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Abstract

In network science, numerous studies based on the complementarity principle have emerged
since 2018 [1]. Unfortunately, theoretical foundations of complementarity are still in their in-
fancy. Recently, a synthetic complementarity-based model called Complementarity Random
Hyperbolic Graph (CRHG) has been proposed. CRHG model was assumed to explain the topo-
logical properties of real complementarity-driven networks. In other words, this model could
serve as a foundation for studying complementarity mechanisms in networks.The main goal of
this thesis is to address the knowledge gap: although a complementarity-based network model
has been proposed in previous studies, its topological properties have not been systematically
examined. To fill in this gap, this work systematically studies complementarity network mod-
els (CRHG, GCRHG) and documents their topological properties. Moreover, we interpret the
topological properties as a function of the network model parameters. We find that the CRHG
model exhibits three fundamental properties: Scale-Free property, Small-World property, and
Non-vanishing bipartite clustering. It indicates that it is a unique combination compared to other
synthetic models. Its unique complementary connectivity mechanism makes it particularly ef-
fective for modelling complex networks formed by the complementarity mechanism. Further-
more, we also study and investigate a generalized synthetic model called Generalized Comple-
mentarity Random Hyperbolic Graph (GCRHG). We measure and analyze its clustering and
bipartite clustering properties. We find that this model allows for smooth turning between sim-
ilarity and complementarity. Overall, we document and interpret the topological properties of
simulations for complementarity-based spatial graph models. Additionally, we conduct partial
simulation verification of the theoretical topological properties of synthetic complementarity-
based models, providing a reference for their future development and applications.
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1
Introduction

Since the beginning of the 21st century, with the development of data science and the rise of data
mining techniques, network science has emerged, and the network characteristics exhibited by
various types of real networks have increasingly aroused people’s attention. Networks are char-
acterized by topological properties, also known as structural characteristics. These properties
include among others, the Small-World property, Scale-Free degree distributions, and strong
clustering. We will discuss the topological properties of interest in more detail in Section 2.3.
Essentially, the various mechanisms that different networks exhibit are closely related to the
distribution and arrangement of nodes and links within the networks.

In real world networks, many topological properties have been observed. To study and un-
derstand these characteristics, numerous synthetic network models have been proposed. More
specifically, the simulation results computed by these mathematical models using different com-
binations of input parameters not only help us study the established topological properties ob-
served in real networks but also inspire us to formulate conjectures regarding previously un-
known characteristics. G. Budel and M. Kitsak have proposed a complementarity-based net-
work model, but the topological properties of this model have not been studied systematically.
In this thesis, we aim to fill in the knowledge gap by studying the topological properties of the
complementarity-based synthetic network model proposed by G. Budel and M. Kitsak [2].

1.1. Network: definitions and examples
A network is a structure that consists of a set of nodes connected by links. Many complex
systems surrounding us can be represented as complex networks, abstracting elements of the
systems as nodes and interactions between them as links.

Examples of complex networks include social networks [3] where nodes are individuals and
links are social interactions; communication networks [4] where nodes are computing devices
exchanging data and links indicate the data transfer relationship between them; and biological
networks [5] where nodes are molecules and links correspond to physical interactions between
them. These networks originate from datasets across various scientific fields.

1
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1.2. Motivation and Objectives
Motivation:

Real networks possess several common topological properties: the Small-World property, Scale-
Free degree distribution, and strong clustering. A large number of synthetic network models
were proposed to explain the emergence of these properties.

Complementarity has recently been identified as an important mechanism for network for-
mation. In simple terms, two nodes with complementary properties have higher chances to be
connected. In [2], G. Budel and M. Kitsak have proposed a complementarity-based network
model, but the topological properties of this model have not been studied systematically.

Objectives:

The main objective of this thesis is to address the knowledge gap: although a complementarity-
based network model has been proposed in previous studies, its topological properties have
not been systematically examined. To fill in this gap, this work systematically studies comple-
mentarity network models (CRHG, GCRHG) and documents their topological properties. The
following interesting properties are considered :

(1) What is the scaling of network-based distance in a graph created by the model?
(2) What is the degree distribution of the node degree in the graph created by the model?
(3) What is the density of triangular subgraphs in the graph created by the model?
(4) What is the density of quadrilateral subgraphs in the graph created by the model?

The outcomes:

(1) The code for the generation of the complementarity network
(2) The code to measure network-based distances, degree distribution, and the densities of tri-
angles and quadrilaterals in graphs created by synthetic network model
(3) The results of the measurement and the interpretation of the topological properties (1)-(4)
as a function of the network model parameters.
(4) The results of the measurement and the interpretation of the topological properties (1)-(4)
as a function of the generalized network model parameters.

1.3. Summary
The structure of this thesis is as follows:

Chapter 2 briefly introduces key network topology metrics, essential network topological
properties, and classical network models along with their properties. This chapter aims to es-
tablish the background required for the research presented in the subsequent chapters.

Chapter 3 describes the concepts of similarity and complementarity, highlighting the moti-
vation for studying the Complementarity Random Hyperbolic Graph (CRHG) model.

Chapter 4 presents the Complementarity Random Hyperbolic Graph (CRHG) model and
its properties. It begins with a formal definition of the CRHG model. Then, we measure and
interpret the topological properties as functions of the network model parameters. Finally, the
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chapter includes an intermediate summary, discussing the position of the CRHG model in rela-
tion to other network models.

Chapter 5 presents the Generalized Complementarity RandomHyperbolic Graph (GCRHG)
model and its properties. The chapter starts with a formal definition of the GCRHG model and
proceeds to analyse and interpret its topological properties as functions of the network model
parameters.

Chapter 6 summarizes the main achievements and discusses the findings. Additionally, the
chapter provides a brief outlook on potential future research directions.



2
Background

In this chapter, we begin with the basic definition of the graph. Next, we introduce the related
topological metrics. We then define and briefly explain several common topological properties,
such as the Small-World property, Scale-Free property, Strong clustering coefficient and Strong
bipartite clustering, which can be quantified using these topological metrics. Finally, we explore
network modelling by presenting several classic synthetic models that facilitate the study and
explanation of these topological properties.

2.1. Graph Theory

The interacting relationships between the components and structures form a network in com-
plex systems [6]. A graph is a mathematical representation of a network. In graph theory, it
is a structure that consists of a set of nodes connected by a set of links [7]. In more detail, the
set of nodes is denoted as N , with the number of nodes represented as N = |N |. The set of
links is denoted as L, with the number of links represented as L = |L|, see Fig. 2.1 (a). It is
a toy graph consisting of N = 5 nodes and L = 5 links. Meanwhile, we can also describe the
graph G using its adjacency matrix AN×N as shown in Fig. 2.1 (b). The adjacency matrix of
an undirected graph is a square n × n matrix A such that its element Aij = 1 if there is a link
between node i and node j, else Aij = 0. The term ”undirected” will be formally defined later.
The rows and columns of the adjacency matrix AN×N correspond to the labels of nodes in Fig.
2.1 (a).

4
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Figure 2.1: A toy graph consistingN = 5 nodes and L = 5 links with its adjacency matrix AN×N . The labels of
nodes are the numbers in nodes

In this thesis, we focus exclusively on connected, undirected, unweighted and simple
graphs. This implies that the graphs satisfy the following properties:

(1) Connected: In such a graph, there is a path between any pair of its nodes [8].
(2) Undirected: The links have no direction in such a graph.
(3) Unweighted: The links have no weights in such a graph.
(4) Simple: There are no self-loops and multiple links between the nodes in such a graph.

2.2. Topological metrics for networks
In this section, we introduce the basic topological metrics of the graphs and summarize them
in Table. 2.1. We have provided the definitions of the number of nodes N and the number of
links L in Section 2.1.

Mathematical notation Metrics
N number of nodes
L number of links
ρ diameter
⟨d⟩ average shortest path length
k degree

kmin minimum degree
kmax maximum degree
⟨k⟩ average degree

Pr[D = k] degree distribution
C3 clustering coefficient
C4 bipartite clustering coefficient

Table 2.1: Topological metrics used in this thesis and their mathematical notations
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2.2.1. Graph Diameter and Average shortest path length
A path is a route that we can take from one node to another, passing through a set of intermediate
nodes without revisiting any node. To quantify the path, a hopcount of a path P is defined as
the number of links in P [7]. Specially, one example of the path of length n from node i0 to
node in in an unweighted and undirected graphG is shown in Fig. 2.2 (a) with a purple line. In
Fig. 2.2 (b), the red line represents the shortest path from node i0 to node in, which is Pi0→in

with the minimum hopcount.

Figure 2.2: Toy example path and shortest path (between node i0 and node in): The purple line is one path
example between node i0 and node in; the red line is the shortest path example between node i0 and node in

The diameter ρ of graph G is defined as the hopcount of the longest shortest path in G [7].
It represents the shortest path between the two nodes farthest apart in graph G. The average
shortest path length ⟨d⟩ is defined as the average hopcount of the shortest paths between all
pairs of nodes.

2.2.2. Degree and Degree Distribution

The degree ki ∈ [0, N − 1] of a node i in a graph G is the number of its neighbours [7] or,
equivalently the number of adjacent links. The node i is disconnected from the rest of the graph
when ki = 0. In this thesis, we focus on connected graphs; thus, the range of ki is transformed
into ki ∈ [1, N − 1]. We denote the minimum and maximum nodes degrees in graph G as
kmin = mini∈G ki and kmax = maxi∈G ki, respectively. A fundamental relationship between
node degrees and the number of links L is:

N∑
i=1

ki = 2L (2.1)

which states that it equals twice the number of links in the graph. For example, when calculating
the total degree of two nodes connected by a single link, this link is counted twice (once for each
node). Using Eq.(2.1), we can express the average graph degree ⟨k⟩ as:

⟨k⟩ = 1

N

N∑
i=1

ki =
2L

N
(2.2)

The degree distribution Pr[D = k] of a network is defined as the probability a randomly
chosen node has degreeD = k. In other words, it shows the probability that a randomly chosen
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node has exactly k links [6]. Given a graph G, one can computer Pr[D = k] as:

Pr[D = k] =
Nk

N
(2.3)

where Nk is the number of nodes with degree k.

The degree distribution Pr[D = k] plays a crucial role in networks because many network
properties depend on it, including robustness and epidemic spreading [6].

2.2.3. Clustering Coefficient, C3

In a graph G, the clustering coefficient [9] quantifies the extent to which the neighbours of a
given node are interconnected [10].

The local clustering coefficient C3(i) of node i in a graph G is the ratio of the number of
links y between its ki neighbours over the total possible connections ki(ki−1)

2
[7]:

C3(i) =
2y

ki(ki − 1)
, C3(i) ∈ [0, 1] (2.4)

C3(i) is defined to be equal to zero for all nodes with ki = 0 or ki = 1. C3(i) is equal to one
only when the neighbours of node i are completely connected. The local clustering coefficient
provides a quantitative measure of the local density of connections in the neighbourhood of the
node i. Figure. 2.3 illustrates an example of the calculation of the local clustering coefficient
C3(i). For node i, there exists only a single connection among its three neighbours. The max-
imum possible number of connections between these three neighbours is three. The C3(i) for
node i is 1

3
in this context.

Figure 2.3: An example of computing C3(i) for node i

As shown in the above example, node i and its neighbours form a closed triangle. The clustering
measures the density of triangles.
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For the entire graph, the average clustering coefficient C̄3 of the graph G is defined as:

C̄3 =
1

N

N∑
i=1

C3(i), (2.5)

where C̄3 is equal to zero when there are no triangles inG. In contrast, C̄3 is equal to one when
G is fully connected.

The average local clustering coefficient C̄3(k) of nodes with degree k is defined as:

C̄3(k) =
1

Nk

∑
i∈{nodes with degree k}

C3(i) (2.6)

whereNk is the number of nodes with degree k in a graph. It describes the relationship between
the clustering coefficients and the degrees of the nodes in a graph.

2.2.4. Bipartite Clustering Coefficient, C4

There are situations where the clustering coefficient is not useful, such as when its value is
consistently zero. One such example is bipartite networks, a class of networks consisting of two
distinct sets U and V , with connections existing only between nodes from different sets [11]. In
bipartite networks, triangles are absent because no two nodes within the same set are connected,
making the clustering coefficient C3 always equal to zero. Zhang et al. [12] introduced the
bipartite clustering coefficient, which can be used to measure the density of quadrilateral in a
graph G, and is inspired by the conventional clustering coefficient C3.

