.1 17.1 24.6 49.8 125
(points/λ)y 1.44 5.03 8.62 12.2 17.6 35.5 89.4

basic 1.5 6.6⋅10−3 1.1⋅10−3 5.5⋅10−4 2.7⋅10−4 6.5⋅10−5 1.0⋅10−5

combined 1.60 0.305 0.298 0.827 7.06 406. 63.50%
separate 1.03 1.88 4.21 28.0 44.8 183. 1.14⋅103

basic 1.5 6.6⋅10−3 1.1⋅10−3 4.7⋅10−4 2.5⋅10−4 6.0⋅10−5 1.0⋅10−5

basicδ 1.00 1.01 1.03 0.864 0.942 0.920 1.01
combined 1.60 0.302 0.311 0.696 5.06 15.7 11.5
combinedδ 1.60 0.301 0.322 0.638 3.65 46.2 3.71

separate 1.03 1.89 5.05 17.4 20.8 8.82 16.4

0.05%

separateδ 1.02 1.88 4.42 25.1 49.4 282. 356.
basic 1.5 6.6⋅10−3 1.3⋅10−3 2.5⋅10−4 2.0⋅10−4 4.7⋅10−5 1.1⋅10−5

basicδ 0.999 1.05 1.13 0.458 0.771 0.698 1.07
combined 1.60 0.296 0.348 0.306 1.56 3.16 3.29
combinedδ 1.61 0.296 0.404 0.242 1.25 9.89 0.996

separate 1.02 1.90 7.32 1.77 4.72 1.76 4.29

0.2%

separateδ 1.02 1.89 5.04 14.9 65.1 89.4 81.2
basic 1.5 8.4⋅10−3 2.1⋅10−3 1.0⋅10−3 1.6⋅10−4 6.4⋅10−5 2.1⋅10−5

basicδ 0.995 1.60 1.51 2.06 0.764 0.712 1.76
combined 1.62 0.343 0.518 0.464 0.271 0.861 1.32
combinedδ 1.64 0.339 1.36 0.361 0.251 2.79 0.390

separate 1.01 1.67 2.75 1.36 0.783 0.479 1.69

1%

separateδ 1.00 2.44 8.50 105. 11.7 19.4 33.0
basic 1.2 3.0⋅10−2 6.2⋅10−3 7.3⋅10−3 1.6⋅10−3 5.0⋅10−4 9.4⋅10−5

basicδ 0.967 2.17 2.91 10.0 3.38 0.933 0.593
combined 1.80 0.798 0.864 0.707 0.542 1.34 1.18
combinedδ 1.90 0.788 0.900 0.587 0.507 4.38 0.333

separate 0.925 1.46 1.39 1.94 1.60 0.754 1.54

5%

separateδ 0.818 7.85 54.6 123. 27.8 46.5 48.0
basic 7.5⋅10−2 1.3⋅10−1 1.9⋅10−2 3.0⋅10−2 7.1⋅10−3 2.2⋅10−3 3.7⋅10−4

basicδ 0.548 1.40 1.56 3.70 0.898 0.302 0.147
combined 0.129 1.19 1.11 0.765 0.588 1.40 1.18
combinedδ 0.117 1.53 0.545 0.560 0.538 0.659 0.174

separate 0.109 1.58 1.06 2.21 1.90 0.818 1.71

20%

separateδ 0.0474 12.4 37.9 43.6 33.5 265. 128.

Table 5.1: For different amounts of noise (normal distributed, with a standard deviation of 0%, 0.05%, 0.2%, 1%,
5% and 20% of the length between equidistant points) and different amounts of samples points per wavelength
varying per direction ((4.52, 1.44), (7.04, 5.03), (12.1, 8.62), (17.1, 12.2), (24.6, 17.6), (49.8, 35.5), (125, 89.4)) we listed
the relative error (the mean-squared error was used due to working with complex numbers) of the approximation
of the simulated Rayleigh integral (with settings listed in Section 5.1) using the basic method described in Section
4.3. Also, the other methods described in Section 4.3 are listed (where the adapted version of the method on a
non-equidistant grid is denoted with a subscript δ) with their relative error, divided by the relative error of the
basic method. We thus have that the numbers represent the number of times that the used method is better than
the basic method. We note that for a noise of 0% the adapted versions of each method are the same as the regular
methods, since we have no uncertainty in gridpoints. Furthermore, to give an example: for a noise of 0.2% (thus
each gridpoints is shifted in the x-direction withN (0.2% ⋅ hx) and in the y-direction withN (0.2% ⋅ hy), where hx,
hy denote the distance between the equidistant gridpoints in the x and y-directions respectively andN (σ) denotes
normal distributed noise with standard deviation σ) and 12.1 samples per wavelength in the x-direction and 8.62
samples per wavelength in the y-direction, the basic method has a relative error of 1.3 ⋅ 10−3, whereas the altered
separate method (separateδ) has a relative error that is 5.04 times as low, i.e. 1.3/5.04 ⋅ 10−3 ≈ 2.6 ⋅ 10−4 and the
combined method has a relative error that is larger than the error of the basic method with a factor of 1/0.348 ≈ 2.87.
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Noise
(points/λ)x 4.52 7.04 12.1 17.1 24.6 49.8 125
(points/λ)y 1.44 5.03 8.62 12.2 17.6 35.5 89.4

basic 1.2 3.9⋅10−3 1.2⋅10−3 5.8⋅10−4 2.8⋅10−4 6.8⋅10−5 1.1⋅10−5

combined 1.51 0.173 0.323 3.31 13.5 219. 62.00%
separate 1.01 1.01 13.0 63.3 104. 433. 2.66⋅103

basic 1.2 3.9⋅10−3 1.2⋅10−3 5.4⋅10−4 2.8⋅10−4 6.6⋅10−5 1.0⋅10−5

basicδ 1.00 1.02 1.01 0.932 0.985 0.958 0.953
combined 1.51 0.173 0.321 2.30 5.41 19.8 9.10
combinedδ 1.51 0.172 0.326 3.44 6.42 22.5 4.14

separate 1.01 1.02 13.4 13.1 26.3 19.0 12.5

0.05%

separateδ 1.01 1.01 14.0 76.0 136. 890. 1.22⋅103

basic 1.1 4.1⋅10−3 1.2⋅10−3 4.8⋅10−4 2.7⋅10−4 6.0⋅10−5 9.1⋅10−6

basicδ 1.00 1.07 1.03 0.845 0.955 0.869 0.886
combined 1.51 0.176 0.315 1.78 1.88 5.05 2.30
combinedδ 1.52 0.173 0.338 3.42 2.48 5.05 0.903

separate 1.01 1.08 7.09 2.63 6.75 4.68 2.87

0.2%

separateδ 1.01 1.05 18.7 130. 265. 159. 188.
basic 1.1 5.9⋅10−3 1.7⋅10−3 1.2⋅10−3 4.4⋅10−4 6.5⋅10−5 1.4⋅10−5

