
IN3405 Bachelor project

Conversion Ratio

Mark Oostdam
1174681

Onno van Paridon
1100211

August 27, 2009

Faculty EEMCS, Delft University of Technology
Delft, the Netherlands

Adyen Enterprise Payment Services
Amsterdam, the Netherlands

Copyright c© 2009 Mark Oostdam, Onno van Paridon, Adyen B.V.

All rights reserved. No part of this document may be reproduced, stored in a retrieval system
or transmitted in any form or by any means electronic, mechanical, photocopying, recording or
otherwise without the written permission of Mark Oostdam, Onno van Paridon and Adyen B.V.

Abstract

Before a shopper converts into a buyer there are a lot of steps to be taken. In each of these steps
a portion of shoppers discontinues their purchase and the remaining part finalises the transaction.
The conversion ratio is defined as the number of shoppers that finalise their transaction in com-
parison to the number of shoppers that start a transaction, expressed as a percentage. Because
Adyen handles the payments, it is an important part of the process.

Chapter 1 states the main goal of the project as to gather information about the course of the
payment sessions of consumers buying at on-line shops and explains why off the shelf solutions
like Google Analytics are not feasible. In this chapter three sub-goals are defined.

1. Live data feed for merchants.
2. Data for marketing material.
3. Form a basis for an article.

Next technologies that are currently in place are analysed. First the infrastructure of the
Hosted Payment Pages (HPP) is discussed in Chapter 2 and how Skins can be used to customise
the appearance of the HPP. Finally the difference in the payment flow between the Multi Page
Payment (MPP) and One Page Payment (OPP) is explained as well as the information that is
currently included in the log files.

In Chapter 3 the problem is analysed and the main question for the project is defined as:

”How to measure and present the Conversion Ratio on the Hosted Payment Pages?”

To answer this question the process is decomposed in five distinct steps.

1. Log the required data.
2. Make the logs machine readable.
3. Centralise the log information.
4. Store the data.
5. Visualise the data.

This decomposition is applicable for a generic logging framework. As such, the individual steps,
which are treated in subsequent chapters, start with a generic part and end with a project specific
part.

In Chapter 4 the flow of events within a payment session is analysed. With this information
additional data to be logged, like the IP address of the shopper, is determined to produce rich
statistics. Finally the validation of payment sessions through state machines is discussed.

Chapter 5 discusses various logging formats ranging from CSV files to directly logging to a
database. These formats are compared as how useful they are when read by a machine to detect
interesting patterns as well as how readable they are for humans in case of an error. Before a
format is chosen, the file based formats are tested on how well they perform when being parsed.
An optimal solution is to simultaneously log to a database for pattern recognition and log to CSV
in case an error occurs.

With the logs available in a suitable format the information has to be gathered on a central
system. Chapter 6 considers two possible centralisation strategies that can be used. After the

iii

two strategies, file transfer and database replication, have been analysed, they are evaluated with
regard to load balance, network capacity and security. Database replication is considered to be the
preferred strategy to be used because it spreads the load more evenly over time and the mechanism
is built into the database system.

Chapter 7 talks about how the data is stored once it is available on a central location. First
a generic approach is discussed that can be applied to logging in general where a distinct split
is made between the log4j part and the application specific part. Then a conversion specific
approach is taken which handles data extension, aggregation and validation. Finally an additional
aggregation step is discussed for performance enhancement.

As the statistical information is now stored the data needs to be visualised in a intuitive way.
First several use case are discussed in Chapter 8. To be able to handle with more use cases a
template framework is developed which can contain multiple chart types. Next the statistic types
are discussed that enable specific calculations to be performed for a specific statistic and hide
the data processing from the templates and chart types. After that the user interface and the
structure behind it are examined. Finally the extendibility of the system is outlined together with
performance enhancements.

Chapter 9 covers software quality and testing. Initially unit tests were developed to test an
important building block of the system, the state machines. With the unit tests written a code
coverage analysis is performed to see how well code is covered by tests. Because of some imper-
fections in the logging, not all logged sessions adhered to the state machines while they were in
fact valid. For these sessions to be taken into account some shortcuts were added to the state
machines. Regression testing enables these sessions to be used while still preserving the quality of
the software by explicitly testing for these sneak paths.

In Chapter 10 the conclusions of Chapters 4 through 8, regarding the five distinct steps in
the process, are consolidated. After that, conclusions are drawn about the three sub-goals as
outlined in Chapter 1. Regarding the live data feed for merchants the project has been successful.
Merchants that got a glance of the user interface during development were very enthusiastic about
the possibilities the system gives them. The goal of providing data for marketing material also
has been met. On multiple occasions during the development, sales employees used the statistical
data and its graphical representations as a Unique Selling Point to show Adyens expertise in the
payment process. During the project a basis has been formed for a newspaper article, as well as a
scientific article, thereby fulfilling the third goal. The newspaper article concerns the conversion
ratio of PayPal payments. PayPal does not perform as well as other (localised) payment methods
in the Netherlands, while introducing higher costs. A scientific article can be written on the basis
of the generic logging framework and the preparations that have been made during this project
for this framework.

During the process, a broad range to topics was touched but not all could be researched within
the scope of the project. In Chapter 11 several recommendations are made for topics that should
be investigated further. These topics include the creation of a generic logging framework that can
be used throughout the platform as well as system that allows merchants to upload multiple Skins
and compare the results. Finally more research can be done on pattern recognition to improve
the rate of successfully reconstructed sessions as well as the creation of a generic framework to
measure performance throughout Adyen’s platform on multiple levels. In order to be feasible, all
of these frameworks should be highly scalable to cope with large amounts of data. They should
also be generic enough to be applied on multiple levels, ranging from the application level to a
platform level.

Bachelor committee:

Chair: Ir. B.R. Sodoyer, Faculty EEMCS, TU Delft
University supervisor: Dr. P. Cimiano, Web Information Systems, Faculty EEMCS, TU Delft
Company supervisor: M. Lobbezoo MSc, Adyen

iv

Preface

Online shopping is a fast growing business. For this sector aspects like usability and Search Engine
Optimisation are very important to attract more visitors. Tools like Google Analytics and Google
Optimizer are standard parts of their toolkits. A very important metric for these merchants is the
conversion ratio: the number of shoppers that finalise their purchase in comparison to the number
of shoppers that start the shopping process. Adyens specific expertise is the payment process.
The metric that Adyen is able to provide is therefore the conversion ratio of the payment process.
This insight will give Adyen an additional tool to use their expertise in increasing the number of
transactions. In this project the framework is developed to enable detailed insight in the payment
process and conversion ratio, visualised in an intuitive way this results in a tool that is unique in
the payment industry.

Conducting this project at Adyen has been a great experience. Not only the subject matter it-
self has been proven to be very interesting, also the corporate setting and learning new technologies
have been an exiting adventure.

We would like to thank all of our colleagues at Adyen for helping us out whenever we had a
question and giving us pointers on how to tackle some problems. We especially would like to thank
Maikel Lobbezoo for guiding us and taking the time to review our work. Last but not least we
would like to thank Philipp Cimiano for mentoring the project and taking the time to travel to
Amsterdam to view our progress on multiple occasions.

Mark Oostdam
Onno van Paridon

Delft, the Netherlands
August 27, 2009

v

Contents

Abstract iii

Preface v

Contents ix

1 Introduction 1
1.1 Business model of Adyen . 1
1.2 Goals of the project . 2

1.2.1 Live data feed for merchants . 3
1.2.2 Data for marketing material . 3
1.2.3 Form a basis for an article . 4

2 What’s in place 5
2.1 Infrastructure . 5
2.2 Skins . 6
2.3 Payment flow . 6
2.4 Log files . 7

3 Problem analysis 9
3.1 Using the log files . 10
3.2 Conversion logging as part of a generic logging framework 10
3.3 Make conversion log files machine readable . 11
3.4 Gather the conversion log data on a central system 12
3.5 Manage statistical information on the central system 12
3.6 Visualise statistical information . 13
3.7 Strategy . 13

4 Log the required data 15
4.1 Iterative development approach . 15
4.2 Design . 15

4.2.1 Model the payment flow . 15
4.2.2 Additional information to be logged . 16

4.3 Implementation . 17
4.3.1 Java logging framework . 17
4.3.2 Validate the payment sessions . 17
4.3.3 Struts framework . 18

5 Make the logs machine readable 19
5.1 Analysis of log formats . 19

5.1.1 CSV . 20
5.1.2 XML . 20
5.1.3 Java property file . 21

vii

CONTENTS

5.1.4 Serialised Java objects . 22
5.1.5 Directly to a web service . 23
5.1.6 Directly to a database on the local system 23

5.2 Performance overview of parsing log formats . 24
5.3 Implementation format . 24

6 Centralise the log information 27
6.1 Centralisation strategies . 27

6.1.1 Periodic transfer of rolling log files . 28
6.1.2 Database replication . 28

6.2 Design considerations of strategies . 29
6.2.1 Load balance . 29
6.2.2 Network capacity . 29
6.2.3 Security . 29

6.3 Implemented strategy . 30

7 Store the log data 33
7.1 Data storage in a generic logging framework . 33
7.2 Storage design for conversion log information . 34

7.2.1 Data extension . 34
7.2.2 Aggregation . 34
7.2.3 Validation . 35
7.2.4 Performance enhancement . 35
7.2.5 Archiving . 36

7.3 Implementation . 36
7.3.1 Store in memory . 36
7.3.2 Store in Database . 37
7.3.3 Performance enhancement . 39
7.3.4 Archiving . 40

8 Visualise the data 41
8.1 Usage of the conversion statistics . 41
8.2 Design . 42

8.2.1 Chart templates . 43
8.2.2 Chart types . 43
8.2.3 Statistic types . 44
8.2.4 Filter . 44
8.2.5 Statistics webpage and XML web service 46

8.3 Implementation . 46
8.3.1 Process . 47
8.3.2 Results . 48
8.3.3 Extend the user interface . 48
8.3.4 Performance enhancement . 49

9 Software Quality and Testing 51
9.1 Unit testing . 51
9.2 Code coverage analysis . 51
9.3 Regression testing . 52

10 Conclusions 53
10.1 What data needs to be logged . 53
10.2 In which format is the data logged . 54
10.3 How to Centralise log data . 54
10.4 How to store log data . 55

viii

10.5 How to visualise log data . 55
10.6 Goals . 56

10.6.1 Live data feed for merchants . 56
10.6.2 Data for marketing material . 56
10.6.3 Form a basis for an article . 56

11 Recommendations 57
11.1 Generic scalable logging framework . 57
11.2 A / B testing . 57
11.3 Pattern recognition . 58

Appendices

A Glossary 59

B Orientation report 61

C Data preparation of web log files for marketing aspects analyses 87

Bibliography 105

ix

List of Figures

1.1 Adyen system overview . 1
1.2 Merchant backoffice dashboard . 3
1.3 Conversion ration funnel diagram . 3

2.1 Simplified infrastructure overview . 5
2.2 Adyen Skin examples . 6
2.3 Page flow of the payment process . 6

3.1 Conversion ratio explained . 9
3.2 Overview problem analysis . 10
3.3 Overview of steps in data processing . 11
3.4 Web interface of the first implementation cycle . 13

4.1 Flow diagrams modelling the payment sessions . 16
4.2 Struts 2 architecture Diagram . 17

6.1 Four centralisation strategies . 27
6.2 File transfer job diagram . 28

7.1 Design diagram for generic logging framework . 33
7.2 Overview of steps in data processing . 34
7.3 Database design diagram for conversion logs . 35
7.4 Database design diagram for performance enhancement 35
7.5 Class diagram of the conversion analysis framework back-end 37
7.6 File import job diagram . 37

8.1 Class diagram of the conversion analysis framework front-end 43
8.2 Statistics webpage components . 44
8.3 Screenshots of the statistics page . 45
8.4 Web service class diagram . 47
8.5 Charts currently available on statistics web page 48

9.1 Screenshot of directory structure . 51
9.2 Screenshot of coverage analysis of OPP Statemachine 52

xi

List of Tables

5.1 High level properties of logging formats . 20
5.2 Performance of logging formats . 24

xiii

Listings

2.1 Sample existing logfile . 7
5.1 Sample log event in CSV format . 20
5.2 Sample log event in XML format . 21
5.3 Sample log event in Java property format . 22
5.4 Sample log event in Java property format encoded in base64 22
5.5 Sample log event in Java serialised object format 23
6.1 File transfer script . 30
7.1 Query to create LogSessions and LogEvents from raw log events 38
7.2 Query to aggregate daily summary . 39

xv

Chapter 1

Introduction

Adyen is a Payment Service Provider (PSP), started in 2006 by industry specialists. Adyen
focusses on providing one online payment interface for the European and North America online
market. The role of Adyen in the online payment process is enabling on-line shops (merchants) only
having to connect to Adyen in order to support multiple payment methods, like credit cards and
local payment methods like iDeal, bank transfers, et cetera. In addition to local payment methods
international payment methods can also be made available to the merchants audience. With offices
in Amsterdam, London and Boston (MA, USA), Adyen takes care of all the communication and
money flows for the merchants for all the payment method providers (acquirers) and offers her
merchants one unified type of reporting and money flow with one contract.

1.1 Business model of Adyen

Adyen’s business model is based on providing innovative features to its merchants at a minimum
cost. Adyen is a collecting PSP, meaning that Adyen holds the contracts with multiple financial
institutions. These institutions fund the Adyen Client Management Foundation, which then dis-
tributes these funds to Adyen’s merchants. As a result Adyen is under supervision by the Dutch

Figure 1.1: Adyen system overview

1

Chapter 1

Banking Authorities. For the merchants the advantage of this model is that Adyen reconciles
the payments (matching the incoming money with the outstanding authorised transactions) and
provides one money stream and one type of reporting to the merchants.

The cost for the transaction are twofold for the merchants, a fee for the financial institution
and the Adyen processing fee of a maximum of 10 cents per transaction. There are no monthly
charges or setup fees for the merchants. The costs of the financial institution are transparent and
charged directly to the merchant. Because Adyen has the contracts with the financial institutions
it processes large volumes and has a stronger position in negotiating lower costs. Since Adyens
margin is only the small processing fee, the only way for Adyen to be successful is to process large
volumes of transactions. One of the benefits, besides providing a low price to the merchants, is
that both the merchant and Adyen strive to increase their transaction volume. Giving insight
in the conversion rates is not only an innovative feature, it also provides knowledge on how to
increase the number of payments and thus generate higher revenues.

The shoppers are redirected from the merchant’s website to the merchant’s Hosted Payment
Pages (HPP) hosted at Adyen’s platform (Figure 1.1). Adyen is therefore determined in making
the payment process as easy and intuitively as possible, reducing the level of abandonment to a
minimum.

The payment system is part of the core of the merchant’s business and as a result there are
high demands on Adyen’s payment platform. For this reason the platform consist of several
stand alone applications which all run on their own redundant hardware. It can still process (and
store) payments even if (external) components are unavailable. Leading to one of Adyen’s feats,
a platform that is scalable and has a 100% uptime guarantee.

However having a good architecture and robust applications are just the basis for offering a
high Service Level Agreement (SLA) to an online payment platform. Logging and monitoring
are of the utmost importance, since if problems occur the responsible person should be notified
and fully informed instantly to handle the situation. The standard logging and monitoring tools
have proven to not yet meet the requirements for these kind of situations. We will not take this
problem up as a goal of our project, but we will take it into account when creating a solution for
the conversion logging. As a result we will focus on a solution which meets all the requirements
of the Adyen platform on the (application) log files.

1.2 Goals of the project

Converting website visitors to actual customers spending money at the merchant’s site is the
challenge of every merchant conducting business on the internet. The design of the site, ease of
use of the shopping cart, data and payment entry pages should be no hurdles for the merchant’s
customers in finalising the sale. The more steps in the merchant’s payment process, the less chance
that customers will complete the payment successfully [22]. Payment pages that are difficult to
understand, counterintuitive and hard to navigate are a major source for fallout which decreases
the merchant’s online revenue unnecessarily.

The goal of the Conversion Ratio project at Adyen is to gather information about the course of
the payment sessions of consumers buying at online shops. As stated above not all of the initiated
payment sessions will result in successful payments. Some consumers will abandon the payment
pages prematurely and abort the payment session. Information about the completed intermediate
steps, acquired by logging, can be used as source for statistical analysis. Results of the analyses
can be used for several purposes. In this chapter we will discuss some of the possibilities.

Although there are off the shelf solutions like Google Analytics [11] to get insight into the
behaviour of visitors and shoppers, these are not feasible to analyse the conversion ratio on the
HPP. The problem with products like Google Analytics is that they send information back to
servers of the producer. Because the HPP deal with highly sensitive information this practice
is not allowed by Payment Card Industry (PCI) regulations. An additional problem is that the

2

Introduction

Figure 1.2: Dashboard interface of the Adyen merchant backoffice

information has to be available on both the PSP level as well as on a merchant level as explained
in the following sections.

1.2.1 Live data feed for merchants

Adyen provides a merchant backoffice for their clients in which they can manage their account
configuration and get live feedback as illustrated in Figure 1.1. Part of this feedback is a dashboard
interface (Figure 1.2) where drag-able widgets enable the merchant to view live data about the
payments that have been performed. One of the uses of the statistical information is to provide
feedback to the merchant in the form of widgets. A possible widget would be a funnel diagram
(Figure 1.3) showing the conversion ratio.

1.2.2 Data for marketing material

Marketing material should emphasise the unique selling points of a company. One of the selling
points of Adyen is the partnership it forms with its merchants. Improvement in the levels of

Figure 1.3: Order to payment conversion ratio

3

Chapter 1

abandonment and key insights in consumer behaviour are of beneficial for both Adyen and its
merchants. The information can therefore be used as a promotional tool.

1.2.3 Form a basis for an article

Adyen has an agreement with two Dutch newspapers to publish an article near the end of the
project. Results of the analyses and the tests can be used to enrich the articles and promote
Adyen. Furthermore a scientific paper can be made concerning the generic logging framework, for
which the first steps are taken during this project. Such a paper would benefit the community
while a wide range of companies could benefit from a logging framework that does monitoring,
notification and reporting automatically.

4

Chapter 2

What’s in place

When starting a new project it is always useful to look at what’s already in place. In this chapter
we will examine which technologies and systems are used in Adyen’s system. The project needs
to be integrated within Adyen’s platform and its development process. Therefore technologies
that are already used should be preferred. These technologies include Eclipse [32], Ant [14] and
Subversion [7]. The following sections discuss the infrastructure, Skins, payment flow and log files.

2.1 Infrastructure

In order to achieve high availability the HPP run on a cluster of identically configured redundant
systems as indicated by the simplified overview in Figure 2.1. Because of the statelessness of the
HPP the system is highly scalable. These systems run the Apache Tomcat [4] web server to serve
the pages to the shoppers. They hand off the requests to other machines in the system to do the
risk analysis and the actual payment. These machines are represented by CS in Figure 2.1 and
are compromised of multiple hardware systems running multiple applications.

HPP

CS

Figure 2.1: Simplified overview of infrastructure at Adyen

Adyens’ whole system has been set up in a Service Oriented Architecture (SOA) [26]. This
means that all the services that adyen provides are interchangeable and run independently (even
on different hardware when needed). For example the HPP are services, but also the conversion
analysis framework will be implemented into the system as a service.

5

Chapter 2

2.2 Skins

The payment pages that are presented to the shoppers can be customised by the merchant through
Skins (Figure 2.2). Skins are ZIP files that contain multiple image, HTML, CSS, Javascript and
resource files.

Using the Skin technology merchants can not only adjust the look and feel of the pages to
match their colouring scheme and have their logo appear, but they can also adjust which of the
payment methods will appear and their order. Also the way of interaction can be altered by a
Skin from a multi page payment, where several pages will be shown sequentially, to a one page
payment where all the interaction will take place on a single page.

Because merchants can tailor these Skins entirely to their needs, the payment pages can com-
pletely mimic the layout of the online shop pixel by pixel.