The local bipartite clustering coefficient C4(i) of node i in a graph G is the ratio of the
number of common neighbouring nodes of all its neighbouring pairs over the number of all
neighbouring nodes of all neighbouring pairs [11] as:

C4(i) =

∑
j ̸=e (mje − 1)∑

j ̸=e [kj + ke −mje − 1]
, C4(i) ∈ [0, 1] (2.7)

where mje − 1 is the total number of common neighbours between node j and node e expect
node i itself. The entire numerator of the equation represents the sum ofmje − 1, iterated over
all pairs of neighbours j, e of node i. kj and ke are the degrees of node j and node e. The entire
denominator of the equation represents the number of all potential quadrilaterals that include
node i. Here, ”potential” refers to both existing and possible quadrilaterals. To explain C4(i)
more clearly, we suppose that each of the neighbours j and e of node i is connected to only one
other node besides i as shown in Fig. 2.4.
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Figure 2.4: One example of computing C4(i) for node i, where the nodes j and e are the neighbours of node i

when j and e have exactly one common neighbour besides i, as depicted in Fig. 2.4. A quadri-
lateral is formed by node i, node j, node e, and the common neighbour shared by node j and
node e. The dotted line in the figure shows another possible quadrilateral that contains node i.
The C4(i) for node i is calculated as 1

2
.

The average bipartite clustering coefficient C4 of the graph G follows the Eq.(2.8).

C̄4 =
1

N

N∑
i=1

C4(i) (2.8)

where C̄4 is equal to zero when there is no quadrilateral in G. In contrast, C̄4 is equal to one
when every local bipartite clustering coefficient C4(i) = 1.

The average local bipartite clustering coefficient C̄4(k) of nodes with degree k is defined
as:

C̄4(k) =
1

Nk

∑
i∈{nodes with degree k}

C4(i) (2.9)

whereNk is the number of nodes with degree k in a graph. It describes the relationship between
the bipartite clustering coefficients and the degrees of the nodes in a graph.

2.3. Topological properties of networks

Real networks have been documented to exhibit common topological properties that can be
quantified using specific topological metrics. In this section, we will apply these metrics to
define and explain some of these properties. The following important topological properties
will be addressed: Small-World property, Scale-Free property, strong clustering coefficient, and
strong bipartite clustering.
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2.3.1. Small-World Property

The Small-World property refers to a phenomenon that typical paths are small even in large size
networks. This can be described that although many networks are large in size, a relatively short
path often connects any two nodes. One of the most well-known manifestations of this property
was first mentioned as the concept of six degrees of separation [13], which suggests that any
two people, wherever in the world, are typically linked by a chain of about six acquaintances.
The term Small-World property was first introduced in the context of random networks by I. de
Sola Pool and M. Kochen [14]. Building on their theoretical work, J. Travers and S. Milgram
conducted the first empirical study of the Small-World phenomenon, famously illustrating it
through experiments involving human social networks [13, 15].

In terms of theoretical under pinning, Erdős et.al. [16] proved that the diameter ρ between
any two nodes in a random graph scales as the logarithm of N [6, 17]. This laid the theoretical
foundation for the short path property in random graphs. Furthermore,Watts et.al.[9] introduced
the small-world model based on the idea that networks in reality are in between random graphs
and regular lattices. This model retains the high clustering of the regular lattice and introduces
the short path property of the random graph [9, 18].

As we now understand, graphs with the Small-World property exhibit one prominent char-
acteristic: The average shortest path length ⟨d⟩ typically scales as the logarithm of N as [6],
[9]:

⟨d⟩ ∼ lnN (2.10)

Here, the short-path feature of the Small-World property is reflected not only in the fact that the
absolute value of ⟨d⟩ is small compared to the size of the networkN , but also in the observation
that ⟨d⟩ grows very slowly with N .

2.3.2. Scale-Free Property
Most real networks are characterized by power-law degree distribution:

Pr[D = k] ∼ k−γ (2.11)

with γ ∈ (2, 3). They are called Scale-Free networks [19, 20] because the standard deviation σk

in node degree is infinite. In other words, the ”scale” in this context is quantified by the standard
deviation of the degree distribution in a graph. However, when the standard deviation σk =∞,
this ”scale” fails to capture the variability in the degree distribution, called ”scale-free”.

Indeed, the moments of the degree distribution have a decisive impact on standard deviation
σk:

σ2
k = ⟨k2⟩ − ⟨k⟩2 (2.12)

here, the nth moment of the degree distribution is defined as [10]:

⟨kn⟩ ≡
∞∑

K=1

knPr[D = k] ≈
∫ kmax

kmin

knPr[D = k]dk (2.13)
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where the first moment is ⟨k⟩ when n = 1. The second moment is ⟨k2⟩ when n = 2. As n ≥ 2,
the ⟨kn⟩ can be represented as:

⟨kn⟩ =
∫ kmax

kmin

knPr[D = k]dk = C
kn−γ+1
max − kn−γ+1

min

n− γ + 1
(2.14)

here, we first assume that kmax →∞ while kmin remains fixed for a large size network. Under
this assumption, the range of values for ⟨kn⟩ depends on the coefficient n−γ+1. When n ≥ 2
and γ ∈ (2, 3), the coefficient n − γ + 1 is always greater than zero. Therefore, ⟨kn⟩ → ∞
as kmax →∞, leading to the second moment of the degree distribution ⟨k2⟩ being much larger
than the first moment ⟨k⟩. Consequently, σ2

k becomes infinite, which implies that σk is also
infinite. In other words, the network is scale-free, as it lacks an intrinsic scale. When γ ≤ 2,
the conditions for a scale-free network no longer hold. In particular, for a scale-free network,
the relationship between kmax and kmin is as follows:

kmax = kminN
1

γ−1 (2.15)

when γ ≤ 2, kmax grows faster than N . This scenario is not possible in a network due to
ki ∈ [0, N − 1]. In the case γ ≥ 3, it is hard to distinguish a scale-free network from a random
network because documenting the scale-free nature of a network in this context requires large
networks for sufficient scaling, which is rarely achievable.

An example of a degree distribution Pr[D = k]measured on a real-world network is shown
in Fig. 2.5. The figure illustrates a Scale-Free real network following a power-law degree
distribution with γ ∈ (2, 3).
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Figure 2.5: Degree distribution Pr[D = k] of a real-world network with N = 127753, ⟨k⟩ = 9.92. We use the
linear binning in panel (a) and logarithmic binning [21] in panel (b).

2.3.3. Strong Clustering Coefficient and Strong Bipartite Clustering

In network science, clustering coefficients describe the tendency of nodes in a graph to form
closely connected groups. These groups are typically represented as closed triangles. Clustering
measures the density of such triangles within the entire graph. To quantify clustering in a graph,
the local clustering coefficient C3(i) is used to describe the clustering of a single node, while
the average local clustering coefficient C̄3(k) is used to describe the clustering of nodes with
the same degree k. Additionally, the average clustering coefficient C̄3 reflects the clustering of
the entire graph and can be used to capture the trend of clustering as the size of the network N
increases. On this basis, strong clustering emphasizes the case where connections in a graph
form a highly cohesive structure, usually dominated by a large number of closed triangles.
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Similarly, all coefficients in bipartite clustering serve the same purpose. The only differ-
ence is that bipartite clustering measures the density of quadrilaterals. Consequently, strong
bipartite clustering refers to the scenario where the clustering of the entire graph is dominated
by closed quadrilaterals rather than closed triangles. In the synthetic models mentioned in
Section 2.4, ”strong” implies:

(1) The clustering coefficient, the bipartite clustering coefficient does not vanish as the network
size N increases.

(2) The clustering coefficient, the bipartite clustering coefficient remains significantly higher
than expected for rewired (Degree-Preserving Randomization [22]) graphs with similar N and
L as the network size N increases.

As illustrated in Fig. 2.6, this example demonstrates the measurement of C3 as the network
size N increases in the Generalized Complementarity Random Hyperbolic Graph (GCRHG)
model, as discussed in Chapter 5. We can observe that the clustering coefficients C3 are much
higher than those of the rewired (Degree-Preserving Randomization [22]) graphs, and these
coefficients do not disappear as the network sizeN increases. This means that the graph created
by the GCRHG model with these parameters has strong clustering coefficient.

Figure 2.6: As shown in Fig. 5.3 (a), trends of C3 for networks with strong clustering: The black line reflects the
float of the C3 in networks with strong clustering when the sizeN of the network increases. The black dotted line
represents the C3 values for the rewired graphs (Degree-Preserving Randomization [22]) with similar N and L.

Figure. 2.7 illustrates the strong bipartite clustering characteristic in the Generalized Com-
plementarity Random Hyperbolic Graph (GCRHG) model, as discussed in Chapter 5. It shows
that the bipartite clustering coefficientsC4 are higher compared to those of the rewired (Degree-
Preserving Randomization [22]) graphs, which have the same network size N and L. This
indicates that the graph created by the GCRHG model with these parameters exhibits strong
bipartite clustering.
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Figure 2.7: As shown in Fig. 5.7 (e), trends of C4 for networks with strong bipartite clustering: The black line
reflects the float of the C4 in networks with strong bipartite clustering when the size N of the network increases.
The black dotted line represents the C4 values for the rewired graphs (Degree-Preserving Randomization [22])

with similar N and L.

2.4. Classical network models and their properties

The concepts of short path lengths, clustering, and scale-free degree distributions have sparked
an interest in network modelling [6]. After understanding the topological properties of real-
world networks, the idea of modelling is to propose a simple mechanism to capture or explain
the property of interest. A natural step is to explore whether a mathematical model can be used
to describe these properties. Indeed, several synthetic network models have been developed to
facilitate the study and explanation of these properties. In the following, some classic synthetic
models are briefly introduced to provide an overview of network modelling.

2.4.1. Erdos-Renyi (ER) model

The Erdős–Rényi (ER) random graph [23] is one famous random graph model. In [23], the ER
model is defined as G(N,L): N nodes are randomly connected with L links. Another form
of the ER model is represented as G(N, p) given by Gilbert et al.[24]. G(N, p) consists of N
nodes and each pair of nodes is independently connected to the probability p. This distinguishes
two versions of the ER model. Then, we will work with G(N, p) henceforth.

Most real-world networks appear disorganized and complex [25]. The ER model simplifies
this by assuming that links between nodes are placed randomly, with the likelihood of a connec-
tion determined by a probability p. This randomness provides a basic framework for studying
network structures.

Small-World Property: The ER model exhibits the small world property ⟨d⟩ ∼ lnN [10].

Scale-Free Property: The degree distribution of the ER model is the binomial distribution
[26] following Eq.(2.16).
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Pr[D = k] =

(
N − 1

k

)
pk(1− p)N−1−k (2.16)

It is well approximated by a Poisson distribution in the k ≪ N limit.

Clustering: For the ER model, the average clustering coefficient depends on the size N as
1
N
[10].

The Erdős–Rényi (ER) model exhibits the small-world property, ensuring short path lengths
between nodes. However, it lacks the scale-free property, as its degree distribution follows
a Poisson distribution. Additionally, the ER model does not exhibit strong clustering, as its
average clustering coefficient decreases inversely with the network size.

2.4.2. Preferential Attachment (PA) model

Barabasi et al. observed that real-world networks follow a power-law degree distribution [19].
They argued that growth and preferential attachment coexist in real networks. To describe these
two characteristics, they introduced the Preferential Attachment (PA) model which can generate
networks with the scale-free property [19]. The size N graph of the PA model is defined as
follows: (1) The PA model starts with m nodes without any link. (2) Add a new node with m
links to m existing nodes each time. The probability that the new node connects to an existing
node i is proportional to the current degree of node i following:

Πi(t) =
di(t)

Σjdj(t)
(2.17)

(3) Repeat (2) until size N is reached.

Generally, the PA model has two generic mechanisms. Growth: The network is continu-
ously expanding by adding new nodes. Preferential attachment: Newly added nodes tend to
preferentially connect to nodes that already have more connections. The PA model explains
well the phenomenon of ”the rich get richer” well, which is observed in many large complex
networks.

