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Abstract
Estimation of the noise variance of a magnetic resonance (MR) image is
important for various post-processing tasks. In the literature, various methods
for noise variance estimation from MR images are available, most of which
however require user interaction and/or multiple (perfectly aligned) images. In
this paper, we focus on automatic histogram-based noise variance estimation
techniques. Previously described methods are reviewed and a new method
based on the maximum likelihood (ML) principle is presented. Using Monte
Carlo simulation experiments as well as experimental MR data sets, the noise
variance estimation methods are compared in terms of the root mean squared
error (RMSE). The results show that the newly proposed method is superior in
terms of the RMSE.

1. Introduction

The noise variance in magnetic resonance (MR) images has always been an important
parameter to account for when processing and analysing magnetic resonance imaging (MRI)
data. Algorithms for noise reduction, segmentation, clustering, restoration and registration
highly depend on the noise variance (Nowak 1999, Zhang et al 2001, Ahmed 2005, Rohde
et al 2005). Also, many applications that employ statistical analysis techniques, such as
functional MRI or voxel-based morphometry, often base their conclusions on assumptions
about the underlying noise characteristics (Bosc et al 2003, de Pasquale et al 2004, Sendur
et al 2005). Finally, knowledge of the noise variance is useful in the quality assessment of the
MR imaging system itself, for example to test the noise characteristics of the receiver coil or
the preamplifier (McVeigh et al 1985).
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In the past, many techniques have been proposed to estimate the image noise variance.
These can be subdivided into two classes:

Multiple images. In the past, noise variance estimation methods were developed based on two
acquisitions of the same image. A standard procedure was developed by Sano in which the
noise variance was estimated by subtracting two acquisitions of the same object and calculating
the standard deviation of the resulting pixel values (Sano 1988, Murphy et al 1993). Multiple
acquisition methods are relatively insensitive to structured noise such as ghosting, ringing
and DC artefacts (Sijbers et al 1996, 1998). However, strict requirements are the perfect
geometrical alignment of the images and temporal stationarity of the imaging process.

Single image. The image noise variance can also be estimated from a single magnitude image.
A common approach is to estimate the noise variance from a large, manually selected, uniform
signal region or non-signal (i.e., noise only) region (Henkelman 1985, Kaufman et al 1989,
De Wilde et al 1997, Sijbers et al 1999, den Dekker and Sijbers 2005). Manual interaction
however clearly suffers from inter and intra operator variability. An additional problem is
that the size of the selected (homogeneous) regions should be sufficiently large to obtain a
precise estimate of the noise variance. Moreover, background data may suffer from systematic
intensity variations due to streaking or ghosting artefacts.

Often, magnitude MR images contain a large number of background data. Hence, the
noise variance can as well be estimated from the background mode of the image histogram.
Automatic noise variance estimation have been designed from the knowledge that this
background mode can be represented by a Rayleigh distribution (Brummer et al 1993, Chang
et al 2005). In this paper, these procedures are reviewed and a new method is presented.

In this paper, we describe a new method to estimate the image noise variance from the
background mode of the image histogram. Our initial motivation to search for a new method
was that existing methods that exploit this background mode for the same purpose seemed to
be based on heuristic arguments, leaving significant space for finding an improved method.

In section 2.1, the paper starts by reviewing the statistics of background MR data. Next,
in section 2.2, we will describe previously reported procedures to estimate the noise variance
from the background mode of the image histogram. Then, in section 2.3, we will present a
new noise variance estimation method based on maximum likelihood (ML) estimation from a
partial histogram. Subsequently, in sections 3 and 4, the performance of the described noise
variance estimation procedures in terms of precision and accuracy are evaluated and discussed,
respectively, for simulated as well as experimental data sets. Finally, in section 5, conclusions
are drawn.

2. Methods

2.1. Noise properties of MR data

In MRI, the acquired complex data in k-space are known to be polluted by white noise,
which is characterized by a Gaussian probability density function (PDF). After inverse Fourier
transformation, the real and imaginary data are still corrupted with Gaussian distributed, white
noise because of the linearity and orthogonality of the Fourier transform. However, it is
common practice to transform the complex valued images into magnitude and phase images.
Since computation of a magnitude (or phase) image is a nonlinear operation, the PDF of the
data under concern changes. It is well known that the data in a magnitude image are no longer
Gaussian but Rician distributed (Henkelman 1985, Gudbjartsson and Patz 1995):

p(m|A, σ) = m

σ 2
e− m2+A2

2σ2 I0

(
Am

σ 2

)
ε(m), (1)
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with I0 denoting the zeroth order modified Bessel function of the first kind, A the noiseless
signal level, σ 2 the noise variance and m the MR magnitude variable. The unit step Heaviside
function ε(·) is used to indicate that the expression for the PDF of m is valid for non-negative
values of m only.

