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A B S T R A C T

Satellite and recent Earth-based observations of Io's surface reveal a specific spatial pattern of persisting hotspots
and sudden high-intensity events. Io's major heat producing mechanism is tidal dissipation, which is thought to
be non-uniformly distributed within Io's mantle and asthenosphere. The question arises to what extent Io's non-
homogeneous heat production can cause long-wavelength variations in the interior and volcanic activity at the
surface. We investigate dissipation patterns resulting from two different initially spherical symmetric visco-
elastic rheological structures, which are consistent with geodetic observations. The spatial distributions of the
time-averaged tidal heat production are computed by a finite element model. Whereas for the first rheological
structure heat is produced only in the upper viscous layer (asthenosphere-heating model), the second rheological
structure results in a more evenly distributed dissipation pattern (mixed-heating model) with tidal heating oc-
curring in the deep mantle and the asthenosphere. To relate the heat production to the interior temperature and
melt distribution, we use steady-state scaling laws of mantle convection and a simple melt migration model. The
resulting long-wavelength thermal heterogeneities strongly depend on the initial tidal dissipation pattern, the
thickness of the convective layer, the mantle viscosity, and the ratio between magmatic and convective heat
transport. While for the asthenosphere-heating model a strong lateral temperature signal with up to 190 K peak-
to-peak difference can remain, convection within a thick convective layer, as for the mixed-heating model, can
reduce the lateral temperature variation to<1 K, if the mantle viscosity is sufficiently low. Models with a
dominating magma heat transport preserve the long-wavelength pattern of tidal dissipation much better and are
favoured, because they are better to explain Io's thick crust. The approach presented here can also be applied to
investigate the effect of an arbitrary interior heating pattern on Io's volcanic activity pattern.

1. Introduction

Unlike any of the other satellites in the Solar System that we know
Io shows signs of active silicate volcanism (Carr, 1986; McEwen et al.,
1998). In contrast to terrestrial planets with recent or active silicate
volcanism, Io's present heat output is not due to remnant cooling, but
due to extreme and non-uniform tidal heating (Beuthe, 2013; Ross
et al., 1990; Segatz et al., 1988). Because of this uniqueness within the
Solar System, Io serves as a potential archetype of rocky exoplanets and
exomoons undergoing extreme tidal heating. Understanding Io's recent
cooling processes could provide insight into the early evolution of the
terrestrial planets, when they were still hotter and possibly had a si-
milar heat flux as Io has today.
Io's observed volcanic activity is an important link to help under-

standing the satellite's interior processes. The non-uniform volcanic
pattern is commonly associated with a radial heat flux originating from

Io's non-uniform long-wavelength heat production pattern (Davies
et al., 2015; Hamilton et al., 2013; Ross et al., 1990). However, the
complex interplay of Io's internal heat transport mechanism and phy-
sical properties makes the assumption of a purely radial heat flow
questionable.
The distinct heat production distribution depends in an intricate

way on the tidal perturbation and rheology of Io's interior (Beuthe,
2013). Several studies based on the physics of solid visco-elastic ma-
terial have been conducted (Bierson and Nimmo, 2016; Ross et al.,
1990; Segatz et al., 1988) to predict a heat dissipation distribution.
Tyler et al. (2015) suggested a dynamic modelling approach by as-
suming that Io's asthenosphere is a global fluid layer. Both solid and
fluid types of models match the strong degree two component that can
be found in Io's inferred heat flux maps and Io's global volcanic dis-
tribution (Davies et al., 2015; Hamilton et al., 2013). However, whereas
the solid model is not able to predict the observed longitudinal shift of
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the maxima in the volcanic concentration, the fluid model is not in
agreement with the strong volcanic activity at medium latitudes.
Io's interior heat production, heat distribution, and heat transport

mechanisms are significantly different from other terrestrial bodies. Io's
produced heat is partially transported by convection (Moore et al.,
2007). However, due to the extreme heat in Io's interior and low
pressures, Io's mantle contains high portions of melt (Khurana et al.,
2011). Volcanic channels arise allowing the transport of molten mate-
rial and heat to the surface, cooling Io's interior more effectively
(Bierson and Nimmo, 2016; Elder, 2015; Moore, 2001). Furthermore,
dissipative heat forms the most significant part of Io's heat budget as
opposed to remnant cooling from the core (Lainey et al., 2009; Peale
et al., 1979). Because of the heterogeneous nature of the tidal dissipa-
tion pattern, Io's heat is not distributed uniformly in radial and in lat-
eral directions. This leads to a convection system, which cannot be
described by scaling laws based on adiabatic temperature profiles and
one-dimensional mantle structures as proposed for Mars, Venus and
Mercury (Schubert et al., 2001).
Planetary evolution models (Schubert et al., 2001; Spohn, 1991)

show that the amount of heat in the interior determines the interior
structure of celestial bodies due to the temperature-dependence of the
melt fraction and the mantle viscosity. The question arises if a strong
non-homogeneous internal heat production, such as for Io, has a lateral
varying effect on the interior structure. In this case, Io's interior struc-
ture would have a three-dimensional distribution of interior properties,
and thus, a possibly different evolving dissipation pattern than derived
from radially symmetric structures (Bierson and Nimmo, 2016;
Hamilton et al., 2013; Ross et al., 1990; Segatz et al., 1988).
The effect of tidal heating on the interior structure of celestial

bodies due to the temperature-dependency of the viscosity has been
explored for icy satellites of the outer planetary systems (Ojakangas and
Stevenson, 1989; Tobie et al., 2005; Roberts and Nimmo, 2008; Han
and Showman, 2010; Běhounková et al., 2010). Terrestrial bodies,
however, have been given less attention because of the minor role of
tidal dissipation for the terrestrial planets of the Solar System.
Běhounková et al. (2010, 2011) investigated the feedback between the
heterogeneous rheological structure resulting from mantle convection
and the rheology-dependent tidal dissipation in a three-dimensional
numerical model for Earth-like exoplanets. However, because their in-
vestigations are based on different orbital and interior properties their
conclusions cannot be applied to Io. Studies focusing on Io have been
conducted by Tackley (2001), Tackley et al. (2001) and Bierson and
Nimmo (2016). The first two studies investigate the effect of the three-
dimensional heating pattern on the temperature structure and lateral
heat flux pattern for a purely convective asthenosphere and mantle.
This approach possibly underestimates the effect of tidally induced
heating on the heat flux pattern, as it neglects advection of melt. This
heat removal mechanism transports heat more quickly and maintains a
more radial direction. In contrast, Bierson and Nimmo (2016) derived a
three-dimensional melt distribution based on the assumption that the
lateral varying produced heat is exclusively transported by magma.
This approach, however, possibly overestimates the tidal-dissipation
induced signal on the surface heat flux pattern, as lateral flow due to
mantle convection is neglected. We suggest that a combination of
convective and magmatic heat transport would improve the estimations
of tidally induced variations of Io's surface heat flux and volcanic ac-
tivity pattern.
In this paper we aim to explore whether Io's heterogeneous heating

causes lateral variations of the internal structure or whether the as-
sumption of a well-mixed radially symmetric mantle is justified. To
achieve that we combine heterogeneous tidal heat dissipation with a
coupled system of mantle convection and advection of melt. Further, we
link our modelling results to observables, such as Io's surface pattern of
volcanic features (Davies et al., 2015; Kirchoff et al., 2011; de Kleer and
de Pater, 2016; Veeder et al., 2015). We focus on first-order effects of
the tidal dissipation pattern on the interior. To model Io's convective

mantle we use a steady-state scaling law and ignore small-scale
anomalies triggered by mantle convection as they are difficult to pre-
dict. Thus, our resulting long-wavelength patterns can be seen as a
statistically averaged solution.
Since our main aim is to explore the relation between the tidal

dissipation patterns and the tidal-dissipation-induced lateral variations
we do not explore the full range of possible dissipation patterns.
Instead, we investigate two end-members of possible tidal dissipation
pattern based on Ross et al. (1990). We choose to compute the tidal
dissipation with a numerical finite element (FE) model that can deal
with three-dimensional variations of the viscosity. In contrast to semi-
analytical methods based on a one-dimensional approach (Jara-Orué
and Vermeersen, 2011; Sabadini et al., 2016), this allows to calculate
the effect of the tidally induced lateral viscosity variations on the tidal
dissipation itself in future work.
The FE model and the thermal modelling of Io's interior are in-

troduced in Sections 2 and 3, respectively. In Section 4 we present the
resulting lateral maximum temperature and melt distributions for our
interior models for a range of model variables. In Section 5 we discuss
the influence of the model assumptions on the obtained results and the
implications of our results on the interpretation of Io's volcanic surface
features.

