
Explaining detectable precedences for the
disjunctive constraint

Matthias van Vliet1
Supervisors: Emir Demirović1, Imko Marijnissen1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fullment of the Requirements

For the Bachelor of Computer Science and Engineering
June 22, 2025

Name of the student: Matthias van Vliet
Final project course: CSE3000 Research Project
Thesis committee: Emir Demirović, Imko Marijnissen, Stephanie Wehner

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Explaining detectable precedences for the1

disjunctive constraint2

Matthias van Vliet #3

Delft University of Technology, The Netherlands4

Abstract5

As lazy clause generation has seen much success in recent years, the generation of explanations6

has become the focus of much research. This paper describes how explanations can be generated7

for detectable precedences in the disjunctive constraint. We also provide a method to incorporate8

these explanations into the filtering algorithm proposed by Fahimi et al. [7] by adapting Vilím’s9

explanations [18]. We proposed two approaches to generating explanations: an approach using only10

the previously scheduled tasks to explain propagation and an approach using an even smaller subset11

of tasks combined with explanation lifting. An empirical evaluation of two of our approaches for12

generating explanations compared to a baseline with naïve explanations found that both approaches13

performed better in terms of conflicts, LBD, learned clause length and runtime. The most advanced14

approach of the two (last cluster) performed the best. We believe that using the last cluster approach15

to generating explanations with other propagators for the disjunctive constraint could be successful.16

2012 ACM Subject Classification Theory of computation → Constraint and logic programming17

Keywords and phrases Constraint Programming, LCG, Disjunctive Constraint18

1 Introduction19

One of the most prevalent constraints used to model scheduling problems is the disjunctive20

constraint [16]. The disjunctive constraint enforces that two tasks using the same resource21

can not overlap. This constraint can for example be used to ensure that one lecture hall is22

not used by multiple lectures at the same time.23

To solve such scheduling problems, constraint programming (CP) solutions are often24

considered. In CP, problems are modeled as a combination of variables and constraints25

before a solver is called to find a solution to the model. CP solvers often combine exhaustive26

search with domain-filtering (propagation) of variables to avoid exploring infeasible solutions.27

Propagators for the disjunctive constraint are used to ensure that the tasks within the28

constraint do not overlap. Propagation is performed by so-called filtering algorithms, which29

are based on certain propagation rules. One of these rules for the disjunctive constraint is30

detectable precedences. Detectable precedences is one of the simpler propagation rules for31

the disjunctive constraint, but it is sometimes able to find propagations which cannot be32

found by more complex rules such as edge-finding and not-first/not-last [16].33

For detectable precedences, a filtering algorithm with a time complexity of O(n log n) is34

described by Vilím in 2004 [17]. In 2014, Fahimi et al. [7] published a linear time filtering35

algorithm. In a later paper, Fahimi et al. [6] recommended that future work should be36

done on adapting the algorithm to support explanations, which would then allow lazy clause37

generation (LCG) [9] to be used. This is a state-of-the-art CP solving technique, which38

has been the focus of much research in recent years. The usage of LCG necessitates the39

generation of explanations.40

Explanations are reasons for certain propagations. A solver which generates explanations41

does not only need to prune the domains of variables, they also need to capture the reason42

for the modification of the domain. This reason is often in the form of a conjunction of43

atomic constraints involving the variables that are currently filtered [15].44

mailto:m.b.vanvliet@tudelft.nl

2 Explaining detectable precedences for the disjunctive constraint

Figure 1 A graphical representation of the situation given in example 1

▶ Example 1. Suppose we have two tasks: S1 ∈ [0, 2] and S2 ∈ [0, 10] (task one can start45

at times 0-2 and task two can start at times 0-10). Task one takes two units of time to46

complete and task two four. The situation is sketched in figure 1. Because the earliest47

possible completion time of task two is greater than the latest possible starting time of task48

one, we can conclude that task one must precede task two. We can therefore propagate that49

S2 ≥ 2. An explanation for this propagation is the following: S1 ≥ 0 ∧ S1 ≤ 2 ∧ S2 ≥ 0.50

Explanations for the disjunctive constraint have not been described extensively in the51

literature. While Vilím described a way to generate explanations for the disjunctive constraint52

in 2005 [18], we will see in the preliminaries (3.6) that Vilím’s explanations can not be directly53

used in an LCG solver.54

Considering that Fahimi et al. [6] recommended future work on evaluating their algorithm55

in an LCG setting and that explanations for the disjunctive constraint described in the56

literature cannot be directly used in an LCG solver, our research aims to fill this gap. We do57

so by describing how the linear time filtering algorithm proposed by Fahimi et al. [7] can be58

adapted to support explanations. We would also like to show the performance implications59

of using these explanations in a lazy clause generating solver.60

We describe three approaches to generating explanations in the approach section. The61

first approach is a naïve baseline approach to generating explanations. The second approach62

is based on a simple observation we make in Fahimi’s algorithm, namely that the previously63

scheduled tasks are sufficient to explain propagation. For the third approach we propose64

a method to combine Fahimi’s algorithm with an adaptation of Vilím’s way of generating65

explanations for detectable precedences. For this we show that a subset of the previously66

scheduled tasks satisfies the property of Ω′ described by Vilím [18]. We then show how to67

record this set of tasks in Fahimi’s algorithm [7]. Lastly, we describe how the explanation68

can be lifted in a way that is valid within an LCG solver by using an intermediate result69

from Vilím [18].70

We evaluate the three approaches on a set of 50 jobshop instances. The results indicate71

that both non-baseline approaches outperform the naïve baseline approach in terms of number72

of conflicts, literal block distance, learned clause length and runtime. The metrics indicate73

that the third approach, called last cluster, performs best across all metrics.74

To summarise our contributions, we described a way to generate explanations for detect-75

able precedences in Fahimi’s algorithm using an adaptation of Vilím’s way of generating76

M. van Vliet 3

explanations. We also provide an empirical evaluation of two explanation strategies compared77

to a naïve baseline approach.78

This paper is structured in the following way: in Section 2 we will discuss related work,79

followed by Section 3 describing the preliminary knowledge necessary for understanding the80

different approaches. Section 4 describes the three approaches that are used for benchmarking.81

Section 5 outlines our experiment, after which we give the conclusion and recommendations82

for future work in Section 6. Lastly, the responsible research section can be found in83

Appendix A.84

2 Related work85

Multiple propagation rules for the disjunctive constraint are described in the literature.86

Vilím’s PhD thesis [16] describes filtering algorithms for overload checking, not-first/not-last,87

edge-finding and detectable precedences. The propagation rules edge-finding and not-first/not-88

last do not subsume detectable precedences, which is visualised in figure 2.6 of [16]. Because89

different rules can supplement each other, different propagators are often combined [16, 17].90