The asymptotic approximation of the νth order modified Bessel function if its argument
approaches zero is given by

Iν(z) →
( z

2

)ν

�(ν + 1) for z → 0. (2)

with � denoting the gamma function. With (2), it is easy to show that, when the signal-to-noise
ratio, defined as A/σ , is zero, the Rice PDF, given in (1), leads to the Rayleigh PDF:

p (m|σ) = m

σ 2
e− m2

2σ2 ε(m). (3)

The Rayleigh PDF characterizes the random intensity distribution of non-signal background
areas. Its moments are given by

E[mν] = (2σ 2)ν/2�
(

1 +
ν

2

)
, (4)

where E[·] denotes the expectation operator. The first and second moments of the Rayleigh
distribution are often exploited to estimate the variance of background MR data (Henkelman
1985, Kaufman et al 1989, McGibney and Smith 1993).

2.2. Previously reported, histogram-based noise variance estimation methods

Magnitude MR images generally contain a large number of background data points. Hence,
the histogram of such images often shows a background mode that is clearly distinguishable
from the signal contributions in the histogram. As an example, in figure 1, three coronal
spin-echo MR images of a mouse brain are shown along with the corresponding histogram.
The images, of size 256 × 256, were acquired on a 7 tesla SMIS MR imaging system, using a
field of view of 30 mm in both directions. Figure 1(a) shows a proton density weighted image
(TE = 20 ms, TR = 3000 ms), figure 1(c) a T2 weighted image (TE = 60 ms, TR = 3000 ms)
and figure 1(e) a T1 weighted image (TE = 20 ms, TR = 300 ms). As can be observed from
figures 1(b), (d) and (f), a background mode can easily be observed.

To estimate the noise variance from the image histogram background mode, automatic and
robust noise variance estimation methods have been reported that exploit this background mode
along with the knowledge that the noise-only contribution represents a Rayleigh distribution
(van Kempen and van Vliet 1999, Brummer et al 1993, Chang et al 2005). In this section,
these methods are reviewed. Next, in subsection 2.3, a new method is described based on ML
estimation.

2.2.1. Maximum of the background mode of the histogram. From the Rayleigh PDF, given
in (3), the noise variance can be estimated by searching for the value of m for which the
Rayleigh PDF attains a maximum (van Kempen and van Vliet 1999):

∂p

∂m
= 0 ⇔ 1 − m2

σ 2
= 0. (5)

From this, it is clear that an estimate of the noise standard deviation is simply given by

σ̂ = mmax. (6)

In practice, mmax can easily be found by searching for the magnitude value at which the
background mode in the histogram attains a maximum. Since the background mode is always
located on the left side of the histogram, finding this maximum is trivial.
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(b) Histogram of figure 1(a)
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(d) Histogram of figure 1(c)

(e) T1 weighted
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(f) Histogram of figure 1(e)

Figure 1. 2D coronal MR image and corresponding histogram of a mouse brain: (a), (b) proton
density, (c), (d) T2, (e), (f) T1 weighted images.

2.2.2. Brummer. In the work of Brummer et al, a noise variance estimation method is
presented in which the Rayleigh distribution is fitted to a partial histogram using least-squares
estimation (Brummer et al 1993):

K̂, σ̂Br = arg max
K,σ

fc∑
f =0

(
h(f ) − K

f

σ 2
e−(f 2/2σ 2)

)2

(7)

where K is the amplitude and σ the width of the Rayleigh distribution that is fitted to the
histogram h. The cutoff fc is defined as
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fc = 2σBr,0, (8)

where σBr,0 is an initial estimate of the noise level. Brummer’s method specifies that the
position of the first local maximum of the low-pass-filtered grey-value histogram is to be used
as the initial estimate. In our implementation of Brummer’s method, we used Chang’s estimate
(see subsection 2.2.3) as an initial value.