Figure 2.2: Examples of Skins for the HPP

2.3 Payment flow

As stated in Section 2.2 the Skins can define the way of interaction. When Multi Page Payment
(MPP) is used, multiple pages are shown to the shopper in sequence to complete the transaction.
The payment process consist of the following stages:

(a) using multi-page payment process

(b) using one-page payment process

Figure 2.3: Page flow of the payment process

6

What’s in place

• Payment method selection

• Enter payment details

• Review order details

• Result

Each of the pages in Figure 2.3a represents one of these stages.
When using One Page Payment (OPP) all the user interaction takes place on a single page. If

the payment method support this, the first three stages are combined on one page as illustrated
in Figure 2.3b. With this insight gained, the payment flow could be modelled more accurately.
In Section 4.2.1 the result of this modelling can be found. The next Section 4.2.2 discusses the
additional data needed for step {2} of the next implementation cycles.

2.4 Log files

In the current system logging is being performed by the log4j framework [3]. The main purpose for
the application logging that is in place, is to detect errors and warnings in the application. Some
additional information for the context is also logged to trace the errors and warnings. Besides this
log the behaviour of the shoppers is recorded in a conversion log. All actions that result in a new
page are currently logged except for error and warning pages. Adyen can therefore use these logs
to distil the conversion ratio on the payment sessions that occur within the HPP.

Listing 2.1 shows the first 4 lines of a sample log file. The log file contains information from
both the log4j framework and a message part defined by de application.

Listing 2.1: Sample existing logfile

1 2009−03−28 00 :05 : 01 , 004 INFO [com . adyen . a c t i on s . hpp . conver s i on .
ConversionLogger] {LogTimer} −− Something to r o l l the l o g s −−

2 2009−03−28 01 :18 : 46 , 786 INFO [com . adyen . a c t i on s . hpp . conver s i on .
ConversionLogger] {TP−Proces sor2 } ”TUDelftWebShop” ,”6seEWw90” ,”dhqxPh+
RqLGnzI3BCHMHAWfVrII=” ,”1201408” ,”2009−03−28T00 : 1 8 : 4 6 . 7 8Z” ,23499 ,”EUR” ,”
review ” ,”CompleteCardPayment ” ,”mc” , , ,

3 2009−03−28 01 :18 : 46 , 786 INFO [com . adyen . a c t i on s . hpp . conver s i on .
ConversionLogger] {TP−Proces sor2 } ”TUDelftWebShop” ,”6seEWw90” ,”dhqxPh+
RqLGnzI3BCHMHAWfVrII=” ,”1201408” ,”2009−03−28T00 : 1 8 : 4 6 . 7 8Z” ,23499 ,”EUR” ,”
review ” ,” HandlePaymentAction ” ,”mc” , , ,

4 2009−03−28 01 :18 : 54 , 039 INFO [com . adyen . a c t i on s . hpp . conver s i on .
ConversionLogger] {TP−Proces sor2 } ”TUDelftWebShop” ,”6seEWw90” ,”8JRJbd0+
QCZCzjrgl4M6ti7R+ww=” ,”1201408” ,”2009−03−28T00 : 1 8 : 5 4 . 0 3Z” ,23499 ,”EUR” ,”
d e t a i l s ” ,” PaymentDetails ” ,”mc” , , ,

Information supplied by the log4j framework is:

• The exact DATE in a unified format (a.k.a. timestamp).

• The severity LEVEL assigned to the message, for example INFO, WARNING, ERROR et
cetera.

• The CLASS which is requested to perform the logging.

• The THREAD in which the logger is called.

7

Chapter 2

Information provided by the application is:

• The MERCHANT requesting the payment.

• The SKIN used to customise the HPP. The code identifying the Skin is unique and generated
at design time.

• The SESSIONID identifying the session is generated by a hash algorithm based on fields
provided by the merchant.

• The MERCHANT REFERENCE is a reference provided by the merchant to identify
the transaction.

• The TIME until the payment session is valid as specified by the merchant.

• The AMOUNT of the transaction.

• The CURRENCY used in the transaction.

• The current STAGE the transaction is in.

• The name of the CLASS currently handling the transaction.

• The METHOD used to perform the payment for example MasterCard, VISA, iDeal et
cetera.

• The RESULT CODE of the transaction as issued by the acquirer, for example AUTHO-
RISED, REJECTED et cetera.

• The PSP REFERENCE is a unique code identifying a transaction within Adyen’s system.

The current log files can already be used to identify differences in conversion rate between payment
methods. Analysing the conversion log can bring a greater insight into the behaviour of shoppers.
For example, as stated in Section 2.2 Skins can influence the user experience. The results of the
analyses might therefore indicate that some Skins have a greater risk of the shopper abandoning
the payment prematurely. Particularly interesting to see for example is how the conversion ratio
differs between MPP and OPP because less pages will be shown when using OPP as explained in
Section 2.3.

8

Chapter 3

Problem analysis

Before a browser converts into a buyer there are a lot of steps to be taken. In each of these steps
a portion of shoppers discontinues their purchase and the remaining part finalises the transaction.
The conversion ratio is the number of shoppers that finalise their transaction in comparison to the
number of shoppers that start a transaction, expressed as a percentage (Figure 3.1). Raising the
conversion ratio would mean more shoppers finalise their transactions. Therefore the merchant’s
goal is to maximise the number of successful payments.

Figure 3.1: Conversion ratio explained [8]

When a PSP is used, the PSP takes over the payment process from the merchant. Adyen is
interested in how the conversion ratio is affected by for example banners, menus, movement and
animation, number of pages and difference in layout between the merchant’s pages and the HPP.
These are the main things that can be modified through the use of an Adyen Skin.

As stated in Chapter 1, Adyen’s business model is based on charging the merchant a fixed
amount per transaction. Greater insight in how the conversion rate is influenced by these factors
and ultimately higher conversion rates mean that Adyen can provide a better service towards its
merchants and a higher turnover.

The main question that will be answered in our report is:

”How to measure and present the Conversion Ratio on the Hosted Payment Pages?”

9

Chapter 3

To answer this question the problem will be split in the five mayor aspects of this project. The
following sections will digress on these aspects, starting with the analysis of the log files in order
to determine what data needs to be logged, indicated by step {1} in Figure 3.2. Step {2} concerns
the format in which the data can be stored. The gathering of the available information, step {3},
will be analysed in Section 3.4. After that we will look at how to store and archive the information
on the central system, step {4}, and prepare analyses on the information. Finally we will examine
how the results can be presented visually as indicated by step {5}.

Merchant

HPP

App

Data

CS

{1} what data

{2} what format

{3} gather

{5} visualise
{4} how to store

Figure 3.2: Overview problem analysis

3.1 Using the log files

As stated in Section 2.4 the log files contain various information. In order to see what information
is present and how this can be used we built a simple parser to generate some statistics. A first
problem we encountered was the occurrence of delimiters in fields as described in the paper by
Reichle et al. [29]: “A common mistake is to fall for delimiters within elements.”

The main question regarding the current log files is whether all necessary information is avail-
able. At the moment the IP addresses of the shoppers are not recorded in the log files. This
information in combination with a DNS lookup as used in the system proposed by Reichle et
al. (Figure 3.3) can enrich the logged information with the company name or the country name.
This knowledge can give great insight into the demographic distribution of the shoppers. Other
interesting external data which can enrich the conversion data will be researched.

3.2 Conversion logging as part of a generic logging frame-
work

The current logging standard for Java applications is to use log4j to compose log files. While
this provides basic functionality, Adyen still requires a developer on watch 24/7, to monitor the
system and to extract the interesting data from the log files when a suspicious situation (warning)
occurs. One part of the problem is that Adyen’s platform consists out of several soft- and hardware
components. Another part is that large sections of the log events, like sensitive payment details, are
logged encrypted. If the person on watch notices that there is a technical problem, this person can
resolve the situation, but often an infrastructure manager, sales representative, support employee
or one of the suppliers (banks) needs to be contacted. Beside the cost of having a developer on

10

Problem analysis

Figure 3.3: Overview of steps in data processing by Reichle et al.

watch, this process is time consuming and detecting an erroneous situation is still a labour intensive
process. Solving a situation in the middle of the night based on incomplete or misinterpreted
information may even lead to escalation of the problem.

Adyen is looking for a logging system that reports on the performance of the platform, monitors
the applications and hardware components and notifies when suspicious or erroneous situations
occur. There are many challenges for such a system. Reports should be available on a transac-
tion, application, hardware and platform level. Third party events should also be included. The
reporting features must of course be compliant with the security standards set by the financial
industry. Reports should be easy and fast to access and interpret. The system should be able to
monitor multiple applications and hardware instances in a platform that is able to handle thou-
sands of concurrent payments 24/7. This automatic process should instantly detect suspicious
and erroneous situations on both a high (platform) as well as in low (transaction) level. When a
suspicious or erroneous situation is detected the responsible person should be notified immediately
by email or sms with all required and available information. Ideally this notification would include
indications of how similar situations were solved in the past and extra information gathered from
automatically executed analytical jobs.

3.3 Make conversion log files machine readable

Currently the log files generated by the log4j framework are human readable. However they are
not very comprehensible for human beings, there is simply to much data to get an idea of what is
happening. Because of the high volume of data we need an automated way to parse and process
the log information. Therefore we need to make the log data machine readable. In order to use
the log data for statistical analysis we need to read it into a structured format. Although the

11

Chapter 3

current conversion logs are parsable to some extent there are some difficulties associated with this
approach. After writing a simple parser to see if we could parse the current log files and to try
and get the first simple statistics we quickly noticed that the current log format isn’t suitable for
our needs. The possible occurrence of delimiters in fields and deviations from the standard format
make the parsing hard. Thus our challenge is to put the logging data into a machine readable
format so we are able to order and compare different payment transactions. A few formats we
have already considered and will be investigating further are:

1. CSV,

2. XML,

3. directly to a database,

4. directly to a web service,

5. Java property files [30],

6. serialised Java objects.

3.4 Gather the conversion log data on a central system

The HPP applications run on a cluster of identically configured redundant hardware systems as
explained in Section 2.1. Because of the statelessness of the HPP each of the intermediate actions
(and their corresponding payment page) within the payment session may be handled by a different
system. In order to perform useful analyses, the data of the individual systems has to be loaded
onto a central system to get a complete overview of all the data.

Because of the high volume of log messages we need to take into account the available band-
width between the systems and the processing power of particular systems. For instance we don’t
want the systems hosting the HPP to stall because they have to load the conversion data to a
central system. We also need to consider the required disk space for the logs so the hard disks
will not flood in these circumstances. The latter is a known issue since this has caused problems
in the past.

Security also has to be taken into account due to the fact we are dealing with highly sensitive
data. Adyens systems adhere to the PCI Data Security Standard (DSS) which is a set of compre-
hensive requirements for enhancing payment account data security. The logging framework has
to adhere to this standard too. Furthermore the systems have to deal with situations where the
central system is not available. All these considerations influence the message protocol used and
the frequency of the messages.

3.5 Manage statistical information on the central system

The data gathered can be stored on the central system in several ways.

1. In a database system.

2. In files on the filesystem.

3. Create (visual) output immediately from data in memory.

Once the logging information is available on a central system in a structured way, aggregations
can be made and analysis can be performed. Queries to the central system and data-sets for
graphical representation have to be defined. Within the logging information a distinction has to
be made between information provided by log4j and the information in the message part that is
constructed by the application as outlined in Section 2.4.

12

Problem analysis

Because of the high volume of logging information special attention has to be paid to optimising
the queries so that realtime access is possible. The high volumes also necessitates designing a
archiving strategy to manage all the data coming in and prevent the hard disk from flooding. A
third aspect to check is whether all the data is available. If for example the information of one
system is missing, the statistics can be off and can give the wrong impression.

A possible optimisation step is to aggregate the information based on common denominator
for example session id.

3.6 Visualise statistical information

Once the shopper behaviour and transaction information is neatly organised, statistical analyses
can be performed on the information. Subsequently a way to visualise these statistics is needed.
These need to be visualised in a clear and consistent way such that the interesting conversion
trends within the payment process can easily be recognised. Even more important is to identify
the bottlenecks in the HPP user interface which cause shoppers to leave before the payment is
finalised.

After the statistics have been analysed in some detail some of them can be provided to the
merchants. For this an intuitive and aesthetically pleasing way of presentation is needed. The goal
is to make the visualisations are self explanatory so the merchants can use them without training.
Figure 3.4 shows the user interface of the first implementation cycle. It is still very basic and will
be extended as discussed in Section 3.7, but it gives a good impression of what should be achieved.

Figure 3.4: Web interface of the first implementation cycle

The payment result codes encountered in Figure 3.4 are listed below.

• Authorised, the transaction is authorised by the acquirer.

• Completed, the transaction is either rejected by the acquirer or pending final verdict.

• Abandoned, the transaction was abandoned prematurely.

3.7 Strategy

Because more insight is needed into the shopper behaviour in order to formulate proper hypotheses,
an iterative approach will be used, with implementation cycles kept as short as possible. In this way

13

Chapter 3

the things that were learned at the end of each cycle can be taken into account when updating
our initial implementation and research. This is why a start has been made with parsing the
conversion logs in their current format, doing statistical analysis in memory and providing basic
visual representation on our development station before starting to make the log data machine
readable.

Furthermore testing will initially be done with information supplied by the sales team before
moving on to external testing with the merchants. During the design and development the system
will be kept as generic as possible so that parts of the system can be reused.

14

Chapter 4

Log the required data

In this chapter first the design will be discussed with focus on additional information to be recorded
by modelling the payment flow. The second part of this chapter concerns the implementation of
this design and touches on the frameworks used and the validation of payment sessions through
state machines.

4.1 Iterative development approach

As is noted in Section 3.7 an iterative approach is used in developing the conversion analysis
framework. This approach allowed for early implementation of a basic parsing framework and
simple user interface (see Section 3.6), according to the five step process as discussed in Chapter 3.
In actuality only step {4} and {5} had to be performed in order to create a working system. This
is because a good deal of conversion logging was already done on the HPP’s as described in
Section 2.4, making it possible to skip step {1} and {2}. Step {3} was circumvented by manually
retrieving log files from the HPP’s. This early implementation proved to be a good platform for
analysing the logged data and understanding how the payment process was logged.

4.2 Design

With insight gained from the first implementation, the payment flow can be modelled more accu-
rately. In Section 4.2.1 the result of this modelling can be found. The next Section 4.2.2 discusses
the additional data needed for step {2} of the next implementation cycles.

4.2.1 Model the payment flow

The logs as described in Section 2.4 contain one event per line. A payment session typically consists
of multiple events. To gain greater insight in the flow of events within the payment process, flow
diagrams were constructed to model the payment sessions.

As described in Section 2.3 there is a great difference in the flow of a payment session between
the Multi Page Payment and the One Page Payment. But there are also differences between the
flows of the various payment methods (e.g. not all payment methods use redirection). These two
factors make the flow of a payment session fairly complex. For this reason two flow diagrams have
been created, one for OPP and one for MPP sessions (as depicted in Figure 4.1).

A regular payment that is completed will pass the ’Complete’ node and will end in one of the
following three end nodes: ’Refused’, ’Pending’ or ’Authorised’. This partial flow of events holds
for both the MPP and for the OPP. As is clear by looking at Figure 4.1 the ’Error’ node can be
reached by all other nodes in the diagram.

15

Chapter 4

Redirect

Pending

Review

Complete

ErrorAuthorised

Detail

Refused

SELECT

3D secure
redirect

(a) Flow diagram modelling MPP sessions

Redirect
(3D secure)

Pending

Detail

Complete

ErrorAuthorised

PAY

Refused

(b) Flow diagram modelling OPP sessions

Figure 4.1: Flow diagrams modelling the payment sessions

4.2.2 Additional information to be logged

Besides the information that is already logged some additional information can be logged. Adding
this extra information serves two different purposes. The first goal is to make the parsing of
the logs as described in Section 3.3 easier and more robust. The second goal is to enrich the
information as discussed in Section 3.1 to be able to create more valuable statistics.

• PREVIOUS STAGE Because of the statelessness of the HPP a transaction can be handled
by different systems. The inclusion of the previous stage of the transaction in the conversion
logs, in combination with the time stamp, makes it possible to reconstruct the exact path
taken in the transaction.

• IP ADDRESS The IP address of the shopper can be matched against the GeoLite Coun-
try [24] database. The GeoLite Country database is a freely available database where an
IP address can be used to retrieve the country where the IP address is based. Information
about the shopper can be further enriched by performing a reverse DNS look-up of the IP
address. The hostname that is retrieved by the reverse DNS look-up can also indicate the
country of the shopper trough the top level domain of the ISP or company. Besides the
country the name of the ISP or company is contained in the hostname.

• USER AGENT The user agent identifying the browser used by the shopper can give more
information about the shopper. The browser and operating system and their respective
versions are part of the user agent.

• ERROR MESSAGES Of considerable importance are the possible error messages that
are displayed to the shoppers during their payment process. Decisions of the shoppers can
be examined in more detail when we have a better view of what is going on (or wrong) in the
payment process. Currently only a few errors are logged in the conversion log. Validation
errors like wrong user input (e.g. invalid credit card number) are not logged at all, but are
very valuable to abandonment statistics.

In the future the information present in the log files may change due to altered needs. In order
to facilitate different versions of the log files a header can be included in the logs. Although this
can alleviate some problems, the complete process of parsing, pattern recognition and visualisation
needs to be adapted. Having a good testing framework in place can help find failures caused by log
format changes in an early stage. Software testing and quality is discussed further in Chapter 9.

16

Log the required data

4.3 Implementation

Now that the data is defined and the process modelled, the various frameworks used to perform the
logging within Adyen’s platform are discussed. The last section covers how the payment sessions
are validated through the use of state machines.

4.3.1 Java logging framework

Throughout Adyen’s whole platform a Java logging framework is used to keep track of behaviour
of the various applications. Within Adyen’s platform the Apache Commons Logging API [10] is
used. The Commons Logging package is an ultra-thin bridge between different logging implemen-
tations. When Commons Logging is used in a library this will not force the user to use a specific
logging framework but allows the user of the library to make its own choice. Using Commons
Logging allows Adyen to change to a different logging implementation without recompiling code;
as discussed in Pro Apache Log4j [13].Another benefit of Commons Logging is that it is supported
natively by Tomcat. In the current situation the log4j framework is used as a back-end for the
Commons Logging API.

4.3.2 Validate the payment sessions

To perform valuable statistics the validity of the payment session as well as the ’route’ (sequence
of pages/actions) the shopper followed in this session needs to be determined. To determine this
state machines modelled after the diagrams in Section 4.2.1 were created. This resulted in two
distinct state machines for the MPP and OPP respectively.

A state machine operates on all events associated with a certain session and finds out things
like payment result (authorised, pending, et cetera) and whether there were redirects or not.

Figure 4.2: Struts 2 architecture Diagram [1]

17

Chapter 4

4.3.3 Struts framework

Adyen uses the Struts 2 framework [1] to create the applications in its platform. The Struts frame-
work is designed to help developers create web applications that utilise a Model View Controler
(MVC) [21] architecture. Using the MVC model helps to separate concerns in a software applica-
tion between database code, page design code, and control flow code. Within the Struts framework
there are filters, called interceptors, which can modify the servlet request and response as illus-
trated in Figure 4.2. Besides the default interceptor stack you can add extra custom interceptors
to the stack. It is therefore possible to create a logging interceptor that can log events from the
request, the processing and the response stage. The logging interceptor would be placed on the
location of ’Interceptor 3’ in Figure 4.2. In contrast to the current in-code logging, by using this
approach we can be sure that every stage in the payment session is logged. This is because every
action must pass the logging interceptor.

18

Chapter 5

Make the logs machine readable

Log files need to be written into a machine readable format, because this makes it possible to
have an application parse the data efficiently and provide us with the required functionality. This
includes important features such as allowing to quickly access the log data and do the required
operations like searching for a specific log event or recognising patterns. Because of the need to
read the log data into an application its imperative that we pay attention to the format of the data
logged and the method of processing. Even though we are mainly concerned with the conversion
logs in this project, we will focus on a generic log format which meets all the requirements of the
Adyen platform on the (application) log data as described in Section 3.7.