2. Numerical modelling of volumetric tidal heating

In this section the three components of the numerical model for the
volumetric tidal heating are introduced and discussed: 1) the periodic
tidal forcing, 2) the solution of the equation of motion, here im-
plemented in a finite element (FE) model, and 3) the rheological model
and the choice of the interior properties.

2.1. Periodic tidal forcing

Io's eccentric orbit causes periodic variations of the distance be-
tween Io and Jupiter, and also causes differences between the rotation
velocity and orbital velocity of the satellite. The potential due to the 1:1
spin-orbit resonance at a point is given as a function of the time t, and
the spherical coordinates of the point, i.e. the radial distance from the
centre of Io r, and the longitude and co-latitude (Kaula, 1964):

=V t r r e P t P t

P t

( , , , ) 3
2

(cos ) cos ( ) 3
4

(cos ) cos(2 ) cos( )

(cos ) sin(2 ) sin( ) ,

p
2 2

2,0 2,2

2,2 (1)

where ω=2π/Porbit is the mean motion with Porbit the orbital period of
Io, and e the eccentricity of Io's orbit. P2,0(cos ) and P2,2(cos ) are the
degree two associated Legendre polynomials of order zero and two,
respectively. The inclination of Io's rotation axis and physical librations
are unknown but expected to be small (Yoder and Peale, 1981). Thus,
their effects on the dissipation pattern (Beuthe, 2013; Frouard and
Efroimsky, 2017) are neglected. Furthermore, we assume that Io is fully
relaxed under every static force and neglect the effect of any static
bulge of the body on the periodic tidal response. The geophysical and
geodetic parameters used to describe the strength and the period of the
tidal forcing for Io are presented in Table 1.

2.2. Finite element approach

We solve the equation of motion using a finite element model
(ABAQUS version 6.14) and follow the method of Wu (2004) to account
for self-gravitation in an iterative way. The FE model was developed by
Hu et al. (2017) to calculate the change of the moment of inertia tensor
for non-spherical symmetric bodies. For this study, the model is used to
calculate the effect of periodic tidal forces (Eq. (1)) on Io's interior.
The FE model solves for the deformation field u for each time step,

following the conservation of mass
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=u· 0, (2)

and the conservation of momentum

+ =f· 0, (3)

where f is the body force applied as a surface load at boundaries be-
tween the layers of different densities. is the incremental stress field
tensor, including both: the isotropic part of the stress field, controlling
the volumetric changes, and the deviatoric part of the stress field, re-
lated to any shape changes. The restoring force of isostasy at each
boundary of radial change in density is applied following Wu (2004).
Any forces due to inertia are neglected. The effect of compressibility is
also not included. To include self-gravitation the additional potential
due to deformation needs to be included in the body force. The total
force that is applied to each boundary at a density jump with a density
difference of is consequently described as

= +f V( ),p (4)

where Vp is the external tidal potential given in Eq. (1) and Λ is the
potential of the perturbation of the gravity field. The latter perturbation
arises due to the mass redistribution, which is a consequence of the tidal
deformation field u. In each iteration step, Λ is re-computed numeri-
cally using the deformation field u. The newly calculated load f is
applied until the deformation u and stress field for each time step t
have converged. The number of required iterations depends on the
specific problem and is therefore addressed in Appendix B. The type of
elements used in the finite element model is important for the stress
calculation. Whereas for the deformation and self-gravitation linear
elements (8 nodes) deliver sufficient accuracy, the calculation of
stresses requires quadratic elements (20 nodes) to account for the non-
cubic shape of the elements. However, solving the stress field in the
finite element model with quadratic instead of linear elements is a
computationally expensive procedure. Therefore, we only apply a
quadratic mesh in the final iteration of the self-gravitation iteration.
As the time scale for solid-state convection, modelled in Section 3, is

assumed to be much larger than one orbital period, the volumetric tidal
heat production is averaged over one orbital period to result in an
average three-dimensional tidal dissipation pattern. The average volu-
metric heat dissipation hnode is calculated for each integration point
following Hanyk et al. (2005)

=
+

h
P

1 :
2

dt,node
orbit

P D D

diss

orbit

(5)

where :D D denotes an inner matrix product of the deviatoric stress
tensor D, diss is the viscosity of the visco-elastic mantle at the corre-
sponding integration point, and τ is the time required for the visco-
elastic model to adjust to the steady state. Note that since we only use
the deviatoric stress field for the calculation of the volumetric dis-
sipation hnode, the transformation of the isotropic stress tensor given by
Wu (2004) has no effect. The values of the heat dissipation hnode are
interpolated to an equiangular grid to facilitate spherical harmonic
expansion later. The resulting spatial varying internal heating functions
H r( , , ) are used in Section 3 to calculate the effect of the tidal heat
production on Io's interior.

2.3. Rheological model and properties of Io's interior structure

We choose to simulate the visco-elastic behaviour of Io's interior
with the Maxwell rheology. The Maxwell rheology is a very good ap-
proximation of the material behaviour for low-frequency loading
(Sabadini et al., 2016), and has been applied to Io in previous studies
(Hussmann and Spohn, 2004; Ross et al., 1990; Segatz et al., 1988).
However, laboratory and geodetic observations show that the Maxwell
rheology underestimates the frictional dissipation of a visco-elastic
material for perturbations shorter than the Maxwell time of a material
(Castillo-Rogez et al., 2011; Efroimsky, 2012). This is the case for
realistic rock properties of Io's interior and Io's short tidal perturbation
period of about 42 h. For this reason more advanced rheology models,
such as the Andrade rheology, have been used for Io by several authors
(Bierson and Nimmo, 2016; Makarov and Efroimsky, 2014; Renaud and
Henning, 2018). They obtain mantle viscosities that can produce Io's
estimated total dissipation Etotal (Lainey et al., 2009) and still allow a
solid-state convection.
As suggested by Tobie et al. (2005) we deal with the discrepancy

between the viscosity required for the Maxwell rheology and the mantle
viscosity by treating the visco-elastic rheology separated from the
mantle viscosity associated with solid-state convection. In contrast to
the magnitude of the produced heat in each layer, the spatial pattern
does not depend on the used viscosity (Beuthe, 2013). Consequently,
small differences in the resulting heat flux pattern arise when Andrade
rheology instead of Maxwell rheology is used, which, however, do not
affect our final conclusions. In the following, we use the term Maxwell
viscosity diss valid for Io's dominating forcing period Porbit when re-
ferring to the viscosity used to calculate the dissipation due to internal
friction in a visco-elastic medium. In contrast, we use the term mantle
viscosity con for the viscosity that controls the convection of Io's mantle
and asthenosphere.
The spatial distribution of heat production is strongly coupled to the

rheology properties of the body's interior, i.e. the shear modulus μ, the
Maxwell viscosity diss, and the density distribution . Unfortunately,
these parameters cannot be uniquely constrained for Io. A full ex-
ploration of possible dissipation patterns is not within the scope of this
paper and can be done more efficiently using theoretical considerations
such as provided by Beuthe (2013). We instead investigate tidal dis-
sipation patterns resulting from two different interior structure models.
The properties of the two models are chosen such that the corre-
sponding initial dissipation patterns result in maximal spatial variations
for one model and minimal spatial variations for the other model. Thus,
the two models are considered as end-members. Both models have a
spherical symmetric structure, as no three-dimensional variations of the
interior are known a priori. The structure is composed of a liquid core, a
visco-elastic mantle that is divided into a deep high-viscosity layer and
a shallow low-viscosity melt containing layer, i.e. the asthenosphere,
and a fully elastic crust. In contrast to Segatz et al. (1988) both of our
models contain an asthenosphere since observations of Io's interaction
with Jupiter's magnetic field suggest a melt containing layer (Khurana
et al., 2011). The parameters are selected such that they match with Io's
observed mean density, mean radius, the polar moment of inertia
provided in Table 1 and Io's observed average surface heat flux of
2.24 ± 0.45Wm−2 (Lainey et al., 2009). We select an asthenosphere
thickness of 200 km for both models as a compromise between esti-
mates for the thickness of the partially molten layer of several hundreds
of kilometres (Bierson and Nimmo, 2016) and estimates of
30 km–50 km (Ross et al., 1990; Segatz et al., 1988). For our FE models
we set the crustal thickness to 30 km in agreement with (Turtle et al.,
2007) who suggest a range between 10 km and 50 km. The crustal
rheology is based on values by Segatz et al. (1988). For the core we take
the density of a Fe-FeS eutectic, which is an approximation of the
minimal core density (Anderson et al., 2001).
To account for the unknown composition of the deep mantle we

investigate a potential interior model of Io with all the heat produced in

Table 1
Geophysical and geodetic parameters of Io taken from (1) Anderson et al.
(2001), (2) Lissauer and De Pater (2013), and (3) Lainey et al. (2009).