Small-World Property: The observed relationship between ⟨d⟩ and N is [27, 28]:

⟨d⟩ ∼ ln(N)

ln(ln(N))
(2.18)

Scale-Free Property: The degree distribution of the PA model is given by Eq.(2.19)

Pr[D = k] ∼ k−3 (2.19)

The PA model has a power-law degree distribution with γ = 3.

Clustering: The average clustering coefficient decreases as a function of (ln(N))2

N
[29, 30].

The Preferential Attachment (PA) model captures several properties. It exhibits the Small-
World property and displays the Scale-free property. However, its clustering is relatively weak
for large networks.
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2.4.3. Random Geometric Graph (RGG) model

The Random Geometric Graph (RGG) model has been introduced to model wireless networks,
such as Wireless ad hoc networks [31]. In the RGG model, every node is a point in a D-
dimensional hypercube [0, 1]D [32]. Each coordinate of a point is drawn from a uniform distri-
bution over the unit interval. Every node pair i and j is connected if dij < R, where R is the
parameter and dij is the distance between node i and j.

The connection of nodes in the RGG model is closely related to their spatial distance. The
spatial structure of the network based on the RGGmodel itself cannot be generated by ERmodel
and PA model generation algorithms instead.

Small-World Property: For the short path property in the D-dimensional RGG model, it
is polynomial ⟨d⟩ ∼ N

1
D .

Scale-Free Property: In the RGG model, a link exists only between nodes that are ”close”
to each other, where ”close” means dij < R. Therefore, the degree distribution of a RGGmodel
with average degree ⟨k⟩ is [32]:

Pr[D = k] ∼ ⟨k⟩
ke−⟨k⟩

k!
(2.20)

It is close to the Poisson distribution [33].

Clustering: The clustering coefficient of the RGG model depends on the dimension D of
the hypercube [0, 1]D. The detailed expression for CD is [32]:

CD =

{
1−HD(1) even D
3
2
−HD

(
1
2

)
odd D

(2.21)

where

HD(x) =
1√
π

D/2∑
i=x

Γ(i)

Γ
(
i+ 1

2

) (3

4

)i+1/2

(2.22)

For large D dimension, CD is simplified to CD ∼ 3
√

2
πD

(3
4
)
D+1
2 .

In low-dimensional RGG models, such as 2-dimensional model, the CD ≈ 0.59 is calculated
by Eq.(2.21) [32]. For the high-dimensional RGG models, the CD ≈ 0.

In summary, the RGG model explains strong clustering but does not explain the Scale-Free
and Small-World properties.

2.4.4. Random Hyperbolic Graph (RHG) model

The RandomHyperbolic Graph (RHG)model has been introduced to be a good statistical model
that supports and explains real-world networks. It is a relatively simple model that explains all
three properties: Small-World, Scale-Free and Clustering Coefficient. The applications of the
RHG model include link prediction[34], routing and navigation [35, 36], and other things [37].
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RHG model

Hyperbolic space is a type of non-Euclidean geometry characterized by a constant negative
curvature K = −ζ2 [38]. A d-dimensional hyperbolic space with curvature is denoted as Hd

ζ .
To represent the 2-dimensional hyperbolic space, the Poincar´e unit disk model can be used by
describing the entire infinite hyperbolic plane H2 as the interior of the Euclidean disk of radius
one [39].

In this thesis, the RHG model is constructed in the latent space H2, with curvature K = −1.
In this context, a Random Hyperbolic Graph (RHG) model in the 2-dimensional hyperbolic
space H2 on N nodes is defined as follows [39]: each of the N nodes is associated with a point
x in the two-dimensional hyperbolic space. The polar coordinates of a point are denoted as (ri,
θi), where the coordinates are drawn uniformly at random in H2 as follows:

ri ← ρ(r), ri ∈ [0, R] θi ← U(0, 2π), (2.23)

where the probability density function ρ(r) of ri is given by Eq.(2.24) prescribed by the model.
R > 0 is the radius which depends on the parameters: < k >,N, T andγ of the Poincar´e disk.

ρ(r) ∼ αeα(r−R) (2.24)

where α = (γ−1)
2

, γ here is the power-law exponent for the degree distribution of the model.
The links between pairs of nodes in the RHG model are generated independently, with their
connection probabilities pij following Eq.(2.25). The connection probability pij is determined
by a distribution in Fermi-Dirac shape.

pij =
1

1 + e
(dij−R)

2T

(2.25)

where T > 0 is the temperature and dij is the hyperbolic distance. Due to Krioukov et al.[39]
used the native representation of the hyperbolic space, which means all distance variables are
their true hyperbolic values. Therefore, the radial coordinate r ∈ [0, R] of a point is equal to its
hyperbolic distance from the origin. And the hyperbolic distance dij between two points xi and
xj at polar coordinates (ri, θi) and (rj, θj) is

cosh dij = cosh ri cosh rj − sinh ri sinh rj cos∆θ θ ∈ [0, 2π] (2.26)

where ∆θ = π − |π − |θi − θj||, which is the angel between the points. Until now, the 2-
dimensional RHG model is completely specified by its latent space H2, the distribution of the
coordinates of points, and the distance-based connection probability distribution. And, the RHG
model in H2 is constructed in the following steps:

• Randomly select the coordinates of N points in H2

• Calculate the hyperbolic distances of all node pairs (i, j) by Eq.(2.26) in H2

• Randomly connect node pairs (i, j) independently with the connection probability pij
related to the hyperbolic distance.
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Overall, the RHG model is defined by these parameters: the properties of the disk, R which
depends on the parameters: ⟨k⟩, N, T andγ; the temperature T ∈ (0, 1) and the radial component
of the node distribution α = γ−1

2
, where γ typically follows the power-law exponent for the

degree distribution of the real-world networks, as γ > 2. Meanwhile, the pseudocode algorithm
of the RHG model is provided in Appendix A.

Small-World Property: The hubs and randomness contribute to the Small-World property
of the RHG model. Nodes near the center of the Poincaré disk have an advantage, as almost all
diameters ρ pass through these nodes. This results in the presence of many hubs in the RHG
model. Additionally, the randomness arises from the statistical nature of the point distribution.

Scale-Free Property: The Scale-Free property of Random Hyperbolic Graphs (RHG)
arises from the negative curvature of the underlying hyperbolic space [39]. The degree dis-
tribution of the RHG model is:

Pr[D = k] ∼ k−γ (2.27)
where γ = 2α + 1 when ζ = 1.

Clustering: The strong clustering properties of the RHGmodel are a direct consequence of
the hyperbolic geometry metric structure [39]. In hyperbolic space, the sum of the angles of a
triangle is always less than π radians; thus, they become ”thinner. Figure. 2.8 illustrates points
A and C are more likely to be connected due to the triangle inequality in hyperbolic geometry.

Figure 2.8: Points A and C will be more likely to be connected due to the triangle inequality.
d(A(B,C), C(A,B)) indicates the hyperbolic distance between arbitrary two points

here, d(A,C) ≤ d(A,B) + d(B,C) indicates that points A and C are more likely to form a
triangle with point B, which contributes to clustering. Moreover, the clustering coefficient in
the model is strongly influenced by the temperature T . As T → 0, the clustering coefficient
reaches its maximum.

The RHG models reproduce Strong Clustering, Scale-Free property and Small-World
property, which are important structural properties of real networks [39–42]. The RHG model
owes these topological properties primarily to its intrinsic hyperbolic geometric nature. Com-
pared to other classical synthetic models, the RHGmodel is a synthetic model that encompasses
the most extensive range of topological properties so far.



3
Motivation: Similarity vs

Complementarity in networks

In this chapter, we motivate our research on complementarity mechanisms by comparing sim-
ilarity and complementarity mechanisms in network science. Firstly, we briefly introduce the
concept that similarity is recognized as the leading principle in network science, positing that
similar nodes are more likely to be connected. However, we observe that in certain networks,
such as protein-protein interaction networks and production networks, connections are estab-
lished based on the principle of complementarity. Secondly, we dive into the complementar-
ity mechanism in networks by discussing the complementarity principle and introducing the
minimal complementarity model, known as the Complementarity Random Hyperbolic Graph
(CRHG) model [2]. Finally, we emphasize that the main objective of this thesis is to systemat-
ically document the topological properties of the CRHG model.

3.1. Similarity

In simple terms, the similarity is defined as follows: Similar objects i and j, have a high chance
of connecting [43]. This concept has its roots in homophily [37, 44]. In sociology, homophily
describes the tendency of an individual to socialize and bond with similar people [43]. Ho-
mophily is commonly found in many networks, where nodes tend to connect based on similarity
[43, 45], and this phenomenon highlights similarity as the main principle in network science.
Similarity is applied in various contexts, such as clustering [46, 47], node classification [48],
and link prediction [49]. For instance, one common approach is to use common neighbours to
predict missing links [49, 50], see Fig. 3.1. Nodes that share many common neighbours are
considered similar and, consequently, are more likely to be connected.

19



3.1. Similarity 20

Figure 3.1: Nodes i and j share four common nodes, nodes i and k only share one common node. Therefore, the
missing link l1 (green dotted line) is more probable to exist than the missing link l2 (red dotted line).

One property of similarity is transitity: If a node i is similar to node j and node j is similar
to node k, then node i is similar to node k, see Fig. 3.2. In reality, it is a phenomenon that two
people with a lot of common friends are always more likely to be friends [43], explaining the
use of common neighbours in link prediction. Therefore, the transitivity of similarity implies
the triangular closure mechanism [51], leading to a high density of triangles in social networks,
where homophily is one of the key mechanisms. However, not all connectivity relationships
between nodes can be explained by similarity; other connection mechanisms also exist.

Figure 3.2: Similarity-based toy network with triangle closure mechanism. Nodes represent different kinds of
leaves, they are similar since they are leaves. Node i is similar to node j and node j is similar to node k, then

node i is similar to node k.
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3.2. Complementarity
We now realize that in some networks, including the protein-protein interactions networks [52,
53] and production networks [54], connections are established following the principle of com-
plementarity. For example, trading partners are often complementary in a firm production net-
work. One firm may produce the right product to meet the needs of another firm. In network
science, complementarity implies that two nodes provide features or attributes that are lack-
ing in each other. Here, the features or attributes refer to functions, shapes, skills, and other
related aspects. Numerous studies based on this concept have emerged since 2018 [1]. Unfor-
tunately, theoretical foundations of complementarity are still in their infancy. A seminal work
by G. Budel and M. Kitsak defined the complementary in complex networks in [2]. One of
the notable outcomes is that they proposed a synthetic complementarity-based model known
as the Complementarity Random Hyperbolic Graph (CRHG) model, which will be described
in general terms here and rigorously defined in Chapter 4. CRHG model was conjectured to
explain the topological properties of real complementarity-driven networks. The main goal of
this thesis is to verify this hypothesis by documenting the topological properties of the CRHG
model.

3.2.1. Complementarity principle
In simple terms, the complementary principle dictates that nodeswith complementary properties
are more likely to connect; see Fig. 3.3 [2]. Figure. 3.3 illustrates a complementarity-based toy
network, consisting of four nodes. Each node’s features are represented by different shapes. The
connections between nodes i and j, j and k, as well as k and e, arise from the complementarity
between their features. However, this does not imply that the nodes i and k are complementary
and thus connected: Unlike similarity, complementarity is not transitive [2].

Figure 3.3: Complementarity-based toy network (node i, node j, node k, node e) and their latent feature
connection patterns [2]: According to the complementarity of shapes, only shapes that match can be merged.
Green solid lines indicate existing connections, while red and green dotted lines represent incompatible and
potential connections, respectively. The colours correspond to different nodes. Triangles are not common but

quadrilaterals are common.

From a structural perspective, Fig. 3.4 illustrates that if nodes i and k have common neighbors



3.2. Complementarity 22

and k is connected to e while i is not, then l1 is a missing link. As a result, the triangle closure
does not work in the complementary network. Instead, a quadrangle closure might work: If i
and k share common neighbors and in addition k is connected to e but i is not, the l1 could be
a missing link. leading to the quadrangle closure rule.

Figure 3.4: Nodes i and k share four common nodes and k is connected to e while i is not. Due to the
complementarity between i and e, the missing link l1 (green dotted line) is likely to exist.