5.1 Analysis of log formats

As stated in Section 3.3 there are several formats in which the log information can be stored. In
this chapter we will discuss some of the pros and cons of the various formats and contrast them
to one another. The different formats can be characterised up to a certain extent by some high
level properties. Table 5.1 contrast the various logging formats with respect to these high level
properties.

• Human readable The raw logs can be read and understood by developers (humans) using
simple tools as text editors and database viewers. One can easily see which data belongs
to which attribute and processing large sets of data is possible. This is important because
when the system fails, log data needs to be available immediately.

• Searching The logs can easily be searched for specific occurrences of values. This makes
finding problems in the log data easier.

• Processing The cost of processing in terms of disk space and processing power required by
the parsing, storing and loading of the format. A small footprint enables the HPP servers
to process more transactions.

• Distribution The log data can be centralised without much effort and network load. Distri-
bution needs to be kept simple because we don’t want to lose log data. In complex systems
many things can go wrong, especially as we run many systems in parallel.

• Log4j support The log4j framework supports the format natively, which makes it much
easier to output the format.

In the following sections we will discuss each log format and give their main pros and cons.
For the file formats one conversion log statement is listed as example. After these sections a
performance overview of the log formats is given before concluding which format is best suitable
and will be used in the Adyen platform.

19

Chapter 5

Table 5.1: High level properties of logging formats

Human
readable Searching Processing Distribution Log4j support

CSV + +/- + - +
XML +/- +/- - - - ++
Encoded Java property file - - +/- + - +/-
Serialised Java objects - - - - +/- +/- +
Directly to a database ++ ++ + ++ -
Directly to a web service - - + + +/- +/-

5.1.1 CSV

A Comma Seperated Values (CSV) file is used for the digital storage of data structured in a
table form. Each line in the CSV file corresponds to a row in the table. Within a line, fields are
separated by commas, each field belonging to one table column [38]. The main pros and cons are
listed below:

+ Human readable; especially in big log files the fact that there is only one line per log event
pays off.

+ Very small processing time and storage size.

- CSV hasn’t got the field names along with the field values.
- Need to use escape characters, which can be non trivial for log4j part.
- Need for custom scripts to gather files on a central system. (These scripts also need to be

monitored centrally).

Listing 5.1: Sample log event in CSV format [396 Bytes]

1 ”2009−06−04T09 : 1 1 : 2 1 . 5 2Z” ,”INFO” ,”com . adyen . a c t i on s . hpp . conver s i on .
ConversionLogger ” ,”TP−Processor31 ” ,”TUDelftWebShop” ,” a rq2 c l 7 r ” ,”
PYsBL8MKtjki3xTGF9JD3bxttg0=”,”OrderID=7”,”2009−06−04T09 : 1 1 : 2 1 . 7 0Z
” ,”7700” ,”EUR” ,” review ” ,” complete ” ,”CompleteCardPayment ” ,” v i s a ” ,”
AUTHORISED” ,”1412326705785803” ,”62 .194 .174 .193” ,” Moz i l l a /4 .0 (compatible
; MSIE 7 . 0 ; Windows NT 5 . 1 ; .NET CLR 2 . 0 . 5 0727) ”

5.1.2 XML

The eXtensible Markup Language (XML) is a general-purpose specification for creating custom
markup languages. It allows the user to define their own mark-up elements and was designed to
carry data between applications [36]. XML however introduces a significant processing time and
storage size overhead in the case of application logging, since it is a large regular data set. This is
clearly described by R. Lawrance in his paper [9]:

Although most applications are not affected by the additional overhead in XML docu-
ments, certain applications involving large, regular, data sets will incur a significant
overhead and performance penalty by encoding in XML.

20

Make the logs machine readable

The main pros and cons of XML as a log format are listed below:

+ Human readable.
+ Well known standard.
+ Easily extendable.

- Log files result in large file sizes.
- Requires more memory / processing power to create / read.
- Difficult to get an overview of several lines. (Requires a lot of room on the screen.)
- Need for custom scripts to gather files on a central system. (These scripts also need to be

monitored centrally.)

Listing 5.2: Sample log event in XML format [881 Bytes]

1 < l o g 4 j : event timestamp=”2009−06−04T09 : 1 1 : 2 1 . 5 2Z” l e v e l=”INFO” l ogg e r=”com .
adyen . a c t i on s . hpp . conver s i on . ConversionLogger ” thread=”TP−Processor31”>

2 < l o g 4 j : message>
3 <merchant>TUDelftWebShop</merchant>
4 <skincode>arq2c l7 r </skincode>
5 <s e s s i on Id >PYsBL8MKtjki3xTGF9JD3bxttg0=</s e s s i on Id >
6 <merchantReference>OrderID=7</merchantReference>
7 <timeWindow>2009−06−04T09 : 1 1 : 2 1 . 7 0Z</timeWindow>
8 <amount>7700</amount>
9 <currency>EUR</currency>

10 <prev iousStage>review </prev iousStage>
11 <stage>complete</stage>
12 <c l a s s >CompleteCardPayment</c l a s s >
13 <paymentMethod>visa </paymentMethod>
14 <r e su l t code >AUTHORISED</re su l t code >
15 <pspReference >1412326705785803</ pspReference>
16 <ipAddress >62.194.174.193 </ ipAddress>
17 <userAgent>Mozi l l a /4 .0 (compatible ; MSIE 7 . 0 ; Windows NT 5 . 1 ; .NET CLR

2 . 0 . 5 0727)</userAgent>
18 </ l o g 4 j : message>
19 </ l o g 4 j : event>

5.1.3 Java property file

Java property files are mainly used in Java related technologies to store the configurable parameters
of an application. They can also be used for storing strings for localisation. One property file
can only assign one field (key)-value pair, this would mean a new file for every log event. This
approach is obviously not feasible for large logs. This problem can be solved by encoding the
entire property file on one line. This has as added benefit that data encoded in this way is easily
streamable. An overview of pros and cons is given next:

+ Extra encoding layer can provide more security.
+ Easily parsable.

- Only key-value pairs.
- The required encoding results in a non human readable file.
- Impossible to search since data is encoded.

21

Chapter 5

Listing 5.3: Sample log event in Java property format [545 Bytes]

1 timestamp=2009−06−04T09 : 1 1 : 2 1 . 5 2Z
2 l e v e l=INFO
3 l o gg e r=com . adyen . a c t i on s . hpp . conver s i on . ConversionLogger
4 thread=TP−Processor31
5 merchant=TUDelftWebShop
6 sk incode=arq2c l 7 r
7 s e s s i o n I d=PYsBL8MKtjki3xTGF9JD3bxttg0=
8 merchantReference=OrderID=7
9 timeWindow=2009−06−04T09 : 1 1 : 2 1 . 7 0Z

10 amount=7700
11 currency=EUR
12 prev iousStage=review
13 s tage=complete
14 c l a s s=CompleteCardPayment
15 paymentMethod=v i s a
16 r e s u l t c od e=AUTHORISED
17 pspReference =1412326705785803
18 ipAddress =62.194 .174 .193
19 userAgent=Moz i l l a /4 .0 (compatible ; MSIE 7 . 0 ; Windows NT 5 . 1 ; .NET CLR

2 . 0 . 5 0727)

Listing 5.4: Sample log event in Java property format encoded in base64 [740 Bytes]

1 dGltZXN0YW1wPTE5MTItMDYtMjNUMzQ6NDE6NTAuNTRaCmxldmVsPUlORk8KbG9n
2 Z2VyPWNvbS5hZHllbi5hY3Rpb25zLmhwcC5jb252ZXJzaW9uLkNvbnZlcnNpb25M
3 b2dnZXIKdGhyZWFkPVRQLVByb2Nlc3NvcjMxCm1lcmNoYW50PU1hcmsmT25uby0+
4 Qid2byEKc2tpbmNvZGU9YXJxMmNsN3IKc2Vzc2lvbklkPVBZc0JMOE1LdGpraTN4
5 VEdGOUpEM2J4dHRnMD0KbWVyY2hhbnRSZWZlcmVuY2U9T3JkZXJJRD03CnRpbWVX
6 aW5kb3c9MjAwOS0wNi0wNFQwOToxMToyMS43MFoKYW1vdW50PTc3MDAKY3VycmVu
7 Y3k9RVVSCnByZXZpb3VzU3RhZ2U9cmV2aWV3CnN0YWdlPWNvbXBsZXRlCmNsYXNz
8 PUNvbXBsZXRlQ2FyZFBheW1lbnQKcGF5bWVudE1ldGhvZD12aXNhCnJlc3VsdGNv
9 ZGU9QVVUSE9SSVNFRApwc3BSZWZlcmVuY2U9V2hlcmVJc0FsYW4/CmlwQWRkcmVz

10 cz02Mi4xOTQuMTc0LjE5Mwp1c2VyQWdlbnQ9TW96aWxsYS80LjAgKGNvbXBhdGli
11 bGU7IE1TSUUgNy4wOyBXaW5kb3dzIE5UIDUuMTsgLk5FVCBDTFIgMi4wLjUwNzI3
12 KQ==

5.1.4 Serialised Java objects

Serialisation can be used to persist Java objects. When serialisation is used, objects are converted
into a sequence of bits so that they can be stored on a storage medium. The opposite procedure,
de-serialisation, can be used the invert the process and create object from a sequence of bits. The
pros and cons of this log format can be found below:

+ Reading and writing native to Java.
+ Straight forward log4j support.

- Requires that the entire object to be read for a single property.
- Needs to be backwards compatible if logged object changes.
- Non human readable.
- Impossible to search since data is encoded.

22

Make the logs machine readable

Listing 5.5: Sample log event in Java serialised object format [935 Bytes]

1 s r ∗com . adyen . c onv e r s i o n r a t i o . l o g f i l e s . LogLine ‘ Y> y O L l e v e l t Ljava/
lang / St r ing ;L logge rq ˜ L messaget /Lcom/adyen/ c onv e r s i o n r a t i o /
l o g f i l e s /LogMessage ;L threadq ˜ L timestampq˜ xptINFOt 1com . adyen
. a c t i on s . hpp . conver s i on . Convers ionLoggersr −com . adyen . c onv e r s i o n r a t i o .
l o g f i l e s . LogMes s ag e J N4Pc L amountq ˜ L currencyq ˜ L
hand l i n g c l a s s q ˜ Lip addres sq ˜Lmerchantq˜ Lmerchant re ferenceq ˜ L
payment methodq ˜ L pr ev i ou s s t ag eq ˜ Lpsp re f e r enceq ˜ Lresu l t codeq
˜ L s e s s i on i dq ˜ L sk incodeq ˜ L stageq ˜ L time windowq ˜

Luser agentq ˜xpt 7700 t EURt CompleteCardPaymentt 62 . 194 . 174 . 193 t
TUDelftWebShopt OrderID=7t v i s a t rev i ewt 1412326705785803
tAUTHORISEDtPYsBL8MKtjki3xTGF9JD3bxttg0=t a r q2 c l 7 r t completet2009
−06−04T09 : 1 1 : 2 1 . 7 0 Zt FMozi l la /4 .0 (compatib le ; MSIE 7 . 0 ; Windows NT 5 . 1 ;

.NET CLR 2 . 0 . 5 0727) t TP−Proces so r31t 2009−06−04T09 : 1 1 : 2 1 . 5 2Z

5.1.5 Directly to a web service

The Adyen platform conforms to a Service Oriented Architecture. The individual web services
use SOAP [34] for communication. The messages are not managed, but are directly linked to
(transaction) processing. A high transaction load therefore results in high load on the central web
service. Writing directly to a central system means that we can more easily combine the data on
the central location, but keeping the connection open will negatively affect the network load and
processing time. The main pros and cons are listed next:

+ No extra step for getting it on a central system.
+ No delay in data on the central system.
+ Excellent for pattern recognition at the central system.
+ Perfectly searchable (although dependant on a central system implementation as discussed

in Chapter 3.4).

- Dependent on a external service which can cause a delay.
- High transaction load result in high logging load on the central logging service.

5.1.6 Directly to a database on the local system

Looking at the characteristics at hand, logging to a database might seem logical because we are
dealing with a large regular data set which needs to be easily searchable and should be able
to recognise patterns. A distinction should be made between the log4j part of the log event
and the application specific message part. Both parts should be stored in different tables. We
believe logging to files is common due to major concerns that touch the primary purpose of
logging. Accessing a database is much less reliable than accessing a file and generally requires
more resources.

23

Chapter 5

When looking at the distribution of the logs, there are three benefits of having a database push
the data to a central system. First this functionality is natively supported by the database engine.
Secondly this can be scheduled on times when there is a low system load and thirdly this process
is already used in other parts of the Adyen platform for some of the application databases. Along
with the clear benefits for the distribution the following pros and cons can be distinguished:

+ Very easily searchable.
+ Good for automatic pattern recognition.
+ Optimised process for copying data (one minute interval) already available in database en-

gine.
+ Database replication & archiving already in use in the Adyen platform.
+ Log4j data separated from the actual log data (in different tables).

- Also need for logging to a file, since the database might be down, in which case logging is
especially required.

- Expected to be slower compared to logging to a file.
- Might delay handling the request.

5.2 Performance overview of parsing log formats

Performance test were executed so we did not have to rely solely on external sources and get more
insight into parsing log files. Although the performance of the different formats may also differ
with respect to storing the log file, the tests only measured the performance of parsing the log
files. This approach was taken because the performance of parsing the log files on the central
system will have the biggest impact on the performance of the overall system.

In this performance test we only included the different file based formats because the other two
formats have an infrastructure associated with them and make an unfair comparison. Performance
characteristics of the database and web service are interesting but fall outside the scope of this
project. Also the reliability of these two formats is a good reason not to use them as primary log
format.

Table 5.2: Performance of logging formats (in milliseconds)

Size (in Bytes) Run 1 Run 2 Run 3 Average Normalised avg.
CSV 396 1520 1527 1636 1561 1,55
XML 881 29205 29037 29457 29233 29,12
Java property file 545 964 969 1080 1004 1
Serialised Java objects 935 9819 9760 9860 9813 9,77

Table 5.2 lists the execution times of the various formats in milliseconds. For each of the
specific formats as described in the previous sections, a sample file containing one event was
created. The created files were read back and parsed 10,000 times for each format. The last
column containing the normalised average is especially interesting because it illustrates the large
difference in performance between the different formats.

It should be noted that the Java property file was spread over several lines and not encoded
on a single line. Getting the property file encoded on a single line will add some overhead to the
performance listed in Table 5.2.

5.3 Implementation format

Based on this chapter it is clear which log formats are most suitable. File based formats will be
discussed first. After that we will contrast the two non file based formats. Finally we will pick the

24

Make the logs machine readable

most suitable format keeping in mind the generic goal of creating log files.
Experience of Adyen learns that human readable log files are essential, but are not very efficient

in use. The size of the log files also has to be kept to minimum to prevent the hard disk from
flooding.

The purpose and use of the log files combined with the discussion in this chapter on log file
formats clearly eliminates Serialised Java objects due to performance, size and readability. As
Java property files only have a small performance benefit compared to CSV and does not provide
extra benefits in comparison to the other file formats, property files are dropped from further
consideration. Encoded property files only makes performance worse and are not acceptable due
to lack of readability.

Looking at the two remaining formats, CSV and XML, CSV files should clearly be preferred
as it outperforms XML by a factor of 18.7 and has a footprint of 0.45 times the size of XML.
Furthermore the readability of CSV is far better when concerned with reading large amounts of
data on a screen.

Storing the logs on a web service or in a local database differ greatly in a single aspect. Although
both systems rely on external services, the database is hosted on the local system whereas the
web service is hosted on a remote machine.

The web service configuration greatly influences how the transaction load is multiplied through
the complete platform by communicating multiple log events per transaction to a central system.
Another factor is the processing latency which will be greater when communicating to a central
system directly. Both factors clearly indicate that the database format should be preferred instead
of a web service.

When choosing between CSV and database logging we need to consider that CSV log files in-
troduces minimal dependency. Because log information needs to be available in case of a database
failure, which still occurs, file logging is vital. The database format however has very clear advan-
tages in readability, searchability and pattern recognition. We therefore conclude a combination of
the CSV and database format is the optimal situation due to their complementing characteristics.

The log4j framework supports this configuration by outputting to multiple destinations / for-
mats concurrently. Alternatively the CSV log files can be read directly into a local database, this
functionality is supported by the database. In Chapter 6 we will discuss the available centralisation
strategies in depth.

25

Chapter 6

Centralise the log information

There are a few reasons why a central database is essential for the (conversion) logging, not the
least of which is the fact that the HPP run on redundant systems (as explained in Section 2.1). This
means that the log events of one session can be spread across multiple machines. To reconstruct
the payment sessions from the conversion log data we need to have all events of the session present
on a central location. The sessions need to be reconstructed so accurate statistics can be generated.
Which brings about the next reason for having a central database, namely the HPP server load.
These systems need to be freed as much as possible from tasks other than processing actions on
the HPP.

6.1 Centralisation strategies

As is explained in Chapter 5, the conversion logs have to be transferred to a central system in
order to analyse the data and produce meaningful statistics. In the following sections we will
look at different centralisation strategies and their characteristics. Some possible centralisation
strategies are depicted in Figure 6.1.

CS

HPP

App

Java
property

file
CSV

HPP

App

Java
property

file
CSV

CS

App

CSV

HPP

CS CS

App

CSV

HPP

(a) Periodic transfer of
CSV logfiles

CS

HPP

App

Java
property

file
CSV

HPP

App

Java
property

file
CSV

CS

App

CSV

HPP

CS CS

App

CSV

HPP

(b) Logging directly to
a database and trans-
fer with database repli-
cation, keeping CSV as
backup

CS

HPP

App

Java
property

file
CSV

HPP

App

Java
property

file
CSV

CS

App

CSV

HPP

CS CS

App

CSV

HPP

(c) Logging to Java
property files with pe-
riodic transfer, keeping
CSV as backup

CS

HPP

App

Java
property

file
CSV

HPP

App

Java
property

file
CSV

CS

App

CSV

HPP

CS CS

App

CSV

HPP

(d) Logging to Java
property files, reading
into local database and
transfer with database
replication, keeping
CSV as backup

Figure 6.1: Four centralisation strategies

The strategies illustrated in Figure 6.1 can be divided into two categories: periodic file transfer
and database replication. Periodic file transfer (Figure 6.1a and 6.1c) is described in Section 6.1.1.
Section 6.1.2 explains database replication (Figure 6.1b and 6.1d).

Figure 6.1 only shows the use of two file formats: CSV and Java property files. Off course
other file formats are possible, but these formats are the strongest file based formats as discussed

27

Chapter 6

in Section 5.3. In Figures 6.1b through 6.1d the CSV format is used as a secondary format for the
purpose of readability in case of an error, as explained in the previous chapter.

6.1.1 Periodic transfer of rolling log files

When file transfer is used as a centralisation strategy (illustrated by Figure 6.1a and 6.1c) it is
assumed that the conversion logs are logged as plain text files on the HPP. To get the files on a
central system, scripts are running periodically on the central system in order to transfer the files
from the HPP to the central system.

in done in

move

copy

remote
system

central
system

Figure 6.2: File transfer job diagram

The files are put in a special designated ’in’ folder by the logging framework so the central
system can tell which files have been added recently and still have to be transferred. The job then
copies the files to a new ’in’ folder on the central system and moves the original files to a ’done’
folder on the remote system as depicted in Diagram 6.2

6.1.2 Database replication

If the conversion logs are stored in a local database on the HPP, getting the information on
a central system can be accomplished through the use of database replication (illustrated by
Figure 6.1b and 6.1d). Replication is the process of sharing data to ensure consistency between
multiple resources. A big advantage of this strategy is that replication is built into the database
system. This means that provisions are made to cope with for example unavailability of the central
database.

Directly putting all the information from the different systems into the central database is called
multi-master replication. Multi-master replication can be done in synchronous or asynchronous
way. Using the synchronous approach each database transaction will cause inter system commu-
nication and therefore a heavy performance penalty will be paid.

The asynchronous approach can be used to minimise the performance penalty but has some
difficulties associated with it [19]. These difficulties arise when the information is altered at
different locations and result in a conflicting situation. An example of this is when a row is updated
in two or more different databases before the changes are propagated to the other databases. The

28

Centralise the log information

system will then not know which updated values to use for that row. For the specific case of
the conversion project this is not that big an issue because only new records are inserted and no
records are updated.