basicδ 0.999 1.52 1.40 2.74 2.25 1.15 1.58
combined 1.52 0.229 0.409 0.808 0.733 1.18 0.832
combinedδ 1.54 0.211 0.727 1.72 0.918 1.69 0.311

separate 1.00 1.23 1.91 1.43 2.24 1.03 1.08

1%

separateδ 0.993 1.50 16.4 62.1 58.1 27.6 48.1
basic 9.3⋅10−1 2.1⋅10−2 5.2⋅10−3 6.5⋅10−3 1.9⋅10−3 2.4⋅10−4 8.6⋅10−5

basicδ 0.991 1.57 3.11 10.9 7.19 0.741 0.858
combined 1.61 0.578 0.712 0.844 0.697 0.842 0.988
combinedδ 1.73 0.457 1.82 1.74 0.799 1.76 0.369

separate 0.936 1.37 1.09 1.60 1.98 0.628 1.24

5%

separateδ 0.828 5.25 37.9 102. 108. 27.0 86.4
basic 7.2⋅10−2 9.0⋅10−2 1.8⋅10−2 2.7⋅10−2 7.4⋅10−3 1.1⋅10−3 3.6⋅10−4

basicδ 0.886 1.16 3.94 3.89 1.04 0.224 0.223
combined 0.159 1.00 0.884 0.858 0.694 0.923 1.04
combinedδ 0.130 0.821 1.09 3.32 0.429 0.550 0.216

separate 0.145 1.38 0.903 1.72 1.94 0.675 1.33

20%

separateδ 0.0687 8.67 21.4 85.6 48.3 112. 231.

Table 5.2: The average of Table 5.1 for the 10 prediction points listed in Section 5.1. For further information on the
meaning of the values the reader is referred to the caption of Table 5.1.

Let us first have a look at Table 5.2. Note that the cells using the basic method have different
units (relative error) than the cells using other methods (relative error/relative error = times
better compared to basic method).

Generally, we expect that fewer points per wavelength result in higher relative errors and
more noise also results in higher relative errors. This relation does not hold in the first column
(with 4.52, 1.44 points per wavelength) of the table as we go from a relative error in the basic
method of 1.2 at a noise of 0% to a relative error of 7.2 ⋅ 10−2 at a noise of 20%. This is most
likely a coincidence (that did not smooth out in the average) as other methods did not have
such sudden improvements. If we go from 17.1, 12.2 sample points per wavelength to 12.1,
8.62 sample points per wavelength (thus from the fourth column to the third) and compare
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the relative errors in the basic methods with 5% and 20% noise, the error decreases. Also, this
effect is likely to be caused by chance, with such a high noise in the gridpoints the decrease in
sample points does not outrank the coincidences caused by the noise. All in all, we can see
that apart from a few exceptions the relation holds (as expected).

The altered basic method (basicδ) performs better than the basic method with a noise of
1% and not much worse for less noise. However, for more noise (5% and 20%) and numerous
points per wavelength it performs worse than the basic method. This is probably due to the
method not being exact for completely randomized grids, but only for rectilinear grids. This
limitation of the method combined with chance caused it to perform worse than the basic
method.

If the integrand is well sampled and has a low amount of noise the combined method
overtakes the basic method. If noise increases the method is only a little worse than the basic
method, likely due to inability to average the result as good as the basic method (it is more
prone to errors and noise). Since this method is relatively easy to implement it is recommended
to use only with a noise below 1% and more than 10 sample points per wavelength (in both
directions). If the noise increases, we can see no reason to choose this method over the basic
method and if the number of sample points decreases we mainly have worse results.

The adaptation of the combined interpolation method (combinedδ) often exceeds the
regular combined method except for a large amount of sample points per wavelength. Again,
the reason for this is probably the fact that the randomized grid is not a semi-equidistant grid.
The trade-off for more operations hardly seems worth it.

The separate method performs really well with less noise and many sample points per
wavelength, like the combined method. This method, if compared to the combined method is
generally better (except for the first column with the fewest sample points per wavelength).
Also, this method extends better to a low sample points per wavelength range (except the
lowest). The cost of using this method is that it is more difficult to implement and depending
on the implementation (although it has the same time complexity as can be seen in Section 4.3)
it can take longer to compute the integral.

The final method, the modified separate method (separateδ), has the highest accuracy
compared to all other described methods from the third column on (that is with more than
12.1, 8.62 sample points). Especially with a high amount of noise (e.g. 1%) this method really
exceeds the others (by a factor of at least 15 if compared to the basic method). This method
also has peak performance with a lot of sample points per wavelength, but the remarkable
thing is that with less sample points it still outperforms most of the other methods. The cost of
using this method is the implementation as it is the most difficult of all methods, nonetheless,
the method makes up for this by accuracy.

Now, we provide a note on the time complexity of the methods from Section 4.3. The basic
method, the altered basic method, the combined method and its modification all have the
same time complexity (although for the alterations we do need more operations). Compared
to the separate methods the time complexity is better by a factor of n f m f (the orders of the
polynomials for the interpolation). This is, however, only true when using splines. In that
case we need to process n f m f coefficients per subinterval, compared to only 1 using combined
methods. If instead polynomials are used for this separate method (this is left to future research
in Section 6.2) we get the same time complexity (apart from initialization costs, which can be
neglected for many sensors). The space complexity of the separate method does not have a
serious limitation and is therefore only mentioned for completeness.

After comparing the values in Table 5.2 with Table 5.1 we can say something about the
consistency of the method and see if there are outliers (remember that the former table took an
average over multiple prediction points and the latter did not).
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The basic method still has approximately the same error in this table.
Before the average was taken over multiple prediction points the basicδ method is more

unpredictable. Therefore, we do not think it is worth the extra processing time.
Except for situations with noise below 0.2% and more than 24.6, 17.6 sample points per

wavelength in the x and y-direction respectively the combined method is generally worse
than the basic method. We can also see this effect in Table 5.2, although, the break-even point
happened at 17.1, 12.2 sample points per wavelength, we thus conclude that this method
cannot be relied upon for consistent results with moderate sampling amounts.

The adaptation of the combined method is also more unpredictable in this situation, instead
of being (somewhat) consistently better than the unmodified method it is now at odds with it.

The separate method performed about the same, the numbers just varied more in Table 5.1,
whereas the sudden improvements were smoothed out in Table 5.2. The same effect occurred
for the modified separate method, the factor that this method is better than the basic method
does not always increase as the amount of sample points increase, nevertheless, the general
trend is upward (since if we take the average we get the smoother version in Table 5.2).

In conclusion:

• The modified basic method is inconsistent.

• The combined method only performs well in the high sample points per wavelength
range with hardly any noise.