2.2.3. Chang. In order to improve the robustness of the noise variance estimation method
described in subsections 2.2.1 and 2.2.2, Chang et al proposed a procedure to smooth the
histogram prior to estimation (Chang et al 2005). Thereby, a Gaussian smoothing kernel,

κ(y) = 1√
2π

e−y2/2, (9)

was used. The smoothing width h was set to

h = 1.06σ0n
1/5 (10)

in which σ0 is the sample standard deviation and n the sample size. The smoothed histogram
at signal level x is given by

f̂ (x) = 1

nh

n∑
i=1

κ

(
x − xi

h

)
, (11)

where {xi} is the image intensity data. This smoothed histogram is then searched for the
location of the first local maximum:

σ̂Ch = arg max
σ

1

nh

n∑
i=1

κ

(
σ − xi

h

)
. (12)

2.3. New noise variance estimation method

In this subsection, a new noise variance estimation method will be described based on ML
estimation.

Let {li} with i = 0, . . . , K denote the set of boundaries of histogram bins. Furthermore,
let ni represent the number of observations (counts) within the bin [li−1, li], which are
multinomially distributed. Then, the joint PDF of the histogram data is given by (Mood
et al 1974)

p({ni}|σ, {li}) = NK !∏K
i=1 ni!

K∏
i=1

p
ni

i (σ ), (13)

with NK = ∑K
i=1 ni the total number of observations within the partial histogram and pi the

probability that an observation assumes a value in the range [li−1, li]. For Rayleigh distributed
observations, this probability is given by

pi(σ ) =
∫ li
li−1

m
σ 2 exp

(− m2

2σ 2

)
dm∑K

i=1

∫ li
li−1

m
σ 2 exp

(− m2

2σ 2

)
dm

. (14)

Since ∫ b

a

m

σ 2
exp

(
− m2

2σ 2

)
dm = e− a2

2σ2 − e− b2

2σ2 , (15)
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it is easy to show that (14) simplifies to

pi(σ ) = (
e− l2

i−1
2σ2 − e− l2

i

2σ2
)(

e− l20
2σ2 − e− l2

K

2σ2
)−1

. (16)

If the set of observations {ni} is fixed and σ is regarded as a variable, the joint PDF given
in (13) is called a likelihood function. The ML estimate is then found by maximizing this
likelihood function L with respect to σ :

σ̂ML,K = arg max
σ

L(σ |{ni}, {li}). (17)

Equivalently, the ML estimate of σ is found by minimizing − ln L with respect to σ :

σ̂ML,K = arg min
σ

[
NK ln

(
e− l20

2σ2 − e− l2
K

2σ2
) −

K∑
i=1

ni ln
(
e− l2

i−1
2σ2 − e− l2

i

2σ2
)]

. (18)

Equation (18) is the ML estimate of the noise standard deviation from K bins. This result
can be interpreted as follows. The joint PDF (13) with the ML estimate (18) as parameter
generates the set of observations (counts) from which this parameter is estimated with a larger
probability than a joint PDF with any other value of σ .

2.3.1. Selection of the number of bins. Note that finding the ML estimate (18) comes down to
fitting a (discretized) Rayleigh PDF to the partial (left side of the) image histogram, where the
criterion of goodness of fit is given by the likelihood function. This raises the question how to
select the number of bins K that constitute this part. Generally, a more precise estimate (i.e., a
smaller variance) will be obtained if the number of bins taken into account increases, provided
that the counts in those bins are indeed Rayleigh distributed background noise contributions.
However, incorporating bins with counts that can not be attributed solely to noise but also to
signal contributions will introduce a bias. Hence, as a selection criterion for K, a combined
measure of the bias and variance of the estimator σ̂ML,K was chosen. This criterion is derived
as follows.

Variance. A measure of the variance of σ̂ML,K was constructed from the Cramér–Rao lower
bound (CRLB), which is a lower bound on the variance of any unbiased estimator σ̂ of σ (van
den Bos 1982),

E[(σ − σ̂ )2] � I−1(σ ), (19)

with

I(σ ) = −E

[
∂2

∂σ 2
ln p({ni}|σ)

]
(20)

the Fisher information, also known as the expected Fisher information. It is known that
the ML estimator is consistent and asymptotically most precise (i.e., it attains the CRLB
asymptotically). A useful measure of the variance of σ̂ML,K is given by

V̂ar(σ̂ML,K) = −
(

∂2

∂σ 2
ln L(σ |{ni})

∣∣∣∣
σ=σ̂ML,K

)−1

, (21)

where the term on the right-hand side is known as the inverse of the observed Fisher
information. This estimate of the variance was observed to be reliable only when a sufficient
number of bins was taken into account. In our implementation, this number was chosen such
that at least the maximum of the histogram was included.
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Bias. A measure of the bias was found by quantifying the difference between the Rayleigh
distribution fitted using the first K bins of the histogram and the actual bin counts in the
histogram.