These difficulties can be circumvented by having a one-to-one copy of the remote databases on
the central system. The copies on the central system will be kept up-to-date through the use of
database replication. A periodically run job is then still needed to combine all the information
from the different sources. This job however can perform additional task like aggregation and
calculations for the specific log files at hand, in this case the conversion logs as explained in
Section 7.2.

6.2 Design considerations of strategies

In the next sections we will compare the different strategies from the previous section with respect
to properties like load balance and security.

6.2.1 Load balance

As explained in Section 5.3 when logging to the local database, the logs are also saved as text
files to cope with for example the unavailability of the database. Logging to a local database will
therefore naturally add more system load because of the resources needed by the database service.
The system load is even further increased by the replication process run by the database server.

When copying the text log files the system load will increase for the period of time needed to
transfer the files. This increase of system load can be decreased by choosing a compact file format
like CSV. A further cut down of system load can be accomplished by transferring the files more
often so that the files transferred are smaller in size. This approach has the added benefit that
the system load will be spread more evenly. The timing of the transfer can be chosen so that the
system load is minimal, for example at 0.00 p.m.

6.2.2 Network capacity

Adyen’s platform is hosted at two different physical locations. Within each hosting location
Adyen’s systems are connected through 100 Mbit network connections. To connect the two hosting
locations a Virtual Private Network (VPN) connection is used.

Although the VPN connection between the hosting locations can be the limiting factor with
respect to network capacity, with the current high-speed broadband connections this will not be
a problem in practice.

6.2.3 Security

When the data is centralised this should be done in a secure fashion because of the highly sensitive
nature of the data. Within one physical hosting location the connections are the property of Adyen
and are administered as such. The use of VPN to interconnect the two locations as stated earlier
also ensures that this communication is secure.

When file transfer is used as a centralisation strategy the Secure Shell (SSH) protocol is used to
connect to the remote system. Database replication uses the Secure Sockets Layer (SSL) protocol
to connect to the central database. Both SSH and SSL are industry standards to secure network
communication between two machines.

29

Chapter 6

6.3 Implemented strategy

With the discussion of the different strategies in the previous sections a centralisation strategy
has to be selected. The optimal solution would be to use database replication. This strategy has
the major benefit that is built into the database system and has mechanisms to cope with the
unavailability of the central system. A second good characteristic is that the system load is spread
more evenly across time because the replication strategy uses small increments to propagate the
changes made to the data.

Although database replication is the preferred centralisation strategy, the periodic transfer of
files is used in the project. This is because changing the log format has a big impact on the
platform as a whole. Therefore the files are still logged in their current format. Listing 6.1 shows
a file transfer script that was adapted for the conversion logs.

Listing 6.1: File transfer script

1 #!/ bin /bash
2

3 DEBUG=0
4

5 # Remote systems where to r e t r i e v e the l o g s from
6 REMOTE=”hpp system1 hpp system2 hpp system3”
7

8 # Fi l e l o c a t i o n s on the remote system
9 NEWFILELOCATION=/usr / l o c a l /data/ conver s i on / in

10 DONEFILELOCATION=/usr / l o c a l /data/ conver s i on /done
11

12 # Locat ion to t r a n s f e r the f i l e s to on the c en ta l (l o c a l) system
13 LOCALFILELOCATION=/usr / l o c a l /data/ conver s i on / in
14

15 # Flag to i nd i c a t e that new f i l e s were t r an s f e r e d
16 HASNEWFILES=0
17

18 # For a l l remote machines
19 f o r s shhos t in $REMOTE
20 do
21 [”$DEBUG” = ”1”] && echo ”Begin with $sshhost ”
22 # Connect to remote machine
23 NEWFILES=”$ (ssh $sshhost l s −1 $NEWFILELOCATION)”
24 [”$DEBUG” = ”1”] && echo ”Received [$NEWFILES] ”
25 i f [−n ”$NEWFILES”] ; then
26 [”$DEBUG” = ”1”] && echo ”NEWFILES i s not nu l l $ f i l e ”
27 # For a l l new f i l e s
28 f o r f i l e in $NEWFILES
29 do
30 [”$DEBUG” = ”1”] && echo ” Rece iv ing $ f i l e ”
31 # Copy f i l e to c en t r a l system
32 rsync −aq $sshhost :$NEWFILELOCATION/ $ f i l e $LOCALFILELOCATION/ $ f i l e
33 i f [”$?” = ”0”] ; then
34 [”$DEBUG” = ”1”] && echo ”Moving $ f i l e ”
35 # Move f i l e on remote system from ’ in ’ to ’ done ’
36 ssh $sshhost mv $NEWFILELOCATION/ $ f i l e $DONEFILELOCATION
37 HASNEWFILES=1
38 e l s e
39 echo ” rsync f a i l e d ”
40 f i
41 done
42 f i

30

Centralise the log information

43 [”$DEBUG” = ”1”] && echo ”Done with $sshhost ”
44 done
45

46 i f [”$HASNEWFILES” = ”1”] ; then
47 # Execute import job when new f i l e s were t r an s f e r e d
48 / usr / l o c a l /data/bin /ConversionLogImportJob . sh > /dev/ nu l l
49 f i

31

Chapter 7

Store the log data

An efficient and reliable storage format is extremely important for smooth operation of the con-
version analysis framework. The design of the storage format needs to be generic enough to be
able to hold any logged data, but also needs to be specific enough to allow complex querying of
the data. Since the amount of logged data can be huge, the storage format needs to be able to
handle large quantities of data and perform queries for statistics retrieval very quickly.

For the generic approach a common design is required, how this is realised is discussed in
Section 7.1. The specific conversion log data storage design is discussed in-depth in Section 7.2,
touching on aggregation, validation of the data and performance of the storage format. Finally
the implementation for this project and the required technologies are discussed in Section 7.3 for
two storage formats.

7.1 Data storage in a generic logging framework

As discussed in Section 3.2 Adyen is planning to create a generic logging framework. The design
of the conversion logging framework has to be compatible with this generic logging framework.
Therefore a split between the log4j-part and the message-part of the log data has been proposed,
making it possible to add different types of log data in a single database table. Diagram 7.1 shows
how this setup is realised in the case of a database setup, the information can however also be
in-memory or on the file system. Also note that in this case the message part is a conversion
event, but it could have been any type of logged data (e.g. application logs, error logs).

Log4jEvent ConversionEvent
eventId
severityLevel
date
loggerClass
thread
messagePart

logEventId
eventId
sessionId
accountName
skin
merchantReference
validityTime
amount
currency
stage
paymentClass
paymentMethod
resultCode
pspReference
userAgent
ipAddress

1 1

[PK]
vchar
timestamp
vchar
vchar
vchar

[PK]
[FK]
vchar
vchar
vchar
vchar
timestamp
vchar
vchar
vchar
vchar
vchar
vchar
vchar
vchar
vchar

Log4j part Message part

Figure 7.1: Design diagram for generic logging framework

33

Chapter 7

7.2 Storage design for conversion log information

For the design of the storage format is the five step process that Reichle et al. proposed has been
adjusted to specifically suit the needs of our project. In the following sections each of these steps
is discussed and an extra step is performed for performance enhancement.

7.2.1 Data extension

When the conversion log data has been loaded into its designated storage format, it can be enriched
with data from a knowledge base and external sources as illustrated by Figure 7.2. and discussed
in Section 3.1. The order in which Reichle et al. performs the data processing steps is however not
applicable to conversion data. We propose Data conversion & extension should be done as the final
step and not in third step, since the conversion analysis framework only operates on aggregated
and validated data. This is also the reason why the LogStatistic table shown in Diagram 7.3 can
have a multiplicity of zero, which happens when the data is invalid (when invalid transitions in the
state machine are attempted) and can not be aggregated. Also note that the input of the GeoIP
database moves along with the Data conversion & extension step.

7.2.2 Aggregation

After data extension has been performed, the data can be aggregated in order to minimise un-
necessary redundant information and increase performance when handling the data. Since the
logged data is being processed anyway, this is the ideal moment to perform an aggregation step.
Common properties that stay the same throughout all the events of a session are moved from the
LogEvents to the LogSession. These are properties like account names, Skin codes, IP addresses

Figure 7.2: Overview of steps in data processing (as defined by Figure 3.3)

34

Store the log data

LogSession LogEvent

LogStatistic

logSessionId
sessionId
accountName
pspId
companyId
accountId
skinCode
amount
currencyCode
merchantReference
pspReference
ipAddress
userAgent
timeStamp

logEventID
logSessionID
timeStamp
timeWindow
previousStage
currentStage
paymentMethod
ResultCode

logSessionID
pathLength
duration
flowType
mainPaymentMethod
isAuthorised
isRejected
isPending
hasDetails
hasReview
hasRedirect
hasCCRedirect
countryCode

1

1

1 .. n

0 .. 1

[PK, FK]
int
int
char(3)
vchar
bool
bool
bool
bool
bool
bool
bool
char(2)

[PK]
vchar
vchar
int
int
int
vchar
int
int
vchar
vchar
vchar
vchar
timestamp

[PK]
[FK]
timestamp
timestamp
vchar
vchar
vchar
vchar

Figure 7.3: Database design diagram for conversion logs

and merchant accounts as can be seen in Figure 7.3. The smaller subset of properties that do
change are stored in LogEvents.

7.2.3 Validation

After the properties have been redistributed a state machine is created by the StateMachineFactory
by supplying the list of LogEvents from a session. The StateMachine object that is returned by the
factory is then executed in an attempt to validate the payment session. After the state machine
has evaluated the input data and ends in a valid state, the state machine’s properties (as discussed
in Section 4.3.2 are moved to the LogStatistic object.

7.2.4 Performance enhancement

In order to decide what information is necessary and what information may be sacrificed, the most
important statistics were gathered. For all the individual statistics the compulsory data to get
valid results was examined. The most important metrics are the number of authorised, completed
and abandoned sessions. These numbers should be available for each merchant. For a merchant
it is important to see how these numbers vary geographically and develop through time. This
resulted in a database design as illustrated by Figure 7.4.

LogStatisticAggregationPerDay
accountId
companyId
summaryDate
countryCode
total
authorised
completed
abandoned

int [PK]
int
timestamp [PK]
char(2) [PK]
int
int
int
int

Figure 7.4: Database design diagram for performance enhancement

35

Chapter 7

7.2.5 Archiving

The large amounts of data that are generated by the platform not only mandate performance
enhancements, but also an archiving strategy. Without such a strategy the disks that hold the
gathered data will flood. Because no information is lost when the data is imported into the central
database, the original log files can be deleted as soon as they are imported successfully. The same
holds when the logs are written to a database.

Although the data is aggregated, this data will eventually cause the disks to flood as well. The
aggregated data should be available for a period of about six months. This ensures, when a new
statistic and its corresponding additional aggregation are implemented, enough data is available
to produce meaningful statistics right away.

7.3 Implementation

As stated in Section 3.7 the goal was to get the first results as early as possible. Therefore the
results of the parsing process were stored in memory in the early stages of the project. As the
project progressed, more information became available and storing the results in memory became
unfeasible. The most natural way to store the results in a more structured and persistent way is
to store them in a database.

The design of the framework facilitated the transition to the database very efficiently because
of the LogStoreInterface (depicted in Diagram 7.5). In only a single line of code the swap between
the different storage interfaces can be done. All statistics that functioned on the MemoryLogStore
automatically function on the DatabaseLogStore. An extra method can however be added to the
statistics classes to optimise the calculations with database query’s specialised for this specific
statistic.

The in-memory storage implementation will be discussed in Section 7.3.1, followed by the
database implementation in Section 7.3.2.

7.3.1 Store in memory

In order to get the data from the logs to a datastructure in system memory, the raw CSV logfiles
are parsed file by file. After a complete file has been read the file is processed one line at a time.
First a regular expression is applied to the line to extract the application specific message part of
the log statement. From this message part a RawLogEvent object is created where all the CSV
fields are matched to properties of the RawLogEvent object.

The RawLogEvent is then added to a corresponding LogSessionWrapper object. If a cor-
responding wrapper object does not exist, it is created and added to the data structure. The
LogSessionWrapper consists of a LogSession, a list of LogEvents and a LogStatistic object as
illustrated in Diagram 7.5

After all lines have been processed the LogSessionWrappers are enriched with external data,
aggregated and extended as discussed in Section 7.2.

36

Store the log data

LogStoreFactory
<<interface>>

uses Factory design pattern

MemoryLogStoreFactory
calculates statistics and returns a
Statistics object from parsed logfiles in
memory

ConversionLogSessionWrapper
is a container for the various objects related to
logstession: the individual events and the
calculated statistics, and can validate sessions
using a statemachine

DatabaseLogStoreFactory
calculates statistics and returns a
Statistics object from the database

LogSession
represents a session of a payment
process

LogEvent
represents an event in a
payment session

LogStatistic
is an aggregated information
container for a session

ImportJobs
<<scheduled job>>

These jobs are scheduled to
parse the logfiles and create
session-, event- and statistic
entries in the database.

StateMachineFactory
creates a state machine based
on the supplied logevents, to
validate MPP or OPP sessions

Figure 7.5: Class diagram of the conversion analysis framework back-end

7.3.2 Store in Database

The analyses of Chapter 5 clearly indicated that logging to a local database would be highly
beneficial. However due to the big impact of this proposed change, the existing conversion log files
are still used. The file transfer setup therefore is the strategy to be used.

Using this strategy the files will be copied over to the central system as is discussed in Sec-
tion 6.1.1 and a job will be executed to import the log files. This import job looks in the central
’in’ folder and picks up a new file by putting it in a ’processing’ folder as illustrated in Figure 7.6.
When the whole file has been processed the file will be moved to a ’done’ folder. This process is
repeated until the ’in’ folder is empty. If an error occurs during this process the file will be placed
in an ’error’ directory so the it can be examined at a later stage.

in processing done error

Figure 7.6: File import job diagram

The job then continues to parse the file and the results are put in the PostgreSQL [27] database.
To facilitate the communication between Java job and database the iBATIS [2] framework is used.

37

Chapter 7

In a XML configuration file Java Bean [31] classes are mapped to tables in the database. The
configuration file also lists the various queries than can be performed on the database.

When the transferred log files are parsed the data is enriched with external data, aggregated and
extended as discussed in Section 7.2. Unlike the aggregation as is done when using the in-memory
storage method, the aggregation in the database is done by a single query (see Listing 7.1 which
performs much better.

In this aggregation step efforts are made to reduce duplicate information as much as possible,
however some redundant information is present for performance reasons. Although the company
and psp associated with the account can be retrieved with the account Id, this information is
retrieved and stored in the LogSession record at creation time. Storing this redundant information
greatly reduces the number of joins needed in a query and therefore makes the queries to execute
faster.

Listing 7.1: Query to create LogSessions and LogEvents from raw log events

1 −− Create LogSess ions i f nece s sa ry
2 i n s e r t i n to LogSess ion (
3 s e s s i on Id ,
4 accountName ,
5 pspId ,
6 companyId ,
7 accountId ,
8 skinCode ,
9 merchantReference ,

10 timeStamp ,
11 i padre s s ,
12 useragent ,
13 di r ty ,
14 va l idat ionAttempts
15)
16 s e l e c t
17 s e s s i on Id ,
18 merchantAccount ,
19 pspId ,
20 companyId ,
21 accountId ,
22 skinCode ,
23 merchantReference ,
24 min(timeStamp) ,
25 min(ipAddress) ,
26 min(userAgent) ,
27 t rue as d i r ty ,
28 0 as va l idat ionAttempts
29 from RawLogEvent
30 group by
31 s e s s i on Id ,
32 merchantAccount ,
33 pspId ,
34 companyId ,
35 accountId ,
36 skinCode ,
37 merchantReference
38 ;
39

40 −− Update LogSess ion with
41 −− amount and pspReference
42 update LogSess ion as s e s s i o n

38

Store the log data

43 s e t
44 pspReference = raw . pspReference
45 from RawLogEvent raw
46 where raw . s e s s i o n I d = s e s s i o n . s e s s i o n I d
47 and raw . merchantAccount = s e s s i o n . accountName
48 and raw . pspId = s e s s i o n . pspId
49 and raw . companyId = s e s s i o n . companyId
50 and raw . accountId = s e s s i o n . accountId
51 and raw . skinCode = s e s s i o n . skinCode
52 and raw . merchantReference = s e s s i o n . merchantReference
53 and raw . pspReference no tnu l l
54 ;
55

56 update LogSess ion as s e s s i o n
57 s e t
58 quant i ty = raw . quantity ,
59 un i t Id = raw . un i t Id
60 from RawLogEvent raw
61 where raw . s e s s i o n I d = s e s s i o n . s e s s i o n I d
62 and raw . merchantAccount = s e s s i o n . accountName
63 and raw . pspId = s e s s i o n . pspId
64 and raw . companyId = s e s s i o n . companyId
65 and raw . accountId = s e s s i o n . accountId
66 and raw . skinCode = s e s s i o n . skinCode
67 and raw . merchantReference = s e s s i o n . merchantReference
68 and raw . quant i ty no tnu l l
69 and raw . un i t Id no tnu l l
70 ;

7.3.3 Performance enhancement

After the setup as described in the previous section was established on the local development
machines, the application was installed on a staging server. As the amount of data accumulated
on the staging server, the performance of the system degraded rapidly.

To keep the responsiveness of the system within bounds a new approach was needed. The
biggest problem was the sheer amount of information. To reduce the size of the data set the
available information should be aggregated while at the same time maintaining enough detail to
enable meaningful statistics.

To aggregate all the information as outlined in Section 7.2.4 a query was developed to create
a daily aggregation. Listing 7.2 shows how the data is summarised for the first of July.

Listing 7.2: Query to aggregate daily summary

1 begin ;
2

3 i n s e r t i n to LogStat i s t i cAggregat ionPerDay (
4 t o ta l ,
5 author i sed ,
6 completed ,
7 abandoned ,
8 countryCode ,
9 companyId ,

10 accountId ,
11 summaryDate
12)
13 s e l e c t
14 count (∗) as t o t a l

39

Chapter 7

15 , c o a l e s c e (sum(case when l s t a t . i s a u t h o r i s e d then 1 e l s e 0 end) , 0) as
author i s ed

16 , c o a l e s c e (sum(case when l s t a t . i s a u t h o r i s e d or l s t a t . i s r e j e c t e d or l s t a t .
i spend ing then 1 e l s e 0 end) , 0) as completed

17 , c o a l e s c e (sum(case when not l s t a t . i s a u t h o r i s e d and not l s t a t . i s r e j e c t e d
and not l s t a t . i spend ing then 1 e l s e 0 end) , 0) as abandoned

18 , l s t a t . countryCode as countryCode
19 , l s . companyId as companyId
20 , l s . accountId as accountId
21 , da te t runc (’ day ’ , l s . timeStamp) as summaryDate
22 from LogS t a t i s t i c l s t a t
23 j o i n LogSess ion l s us ing (l o gS e s s i on Id)
24 where l s . d i r t y=f a l s e
25 and l s . timeStamp between ’ 2009−07−01 ’ and ’ 2009−07−02 ’
26 group by summaryDate
27 , l s . accountId
28 , countryCode
29 , l s . companyId
30 order by summaryDate ;
31

32 commit ;

7.3.4 Archiving

Although enough information is kept when the aggregated data is retained for a period of six
months, the PostgreSQL database allows database partitioning.

When using partitioning one logical large table is split into smaller physical pieces. Partitioning
can provide several benefits [28].

• Query performance can be improved dramatically in certain situations, particu-
larly when most of the heavily accessed rows of the table are in a single partition
or a small number of partitions. The partitioning substitutes for leading columns
of indexes, reducing index size and making it more likely that the heavily-used
parts of the indexes fit in memory.
• When queries or updates access a large percentage of a single partition, perfor-

mance can be improved by taking advantage of sequential scan of that partition
instead of using an index and random access reads scattered across the whole table.
• Seldom-used data can be migrated to cheaper and slower storage media.