• The adapted combined method is not worth the extra computation time compared to the
original version.

• The separate method often performs better than the combined method and extends better
to fewer sample points but takes more time to implement.

• The altered separate method performs the best, exceeding the performance of all other
methods in most situations.
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Conclusion and outlook

6.1. Conclusion
In this thesis we started with deriving the Rayleigh integral and subsequently developed
polynomial interpolation methods for numerical integration in order to determine whether
modifying the integration methods would reduce the error in approximations of the Rayleigh
integral. The presented methods are:

• The basic method; this is the one that is currently used for approximating the Rayleigh
integral.

• An adaptation of the basic method; the basic method for a rectilinear grid.

• The combined interpolation method; Simpson’s rule in our case.

• The modified combined interpolation method; an adaptation for a semi-equidistant grid.

• The separate interpolation method; this method separately interpolates the unknown
part of the integrand (to a low degree) and the known part of the integrand (to a higher
degree) and combines the results.

• The altered separate interpolation method; this is an adaptation of the separate interpola-
tion method to non-equidistant grids.

These different integration methods were then used to approximate a synthetic Rayleigh
integral with varying amounts of noise in the sample points.

The best performing method is the altered version of the separate interpolation method. It
outperforms all other methods in accuracy and is on average, in comparison with the currently
used method, at least 15 times better in the moderate to well sampled range1.

Our adjustment to the basic method only performed marginally better and the cost of more
operations is not beneficial.

The combined interpolation approach performed well with relatively small noise (up to
about 1% of the distance between gridpoints) and more than 10 sample points per wavelength
(in both directions). However, the improvement on the approximation fluctuates too much to
be relied upon if the conditions are not met. An advantage of this method is that it is relatively
easy to implement.

The modified version of the method also has a lot of fluctuations, giving inconsistent results
that are on average only marginally better than the original version. Therefore, we do not
think that the extra computation time is worth it in comparison to the combined method.

1This is the achieved with more than 12 sample points per wavelength in the x-direction and more than 8 sample
points per wavelength in the y-direction.
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The separate interpolation method scores only slightly better than the combined method,
it had peak-performance with almost no noise and numerous sample points per wavelength.
However, this method is more difficult to implement and will likely take longer to evaluate
than the combined method, hence, this method is not recommended.

6.2. Future Research
In future research we recommend to look at making an “accuracy vs speed” analysis. In
seismic imaging it is crucial that the first propagations of the wavefield are accurate, if the
error in these propagations are too large one has no hope to arrive at a decent answer after
propagating it hundreds of times more. Since we presented methods to increase accuracy a
researcher could look at using different methods for different propagations, to get a better
result in the first few propagations and to limit the error in the end result. Our presented
methods likely take more time to evaluate, therefore, an optimum can be found if we compare
accuracy to speed and use various methods.

Placing the sensors is important, the methods presented could yield better results if the
grid is not placed approximately equidistant, i.e. some the methods could perform better on a
different grid. An example of this could be a triangular grid, which could also result in time
advantages using the modified separate interpolation method as this relies on triangulating
the input data. In addition, one could look at systematic errors in gridpoints and the impact of
those on the accuracy of the different methods.

Also, an implementation of some algorithms would be needed to perform a speed analysis
of the methods. Even though the time complexity of the algorithms is the same, it depends on
the computer used and the implementation of the method.

Another combined interpolation method of using higher-order polynomials was discussed
shortly in this thesis. The methods were not developed further because of great deflections
on the boundaries of the interpolation. In Section 3.3 we provided a way to circumvent this
problem, giving adequate results in that example. For these methods there are a lot of possible
variations, as one could go to arbitrary orders of polynomials. In future research one could
look at the accuracy of those methods as they would be easy to implement.

The separate interpolation method could also be made easier to implement by using
polynomial interpolation instead of spline interpolation. We did not compute the results for
this new method. This would promote the separate interpolation even more as the downside
of difficult implementations would reduce.
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Verification of the wave equation

Figure A.1: Some function of pressure depend-
ing on position that will change with time.

This is an intuitive verification of the one-dimensional
acoustic wave equation1 (the three-dimensional ver-
sion is derived in Section 2.1). To start off with this
approach, let us assume that there is no sound. Then,
no vibrations in the air can occur which, in turn, results
in equal pressure in the air not varying with position
(denoted p0).

However, if there is sound we do get vibrations
and therefore some variation of pressure depending
on the position you are measuring the sound as can be
seen in Figure A.1.

To gain intuition for what happens over time let us
discretize the pressure function and pick only 3 “adjacent” points from the function. This can
also be thought of as zooming in on Figure A.1 until you see only 3 points. An example of this
can be seen in Figure A.2a. We take look at how the pressure of the middle point, p2, changes
as a function of its differences with p1 and p3. After rewriting this function we look at the limit
and get the partial differential equation named the one-dimensional acoustic wave equation.

So, to begin we start at t = 0 with Figure A.2a, the three points are denoted x1, x2, and x3
with corresponding pressures p1, p2, and p3, respectively. We assume that p1 and p3 are fixed
and investigate the function p2 describes (note that the values 1 for p1, 4 for p2 and −1 for p3
are chosen arbitrarily and can be scaled appropriately). We start with the situation where the
air at x1, x2, and x3 has no velocity. Because there is a high pressure at x2 and lower pressures
at x1 and x3, the system wants to “equalize” the pressure, and we get a large acceleration of air
from x2 towards x1 and x3 (from now on we say that p2 has a large acceleration towards p0,
the static pressure), but since the system needs time to “start up” the velocity of the individual
particles stays small but will increase rapidly. The total change in pressure will thus be little,
giving the situation in Figure A.2b.

Now the velocity of the individual particles, i.e. the change in pressure, has started to build
up, although the acceleration of p2 towards p0 has started to decrease due to the decreased
difference to p1 and p3 (the system does not want to “equalize” the pressure as much) thus
the velocity of p2 towards p0 will not increase as much as last time. We obtain the situation in
Figure A.2c.

1Notation and ideas used in this appendix are adapted from 3Blue1Brown [28].
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The velocity still increases due to a positive acceleration but with each timestep the accel-
eration decreases. Hence, the velocity will increase less and less, resulting in the situation in
Figure A.2d.

At this point we have p1 = p2 meaning that x1 and x2 are in equilibrium, however, x2 and
x3 are not. So there will still be a positive acceleration, due to a high velocity, the pressure in x2,
p2, shoots past the static pressure p0. At the next timestep we see something like the situation
in Figure A.2e.

The velocity starts to decrease because of the difference in pressure at x1 and x2, thus
we have negative acceleration. But the velocity is still positive thus we still get a decreasing
pressure in x2. Due to the negative acceleration that keeps on increasing as p3 decreases, the
velocity will eventually be 0 again. This happens in the situation in Figure A.2f, at t = 7.