Filtering algorithms using detectable precedences have been described in [17] and [7].91

Vilím’s paper [17] proposes an O(n log n) algorithm that incrementally constructs a balanced92

binary tree of all tasks that must be scheduled before the task we are considering. This93

Θ-tree also keeps track of the earliest completion time of all tasks scheduled on the tree,94

which is used as the new lower bound of the starting time of the following tasks. Fahimi95

et al. [7] proposes a similar algorithm, which uses a timeline data structure instead of a96

tree. This timeline data structure is based on a Union-Find data structure, which allows97

for O(1) scheduling of tasks rather than Vilím’s O(log n). This causes Fahimi’s algorithm98

to run in linear time. In 2018 another publication by Fahimi et al. [6] suggested that99

future work incorporates explanations in the algorithms to evaluate its performance in a lazy100

clause generation solver. Neither Vilím’s nor Fahimi’s work describes how to explain the101

propagations made by the filtering algorithms.102

However, previous work on explaining the disjunctive constraint has been done by Vilím103

in 2005 [18]. Here the author proposed to generate justifications based on conflict windows104

for not-first/not-last, edge-finding, and detectable precedences. Justifications are similar105

to the explanations we want to generate. These justifications can not be used directly in106

an LCG solver, because the justifications only explain that a propagation must occur, but107

it does not justify how much the earliest starting time of the propagated task is increased.108

In the preliminaries section we will see how Vilím’s conflict windows can be adapted to109

explanations that can be used in our propagator.110

There is some more recent work that was done on explaining propagators for the cumulative111

constraint by Yang et al. [19] and by Schutt et al. [15]. The cumulative constraint is a112

generalisation of the disjunctive constraint where limited overlap of tasks is allowed. Both113

papers provide explanations within a lazy clause generation context followed by an empirical114

evaluation in which the different explanation approaches are compared to each other. The115

results in both papers showed that explanations have a significant effect on the performance116

of the solver.117

Our work aims to incorporate explanations into the detectable precedences algorithm118

proposed by Fahimi et al. [7]. We use an adaptation of Vilím’s [18] justifications to explain119

propagations in a lazy clause generating context. To support these explanations, an addition120

to the timeline data structure used by Fahimi’s algorithm is necessary.121

4 Explaining detectable precedences for the disjunctive constraint

3 Preliminaries122

We provide background on Constraint Programming and Lazy Clause Generation in 3.1123

and 3.2 respectively. To understand the different approaches for generating explanations124

we describe in the approach section, it is necessary to first understand the basic scheduling125

terminology. This is discussed in 3.3. Then we will briefly explain the detectable precedences126

rule in 3.4. For the third, most advanced, explanation approach we consider it necessary to127

be familiar with the algorithm described in 3.5 and Vilím’s explanation approach in 3.6.128

3.1 Constraint Programming129

Constraint programming (CP) is an approach to solving combinatorial problems in which the130

problem is formulated as a combination of a set of variables V , a set of domains D and a set of131

constraints C. Constraints are rules that a valid assignment must adhere to. An assignment132

consists of a mapping of every variable x ∈ V to a value d ∈ D(x), where D(x) denotes the133

domain associated with x. We distinguish between constraint satisfaction problems (CSPs) in134

which any valid assignment needs to be found and constraint optimisation problems (COPs)135

in which the optimal valid assignment needs to be found. In COPs an objective function is136

added, which is used to assess how good an assignment is.137

When solving CSPs and COPs, exhaustive search using backtracking is often combined138

with constraint propagation to make exhaustive search more tractable. In constraint propaga-139

tion, the domains of variables involved in the same constraint are pruned if a constraint140

propagator can infer that assigning a variable a certain value from its domain would always141

result in a violation of the constraint. If a propagator prunes all remaining values from a142

domain, there does not exist a valid assignment to that variable and we encounter a conflict.143

3.2 Lazy Clause Generation144

Lazy clause generation (LCG) is a CP solver technique, which uses an embedded SAT engine145

to allow the usage of conflict analysis [9]. When a conflict is encountered, the reason for146

the conflict is processed and a nogood clause is learned. Instead of backtracking one level147

in regular backtracking, the solver can backjump to the decision level at which the nogood148

became true. In order to allow the usage of conflict analysis, propagators in an LCG solver149

need to record reasons for propagations and conflicts. These reasons are called explanations.150

Explanations are given as a conjunction of atomic constraints, which implies the propagation151

that is made. Explanations can often be made more general in order to learn more general152

nogoods. This is called explanation lifting. Feydy et al. [8] found that explanation lifting153

could improve solving time on certain benchmarks.154

3.3 Scheduling terminology155

We will consider I the set of all tasks that need to be scheduled. Every task i ∈ I is156

characterised by the following properties:157

esti is the earliest starting time of i.158

lcti is the latest completion time, or the deadline of i.159

pi is the duration of task i.160

In addition to these three defining properties, we also use the following notation:161

lsti = lcti − pi is the latest starting time of i.162

ecti = esti + pi is the earliest completion time of i.163

M. van Vliet 5

The est notation can also be used on sets of tasks. Suppose we have a set of tasks Ω,164

then the following definitions hold for Ω:165

estΩ = mini∈Ω esti166

lstΩ = maxi∈Ω lsti167

pΩ =
∑

i∈Ω pi168

We will often use S to refer to the variable of the starting time of a task. Therefore, the169

following should hold: Si ∈ [esti, lsti]170

3.4 Detectable precedences171

Given two distinct tasks, i, j ∈ I the precedence (j ≪ i) is detectable if:172

ecti > lstj173

When we have detected a precedence j ≪ i, we know that the earliest possible starting174

time for i must be at least as late as the earliest completion time of j. This gives us the175

following propagation rule:176

est′
i = max(ectj , esti)177

The symmetric case also holds, but in this paper only the detectable precedences using178

the rule above are considered.179

3.5 Timeline data structure180

We will first explain the timeline data structure introduced by Fahimi et al. [7] and after181

that their proposed algorithm (algorithm 5) for detectable precedences will also be included.182