The histogram bin counts ni are multinomially distributed. Furthermore, the marginal
distribution of the number of counts in each bin is a binomial distribution with parameters NK

and pi . This means that the expected value of ni is piNK and its variance is pi(1 − pi)NK .
However, since in general NK is large (and pi is small), the binomial distribution can be
approximated by a normal distribution with expectation value and variance both equal to piNK .
Under the null hypothesis (H0) that the observations in all bins are Rayleigh distributed, pi is
given by (14). Next, consider the test statistic

λK =
N∑

i=1

(fi,K − ni)
2

fi,K

, (22)

with N the number of bins in the histogram and

fi,K = pi(σ̂ML,K)NK. (23)

It can be shown that, under H0, λK is approximately χ2
N−2 distributed (i.e., chi-squared

distributed with N − 2 degrees of freedom). Obviously, H0 is more likely to be rejected with
increasing λK . Note that a large value of λK may indicate the presence of a bias in our estimate
of σ . Therefore, λK will be used as a bias measure.

Most of the major contributions to λK can be expected to come from bins for which i > K ,
since these bins have not been taken into account in the estimation of σ . It is reasonable to
assume that for these bins the counts due to the underlying, noiseless signal outnumber those
due to the background noise only. Since contributions from the underlying signal can only
increase the bin counts ni , the actual bin counts will likely be significantly higher than the
counts predicted by the fitted Rayleigh distribution. If we exclude the bins i with i > K for
which ni > fi,K from (22), we obtain the modified test statistic:

λ∗
K =

K∑
i=1

(fi,K − ni)
2

fi,K

+
N∑

i=K+1

[max(0, fi,K − ni)]2

fi,K

. (24)

The first term of (24) is known as Pearson’s test statistic (Kendall and Stuart 1967), which is
approximately (that is, asymptotically) χ2 distributed with K − 2 degrees of freedom under
H0. The second term of (24) is χ2

M distributed under H0, with

M =
N∑

i=K+1

ε(fi,K − ni). (25)

Since both terms are independent, λ∗
K is approximately χ2

K−2+M distributed under H0. Hence,
the statistic

b̂ = λ∗
K − (K − 2 + M)√

K − 2 + M
(26)

has approximately a standard normal distribution under H0. The statistic (26) will be used as
a measure of the bias.

Selection criterion. Finally, both measures of bias and variance given in (21) and (26),
respectively, are combined into a single criterion that selects the optimal number of bins K̂:

K̂ = arg min
K

[̂b + V̂ar(σ̂ML,K)]. (27)
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3. Experiments

Experiments were designed to compare the performance of the noise variance estimators
discussed in subsection 2.2 to that of the newly proposed method presented in subsection 2.3.
The experiments used simulated as well as experimental data. As a performance measure, the
root mean squared error (RMSE) was used.

Simulated noise-only images. First, the performance of the estimators was compared using
simulated, integer valued Rayleigh distributed data (corresponding to noise-only magnitude
MR images), with different noise levels σ . The size of the image was 181 × 80.

Simulated three-modal image. Next, an image was generated that would generate one
background mode and two signal modes in the image histogram. In this way, the overlap
of the background mode with a signal mode could be studied. A three-modal image was
obtained from an image with signal levels 0 (background), 100 and 200. Each level had an
equal number of data points. Based on these levels, Rician distributed data were generated.
Depending on σ , the modes overlapped which challenged estimation of the noise variance
from the background mode. The size of the image was 181 × 240.

Simulated 2D MR image. In a next experiment, a single slice of a noise-free MR image was
simulated using a web-based MR simulator (Cocosco et al 1997). Thereby, the normal brain
database was employed (Modality: T1 weighted; slice thickness: 3 mm; noise: 0%; intensity
non-uniformity (RF): 20%). Rician distributed data with varying σ were then generated from
the noiseless image obtained from the simulator. The dimensions of the slice used were
181 × 217.

Simulated 3D MR image. Next, a similar simulation experiment was set up as described above
(i.e., using the web-based MR simulator (Cocosco et al 1997)), but now with a 3D MR image
of size 181 × 217 × 60.