(a) Situation at t = 0 (b) Situation at t = 1 (c) Situation at t = 2

(d) Situation at t = 3 (e) Situation at t = 4 (f) Situation at t = 7

Figure A.2: Zoomed in version of Figure A.1, here p1 = p(x1), p2 = p(x2) and p3 = p(x3). Note that the timesteps
can be scaled appropriately.

We have gotten a more intuitive feel of how the differences in pressure increase the accel-
eration of the pressure. To put that thought in formulas, we get that the acceleration of the
pressure (its 2nd time derivative) is a function of the sum of differences between p1 and p2 and
between p2 and p3, thus after defining some constant α and noting that positive acceleration
defined is upwards we get (note that ∆ denotes the spatial difference):

∂2 p
∂t2 = −α((p2 − p1)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∆p1

+ (p2 − p3)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
−∆p2

) = α (∆p2 −∆p1)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∆∆p1

. (A.1)

Thus, ∂2 p
∂t2 is a function of the spatial difference of ∆p1 and ∆p2, thus it can be denoted by the

second spatial difference ∆∆p1. Now, if we take the limit so that the difference in positions
goes to zero ((x2 − x1) → 0 and (x3 − x2) → 0 as well). We get that these differences turn into
spatial derivates. Then A.1 becomes

∂2 p
∂t2 = α

∂2 p
∂x2 ,

which is the one-dimensional acoustic wave equation.
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Proofs concerning Cotesian numbers

Here we provide proofs for statements from Subsection 3.2.2.

Lemma 1. The Vandermonde matrix

V =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 ⋯ 0
1 1 1 ⋯ 1
1 2 22 ⋯ 2n

⋮ ⋮ ⋮ ⋱ ⋮

1 n n2 ⋯ nn

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

is invertible.

Proof. We show by contradiction that the columns of V are linearly independent.
Denote the j-column of matrix V as vj, we thus have vj = [0j 1j ⋯ nj]

⊺

∈ Rn+1. Assume
that there exist coefficients a0, a1, . . . , an ∈ R such that a0v0 + a1v1 +⋯ + cnvn = 0, where 0 =
[0 0 ⋯ 0]⊺ ∈ Rn+1. Then, for each k ∈N with 0 ≤ k ≤ n we get

a0 + a1k + a2k2
+⋯+ ankn

= 0 .

Hence, k is a root of the polynomial f (x) = a0 + a1x + a2x2 +⋯ + anxn. This means that the
polynomial f (x) has n + 1 different roots. Since f (x) is at most an nth-order polynomial we
must have a0 = a1 = ⋯ = an = 0. Proving that the columns of matrix V are indeed linearly
independent, therefore, the matrix is invertible.

Theorem 2. Define f ∶ R → R, and let x0, x1, . . . , xn ∈ R denote equidistant real numbers. Denote
their function values as f0, f1, . . . fn ∈ R, respectively (thus f0 = f (x0), f1 = f (x1), . . . , fn = f (xn)).
Furthermore, let h denote the distance between the equidistant numbers, that is, h = xn−x0

n . Also, let
c0, c1, . . . cn denote the Cotesian numbers, i.e. the numbers such that after interpolating the function
values by a polynomial of degree at most n the integral over the polynomial can be approximated by

∫

xn

x0
f (x)dx ≈ h(c0 f0 + c1 f1 +⋯+ cn fn) .

Then, c0, c1, . . . , cn satisfy

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 ⋯ 0
1 1 1 ⋯ 1
1 2 22 ⋯ 2n

⋮ ⋮ ⋮ ⋱ ⋮

1 n n2 ⋯ nn

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⊺
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

c0
c1
c2
⋮

cn

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

n/1
n2/2
n3/3
⋮

nn+1/(n + 1)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
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Proof. Without loss of generality we let x0 = 0 (this can be verified by defining x′0 = x0 − x0,
x′1 = x1 − x0, . . . , x′n = xn − x0 and noting that ∫

xn
x0

f (x)dx = ∫
x′n

0 f (x′)dx′). Employing this new
definition allows us to write xi = ih for 0 ≤ i ≤ n.

All interpolating polynomials p(x) = p0 + p1x + p2x2 +⋯ + pnxn must satisfy p(x0) = f0,
p(x1) = f1, . . . , p(xn) = fn, hence, the coefficients p0, p1, . . . , pn satisfy

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 x0 x2
0 ⋯ xn

0
1 x1 x2

1 ⋯ xn
1

1 x2 x2
2 ⋯ xn

2
⋮ ⋮ ⋮ ⋱ ⋮

1 xn x2
n ⋯ xn

n

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
A

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

p0
p1
p2
⋮

pn

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

´¸¶
p

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

f0
f1
f2
⋮

fn

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

´¸¶
f

. (B.1)

Also, we know that integrating p(x) yields the approximation of the integral, equalling
h(c0 f0 + c1 f1 +⋯+ cn fn), giving the relation

∫

xn

x0
p(x)dx = ∫

nh

0
p(x)dx = [p0x + p1

x2

2
+ p2

x3

3
+ ⋅ ⋅ ⋅ + pn

xn+1

n + 1
]

nh

0

= p0
nh
1
+ p1
(nh)2

2
+ p2
(nh)3

3
+ ⋅ ⋅ ⋅ + pn

(nh)n+1

n + 1
= h(c0 f0 + c1 f2 +⋯+ cn fn) .

After removing a factor h from both sides of the equal sign we use vector notation to rewrite
the equation into

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

n/1
n2h/2
n3h2/3
⋮

nn+1hn/(n + 1)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⊺

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n⊺

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

p0
p1
p2
⋮

pn

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

c0
c1
c2
⋮

cn

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⊺

´¹¹¸¹¹¶
c⊺

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

f0
f1
f2
⋮

fn

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (B.2)

This allows for shorter notation; equation B.1 can be written as

Ap = f ,

and equation B.2 can be written as
n⊺p = c⊺f .

Using these equalities we can deduce that (note that A is invertible due to Lemma 1):

p = A−1f

n⊺p = n⊺A−1f = c⊺f

f⊺(A−1
)
⊺n = f⊺c, for arbitrary f

(A−1
)
⊺n = c
n = A⊺c .

Writing this out and substituting xi = ih gives us:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 ⋯ 0
1 h h2 ⋯ hn

1 2h (2h)2 ⋯ (2h)n

⋮ ⋮ ⋮ ⋱ ⋮

1 nh (nh)2 ⋯ (nh)n

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⊺
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

c0
c1
c2
⋮

cn

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

n/1
n2h/2
n3h2/3
⋮

nn+1hn/(n + 1)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
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Removing h (we can this do due to the transposition of the matrix) results in

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 ⋯ 0
1 1 12 ⋯ 1n

1 2 22 ⋯ 2n

⋮ ⋮ ⋮ ⋱ ⋮

1 n n2 ⋯ nn

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⊺
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

c0
c1
c2
⋮

cn

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

n/1
n2/2
n3/3
⋮

nn+1/(n + 1)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

concluding our proof.