Parameter Notation Value Unit

Mean density(1) ρ 3527.8 kgm−3

Mean radius(1) R 1821.6 km
Eccentricity(2) e 0.0041 –
Normalized moment of inertia(1) C/MR2 0.37685 –
Orbital period(2) Porbit 1.769138 days
Imaginary part of Love number(3) –Im (k2 ) 0.015 –
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the asthenosphere based on Segatz et al. (1988), which we term
Model A. We neglect any heat contribution from the deep mantle for
Model A (asthenosphere-heating scheme). Thus, the heat production
rate in the asthenosphere East is equal to Io's total heat production rate
Etotal but shows large regional variations. For Model B both the asthe-
nosphere and the deep mantle contribute to Io's total heat production.
We choose a fraction of 40% asthenosphere-heating and 60% mantle-
heating, which leads to a minimisation of regional differences in the
spatial heat production pattern at the surface (Ross et al., 1990). The
viscosity of the asthenosphere and deep mantle of Model A and B are
adjusted in a way to produce the desired heating distribution between
the deep mantle and the asthenosphere and Io's total heat production
rate Etotal. All common parameters defining the rheological structures of
Model A and Model B are presented in Table 2. Model A and B specific
parameters are presented in Table 3. We calculate the total heat pro-
duction rate using the macroscopic approach (Beuthe, 2013), which is
given as a function of the imaginary part of the complex Love number
k2 :

=E k R
G

eIm ( ) ( ) 21
2

,total 2
5

2
(6)

with G being the gravitational constant equal to
6.674 · 10−11m3 kg−1 s−2. The imaginary part of k2 is given in Table 1
and is obtained by the rheological structures of Model A and Model B
using a semi-analytical approach based on normal mode theory (Jara-
Orué and Vermeersen, 2011; Sabadini et al., 2016). This semi-analytical
method requires much less computational costs as it is based on a one-
dimensional description of the interior structure, whereas our FE model
is three-dimensional.

3. Thermal modelling

Heat generated by dissipation within Io's interior is transported by
thermal diffusion, melt migration, and solid-state convection (Elder,
2015; Moore, 2001; Tackley, 2001). Our aim is to obtain the tem-
perature distribution in the upper layers of the mantle resulting from
the spatial pattern of the tidal dissipation taking into account all heat
transport mechanisms. The difficulty is that the intensities of the con-
vective, conductive, and magmatic heat transport strongly depend on
each other. In the following, we outline our approach to address this
problem in order to find a statistically averaged regional solution. For
that we make use of scaling laws, which are typically used to analyse
the thermal state and evolution of planets and satellites (Fischer and
Spohn, 1990; Hussmann and Spohn, 2004; Spohn, 1991; Tosi et al.,
2017). Doing so reduces the large number of model parameters. All
major steps are presented in Fig. 1.

Table 2
Common parameters of the rheology and thermal modelling for Model A and
Model B following (1) Anderson et al. (2001), (2) Turtle et al. (2007), (3) Segatz
et al. (1988), (4) Roberts (1967), and (5) Tackley (2001).

Rheology parameter Notation Value Unit

Core density(1) c 5150 kgm−3

Core-mantle boundary Rcmb 965 km
Mantle/crust density m 3244 kgm−3

Crustal thickness(2) ddiss,crust 30 km
Crustal shear modulus(3) μcrust 6.5 · 1010 Pa
Crustal Maxwell viscosity(3) diss,crust 1023 Pa s
Asthenosphere thickness dast 200 km

Thermal parameter Notation Value Unit

Mantle thermal conductivity km 3 Wm−1 K−1

Lid thermal conductivity klid 3 Wm−1 K−1

Grav. acceleration for convection g 1.7 m s−2

Surface temperature Ts 100 K
Thermal diffusivity 10−6 m2 s−1

Thermal expansivity 2 · 10−5 K−1

Critical Rayleigh number(4) RaH,crit 2772 –
Activation energy Ea 3 · 105 Jmol1

Gas constant Rgas 8.314 J K−1mol−1

Blurring coefficient(5) C 4.413 –
Blurring exponent(5) β 0.2448 –
Reference mantle viscosity con 1012–1018 Pa s
Heat flux fraction fcc 5–95 %

Table 3
Individual parameters of the rheology and thermal modelling for Model A and
Model B.

Rheology parameter Notation Model A Model B Unit

Deep mantle shear modulus μm 6 · 1010 2 · 109 Pa
Deep mantle Maxwell viscosity diss,m 1020 8 · 1014 Pa s
Asthenosphere shear modulus μast 7.8 · 105 9 · 107 Pa
Asthenosphere Maxwell viscosity diss,ast 1011 3.5 · 1012 Pa s
Mantle heat production ratio E E/m total 0 60 %
Asthenosphere heat production ratio E E/ast total 100 40 %

Thermal parameter Notation Model A Model B Unit

Thickness of convective layer d 200 826.6 km
Radius bottom of convective layer Rcon 1591.6 965 km
Geometry factor af 0.8925 0.6096 –

Fig. 1. Flow chart of all modelling steps. Big grey boxes give the three main
model steps. The finite element model is described in Section 2, the blurring,
the steady-state scaling, and the partial melt parametrisation and the iteration
of the local heat flux fluctuationQ ( , )cc are presented in Section 3. The dashed
box on the right represents the main input parameters, oval boxes give mod-
elling sub-procedures and rectangular boxes display intermediate and final
model outputs.
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In the first step the three-dimensional volumetric dissipation is
projected to Io's surface. The resulting heat production per unit area is
then smoothed to account for lateral convective flow. We will refer to
this procedure as blurring, as introduced by Tackley (2001). Next, we
split the obtained total heat flux Q ( , ) into a magmatic and a con-
vective-conductive contribution

= +Q Q Q( , ) ( , ) ( , ),cc mag (7)

whereQ ( , )mag is the pattern of the magmatic heat flux andQ ( , )cc is
the pattern of the convective-conductive heat flux. We treat the fraction

=f Q
Q

,cc
cc

(8)

between the globally average convective-conductive heat flux Qcc and
the globally average total heat flux Q as a variable. We name this ratio
the heat flux fraction. Note that Q ( , )mag is related but not equivalent
to the observed hot spot heat flow as Io's background heat flow is also
fed by intrusive magma (Stevenson and McNamara, 1988). To compute
the distribution of the maximum mantle temperature and melt fraction
for each longitude and co-latitude we use an analytically derived
scaling law from Vilella and Kaminski (2017) to approximate the radial
temperature field due to mantle convection. The magmatic heat output
Q ( , )mag per unit area is approximated based on the melt fraction and
the heat flux fraction fcc. In the last step, the spatially varying con-
vective-conductive heat flux Q ( , )cc is updated keeping fcc and the
globally average total heat flux Q constant (Eq. (7)). The last steps are
repeated several times (see Fig. 1) until Q ( , )cc converges and an
equilibrium mantle temperature, melt fraction and magmatic heat
output are found.
In the following we give a general description of a volumetric he-

ated system (Section 3.1) before we describe the different steps of the
above introduced model procedure: the blurring of Io's produced heat
(Section 3.2), the approximation of the mantle temperature (Section
3.3), and the inclusion of the laterally varying magmatic heat transport
and the iteration scheme (Section 3.4).