The timeline data structure was introduced by Fahimi et al. [7] in 2014. They took183

inspiration from López-Ortiz et al. [14] who proposed a new algorithm for the alldifferent184

constraint, a specialisation of the disjunctive constraint.185

The timeline data structure contains five fields:186

1. t, an array containing all distinct earliest starting times of the tasks. A sufficiently large187

time is appended to allow all tasks to be scheduled on this timeline. The sufficiently large188

time used by Fahimi et al. is also the one we shall use:189

max
i∈I

lcti +
∑
i∈I

pi190

2. c, an array keeping track of the capacities between different earliest starting times of191

tasks in t. At initialisation of the timeline, the following holds:192

∀k ∈ {0, ..., |t| − 2} c[k] = t[k + 1]− t[k]193

3. m, an array that maps the task with index i to its earliest starting time on t. So if the194

earliest starting time of task i is 3, t[m[i]] = 3 should hold.195

4. s, a union find data structure that is used to keep track of the capacity between different196

starting times in t. s is initialized with |t| elements and if a task is scheduled, which197

causes c[a] = 0, the sets of a and a + 1 are merged. This allows for O(1) lookup of the198

first gap later than the earliest starting time of the task that needs to be scheduled.199

6 Explaining detectable precedences for the disjunctive constraint

5. e, a number keeping track of the highest index in c on which a task has been (partially)200

scheduled. This is used to calculate the earliest completion time of the timeline. e is201

initialised to -1.202

An algorithm specifying how the timeline data structure is initialized is given in [7]. Here we203

will show the initialisation based on an example.204

▶ Example 2. Consider three tasks defined by their tuples (est, p, lct). I = {(1, 5, 8), (5, 2, 9), (5, 3, 15)}205

Initialising the timeline gives us the following values for the fields:206

t = [1, 5, 25]207

c = [4, 20]208

m = [0, 1, 1]209

s = {{0}, {1}, {2}}210

e = −1211

We use the following notation to display the current timeline with its capacity: {1} 4−→212

{5} 20−→ {25}213

3.5.1 Task scheduling214

Scheduling of tasks is performed through the following algorithm. This algorithm is algorithm215

3 in [7].216

Algorithm 1 ScheduleTask(i)
ρ← pi

k ← s.FindGreatest(m[i])
while ρ > 0 do

∆← min(c[k], ρ)
ρ← ρ−∆
c[k]← c[k]−∆
if c[k] = 0 then

s.Union(k, k + 1)
k ← s.FindGreatest(k)

end if
end while
e← max(e, k)

▶ Example 3. If we consider the timeline from the previous example, we get the following217

timelines when scheduling the tasks:218

{1} 4−→ {5} 20−→ {25}, before any tasks are scheduled.219

{1, 5} 19−→ {25}, after scheduling the first task220

{1, 5} 17−→ {25}, after scheduling the second task221

{1, 5} 14−→ {25}, after scheduling the third task222

The earliest completion time of the current timeline can be computed by evaluating the223

following expression:224

ECTΘ = t[e + 1]− c[e]225

After the third task has been added, ECTΘ = 11226

M. van Vliet 7

3.5.2 Detectable precedences filtering algorithm227

All timeline preliminary knowledge builds up to the following filtering algorithm, which uses228

the detectable precedences rule. This algorithm is algorithm 5 in [7]. It works by considering229

tasks sorted on ect for propagation in the outer loop and the tasks in the inner while loop230

sorted on lst are scheduled on the timeline if they precede task i based on the detectable231

precedences rule. Since tasks with a compulsory part lstk < ectk could be scheduled on the232

timeline before being considered for filtering, scheduling needs to be postponed until the233

blocking task k is visited in the outer loop.234

Ilst denotes the set of tasks I sorted by latest starting time in ascending order.

Algorithm 2 DetectablePrecedences(I)

InitializeTimeline(I)
j ← 0
k ← Ilst[j]
postponed_tasks← ∅
blocking_task ← null

for i ∈ Iect do
while j < |I| ∧ lstk < ecti do

if lstk ≥ ectk then ScheduleTask(k)
else

if blocking_task ̸= null then return Inconsistent
end if
blocking_task ← k

end if
j ← j + 1
k ← Ilst[j]

end while
if blocking_task = null then

est′
i ← max(esti, EarliestCompletionTime())

else
if blocking_task = i then

est′
i ← max(esti, EarliestCompletionTime())

ScheduleTask(blocking_task)
for z ∈ postponed_tasks do

est′
z ← max(estz, EarliestCompletionTime())

end for
blocking_task = null

postponed_tasks← ∅
else

postponed_tasks← postponed_tasks ∪ {i}
end if

end if
end for
for i ∈ I do

esti ← est′
i

end for
235

To illustrate this algorithm we give the following example:236

8 Explaining detectable precedences for the disjunctive constraint

▶ Example 4. Suppose we have four tasks defined by their triple (est, p, lct):237

1. Task 1: (0, 2, 6) with lst = 4 and ect = 2238

2. Task 2: (3, 5, 10) with lst = 5 and ect = 8239

3. Task 3: (7, 5, 15) with lst = 10 and ect = 12240

4. Task 4: (4, 2, 20) with lst = 18 and ect = 6241

The situation is also sketched in figure 2 We give a full algorithm walkthrough in Appendix B.

Figure 2 The situation described in example 4. Note that the order of tasks 3 and 4 could be
switched as this does not produce an infeasible schedule.

242

After applying the algorithm, it can be found that the adjusted earliest starting times of the243

tasks are the following:244

1. est1 = 0245

2. est2 = 3246

3. est3 = 8247

4. est4 = 8248

3.6 Vilím’s explanations for detectable precedences249

Vilim’s 2005 paper [18] describes ways to generate explanations for propagators for the250

disjunctive constraint. This paper uses conflict windows, which differ from our typical way251

of using conjunctions of atomic constraints for explanations.252

Conflict windows are given with the following notation: ⟨esti, lcti⟩. They can be thought253

of as relaxations of the bounds of a task, which are set as wide as possible without making254

the fact that a propagation occurs invalid.255

We will now explain how Vilím proposed to set the conflict windows. Suppose Θ is a256

data structure that holds the set of all previously scheduled tasks based on the detectable257

precedences rule. We need to find Ω′ ⊆ Θ for which it holds that ECTΘ = estΩ′ + pΩ′ where258

ECTΘ is the earliest completion time calculated using data structure Θ.259

Assuming that we have found Ω′, according to Vilím [18] we can generate the following260

conflict windows for the detectable precedences Ω′ ≪ i: Let ∆ = esti + pi −maxj∈Ω′(lctj −261

pj)− 1262

i: ⟨esti − ⌈∆
2 ⌉,∞⟩263

∀j ∈ Ω′: ⟨esti − pΩ′ , esti + pi + pj − ⌈∆
2 ⌉ − 1⟩264

M. van Vliet 9

▶ Example 5. Consider our previous example, with S1 ∈ [0, 2], p1 = 2, S2 ∈ [0, 10] and265

p2 = 4. We can then generate the following conflict windows: ⟨est2, lct2⟩ = ⟨−1,∞⟩ and266