Definition 3. Let X = {X1, X2, . . . , Xn} with X1, X2, . . . , Xn ∈ R and let k ∈ N≥0. The elementary
symmetric polynomial is then defined as:

ek(X) =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

1 if k = 0 ,

∑
1≤m1<⋯<mk≤n

Xm1⋯Xmk if 1 ≤ k ≤ n ,

0 if k > n .

Lemma 4. Let s(n, k), with n, k ∈N≥0 denote the (un)signed Stirling numbers of the first kind, then,
if 0 ≤ j ≤ ℓ with j, ℓ ∈N, the following equality holds:

ej({1, 2, . . . , ℓ}) = ∣s(ℓ + 1, ℓ + 1− j)∣ . (B.3)

Proof. We use induction twice to complete the proof.
First, we use induction on j. For the induction base with j = 0 we note that by defi-

nition: ej({1, 2, . . . , ℓ}) = 1 = ∣s(ℓ + 1, ℓ + 1)∣ . For the induction hypothesis we assume that
ej−1({1, 2, . . . , ℓ}) = ∣s(ℓ + 1, ℓ + 2− j)∣ . For the induction step we then need to show that equa-
tion B.3 holds.

We do this using induction on ℓ. For the induction base ℓ = 0 and thus j = 0, we get
e0(∅) = 1 = ∣s(1, 1)∣ . For the induction hypothesis we assume ej({1, 2, . . . , ℓ − 1}) = ∣s(ℓ, ℓ − j)∣ ,
applying this to our previous assumption yields ej−1({1, 2, . . . , ℓ − 1}) = ∣s(ℓ, ℓ + 1 − j)∣ . For
the induction step we need to prove equation B.3. Note that by the definition of the Stirling
numbers we have [29, equation 15]:

∣s(n, k)∣ = ∣s(n − 1, k − 1)∣+ (n − 1)∣s(n − 1, k)∣ .

Using our induction hypotheses we now show that equation B.3 holds

ej({1, 2, . . . , ℓ}) = ∑
1≤m1<⋯<mj≤ℓ

m1⋯mj

= ∑
1≤m1<⋯<mj−1≤ℓ−1

mj−1<mj<ℓ

m1⋯mj + ∑
1≤m1<⋯<mj−1≤ℓ−1

mj−1<mj=ℓ

m1⋯mj

= ∑
1≤m1<⋯<mj≤ℓ−1

m1⋯mj + ℓ ∑
1≤m1<⋯<mj−1≤ℓ−1

m1⋯mj−1

= ej({1, 2, . . . , ℓ − 1})+ ℓej−1({1, 2, . . . , ℓ − 1})

= ∣s(ℓ, ℓ − j)∣+ ℓ∣s(ℓ, ℓ + 1− j)∣
= ∣s(ℓ + 1, ℓ + 1− j)∣ .

Hence, the induction step, equation B.3, holds, concluding our proof.
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Lemma 5. Let 0 ≤ i ≤ n with i ∈N, also, let 0 ≤ k ≤ n with k, n ∈N, then the following relation holds:

ek({1, . . . , n} / {i}) =
k
∑
m=0
(−i)mek−m({1, . . . , n}) .

Proof. This relation can easily be seen to hold for 1 ≤ i ≤ n since

ek({1, . . . , n} / {i}) = ek({1, . . . , n})− iek−1({1, . . . , n} / {i}) ,

and e0({1, . . . , n} / {i}) = 1 = e0({1, . . . , n}).
For i = 0 the relation also holds since ek({1, . . . , n} / {0}) = ek({1, . . . , n})− 0.

Theorem 6. We can calculate the coefficients of ci for i ∈ {0, . . . , n} in the following equation

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 ⋯ 0
1 1 12 ⋯ 1n

1 2 22 ⋯ 2n

⋮ ⋮ ⋮ ⋱ ⋮

1 n n2 ⋯ nn

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⊺
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

c0
c1
c2
⋮

cn

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

n/1
n2/2
n3/3
⋮

nn+1/(n + 1)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(B.4)

by computing

ci =
1

(n − 1)!
(

n
i
)

n
∑
j=0

n−j

∑
m=0

imnj (−1)i+ns(n + 1, j +m + 1)
j + 1

.

Proof. We first rewrite equation by transposing the matrix in equation B.4 and bringing it to
the other side, yielding

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

c0
c1
c2
⋮

cn

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 ⋯ 1
0 1 2 ⋯ n
0 12 22 ⋯ n2

⋮ ⋮ ⋮ ⋱ ⋮

0 1n 2n ⋯ nn

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

−1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(W−1

n+1)
⊺

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

n/1
n2/2
n3/3
⋮

nn+1/(n + 1)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where the matrix Wn+1 is the Vandermonde matrix defined according to Pr∞fWiki [30]. The
inverse of the matrix (without transposition) is also given by Pr∞fWiki and turns out to be

[W−1
n+1]ij =

(−1)n−ien−i({0, 1, . . . , n} / {j})

∏
n+1
m=0,m≠j(j −m)

,

note that in the citation i, j ∈ {1, . . . , n}, whereas here we define i, j ∈ {0, . . . , n}. Transposing
this matrix and noting that we can safely omit 0 in the set yields

[(W−1
n+1)

⊺
]ij =

(−1)n−jen−j({1, . . . , n} / {i})

∏
n
m=0,m≠i(i −m)

.

Using this matrix we can then compute the coefficients of ci by using the following relation

ci =
n
∑
j=0
[(W−1

n+1)
⊺]ij nj+1

/(j + 1)

=
n
∑
j=0

nj+1 (−1)n−jen−j({1, . . . , n} / {i})
(j + 1)∏n

m′=0,m′≠i(i −m′)
. (B.5)
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Since 0 ≤ i ≤ n we can simplify the product in the denominator to

n
∏

m=0,m≠i
(i −m) = i ⋅ (i − 1)⋯2 ⋅ 1 ⋅ −1 ⋅ −2⋯(i − n − 1) ⋅ (i − n) = i!(n − i)!(−1)n−i .

Also, from Lemma 4 in combination with Lemma 5 we have that

en−j({1, . . . , n} / {i}) =
n−j

∑
m=0
(−i)m∣s(n + 1, n + 1− (n − j −m))∣ .