3.1. Steady-state scaling of a volumetric heated convective system

Io is intensively heated from within the mantle. Its heat flux
is> 100 times larger than the heat flux of Earth's moon (Langseth et al.,
1976). Therefore, radioactive decay and remnant heat play a minor role
for Io's heat budget. For this study, it is therefore assumed that the net
heat flux from the core to the mantle is zero (Tackley et al., 2001). We
assume that Io's mantle is incompressible, convective, and separated
from the surface by a stagnant lid (Moore, 2003). Furthermore, we
assume that the heat production rate is equal to the heat loss of the
system as shown for Io by Lainey et al. (2009). Scaling laws for in-
ternally heated Cartesian systems in a thermal steady state have been
investigated numerically (Parmentier and Sotin, 2000; Parmentier
et al., 1994; Vilella and Kaminski, 2017) and by laboratory experiments
(Limare et al., 2015). Both types of experiments show that in a volu-
metric heated system active down-welling with passive up-welling oc-
curs. This leads to a sub-adiabatic geotherm as schematically shown in
Fig. 2. Thus, the maximum temperature within the convective system
can be found at the bottom of the thermal boundary layer, which is a
thin layer below the stagnant lid. The thermal boundary is still a part of
the convective layer, according to the used scaling law, although its
temperature profile is conductive. We assume that the heat transport by
magma is proportional to the maximum melt fraction. Consequently,
knowledge of the slope of the adiabat is not required. However, the
used scaling law for mantle convection does not account for the pre-
sence of melt, thus it is implicitly assumed that melt and heat are re-
moved immediately, without interfering with the mantle convection. To
estimate the maximum temperature specific parameters of the con-
vective system, such as the temperature increase across the convective

layer and the strength of convection, the Rayleigh-Roberts number is
required. This will be briefly introduced here. In a purely internally
heated system the temperature jump across the convective layer ΔTH
can be non-dimensionalized using a volumetric heat production scale
(Schubert et al., 2001)

=T a Hd
k

,H f
m

2

(9)

where H is the volumetric heat production, d the thickness of the
convective layer and km is the thermal conductivity. The factor

= +
+

+
+

a R
R d

R
R d

1
3

1f
con

con

con

con

2

(10)

is the correction due to the spherical geometry (Deschamps et al.,
2012), where Rcon is the radial distance from the centre of Io to the
bottom of the convective layer.
To estimate the lateral heat flow and to approximate the geotherm

throughout the convective layer we need to know the Rayleigh-Roberts
number (Roberts, 1967). The Rayleigh-Roberts number is a variant of
the Rayleigh number describing the ratio between convection driving
and convection inhibiting forces (Schubert et al., 2001) for a volumetric
heated system and is given by

=Ra
a g Hd

k
,H

f m

m con

5

(11)

where m is the reference mantle density, is the thermal diffusivity,
con the mantle convection viscosity, the thermal expansion coeffi-
cient, and g the acceleration of gravity. Since we only consider direct
effects of the tidal dissipation pattern on the temperature distribution,
we assume that these mantle properties do not change with depth
throughout the convective system. The influence of a radially non-
homogeneous heating on the temperature profile of a convective system
has been investigated for a two-layered spherically symmetric heating
pattern (Vilella and Kaminski, 2017). However, to our knowledge no
scaling laws are available that can deal with complex radially varying
heating distributions, as for Io. That is why we merge the three di-
mensional volumetric heating patterns H r( , , ) obtained in Section 2
into a two-dimensional pattern

=
+

Q H r r( , ) ( , , )d ,
R

R d

con

con

(12)

where d is the thickness of the simultaneously internally heated and
convective layer. Note that Q ( , ) obtained from Eq. (12) is not Io's

Fig. 2. Schematic temperature profile of Io. The geotherm is plotted in a
Cartesian system of the radius and temperature. In the modelling we correct for
the spherical geometry.
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actual heat flux Q ( , ). Q ( , ) is the pattern of the heat production
rate per unit area, or, in other words, a projection of the produced
three-dimensional volumetric heat production onto Io's surface. In the
following the blurring model, which estimates the actual heat flux
pattern Q ( , ) taking into account lateral flow due to convection, is
explained.

3.2. Lateral heat flow due to convection

The heat flow in a convective medium is not only in radial direction
but also in lateral direction. This convective heat flow in lateral di-
rection results in a lateral smoothing of the spatial varying heating
pattern. Blurring can be described as a weakening of higher degrees of
the computed power spectrum of the dissipation pattern, thus it acts as
a low-pass filter. The heat production rate per unit area is decomposed
into spherical harmonics:

= + +
= =

Q Q P C m S m( , ) (cos )( cos ( ) sin ( )).
n

n

m

n

nm nm nm
1 0

max

(13)

Pnm is the fully normalized associated Legendre function of degree n
and order m andQ the mean global heat flux. The actual total heat flux
function is derived by

= + +
= =

Q Q B n P C m S m( , ) ( ) (cos )( cos ( ) sin ( )),
n

n

m

n

nm nm nm
1 0

max

(14)

with

=Q Q . (15)

The blurring is achieved through a filter B(n), i.e. the blurring
factor, which is given by

=B n CRa R
nd

( ) .H (16)

According to Tackley (2001), C is a constant and is equal to 1/4
for the analytically investigated homogeneous case. However, for a
boundary-focused heating profile, characteristic for Io's asthenosphere
(Tackley et al., 2001), β changes its value as shown numerically by
Tackley (2001). The effectiveness of the blurring is approximated using
the globally averaged Rayleigh-Roberts number

=Ra
a g f Qd

k
,H

f m cc

m con

4

(17)

which is derived from Eq. (11), but here given as a function of the
globally averaged convective-conductive heat flux f Qcc and the re-
ference mantle viscosity con. Because we do not consider any radial
fluctuation of the blurring strength, we replace the volumetric heat H
with Q/d. To fulfil the conservation of energy, the globally averaged
heat flux (n=0) needs to remain the same (see Eq. (15)). Conse-
quently, B(n=0) is set equal to 1. As none of the higher degree signals
should be increased by the blurring, B(n > 0) is forced to be 1 if re-
sulting in a value larger than 1. From Eqs. (13) and (16) it becomes
obvious that a large Rayleigh-Roberts number RaH as well as a large
convective layer thickness d cause strong blurring of the tidal dissipa-
tion signal.
Also the magmatic heat output driven by meltQ ( , )mag , calculated

in Section 3.4, needs to be blurred in order to approximate the amount
of heat neighbouring regions can feed a magma reservoir due to con-
vective motion. This allows the surface heat output by melt Q ( , )mag
to regionally exceed the tidal heat production directly produced below
a specific area, which is usually the case for magmatic systems.

3.3. Thermal profile of Io's internally heated mantle

Next, we compute the maximum mantle temperature at the bottom
of the thermal boundary layer and corresponding properties of Io's
thermal profile using the parameters determined in Section 3.1. For
that, only the convective-conductive part of the heat flux Q ( , )cc (Eq.
(8)) is considered. In contrast to the approximation of the blurring
where we considered a global average Rayleigh-Roberts number (Eq.
(17)) because of the global filtering approach (Eq. (14)), the Rayleigh-
Roberts number Ra ( , )H is treated as a spatial-dependent property of
the interior here.
The relation between the convective-conductive heat flux and

magmatic heat flux changes locally, since we assume that the intensity
of the magmatic heat flux depends on the amount of melt. The melt
distribution is initially unknown, as it depends on the initially unknown
local mantle temperature and initially unknown distribution of
Q ( , )cc,final . That is why we take the global average convective-con-
ductive heat flux ==Q f Q ( , )cc i cc, 1 as an a-priori value in the first
iteration step i=1. Each further iteration stepQ ( , )cc,i is updated (see
Fig. 1), until the final distribution of the heat flux variationQ ( , )cc,final
is found. Thereby, the local heat flux fraction f ( , )cc,i between the
local heat fluxQ ( , ) and the convective-conductive heat fluxQ ( , )cc,i
is allowed to change. However, we force the globally averaged con-
vective-conductive heat fluxQcc and consequently the heat flux fraction
fcc given in Eq. (8) to remain constant for each iteration step.
We substitute H/d with the convective-conductive heat flux

Q ( , )cc,i in Eqs. (11) and (9). The Rayleigh-Roberts number distribu-
tion for each iteration step i is therefore given by

=Ra
a g Q d

k
( , )

( , )
( , )

,H i
f m cc i

m con
,

,
4

(18)

and the distribution of the a-priori temperature jump across the con-
vective layer is given by

=T a
Q d

k
( , )

( , )
.H i f

cc i

m
,

,

(19)

We use the scaling law introduced by Vilella and Kaminski (2017) to
approximate the temperature at the top of up-streaming vents just
below the thermal boundary layer, i.e. the maximum mantle tempera-
ture (Vilella and Kaminski, 2017). We follow their approach for two
reasons: 1) The scaling is based on an analytical description allowing to
consider a wide range of the Rayleigh-Roberts numbers. 2) Other
scaling laws for volumetric heating schemes (e.g. Parmentier et al.,
1994) investigate the mean mantle temperature. Using these kind of
scaling laws, we would underestimate the melt fraction. As described in
Vilella and Kaminski (2017) this maximum mantle temperature arising
in hot up-streams is not omnipresent in a convective mantle. Thus,
applying the resulting temperature and corresponding melt fraction
globally, would result in an over-estimation of the presence of melt.
However, the fraction between hot up-streams and cold down-streams
is implicitly included in the variable fcc, which we use for the estimation
of the heat flux transported by melt in Section 3.4. As the variable fcc
comprises a large set of poorly known parameters it is investigated for a
wide range of possible values. Thus, an explicit knowledge of the sur-
face fraction is not required, as long as we assume that the up-streams
are uniformly distributed. A schematic temperature profile with all the
important parameters introduced in the following is shown in Fig. 2.
The maximum temperature jump T ( , )top i, across the thermal

boundary layer is determined by

=T T
Ra

Ra
( , ) 1

2
( , )