⟨est1, lct1⟩ = ⟨−3, 4⟩267

In order to use the conflict window as bounds in our explanations, we should convert268

lct to lst, which gives us S1 ≥ −3 ∧ S1 ≤ 2 ∧ S2 ≥ −1. Please note that this is not a valid269

explanation as S1 ≥ −3∧ S1 ≤ 2∧ S2 ≥ −1 ⇏ S2 ≥ 2. The reason for this is that we cannot270

conclude that S2 ≥ 2 if we only know that S1 ≥ −3, because scheduling S1 at time -3 does271

not ’push’ task 2 far enough to guarantee S2 ≥ 2.272

We can not use Vilím’s weakened conflict windows directly, but an intermediate result273

described in Vilím’s derivation of conflict windows could be used. An intermediate result in274

Vilím’s derivation namely suggests ∀j ∈ Ω′ estj = estΩ′ . Since we propagate that Si ≥ ECTΘ275

and because ECTΘ = estΩ′ + pΩ′ , we can lift the earliest starting time for all tasks in Ω′ to276

estΩ′ without invalidating the propagation.277

4 Approach278

As the aim of this paper is to generate explanations for the detectable precedences filtering279

algorithm by Fahimi et al. [7], we need to take into account two important factors. The280

first factor we consider is time complexity, because it might not be worthwhile to generate281

explanations if the overhead caused by recording explanations is too great. The second282

factor is the generality of the explanations, as more general explanations have been shown to283

outperform less general explanations [8].284

In order to measure the influence of different explanations on the number of conflicts and285

other relevant metrics, we will consider three different approaches to generating explanations.286

The baseline approach is completely naïve with constant time overhead for generating287

explanations. The intermediate approach (previously scheduled) generates explanations that288

are more general than baseline, while also only taking constant time to record. The last289

cluster approach describes the most lifted explanations, which come at the cost of linear time290

overhead for each propagation.291

4.1 Naïve explanations292

Naïve explanations are often used as a baseline to compare with more sophisticated ways of293

generating explanations. In naïve explanations, the reason for every propagation is the same,294

namely:295 ∧
i∈I

Si ≥ esti ∧ Si ≤ lsti296

Since this type of explanation is likely to contain atomic constraints which are not297

necessary to explain the propagation and because the bounds of the atomic constraints might298

be lifted to include more values, this method does not produce general explanations.299

▶ Example 6. Recall example 4, where we propagated that S3 ≥ 8 and S4 ≥ 8. The naïve300

explanation for both of these propagations is S1 ≥ 0 ∧ S1 ≤ 4 ∧ S2 ≥ 3 ∧ S2 ≤ 5 ∧ S3 ≥301

7 ∧ S3 ≤ 10 ∧ S4 ≥ 4 ∧ S4 ≤ 18302

As we only need to compute the naïve explanation once before we can use it to explain303

all propagations made by the filtering algorithm, the overhead is constant.304

10 Explaining detectable precedences for the disjunctive constraint

4.2 Previously scheduled tasks305

By taking a closer look at algorithm 2, we can find that only the tasks that were previously306

scheduled on the timeline have any influence on the lower bound adjustment of a starting307

time’s domain. We can also omit the upper bound of the task we are pruning, because the308

detectable precedences rule ecti > lstj only depends on the earliest completion time of the309

task we are pruning. If we consider Θ ⊆ I to be the tasks that are currently scheduled on310

the timeline and i is the task we are pruning, we can generate the following explanations:311

Si ≥ esti

∧
j∈Θ

Sj ≥ estj ∧ Sj ≤ lstj312

▶ Example 7. When we once again consider example 4, we can generate the following313

explanations:314

For propagation S3 ≥ 8: S3 ≥ 7 ∧ S1 ≥ 0 ∧ S1 ≤ 4 ∧ S2 ≥ 3 ∧ S2 ≤ 5315

For propagation S4 ≥ 8: S4 ≥ 4 ∧ S1 ≥ 0 ∧ S1 ≤ 4 ∧ S2 ≥ 3 ∧ S2 ≤ 5316

Because we can incrementally build up an explanation whenever a new task is scheduled,317

the overhead caused by recording the previously scheduled explanations is constant.318

4.3 Last cluster approach319

In the preliminaries it is described that a set of tasks Ω′ ⊆ Θ such that ECTΘ = estΩ′ + pΩ′320

is sufficient to explain a propagation. We will first explain how we can obtain Ω′ from the321

timeline data structure. Then we will describe how we lift the bounds of the predicates in Ω′
322

to generate explanations that are more general.323

4.3.1 Recording Ω′
324

Let us define the last cluster of the timeline data structure to be the set in the timeline’s325

union find which contains the highest starting time for which a task is currently scheduled.326

The timeline already keeps track of this cluster with field e. We will illustrate that the tasks327

in the last cluster are the only ones that are responsible for determining ECTΘ328

▶ Example 8. Suppose we have the following timeline: {0} 3−→ {5} 7−→ {15}. We can infer329

that at least one task is scheduled at est = 0 and that at least one task is scheduled at est = 5.330

e = 1 in this case. As ECTΘ = t[e + 1]− c[e] in the timeline data structure, ECTΘ = 8. We331

can see that ECTΘ is independent of any tasks not scheduled in the last cluster.332

Now that we know that tasks in the last cluster are the only ones that are responsible333

for ECTΘ, we will show that the set of tasks in the last cluster satisfies the property of Ω′.334

Recall that Ω′ ⊆ Θ such that ECTΘ = estΩ′ + pΩ′ . Since any number of tasks in a cluster is335

scheduled contiguously (otherwise the tasks would not be in the same cluster), the earliest336

completion time of the last cluster A must be estA + pA. Combining this with our previous337

observation that the last cluster is solely responsible for ECTΘ, we can conclude that the338

tasks of the last cluster satisfy Ω′.339

▶ Observation 9. The last cluster set A satisfies the property of Ω′ ⊆ Θ where ECTΘ =340

estΩ′ + pΩ′341

Having found that the last cluster satisfies Ω′, we now need to solve the problem of342

recording which tasks are scheduled in the last cluster. To address this, we propose to add a343

field u to the timeline. u is an array consisting of |t| − 1 lists, where every list at index i in u344

M. van Vliet 11

keeps track of which tasks are scheduled at the starting time corresponding to t[i]. Please345

note that as it is impossible to schedule a task at the latest time in t, we do not need to keep346

track of any tasks scheduled at that time. That is why the length of u is |t| − 1.347