3.2.2. Minimal complementarity model
G. Budel and M. Kitsak proposed a Complement Random Hyperbolic Graph model based on
the complementarity principle [2].

The key assumption of the complementarity framework is that nodes in a network are rep-
resented not by one but several points in a latent space, see Fig. 3.5. These points can be
regarded as distinct features or characteristics of an object. The complementarity of two nodes
can then be quantified by measuring distances between points of different types. Figure. 3.5
is a simple geometric representation of complementarity between arbitrary two nodes. Node
i(j) is represented into points i1(j1) and i2(j2) in the latent space M. These feature points cor-
respond to the node’s capabilities or attributes in two different domains by different colours.
The complementarity of two nodes is defined on distances d12ij ≡ d (i1, j2) and d21ij ≡ d (i2, j1)
between the complementarity feature points. The smaller one of these two distances, the higher
the complementarity.

Different from similarity, it is sufficient for two nodes to complement each other either
due to small d12ij or d21ij . For example, in a scientific collaboration network, the representation
in Fig. 3.5 can describe the collaborative relationship between two researchers: the theoretical
ability (i1) of researcher i needs to be complementary to those of researcher j who has the
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experimental ability (j2), and vice versa.

Figure 3.5: Simple geometric representation of complementarity between arbitrary two nodes in a network:
When considering whether agent i (node i) is connected with agent j (node j). Each node(i(j)) is decomposed
into two feature points(i1(j1) and i2(j2)) according to its characteristic in two different domains by different

colours. d12ij denotes the distance between feature point i1 of node i and feature point j2 of node j. This distance
is small, reflecting a higher complementarity (i.e., the shapes fit perfectly). In contrast, the d21ij measures the

distance between feature point i2 of node i and feature point j1 of node j; it is large, indicating lower
complementarity (i.e., only a partial shape fit). The solid lines in the latent spaceM indicate cross-domain point

relationships which are key to complementarity-driven networks.

3.3. Motivation
Thisminimal complementaritymodel has been called the Complementarity RandomHyperbolic
Graph (CRHG) model. This model is using hyperbolic space as a latent space for two points
per node. In general, any latent space M is feasible. However, hyperbolic space is specifi-
cally chosen because the CRHG model is inspired by the success of the RHG model which is
constructed in the latent space H2 [2]. The CRHG model serves as a foundation for studying
complementarity-driven mechanisms in networks. Unfortunately, the topological properties of
the CRHG model have not been systematically documented. Addressing this knowledge gap,
is, therefore, the main objective of this thesis.

The rest of this thesis is organized as follows. In Chapter 4, we will first define the comple-
mentarity random hyperbolic graph (CRHG) model. Then, investigate and discuss the Small-
World property, Scale-Free property, Clustering Coefficient and Bipartite Clustering of the
CRHG model in Sections 4.1 to 4.5.

In Chapter 5, an extended model of the CRHGmodel, the generalized complementarity ran-
dom hyperbolic graph (GCRHG) model, will be introduced, and its properties will be analysed.
I summarize findings and draw conclusions in Chapter 6.



4
Complementarity Random Hyperbolic

Graph model and its properties

In this chapter, we dive into a specific synthetic complementarity-based model known as the
Complementarity Random Hyperbolic Graph (CRHG) model. Firstly, we define it rigorously
and explain the function of the key input parameters. In more detail, we analyze the effect of
the input parameters within different ranges. Secondly, we systematically document the results
of the measurement and the interpretation of the topological properties in the CRHG model.
Finally, we summarize the place of the CRHG among other classic synthetic models.

4.1. Complementarity Random Hyperbolic Graph (CRHG)
model

CRHG model
Following the minimal complementarity framework, G.Budel and M.Kitsak [2] propose the
Complementarity Random Hyperbolic Graph (CRHG) model when the latent space is a hyper-
bolic disk H2, and the connection probability function follows a Fermi-Dirac distribution. It
is derived and inspired by the RHG model which we described in Section 2.4.4. The Comple-
mentarity Random Hyperbolic Graph (CRHG) model in the 2-dimensional hyperbolic space
H2, with curvature K = −1 on N nodes is defined as follows [2]:

• Each of theN nodes is associated with two points in the 2-dimensional hyperbolic space.
Thus, each node i is characterized by points xi ≡ {r1i , θ1i } and yi ≡ {r2i , θ2i }. The coordi-
nates of the points are drawn independently at random in H2 as follows:

r12i ← ρ(r), r12i ∈ [0, R]; θ12i ← U(0, 2π) (4.1)

where U is the uniform probability density function and the probability density function
ρ(r) of r12i is

ρ(r) = α
sinhαr

coshαR− 1
(4.2)

prescribed by the model. Here,R > 0 is the radius of the hyperbolic disk and α ∈ (0.5, 1)
is the parameter controlling the density of the nodes in H2.
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• For each node pair i and j, one computes two distances d12ij = dH2(xi, yj) and d21ij =
dH2(xj, yi), where dH2(x, y) is given by the hyperbolic law of cosines:

cosh dH2(x, y) = cosh r1 cosh r2 − sinh r1 sinh r2 cos∆θ12 θ ∈ [0, 2π] (4.3)

where ∆θ12 = π − |π − |θ1 − θ2||, which is the angle between the points.

• Each node pair ij is connected independently with probability:

pij = p
(
d12ij

)
+ p

(
d21ij

)
− p

(
d12ij

)
∗ p

(
d21ij

)
(4.4)

where connection probability p (d) has a Fermi-Dirac shape

p (d) =
1

1 + e
(d−R)
2T

, (4.5)

whereR > 0 and T ∈ [0, 1] are model parameters, as shown in Fig. 4.1, it is important to
note that pij is nothing else but the union of two probabilities p(d12ij ) and p(d21ij ): In other
word, either xi complements yj or xj complements yi or both.

The CRHG model has three parameters R, α and T . R is the radius of the hyperbolic disk.
For a fixed number of nodes N , R is expected to control the node density, average degree of
the resulting network.

Indeed, Budel and Kitsak establish that

⟨k⟩ = NI
4

π

(
γ − 1

γ − 2

)2

e−R/2 (4.6)

where

I =

(
sin πT
πT

)−1

(4.7)

when T ∈ (0, 1). Therefore, R depends on the parameters: ⟨k⟩, N, T and γ. Parameter α
controls the density of nodes in H2. If α = 1, nodes distributed uniformly over H2. This is the
case since the Poincar’e disk area is [39]

S = 2π (coshR− 1) ∼ eR (4.8)

If α < 1, more nodes are concentrated closer to H2 center.

Budel and Kitsak conjecture that the CRHG model is Scale-Free:

Pr[D = k] ∼ k−γ (4.9)

and γ = 2α+1. We examine this relationship through simulations in Section 4.2. Temperature
parameter T affects the range of connections. As T → 0, the range of connections is short
and p (d) reduces to a step function: p (d) ∼ Θ(d−R), see Fig. 4.1. According to Eq.(4.4)
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and Eq.(4.5), for p(d12ij ) (similar to p(d21ij )), the term e
(d12ij −R)

2T exhibits significant variations as
T → 0 :

(1) When (d12ij −R) < 0, p(d12ij ) ≈ 1 leading to pij ≈ 1.

(2) When (d12ij −R) > 0, p(d12ij ) ≈ 0, resulting in pij ≈ 0.

Figure 4.1: The relationship between distance d and p (d) varies for different values of T . For instance, when
d ∈ [0, 10], R = 5, T = {0, 0.1, 0.5}. As T → 0, the range of connections is short, and p (d) approximates a step
function, p (d) ∼ Θ(d−R), as shown by the orange dotted line. In contrast, as T → 1, the range of connections
is long, and p (d) varies more gradually, as illustrated by the green and blue lines. The panel (b) is the log-linear

form.

In contrast, when T → 1, the range of connections is long. Taking p(d12ij ) (similar to p(d21ij )) as

an example, we observe that the term e
(d12ij −R)

2T varies more gradually when T > 0, shown as the
blue and green lines in Fig. 4.1.
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In summary, the CRHG model with the target number of nodes N , average degree ⟨k⟩,
degree distribution exponent γ and temperature T in H2 is constructed in the following steps:

• Randomly select the coordinates of 2N points in H2

• Calculate the hyperbolic distances of all point pairs (x, y) in H2

• Randomly connect node pairs (i, j) independently with the connection probability pij
given by Eq.(4.4) related to the point-based connection probability.

When compared to the RHG, the CRHGmodel is defined by the same parameters as RHG. The
main difference is that when we consider the connection probability of node pairs (i, j) being
connected, two points are used to represent a node and decide whether the node pairs (i, j) are
connected or not based on the connection probability of a two-by-two connection between these
four points. The pseudocode algorithm of the CRHG model is shown in Appendix A.

4.2. Degree distribution of the CRHG model

In this section, with study degree distribution of the CRHG model. In [55], the authors con-
jectured that the degree distribution follows a power-law distribution in the CRHG model. For
the CRHG model, one hypothesis is that the approximation of the degree distribution density
follows a power law with exponent γ. To verify this hypothesis, we investigated the degree
distribution of the CRHG model under different parameters. These parameters are the average
degree ⟨k⟩, the temperature T and node density parameters α. The graph size of the CRHG
model isN = 1.024∗105. Figures. 4.2 and 4.3 illustrate that the CRHGmodel is characterized
by a scale-free distribution Pr[D = k] ∼ k−γ with γ ∈ (2, 3). Further, the exponent γ seems
to agree with the value γ = 2α + 1, where α is the node density parameter, as conjectured in
[55]. Table. 4.1 lists the parameters we used in the experiment where ⟨k⟩ = 5 and ⟨k⟩ = 20.

Average Degree ⟨k⟩ Node density α Theory γ = 2α + 1 Temperature T γ̂ |γ̂ − γ|

5 0.55 2.1 0.1 2.11 0.01
5 0.55 2.1 0.5 2.22 0.12
20 0.55 2.1 0.1 2.21 0.11
20 0.55 2.1 0.5 2.22 0.12
5 0.75 2.5 0.1 2.57 0.07
5 0.75 2.5 0.5 2.60 0.10
20 0.75 2.5 0.1 2.60 0.10
20 0.75 2.5 0.5 2.51 0.01
5 1.25 3.5 0.1 3.61 0.11
5 1.25 3.5 0.5 4.02 0.52
20 1.25 3.5 0.1 3.65 0.15
20 1.25 3.5 0.5 3.70 0.20

Table 4.1: Various combinations of average degree ⟨k⟩ = {5, 20}, node density α (γ) and temperature T , with
estimated γ̂ and |γ̂ − γ|
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Discussion and Observation

(1) The simulation results demonstrate that the CRHG model can be adapted to model scale-
free networks. Notably, as the γ values increase while keeping other parameters constant, the
Scale-Free property is preserved until a significant discrepancy emerges between the theoretical
γ and the estimated γ̂ values at γ = 3.5.

(2) γ is the same as in the RHG model, γ = 2α + 1. The reason is that the CRHG is based on
the RHG.

(3) The deviation of γ from the theoretical values is greater for larger α values.The reason is
that large γ values lead to fewer hubs, making it harder to measure the power-law distribution.
The maximum error reaches 0.52 under the conditions of ⟨k⟩ = 5, γ = 3.5 and T = 0.5. This
substantial gap indicates that the simulated values do not fit well with the theoretical values
or the data are not sufficient, since large γ means fewer large k nodes reducing the range of k
values for measuring γ. In other words, as shown in Fig. 4.3 (c), the approximated range of
node degree k ∈ [1, 104] for γ = 2.1. Figure. 4.3 (e) reflects that the range of node degree
k ∈ [1, 103] for γ = 3.5. To verify the scale-free property of the CRHG model with γ = 3.5,
one assumption is that increasing the number of nodes beyondN = 1.024×105 could improve
the linear regression fit of the degree distribution, thereby better aligning the estimated γ̂ value
with its theoretical value.