Substituting these relations into equation B.5 yields

ci =
n
∑
j=0

nj+1 (−1)n−jen−j({1, . . . , n} / {i})
(j + 1)i!(n − i)!(−1)n−i

=
n
∑
j=0

nj+1 (−1)n−j
∑

n−j
m=0(−i)m∣s(n + 1, n + 1− (n − j)+m)∣
(j + 1)i!(n − i)!(−1)n−i

=
1

(n − 1)!
(

n
i
)

n
∑
j=0

nj (−1)i−j
∑

n−j
m=0(−i)m∣s(n + 1, j +m + 1)∣

j + 1

=
1

(n − 1)!
(

n
i
)

n
∑
j=0

n−j

∑
m=0

imnj (−1)i−j+m(−1)n−j−ms(n + 1, j +m + 1)
j + 1

=
1

(n − 1)!
(

n
i
)

n
∑
j=0

n−j

∑
m=0

imnj (−1)i+ns(n + 1, j +m + 1)
j + 1

.

Proving the theorem.





ChapterC
Matrices from the example calculation

These are the matrices from the example calculation in Section 3.3 for the separate interpolation
method described in Section 3.1. The computer code for generating these matrices can be
found in Appendix D.

B =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−0.87832 −0.26219 0.14557 −0.0097228
−0.97689 0.10889 0.10182 −0.0097228
−0.61727 0.34872 0.058066 −0.019683
−0.02998 0.39005 −0.03051 −0.014518
0.43745 0.20053 −0.095841 −0.0025022
0.51415 −0.10389 −0.1071 0.011436
0.15594 −0.348 −0.055639 0.018071
−0.43025 −0.39293 0.025681 0.018071

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

C =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−0.83134 0.26959 0.096787 −0.011336 −0.0019914 0.00021437
−0.2559 0.46198 0.026152 −0.018416 −0.00030821 0.00024732
0.43407 0.41822 −0.052521 −0.014786 0.0015849 0.0001794
0.90271 0.18678 −0.091602 −0.0013727 0.0029417 0.000096965
0.98777 −0.055268 −0.053976 0.016086 0.0059934 −0.001363
0.85769 −0.062041 0.05026 0.024694 −0.014291 0.0013866
0.89925 0.097732 0.017243 −0.028331 0.0014721 0.00040516
0.99955 −0.011708 −0.077081 −0.011424 0.0035001 −0.00012811

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

D =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−0.8518 −0.52995 −0.47276 −0.49211
0.14199 0.23699 0.3016 0.38253
1.0466 0.87334 0.91425 1.0546
1.4641 1.1135 1.1177 1.2588
1.3856 1.0132 1.0001 1.1164
1.2855 0.97247 0.97915 1.1071
1.4454 1.1042 1.1126 1.2566
1.3901 1.0027 0.97905 1.0837

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
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ChapterD
Computer code

This computer code is for the example calculation conducted in Section 3.3. The implemented
method is from Section 3.1 and can function as a guideline for future research.

1 '''
2 In this script we approximate the integral of f(x)*g(x) over the
3 interval [-x_L, x_R]. The used method is described in chapter 3.1
4 and the used alteration to the method is given in chapter 3.3.
5 '''
6 import numpy as np
7 import numpy.polynomial.polynomial as np_pol
8 from scipy.interpolate import interp1d
9

10

11 ### We first define both functions
12 def f(x):
13 return np.cos(np.sqrt((x-1)**2/4+1))
14 # return 1/(1+(abs(x)**2)/10)
15

16 def g(x):
17 return np.sin(np.sqrt((x-2)**2/4+1))
18 # return 1/(1+(abs(x+1)**2)/10)
19

20

21 ### Here we plot the difference between separate and combined spline interpolation
22 x_L, x_R = -6, 6
23 n_f, n_g = 3, 5
24 num_samples = 9
25

26 ### Defining the samples points and the distances/inner_widths
27 ### of the subintervals, i.e. x_1-x_0
28 ell = num_samples-1
29 samples = np.linspace(x_L, x_R, num_samples)
30 inner_width = (x_R-x_L)/(ell)
31

32 ### Interpolating the not known polynomial with (cubic) splines at the
33 ### sample points
34 splines = interp1d(samples, f(samples), kind='cubic')
35

36 ### Calculating the coefficients of interpolation, i.e. matrices B and C
37 # Note: The function interp1d from scipy does not give the coefficients of the
38 # cubic splines therefore we use numpy for a polynomial fit on the cubic
39 # splines on all the subintervals from the fit we can extrapolate the
40 # coefficients of the polynomials. However, this method is not recommended

53



54 D. Computer code

41 # as it requires a subdivision of the interval, instead implement a spline
42 # interpolation that does return the interpolating coefficients.
43 b, c = [], []
44 for idx, i in enumerate(samples[:-1]):
45 # with shifted intervals
46 interval = np.linspace(i, i+inner_width, 1000)
47 mapped_interval = np.linspace(0, inner_width, 1000)
48 pol_f = np_pol.Polynomial.fit(mapped_interval, splines(interval), n_f)
49 pol_g = np_pol.Polynomial.fit(mapped_interval, g(interval), n_g)
50

51 b.append(list(pol_f.convert().coef))
52 c.append(list(pol_g.convert().coef))
53

54 ### Calculating and storing the powers of x, note that the intervals were shifted
55 powers_x = [
56 [(inner_width)**(jk+1) / (jk+1) for jk in range(n_f+n_g+2)]
57 for i in range(len(c))
58 ]
59

60 ### Calculating and storing all values of the matrix D
61 # Note: We do not need to store the values of the matrix D if we only have
62 # one sensor because we then do not need to shift the matrix B to calculate
63 # its frobenius product with matrix D, however for clarity this is
64 # implemented nonetheless.
65 d = [[0 for _ in range(n_f+1)] for _ in range(ell)]
66 for i in range(ell):
67 for j in range(n_f+1):
68 d[i][j] = sum(c[i][k] * powers_x[i][j+k] for k in range(n_g+1))
69

70 ### Calculating the final integral
71 som = 0
72 for i in range(ell):
73 for j in range(n_f+1):
74 som += b[i][j] * d[i][j]
75

76 print(f'Our answer for the integral is {som}')

This is the computer code for generating the results from Chapter 5.
1 import numpy as np
2 import matplotlib.pyplot as plt
3 from mpl_toolkits import mplot3d
4 from scipy.interpolate import interp2d, griddata
5

6 def p(x, y):
7 """Returns the [real, imaginary] part of the pressure function P(x,y,0,omega)
8 """
9 ans = np.zeros((2,) + x.shape)

10 for x_S, y_S, z_S in sources:
11 dr = np.sqrt((x-x_S)**2 + (y-y_S)**2 + z_S**2)
12 ans[0] += np.cos(k * dr) / dr
13 ans[1] += -np.sin(k * dr) / dr
14 return ans
15