40

Chapter 8

Visualise the data

A web interface is chosen as a visual interface for the conversion logging framework. This was an
easy decision since the Adyen customer area (merchant backoffice) are also web-based. In order
to provide the required statistics to the user the system employs a two-stage design. Firstly the
page is setup using a customised template. Secondly the data is loaded asynchronously into this
template from an XML webservice.

While designing the user interface the important question is: ’how would an Adyen employ-
ee/merchant like to see the user interface’. To get a insight into this question a few use cases are
given in Section 8.1. The next Section (8.2) gives an in-depth view into the design of this two-stage
system and Section 8.3 gives an overview of the implementation process and its challenges.

8.1 Usage of the conversion statistics

Use case: Show the statistics within a world region
Actor: Merchant
Possible reason: The merchant want to see in which European countries little transactions are
done so he can start an advertisement campaign there to promote his product.
Steps:

Actor action System response
1. Go to the merchant back-office page 2. Display page
3. Click on the conversion statistics link 4. Display the conversion statistics page
5. Click on Europe 6. Load the map of Europe and show the statis-

tics corresponding to this region

Use case: Find out abandonment rate in The Netherlands
Actor: Merchant
Possible reason: The merchant wants to know if shoppers finalise their transactions in the
Netherlands, maybe the shoppers don’t understand the website, it might need a Dutch transla-
tion.
Precondition: Actor followed Show the statistics within a world region case
Steps:

41

Chapter 8

Actor action System response
1. Click on The Netherlands 2. Show the statistics corresponding to The

Netherlands
3. Click on the enlarge button of the conversion

statistics chart
4. Switch the map with the conversion statis-

tics chart
5. The conversion statistics chart is now the

main chart and is presented in large format
in the center of the page

6. Click on the chart options toolbar 7. Slide down the toolbar to show chart options
8. Select the check-boxes ’show values’ and ’re-

veal percentages’
9. Update the main chart to show percentage

values

Use case: Find out in what European countries the conversion ratio of credit cards is low
Actor: Adyen sales employee
Possible reason: The sales employee wants to know if localised payment methods should be
introduced in countries where credit cards are not used very often.
Precondition: Actor followed Show the statistics within a world region case
Steps:

Actor action System response
1. Click on the advanced filter options toolbar 2. Slide down the toolbar to show the filter con-

trols
3. Select all credit card payment methods from

the Payment methods filter box
4. Click on the add button 5. The selected payment methods are moved to

the right to indicate that they are active
6. The statistics are updated to show only the

values filtered on the active payment meth-
ods

7. Look at the map of Europe and notice the
darker coloured countries, these are the im-
portant ones since the most transactions
come from these countries

8. Click on any of these countries 9. Show the statistics for the selected country
10. Look at the conversion statistics chart and

look at the payment methods chart the ac-
tor can now decide on a solution for this
problem (maybe introduce a new payment
method in this country)

8.2 Design

For the use cases given in 8.1, and others that might arise in the future, a template system has
been developed as discussed in Section 8.2.1. Each template can display a variety of charts and di-
agrams, how exactly is explained in Section 8.2.2. The user interface (front-end) for the conversion
logging framework is build upon the LogStoreFactory interface as is shown in Diagram 8.1. The
LogStoreFactory is the interface connecting the front-end to the back-end (shown in Figure 7.5)
of the system.

The actual webpage rendering is done using Struts2 MVC and the Velocity template engine.
Key components in this diagram are StatsType and Filter and are discussed in Section 8.2.3
and 8.2.4 respectively. These components are used to communicate with the LogStoreFactory
and quire the needed statistics. Section 8.2.5 explains how a webservice provides access to the

42

Visualise the data

Statistics
<<abstract>>

holds values and can process a
ConversionLogSession and
modify it's values acording to the
processed conversion session.
Also provides a framework for
generating xml output

PaymentSessionResult
StatisticsPie

represents an xml structure that can
return itself as a FusionCharts
configuration xml for pie-charts

PaymentSessionResult
StatisticsFunnel

represents an xml structure that can
return itself as a FusionCharts
configuration xml for funnel-charts

StatSet
<String, StatSet>

holds different statistical values
in a hierarchical map along with
their display name (for
displaying in charts)

Struts2 & Velocity
Dynamic server page

XML webservice

dynamic hosted webpage on a webserver

LogStoreFactory
<<interface>>

uses Factory design pattern

Filter
holds values to filter on and
can tell if these values
adhere to the values in a
ConversionLogSession

StatsType
<<enum>>

enum containing all statistic
types along with a reference
to the corresponding
statistics class

...

Figure 8.1: Class diagram of the conversion analysis framework front-end

LogStoreFactory.

8.2.1 Chart templates

There are infinitely many statistics which can benefit a specific user, therefore our system needs to
be designed in a way that supports easy extension of the user interface. Furthermore any extension
should maintain a consistent user experience. A few examples of typical useful functionality can
be found in the use cases (8.1) above. Other functionality can be implemented in a way that is
analogous to the these cases, but provides completely different information:

• Comparing the effects of different payment page Skins (OPP vs. MPP)

• Find regions where fraud rate is high

• Comparing the performance of different merchants

• Comparing the effectiveness of a payment method with other payment methods

The best way to keep the user interface consistent is to introduce a template. Within each template
the contents can be varied, but once a template has been defined the statistics on display are always
the same for this template, thereby simplifying the user experience. Finally a unified colour scheme
has been devised to ensure a consistent look of the user interface. Each of the colours in this scheme
has its own meaning, enabling the user to interpret the visual data in a single glance.

Statistics can still be moved to the large centre area, where the labels and values can be
toggled on or off and the values can be set to percentages or absolute values, but the user can
always anticipate what will happen when he performs a certain action. When the main statistic
is switched with another, it’s view settings are persisted in the small display so the user can
customise the template view to his or her liking. Figure 8.3 shows two templates with one big
(main) statistic visualisation in the center and 4 smaller ones next to it. Diagram 8.2 shows how
the template (ChartTemplate) fits into the system design.

8.2.2 Chart types

Statistical information is worth nothing if it’s not properly visualised. Improper visualised statis-
tics can give the viewer a skewed impression of the reality. Therefore we need a system that is
flexible enough to show any type of visualisation, for this reason we use the Fusion Charts [15]
package. This package provides a extensive collection of charts, diagrams and maps, each of which
is configurable by XML.

43

Chapter 8

Each class extending the statistics abstract class must define at least one chart type from the
ChartType enum (see Diagram 8.4). This way the system can always render the statistic on any
template. Additionally the statistics class requires extending classes to implement a getFusion-
Chart() method, which returns an object model as discussed in Section 8.2.5, thereby ensuring
valid XML output. Any chart, diagram or map can be implemented in this way, as long as it’s
API (defined by Fusion Charts) is compatible with the object model. Of course the object model
is build so it can be extended to suit any Fusion Chart API.

8.2.3 Statistic types

Each type of statistic requires a specific way of processing the available data. This processing is
done in a specific calculator class extended from the Statistics class. Since a template should be
able to hold any type of statistic, but should never have anything to do with the data processing,
a generic way of retrieving the statistics must be defined.

The only information the template has is the type of statistic and optionally type of chart
(see Diagram 8.2), a factory class is therefore used to create the right statistics from the raw data
on input of a statistic type. All available statistic types are listed in the StatsType enum along
with the calculator class that is able to calculate the statistic. The LogStoreFactory class takes
a statistic type as input and parses an enum constant from this, which it uses to instantiate the
right calculator class, this class is subsequently requested to do it’s calculations on the data. The
result the LogStoreFactory produces is a readily usable Statistics class with the ability to render
XML configuration files for a specific chart, diagram or map in the template.

8.2.4 Filter

To create localised and specialised statistics the data needs to be filtered. There are a number of
important fields that must be filtered on:

• Locale (for map navigation)

• Merchants (to create statistics specifically for a merchant or a group of merchant with a
common business model)

• Payment Methods (i.e. to compare the effectiveness and locale)

• Skins (i.e. to do A/B testing of Skins)

• Payment page flow (OPP vs. MPP)

ChartOperations
<<javascript>>

Client-side javascript to perform
operations on the charts and
facilitate navigation and ordering
of the charts.
This script uses the chartxml web
service to aquire the propper XML
data for the charts.

FusionPage
<<velocity template>>

Template for the fusion page,
from this template HTML output
will be generated and parsed on
page postback

1

1

HTML

StatsType

FusionPage
The Struts2 Action class used to
handle the page request and to
supply data for the Velocity
template

ChartTemplate
Template that defines specific set
of statistics to display

1

1..*

1

1

1 *

ChartType

1

0..*

Figure 8.2: Diagram showing the components needed to construct the statistics webpage

44

Visualise the data

(a) Screenshot of the default template with conversion ratio related statistics

(b) Screenshot of the paypal template

Figure 8.3: Screenshots of the statistics page

45

Chapter 8

The filter will be implemented in Java with an adheres() method that takes one payment
session as argument, this method returns whether the supplied session should be filtered out or
persisted. Using this scheme each request to filter an in-memory dataset will need a linear time
investment, since each session should be processed.
The framework design as shown in Diagram (7.5) shows that besides an in-memory log store, the
system also provides the ability to attach a database log store. The filter object can be used in
combination with the database log store to create query parameters to narrow the result of the
query. Since the database has intelligent algorithms, known as query optimiser, this call requires
a much smaller time investment. A quote form G. Graefe’s article [12] clearly shows that the
database provides much more sophisticated access to data than any datastructure provided by the
Java platform.

A query optimizer is an expert system that finds the best plan given the query semantics,
the current database state, and the capabilities of the query evaluation system.

8.2.5 Statistics webpage and XML web service

For a smooth and responsive webpage asynchronous updating of the page content is a must. To
realise this, client-side scripting is used to do all the template manipulations and navigation using
Ajax [35] calls. This functionality is located in a single javascript [37] file (FusionOperations.js) as
depicted in Diagram 8.2. The Ajax calls make use of the GET method as specified in the HTTP/1.1
Specification Memo [9] as: The GET method retrieves whatever information is identified by the
Request-URI.

To create the layout and elements of the page Velocity [5] is used. Velocity is able to parse
a web page template with references to objects defined in Java code, hereby creating dynamic
web pages. Using a single ’velocity template’ we can dynamically add all the statistics from the
requested ’chart template’.

The result is a neat looking web page, with asynchronous functionality from the referenced
FusionOperations javascript. The statistics data is however not available client-side, so a way
of acquiring this data from the server is still needed, in a way that requires no page refresh
(postback). This is where the chartxml webservice comes in. Diagram 8.4 shows that the service
takes a statistic type, and optionally a chart type and filter and returns an XML configuration
stream for the Fusion Charts. This stream is then used to dynamically update the charts on display.
An added bonus to having a webservice is that there is a single URL to access all statistical data,
thereby facilitating the retrieval of raw XML for debugging purposes.

To generate the XML configuration files for FusionCharts the XStream [6] framework is used.
XStream uses an object representation (model) to generate XML output. As a matter of fact
XStream is able to serialise any Java object to XML by making nodes from objects and attributes
from primitives (and Strings). Because the XStream uses an object model in Java code, comments
can be added to the classes and methods of the model which is very useful when dealing with the
many properties that can be configured for the FusionCharts.

Most development platforms have auto-complete functionality so the developer can readily see
the properties available for the chart you’re configuring. An instance of the model is therefore
easily created, but it’s even more easy to generate XML output. We simply have to supply our
model instance to the XStream facade and it gives us XML back.

8.3 Implementation

This section describes the implementation process, visual results and how to extend the user
interface with new functionality. The process of implementation will give the reader an idea of
benefits and the problems that were encountered. It is described in this section since the quality
of the back-end design becomes especially clear when implementing the front-end of the system.

46

Visualise the data

The results of the implementation will encompass the web user interface capabilities. Finally the
efforts that were needed to create the user interface will show what is needed to extend the user
interface.

8.3.1 Process

There were a few hurdles in the implementation process for the statistics webpage. At first the
filter was visualised in the page itself and for each manipulation of the filter values the webpage
would post back to the server. The server then calculates how the changes should be reflected in
the user interface and returns a response page to the client.

This approach is however not compatible with the asynchronously functioning ChartOperations
javascript. Therefore the filter was put into a form which can be posted back to the server, but
the reply of the server normally is an updated version of the same page (reflecting the requested
changes). There is however a more responsive solution; by making use of the Struts2 framework.

The Struts2 framework is able to return any result in response to a request from the client.
So the result of any filter form request is now a JSON [17] response with all the filter settings
contained in it. By making use of the Prototype [33] javascript framework the JSON reply is
parsed into a javascript object, which in turn is used to update the filter dynamically.

A whole other obstacle was the peculiar choice of the Fusion Maps creators to use 2 letter
country codes that do not adhere to the ISO standard [16]. This obstacle was easily overcome by
implementing an enum class with all 2 letter country codes as constants and adding a mapping
to the fusion map county id’s, a mapping to the corresponding region enum is also added. This
setup can therefore be used to return a fusion maps country id, and a region on input of a country
code, but also all fusion maps country id’s for a given region. The latter can be used to populate
the world map and generate statistical data for individual regions.

Besides the hurdles there were also some really big benefits from our system design. As is
discussed in Chapter 7 the system was initially going to work with an in-memory log store and
would eventually switch to the database interface when it was ready. When the design of the
statistics web page was already in progress (using the in-memory log store), the database log store

Statistics
<<abstract>>

ChartType
<<enum>>

Holds filenames of the Fusion
Charts (without the .swf
extension) as enum constants

chartxml service
<<Web Service>>

Web service hosted by velocity
that returns xml configuration
data on input of chart type,
statistic type and a filter

StatsType
<<enum>>

Holds an enum constant for each
possible statistic type, along with
a display value and the
corresponging statistics class

1..*

*

XML

*

1

Filter

1 1

1..*

1

input for

1

0..1

input for

1..* 0..1

input for

LogStoreFactory
<<interface>>

uses Factory design pattern

1 1

Figure 8.4: Web service class diagram (diagram represents multiple requests to the service)

47

Chapter 8

interface was finalised. The system design proved to be very effective, because only a single line
of code needed to be changed to switch the entire system to the database log store. Resulting in
much more responsive web requests without any negative side effects or errors.

8.3.2 Results

The web user interface that was developed to give a glimpse of the potential of the conversion
analysis framework. This section will give a short overview of the elements currently available on
the statistics webpage. On the highest level there are two templates available as can be seen in
figure 8.3.

Furthermore there is a map that can be navigated by clicking on countries and regions on
the world map, in result all the statistics on the page are filtered to reflect the currently selected
location. Currently the following locations are available besides a world map:

• Asia

• Europe

• Africa

• North America

• South America

• Central America

• Oceania

• Middle East

For each of these regions there is a map available with all the countries in that region, so the
statistics can be narrowed to country level. Furthermore there are 4 different charts available on
the webpage, Figure 8.5 gives an example for each of these.

8.3.3 Extend the user interface

This last section will give a brief explanation of the efforts needed to implement new templates,
charts or statistics into the current conversion analysis framework. Starting from the highest level:

Chart templates: To create a new template very little effort is needed, especially when existing
statistics are used. All that needs to be done is to create a new chart template class by extending
the ChartTemplate base class. Within this class a list of statistics is build and default settings are
defined. Finally in the conversion web page action class the chartTemplate property needs to be
set to the new template.

(a) 3D pie chart (b) Multi-level pie chart (c) 3D funnel diagram (d) 3D bar chart

Figure 8.5: Charts currently available on statistics web page

48

Visualise the data

Chart types: Even simpler is the implementation of a new chart type, all that needs to be
done is to add the chart flash object into the project charts folder and add an enum constant with
the filename to the ChartType enum.

It must noted however, that when the API of the chart differs from the object model that is
already available for the already supported charts, it must be extended first in order to generate
valid XML configuration files. The fusion charts object model is created in such a way that it can
easily be extended and has documentation (javadoc) for each property that is defined.

Statistic types: Creating an entirely new statistic is also easy. The statistics class needs to
be extended and an implementation must be given for the abstract methods. Alternatively an
already implemented statistic can be extended so implementations of some abstract methods can
be reused.

When extending directly from the base class a little more programming skill is required. This
is because a (possibly hierarchical) map has to be created to store the statistics. This can be
achieved using the session processor (in order to be backwards compatible with the memory log
store) or the query processor or both methods. An hierarchical key-value map datastructure is
available in the framework to help accomplish this.

In addition the XML configuration object model needs to be created. Using the existing
object model makes this task almost trivial. Finally an enum constant needs to be added to the
StatsType, with a display name and a reference to the newly created statistics class.

8.3.4 Performance enhancement

The aggregation step as described in Section 7.3.3 improved the performance of the system dra-
matically. While the queries that were executed on the server to retrieve statistics were analysed
to improve the performance, it was noticed that some queries were executed repetitively, because
the same statistics are often retrieved multiple times throughout the the user interface.

To deal with this behaviour a cache with the results of the queries was built. This cache uses the
Least Recently Used (LRU) approach which proposes evicting the item from the cache that was
referenced longest ago when the cache is full. Kleinberg and Tardos describe why this approach
is useful [20].

It is effective because applications generally exhibit locality of reference: a running
program will generally keep accessing the things it has just been accessing.

With this caching mechanism in place the performance of the user interface improved significantly.

49

Chapter 9

Software Quality and Testing

In order to improve the quality of the software, testing is needed. A first step in this process is
performing unit test. After the unit test have been done additional techniques can be used like
code coverage analysis and regression testing.

9.1 Unit testing

For the unit testing we used the JUnit framework [18] which was already used in the development
process at Adyen. We structured our project so that test classes are in the same packages as the
classes under test, but in a different directory as explained in JUnit in Action [23]. Figure 9.1 shows
this setup. Because the state machines are a very important building block of our application we
started with unit testing the state machines.

Figure 9.1: Screenshot of directory structure

9.2 Code coverage analysis

Besides testing the correct behaviour of the state machines we also wanted to see how well our
code is covered by these tests. For this we used the EclEmma plug-in [25] for the Eclipse IDE [32].
This plug-in marks the source code with different colours depending on how well the statements

51

Chapter 9

are covered. Figure 9.2 also shows that it displays the percentage of statements covered per class
and package.

Figure 9.2: Screenshot of coverage analysis of OPP Statemachine

9.3 Regression testing

Regression is the deterioration of software due to changes made to the code through its lifetime. To
prevent a drop in quality regression testing can be used. When implementing the state machines
to validate the payment sessions, we found that not all sessions adhered to the desired behaviour
as indicated in State Diagrams 4.1. These sessions took some shortcuts through the state diagram
that are not permitted.

Although these sessions did not adhere to our specifications, we wanted the sessions to validate
so that they could be used in our preliminary analyses. For this to happen we introduced some
’hacks’ to the state machines allowing the shortcuts. When writing the unit tests for the state
machines we wanted all the test to succeed even with the hacks in place.

The inclusion of hacks in the state machines and success of the unit tests posed a risk for the
quality of the software. To prevent this unwanted behaviour to remain in the future, test classes
were created to specifically test the presence of these hacks.

The presence of the hacks can be toggled with a boolean variable. When this variable indicates
the hacks should no longer be present in the code, this will be reflected in the results of the test
cases. If a shortcut is attempted successfully while the variable indicates that this should not be
allowed, the test corresponding to the shortcut will fail.

52

Chapter 10

Conclusions

”How to measure and present the Conversion Ratio on the Hosted Payment Pages?”

This specific goal for this project was formulated to answer the generic question on how to
monitor and present log information. We can conclude there are five essential steps in the process
to measure and present log information, in this case the Conversion Ratio of the Hosted Payment
Pages. These five steps are:

• What data needs to be logged

• In which format is the data logged

• How to Centralise log data

• How to Store log data

• How to visualise log information

Since every distinct step presents its own generic and specific problems and challenges we will
present the (sub) conclusions in the corresponding paragraph.

Adoption of these conclusions resulted in an application which is deployed and used in the
Adyen live environment.

10.1 What data needs to be logged

The process of measuring and presenting log information needs to start by determining which
information is required. This has a big impact on the reconstruction of what happened out of the
independent log entries. As suggested by Reichle et al. also relevant data available from other
knowledge bases needs to be taken into consideration.