Additionally, there is no significant relationship between the degree distribution and the
temperature T , suggesting that changes in T have minimal impact on the degree distribution of
the model, confirming the conjecture of Budel et al. in [55].
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Figure 4.2: Degree distribution Pr[D = k] of the CRHG model for ⟨k⟩ = 5 and different input parameters:
N = 1.024 ∗ 105, α = {0.55, 0.75, 1.25}(γ = {2.1, 2.5, 3.5}), T = {0.1, 0.5}. Panels (a)-(f) illustrate the

combined effects of varying input model parameters. In each panel, we use the logarithmic binning [21] for the
degree distribution with the number of binning 20. The line represents the theoretical conjectures γ value and the

theoretical value is displayed as a slope above the straight line.
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Figure 4.3: Degree distribution Pr[D = k] of the CRHG model for ⟨k⟩ = 20 and different input parameters:
N = 1.024 ∗ 105, α = {0.55, 0.75, 1.25}(γ = {2.1, 2.5, 3.5}), T = {0.1, 0.5}. Panels (a)-(f) illustrate the

combined effects of varying input model parameters. In each panel, we use the logarithmic binning [21] for the
degree distribution with the number of binning 20. The line represents the theoretical conjectures γ value and the

theoretical value is displayed as a slope above the straight line.
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4.3. Small-World property of the model

The Small-World property is one of the basic properties in the Small-World networks. It is
also a common topological property for synthetic models. One prominent characteristic is: The
average shortest path length ⟨d⟩ typically scales as the logarithm of N [6], [9]:

⟨d⟩ ∼ lnN (4.10)
Equation. (4.10) represents just one manifestation of the logarithmic scaling behaviour between
the average shortest path length ⟨d⟩ and the network size N . This logarithmic relationship
implies that the Small-World property is characterized not only in the fact that the absolute vale
of ⟨d⟩ is small compared to the size of the networkN , but also in the observation that ⟨d⟩ grows
very slowly with N .

To investigate the Small-World property of the CRHG model, the most common method
is to measure the average shortest path length ⟨d⟩ to reflect the characteristic of short paths
in small worlds. We analyze multiple graph instances for each parameter combination in the
CRHG model. In our simulations, we use the following parameters:

N = {102, 2× 102, ..., 29 × 102}, ⟨k⟩ = {5, 20}, γ = {2.1, 2.5, 3.5}, T = {0.1, 0.5}.

as input to produce the CRHGmodel graphs. Specifically, for each network sizeN , we generate
10 different CRHG graphs to reduce measurement errors. In each graph size N , we estimate
the average shortest path length ⟨d⟩ over 104 random node pairs by computing the distance dij
for 104 random node pairs. For each generated CRHG graph, we apply the ”Degree Cutoffs”
method. In this approach, all nodes with degree k >

√
N are removed from the CRHG graph.

We employ this method because we observed that the fluctuations in the average shortest path
length ⟨d⟩ are significant due to the small number of node pairs used in estimating ⟨d⟩ or the
kmax tends to change significantly in different N size graphs.

Our results are depicted separately in Fig. 4.5 and Fig. 4.6. Specifically, for γ = 2.5 and
γ = 3.5, we observe logarithmic growth. When γ = 2.1, it is even sub-logarithmic (slower than
logarithmic). For ⟨k⟩ = 20, we see some ”jumps” for smallN , which is probably the small size
effect. As a result, the CRHG model under various combinations of parameters has essentially
Small-World properties.

Discussion and Observation

(1) In Fig. 4.5 and Fig. 4.6, the ⟨d⟩ values are small, ⟨d⟩ < 10 for all model networks, which
is consistent with the Small-World property. The Small-World property can arise from two
sources: Randomness: Random links allow shortest to distant nodes, as seen in models like
the ER model, and Hubs: Hubs bring a lot of nodes together, as observed in the BA model.
Both of these sources are present in CRHG. The more hubs, the smaller the average distance
⟨d⟩, Specifically, Randomness is controlled by the parameter T ; as T increases, there is more
randomness in the CRHG model. In Section 4.1, we have analysed that when T → 1, the range
of connection is long. Comparing (c) and (d) of Fig. 4.5, as shown in Fig. 4.4 (a), we can see
that as T grows, the value of ⟨d⟩ in Fig. 4.5 (d) decreases as a whole in comparison with Fig.
4.5 (c) while accompanying the slow growth of N . Meanwhile, Hubs are influenced by the
parameter γ; a lower γ leads to more hubs in the CRHG model. As shown in Fig. 4.5 (a) and
(c), ⟨d⟩ grows slower with lower γ in Fig. 4.4 (b).
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Figure 4.4: Comparison of ⟨d⟩ curves for different input T and γ values

(2) ⟨d⟩ is growing slower than logarithmically for γ = 2.1, as shown in Fig. 4.5 (a) (b) and
Fig. 4.6 (a)-(d). In particular, when N > 22 × 102, ⟨d⟩ tends to stabilize as N increases. In
subplots (c)-(f) of Fig. 4.5 and subplots (e)-(f) of Fig. 4.6 , ⟨d⟩ increases slowly with the size
of the network N for γ = {2.5, 3.5} too. This means ⟨d⟩ growing slower than logarithmically.
A reasonable explanation for the vanished constant value can be attributed to the limited range
of N .

(3) From the perspective of the parameters, we find that when ⟨k⟩ and γ are held constant,
variations in temperature T have little effect on the results. In contrast, when ⟨k⟩ and T remain
fixed, an increase in γ andN leads to an accelerating growth of ⟨d⟩. This may be due to the fact
that lower γ values correspond to a higher probability of generating nodes with high k(hubs);
as a result, ⟨d⟩ tends to stabilize.

In Fig. 4.6, the main difference compared to Fig. 4.5 lies in the application of a higher
average degree, ⟨k⟩ = 20. Here, we observe that the ’Degree Cutoffs’ method has a negative
effect on the small-size model networks. Specifically, the nodes removed by this method result
in disconnected graphs. Therefore, after considering the trade-offs, we decided not to apply the
”Degree Cutoffs” method for graphs with N = [102, 2 × 102] in Fig. 4.6 to avoid excessively
impacting ⟨d⟩ in these cases. Consequently, the gap in the ⟨d⟩ values between N = 2 × 102

and N = 4 × 102 in all subplots of Fig. 4.6 maybe caused by this processing or the small size
effect. In comparison, as N increases, most subplots in Fig. 4.6 exhibit a nearly constant ⟨d⟩,
which could be explained by the presence of more nodes with high k (hubs) that increases the
likelihood of connecting any two arbitrary nodes.

Overall, the graphs of the CRHG model exhibit the Small-World property, as demonstrated
in Fig. 4.5 and Fig. 4.6.
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Figure 4.5: The average shortest path length ⟨d⟩ of the CRHG model (⟨k⟩ = 5) in different input parameters:
N = {102, 2× 102, ..., 29 × 102}, ⟨k⟩ = 5, γ = {2.1, 2.5, 3.5}, T = {0.1, 0.5}. Panels (a)-(f) illustrate the

combined effects of varying input model parameters ⟨k⟩, γ, T .
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Figure 4.6: The average shortest path length ⟨d⟩ of the CRHG model (⟨k⟩ = 20) in different input parameters:
N = {102, 2× 102, ..., 29 × 102}, ⟨k⟩ = 20, γ = {2.1, 2.5, 3.5}, T = {0.1, 0.5}. Panels (a)-(f) illustrate the

combined effects of varying input model parameters ⟨k⟩, γ, T .
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4.4. Clustering coefficient, C3

As mentioned in Section 2.2.3 and 2.3.3, the clustering coefficients describe the tendency of
nodes in a graph to form closely connected groups which are represented as closed triangles.
We have known that the RHG model exhibits strong clustering. Then, what is the clustering in
the complementarity-based CRHG model? To investigate clustering in the CRHG model, we
measure the clustering coefficient C̄3 as a function of network size N . Meanwhile, for every
graph, we also measure the C̄3 of one degree-preserving rewired graph for comparison and
reference. In our simulations, we use the following parameters:

N = {102, 2× 102, ..., 29 × 102}, ⟨k⟩ = {5, 20}, γ = {2.1, 2.5, 3.5}, T = {0.1, 0.5}.

as input to produce the CRHG model graphs.

After that, we calculate C̄3(k) of nodes with k for large N , based on the 10 sample graphs
of the CRHG model with N = 1.024 ∗ 105. As seen in Fig. 4.7 to Fig. 4.10, the CRHG model
under various combinations of parameters has vanishing clustering.

Discussion and Observation: C̄3 vs N

(1) Figures 4.7 and 4.8 depict C̄3 as a function of network size N . The values of the clustering
coefficients C̄3 are generally very low in the CRHG model graphs, as shown in the figures, the
clustering coefficients C̄3 ∈ [10−4, 10−1], thus the C3 is small. To establish this result we com-
pare CRHG to randomize networks, with preserved node degrees. The clustering coefficient C̄3

is comparable to degree-preserving randomizations. Randomized graphs are nothing else but
random configurational models and are known for their small clustering. Since C3 in CRHG is
very close to random rewired counterparts, we conclude that C3 is weak.

(2) With increasing graph size N , the clustering coefficients C̄3 decrease as the variation trend
of the clustering coefficients in rewired random graphs. This is due to the triangle closure is not
enforced in complementarity. C̄3 is almost the same as that of randomized graphs. All these
reflect that the CRHG model lacks strong clustering.

Additionally, the change in temperature T does not affect the tendency of C̄3 to decrease, as
shown in the panels (a) and (b) of Fig. 4.7 and 4.8. This is in contrast to the RHG model where
temperature T controls clustering. Instead, an increase in the value of the γ causes the decrease
in C̄3 to be faster, as shown in Fig. 4.7 (a) and Fig. 4.7 (c).

Discussion and Observation: C̄3(k) vs k:

We calculate C̄3(k) of the nodes with degree k based on the sample graphs 10 of the CRHG
model that set the same input parameters. When plotting the figures, we applied linear binning
[21] with 20 bins for the C̄3(k) curves to capture the overall variation trend and reduce noise.
Figure 4.9 and Figure 4.10 illustrate that the reduction of C̄3(k) value is significant when the
⟨k⟩ is increasing.

(1) In general, the value of C̄3(k) decreases with increasing k, except in the case of γ = 3.5. This
is common in most networks. Large degree k need k(k−1)

2
links to connect all the neighbours,

which is very hard to achieve. In that case γ = 3.5, as shown in Fig. 4.9 (e), (f) and Fig.
4.10 (e), (f), the value of C̄3(k) is a constant that tends to 0 with small upward and downward
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fluctuations. This reflects the clustering is nearly vanishing. In conclusion, C̄3(k) decreases as
a function of ⟨k⟩. This is expected and seen in other Scale-Free models because for large k lots
of links are required to connect neighbors. The results in Fig. 4.9 and Fig. 4.10 also reflect the
vanishing clustering in the CRHG model.
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Figure 4.7: The clustering coefficient C̄3 of the CRHG model for ⟨k⟩ = 5 and different input parameters:
N = {102, 2× 102, ..., 29 × 102}, γ = {2.1, 2.5, 3.5}, T = {0.1, 0.5}. Panels (a)-(f) illustrate the combined
effects of varying input model parameters ⟨k⟩, γ, T . In each subplot, each red triangle represents the C̄3 of
CRHG’s degree-preserving rewired random graph. The dotted line formed by the red triangles represents the

trend of C̄3 with the growth of N in rewired random graphs.
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Figure 4.8: The clustering coefficient C̄3 of the CRHG model for ⟨k⟩ = 20 and different input parameters:
N = {102, 2× 102, ..., 29 × 102}, γ = {2.1, 2.5, 3.5}, T = {0.1, 0.5}. Panels (a)-(f) illustrate the combined
effects of varying input model parameters ⟨k⟩, γ, T . In each subplot, each red triangle represents the C̄3 of
CRHG’s degree-preserving rewired random graph. The dotted line formed by the red triangles represents the

trend of C̄3 with the growth of N in rewired random graphs.
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Figure 4.9: The average clustering coefficient C̄3 of the nodes with degree k of the CRHG model for ⟨k⟩ = 5
and different input parameters: N = 1.024 ∗ 105, γ = {2.1, 2.5, 3.5}, T = {0.1, 0.5}. Panels (a)-(f) illustrate the
combined effects of varying input model parameters ⟨k⟩, γ, T . In each subplot, the linear binning [21] is applied

with 20 bins for the C̄3(k) curves to capture the overall variation trend.
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Figure 4.10: The average clustering coefficient C̄3 of the nodes with degree k of the CRHG model for ⟨k⟩ = 20
and different input parameters: N = 1.024 ∗ 105, γ = {2.1, 2.5, 3.5}, T = {0.1, 0.5}. Panels (a)-(f) illustrate the
combined effects of varying input model parameters ⟨k⟩, γ, T . In each subplot, the linear binning [21] is applied

with 20 bins for the C̄3(k) curves to capture the overall variation trend.
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4.5. Bipartite clustering, C4

Observing the vanishing clustering in the CRHG model raises an important question: What
other topological properties of interest might be exhibited in the CRHG model? Starting with
the definition and construction of the CRHGmodel, one of its key features lies in its mechanism
of connecting nodes based on complementarity, as we discussed in Section 3.2.1. This naturally
leads us to hypothesize there are more rectangular closures in the CRHG model, thus bipartite
clustering may play a dominant role in CRHG graphs. To investigate this, we measure the bi-
partite clustering coefficient C̄4 as a function of network sizeN . For comparison and reference,
we also compute the C̄4 for degree-preserving rewired versions of each graph. These rewired
graphs serve as a baseline to help isolate the effects of the complementarity-driven mechanism.
In our simulations, the following parameters are used:

N = {102, 2× 102, ..., 29 × 102}, ⟨k⟩ = {5, 20}, γ = {2.1, 2.5, 3.5}, T = {0.1, 0.5}.

as input to produce the CRHG model graphs.