Simulated 3D MR image with ghost. Furthermore, the robustness of the noise variance
estimators in the presence of a ghost artefact was tested. The ghost was generated by circularly
shifting the original image in one direction over half the image size in that direction and scaling
the intensities to 5% of the original intensities. This ghost was then added to the original image.
Also for this simulation experiment, Rician distributed noise with different σ was added.

Experimental 3D MR images. Finally, in order to test the different estimators on experimental
data, a cherry tomato was scanned with a 7 tesla (Bruker, DE) MR imaging system with
self-shielded gradients of 300 mT m−1 and an aperture of 10 cm.

To evaluate the standard deviation of the estimators experimentally, the estimators were
applied to averaged images. Each averaged image was obtained by averaging over a number of
images acquired under identical experimental conditions. Averaging was done in the complex
k-space, so before reconstructing the magnitude image. The theoretical reduction of the noise
standard deviation as a function of the number of images n over which the average was taken
is known to be 1/

√
n. Therefore, the estimated noise standard deviation, multiplied by

√
n is

expected to be constant as a function of n. In this experiment, it was tested whether the slope
of the line obtained by linear regression differed significantly from zero.

4. Results and discussion

Simulated noise-only images. In figure 2, the bias and RMSE of the different estimators are
shown as a function of σ . At low noise levels, Chang’s estimator and the maximum estimator
show an oscillatory behaviour, which is caused by the discreteness of the histogram. Indeed, at
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Figure 2. The bias (a) and RMSE (b) of the noise variance estimators as a function of σ for
simulated noise-only MR data. For each value of σ , 2000 simulations were used.

low values of σ , the width of the Rayleigh distribution is smaller than the histogram bin width,
which leads to an estimate of σ that is consistently located in the centre of the bin, which
in turn has a consistent negative or positive bias. Since for low σ , the smoothing parameter
of Chang’s estimator given by equation (10) is too small to compensate for this effect, the
oscillatory behaviour of this estimator is still apparent. For all values of σ , the maximum
estimator and Chang’s estimator have significantly larger RMSE than Brummer’s estimator
and the ML-based estimator.

Brummer’s method and the ML-based method account for the Rayleigh distribution,
which leads to significantly improved RMSE values of the noise variance estimator. The
proposed ML-based noise variance estimator clearly performs best in terms of the RMSE
because:

(i) The ML-based estimator correctly accounts for the discreteness of the data. This is
especially important when σ is close to the histogram bin width. For all values of σ , only
for the ML-based estimator the bias could not be shown to be significantly different from
zero (which can also be appreciated from figure 2(a)).

(ii) The multinomial distribution of the histogram bins is only taken into account by the ML-
based estimator. This results in a lower variance of the ML-based estimator compared to
that of Brummer’s estimator for a given number of bins.

(iii) The number of bins to be used for estimation is adaptively determined. For noise only
data, the ML-based estimator takes generally all bins into account since they pass the
Rayleigh distribution test (cf equation (24)) and thus has the lowest RMSE when the
noise level is larger. In contrast, in Brummer’s method, the number of bins used for
estimation is determined in a ‘hard’ way from an initial estimate of σ (cf equation (8)).

The RMSE of the ML-based estimator is approximately half of the RMSE of the second best,
which is Brummer’s estimator.

Simulated three-modal image. In figure 3, the RMSE of the different estimators is plotted. As
can be seen, the RMSE is low for most estimators when the signal level is below 1/3 of the
first signal level and rises sharply after that. For large σ (i.e., approximately σ > 30) the noise
variance estimators yield less reliable results, because the background mode largely overlaps
with the signal modes.
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Figure 3. The RMSE of the noise variance estimators as a function of σ for a simulated three-
modal MR image. The simulated image contained three grey values: 0, 100 and 200. For each
value of σ , 500 simulations were used.
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Figure 4. Histogram of the three-modal-image with standard deviation σ = 30, along with the true
Rayleigh distribution as well as the Rayleigh distributions based on the estimated noise standard
deviations and the low pass filtered histogram as specified by Chang’s method.