16 def dG(x, y, x_A, y_A):
17 """Returns the [real, imaginary] part of the Green's function (dG/dz)_{z=0}
18 """
19 dr = np.sqrt((x-x_A)**2 + (y-y_A)**2 + z_A**2)
20 real_part1 = z_A /(dr**3) * np.cos(k*dr)
21 real_part2 = z_A*k/(dr**2) * np.sin(k*dr)
22 imag_part1 = -z_A /(dr**3) * np.sin(k*dr)
23 imag_part2 = z_A*k/(dr**2) * np.cos(k*dr)
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24 return [real_part1+real_part2, imag_part1+imag_part2]
25

26 def prod(x, y, x_A, y_A):
27 """Returns the [real, imaginary] part of the product of p and dG
28 """
29 pressure = p(x, y)
30 greens = dG(x, y, x_A, y_A)
31 return [pressure[0]*greens[0] - pressure[1]*greens[1],
32 pressure[0]*greens[1] + pressure[1]*greens[0]]
33

34

35 def integral(x, y, res, method='trapezeoid'):
36 """Calculate the integral using various methods
37 """
38 if method == 'trapezeoid': # equidistant is assumed
39 h_x = inter_x/(x.shape[1]-1) # average
40 h_y = inter_y/(x.shape[0]-1) # average
41 c_x = np.array([1] + [2]*(x.shape[0]-2) + [1]) * h_x/2
42 c_y = np.array([1] + [2]*(x.shape[1]-2) + [1]) * h_y/2
43 C = c_x.reshape((len(x), 1)) * c_y
44 real = np.multiply(C, res[0]).sum()
45 imag = np.multiply(C, res[1]).sum()
46 return [real, imag]
47

48 elif method == 'altered_trapezeoid': # rectilinear is assumed
49 C = np.zeros(x.shape)
50 for i_x in range(x.shape[1]-1):
51 for i_y in range(x.shape[0]-1):
52 h_x = (x[i_y][i_x+1]-x[i_y][i_x])
53 h_y = (y[i_y+1][i_x]-y[i_y][i_x])
54 h = h_x * h_y / 4
55 C[i_y:i_y+2, i_x:i_x+2] += h
56

57 real = np.multiply(C, res[0]).sum()
58 imag = np.multiply(C, res[1]).sum()
59 return [real, imag]
60

61 elif method == 'simpson': # equidistant is assumed
62 lst = [1, 4, 1]
63 frac = 1/3
64

65 ### check if dimensions add up, this would not be necessary
66 # if using appropriate boundary interpolations
67 if ((x.shape[0]-len(lst)) % (len(lst)-1) != 0
68 or (x.shape[1]-len(lst)) % (len(lst)-1) != 0):
69 print('change #ticks to', (x.shape[0]-len(lst)) % (len(lst)-1)
70 (x.shape[1]-len(lst)) % (len(lst)-1))
71 raise BaseException
72

73 ### do the calculation
74 h_x = inter_x/(samples_x-1) # average
75 h_y = inter_y/(samples_y-1) # average
76

77 c_x = np.array(
78 [lst[0]] +
79 (lst[1:-1] + [lst[-1]+lst[0]]) * ((x.shape[0]-len(lst))//(len(lst)-1)) +
80 lst[1:]
81 ) * (h_x*frac)
82

83 c_y = np.array(
84 [lst[0]] +
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85 (lst[1:-1] + [lst[-1]+lst[0]]) * ((x.shape[1]-len(lst))//(len(lst)-1)) +
86 lst[1:]
87 ) * (h_y*frac)
88

89 C = c_x.reshape((x.shape[0], 1)) * c_y
90 real = np.multiply(C, res[0]).sum()
91 imag = np.multiply(C, res[1]).sum()
92 return [real, imag]
93

94 elif method == 'altered_simpson': # semi-equidistant is assumed
95 ### do the calculation
96 tot_real = 0
97 tot_imag = 0
98 # looping through all possible starting points
99 for i_x in range(0, len(x[0])-2, 2):

100 for i_y in range(0, len(x)-2, 2):
101 for is_complex in range(0, 2): # real, complex
102 f = {(i%3, i//3):
103 res[is_complex][i_y+i%3, i_x+i//3] for i in range(9)}
104

105 h_x = sum((x[i][i_x+2] - x[i][i_x])/2
106 for i in range(i_y, i_y+3)) / 3 # average
107 h_y = sum((y[i_y+2][i] - y[i_y][i])/2
108 for i in range(i_x, i_x+3)) / 3 # average
109

110 d_x0 = x[i_y+0][i_x+1] - (x[i_y+0][i_x+2]+x[i_y+0][i_x])/2
111 d_x1 = x[i_y+1][i_x+1] - (x[i_y+1][i_x+2]+x[i_y+1][i_x])/2
112 d_x2 = x[i_y+2][i_x+1] - (x[i_y+2][i_x+2]+x[i_y+2][i_x])/2
113

114 d_y0 = y[i_y+1][i_x+0] - (y[i_y+2][i_x+0]+y[i_y][i_x+0])/2
115 d_y1 = y[i_y+1][i_x+1] - (y[i_y+2][i_x+1]+y[i_y][i_x+1])/2
116 d_y2 = y[i_y+1][i_x+2] - (y[i_y+2][i_x+2]+y[i_y][i_x+2])/2
117 d_y = (d_y0+d_y1+d_y2)/3 # no rotation of axis for better result
118

119

120 a_0 = h_x * (
121 -3*d_x0**2*(f[(0,0)]+f[(2,0)]) +
122 2*d_x0 *(f[(0,0)]-f[(2,0)])*h_x +
123 h_x**2 *(f[(0,0)]+4*f[(1,0)]+f[(2,0)])
124 ) / (3*(h_x**2-d_x0**2))
125

126 a_1 = h_x * (
127 -3*d_x1**2*(f[(0,1)]+f[(2,1)]) +
128 2*d_x1 *(f[(0,1)]-f[(2,1)])*h_x +
129 h_x**2 *(f[(0,1)]+4*f[(1,1)]+f[(2,1)])
130 ) / (3*(h_x**2-d_x1**2))
131

132 a_2 = h_x * (
133 -3*d_x2**2*(f[(0,2)]+f[(2,2)]) +
134 2*d_x2 *(f[(0,2)]-f[(2,2)])*h_x +
135 h_x**2 *(f[(0,2)]+4*f[(1,2)]+f[(2,2)])
136 ) / (3*(h_x**2-d_x2**2))
137

138

139 if is_complex == 0:
140 tot_real += h_y * (
141 -3*d_y**2*(a_0+a_2) +
142 2*d_y *(a_0-a_2)*h_y +
143 h_y**2*(a_0+4*a_1+a_2)
144 ) / (3*(h_y**2-d_y**2))
145 elif is_complex == 1:
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146 tot_imag += h_y * (
147 -3*d_y**2*(a_0+a_2) +
148 2*d_y *(a_0-a_2)*h_y +
149 h_y**2*(a_0+4*a_1+a_2)
150 ) / (3*(h_y**2-d_y**2))
151