( , )
,top i H i

H crit

H i
, ,

,

,

1/4

(20)

following Vilella and Kaminski (2017). In contrast to Eq. (18) in Vilella
and Kaminski (2017) the spherical symmetric correction factor af is not
included in Eq. (20), as the correction is already included in ΔTH,i (Eq.
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(19)). The critical Rayleigh-Roberts number RaH,crit provides a
threshold value that determines whether the system is convective or
conductive. The maximum mantle temperature at the corresponding
latitude and longitude is a function of the maximum temperature jump
across the thermal boundary layer ΔTtop,i and can be approximated by
(Grasset and Parmentier, 1998; Tosi et al., 2017)

=T T E
R

( , ) ( , )
2.9

,m i top i
a

gas
, ,

(21)

with the activation energy Ea and the gas constant Rgas.
Substituting Eqs. (18) and (19) into Eq. (21) and further simplifi-

cation results in a new expression for the maximum mantle temperature

=T a Q( , ) ( ( , )) ( , ) ,m i f cc i con, 0 ,
3
8

1
8 (22)

with

= E
R

Ra
g k5.8

.a

gas

H crit

m m
0

,
3

1
8

(23)

From Eq. (22) it can be seen that the maximum mantle temperature
increases with increasing viscosity and increasing magmatic heat
output.
Note that ( , )con is not constant as it depends on the mantle

temperature distribution T ( , )m . Despite this being a minor effect, we
developed a procedure correcting for it using the Lambert relation. We
describe the full procedure in Appendix A.

3.4. Magmatic heat transport by melt and iterative procedure

We assume that the amount of heat transported by magma in a
certain region depends on the local melt fraction. To calculate the
latter, we follow Katz et al. (2003) considering an anhydrous solidus of
a peridotitic lherzolite, which can be found in the Earth's mantle. The
parametrization for the melt fraction is a function of pressure and
temperature and serves as a good approximation of the ultra-mafic
material, which is present at some of Io's volcanoes (Davies et al.,
2010). Note, however, that sulphur is an abundant material on Io's
surface and plays an important role in Io's volcanic activity. The melting
temperature reducing effect of sulphur is not included in this study,
since the presence and influence of sulphur in Io's deep layers are not
well known.
The melt fraction is given as a fractional distance between solidus

and liquidus (Hirschmann, 2000)

=
T T P

T P T P
( , )

( , ) ( )
( ) ( )

,i
m i sol

liq sol

,

(24)

where Tsol(P) and Tliq(P) are polynomial functions of the pressure P
(Katz et al., 2003). Note that the above version of the melt para-
metrization results in small but increasing inaccuracies with increasing
melt fractions. Furthermore, we ignore any spatial variation of the
crustal thickness (Eq. (31)) as well as the thickness of the thermal
boundary layer, and approximate the maximum melt fraction at the
depth of the initial crustal thickness of the rheological model (Section
2). From Eq. (24) we calculate the globally averaged maximum melt
fraction i in up-rising plumes.
Parameters that determine how much melt is transported per sur-

face fraction are difficult to predict for Io. We assume that the melt
transport efficiency is proportional to the melt fraction just below the
thermal boundary layer, and that the melt-containing up-streams are
not omnipresent but equally distributed. Thus, we determine the global
heat transport efficiency

=
Q

,melt i
mag

i
, (25)

using the average global magmatic heat flux =Q f Q(1 )mag cc and the
globally averaged melt fraction i. Note again, that Q is an observa-
tional constraint and the variable fcc is constant throughout the itera-
tions. The factor melt i, determines a heat flux per melt fraction. It
combines several heat pipe parameters, such as the fraction of hot up-
streams within a certain area, the latent heat, the buoyancy or corre-
sponding velocity and the density of melt as used by Bierson and
Nimmo (2016), Elder (2015), and Moore (2001). Next, we solve for the
magmatic heat output per unit area

=Q ( , ) ( , ).mag i melt i i, , (26)

Q ( , )mag i, is considered as a negative heat source per unit area, i.e.
the opposite sign as the produced heat Q ( , ). We apply the blurring
filter (Eq. (16)) resulting in Q ( , )mag,i and obtain the new convective-
conductive heat flux:

=+Q Q Q( , ) ( , ) ( , ).cc i mag i, 1 , (27)

Due to the linear behaviour of the blurring filter it is also possible to
derive +Q ( , )cc,i 1 given in Eq. (27) in a different way (Fig. 3).
We enter the result of Eq. (27) into Eq. (22) and recalculate Eqs.

(22)–(26) until convergence is found. This way an equilibrium between
convective-conductive and magmatic heat flux for each co-latitude and
longitude is found for a specific set of input parameters. The obtained
equilibrium considers the initial heat production, the convective

Fig. 3. Schematic graph of a heat production and heat transport profile along an arbitrary profile x (one wavelength only). Out of the total produced heat per unit
area and unit time Q′ (black dashed line) and the magmatic heat outputQmag (red dashed line) we derive the amount of remaining heat that needs to be transported by
mantle convection. We get Qcc =Q′ −Qmag (blue dashed line). For Qcc the lateral flow due to convection is not considered. Therefore, Qcc is blurred to account for
lateral flow and we get Qcc (blue solid line). Regions with Qcc > Qcc have a negative lateral net heat flow. Regions with Qcc < Qcc have a positive lateral net heat
flow. The average convective heat flowQcc (thin dotted blue line) remains the same forQcc and Qcc. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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manner of the asthenosphere and mantle, the temperature-dependence
of melt occurrence, and heat transport by melt. Once convergence is
found (Qcc,i 1≈Qcc,i=Qcc,final) we obtain the posteriori lateral pattern of
T ( , )m , Q ( , )mag , Q ( , )cc and the lateral varying melt distribution

( , ) (see Fig. 1).

3.5. Lateral thickness variations of the thermal boundary and crust

In the last step, we check whether our thermal models result in
crustal thicknesses in agreement with the rheological structure given in
Section 2.3. For that, the final heat flux distribution Q ( , )cc and the
final maximum mantle temperature T ( , )m are taken into account.
The thickness of the boundary layer is calculated according to

Vilella and Kaminski (2017):

=d
Ra

Ra
( , )/

( , )
.top

H crit

H

,
1/4

(28)

From Eq. (21) we get the maximum temperature below the lid

=T T T( , ) ( , ) ( , ).lid m top (29)

We calculate the thickness of the conductive stagnant lid

= k T T
Q

( , ) ( , )
( , )

,lid lid
lid s

cc i, (30)

where klid is the thermal conductivity of the stagnant lid and Ts is the
surface temperature. Both parameters are assumed to be spatially uni-
form. We neglect any heat production in the conductive lid. Further, we
assume that the conductive heat flux in the stagnant lid is equal to the
convective heat flux in the mantle. Finally, we obtain the conductive
crustal thickness (Fig. 2), adding the thickness of the thermal boundary
layer and the thickness of the stagnant lid:

= +( , ) ( , ) ( , ).crust lid top (31)

Note the minor discrepancy between the thermal and the visco-
elastic model. For the thermal model the thermal boundary layer be-
longs to the heated asthenosphere, however, its visco-elastic char-
acteristics are more in agreement with the crust. However, this dis-
crepancy has no effect on our results and conclusions because the
evolving thickness of the thermal boundary layer is very small for most
of the investigated mantle viscosities.

3.6. Thermal properties of Io models

In this section we discuss the thermal properties of the two end-
member cases that have already been introduced in Section 2. For
Model A, we allow only the asthenosphere to be convective because all
of the tidal heating will occur in the asthenosphere (defined in Table 3).
We treat the asthenosphere-deep mantle boundary as a non-permeable
layer, allowing no exchange of material and neglect the heat flux from
the core and the deep mantle. A fully convective mantle including the
deep mantle and the asthenosphere is assumed for Model B. As pre-
sented in Table 3 both the deep mantle and the asthenosphere are he-
ated by tides and therefore need to lose heat efficiently. Accordingly,
the thickness of the convective layer d and the geometrical correction
for the spherical geometry af for Model B are different from Model A.
For simplicity, we assume that the mantle properties such as the

viscosity con, the density ρm, the thermal expansivity , the con-
ductivity km and the diffusivity (all given in Table 2) are constant
throughout the convective system. We also consider the mantle visc-
osity con for Model B to be radially constant, but we use different
Maxwell viscosities diss for the deep mantle and the asthenosphere
(Table 3). For the stagnant lid, which is assumed to be present for Io
(Moore, 2003), the critical Rayleigh-Roberts number is 2772 (Roberts,
1967). The respective proportionality constantsC and quantifying the
strength of the blurring are taken for a boundary-focused heating

profile from Tackley (2001) (both given in Table 2). The average
gravitational acceleration g is calculated at the top of the convective
system based on the density profile given in Section 2. The surface
temperature Ts is set to 100 K as done in Moore (2003) and the thermal
conductivity of the lid klid is the same as for the mantle.