The main idea behind u is that we want to ’mirror’ the state of s, the union find. We348

achieve this by applying the following rules:349

In algorithm 1 we add the task we scheduled to u[k] after the while loop.350

Whenever k and k + 1 are unioned in algorithm 1, all elements in u[k] are added to351

u[s.find(k + 1)]352

Ω′ can be retrieved at u[e]353

An adapted version of Algorithm 1 with support for recording Ω′ can be found in the appendix354

under the name Algorithm 3.355

4.3.2 Generating explanations356

Now that we are able to retrieve Ω′ from the timeline, we are ready to define how we can357

generate explanations for our propagations. In the preliminaries we have found that for358

any task in Ω′ we can not lift the earliest starting time further than estΩ′ . This was an359

intermediate result in Vilím’s [18] derivation for the conflict windows. For the latest starting360

time we can choose to set it to lstΩ′ . Intuitively, this allows the tasks in Ω′ to be scheduled361

in any order. If we lift the latest starting time of tasks in Ω′ to lstΩ′ , the furthest we can362

lift the earliest starting time of task i without violating the detectable precedences rule is363

lstΩ′ − pi + 1 .364

This leaves us with the following explanation:365

Si ≥ lstΩ′ − pi + 1
∧

j∈Ω′

Sj ≥ estΩ′ ∧ Sj ≤ lstΩ′366

▶ Example 10. We once again consider example 4, we can generate the following explanations:367

For propagation S3 ≥ 8: S2 ≥ 3 ∧ S2 ≤ 5 ∧ S3 ≥ 1368

For propagation S4 ≥ 8: S2 ≥ 3 ∧ S2 ≤ 5 ∧ S4 ≥ 4369

Because the bounds estΩ′ and lstΩ′ can be different for every propagation, the overhead370

caused by recording last cluster explanations is linear. This is because we cannot incrementally371

build up an explanation like in the previously scheduled approach.372

5 Experimental results373

Since it is our goal to evaluate the influence of the different explanation approaches on the374

number of conflicts encountered while solving, we perform an experiment where we compare375

the performance of the previously scheduled approach 4.2 and the last cluster approach376

4.3 to the baseline naïve approach 4.1. We found that on average the number of conflicts377

are 43% and 4% of the baseline for the previously scheduled and the last cluster approach378

respectively.379

The section will continue by describing the experimental setup that was used, after which380

the metrics that are collected are covered. Lastly, we present the results of the experiment.381

5.1 Experimental setup382

A propagator using detectable precedences as it is described in algorithm 2 was implemented383

in the Pumpkin solver [5]. Three strategies for giving explanations were also implemented:384

12 Explaining detectable precedences for the disjunctive constraint

The naïve approach given in subsection 4.1, the previously scheduled approach given in385

subsection 4.2 and the last cluster approach given in 4.3. These three strategies were386

benchmarked on 50 jobshop instances given on the Minizinc benchmarks Github page1. The387

specific instances that were run are the following: abz5-abz7 [1], ft06 and ft10 [12], la01-la35388

[10] and orb01-orb10 [2]. The reason these instances were chosen is because we wanted all389

approaches to be able to make a reasonable amount of progress before the timeout, as a390

benchmark instance would not be of much use if no new solutions are found after the first391

couple of seconds.392

The benchmarks were run through a Minizinc [13] front-end with a jobshop model file,393

that is adapted to use the disjunctive constraint. The branching strategy that was used is394

free search with a search annotation which selects the starting time variable with the smallest395

value and assigns the smallest value in the domain. As we use free search, the solver switches396

to VSIDS after the first solution is found. VSIDS is a branching technique that is biased397

to select unassigned variables that occur often in recent conflicts [11]. The reason we chose398

this search strategy is because it outperformed any alternatives. The experimental setup399

including benchmarks is published in a Github repository 2. The code of the Pumpkin solver400

which was used is also published in a Github repository 3.401

The hardware used to run the benchmarks is an HP ZBook Power G9 with a 12th Gen402

Intel(R) Core(TM) i7-12700H processor.403

5.2 Metrics404

For every benchmark instance the following four metrics are collected:405

1. Number of conflicts: the total number of conflicts that were encountered by the solver.406

2. Average Literal Block Distance (LBD): LBD is a metric that was introduced for407

SAT solving in [3] and it is defined as the number of unique decision levels at which the408

predicates in a learned nogood have become true. A lower LBD means that less decisions409

were responsible for learning a certain nogood, which means that it is more likely to be410

reused than a nogood with a higher LBD.411

3. Average learned clause length (LCL): LCL refers to the number of predicates that412

are present in the learned clause. The average LCL compared with the LBD provides413

insight into the average number of predicates in a learned clause that originate from the414

same decision point.415

4. Runtime: the amount of time the solver took to reach the objective value at which416

approaches are compared.417

In the experiment, the metrics for all three approaches are compared at the best objective418

which was reached by all approaches.419

5.3 Results420

The results of the experiment can be found in table 1. What stands out immediately is the421

average number of conflicts. For the previously scheduled approach it is half the number of422

conflicts of the baseline. The number of conflicts encountered by the last cluster approach423

is one order of magnitude smaller than that of the previously scheduled approach. Based424

1 https://github.com/MiniZinc/minizinc-benchmarks/tree/master/jobshop
2 https://github.com/MatvV04/DetectablePrecedencesExperiment/tree/main
3 https://github.com/MatvV04/Pumpkin

https://github.com/MiniZinc/minizinc-benchmarks/tree/master/jobshop
https://github.com/MatvV04/DetectablePrecedencesExperiment/tree/main
https://github.com/MatvV04/Pumpkin

M. van Vliet 13

Naïve (baseline) Previously scheduled Last cluster
Average number of conflicts 45237.14 19478.14 1801.24
Average conflicts ratio with baseline
(#conflicts approach / #conflicts baseline) 1 0.926 0.41

Average literal block distance 21.31 19.09 8.62
Average learned clause length 38.67 31.73 14.79
Average runtime ratio with baseline
(runtime approach / runtime baseline) 1 0.822 0.773

Table 1 Aggregate results for the 50 benchmark instances for three different approaches. Average
LBD and Average LCL are averages over averages. All statistics are compared at the best common
found objective after 20 minutes.

on the average number of conflicts, we would expect that the average conflicts ratio with425

baseline would be smaller for both values than they are in reality (approximately 0.50 and426

0.05 respectively based on the average number of conflicts). To explain why the average427

conflicts ratio with the baseline is relatively high, we plotted the number of conflicts of the428

two approaches against the number of conflicts of the baseline approach in the left part of429

figure 3. We can see that when the number of conflicts for baseline is quite low, the two other430

approaches generally do not differ much. In the extreme cases where the number of conflicts431

is high for the naïve approach, it tends to be much lower for the last cluster approach.432

When we consider the right plot in figure 3, we can see that the last cluster approach433

generally has a lower runtime than the naïve baseline and that the the previously scheduled434

approach is on average only slightly better. If we focus on the top right of the plot, we435

can see that there are seven last cluster instances against the ceiling of 1200 seconds. The436

instances where this happens are abz7, la27, la29, la30, la32, la34, la35. These instances are437

among the largest in our benchmark suite and the best common lower bound that was found438

out of these seven instances was 193% of the optimal objective. We believe that the overhead439

of the last cluster approach might not outweigh the benefit of the more general explanations440

if the problem is not yet sufficiently constrained by the best found objective value.441

Figure 3 The number of conflicts (left) and runtime (right) of the two approaches on the y-axis
plotted against the number of conflicts / runtime of the baseline naïve approach on the x-axis for
the 50 jobshop instances. If a point is below the line, the metric of the non-baseline approach is
lower than baseline.