Then, we calculate C̄4(k) of nodes with k based on the 10 sample graphs of the CRHG
model with N = 1.024 ∗ 105. As shown in Figs. 4.11 to 4.14, the CRHG model under various
combinations of parameters has non-vanishing bipartite clustering.

Discussion and Observation: C̄4 vs N :

(1) In Figs. 4.11 and 4.12, the value of C̄4 is small, but at the same time is much larger than that
of the randomized counterparts, by an order of magnitude or more.

(2) C̄4 only weakly changes as N increases, almost saturation at a constant value. The reason
is that rectangular is expected for complementarity networks. As shown in Figs. 4.11 to 4.12,
these figures illustrate that as the size of the graph N increases, the value C̄4 fluctuates around
a constant value and does not disappear. This phenomenon is most notable in Fig. 4.11 (e),
(f) and Fig. 4.12 (e), (f). C̄4 values of the CRHG model may exceed those of the randomized
rewired graphs, by an order of magnitude.

In conclusion, we can find that the CRHG model has excellent retention of bipartite cluster-
ing compared to its degree-preserving rewired graph.

Discussion and Observation: C̄4(k) vs k:

We calculate C̄4(k) of the nodes with k based on the sample graphs 10 of the CRHG model that
set the same input parameters. When plotting the figures, we applied linear binning [21] with
20 bins for the C̄4(k) curves to capture the overall variation trend.

(1) As shown in Fig. 4.13 and Fig. 4.14, they illustrate that as ⟨k⟩ increases, the value of C̄4(k)
decreases slowly as a function of k. As the same explanation as for C̄3(k), this is common in
most networks. Large degrees k need k(k−1)

2
links to connect all the neighbours, which is very

hard to achieve. In Fig. 4.13 (a), (b) and Fig. 4.14 (a), (b), the bipartite clustering coefficient
C̄4 is stabilized at a constant value. In conclusion, the results in Fig. 4.13 and Fig. 4.14 also
reflect the non-vanishing bipartite clustering in the CRHG model.
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Figure 4.11: The bipartite clustering coefficient C̄4 of the CRHG model for ⟨k⟩ = 5 and different input
parameters: N = {102, 2× 102, ..., 29 × 102}, γ = {2.1, 2.5, 3.5}, T = {0.1, 0.5}. Panels (a)-(f) illustrate the
combined effects of varying input model parameters ⟨k⟩, γ, T . In each subplot, each red triangle represents the
C̄4 of CRHG’s degree-preserving rewired random graph. The dotted line formed by the red triangles represents

the trend of C̄4 with the growth of N in rewired random graphs.
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Figure 4.12: The bipartite clustering coefficient C̄4 of the CRHG model for ⟨k⟩ = 20 and different input
parameters: N = {102, 2× 102, ..., 29 × 102}, γ = {2.1, 2.5, 3.5}, T = {0.1, 0.5}. Panels (a)-(f) illustrate the
combined effects of varying input model parameters ⟨k⟩, γ, T . In each subplot, each red triangle represents the
C̄4 of CRHG’s degree-preserving rewired random graph. The dotted line formed by the red triangles represents

the trend of C̄4 with the growth of N in rewired random graphs.
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Figure 4.13: The average clustering coefficient C̄4 of the nodes with degree k of the CRHG model for ⟨k⟩ = 5
and different input parameters: N = 1.024 ∗ 105, γ = {2.1, 2.5, 3.5}, T = {0.1, 0.5}. Panels (a)-(f) illustrate the
combined effects of varying input model parameters ⟨k⟩, γ, T . In each subplot, the linear binning [21] is applied

with 20 bins for the C̄4(k) curves to capture the overall variation trend.
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Figure 4.14: The average clustering coefficient C̄4 of the nodes with degree k of the CRHG model for ⟨k⟩ = 20
and different input parameters: N = 1.024 ∗ 105, γ = {2.1, 2.5, 3.5}, T = {0.1, 0.5}. Panels (a)-(f) illustrate the
combined effects of varying input model parameters ⟨k⟩, γ, T . In each subplot, the linear binning [21] is applied

with 20 bins for the C̄4(k) curves to capture the overall variation trend.
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4.6. Intermediate summary: The place of the CRHG
among other models

The Complementarity Random Hyperbolic Graph (CRHG) model exhibits three fundamental
properties: the Scale-Free property, the Small-World property, and Non-vanishing bipartite
clustering at the same time the clustering coefficient C3 is vanishing. These features position
the CRHGmodel as a good synthetic network model with unique advantages compared to other
classic models. A brief overview of properties in different synthetic models is shown in Table.
4.2.

Models

Properties Degree
distribution
(Pr[D = k])

Small-World (⟨d⟩) Clustering
coefficient (C3)

Bipartite
clustering

(C4)

ER Poisson Yes, ⟨d⟩ ∼ lnN No, C3 ∼ 1
N

PA Pr[D = k] ∼ k−γ

(γ = 3)
Yes, ⟨d⟩ ∼ ln(N)

ln(ln(N)) No, C3 ∼ (ln(N))2

N

RGG Poisson No, ⟨d⟩ ∼ N
1
D

Strong,
C3 = O(1)

RHG Pr[D = k] ∼ k−γ

γ ∈ (2, 3)
Yes, ⟨d⟩ ∼ lnN Strong,

C3 = O(1)
Strong,

C4 = O(1)

CRHG Pr[D = k] ∼ k−γ

γ ∈ (2, 3)
Yes

Weak,
C3 = O(N−a)

a > 0

Strong,
C4 = O(1)

Table 4.2: The brief overview of the topological properties among different synthetic models: The cross means
we did not measure the values of that part; ”Yes” means the synthetic model has the property; ”No” means the

synthetic model does not have the property

Comparison with ER and PAModels: The CRHGmodel has Scale-Free and Small-World
properties with the Erdős–Rényi (ER) and Preferential Attachment (PA) models. These prop-
erties reflect the fact that the CRHG model can exhibit the general topological properties of
real-world networks.

Comparison with the RGG Model: Unlike the Random Geometric Graph (RGG) model,
the CRHG model demonstrates Non-vanishing bipartite clustering. This kind of clustering
usually reflects the complementary characteristics of the real-world networks. Therefore, the
CRHGmodel may be more advantageous in fitting real-world networks following the principle
of complementarity, such as protein-protein interactions networks, and production networks.

Comparison with the RHGModel: The primary difference between the CRHGmodel and
the Random Hyperbolic Graph (RHG) model depends on their node connection mechanisms.
While the RHGmodel relies on a similarity mechanism to form connections between nodes, the
CRHG model employs a complementarity mechanism. This means that the CRHG model not
only exhibits the characteristics of its complementarity mechanism but also possesses the basic
topological properties of real-world networks. This further illustrates that the CRHG model
provides a significant reference value for explaining complementary mechanisms in real-world
networks.
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In summary, the CRHG model stands out by combining Scale-Free and Small-World prop-
erties with Non-vanishing bipartite clustering. It is a novel combination among other syn-
thetic models. Its unique complementary connectivity mechanism makes it an innovative syn-
thetic model. This model is particularly effective for modelling complex systems formed by
complementarity-driven networks.



5
The Generalized Complementarity

Random Hyperbolic Graph model and
its properties

Motivation: In Section 2.4.4, we have already introduced the RHG model which can perform
the similarity-driven mechanism in networks well. Then, we define the CRHG model which
serves as a foundation for studying networks with complementarity-driven mechanisms and
discuss the topological properties of CRHG. However, RHG or CRHG has only a single mech-
anism characteristic either similarity (RHG) or complementarity (CRHG). Can we define a syn-
thetic network model that can be smoothly transition between similarity and complementarity?

5.1. Generalized Complementarity Random Hyperbolic
Graph (GCRHG) model

GCRHG model
The generalized CRHG model is based on the CRHG model we defined before, but it has one
more parameter f ∈ [0, 1] which defines the relations between coordinates of the same node.
Compared with the RHG in Section 4.1, in GCRHG, with probability f , coordinates xi and
yi are selected independently, and with probability 1 − f , xi = yi In more precise terms, the
GCRHG model is defined as follows [2]:

• Each of theN nodes is associated with two points in the 2-dimensional hyperbolic space.
Thus, each node i is characterized by xi ≡ {r1i , θ1i }. With probability f , the yi ≡ {r2i , θ2i }.
With probability 1−f , radial and angular positions of the second point are equal to those
of the first point, meaning yi ≡ {r1i , θ1i }. The coordinates of points are drawn uniformly
at random in H2 as follows:

r12i ← ρ(r), r12i ∈ [0, R] θ12i ← U(0, 2π), (5.1)

where the probability density function ρ(r) of r12i is given by Eq.(5.2)

ρ(r) = α
sinhαr

coshαR− 1
(5.2)

48
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prescribed by the model. HereR > 0 is the radius of the hyperbolic disk and α ∈ (0.5, 1)
is the parameter controlling the density of the nodes in H2.

• For each node pair i and j, one computes one distance as Eq.(2.26) when f = 0. For
f = 1, one computes two distances as Eq.(4.3).

• The connection probability pij is determined after xi and yj are selected. This part is
identical to CRHG.

in f = 0 the GCRHG model is equivalent to the RHG model. Otherwise, when f = 1 the
GCRHG model is the CRHG model. When f ∈ (0, 1), the GCRHG model is in between,
which means that the nodes in the target network perform the mapping and connecting of the
points using the RHG and CRHG mechanisms at the same time. In other words, GCRHG al-
lows for smooth turning between similarity and complementarity. The 2-dimensional GCRHG
model has four parameters f,R, α and T . The only difference is the radio f , which controls the
percentage of RHG-typed points versus CRHG-typed points.

The GCRHG model with the target number of nodes N , average degree ⟨k⟩, degree distri-
bution exponent γ, radio f and temperature T in H2 is constructed in the following steps:

• Randomly select the coordinates of 2N points in H2: Each node, with probability
f ∈ [0, 1] has two independent points {r1i , θ1i } and {r2i , θ2i }; with probability 1 − f has
identical points r1i = r2i and θ1i = θ2i

• Calculate the hyperbolic distances of all point pairs (x, y) in H2

• Randomly connect node pairs (i, j) independently with the connection probability pij
related to the point-based connection probability.

Overall, the GCRHG model is defined by the same parameters as the CRHG model, except
for the radio f . The generalized CRHG (GCRHG) for f = 1 is nothing else but the CRHG
model. However, for f = 0, the GCRHG model becomes analogous to the RHG because every
node has effectively one point. The pseudocode algorithm of the GCRHG model is shown in
Appendix A.