152 return [tot_real, tot_imag]
153

154 elif method == 'separate': # equidistant is assumed
155 '''
156 Instead of dealing with the summation over the coefficients, in this
157 implementation the pressure function is interpolated by a cubic spline.
158 Since the derivative of the Green's function is known analytically,
159 we do not interpolate it in this implementation, however, this does
160 need to be done for faster evaluation. Afterwards we calculate the integral
161 over the subinterval by means of a regular sum (thus diving it into
162 subsubintervals). Once again, we do not use a summation over coefficients,
163 since this was easier to implement and produces approximately the same
164 results.
165 '''
166 ### First we interpolate the pressure graph
167 real_pressure = interp2d(meas_x, meas_y,
168 p(x, y)[0], kind='cubic')(plot_x, plot_y)
169 imag_pressure = interp2d(meas_x, meas_y,
170 p(x, y)[1], kind='cubic')(plot_x, plot_y)
171 ### Then for the greens function we use a finer grid
172 real_greens = interp2d(plot_x, plot_y,
173 dG(plot_X, plot_Y, x_A, y_A)[0], kind='cubic')(plot_x, plot_y)
174 imag_greens = interp2d(plot_x, plot_y,
175 dG(plot_X, plot_Y, x_A, y_A)[1], kind='cubic')(plot_x, plot_y)
176

177 real = real_pressure*real_greens - imag_pressure*imag_greens
178 imag = real_pressure*imag_greens + imag_pressure*real_greens
179 res = [real, imag]
180

181 return integral(plot_X, plot_Y, res, method='trapezeoid')
182

183 elif method == 'altered_separate': # non-equidistant is assumed
184 '''
185 See "separate" method
186 '''
187 ### First we interpolate the pressure graph
188 points = np.array([x.flatten(), y.flatten()]).transpose()
189

190 # We get an error if values to interpolate to not lie inside the convex
191 # hull of points, thus the outer points are assumed to be equidistant
192 # else, a nearest value approach is recommended.
193 xmeas = x.copy()
194 xmeas[1:-1,1:-1] = meas_X[1:-1,1:-1].copy()
195 ymeas = y.copy()
196 ymeas[1:-1,1:-1] = meas_Y[1:-1,1:-1].copy()
197

198 interpol = np.array([xmeas.flatten(), ymeas.flatten()]).transpose()
199 a = griddata(points, p(x, y)[0].flatten(), interpol, method='cubic')
200 b = griddata(points, p(x, y)[1].flatten(), interpol, method='cubic')
201 a = a.reshape((samples_y, samples_x))
202 b = b.reshape((samples_y, samples_x))
203

204 real_pressure = interp2d(meas_x, meas_y, a, kind='cubic')(plot_x, plot_y)
205 imag_pressure = interp2d(meas_x, meas_y, b, kind='cubic')(plot_x, plot_y)
206 ### Then for the greens function we use a finer grid
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207 real_greens = interp2d(plot_x, plot_y,
208 dG(plot_X, plot_Y, x_A, y_A)[0], kind='cubic')(plot_x, plot_y)
209 imag_greens = interp2d(plot_x, plot_y,
210 dG(plot_X, plot_Y, x_A, y_A)[1], kind='cubic')(plot_x, plot_y)
211

212 real = real_pressure*real_greens - imag_pressure*imag_greens
213 imag = real_pressure*imag_greens + imag_pressure*real_greens
214 res = [real, imag]
215

216 return integral(plot_X, plot_Y, res, method='trapezeoid')
217

218

219 ### defining variables
220 inter_x, inter_y = 50, 70
221 samples_x, samples_y = 29, 29
222 plot_samples_x, plot_samples_y = 4001, 4001
223 sources = [(10, 0, 2), (0, 15, 1.5), (1, -5, 1.7), (-13, 13, 2.3)]
224 k = 0.5 # omega/c, constant here
225 x_A, y_A, z_A = 0.9, -1.4, 10
226

227

228 ### making measurement ticks
229 meas_x = np.linspace(-inter_x/2, inter_x/2, samples_x)
230 meas_y = np.linspace(-inter_y/2, inter_y/2, samples_y)
231 meas_X, meas_Y = np.meshgrid(meas_x, meas_y)
232 # meas_res = prod(meas_X, meas_Y, x_A, y_A)
233

234 ## with noise
235 noise = 0.0005 # relative noise
236 np.random.seed(1)
237 meas_X2, meas_Y2 = meas_X.copy(), meas_Y.copy()
238 x_noise = np.random.normal(size=(samples_y, samples_x))*(inter_x*noise/samples_x)
239 y_noise = np.random.normal(size=(samples_y, samples_x))*(inter_y*noise/samples_y)
240 meas_X2 += x_noise
241 meas_Y2 += y_noise
242 meas_res = prod(meas_X2, meas_Y2, x_A, y_A)
243

244 ### printing values
245 h_x = meas_x[1]-meas_x[0]
246 h_y = meas_y[1]-meas_y[0]
247 amount_noise_x = np.abs(x_noise).sum()/(samples_x*samples_y)
248 amount_noise_y = np.abs(y_noise).sum()/(samples_x*samples_y)
249 print(f'relative x noise of {amount_noise_x/h_x*100:.2g}%')
250 print(f'relative y noise of {amount_noise_y/h_y*100:.2g}%')
251

252 ### making plot ticks
253 plot_x = np.linspace(-inter_x/2, inter_x/2, plot_samples_x)
254 plot_y = np.linspace(-inter_y/2, inter_y/2, plot_samples_y)
255 plot_X, plot_Y = np.meshgrid(plot_x, plot_y)
256 plot_res = prod(plot_X, plot_Y, x_A, y_A)
257

258 # calculate the answer for the integral on a finer grid
259 ans = integral(plot_X, plot_Y, plot_res)
260

261 # approximate the integral using the basic method
262 compare = 'trapezeoid'
263 val = integral(meas_X2, meas_Y2, meas_res, method=compare)
264 compare_rel_mse = np.sqrt(
265 1/2*(abs(val[0]-ans[0])**2 + abs(val[1]-ans[1])**2) / (ans[0]**2 + ans[1]**2)
266 )
267 print(f'{compare.ljust(20)} method, with a MSE of: {compare_rel_mse:#.4e}')
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268

269 # approximate the integral using various methods
270 for method in ['altered_trapezeoid', 'simpson',
271 'altered_simpson', 'separate', 'altered_separate']:
272 val = integral(meas_X2, meas_Y2, meas_res, method=method)
273 rel_mse = np.sqrt(
274 1/2*(abs(val[0]-ans[0])**2 + abs(val[1]-ans[1])**2) / (ans[0]**2+ans[1]**2)
275 )
276 print(f'{method.ljust(20)} method, with a MSE of: {rel_mse:#.4e} '
277 f'this is a factor {compare_rel_mse/rel_mse:#.3g} better')
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