When comparing the average LBD and LCL for the three approaches, it can be seen that442

14 Explaining detectable precedences for the disjunctive constraint

it is lower than baseline for the previously scheduled approach and much lower for the last443

cluster approach. This indicates that the learned nogoods are on average caused by less444

decisions and containing less predicates, which make the nogoods more reusable.445

The average runtime to reach the common best objective is also lower than that of the446

baseline approach for both the previously scheduled approach and the last cluster approach.447

On average the previously scheduled approach is 17.8% faster and the last cluster approach448

22.7%.449

Next, we perform a pairwise Student t-test on the number of conflicts between the baseline450

and the other two approaches. The null hypothesis is that the number of conflicts does not451

differ from the naïve baseline approach. The alternative hypothesis is that the number of452

conflicts is lower than the baseline. Before performing the test, the significance level was453

set to 0.05. The results can be found in table 2. According to our set significance level, we454

reject the null hypothesis for both approaches. This means that there is significant statistical455

evidence that the number of conflicts for both approaches is lower than that of the naïve456

baseline.457

Previously scheduled Last cluster
p-value 0.00628 6.657E-6

Table 2 The p-values computed by a pairwise Student t-test for the number of conflicts compared
to baseline

A comparison between the last cluster approach and a decomposition is given in Ap-458

pendix D. The most important result of this comparison is that the decomposition is on459

average 18 times faster than the last cluster approach, but the decomposition appears to460

have difficulty proving optimality compared to the last cluster approach.461

6 Conclusion462

We proposed two approaches to generating explanations for the filtering algorithm proposed463

by Fahimi et al. [7]. The first approach considers only the subset of tasks that have previously464

been scheduled on the timeline. The second approach only considers the last cluster of the465

previously scheduled subset. Explanation lifting was also described for this approach. An466

experiment comparing the previously scheduled approach and the last cluster approach to467

the baseline naïve approach for generating explanations found that the number of conflicts468

for both approaches was lower than the baseline. This finding was substantiated by a Student469

t-test with a significance level of 5%. The last cluster approach outperformed the previously470

scheduled approach by 10 times in terms of average number of conflicts. The other metrics,471

LBD, LCL and runtime, were also lower for the previously scheduled approach and more472

noticeably lower for the last cluster approach. The last cluster did not outperform the other473

approaches in terms of runtime on seven large instances, which we believe is due to the474

overhead of recording the explanations not outweighing the more general explanations when475

the problem is not yet sufficiently constrained by the objective value. Further experimentation476

could be done with a higher timeout to observe how the three approaches perform on larger477

instances when the problem is solved closer to optimality.478

This research only considered explanations for detectable precedences in isolation, but as479

different propagation rules are often combined, future work should focus on the performance480

of combining different disjunctive propagation rules in a lazy clause generation solver.481

M. van Vliet 15

References482

1 Joseph Adams, Egon Balas, and Daniel Zawack. The shifting bottleneck procedure for job483

shop scheduling. Management Science, 34(3):391–401, 1988. URL: http://www.jstor.org/484

stable/2632051.485

2 D Appelgate and W Cook. A computational study of jobshop scheduling. ORSA Journal on486

Computing, 3, 1991.487

3 Gilles Audemard and Laurent Simon. Predicting learnt clauses quality in modern sat solvers.488

In Proceedings of the 21st International Joint Conference on Artificial Intelligence, IJCAI’09,489

page 399–404, San Francisco, CA, USA, 2009. Morgan Kaufmann Publishers Inc.490

4 Nicolas Beldiceanu, Pierre Flener, Jean-Noël Monette, Justin Pearson, and Helmut Simonis.491

Toward sustainable development in constraint programming. Constraints, 19(2):139–149, April492

2014. doi:10.1007/s10601-013-9152-4.493

5 Emir Demirović, Maarten Flippo, Imko Marijnissen, Konstantin Sidorov, and Smits Jeff.494

Pumpkin: A lazy clause generation constraint solver in rust, 2024. URL: https://github.495

com/ConSol-Lab/Pumpkin.496

6 Hamed Fahimi, Yanick Ouellet, and Claude-Guy Quimper. Linear-time filtering al-497

gorithms for the disjunctive constraint and a quadratic filtering algorithm for the498

cumulative not-first not-last. Constraints, 23(3):272 – 293, 2018. Cited by:499

10. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85048598742&doi=10.500

1007%2fs10601-018-9282-9&partnerID=40&md5=3670ec8a382d13e04e0e34b8189b35f2, doi:501

10.1007/s10601-018-9282-9.502

7 Hamed Fahimi and Claude-Guy Quimper. Linear-time filtering algorithms for503

the disjunctive constraint. volume 4, page 2637 – 2643, 2014. Cited504

by: 6. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84908192155&505

partnerID=40&md5=da5a1644a8b3303a379a766e635dce14.506

8 Thibaut Feydy, Andreas Schutt, and Peter Stuckey. Semantic learning for lazy clause generation.507

In TRICS workshop, held alongside CP. Citeseer, 2013.508

9 Thibaut Feydy and Peter J. Stuckey. Lazy clause generation reengineered. In Ian P. Gent,509

editor, Principles and Practice of Constraint Programming - CP 2009, pages 352–366, Berlin,510

Heidelberg, 2009. Springer Berlin Heidelberg.511

10 Stephen Lawrence. Resouce constrained project scheduling: An experimental investigation of512

heuristic scheduling techniques (supplement). Graduate School of Industrial Administration,513

Carnegie-Mellon University, 1984.514

11 M.W. Moskewicz, C.F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: engineering an515

efficient sat solver. In Proceedings of the 38th Design Automation Conference (IEEE Cat.516

No.01CH37232), pages 530–535, 2001. doi:10.1145/378239.379017.517

12 John F Muth, Gerald Luther Thompson, and Peter R Winters. Industrial scheduling. (No518

Title), 1963.519

13 Nicholas Nethercote, Peter J. Stuckey, Ralph Becket, Sebastian Brand, Gregory J. Duck, and520

Guido Tack. Minizinc: Towards a standard cp modelling language. In Christian Bessière,521

editor, Principles and Practice of Constraint Programming – CP 2007, pages 529–543, Berlin,522