There are two main conclusions regarding the data that needs to be logged specifically for this
case. First the data can only be determined based on use cases since there is no complete set
of data that can be logged. Based on the defined use cases, and validation results of the state
machines, the following fields are identified:

• Previous stage, because the HPP are stateless, this makes it possible to reconstruct the exact
path taken in the transaction.

• IP address of the shopper, which can be matched against a country database to determine
the shopper locale.

• User agent, can give more information about the shopper.

53

Chapter 10

• Error messages the shopper encounters, so decisions of the shoppers can be examined in
more detail.

Second the calls to the log need to be implemented in a Struts2 Interceptor. This will ensure
a conversion log entry is submitted with every request and response to the HPP.

Both conclusions have already led to changes in the live environment of the Adyen platform,
making sure all data required to accurately present log statistics is present.

10.2 In which format is the data logged

In order to facilitate automatic parsing of the log files a machine readable format is required. To
determine the best format six formats are evaluated according to five different criteria:

• Human readability

• Searching

• Processing

• Distributing

• Log4j support

From these analyses we conclude that logging to a local database in combination with a CSV
backup is the best approach for a generic logging framework. It is thus suggested to write log data
to two output formats. The searchability and readability of the database exceeds that of any file
format. This can be crucial in an emergency situation of a 24 / 7 online service when a developer
needs to determine the root cause as quickly as possible. The reason why a file format backup is
required is that it is more reliable and robust compared to a database. Log data must of course
be available in all cases, especially in erroneous situations.

Because of the time constraints and the big impact of this proposed change, the decision has
been made to use the existing Log4j CSV log files for logging the conversion on the HPP. The
performance implications also need to be researched in more depth, but are out of the scope of
this project.

10.3 How to Centralise log data

The centralisation step is vital in a SOA, because services run on different (hardware) instances
and analysis has to be performed with all data available. Four possible centralisation strategies
have been distinguished, as illustrated in Diagram 6.1.

When keeping in mind the protocol robustness, network capacity, archiving strategy and secu-
rity, database replication is the preferred strategy. This strategy spreads the load and (secure)
replication is a standard feature available in most database engines. In order to formulate a con-
clusive statement about the feasibility of this solution, the performance implications of logging to
two formats, as discussed in step two, need to be researched.

For this specific case a decision has been made for step two to work with CSV files and not
(yet) store the data in a database. For now the files are periodically transferred to the central log
analysis application using a batch script.

54

Conclusions

10.4 How to store log data

For the storage two important aspects need to be discussed. First the lay-out of the raw data
which is gathered on the central system and secondly how the data is processed and enriched to
have everything available for the final visualisation step.

A generic log data entry consists of a general (Log4j) part and a specific message part. The
individual entries should therefore be stored in two parts in a database. This clear separation allows
the log analysis framework to be used for any specific log data thereby allowing easy processing
for various applications. In this case the message part is composed out of HPP conversion data.

Reichle et al. defined five steps that are required to merge additional data from other knowledge
bases with the logged data. For performance reasons we propose a different order for the log
analysis framework. The validation step is moved from the last step to the third step, which
ensures that additional data is processed only for valid entries.

The specific application which processes the raw HPP conversion data has been implemented
using an iterative approach. This iterative approach first started with the implementation of a
straight forward in-memory storage method, resulting in usable data at an early stage. With this
preliminary tool crucial insight was gained into the logging of the payment process. When working
with larger datasets it was clear that we needed to switch to a database.

The design of this application uses therefore a LogStoreFactory Interface which proves to be
very effective, since changing from this line:

logStore = new MemoryLogStoreFactory();

to this line:

logStore = new DbLogStoreFactory();

is enough to switch from in-memory storage to database storage.

The visualisation of the HPP conversion data also requires an additional aggregation step for
performance reasons. An aggregated table is updated whenever new data has been parsed. This
is done in a way that still provides al the necessary information for a specific use case but reduces
the entries in the table to 7.7% of its original size. Please note different use cases might require
different aggregation tables. The exact performance implications and archiving strategies are
outside the scope of this project.

10.5 How to visualise log data

Visualisation of log data is very specific to a project. Some generic lessons can however be learned
from the HPP conversion case. Specifying the use cases and creating mock-up screens need to be
done in early stages, since they impact decisions made in the other four steps. It is therefore also
very important to involve the user who will work with the data when specifying the use cases. The
benefit of having a visually pleasing presentation should also not be underestimated, a consistent
colour palate makes for a clean look and gives the means for easy understanding of the data Last
but not least it is important that the visualisation is very flexible since different users might want
to use different views on the data.

As discussed not all use cases can be foreseen and we have therefore implemented a template
framework for the HPP conversion analyses. A template is a web page presenting the data required
for one type of use case and consists out of different graphs all using the same aggregation table.
The data is stored in a cache so real-time interaction is possible.

55

Chapter 10

Showing multiple graphs with different (presentations of the) data on one page proved to be
very important in order to understand the impact of the conversion on the HPP. The user is
presented with data comparisons so he gets a clear indication of how to improve the conversion.

10.6 Goals

In the first chapter three goals were set that needed to be met near the end of the project. What
follows is an evaluation of these goals along with some insight in to how these goals were realised,
what the obstacles were encountered in the process and how these were overcome.

During the project extra consideration is put into determining the log format and how to
gather the log data on a central location. This is done because Adyen has plans for a Masters
thesis/project to completely automate the monitoring, reporting and notification of its entire
system using the logged data as discussed in Section 3.2. The solution that has been devised is
generic so it can be used beyond conversion logging.

10.6.1 Live data feed for merchants

During the development process a few merchants were invited to participate in the beta phase.
All of these merchants were very enthusiastic about the possibilities the system gives them. As
explained in Chapter 1, often used tools like Google Analytics can not be used on the HPP. The
developed framework enables them to get the information they want. With detailed information
about their conversion ratio (per country/payment method/etc.) merchants have already changed
their business and marketing strategies. On top of this even the Adyen team has used this beta
tool to make decisions in multiple cases.

The system has been designed to visualise statistics on the payment process for all merchants.
Therefore creating a ’semi-realtime’ data-feed for one merchant is easy. There is a generic filter
available which is, among other parameters, able to filter on any number of merchants. This filter
therefore only narrows the dataset that needs to be processed, resulting in a smooth user interface
for a merchant or a company (consisting of multiple merchants).

10.6.2 Data for marketing material

Adyen can assist with their expertise and the conversion analysis tool to optimise the conversion,
promote least cost payment methods and fight fraud. Furthermore the Adyen sales team uses this
tool to promote the product and service that Adyen provides. The new user interface is therefore
as helpful to Adyen as it is to the merchants. The system really is a USP (Unique Selling Point)
for the Adyen sales team. On multiple occasions during the development of the system, sales
employees used the statistical data and its graphical representations to pull in new clients.

10.6.3 Form a basis for an article

With the research done in this paper and with the conversion analysis tool, a basis has been
formed for a newspaper article, as well as a scientific article. An interesting article for a newspaper
concerns the conversion ratio of PayPal payments. This payment method is a high cost payment
method which does not perform as well as other (localised) payment methods in the Netherlands.
A scientific article can be made on the basis of the generic logging framework and the preparations
that have been made during this project for this framework. The conversion logging framework
is already unique in the payment industry and a generic logging framework will definitely provide
interesting insights for a paper when combined with a Masters thesis at Adyen.

56

Chapter 11

Recommendations

In this project research has been conducted on a generic logging framework with conversion logging
as the specific use case. During this process a broad range of topics was touched, but not all could
be researched within the scope of this project. In this chapter several recommendations are made
for topics that should be investigated further.

11.1 Generic scalable logging framework

Within the project an initial analysis was made of the different logging formats. Although this
analysis indicated the formats to be used, the results may not be applicable to all of the logging
that takes place within Adyen’s platform. More research into a generic logging framework that can
be used throughout the platform as a whole and possibly even outside of Adyen is recommended.

As discussed in Chapter 7 and 8, special provisions were made to improve the performance
and responsiveness of the system. Although these factors are now between the desired bounds, it
is recommended that more research is done to analyse and possibly improve the performance and
responsiveness of the system. This should be on multiple levels ranging database queries to page
load times.

As is the case with more aspects of the project, this research should be generic enough so that
it can be deployed and applied to the Adyen platform as a whole. Because of the large scope of
such a project, this would be highly suitable for a Master project.

11.2 A / B testing

By setting up this A / B framework an answer can be given to the main question in the orientation
report (Appendix B). After the orientation phase it became clear that A / B testing should not
have priority, but should rather be facilitated in a more generic conversion analysis framework.

The conversion analysis framework developed in this project brings great insight into the con-
version ratio. The results of the analyses can be filtered by the Skin that was used to perform the
payment. This way merchants can compare the conversion rates of different Skins. It allows them
to test differences in the lay-out, security certificates, the order of payment methods, additional
costs, MPP vs. OPP et cetera.

It would by highly beneficial for merchants if they could indicate which Skins should be used
for A / B testing and what percentage of the visitors gets which Skin. A framework that enables
this should also allow the results to be placed side by side to make comparison easier. The scope
of this project would make it very suitable for a bachelor project.

57

Chapter 11

11.3 Pattern recognition

In the current setup, about 70% of the sessions can be reconstructed successfully from the log files.
It is highly recommended to analyse the sessions that could not be reconstructed and to research
the cause(s) in order to develop a more robust algorithm that recognises the pattern formed by a
payment session.

Pattern recognition is not only useful within the context of the conversion logs. Automatic
recognition of patterns can help to monitor the Adyen platform as a whole. When a suspicious
pattern occurs, a developer or administrator can be notified in advance before the actual error
occurs. Some work on this topic has already been conducted within Adyen through the use of
special log4j appenders.

58

Appendix A

Glossary

API Application Programming Interface

CSS Cascading Style Sheets

CSV Comma Separated Values

DSS Data Security Standard

HPP Hosted Payment Pages

HTML HyperText Markup Language

JSON JavaScript Object Notation

LRU Least Recently Used

MPP Multi Page Payment

MVC Model View Controller

OPP One Page Payment

PCI Payment Card Industry

PSP Payment Service Provider

SLA Service Level Agreement

SSH Secure Shell

SSL Secure Sockets Layer

URI Uniform Resource Identifier, can be a location (URL) or name (URN)

USP Unique Selling Point

VPN Virtual Private Network

XML Extensible Markup Language

59

Appendix B

Orientation report

61

Bachelor project: Conversion Ratio

Orientation Report

Mark Oostdam
1174681

Onno van Paridon
1100211

May 8, 2009

Faculty EEMCS, Delft University of Technology
Delft, the Netherlands

Adyen Enterprise Payment Services
Amsterdam, the Netherlands

Contents

Contents iii

1 Introduction 1

2 Goals 3
2.1 Live data feed for merchants . 3
2.2 Data for marketing material . 4
2.3 Form a basis for an article . 4

3 What’s in place 5
3.1 Infrastructure . 5
3.2 Skins . 5
3.3 Flow . 6
3.4 Log files . 7

4 Problem analysis 9
4.1 Using the log files . 10
4.2 Make conversion log files machine readable . 11
4.3 Gather the conversion log data on a central system 11
4.4 Manage statistical information on the central system 12
4.5 Visualise statistical information . 12
4.6 Strategy . 13

5 Things to learn 15
5.1 Literature . 15
5.2 Technologies needed . 15

Appendices

A Glossary 17

Bibliography 19

iii

Chapter 1

Introduction

Adyen is a Payment Service Provider (PSP), started in 2006 by industry specialists. Adyen
focusses on providing one online payment interface for the European and North America online
market. The role of Adyen in the online payment process is that online shops (merchants) only
have to connect to Adyen in order to support multiple payment methods, like credit cards and
local payment methods like iDeal, bank transfers, etcetera. In addition to local payment methods
international payment methods can also be made available to the merchants audience. With
offices in Amsterdam, London and Los Gatos (CA), Adyen takes care of all the communication
and money flows for the merchants for all the payment method providers (acquirers) and offers
her merchants one unified type of reporting and money flow with one contract.

Adyen’s business model is based on providing innovative features to its merchants at a minimum
cost. Adyen is a collecting PSP, meaning that Adyen has contracts with multiple financial institu-
tions. These institutions fund the Adyen Client Management Foundation, which then distributes
these funds to Adyen’s merchants (Adyen is under supervision by the Dutch Banking Authorities).
For the merchants the advantage of this model is that Adyen reconciles the payments (matching
the incoming money with the outstanding authorised transactions) and provides one money stream
and one type of reporting to the merchants.

The cost for the transaction are twofold for the merchants, a fee to the financial institution
and the Adyen processing fee of a maximum of 10 cents per transaction. There are no monthly
charges or setup fees for the merchants. The costs of the financial institution are transparent and
charged directly to the merchant. Because Adyen has the contracts with the financial institutions
it processes large volumes and has a stronger position in negotiating lower costs. Since Adyens
margin is only the small processing fee, the only way for Adyen to be successful is to process large
volumes of transactions. One of the other benefits, besides providing a low price to the merchants,
is that both the merchant and Adyen strive to increase their transaction volume. Giving insight
in the conversion rates is not only an innovative feature, it also provides knowledge on how to
increase the number of payments and thus generate higher revenues.

Converting website visitors to actual customers spending money at the merchant’s site is the
challenge of every merchant conducting business on the internet. The design of the site, ease of
use of the shopping cart, data and payment entry pages should be no hurdles for the merchant’s
customers in finalising the sale. The more steps in the merchant’s payment process, the less
chance that customers will complete the payment successfully. Payment pages that are difficult to
understand, counterintuitive and hard to navigate are a major source for fallout which decreases
the merchant’s online revenue unnecessarily.

The shoppers are redirected from the merchant’s website to the merchant’s Hosted Payment
Pages (HPP) hosted at Adyen’s platform (Figure 1.1). Adyen is therefore determined in making
the payment process as easy and intuitively as possible, reducing the level of abandonment to a
minimum.

1

Chapter 1

Figure 1.1: Adyen system overview

2

Chapter 2

Goals

The goal of the Conversion Ratio project at Adyen is to gather information about the course of
the payment sessions of consumers buying at online shops. As stated in the introduction not all
of the initiated payment sessions will result in successful payments. Some consumers will abandon
the payment pages prematurely and abort the payment session. Information about the completed
intermediate steps, acquired by logging, can be used as source for statistical analysis. Results
of the analyses can be used for several purposes. In this chapter we will discuss some of the
possibilities.

2.1 Live data feed for merchants

Adyen provides a merchant backoffice for their clients. Part of the backoffice is a dashboard
interface (Figure 2.1) where drag-able widgets enable the merchant to view live data about the
payments that have been performed.

Figure 2.1: Dashboard interface of the Adyen merchant backoffice

One of the uses of the statistical information is to provide feedback to the merchant in the
form of widgets. A possible widget would be a funnel diagram (Figure 2.2) showing the conversion
ratio for a payment method.

3

Chapter 2

Figure 2.2: Order to payment conversion ratio

2.2 Data for marketing material

Marketing material should emphasise the unique selling points of a company. One of the selling
points of Adyen is the partnership it forms with its merchants. Improvement in the levels of
abandonment and key insights in consumer behaviour are of beneficial for both Adyen and its
merchants. The information can therefore be used as a promotional tool.

2.3 Form a basis for an article

Adyen has an agreement with two Dutch newspapers to publish an article near the end of the
project. Results of the analyses and the tests can be used to enrich the articles and promote
Adyen.

4

Chapter 3

What’s in place

3.1 Infrastructure

In order to achieve high availability the HPP run on a cluster of identically configured redundant
systems as indicated by the simplified overview in Figure 3.1. Because of the statelessness of the
HPP the system is highly scalable. These systems run the Apache Tomcat [3] web server to serve
the pages to the shoppers. They hand off the requests to other machines in the system to do the
risk analysis and the actual payment. These machines are represented by CS in Figure 3.1 and
are compromised from multiple hardware systems running multiple applications.

HPP

CS

Figure 3.1: Simplified overview of infrastructure at Adyen

3.2 Skins

The payment pages that are presented to the shoppers can be customised by the merchant through
skins (Figure 3.2). Skins are ZIP files that contain multiple image, HTML, CSS, Javascript and
resource files.

Using skins merchants can not only adjust the look and feel of the pages to match their colouring
scheme and have their logo appear, but they can also adjust which of the payment methods will
appear and their order. Also the way of interaction can be altered by a skin from a multi page

5

Chapter 3

payment, where several pages will be shown sequentially, to a one page payment where all the
interaction will take place on a single page.

Because merchants can tailor these files entirely to their needs the payment pages can com-
pletely mimic the layout of the online shop through skins.

Figure 3.2: Examples of skins for the HPP

3.3 Flow

As stated in section 3.2 the skins can define the way of interaction. When Multi Page Payment
(MPP) is used, multiple pages are shown to the shopper in sequence in order to complete the
transaction. The payment process consist of the following stages:

• Payment method selection

• Enter payment details

• Review order details

• Result

Each of the pages in Figure 3.3 represents one of these stages.

Figure 3.3: Flow when using Multi Page Payment

When using One Page Payment (OPP) all the user interaction takes place on a single page. If
the payment method support this the first three stages are combined on one page as illustrated in
Figure 3.4.

6

What’s in place

Figure 3.4: Flow when using One Page Payment

3.4 Log files

In the current system logging is being performed by the log4j framework [2]. The main reason for
the application logging that is in place is to detect errors and warnings in the application. Some
additional information for the context is also logged to trace the errors and warnings. Besides this
log the behaviour of the shoppers is recorded in a conversion log. All actions that result in a new
page are currently logged except for error and warning pages. Adyen can therefore use these logs
to distil the conversion ratio on the payment sessions that occur within the HPP.

Listing 3.1 shows the first 4 lines of a sample log file. The log file contains information from
both the log4j framework and a message part defined by de application.

Listing 3.1: Sample existing logfile

1 2009−03−28 00 :05 : 01 , 004 INFO [com . adyen . a c t i on s . hpp . conver s i on .
ConversionLogger] {LogTimer} −− Something to r o l l the l o g s −−

2 2009−03−28 01 :18 : 46 , 786 INFO [com . adyen . a c t i on s . hpp . conver s i on .
ConversionLogger] {TP−Proces sor2 } ”VodafoneDevelopment ” ,”3t8vWW2d” ,”
dhqxPh+RqLGnzI3BCHMHAWfVrII=” ,”1201408” ,”2009−03−28T00 : 1 8 : 4 6 . 7 8Z
” ,23499 ,”EUR” ,” review ” ,”CompleteCardPayment ” ,”mc” , , ,

3 2009−03−28 01 :18 : 46 , 786 INFO [com . adyen . a c t i on s . hpp . conver s i on .
ConversionLogger] {TP−Proces sor2 } ”VodafoneDevelopment ” ,”3t8vWW2d” ,”
dhqxPh+RqLGnzI3BCHMHAWfVrII=” ,”1201408” ,”2009−03−28T00 : 1 8 : 4 6 . 7 8Z
” ,23499 ,”EUR” ,” review ” ,” HandlePaymentAction ” ,”mc” , , ,

4 2009−03−28 01 :18 : 54 , 039 INFO [com . adyen . a c t i on s . hpp . conver s i on .
ConversionLogger] {TP−Proces sor2 } ”VodafoneDevelopment ” ,”3t8vWW2d” ,”8
JRJbd0+QCZCzjrgl4M6ti7R+ww=” ,”1201408” ,”2009−03−28T00 : 1 8 : 5 4 . 0 3Z” ,23499 ,”
EUR” ,” d e t a i l s ” ,” PaymentDetails ” ,”mc” , , ,

Information supplied by the log4j framework is:

• The exact DATE in a unified format (a.k.a. timestamp).

• The severity LEVEL assigned to the message, for example INFO, WARNING, ERROR et
cetera.

• The CLASS which is requested to perform the logging.

• The THREAD in which the logger is called.

7

Chapter 3

Information provided by the application is:

• The MERCHANT requesting the payment.

• The SKIN used to customise the HPP. The code identifying the skin is unique and generated
at design time.

• The SESSIONID identifying the session is generated by a hash algorithm based on fields
provided by the merchant.