5.2. Degree distribution of the GCRHG model

We established that the graphs produced by the CRHGmodel are Scale-Free, Pr[D = k] ∼ k−γ

with γ = 2α+1, andwe are interested inwhether theGCRHGmodel has the Scale-Free property
with floating f values under different γ values. In the simulation, we set different γ value along
with N = 105, ⟨k⟩ = 10, T = 0.5 as input parameters. Figure. 5.1 shows that the GCRHG
model performs as a Scale-Free network when different γ ∈ (2, 3) are chosen with floating f
values. Table. 5.1 lists the combination with the estimated γ̂.
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Ratio f Node density α Theory γ = 2α + 1 Average Degree ⟨k⟩ Temperature T γ̂ |γ̂ − γ|

0 0.55 2.1 10 0.5 2.17 0.07
0.1 0.55 2.1 10 0.5 2.18 0.08
0.5 0.55 2.1 10 0.5 2.22 0.12
0.9 0.55 2.1 10 0.5 2.17 0.07
1 0.55 2.1 10 0.5 2.15 0.05
0 0.75 2.5 10 0.5 2.40 0.1
0.1 0.75 2.5 10 0.5 2.51 0.01
0.5 0.75 2.5 10 0.5 2.56 0.06
0.9 0.75 2.5 10 0.5 2.60 0.1
1 0.75 2.5 10 0.5 2.58 0.08
0 1 3 10 0.5 3.07 0.07
0.1 1 3 10 0.5 3.10 0.1
0.5 1 3 10 0.5 3.10 0.1
0.9 1 3 10 0.5 3.32 0.32
1 1 3 10 0.5 3.30 0.3

Table 5.1: Various combinations of ratios f , node density α(γ), average degree ⟨k⟩ and temperature T , with
estimated γ̂ and |γ̂ − γ|

Discussion and Observation

As f increases monotonically, the designed simulation represents an evolutionary process
transitioning from a pure RHG model to a pure CRHG model. Since RHG and CRHG exhibit
Scale-Free property, we have reason to assume that the GCRHGmodel is theoretically expected
to possess Scale-Free property with γ ∈ (2, 3).

With floating f value, we find that the estimated γ̂ values are generally close to the theo-
retical critical values γ ∈ {2.1, 2.5, 3}. This indicates that the GCRHG model is capable of
generating scale-free networks. However, some discrepancies exist between the theoretical γ
and the estimated γ̂. As shown in Table. 5.1, the maximum error is observed to be 0.32 when
f equals 0.9. In other words, the |γ̂ − γ| gets worse when α → 1 and f → 1. We hypothesize
that when α→ 1we have fewer existing hubs in the model and it is harder to measure γ. When
f → 1 we have a pure CRHG model. In this case, γ = 2α+1 is less accurate than in the f = 0
case, when we have RHG.

In conclusion, we observe that the degree distributions follow a power-law distribution, char-
acterized by a fat tail as the degree increases. Although some discrepancies are noted between
the estimated γ̂ and theoretical γ values, the degree distribution remains largely unchanged.
Therefore, it can be objectively stated that the GCRHG model exhibits scale-free properties
under the parameter settings used in this thesis.
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Figure 5.1: Degree distribution Pr[D = k] of the GCRHG model for f = {0, 0.1, 0.5, 0.9, 1} and different input
parameters: N = 105, ⟨k⟩ = 10, γ = {2.1, 2.5, 3}, T = 0.5. We use the logarithmic binning [21] for the degree
distribution with the number of binning 15. The line represents the theory linear regression of γ value, and the
theoretical value is displayed as a slope above the straight line. It does not start at the beginning because the

linear part at large values of the degree k is the focus of our attention. Here, different colours as well as shapes
represent different values of f .



5.3. Clustering coefficient, C3 52

5.3. Clustering coefficient, C3

In Chapter 4, we established that the CRHG model has vanishing clustering C3. And we have
known that the RHGmodel demonstrates strong clustering. As a generalized model, it is natural
to ask: what kinds of clustering behaviours exist in the GCRHG model? In other words, will
the clustering coefficient in the GCRHG model be the same as those in the original CRHG and
RHG models? To explore this, we measure the average clustering coefficient C̄3 as a function
of network size N . Additionally, for every graph, we compute the C̄3 of its degree-preserving
rewired graph for reference. In our simulation, as shown in Fig. 5.2, Fig. 5.3 and Fig. 5.4, we
use the following parameters:

N = {102, 2×102, ..., 29×102}, f = {0, 0.1, 0.5, 0.9, 1}, ⟨k⟩ = 10, γ = {2.1, 2.5, 3}, T = 0.5

as input to produce the GCRHG model graphs. We also plot the C̄3 as a function of increasing
ratio f in Fig. 5.2 (f), Fig. 5.3 (f) and Fig. 5.4 (f).

Then, we calculate C̄3(k) of nodes with degrees k based on the 10 sample graphs of the
GCRHG model with N = 105, see Fig. 5.5.

Observation and Discussion: C̄3 vs N

(1) C̄3 does not depend onN for all f values except f = 1. In other words,C3 is nearly constant
as a function of N , except for f = 1.

(2) C̄3 decreases as f increases. Notably, the C̄3 drops sharply as f approaches f = 1. We
conjecture that once f ̸= 1, similarity appears. In other words, even if only a few nodes display
similar behaviour, the clustering coefficient is no vanishing.

Overall, except for the case when f = 1 (representing the pure CRHGmodel), the clustering
of the GCRHG model is non-vanishing. Furthermore, when f = {0, 0.1, 0.5}, the clustering
is particularly strong. The trend means that the model turns into a pure CRHG model with
increasing f , especially, with f ∈ (0.9, 1) moment, the change is notable, see panel (e) in Fig.
5.2, Fig. 5.3 and Fig. 5.4.

Observation and Discussion: C̄3(k) vs k:

We calculate C̄3(k) of the nodes with k based on the sample of 10 graphs of the GCRHGmodel
that set the same input parameters. When plotting the figures, we applied linear binning [21]
with 20 bins for C̄3(k) to capture the overall variation trend.

In Fig. 5.5, we observe that when f = {0, 0.1, 0.5}, the value of C̄3(k) for nodes with low
k is very high. This indicates the presence of strong clustering in these cases, particularly for
smaller values of f . As shown in Fig. 5.5 (b) and (c), the value of C̄3(k) decreases signifi-
cantly as f increases from 0.9 to 1 when γ = 2.5. Furthermore, as γ = 3, the value of C̄3(k)
approaches zero, indicating the absence of clustering under these conditions.

Overall, the clustering in the GCRHG model is closely related to the parameter f . Specifi-
cally, the adjustment of f makes the model dynamically reflect the disappearance of clustering
from the RHG model to the CRHG model. In other words, the GCRHG model shows strong
clustering coefficient when it is close to the pure RHG model. Notably, when f changes from
0.9 to 1, the C3 decreases rapidly. We conjecture that this is because, at f = 0.9, triangle clus-
tering arising from the RHG model component within the CRHG graph still dominates. While
for f = 1, the triangle clustering is vanishing.
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Figure 5.2: The clustering coefficient C̄3 of the GCRHG model for γ = 2.1 and different input parameters:
N = {102, 2× 102, ..., 29 × 102}, ⟨k⟩ = 10, T = 0.5, f = {0, 0.1, 0.5, 0.9, 1}. Panels (a)-(e) illustrate the

combined effects of varying input model parameters ⟨k⟩, γ, T , f . In each panel, each red triangle represents the
C̄3 of GCRHG’s degree-preserving rewired random graph. The dotted line formed by the red triangles represents

the trend of C̄3 with the growth of N in rewired random graphs. Panels (f) shows the C̄3 as a function of
increasing ratio f with N = 105, ⟨k⟩ = 10, T = 0.5, γ = 2.1.
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Figure 5.3: The clustering coefficient C̄3 of the GCRHG model for γ = 2.5 and different input parameters:
N = {102, 2× 102, ..., 29 × 102}, ⟨k⟩ = 10, T = 0.5, f = {0, 0.1, 0.5, 0.9, 1}. Panels (a)-(e) illustrate the

combined effects of varying input model parameters ⟨k⟩, γ, T , f . In each panel, each red triangle represents the
C̄3 of GCRHG’s degree-preserving rewired random graph. The dotted line formed by the red triangles represents

the trend of C̄3 with the growth of N in rewired random graphs. Panels (f) shows the C̄3 as a function of
increasing ratio f with N = 105, ⟨k⟩ = 10, T = 0.5, γ = 2.5.
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Figure 5.4: The clustering coefficient C̄3 of the GCRHG model for γ = 3 and different input parameters:
N = {102, 2× 102, ..., 29 × 102}, ⟨k⟩ = 10, T = 0.5, f = {0, 0.1, 0.5, 0.9, 1}. Panels (a)-(e) illustrate the

combined effects of varying input model parameters ⟨k⟩, γ, T , f . In each panel, each red triangle represents the
C̄3 of GCRHG’s degree-preserving rewired random graph. The dotted line formed by the red triangles represents

the trend of C̄3 with the growth of N in rewired random graphs. Panels (f) shows the C̄3 as a function of
increasing ratio f with N = 105, ⟨k⟩ = 10, T = 0.5, γ = 3.
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Figure 5.5: The average clustering coefficient C̄3 of the nodes with degree k of the GCRHG model with
different input parameters: N = 105, ⟨k⟩ = 10, γ = {2.1, 2.5, 3}, T = 0.5, f = {0, 0.1, 0.5, 0.9, 1}. The linear
binning [21] is applied with 20 bins for the C̄3(k) curves to capture the overall variation trend. Here, different

colours as well as shapes represent different values of f .
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5.4. Bipartite clustering, C4

We also measure the average bipartite clustering coefficient C̄4 as the network sizeN increases
given by Eq.(5.3)

C̄4 =
1

N

N∑
i=1

C4(i) (5.3)

Additionally, for every graph, we compute the C̄4 of its degree-preserving rewired graph for
reference. In our simulation as shown in Figs. 5.6 to 5.8 , we use the following parameters:

N = {102, 2×102, ..., 29×102}, f = {0, 0.1, 0.5, 0.9, 1}, ⟨k⟩ = 10, γ = {2.1, 2.5, 3}, T = 0.5

as input to produce the GCRHG model graphs. The C̄4 as a function of increasing ratio f in
Fig. 5.6 (e), Fig. 5.7 (e) and Fig. 5.8 (e).

In Fig. 5.9, the C̄4(k) of nodes with k based on the 10 sample graphs of the GCRHG model
with N = 105 is shown.

Observation and Discussion: C̄4 vs N

(1) C̄4 is close to random for similarity-based networks. Especially, as shown in Fig. 5.6 (a)
and (b).

(2) C̄4 increases as f increases. Therefore, C̄4 is larger for purely complementarity-based net-
works. As shown in panels (c), (d), and (e) of Figs. 5.6 to 5.8, when f = {0.5, 1}, the C̄4

coefficient stabilizes as N increases and remains non-zero. This behaviour occurs because the
GCRHG model increasingly resembles a pure CRHG model within this parameter range.

Observation and Discussion: C̄4(k) vs k

We calculate C̄4(k) of the nodes with k based on the sample of 10 graphs of the GCRHGmodel
that set the same input parameters. When plotting the figures, we applied linear binning [21]with
20 bins for the C̄4(k) to capture the overall variation trend.

In Fig. 5.9, we observe that when f = {0.9, 1}, the C̄4(k) values in the GCRHG model are
significantly higher than those of other curves. This indicates a pronounced bipartite clustering
effect for the GCRHG model when it tends to be a pure CRHG model.

Comparing Fig. 5.9. (a) and (b), specifically the two curves with f = 0.5, we observe that
as the value of γ increases, the green curve’s C̄4 behaviour gradually converges toward that of
the pure RHG model. This suggests that for the GCRHG model with f = 0.5, the bipartite
clustering effect becomes weaker with increasing γ.