4. Results

In this section we present the volumetric heat distribution of our
benchmarked finite element models. Further, we follow Sections 3.3
and 3.4 and present the spatial temperature, melt, and heat flux pat-
terns for selected sets of interior parameters. This is followed by a
parameter study, investigating the strength of the tidally-induced effect
on Io's interior for a wide range of parameters.

4.1. Tidal dissipation pattern of the finite element model

We set up the numerical model as described in Section 2. All model
specific adjustments and a benchmark showing that the accuracies of
the numerical results are sufficient for further use can be found in
Appendix B. The resulting spatial patterns of heat production H r( , , )
for both models, averaged over one orbit are given in Fig. 4.
For Model A, strong heating is present at the lid-asthenosphere-

boundary and at the asthenosphere-deep-mantle-boundary. This is be-
cause strong lateral deformation is present within the viscous asthe-
nosphere causing friction at the boundaries. These deformations are
smaller towards high latitudes. In the polar cut, large variations be-
tween the polar areas at 90° N and 90° S and the equatorial areas are
seen. The rheological structure chosen for Model B results in a more
evenly distributed volumetric heat production.
The differences between Model A and Model B become also obvious

in the two-dimensional pattern of the heat production rate per unit area
Q ( , ) (Fig. 5) obtained after the radial integration of the produced
heat. Both rheological structures have a similar average heat flux (Table
B.1) but result in different dissipation patterns. For Model A 30° North
and South of the sub-Jovian point the maximum areal heat production
is approximately 3.6Wm−2 and no tidal heat is produced at the poles.
For Model B the heat generation is more evenly distributed. The pat-
terns in panels a and b in Fig. 5 are qualitatively compatible to Figs. 2b
and 3c in Ross et al. (1990) for which slightly different rheological
structures were used.

4.2. Spatial patterns of temperature, magmatic heat output, melt fraction
and crustal thickness

In this section we calculate the temperature, magmatic heat flux,
melt fraction and crustal thickness for a set of main input parameters,
which are the heat flux fraction fcc and the reference mantle viscosity

con. The sets only produce one out of many possible outcomes for
Model A and Model B and are chosen in a way that the input values are
realistic to describe Io's interior and on the other hand result in model
outputs close to our initial rheological model. For the filter we chose
nmax=10 (Eq. (14)). This is sufficient to describe the modelled tidal
dissipation pattern, which, apart from minor numeric-induced artefacts,
only contains components of n≤4 (Beuthe, 2013). Next, we iterate
Eqs. (22)–(26). We only consider solutions that fulfil the convergence
criteria of (Qcc,i−1−Qcc,i) < 10−3 Wm−2 for each single co-latitude
and longitude within 400 iterations. However, for most of the models
this is achieved in 20–30 iterations. Testing for different starting values
and step sizes indicates that the obtained results are stable.
The two different sets of reference mantle viscosity and heat flux

fraction and major resulting interior properties are presented in
Table 4. For Model A and Model B the chosen parameter sets result in a
globally averaged maximum mantle temperature Tm close to 1513 K.
This temperature corresponds to the solidus temperature at a depth of
230 km (Section 3.4) implying a 200 km thick partially molten layer.
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However, only for Model B we achieve an average crustal thickness of
approximately 30 km as provided in the initial rheological model
(Table 2). Because of the difference in the thickness of the convective
layer d no solution can be found for Model A for the chosen parameter
set of Model B and vice versa. This will be discussed in more detail in
Section 4.3.
We visualize the spatial distribution of the maximum mantle tem-

perature T ( , )m , the magmatic heat output Q ( , )mag , the distribution
of the melt fraction ( , ) and the crustal thickness δcrust for both
model specific parameter sets of Model A and B in Fig. 6. The mantle
temperature patterns of Model A and Model B (Fig. 6a and b) follow the
pattern of the areal heat production (Fig. 5). However, all degree 4
components are significantly suppressed due to the lateral convection
as simulated by the blurring filter. Note again that the presented

temperature distribution gives maximal possible values of the mantle
temperature at the bottom of the thermal boundary layer and is only
valid in case a hot up-streaming plume is present below this location. In
addition, temperature buffering near the solidus due to latent heat is
not included (Ross et al., 1990). The resulting melt fractions also

Fig. 4. Volumetric dissipation in Io's mantle and asthenosphere Model A and Model B. a) and c) Cross-sections along Io's equator plane for Model A and Model B,
respectively. b) and d) Cross-sections along the plane of the North and South pole, and Io's sub-Jovian point.

Fig. 5. Produced heat per unit area projected onto Io's surface (Mollweide projection) for Model A (a) and Model B (b).

Table 4
Parameter sets of fcc and con for Model A and Model B, which result in similar
globally averaged maximum mantle temperature Tm.

Model fcc con crust Tm max(Tm)-min(Tm)

A 0.18 4.6·1014 Pa s 12.7 km 1514.0 K 98.1 K
B 0.0815 1.34·1016 Pa s 29.4 km 1514.5 K 18.9 K
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represent maximum values (Fig. 6e and f). The average melt fractions
are consequently much lower.
The magmatic heat output is assumed to be proportional to the

volcanic activity level. Consequently, the resulting magmatic heat
output maps can be used to indicate the expected eruption intensity and
frequency for Io. For Model B the volcanic activity due to any tidally
induced lateral varying thermal differences fluctuates about 7% around
its average value. This fluctuation might be too small to be detected
through long-term observations of Io's volcanic activity pattern. For the
chosen parameter set of Model A a fluctuation of around 37% can be
expected. The crustal thickness maps (Fig. 6g and h) show converted
patterns of the temperature distribution. Note that processes such as
volcanic re-surfacing, near-surface intrusions, and the change in effec-
tiveness of melt advection with changing crustal thickness are neglected
(O'Reilly and Davies, 1981; Stevenson and McNamara, 1988).

4.3. Influence of interior parameters

In the following, we derive the average maximum mantle tem-
perature Tm, the maximum temperature variation (peak-to-peak), the
maximum difference of the normalized magmatic heat output (max
(Qmag)-min(Qmag))/Qmag, and the average crustal thickness for a wide
range of con and fcc according to Table 2. We use the normalized value
here for the magmatic heat output, as Qmag changes with fcc. By nor-
malizing the peak-to-peak values with Qmag, the relative differences in
the strength of the magmatic heat output, and hence the relative

difference of the volcanic activity level, become comparable. The re-
sults for Model A and Model B are presented in Fig. 7a–h. The Rayleigh-
Roberts number, which quantifies the vigor of the convective flow and
thus the strength of the blurring (Eq. (16)), is presented in Appendix C.
Although we test all combinations of fcc and con, solutions can only

be found for the coloured regions. A reason for this is that the maximum
mantle temperatures need to be between the solidus and liquidus. In
case no melt is present no heat can be transported by melt. Thus, no
solution can be found for <f 1cc . Furthermore, melt fractions larger
than 1 at any location are not allowed. Due to these boundary condi-
tions valid solutions are found to be in parabolic-shaped regions run-
ning from high fcc and low con values to low fcc and high con values.
Within these regions the highest average maximum temperatures are
obtained for high fcc values and high reference viscosities con (sub-
figures a and b of Fig. 7). A high viscosity suppresses vigorous mantle
convection leading to higher mantle temperatures. A mantle in thermal
equilibrium with a high fraction of magmatic heat transport (low fcc
value) would be cooler than a mantle with the same reference mantle
viscosity but a low fraction of magmatic heat transport (high fcc value).
In contrast to Model B, we cannot find solutions for any parameter

sets with <f 0.17cc for Model A. This can be explained as follows: For
parameter sets resulting in a low average maximum mantle temperature
but large temperature differences, the temperature does not remain
above the solidus for each location. Consequently, only some regions
sustain melt. However, in the case where we force the model to yield a
high fraction of global magmatic heat output (low fcc value), the regions