• The MERCHANT REFERENCE is a reference provided by the merchant to identify
the transaction.

• The TIME until the payment session is valid as specified by the merchant.

• The AMOUNT of the transaction.

• The CURRENCY used in the transaction.

• The current STAGE the transaction is in.

• The name of the CLASS currently handling the transaction.

• The METHOD used to perform the payment for example MasterCard, VISA, iDeal et
cetera.

• The RESULT CODE of the transaction as issued by acquirer, for example AUTHORISED,
REJECTED et cetera.

• The PSP REFERENCE is a unique code identifying a transaction within Adyen’s system.

The current log files can already be used to identify differences in conversion rate between payment
methods. Analysing the conversion log can bring a greater insight into the behaviour of shoppers.
For example, as stated in section 3.2 skins can influence the user experience. The results of the
analyses might therefore indicate that some skins have a greater risk of the shopper abandoning
the payment prematurely. Particularly interesting to see for example is how the conversion ratio
differs between MPP and OPP because less pages will be shown when using OPP as explained in
section 3.3.

8

Chapter 4

Problem analysis

Before a browser converts into a buyer there are a lot of steps to be taken. In each of these steps
a portion of shoppers discontinues their purchase and the remaining part finalises the transaction.
The conversion ratio is the ratio of shoppers that finalise their transaction in comparison to the
number of shoppers that start a transaction (Figure 4.1). Raising the conversion ratio would
mean more shoppers finalise their transactions. Therefore the merchant’s goal is to maximise the
number of successful payments.

Figure 4.1: Conversion ratio explained [7]

When a PSP is used, the PSP takes over the payment process from the merchant. Adyen is
interested in how the conversion ratio is affected by for example banners, menus, movement and
animation, number of pages and difference in layout between the merchant’s pages and the HPP.
These are the main things that can be modified through the use of an Adyen skin.

As stated in chapter 1 Adyen’s business model is based on charging the merchant a fixed
amount per transaction. Greater insight in how the conversion rate is influenced by these factors
and ultimately higher conversion rates mean that Adyen can provide a better service towards its
merchants and a higher turnover.

The main question that we want to answer in our project is:

”How to measure and present the influence of different Skin aspects on the conversion ratio?”

9

Chapter 4

To answer this question we will look at the different aspects that play a role in the project in
the following sections. We will start by reviewing the log files which are currently in use and the
data they contain as indicated by step {1} in Figure 4.2. Step {2} concerns the format in which
the data can be stored. The gathering of the available information, step {3}, will be analysed in
section 4.3. After that we will look at how to store and archive the information on the central
system, step {4}, and perform analyses on the information. Finally we will examine how the
results can be presented visually as indicated by step {5}.

Merchant

HPP

App

Data

CS

{1} what data

{2} what format

{3} gather

{5} visualise
{4} how to store

Figure 4.2: Overview problem analysis

4.1 Using the log files

As stated in section 3.4 the log files contain various information. In order to see what information
is present and how this can be used we built a simple parser to generate some statistics. A first
problem we encountered was the occurrence of delimiters in fields as described in the paper by
Reicle et al. [14].

The main question regarding the current log files is whether all necessary information is avail-
able. At the moment the IP addresses of the shoppers are not recorded in the log files. This
information in combination with a DNS lookup as used in the system proposed by Reichle et
al. (Figure 4.3) can enrich the logged information with the company name or the country name.
This knowledge can give great insight into the demographic distribution of the shoppers. Other
external interesting data which can enrich the conversion data will be researched.

10

Problem analysis

136 M. Reichle, P. Perner, and K.-D. Althoff

5 System Overview

To fulfill the software requirements described in Section 4 a series of steps needs to
be carried out in order to get from the original log file to a usable database [11] (see
Fig. 2). These steps are (1) Data Preparation, (2) Data Extension, (3) Data Conversion
& Extension (4) Data Parsing, and (5) Session Recognition.

The software should be as flexible as possible. Therefore the structure of our tool is
similar to a knowledge-based system comprised of an inference engine and a
knowledge base [12]. Everything that is flexible or can change over time is
represented by facts in the knowledge base. This knowledge base can be edited by a
human or can be obtained by extracting facts from the log file and importing them as
a text file into the knowledge base. Another feature of the software is an automated
look-up of the DNS information from the DNS server to ensure the identification of
the visitor by his hostname or DNS entry. In order to work on the log data with
reasonable performance the existing text file is first converted into a local database
file. A log file is more or less a raw data file where every single line of text represents
a future data set and every separated value goes into another column. Once the initial
database is filled, further data processing is performed in order to bring the data in a
convenient format.

Fig. 2. An Overview over the individual Steps in Data Processing

Figure 4.3: Overview of steps in data processing by Reichle et al.

4.2 Make conversion log files machine readable

Currently the log files that are generated by the log4j framework are human readable. However
they are not comprehensible for human beings, there is simply to much data to get an idea of what
is happening. Because of the high volume of data we need a automated way to parse and process
the log information. Therefore we need to make the conversion data machine readable. In order
to use the conversion data for statistical analysis we need to read them into a structured format.

Although the current conversion logs are parsable to some extent there are some difficulties
associated with this approach. After writing a simple parser to see if we could parse the current
log files and to try and get the first simple statistics we quickly noticed that the current log format
isn’t suitable for our needs. The possible occurrence of delimiters in fields and deviations from
the standard format make the parsing hard. Thus our challenge is to put the logging data into a
machine readable format so we are able to order and compare different payment transactions. A
few formats we have already considered and will be investigating further are:

1. CSV,

2. XML,

3. directly to a database,

4. directly to a web service,

5. Java property files [13],

6. Serialised Java objects.

4.3 Gather the conversion log data on a central system

The HPP applications run on a cluster of identically configured redundant hardware systems as
explained in section 3.1. Because of the statelessness of the HPP each of the intermediate actions
(and their corresponding payment page) within the payment session may be handled by a different
system. In order to perform useful analyses, the data of the individual systems has to be loaded
onto a central system to get a complete overview of all the data.

Because of the high volume of log messages we need to take into account the available band-
width between the systems and the processing power of particular systems. For instance we don’t

11

Chapter 4

want the systems hosting the HPP to stall because they have to load the conversion data to a
central system. We also need to consider the required disk space for the logs so the hard disks will
not flood in these circumstances.

Security also has to be taken into account due to the fact we are dealing with highly sensitive
data. The systems also have to deal with situations where the central system is not available. All
these considerations influence the message protocol used and the frequency of the messages.

4.4 Manage statistical information on the central system

The data gathered can be stored on the central system in several ways.

1. In a database system.

2. In files on the filesystem.

3. Create (visual) output immediately from data in memory.

Once the logging information is available from a central system in a structured way, analysis
can be performed. Queries to the central system and data-sets for graphical representation have
to be defined. Within the logging information a distinction has to be made between information
provided by log4j and the information in the message part that is constructed by the application
as outlined in section 3.4.

Because of the high volume of logging information special attention has to be paid to optimising
the queries so that realtime access is possibe. The high volumes also necessitates designing a
archiving strategy to manage all the data coming in and prevent the hard disk from flooding. A
third aspect to check is whether all the data is available. If for example the information of one
system is missing, the statistics can be off and can give the wrong impression.

A possible optimisation step is to aggregate the information based on common denominator
for example session id.

4.5 Visualise statistical information

Once we have our shopper behaviour and transaction information neatly organised, we are then
able to do statistical analyses on the information. Subsequently we need a way to visualise these
statistics. They need to be visualised in a clear and consistent way such that we can easily recognise
the interesting conversion trends within the payment process. Even more important is to identify
the bottlenecks in the HPP user interface which cause shoppers to leave before the payment is
finalised.

After we have analysed the statistics in some detail we might want to provide some of them
to the merchants. For this we need an intuitive and aesthetically pleasing way of presentation.
Our goal is that the visualisations are self explanatory so the merchants can use them without
training. Figure 4.4 shows the user interface of the first implementation cycle. It is still very basic
and will be extended as discussed in section 4.6, but it gives a good impression of what we want
to achieve.

The payment result codes encountered in Figure 4.4 are listed below.

• Authorised, the transaction is authorised by the acquirer.

• Completed, the transaction is either rejected by the acquirer or pending final verdict.

• Abandoned, the transaction was abandoned prematurely.

12

Problem analysis

Figure 4.4: Web interface of the first implementation cycle

4.6 Strategy

Because we still need insight in the shopper behaviour in order to formulate proper hypotheses we
will use an iterative approach and try to keep our implementation cycles as short as possible. In
this way we can take the things we learned at the end of each cycle into account when we update
our initial implementation and research. This is why we will start with parsing the conversion logs
in their current format, do statistical analysis in memory and provide basic visual representation
on our development station before we work on making the log data machine readable.

We will start testing internally with information supplied by the sales team before performing
the test externally with merchants. During the design and development we will try to keep things
as generic as possible so that parts of the system can be reused.

13

Chapter 5

Things to learn

5.1 Literature

To our knowledge no research has been done concerning the conversion ratio of the payment
process. Some research has been conducted in the field of shopping cart abandonment at online
shops. The percentages of online shopping cart abandonment found in literature vary greatly
between sources. According to Gutzman [9] the abandonment rate is roughly between 25% and
30% although numbers as high as 70% are found elsewhere.

The paper by Li and Chatterjee [12] mentions some factors that impact shopping cart aban-
donment:

1. insufficient information on products and shipping costs,

2. limited functionalities on webpages,

3. confusing buttons or icons,

4. low quality of user interface,

5. detailed registration requirement before purchase,

6. unstable or unreliable interactivity at website,

7. multipage time-consuming checkout process.

Eisenberg [8] contradicts the last item and claims that the number of steps in the checkout process
does not influence the abandonment rate. His claims are however based on one case. Cohen [6]
also mentions points 1, 5 and 7 among others, but adds three interesting factors:

8. use of the shopping cart as a holding bin or wish list,

9. coupon and/or promotion code requests,

10. comparing prices with other retailers.

Some of these items can be used as a starting point for aspects we want to test in the A/B
comparisons. In A/B comparisons half of the visitors would be shown Skin A and the other half
would be shown Skin B [7]. We could then tell which skin has the highest conversion ratio.

5.2 Technologies needed

In order for the project to succeed several technologies are needed. Most of the technologies listed
in this section are already being used in Adyen’s products and workflow.

15

Chapter 5

• log4j is a Java logging framework.

• Machine readable formats are ways to encode information in a form which can be read
by a computer and interpreted by software, a few formats are mentioned in chapter 4.2.

• FusionCharts [10] are animated and interactive Flash charts for web and desktop applica-
tions (source code available).

• Javascript [17] is a dynamic scripting language used in web applications. It is mainly used
to provide interactivity on websites.

• XML [16] is a language to transport and store data. It is an aid for information systems to
share data in a structured way.

• Velocity [4] is a Java-based template engine that renders data from plain Java objects to
text, xml, email, SQL, HTML et cetera (source code available).

• iBATIS [1] is a framework to map Java objects to a relational database using a XML
descriptor (source code available).

• Javadoc [15] is a tool for generating API documentation in HTML format from doc com-
ments in source code (source code available).

• JUnit [11] is a Java framework to write repeatable tests (source code available).

• Clover [5] is a code coverage tool that shows what parts of the source code are covered by
tests.

16

Appendix A

Glossary

CSS Cascading Style Sheets

CSV Comma Separated Values

HPP Hosted Payment Pages

HTML HyperText Markup Language

MPP Multi Page Payment

OPP One Page Payment

PSP Payment Service Provider

XML Extensible Markup Language

17

Bibliography

[1] Apache Software Foundation. iBATIS. Available from World Wide Web: http://ibatis.
apache.org/.

[2] Apache Software Foundation. log4j. Available from World Wide Web: http://logging.
apache.org/log4j/.

[3] Apache Software Foundation. Tomcat. Available from World Wide Web: http://tomcat.
apache.org/.

[4] Apache Software Foundation. Velocity. Available from World Wide Web: http://velocity.
apache.org/.

[5] Atlassian. Clover. Available from World Wide Web: http://www.atlassian.com/software/
clover/.

[6] Heidi Cohen. Shopping cart abandonment and what to do about it. Available from World
Wide Web: http://www.clickz.com/3624370.

[7] Conversion Rate Experts. Google website optimizer 101 – a quick-start guide
to conversion rate optimization. Available from World Wide Web: http://www.
conversion-rate-experts.com/articles/101-google-website-optimizer-tips/.

[8] Bryan Eisenberg. 20 tips to minimize shopping cart abandonment, part 1. Available from
World Wide Web: http://www.clickz.com/2245891.

[9] Alexis Gutzman. The truth behind shopping cart abandonment rates. Available from
World Wide Web: http://www.ecommerce-guide.com/solutions/technology/article.
php/448381.

[10] InfoSoft Global. FusionCharts. Available from World Wide Web: http://www.
fusioncharts.com/.

[11] JUnit. JUnit. Available from World Wide Web: http://junit.sourceforge.net/.

[12] Shibo Li and Patrali Chatterjee. Shopping cart abandonment at retail websites - a multi-stage
model of online shopping behavior. IEEE International Conference on Data Mining, Springer,
2006.

[13] Sun Microsystems. Java property file. Available from World Wide Web: http://java.sun.
com/javase/6/docs/api/java/util/PropertyResourceBundle.html.

[14] Meike Reichle, Petra Perner, and Klaus-Dieter Althoff. Data preparation of web log files for
marketing aspects analyses.

[15] Sun Microsystems. Javadoc. Available from World Wide Web: http://java.sun.com/j2se/
javadoc/.

19

[16] W3Schools. Introduction to xml. Available from World Wide Web: http://www.w3schools.
com/xml/xml_whatis.asp.

[17] W3Schools. Javascript introduction. Available from World Wide Web: http://www.
w3schools.com/js/js_intro.asp.

20

Appendix C

Data preparation of web log files
for marketing aspects analyses

87

P. Perner (Ed.): ICDM 2006, LNAI 4065, pp. 131 – 145, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Data Preparation of Web Log Files for Marketing
Aspects Analyses

Meike Reichle1, Petra Perner1, and Klaus-Dieter Althoff2

1 Institute of Computer Vision and Applied Computer Sciences, IBaI, Leipzig
www.ibai-institut.de

2 University of Hildesheim
www.uni-hildesheim.de

Abstract. This article deals with several aspects of a marketing-oriented
analysis of web log files. It discusses their preprocessing and possible ways to
enrich the raw data that can be gained from a web log file in order to facilitate a
later use in different analyses. Further, we look at the question which
requirements a good web log analysis software needs to meet and offer an
overview over current and future analysis practices including their advantages
and disadvantages.

1 Introduction

Maintaining an online presence offers numerous advantages to an organization or
company. The internet offers a relatively cheap and simple way to reach a high
number of people, independent of their location or other circumstances, and present
them with information, a company’s range of products and maybe even the
opportunity to buy them online. Such a web presence is advantageous in many
aspects: Information needs to be published only once, it is always and easily
available; changes are easy to make and come into effect immediately.

There is however more to an online presence than it seems at first glance: a website
does not only offer information to the visitor, it also conveys information about the
visitors – and thus the company’s potential customers – to the company! It should not
be forgotten, that the people visiting a company’s web pages are the company’s
clients and clientele and thus any information about them is valuable.

The log files produced by a web server are a useful source of information for this.
However, already with middle-rate traffic the log files of a website grow to a size that
can no longer be evaluated manually in an acceptable amount of time. Thus a program
is needed that can fulfill several tasks in supporting a company’s webmaster or
marketing personnel with this [1].

In this paper we are focusing on log file data preparation for later analysis. We
describe the issues that need to be addressed when preparing a log file in such a way
that it can be semantically understood by humans. As a basis for our study we first
briefly describe the common log file format in Section 2. Afterwards we review
existing freely or commercially available log file analysis tools in Section 3. In
conclusion of that we focus on local analysis tools that allow a user to study their logs
onsite. The software requirements for these kind of tools are described in Section 4.

132 M. Reichle, P. Perner, and K.-D. Althoff

Based on that we develop in Section 5 a system architecture and describe the single
components of this architecture exemplarily on samples. Finally, we give an outlook
on the analysis of the prepared log file in Section 6. Conclusions about our work are
given in Section 7.

2 The Log File

An average web server log consists of one line per executed web server command and
is set in the “(Extended) Combined Log Format” [2]. It usually looks similar to the
example presented in Figure 1.

More data can be included easily, however most ISPs keep more or less to this
standard. Additional information could e. g. be the accessed domain or the indication
of a proxy.

The single entries are separated by spaces. Multi-word expressions are enclosed in
quotes, parentheses or square brackets, other delimiters may occur but are uncommon.
An empty entry is usually indicated by a single hyphen.

123.45.67.89 - JohnDoe [15/Jan/2005:18:53:37 +0200] "GET /index.html
HTTP/1.1" 200 639 "http://www.google.com/search?q=mydomain+myname"
"Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.7.12) Gecko/20050919
Firefox/1.0.7"

Fig. 1. A log line in Combined Log Format

It includes:

• The REMOTE HOST’S INTERNET PROTOCOL (IP) ADDRESS: Each
machine connected to the Internet has such an address. It takes the form of four
numbers between 0 and 255 separated by dots and identifies each sender or
receiver of packets sent across the Internet. In this case the log gives the IP address
of the sender, i. e. the address that requested a certain file.

• The REMOTE LOGIN NAME OF THE USER. (Usually empty)
• The AUTH LOGIN. Set if the page or a file on it is password protected
• The exact DATE in a unified format (a.k.a. timestamp). This format can be freely

set in the web server’s configuration, but most webmasters adhere to the standard
presented in the example.

• The REQUEST. The exact command that was passed to the web server, stating
which file to get and what method to use.

• The WEB SERVER’S RETURN CODE. This code indicates whether the request
could be carried out successfully. The most common return codes are 200 (OK),
403 (Forbidden) and 404 (Not found).

• The SIZE OF THE RETURNED FILE in Bytes
• The REFERRER that indicates the website the user came from when requesting

this file (not always detectable)
• The USER AGENT, usually the browser program or if the visitor it not human a

designation of the respective robot or crawler.

 Data Preparation of Web Log Files for Marketing Aspects Analyses 133

Although this standard looks well organized it must be understood, that a web log is a
pretty unstructured source of information. The format presented above is merely a
recommendation and any webmaster is free to change it according to his or her needs.
The given values, their order and formatting can be changed freely and there are only
few common standards such as the space as first separator or a hyphen as general
place holder for missing values.

Web design and web technologies are ever-changing and these changes will be
directly reflected in the web server’s log. It is thus important to keep the structure of
the program as flexible as possible. The log file has to be considered as a very
dynamic source of information in respect to the structure of the data and the content
and this has to be taken into account when developing a flexible log file preparation
tool and not a special purpose data preparation tool.

3 Related Work

When looking at the current range of web log analysis tools, their supply can be
broken down into three different groups: Free web statistics by ISPs, remote analysis
services and local software.

When evaluating them we need to consider the difference between a sales oriented
website and a site that merely offers information. For a web shop, success can simply
be measured in sales. A site that “only” offers information has more complex
requirements: A successful page visit does not necessarily end in a purchase or
anything else that can be directly measured using the web server logs. For such sites
the quality criteria are more fuzzy: How many people visit the site? What do they
look at? Where is it linked or referenced? How often are the owners approached on
contents within the page and by whom? How quickly do changes or new information
get noticed? Also, the line between use and misuse is thin, an informational site wants
to be referenced, it does not want its content to be copied or even hot-linked. Thus a
thorough analysis of referrers, in this case especially when considering image files or
text documents is needed. A simple per page analysis would leave such things
unnoticed.

The first group that we looked at, are free web statistics offered by most ISPs for
their website hosting customers. These are the most basic analyses. They give a rough
overview over the number of requests and some statistics, but lack usability and
flexibility. Analyses are presented as-is and the user has no control over what is
analyzed and how. Such an analysis can give a quick overview over a page’s traffic,
it is of no use though for a more thorough analysis or an application in CRM
(customer relationship management).