Heidelberg, 2007. Springer Berlin Heidelberg.523

14 Alejandro Opez-ortiz, Claude-guy Quimper, John Tromp, and Peter van Beek. A fast and524

simple algorithm for bounds consistency of the alldifferent constraint. IJCAI International525

Joint Conference on Artificial Intelligence, 05 2003.526

15 Andreas Schutt, Thibaut Feydy, Peter Stuckey, and Mark Wallace. Explaining the cumulative527

propagator. Constraints, 16:250–282, 07 2011. doi:10.1007/s10601-010-9103-2.528

16 Petr Vilím. Global constraints in scheduling. 2007.529

17 Petr Vilím. O(n log n) filtering algorithms for unary resource constraint. Lecture530

Notes in Computer Science (including subseries Lecture Notes in Artificial Intelli-531

gence and Lecture Notes in Bioinformatics), 3011:335 – 347, 2004. Cited by: 32.532

URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-35048841193&doi=10.533

http://www.jstor.org/stable/2632051
http://www.jstor.org/stable/2632051
http://www.jstor.org/stable/2632051
https://doi.org/10.1007/s10601-013-9152-4
https://github.com/ConSol-Lab/Pumpkin
https://github.com/ConSol-Lab/Pumpkin
https://github.com/ConSol-Lab/Pumpkin
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85048598742&doi=10.1007%2fs10601-018-9282-9&partnerID=40&md5=3670ec8a382d13e04e0e34b8189b35f2
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85048598742&doi=10.1007%2fs10601-018-9282-9&partnerID=40&md5=3670ec8a382d13e04e0e34b8189b35f2
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85048598742&doi=10.1007%2fs10601-018-9282-9&partnerID=40&md5=3670ec8a382d13e04e0e34b8189b35f2
https://doi.org/10.1007/s10601-018-9282-9
https://doi.org/10.1007/s10601-018-9282-9
https://doi.org/10.1007/s10601-018-9282-9
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84908192155&partnerID=40&md5=da5a1644a8b3303a379a766e635dce14
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84908192155&partnerID=40&md5=da5a1644a8b3303a379a766e635dce14
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84908192155&partnerID=40&md5=da5a1644a8b3303a379a766e635dce14
https://doi.org/10.1145/378239.379017
https://doi.org/10.1007/s10601-010-9103-2
https://www.scopus.com/inward/record.uri?eid=2-s2.0-35048841193&doi=10.1007%2f978-3-540-24664-0_23&partnerID=40&md5=5245d259a905346cd6608260b668943a
https://www.scopus.com/inward/record.uri?eid=2-s2.0-35048841193&doi=10.1007%2f978-3-540-24664-0_23&partnerID=40&md5=5245d259a905346cd6608260b668943a
https://www.scopus.com/inward/record.uri?eid=2-s2.0-35048841193&doi=10.1007%2f978-3-540-24664-0_23&partnerID=40&md5=5245d259a905346cd6608260b668943a
https://www.scopus.com/inward/record.uri?eid=2-s2.0-35048841193&doi=10.1007%2f978-3-540-24664-0_23&partnerID=40&md5=5245d259a905346cd6608260b668943a

16 Explaining detectable precedences for the disjunctive constraint

1007%2f978-3-540-24664-0_23&partnerID=40&md5=5245d259a905346cd6608260b668943a,534

doi:10.1007/978-3-540-24664-0_23.535

18 Petr Vilím. Computing explanations for the unary resource constraint. volume536

3524, page 396 – 409, 2005. Cited by: 6. URL: https://www.scopus.com/inward/537

record.uri?eid=2-s2.0-26444453950&doi=10.1007%2f11493853_29&partnerID=40&md5=538

cf493e7730ec0a0e274a1f3ed0f0ff48, doi:10.1007/11493853_29.539

19 Moli Yang, Andreas Schutt, and Peter J. Stuckey. Time table edge finding with energy540

variables. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial541

Intelligence and Lecture Notes in Bioinformatics), 11494 LNCS:633 – 642, 2019. Cited by:542

2. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85066859197&doi=10.543

1007%2f978-3-030-19212-9_42&partnerID=40&md5=183b549bebb587cd63fd7161f4bda8e4,544

doi:10.1007/978-3-030-19212-9_42.545

A Responsible research546

This section will discuss the ethical considerations and the measures taken to ensure the547

reproducibility of the results in our research. We also reflect on the integrity of our research.548

The ethical implications of doing research into more efficient solving of constraint pro-549

gramming were considered. More efficient CP solving could enable problems in operations550

research to be solved more efficiently or closer to optimality. This can have both positive and551

negative ethical implications. An example of the positive implications would be more efficient552

usage of resources, while a negative implication could be that automation due to progress553

in operations research could cause workers to be made redundant. We believe that within554

this research there have been no opportunities to mitigate the negative ethical implications555

associated with more efficient solving of constraint programming other than to be transparent556

about the considerations.557

Regarding ethics in the sustainable development of CP solvers, 15 challenges were558

published in [4]. The first challenge is the following:559

How can CP solver developers simplify the migration of the knowledge embedded in560

their solver to next-generation solvers?561

One of the proposed mitigations is the usage of open-source solvers. As all experimental562

approaches were implemented in the Pumpkin solver [5], which is open source, we adhered563

as best as we could to these best practices.564

The first measure we took to ensure the reproducibility of the results was choosing to565

only use benchmarks described in the literature. Other research such as [7] also makes use of566

randomly generated instances, which makes it difficult to reproduce the results, especially567

when these instances are not published in a repository.568

To further simplify reproduction of the results, we have set up a Github repository for the569

code used to run the experiments. We also published a repository containing the Minizinc570

model file and the data files representing the benchmark instances along with the script used571

to run the benchmarks. Links to these repositories can be found in 5.1. These repositories572

also contain the raw data and scripts that are used to process the data and to produce the573

aggregates and plots. This is to ensure that it can be detected if mistakes were made in the574

data analysis. The README file in this repository also contains a description of the files575

present in the repository to simplify working with the data or reproducing results using the576

scripts.577

Regarding research integrity, we included all results obtained through experimentation578

and did not cherry pick results to calculate the aggregates. We also reflect on results which579