Overall, the bipartite clustering effect is most pronounced in the GCRHG model when f =
{0.9, 1}. This observation implies that as the GCRHG model transitions toward a pure CRHG
model, bipartite clustering dominates. In other words, this phenomenon results from the non-
vanishing bipartite clustering inherent to the CRHG model.
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Figure 5.6: The bipartite clustering coefficient C̄4 of the GCRHG model for γ = 2.1 and different input
parameters: N = {102, 2× 102, ..., 29 × 102}, ⟨k⟩ = 10, T = 0.5, f = {0, 0.1, 0.5, 0.9, 1}. Panels (a)-(e)

illustrate the combined effects of varying input model parameters ⟨k⟩, γ, T , f . In each panel, each red triangle
represents the C̄4 of GCRHG’s degree-preserving rewired random graph. The dotted line formed by the red

triangles represents the trend of C̄4 with the growth of N in rewired random graphs. Panels (f) shows the C̄4 as a
function of increasing ratio f with N = 105, ⟨k⟩ = 10, T = 0.5, γ = 2.1.
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Figure 5.7: The bipartite clustering coefficient C̄4 of the GCRHG model for γ = 2.5 and different input
parameters: N = {102, 2× 102, ..., 29 × 102}, ⟨k⟩ = 10, T = 0.5, f = {0, 0.1, 0.5, 0.9, 1}. Panels (a)-(e)

illustrate the combined effects of varying input model parameters ⟨k⟩, γ, T , f . In each panel, each red triangle
represents the C̄4 of GCRHG’s degree-preserving rewired random graph. The dotted line formed by the red

triangles represents the trend of C̄4 with the growth of N in rewired random graphs. Panels (f) shows the C̄4 as a
function of increasing ratio f with N = 105, ⟨k⟩ = 10, T = 0.5, γ = 2.5.
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Figure 5.8: The bipartite clustering coefficient C̄4 of the GCRHG model for γ = 3 and different input
parameters: N = {102, 2× 102, ..., 29 × 102}, ⟨k⟩ = 10, T = 0.5, f = {0, 0.1, 0.5, 0.9, 1}. Panels (a)-(e)

illustrate the combined effects of varying input model parameters ⟨k⟩, γ, T , f . In each panel, each red triangle
represents the C̄4 of GCRHG’s degree-preserving rewired random graph. The dotted line formed by the red

triangles represents the trend of C̄4 with the growth of N in rewired random graphs. Panels (f) shows the C̄4 as a
function of increasing ratio f with N = 105, ⟨k⟩ = 10, T = 0.5, γ = 3.
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Figure 5.9: The average clustering coefficient C̄4 of the nodes with degree k of the GCRHG model with
different input parameters: N = 105, ⟨k⟩ = 10, γ = {2.1, 2.5, 3}, T = 0.5, f = {0, 0.1, 0.5, 0.9, 1}. The linear
binning [21] is applied with 20 bins for the C̄4(k) curves to capture the overall variation trend. Here, different

colours as well as shapes represent different values of f .
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Summary: The place of the GCRHG among other models

The Generalized Complementarity Random Hyperbolic Graph (GCRHG) model exhibits four
fundamental properties: Scale-Free property, Small-World property, clustering coefficient and
bipartite clustering. A brief overview of properties in different synthetic models is shown in
Table. 5.2.

Models
Properties Degree

distribution
(Pr[D = k])

Small-World (⟨d⟩) Clustering
coefficient (C3)

Bipartite
clustering

(C4)

ER Poisson Yes, ⟨d⟩ ∼ lnN No, C3 ∼ 1
N

PA Pr[D = k] ∼ k−γ

(γ = 3)
Yes, ⟨d⟩ ∼ ln(N)

ln(ln(N)) No, C3 ∼ (ln(N))2

N

RGG Poisson No, ⟨d⟩ ∼ N
1
D

Strong,
C3 = O(1)

RHG Pr[D = k] ∼ k−γ

γ ∈ (2, 3)
Yes, ⟨d⟩ ∼ lnN Strong,

C3 = O(1)
Strong,

C4 = O(1)

CRHG Pr[D = k] ∼ k−γ

γ ∈ (2, 3)
Yes

Weak,
C3 = O(N−a)

a > 0

Strong,
C4 = O(1)

GCRHG Pr[D = k] ∼ k−γ

γ ∈ (2, 3)

Strong,
C3 = O(1))

Strong,
C4 = O(1)

Table 5.2: The brief overview of the topological properties among different synthetic models including GCRHG:
The cross means we did not measure the values of that part; ”Yes” means the synthetic model has the property;

”No” means the synthetic model does not have the property

In this chapter, GCRHG allows for fine-tuning between similarity and complementarity mech-
anisms by tuning the correlations between node coordinates. It represents strong clustering
coefficient when f → 0 and strong bipartite clustering as f → 1. The results in Section 5.3
(2), Section 5.4 (1) and Section 5.4 (2) are not expected and require further investigation. Since
similarity networks enforce triangle closure, one would intuitively expect that triangle closure
would result in the closure of large loops, like rectangular loops. However, it is seen that the
GCRHG models nevertheless, have a stronger bipartite clustering coefficient.



6
Conclusion

In this chapter, we first mention the objective of this thesis and review the main results in each
chapter. Later, we offer suggestions and feedback for follow-up research based on the existing
observations.

6.1. Conclusion

The main objective of this thesis is to address the knowledge gap: although a complementarity-
based network model has been proposed in previous studies, its topological properties have not
been systematically examined. To fill in this gap, this work systematically studies complemen-
tarity network models (CRHG, GCRHG) and documents their topological properties.

Overall, we have studied and interpreted the topological properties of the CRHG and
GCRHG models. The main results of this research are: 1) The CRHG model can explain the
properties of real networks. 2) The GCRHGmodel allows for fine-tuning between the similarity
and complementarity mechanisms. 3) Some topological results were expected and previously
assumed in CRHG: Scale-Free property, Small-World property, Weak C3 and Strong C4. We
establish that this is indeed correct. The observations in Section 5.3 (2), Section 5.4 (1), and
Section 5.4 (2) are not much expected and require further investigations.

In Chapter 3, we compare the similarity and complementarity principles in complex net-
works and emphasise the importance of complementarity. After, the minimal complementarity
model is introduced, setting the stage for a complementarity-based model known as the Com-
plementarity Random Hyperbolic Graph (CRHG) in Chapter 4.

In Chapter 4, we first define the Complementarity Random Hyperbolic Graph (CRHG)
model. Then, we do the simulations to establish the Small-World property, Scale-Free property,
vanishing Clustering Coefficient and non-vanishing Bipartite Clustering of the CRHG model.
We find that the CRHG model stands out by combining Scale-Free and Small-World proper-
ties with Non-vanishing biparting clustering. This model is particularly effective for modelling
complex networks formed by the complementarity mechanism.

To transition smoothly between similarity and complementarity, in Chapter 5, the Gener-
alized Complementarity Random Hyperbolic Graph (GCRHG) model has been defined. The
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model exhibits the Scale-Free property. With different input parameters f , the GCRHG model
has clustering coefficient and non-vanishing bipartite clustering. This demonstrates that the
GCRHG model can be used flexibly to capture both similarity and complementarity features in
networks. When f = 0 the GCRHG model is equivalent to the RHG model, GCRHG model is
the CRHG model as f = 1. When f ∈ (0, 1), the nodes in the target network are mapped using
the RHG and CRHG mechanisms at the same time.

Overall, we document and interpret the topological properties of complementarity-based
spatial graph models. Additionally, we conduct partial simulation verification of the theoretical
topological properties of synthetic complementarity-based models, providing a reference for
their future development and applications.

6.2. Discussion

We have already performed simulation tests on the Scale-Free property, Small-World property,
clustering coefficient and bipartite clustering of complementarity-based network models. Most
of the measurement results are in line with our expectations. However, these are only verifica-
tions from the simulation perspective. The theoretical proof of these topological properties for
the CRHG model has not yet been made. For future research, the results of this thesis may pro-
vide a guideline for theoretical proofs. One of these perspectives is to explain the topological
properties exhibited by the CHRG model from the perspective of hidden variable formalism.
The study of these topological properties helps us understand and analyze the characteristics of
real networks. Especially, when f changes between {0.9, 1}, the clustering coefficient varies
greatly in the Generalized Complementarity Random Hyperbolic Graph (GCRHG) model. As
shown in panels (d) and (e) of Fig. 5.2, Fig. 5.3 and Fig. 5.4, the clustering coefficient C3

trends from stable to decreasing. This phenomenon may be related to the density of triangular
subgraphs and quadrilateral subgraphs in the GCRHG when f ∈ (0.9, 1). To investigate the
reason for this phenomenon, one possible way is that we can figure out the percentage of points
mapped as the RHG or CRHGmodel. In other words, we can label all the corresponding points
of a node in the process of generating the GCRHG.

After we fully understand the complementarity-based network models, another research
direction could be exploring the relationship between these models and their real-world ap-
plications and technological developments. As we mention in Section 2.4.4, we know that
the RHG model has some real applications, including link prediction, routing and navigation.
Since complementarity-based network models are inspired by the success of the RHG model,
they may also be relevant to some real-world applications.
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A
Appendix

In this Appendix, we provide the pseudo-code for generating the Random Hyperbolic Graph
(RHG) model, Complementarity Random Hyperbolic Graph (CRHG) model, and Generalized
Complementarity Random Hyperbolic Graph (GCRHG) model.

The RHG model algorithm:

Algorithm 1 Random Hyperbolic Graph (RHG) model

Require: N, Tor
(

1
β

)
, γ, ζ = 1, < k >

Di,j ← def:(node i(ri, θi), node j(rj, θj), ζ = 1) {Calculate Hyperbolic Distance between
node i and node j}
R ← def:(N, < k >, β, ζ = 1, γ) {Construct the H2 disk of reference R based on different
T conditions}

Calculate R based on N, < k >, β, ζ = 1, γ
Initialize empty H2_node node list
for i = 0 to N do
Generate r[i] and θ[i] for each node
Append (r[i], θ[i]) to H2_node

end for
for each pair (i, j) with j > i do
Compute Di,j between nodes i and j
{To place N nodes i.i.d.ly in H2 disk}
if T ̸= 0 then
Compute edge connecting probability P
if random.uniform(0, 1) ≤ P then
Add edge (i, j) to file(.dat)

end if
else
if Di,j ≤ R then
Add edge (i, j) to file(.dat)

end if
end if

end for
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The CRHG model algorithm:

Algorithm 2 Complementarity Random Hyperbolic Graph (CRHG) model

Require: N, T ̸= 0or
(

1
β

)
̸= 0, γ, ζ = 1 < k >

Di,j ← def:(node i(ri, θi), node j(rj, θj), ζ = 1) {Calculate Hyperbolic Distance between
node i and node j}
R ← def:(N, < k >, β, ζ = 1, γ) {Construct the H2 disk of reference R based on different
T conditions}

Calculate R based on N, < k >, β, ζ = 1, γ
Initialize empty H2_node node list
for i = 0 to N do
Generate (r[i1],θ[i1]) and (r[i2],θ[i2]) for each node {Set two-point position for one node}
Append (r[i1],θ[i1]) and (r[i2],θ[i2]) to H2_node

end for
for each pair (i, j) with j > i do
Compute Di1,j2 between point i1 and j2
Compute Di2,j1 between point i2 and j1
{To place N nodes i.i.d.ly in H2 disk}
Compute edge connecting probability P {Depend on Di1,j2 and Di2,j1}
if random() ≤ P then
Add edge (i, j) to file(.dat)

end if
end for
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The GCRHG model algorithm:

Algorithm 3 Generalized Complementarity Random Hyperbolic Graph (GCRHG) model

Require: N, T ̸= 0or
(

1
β

)
̸= 0, γ, ζ = 1 < k >, f

Di,j ← def:(node i(ri, θi), node j(rj, θj), ζ = 1) {Calculate Hyperbolic Distance between
node i and node j}
R ← def:(N, < k >, β, ζ = 1, γ) {Construct the H2 disk of reference R based on different
T conditions}

Calculate R based on N, < k >, β, ζ = 1, γ
Initialize empty H2_node node list
for i = 0 to N do
Generate (r[i1],θ[i1]) and (r[i2],θ[i2]) for each node {Set two-point position for one node}
if random.uniform(0, 1) ≤ f then
Append (r[i1],θ[i1]) and (r[i2],θ[i2]) to H2_node

else
Append (r[i1],θ[i1]) and (r[i1],θ[i1]) to H2_node

end if
end for
for each pair (i, j) with j > i do
if i1 == i2 and j1 == j2 then
Compute Di,j between nodes i1 and j1
Compute edge connecting probability P
if random.uniform(0, 1) ≤ P then
Add edge (i, j) to file(.dat)

end if
else
Compute Di1,j2 between point i1 and j2
Compute Di2,j1 between point i2 and j1
{To place N nodes i.i.d.ly in H2 disk}
Compute edge connecting probability P {Depend on Di1,j2 and Di2,j1}
if random.uniform(0, 1) ≤ P then
Add edge (i, j) to file(.dat)

end if
end if

end for
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