Fig. 6. Spatial pattern of maximum mantle temperature (a and b), magmatic heat output (c and d), melt fraction (e and f), and crustal thickness (g and h) for Model A
and Model B, respectively.
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that sustain a mantle temperature above the solidus need to maintain a
high magmatic heat output per unit areaQ ( , )mag . This magmatic heat
output per unit area Q ( , )mag can be theoretically larger than the heat
Q ( , ) produced directly underneath this location, but only up to the
extent to which convection is able to provide the remaining heat from
the neighbouring regions. Viewed analytically, Q ( , )cc,i needs to be
positive (Eq. (27)) in order for Eq. (22) to result in a non-imaginary
value and allow for convergence. This implies that for a very strong
initial dissipation pattern with very high fluctuations and a thin con-
vective layer, such as for Model A, a low mantle viscosity and a con-
vective-conductive heat flux fraction larger than 0.17 are necessary.
Not all of the successfully converged parameter sets (Fig. 7) ne-

cessarily result in realistic interior models. Parameter sets resulting in
high average mantle temperatures causing an average melt fractions
above 40% are inconsistent with model assumptions: 1) The melt
fraction computation based on Katz et al. (2003) is only valid for low

melt fractions. 2) The melt transport model is based on the assumptions
that melt flows through pores in a solid matrix, which is only valid for
melt fractions below 30% (Moore, 2001). However, the obtained melt
fractions estimates give maximum values and occur only locally. Hot
up-streams are not omnipresent and Io's sub-adiabatic geotherm and
increasing pressures prevent melt production for deeper layers. Thus,
even we do not favour these sets, we decide not to eliminate them from
our results. Also parameter sets resulting in an average crustal thickness
below 8 km are not favoured (Fig. 7g), but are included in the graphs
for the sake of completeness.
Io's melt fraction obtained from observations is still under discus-

sion (Khurana et al., 2011; Roth et al., 2017) and cannot be used to
constrain the parameter space. Note that the parameter γ0 (Eq. (23))
contains a collection of parameters determining the mantle convection.
Some of these parameters, such as the activation energy Ea, the thermal
conductivity km, and the critical Rayleigh-Roberts number are not

Fig. 7. The figure shows average maximum mantle temperature (a and b), peak-to-peak temperature difference (c and d), normalized peak-to-peak magmatic heat
output per unit area (e and f), and average crustal thickness (g–h) for Model A and Model B as a function of the mantle viscosity con and fcc. fcc quantifies the
dominant heat transport mechanism, with small values representing models with a magma-dominating heat transport, and values close to 1 representing models with
a convection-dominating heat transport. Note the different scales for the reference viscosities.
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exactly known. For a smaller γ0 the parabolic line of Fig. 7 would be
shifted to larger viscosities. Thus, the reference viscosity would need to
be larger to reach the comparable average maximum mantle tempera-
tures and peak-to-peak differences. The opposite is the case for a larger
γ0.
The maximum temperature fluctuations (peak-to-peak) for Model A

shown in Fig. 7c are more than one order of magnitude larger than for
sets with the same reference mantle viscosities of Model B. For Model A
peak-to-peak maximum mantle temperature differences between 5 K
( =f 0.95cc and = 10con

12 Pa s) and 190 K ( =f 0.17cc and
= 1.3·10con

15 Pa s) are achieved. Differences< 1 K ( =f 0.95cc and
= 10con

12 Pa s) up to 65 K ( =f 0.05cc and = 1.4·10con
17 Pa s) are found

for Model B.
The average crustal thickness, shown in Fig. 7g and h, is affected by

the dominating heat transport mechanism. It decreases with decreasing
con and increasing fcc. For Model B we find a crustal thickness that is
equal to the starting assumption of 30 km for fcc in the range
0.075–0.09. Due to the lack of convergence for specific parameter sets,
discussed above, we cannot obtain a crustal thickness of 30 km for
Model A. However, reasonable values within the lower range of the
observational constraints for Io's crustal thickness are achieved. Large
spatial fluctuations of the magmatic heat output as shown in Fig. 7e and
f arise for low average maximum mantle temperatures and low global
heat flux values. Although solutions can be found for low global heat
flux values for Model B, peak-to-peak variations remain small (around
15% around the average value). Accurate and long-term observations of
Io's active volcanic features will be necessary to detect this signal. For
Model A a 91% fluctuation in volcanic activity around the average
value is obtained, which is more easily detectable.

5. Discussion and conclusion

Io's exceptional position within the celestial bodies of the Solar
System makes it a unique laboratory to investigate hot terrestrial bodies
that undergo intense heat loss. In this study, we introduce a model that
couples Io's non-uniform tidal dissipation with Io's main heat transport
mechanisms, i.e. mantle convection and melt advection, to investigate
the spatial effect of the heterogeneous heat production on Io's interior
structure and surface heat flux. We investigate two spherically sym-
metric end-member models. For Model A only the asthenosphere is
tidally heated and convective. For Model B, both Io's deep mantle and
asthenosphere are tidally heated and convective. We compute the dis-
sipation patterns using a finite element model based on Maxwell
rheology and benchmark our results with semi-analytical models. For
the thermal modelling, we combine 1) lateral convective flow simulated
by reducing high-frequency signals (Tackley, 2001), 2) mantle con-
vection for a volumetric heated regime using a steady-state scaling law
by Vilella and Kaminski (2017) to compute the temperature within
uprising plumes just below the thermal boundary layer, and 3) mag-
matic heat transport depending on the local melt fraction following
Katz et al. (2003). The laterally varying heat transport mechanisms are
iteratively adjusted until an equilibrium state of magmatic heat output
and convective-conductive heat flux for each angular position is found.
One of the essential additions to former models is the coupling of

convective and conductive heat transport with magmatic heat trans-
port. This has been done previously by Elder (2015) for a one-dimen-
sional heating structure using a different model approach, but is here
incorporated for a three-dimensional heating pattern. In contrast to
Bierson and Nimmo (2016) and Moore (2001), we assume that melt
does not occur due to the necessity of heat transport but due to the
temperature and pressure conditions favouring the occurrence of melt.
Thus, we allow for a spatially varying mantle temperature pattern and a
spatial varying depth of Io's melt containing layer. In addition, we in-
clude the spatial varying magmatic heat flux in the calculation of the
temperature distribution.

The incorporation of melt migration allows for a wide range of
mantle viscosities to result in realistic mantle temperatures. For
Model A we acquire higher mantle viscosities for Io's asthenosphere
than those obtained by Tackley (2001) and Tackley et al. (2001) for a
purely convective heat transport. Thus, if Io sustains a large fraction of
magmatic heat transport, no global magma ocean (Tyler et al., 2015) is
required to explain Io's high heat output. Furthermore, the inclusion of
magmatic heat transport also preserves the long-wavelength pattern of
tidal dissipation. This is due to two reasons. First, the time scales of
rising magma are much shorter than the convective time scales of solid
material. Therefore, heat transport by magma facilitates a more radial
heat flow direction than convection. Second, the addition of magmatic
heat transport allows for a higher solid mantle viscosity due to the
additional heat transport mechanism cooling the mantle. This allows
Io's asthenosphere and mantle to sustain a thermal steady state with a
less vigorous convection and less lateral smoothing of the initial tidal
dissipation pattern. Further, the modelling approach is suitable to get a
crustal thickness range in agreement with the literature (Turtle et al.,
2007).
The results reveal that tidal dissipation within Io's interior can cause

significant lateral variations in Io's interior structure. The strength of
the tidally induced signal on Io's interior structure and surface depends
to a large extent on the spatial variations of the initial tidal dissipation
pattern H r( , , ). The variations are damped by a large thickness d of
the convective system, a low reference convective mantle viscosity con,
and a high heat flux fraction fcc, i.e. a convection-dominating heat
transport mechanism. Consequently, the two models result in very
different peak-to-peak mantle temperature differences. For Model A
differences between 5 K up to 190 K are achieved depending on the
viscosity and dominating heat transport mechanism. Temperature dif-
ferences of< 1 K and up to 65 K are found for Model B. Sets within the
lower range of the fcc fraction, corresponding to sets with significant
peak-to-peak temperature differences, are favoured, since parameter
sets with a high heat flux fraction >f 0.4cc obtain very thin crustal
thicknesses not in agreement with the observations. A better knowledge
of fcc is necessary to constrain Io's mantle viscosity and average mantle
temperature (Fig. 7). Unfortunately, it is not possible to derive fcc from
Io's observed volcanic heat flow (Davies et al., 2015; de Kleer and de
Pater, 2016; Veeder et al., 2015) and Io's poorly constrained continuous
background heat flow. This is because the observed background heat
flow could also arise from near-surface magmatic intrusions and former
volcanic events (Stevenson and McNamara, 1988).
Investigating the modelled peak-to-peak difference of the magmatic