https://www.scopus.com/inward/record.uri?eid=2-s2.0-35048841193&doi=10.1007%2f978-3-540-24664-0_23&partnerID=40&md5=5245d259a905346cd6608260b668943a
https://www.scopus.com/inward/record.uri?eid=2-s2.0-35048841193&doi=10.1007%2f978-3-540-24664-0_23&partnerID=40&md5=5245d259a905346cd6608260b668943a
https://www.scopus.com/inward/record.uri?eid=2-s2.0-35048841193&doi=10.1007%2f978-3-540-24664-0_23&partnerID=40&md5=5245d259a905346cd6608260b668943a
https://doi.org/10.1007/978-3-540-24664-0_23
https://www.scopus.com/inward/record.uri?eid=2-s2.0-26444453950&doi=10.1007%2f11493853_29&partnerID=40&md5=cf493e7730ec0a0e274a1f3ed0f0ff48
https://www.scopus.com/inward/record.uri?eid=2-s2.0-26444453950&doi=10.1007%2f11493853_29&partnerID=40&md5=cf493e7730ec0a0e274a1f3ed0f0ff48
https://www.scopus.com/inward/record.uri?eid=2-s2.0-26444453950&doi=10.1007%2f11493853_29&partnerID=40&md5=cf493e7730ec0a0e274a1f3ed0f0ff48
https://www.scopus.com/inward/record.uri?eid=2-s2.0-26444453950&doi=10.1007%2f11493853_29&partnerID=40&md5=cf493e7730ec0a0e274a1f3ed0f0ff48
https://www.scopus.com/inward/record.uri?eid=2-s2.0-26444453950&doi=10.1007%2f11493853_29&partnerID=40&md5=cf493e7730ec0a0e274a1f3ed0f0ff48
https://doi.org/10.1007/11493853_29
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85066859197&doi=10.1007%2f978-3-030-19212-9_42&partnerID=40&md5=183b549bebb587cd63fd7161f4bda8e4
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85066859197&doi=10.1007%2f978-3-030-19212-9_42&partnerID=40&md5=183b549bebb587cd63fd7161f4bda8e4
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85066859197&doi=10.1007%2f978-3-030-19212-9_42&partnerID=40&md5=183b549bebb587cd63fd7161f4bda8e4
https://doi.org/10.1007/978-3-030-19212-9_42

M. van Vliet 17

at first seem to contradict each other by providing possible explanations for the results.580

Generative artificial intelligence (Github Copilot)4 was used in this research only to aid in581

programming. Github Copilot was only used in the form of autocomplete and any code582

produced by it was checked manually.583

B Complete example of algorithm 2584

We give the complete working of example 4:585

Suppose we have four tasks defined by their triple (est, p, lct):586

Task 1: (0, 2, 6) with lst = 4 and ect = 2587

Task 2: (3, 5, 10) with lst = 5 and ect = 8588

Task 3: (7, 5, 15) with lst = 10 and ect = 12589

Task 4: (4, 2, 20) with lst = 18 and ect = 6590

The situation is also sketched in figure 4.591

Figure 4 The situation described in the example

We give the following algorithm walkthrough:592

Initialize timeline:593

{0} 3−→ {3} 1−→ {4} 3−→ {7} 27−→ {34}594

k = 1595

Outer loop i = 1596

est′
1 = 0597

Outer loop i = 4598

Inner loop:599

Schedule task 1: {0} 1−→ {3} 1−→ {4} 3−→ {7} 27−→ {34}600

4 https://github.com/features/copilot

https://github.com/features/copilot

18 Explaining detectable precedences for the disjunctive constraint

k = 2601

Next iteration602

blocking_task = 2603

k = 3604

End inner loop605

postponed_tasks = {4}606

Outer loop i = 2607

est′
2 = 3608

Schedule task 2: {0} 1−→ {3, 4, 7} 26−→ {34}609

Inner for loop z = 4:610

est′
4 = 8611

Outer loop i = 3612

Inner loop:613

blocking_task = 3614

k = 4615

End inner loop616

est′
3 = 8617

So we can propagate that est3 = 8 and est4 = 8.618

C Adaptation of algorithm 1619

Here we give the adapted algorithm for ScheduleTask in which we add functionality for620

recording Ω′
621

Algorithm 3 ScheduleTask(i) (Adapted)
ρ← pi

k ← s.FindGreatest(m[i])
while ρ > 0 do

∆← min(c[k], ρ)
ρ← ρ−∆
c[k]← c[k]−∆
if c[k] = 0 then

s.Union(k, k + 1)
k_old← k

k ← s.FindGreatest(k)
u[k].Extend(u[k_old])

end if
end while
u[k]← i

e← max(e, k)

D Comparison between last cluster and decomposition622

To supplement our comparison with the naïve baseline, we also decided to compare the623

performance of the last cluster approach with a decomposition of the disjunctive constraint.624

The benchmark for the disjunctive constraint was run using the same search strategy as625

the last cluster approach, which was described in Subsection 5.1. The results presented in626

M. van Vliet 19

table 3 are based on 44 instances, as there was no common lower bound for six instances. In627

these instances (la29 and la31-la35) the decomposition vastly outperformed the last cluster628

approach in terms of reached objective value.629

Last cluster Decomposition
Average number of conflicts 9635 18969
Average LBD 8.77 7.20
Average LCL 16.69 13.31
Average runtime (s) 362 20
Number of instances solved
to optimality 37 28

Table 3 The last cluster approach compared to a decomposition on 44 instances with a common
objective values, all instances were given a timeout of 20 minutes.

The most remarkable result in table 3 is the average runtime. The decomposition is630

on average 18 times faster than the last cluster approach. This could indicate that the631

propagation power of detectable precedences without any additional propagation rules is not632

great enough.633

The second interesting result from table 3 is the number of instances solved to optimality.634

The decomposition failed to prove optimality for la06-la15, while the last cluster succeeded635

to do so. What is especially interesting is that the decomposition managed to find the636

optimal solution in all instances la06-la15 within ten seconds, but it failed to prove optimality637

within 1200 seconds. This is an indication that using a disjunctive propagator with general638

explanations might perform better than decomposition at proving optimality.639

	13a63242-da59-4bb2-961b-a8765d0b2bea.pdf
	1 Introduction
	2 Related work
	3 Preliminaries
	3.1 Constraint Programming
	3.2 Lazy Clause Generation
	3.3 Scheduling terminology
	3.4 Detectable precedences
	3.5 Timeline data structure
	3.5.1 Task scheduling
	3.5.2 Detectable precedences filtering algorithm

	3.6 Vilím's explanations for detectable precedences

	4 Approach
	4.1 Naïve explanations
	4.2 Previously scheduled tasks
	4.3 Last cluster approach
	4.3.1 Recording '
	4.3.2 Generating explanations

	5 Experimental results
	5.1 Experimental setup
	5.2 Metrics
	5.3 Results

	6 Conclusion
	A Responsible research
	B Complete example of algorithm 2
	C Adaptation of algorithm 1
	D Comparison between last cluster and decomposition