To illustrate the difficulty of estimating σ accurately, a representative realization of the
histogram with a noise level of 30 is plotted in figure 4. Along with the histogram, the true,
underlying Rayleigh distribution as well as the fitted Rayleigh distributions of the different
estimators are shown. As can be observed, the fitted distribution using the proposed ML-based
estimation procedure approximates the true distribution best. From figure 3, it is clear that
for low σ (i.e., approximately σ < 30), both Brummer’s method and the ML-based method
have significantly lower RMSE than the maximum estimator and Chang’s estimator, which is
due to the fact that much more data from the histogram are taken into account, leading to a
reduced variance of the noise variance estimator. For large σ (i.e., approximately σ > 30),
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Figure 5. The RMSE of the noise variance estimators as a function of σ for simulated 2D MR
data. For each value of σ , 1000 simulations were used.

the ML-based estimator outperforms all other estimators with respect to the RMSE. This is
because the ML-based method tries to find the right balance between the variance and the bias
of the σ estimator by optimizing the number of bins used for estimation.

Simulated 2D MR image. The noise variance estimation results for a simulated 2D MR
image are shown in figure 5. Given the mean value 〈m〉 of the noiseless image (in this
case 〈m〉 = 210), the image SNR can be defined as 〈m〉/σ . For low SNR, Chang’s method
performs best, probably caused by the smoothing of the histogram. For extremely low SNR,
however, none of the methods are suitable for accurate noise variance determination because
in this region the signal and noise contributions in the image histogram severely overlap. For
moderate or high values of the SNR (i.e., SNR > 2), the proposed ML-based noise variance
estimator performs best in terms of the RMSE.

Simulated 3D MR image. The results of the simulated 3D data set are shown in figure 6(a).
For 3D data sets, the ratio of the number of background voxels to the number of non-
background voxels is generally significantly larger compared to 2D data sets, which facilitates
the estimation of the noise variance from the histogram background mode.

In contrast to the noise-only data, Brummer’s method scores worse for simulated 3D MR
data than the Maximum and Chang’s estimators. The main reason for this is that Brummer’s
estimator uses two times the initial noise σ estimate as the number of bins (cf equation (8)).
When a lot of (background) data are present, as in a 3D image, the bias of this estimator
becomes prominent. The ML-based method, which searches for a compromise between
precision and accuracy, uses fewer bins to obtain a lower RMSE value.

Simulated 3D MR image with ghost. In figure 6(b) the results of the 3D image with ghost are
presented. The change in the histogram of the noise-free image which resulted from adding
the ghost is mainly concentrated in the range 10–70. The ghost seems to slightly affect the
noise variance estimation for all noise variance estimation methods. However, also in this
case, the proposed ML-based estimator performs best in terms of the RMSE.

Experimental 3D MR images. Finally, the noise variance was estimated from MR images of a
cherry tomato. Figures 7(a) and (b) show the MR reconstruction obtained by averaging over
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(a) No Ghost
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(b) with Ghost

Figure 6. The RMSE of the noise variance estimators as a function of σ for simulated 3D-MR
data. The left image shows the results without ghost and the right image shows the results with a
ghost added. For each value of σ , 500 simulations were used.

(a) No averaging (b) Average of 12

Figure 7. MR image of a cherry tomato acquired with 1 and 12 images shown in (a) and (b),
respectively.

1 and 12 acquired images, respectively. The resulting σ̂ as a function of n, for each estimator,
is shown in figure 8. Chang’s estimator did reveal a statistically significant trend, while the
other estimators did not. Note that the variance of the maximum estimator and Chang’s
estimator are larger than the variance of the ML-based estimator and Brummer’s estimator.
This is because the latter estimators exploit a larger part of the Rayleigh distributed histogram
background mode.

In general, we may conclude that the RMSE of the maximum estimator performs worst of
all described estimators in terms of the RMSE, mainly because the variance of this estimator
is large. The RMSE of Chang’s estimator is smaller than that of the maximum estimator.
However, in general, its RMSE is still significantly larger than that of Brummer’s and the
proposed ML-based estimator. The large RMSE of the maximum and Chang’s estimators can
partially be explained by the fact that they do not exploit the fact that the Rayleigh distribution
characterizes the background histogram bins.

Brummer’s method as well as the proposed ML-based estimator do account for the
Rayleigh distribution for the estimation of the noise variance. However, in general, the
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Figure 8. Estimated σ of an experimental MR image of a cherry tomato, as a function of the
number of averages n used during the acquisition.

proposed ML estimator performs significantly better than Brummer’s method, mainly because
it selects the number of bins used to estimate the noise variance in a more optimal way.

5. Conclusions

In this paper, previously proposed noise variance estimation methods that employ the image
histogram were reviewed and a new method was proposed based on maximum likelihood
(ML) estimation. Simulation experiments showed that the ML-based estimator outperforms
the previously proposed estimators in terms of the root mean squared error.
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