heat output, which could serve as a prediction of the spatial volcanic
activity variations, we find that the largest fluctuation amplitudes result
from models that obtain an average maximum mantle temperature just
above the solidus: For Model A a fluctuation of 84% around the average
volcanic activity is possible, which should be detectable in a long time-
series of observations. The maximum possible fluctuation for Model B
(13%) would be difficult to detect. Current observations show Io's
volcanic centre to be 30°-60° away from the sub- and anti-Jovian point
(Hamilton et al., 2013). All of our resulting magmatic heat output
patterns corresponding to a relative measure of the volcanic activity are
symmetric towards Io's 0° W/E longitudinal plane independent of the
varied parameters. Thus, based on our modelling approach it is not
possible to favour one of the investigated end-member models for Io's
interior.
The most crucial components of the modelling are the blurring of

the produced heat and the separate, angle-wise estimation of the
maximum mantle temperature using the scaling law of Vilella and
Kaminski (2017) designed for a global convective system. A comparison
between the scaling law of Vilella and Kaminski (2017) and three-di-
mensional, numerical modelling results by Laneuville et al. (2013)
show that a large-scale anomaly, i.e. a differently heated hemisphere of
the Moon, maintains its individual steady-state solution obtained by the
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scaling law. This supports the validity of our model approach as we
analyse only large-scale patterns comparable to the investigated
anomaly. In addition to that, any lateral variations of the produced heat
are already softened by the applied blurring (Section 3.2) before we
apply the scaling law to approximate the temperature field. Further-
more, we assume that the used scaling law for a melt-free convective
system is not affected by magma and that for any radial profile the heat
transported by melt is proportional to the heat produced by tidal dis-
sipation.
We only investigate large-scale patterns that are caused directly by

tidal heating. The actual signature on Io's observable volcanic dis-
tribution is also influenced by structural and compositional in-
homogeneities of Io's interior and crust. In particular mantle convec-
tion, featuring up-streams and down-streams, is a source of small-scale
temperature heterogeneities. In a convecting medium up-streams occur
more likely above areas with high temperatures or increased heating.
However, our approach does not consider that Io's heating pattern
(Fig. 4) may therefore facilitate certain convection schemes of up- and
down-streaming patterns as suggested by Ross et al. (1990) and Tyler
et al. (2015).
Any tidally induced feedbacks (secondary effects) of short- and

long-wavelength patterns of the rheology on the heating pattern and
convection scheme are not included in the model. For example, the
lateral differences in the melt fraction and lid thickness (Fig. 6) even-
tually result in a different dissipation pattern than retrieved from our
initial spherically symmetric rheological models. Han and Showman
(2010) investigated this feedback and found that the tidal perturbation
in a medium with temperature anomalies produces a heating pattern
with small-scale features. In particular the strong boundary-focused

manner of the asthenosphere-heating (Fig. 4) would be suppressed
(Bierson and Nimmo, 2016). In addition, areas within the astheno-
sphere containing both solid and fluid material could be subject to a
local and strong dissipative mechanism as suggested by e.g. Keszthelyi
et al. (2007) and Tyler et al. (2015), thereby further increasing local
heat production anomalies.
Despite the model uncertainties discussed above we conclude that

tidal dissipation has a quantifiable effect on Io's lateral long-wavelength
structure. Four interior properties determine whether the heating pat-
tern becomes visible on Io's surface: The initial heating pattern itself,
the heat transport mechanism, and the thickness and viscosity of the
upper convective layer. Our results indicate that the assumption of a
well-mixed interior is violated for a large number of model variables.
That is why three-dimensional modelling approaches are necessary
both for the computation of Io's tidal dissipation pattern and for the
computation of Io's thermal heat transport. Our model based on finite
elements can further be used for an extended investigation of Io's vol-
canic activity pattern resulting from any arbitrary or tidally induced
three-dimensional rheological structure, or for investigating tidally
heated exoplanets and exomoons.
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Appendix A. Correction of mantle temperature distribution

Before we are able to estimate the melt fraction we need to correct the mantle temperature distribution for the temperature dependence of the
mantle viscosity. To find the corrected distribution of the maximum temperature at the bottom of the thermal boundary layer we include a laterally
varying mantle viscosity distribution. The mantle viscosity distribution ( , )con is a function of the maximum mantle temperature T ( , )m,i and the
initially given reference mantle viscosity con. It is given by

= E
R T

( , ) exp
( , )

,con
a

gas m i
0

, (A.1)

where

= E
R T

exp ,con
a

gas m i
0

, (A.2)

and Tm i, is the global average of T ( , )m,i . We assume that the mean temperature of the whole mantle is not significantly smaller than the maximum
temperature Tm,i and follows the same variations with longitude and co-latitude. Next, we substitute Eqs. (A.2) and (A.1) into Eq. (22) and obtain

=T b b
T

( , ) exp ( , )
( , )

,m i
m i

, 1
2

, (A.3)

with

=b E
R8

,a
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1

(A.4)

and

=b a Q( , ) ( ( , )) .f cc i2 0 , 0
3
8

1
8 (A.5)

Eq. (A.3) can be solved using the Lambert relationW0. The Lambert relation describes a set of functions providing solutions to equations where
the variables are found in both the exponent and the base. We obtain our final equation for the maximum mantle temperature

W
= ( )T b( , ) .m i b

b

,
1

0
1
2 (A.6)
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Appendix B. Specifications and benchmark of the finite element model

To ensure that the numerical finite element models work adequately, we compare the total dissipated energy rates with the results obtained by
the semi-analytical approach (Jara-Orué and Vermeersen, 2011; Sabadini et al., 2016). To get the total dissipated energy for the FE model we
average over one orbital period (Eq. (5)) and interpolate all nodes of the same sub-layer to an equiangular grid and integrate radially with the
midpoint Riemann sum taking the spherical geometry into account. The values for the total heat production for the semi-analytical approach and FE
of Model A and Model B are given in Table B.1.
To capture the entire dissipated power in Io's asthenosphere, a dense grid in radial direction is required. For Model A the asthenosphere is divided

into 11 sub-layers to be able to capture the boundary focussed dissipation and the mantle is divided in 7 sub-layers. In Model B the asthenosphere
and the mantle are divided in 8 and 10 sub-layers, respectively. The lateral mesh size for each layer in the mantle and crust is set to 2° at Io's surface
and 4° for the core. The mesh for Model B is shown in Fig. B.1. Seven iterations are required for the models to converge to their final solution
including the effect of self-gravitation (Section 2.2). A time sampling of 12 steps per one Io orbit is deemed sufficient, as the resulting total heat
production rate Etotal does not change significantly for a higher sampling rate. The effects of initializing the model are shown to be negligible after the
first orbital cycle for the interior models used here. Due to Io's short tidal period of less than two days the deformation amplitude as well as the stress
amplitudes are controlled by the elastic response of the body. The eigenmodes of both visco-elastic models, Model A and Model B, are either of small
strength or have periods that are much longer than the forcing period. Hence, we set τ= Porbit for computing the dissipation with Eq. (5).

Fig. B.1. Mesh of Model B. a) Equatorial cut, b) close-up view of mesh for the asthenosphere, mantle, and crust.

The final relative residuals (Table B.1) between the semi-analytical model and the numerical model are below 4%. Large parts of this error are
expected to occur at the asthenosphere boundaries. 1) Numerical inaccuracies in the stress calculation may arise due to large lateral displacements
within the asthenosphere. 2) The radial discretization of the finite element model is crucial because the heating function varies over several orders of
magnitudes towards the boundaries of the asthenosphere as described by Beuthe (2013) and Tackley (2001). However, the estimation of Io's total
heat production rate is afflicted with inaccuracies (Lainey et al., 2009) and several other aspects of modelling such as Io's unknown heterogeneous
rheology introduce much larger uncertainties. Thus, the accuracy of the results is deemed to be sufficient to be used for our further calculations.

Table B.1
Total heat dissipation Etotal and total average heat flux Q for Model A and Model B resulting from the finite element method. The
relative errors are calculated with respect to the given reference values given in the literature (Lainey et al., 2009).

Parameter Reference Model A Model B

Etotal 9.33 · 1013W 9.02 · 1013W 9.07 · 1013W

Q 2.24Wm−2 2.15Wm−2 2.16Wm−2

Relative error – 3.4% 2.8%

Appendix C. Variation of Rayleigh-Roberts number

In Fig. C.1 we present the variation of the average Rayleigh-Roberts number as a function of the heat flux fraction fcc and the reference mantle
viscosity con. It can be seen that the Rayleigh-Roberts number varies over more than several order of magnitude for Model A and B.
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Fig. C.1. Globally averaged Rayleigh-Roberts number as a function of the heat flux fraction fcc and the reference mantle viscosity con for Model A and Model B.
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