The second group are host based services. These services don’t analyze the log
files produced by the respective web server. Instead they use a different approach
where the webmaster adds to each page that shall be analyzed a remotely hosted
element (usually a picture or a java script call). Thus every time the page is requested,
the element is requested as well and a log entry is added to the remote service’s log.
This offers a lot of advantages to the service provider: There is no need to deal with
changing log formats, since they only have to parse their own log files, the parsing
can be done locally, in real time and on a server rather than a personal computer.

134 M. Reichle, P. Perner, and K.-D. Althoff

There is but one problem: The company exposes exact and detailed information about
it’s web presence usage – and thus customers – to another party. Moreover, all
analyses can be accessed over the web (usually via a simple username/password
authentication) and are thus in the potential danger of being hacked. Many companies
may not be willing to take that risk.

This leads us to the third group: Local log file analysis tools. A broad range of
analyses is offered by NetLog, made by IBaI Solutions [3]. The program offers access
to a whole number of analyses and views accompanied by the according charts.
Another possibility is an integrated solution based on the products by Microsoft[4].
They offer a statistical analysis that is based on OLAP and analysis components in
their SQL and Commerce Server Products. However, the exemplary statistical
analyses we could see showed that they do not process the log file in such a way that
more intelligent analyses are possible besides the statistical ones. Other professional
solutions are offered by ClickTracks [5], WebTrends [6] and LiveSTATS by
DeepMetrix [7]. These programs also incorporate page content modeling (defining the
“role” of a site) and customer relationship management (CRM) elements. Their
program design mostly aims specifically at web shops and is capable of e. g.
recognizing an addition to the shopping basket or a successful purchase. With this
information they can distinguish successful from unsuccessful visitor sessions or
recognize buying patterns, which, e. g. connected with the entry referrer, allows
conclusions as to the effectiveness of a certain ad, or of being referenced on a certain
website or portal. Provided with the costs of different ads they can even calculate their
ROI (return on investment) based on the actual purchases that resulted from them. An
additional feature that can be found in all of them are tied-in CRM tools that can e. g.
associate email addresses with visitors using tagged referrers within email campaigns.

These programs offer not only lots of additional eye candy, but also more
sophisticated filtering and a large number of criteria that visitors and sessions can be
sorted by. As to the actual analysis, all of these programs have a two-fold approach:
They offer their analyses either as a client based piece of software, or as a hosted
service (as described above). Also, although they do offer the import of raw log files,
all of these programs prefer the afore mentioned approach of including a tracking
script in each website, that is then either remotely or locally evaluated. This offers
numerous advantages, as it again spares having to deal with changing log file formats,
funny values, filtering of frames and other nuisances traditional log file analysis
brings with it (see further sections). Also, sometimes there is no other choice than to
use a remote element for web analyses. For example when a reverse proxy is used that
accepts all outside requests and hands them to the respective services. This is a
common practice among larger sites in order to deal with load balancing, on-site
firewalls and other security measures. In these cases however, the requesting IP is
always the IP of the reverse proxy. Here a remote element is one way to get to the
actual requesting IP. However, there’s also disadvantages to this approach: Firstly it
means a lot of initial extra work for the webmaster: The tracking script call has to be
inserted into every single page of the web presence. Depending on the number and
structure of pages, this can be a wearisome task. In addition an analysis based solely
on tracking scripts will only work from the day the scripts were inserted. Months or

 Data Preparation of Web Log Files for Marketing Aspects Analyses 135

even years worth of collected logs would remain unused, a considerable waste of
information resources. Also, though evaluating the information gathered by a tracking
script is much more comfortable, web server logs are still the most detailed source of
information available. Their seeming disadvantage is also their biggest advantage:
They list everything! This produces a considerable overhead, but also offers the
possibility to retrieve information from old logs that maybe didn’t seem interesting
(and thus wasn’t included in the tracking scripts) then, but is in a later point in time.
Also the presented professional programs are mostly tailored for web shops and can
only partially fulfill the described needs of information-centered web sites, as
mentioned in the beginning of this section.

Finally there is one thing, that none of the presented programs offers: All of them
can only group sessions by either pre- or user-defined criteria or patterns. A valuable
additional source of information would be to see what new correlations or groups can
be found. This needs more intelligent analysis methods such as clustering for
discovery of groups of users [8] [9], structural analysis for common path recognition
or for finding sequence rules in web log files [10].

4 Software Requirements

Web logs offer a great wealth of information, they are however poorly structured.
Thus, software that aims to allow it’s user to work in a reasonable way with the
information they include needs to fulfill certain requirements:

! It needs to be able to handle the dynamic nature of the structure and of the content
(semantic) of the data without doing any programming changes.

! It needs to present the information included in the log file in a clear and concise
manner, excluding unnecessary information, presenting the remaining data in a
clearly semantically understandable way.

! It also needs to offer several different views on the data, depending on what the
interest of the user is. Be it the source of a page’s visits, which pages attract most
attention or how well the pages are covered by search engines and listing services.

! The software needs to support a quick overview just as well as an in-depth
investigation. Therefore, the analysis should work on a single or several data base
fields as well as on single or consecutive data base entries.

! Since we are dealing with a temporal medium comprised of web server requests in
temporal sequence we also have to determine a user session from our raw data.
This session represents one single, continuous visit of a person (or robot).

! It needs to extract all additional information that can be gained from the log data
and allow their free combination.

! It should allow detecting and filtering out pre-defined patterns in the log file data
such as robot accesses to the website.

Generally speaking, it needs to assist the user in drawing conclusions from the data,
either by doing that itself or by providing according hints.

136 M. Reichle, P. Perner, and K.-D. Althoff

5 System Overview

To fulfill the software requirements described in Section 4 a series of steps needs to
be carried out in order to get from the original log file to a usable database [11] (see
Fig. 2). These steps are (1) Data Preparation, (2) Data Extension, (3) Data Conversion
& Extension (4) Data Parsing, and (5) Session Recognition.

The software should be as flexible as possible. Therefore the structure of our tool is
similar to a knowledge-based system comprised of an inference engine and a
knowledge base [12]. Everything that is flexible or can change over time is
represented by facts in the knowledge base. This knowledge base can be edited by a
human or can be obtained by extracting facts from the log file and importing them as
a text file into the knowledge base. Another feature of the software is an automated
look-up of the DNS information from the DNS server to ensure the identification of
the visitor by his hostname or DNS entry. In order to work on the log data with
reasonable performance the existing text file is first converted into a local database
file. A log file is more or less a raw data file where every single line of text represents
a future data set and every separated value goes into another column. Once the initial
database is filled, further data processing is performed in order to bring the data in a
convenient format.

Fig. 2. An Overview over the individual Steps in Data Processing

 Data Preparation of Web Log Files for Marketing Aspects Analyses 137

One of these steps is data parsing where semantically irrelevant data are removed
from the data strings in order to get human readable information out of encoded
strings, such as the referrer. Date strings are converted to timestamp data types,
numeric values (such as IP addresses) are supplemented with symbolic information
(in this case the according hostname). This step is referred to as data conversion.
Other DNS information leads to data extension since they bring out more information
about a visitor such as the company name or the country name. In a last step the data
sets are split up into sessions and each session is assigned a unique session ID. After
this last step, we have generated a final database that contains all explicit and implicit
information that can be gained from the log file. Over this data base we can perform
our data analysis.

We would like to point out here that the performance of the software is an
important issue that already needs to be considered during the software design phase,
otherwise the data preparation step takes too much computation time. Reading values
from the database and parsing them or performing a database lookup does not take too
much time. However, writing them back takes time. Every new value can only be
inserted in the fitting places so with every insertion goes a full database search.
Therefore, multithreading techniques should be used and the data base design should
be made accordingly. However, since parts of these results depend on each other (e. g.
session IDs can only be assigned once the dates have been parsed) this can only be
used in some aspects. Thus other sophisticated procedures need to be included.
Looking up each individual hostname can cause some delay, especially when an IP
cannot be resolved by the “whois” command and it times out. This problem can at
least partially be solved by implementing a caching function.

5.1 Creation of the Initial Database

5.1.1 The Database
For reasons of simplicity and portability we are using an embedded database
management system, rather than a client server based approach. However, since all
database communication is done using simple SQL, interaction with any other
database management system is possible too, provided the according driver is
included in the program. Storing the data in a SQL database also allows the capable
user to not only use the predefined queries in the program, but also freely query the
database him-/herself to get whatever information is desired. Doing a direct SQL
query, the search can e. g. be reduced to a specific time segment, or limited to datasets
matching a certain criterion (e. g. all visitors from a particular country, all accesses of
a particular page, or all users who visited more than 5 different pages.). There is
literally no limitation to what you can do with the database using SQL. Also data
mining methods can work on SQL [13] [14].

5.1.2 Line Parsing and Database Insertion
The creation of the database itself is done by simply parsing line by line of the log file
and writing each value into the database. Likewise in any data mining problem we
also have to face the problem of missing or unknown data values while parsing the
data.

138 M. Reichle, P. Perner, and K.-D. Althoff

Missing data are data that are not in the log file such as the language of the user
agent that is not always indicated.

We consider the unknown data problem as the problem where we cannot parse the
data since the parsers has no parsing rules for it. It is clear that this system state
cannot remain as it is during the lifetime of system. Therefore our system has the
possibility to detect this novel situation and go into a knowledge engineering phase by
allowing the user to manually insert the missing parsing rules into the knowledge
base.

 Thus, the first task that needs to be undertaken is to break each line into its
respective elements. The number of these elements is the same in every line, since
missing values are replaced by a place holder (usually a hyphen).

In order to distinguish the individual elements during the parsing, we first need to
identify the different separators: The default separator is a single space, if an element
contains spaces itself, it needs to be enclosed by an additional type of delimiter (see
Fig. 3), this can be squared brackets, single or double quotes. Simple parentheses or
curly braces are less common but should be considered as well. When doing this, a
common mistake is to fall for delimiters within elements, such as within the last
element in Fig 3. An element always ends with the delimiter it started with – plus a
space.

foo bar “a multi word item” baz [there are many different delimiters]
‘and yet another item, with “funny” ‘stuff’

Fig. 3. Different Delimiters

It should also be considered that delimiters that do not break parsing can still cause
trouble when feeding the respective string into the database. Especially mixtures or
repetitions of quotes and double quotes within a string can interfere with the insertion
of that string into the database. Most programming languages offer a quoted string
function that can take care of some of these problems. They cannot take care of them
all though, and also log data should not be altered too easily since e. g. a referrer url
can get useless when exchanging special characters. In these cases a careful choice
has to be made between program stability and data integrity.

In order to maintain a database that completely reflects the log file we would now
have to stop reading the data, output some kind of error message as to why that log
file could not be read and stop the program. However, for the sake of user friendliness
and considering that the degree of “data corruption” will most likely remain well
below the usually acceptable 5% error rate we simply insert a dummy value for
missing values. This ensures that neither session nor path recognition gets broken.

An additional option might be to include some unique key into the replacement
string and write both, the key plus the original line into an external file, allowing the
user to still look up the full log entry if he/she wishes.

5.1.3 Input Filtering
Already when we are reading in the original log file a first filtering function must be
applied in order to reduce the amount of redundant data within the database. For set-
up of such a filter we first have to understand the conceptual model of the web site

 Data Preparation of Web Log Files for Marketing Aspects Analyses 139

and the user needs for the analysis. It is a difference whether images are pure
decorational elements or the main information like in an on-line image gallery.

Log files can easily have tens of thousands of lines and not every line has the
desired informational value. Generally speaking, a line is appended to the web server
log for every single command the web server carries out whether it sends an html file,
images or a css file, containing styling information.

Not all of these actions are of interest to us though. What we most likely want to
see is the user’s navigation over the different pages. Styling or decorative elements
are – under the aspect of a marketing oriented analysis – of only limited informational
value. If a visitor accesses a page that has a background image and buttons underlayed
with two different bitmaps, this will result in four lines in the log file: one for the
actual html file, one for the background image, one for each bitmap, since these are of
course also files that have to be retrieved by the web server. These four log entries
will however always appear together, since the images will (in most cases) only be
requested when a visitor accesses the html page that references them. The three image
requests thus add no informational value and need not be included in the database.

Due to this a first input filter can be applied here that controls, which log lines do
get included in the database and which are left out all together. This can for example
be done by providing a configuration file that lists file extensions that shall be
excluded from the database. Typically this file would include image file extensions
such as jpg, gif or png, or files that are concerned with scripts or formatting, such as
java script or css. In order to adhere to the afore mentioned flexibility it is important
to not hard-code these into the actual source code but export them to a freely editable
configuration file. Providing this, new additions can be made anytime (e. g. when a
site is switched to css) or entries can be taken out.

5.1.4 Field Name Assignment
Once all desired log entries have been inserted into the database, one last problem
remains to be solved: As mentioned above there is a common standard for log file
formatting, however, no ISP has to stick to it and it is easy to change the log format
within a web server application. Thus we can make no assumptions as to which
database column represents which value. There are two approaches to dealing with
this problem: One would be to adjust the program to the log file format, either by
another configuration file or by presenting the user with one or a collection of sample
lines, asking him/her to give each entry the according designation. This approach
however depends on the quality of the sample line(s) and the user’s knowledge on the
matter. A second possibility would be an automated approach: Here the program’s
settings are not changed, instead it tries to guess the according fields itself e. g. using
textual pattern recognition. This would be no problem with entries like the IP or the
web server command. The recognition however becomes less trivial when it comes to
distinguishing e. g. return code from byte size or classifying entries that are arbitrary,
like a user’s login. Also such a mechanism would have to be provided with all
possible fields plus a description of their pattern and could thus not adapt to new
database fields. Thus, we would suggest a user-based approach.

5.1.5 Data Extension and Conversion
Once initial data preparation is finished and an initial database has been created, the
database is worked over several times in order to include additional information that

140 M. Reichle, P. Perner, and K.-D. Althoff

can be gained from the log file information itself. Firstly the dates that are available
only as simple strings (see Figure 4) are converted from a string into a date data type
(e. g. DateTime or Timestamp) in order to facilitate working with them in the
following process.

[15/Sep/2005:08:35:37 +0200]

Fig. 4. A typical Time String

Once the database has proper date types, queries like “before”, “after” or
“between” can easily be carried out on these fields without any need for tedious string
parsing.

Additionally every IP is looked up using functions provided by the respective
programming language. Often the hostname already tells us what institution or
company the visitor came from. If the information is insufficient or a hostname is
unavailable a full DSN query can be done. An IP’s DNS record can provide much
useful information on the owner of an IP, such as the country, a contact address and a
description of the institution.

This works of course only if the visitor or his/her company or organization have an
IP address of their own. Otherwise the DNS record will show the data of the visitor’s
internet service provider. This can still be helpful though, since it may be assumed
that most people have an ISP within their own country.

5.2 Data Parsing

Another source of information are search machine referrers, since they indicate the
search terms with which the webpage was found and sometimes also the position in
the search machine’s page ranking. It may also be of interest which search machine is
most frequently used or what internet portal is most popular with the company’s
clientele. However, the referrer that includes this information will be rather cryptic.
Figure 5 shows three different search engine referrers searching for the same key
words from the same browser and the same machine, though they vary considerably
since every search engine has it’s own way of encoding search queries.

http://www.google.com/search?q=ibai+institut&sourceid=mozilla-
search&start=0&start=0&ie=utf-8&oe=utf-8&client=firefox-
a&rls=org.mozilla:de-DE:official

http://suche.web.de/search/web/?mc=hp%40suche.suche%40home&su=ibai+in
stitut&webRb=de

http://search.lycos.com/default.asp?loc=searchbox&tab=web&query=ibai+
institut&submit.x=0&submit.y=0&submit=image

Fig. 5. Different Search Engine Referrers

The program now needs to be able to e. g. extract the search terms from every of these
referrers, and again, there is no guarantee that a search engine will not change it’s

 Data Preparation of Web Log Files for Marketing Aspects Analyses 141

encoding or a new one will come up. This problem is solved by again outsourcing the
descriptors that indicate the actual search terms (in this case “q=”, “su=” and
“query=”) into an external file, so that new descriptors can be included and existing
ones changed. To further illustrate this, we will demonstrate the exact parsing process
in detail with the first referrer.

The full version is:

http://www.google.com/search?q=ibai+institut&sourceid=mozilla-
search&start=0&start=0&ie=utf-8&oe=utf-8&client=firefox-
a&rls=org.mozilla:de-DE:official

We perform a search over it with the search word descriptors we know and cut it
from there, which leaves us with:

q=ibai+institut&sourceid=mozilla-search&start=0&start=0&ie=utf-
8&oe=utf-8&client=firefox-a&rls=org.mozilla:de-DE:official

We also know that the ampersand (“&”) is in pretty much every encoding used to
append the different elements of a query. Thus we also make a cut before the first
ampersand:

q=ibai+institute

With this cut-out we have almost reached our target. Now all we have to do is to
remove the search word descriptor and use a url decoding function on the remaining
text. Url decoding [15] is used to encode special characters within urls. (Unfortunately
not every site uses them as they should, otherwise a lot of the above mentioned
parsing problems wouldn’t exist. However we may assume that at least all reasonable
search machines use url encoding for their search expressions.) A few examples for
url encoding can be seen in Figure 6.

Search term encoded Search term decoded

ibai+institute ibai institut

%22ibai+institut%22 “ibai institut”

ibai%2Binstitut ibai+institut

%27ibai+institut%27 ‘ibai institut’

Fig. 6. A few Examples on URL Encoding

Once the url decoding is successfully finished, the original search terms are
extracted from the search machine’s referrer and can be presented to the user,
statistically analyzed etc.

Of course extracting the search terms isn’t the only information that can be gained
from a search engine’s referrer. Providing some more previous knowledge on the
structure of a certain search machine’s queries we can also extract additional
information such as the browser language or a page’s position within the search
engine’s page ranking system. This information shows another possibility of data

142 M. Reichle, P. Perner, and K.-D. Althoff

extension but is however not provided by every search machine and should hence not
be generally expected.

5.3 Session Recognition

Once all above mentioned steps are carried out, every data set is assigned a session ID
(SID). A session is understood as a single visitor’s contiguous path over the different
pages. Thus we define a session as a set of log entries where every entry has the same
origin IP address, and the time interval between two consecutive entries is never
above twenty minutes.

6 Views and Analyses

Up until now we have realized two different kind of web log data analyses: statistical
analyses and views.

The statistical analyses don’t present the log data themselves but meta information
about them, such as the number of entries, the number of pages, the number of unique
or recurring visitors, average length of stay or the amount of generated traffic.
Another common task are rankings: The most popular referrer, hostname, search
terms or, in a multi domain log, the most popular domain. Any database field can be
ranked like this, though it of course doesn’t make sense for all of them. This data
representation is most suited to give a quick overview on the general numbers and
popularity of a specific website or an entire web presence.

Views present the actual log content but in a more tailored fashion. This can mean
rearranging individual columns, filtering or grouping the data. An example for
filtering would be excluding automated page hits from entities like crawlers, bots or
other information harvesting scripts. The more up-to-date a search engine wants to be,
the more crawlers it needs to send out. This can cause a considerable impact on your
website’s log. You also might want to exclude your own page accesses. Many
companies maintain the practice to set their own site as every web browser’s starting
page. That is okay as long as it points to a local copy or the intranet. Setting it to the
company’s internet address tends to tamper website statistics, hit counters and other
statistical analyses. An example for grouping data would be a session view. Here,
instead or presenting every single dataset, the log entries are combined to sessions,
which can then again be compared, evaluated or sorted by all desired criteria.

7 Analysis Obstacles

A data analysis like the one presented in this paper offers high informational value to
the owner of a web presence. It is not trouble-free though. During the first testing
phase we noticed several factors that can tamper or complicate a proper site analysis.

A first obstacle is the use of frames. This means that a site does not consist of only
one html document, as it usually is, but it consist of several frames, that each contains
an html document. Typically there may be one frame containing the menu, another
one for the title or footer and a third one that holds the actual content. Thus, when

 Data Preparation of Web Log Files for Marketing Aspects Analyses 143

entering a site the server has to send three html documents for the user to see a
(seemingly) single page.

Frames should generally no longer be employed for a number of reasons: First of
all they tend to cause confusion to the user himself because they appear as one single
site, though they are not. This can cause problems with a number of things like
printing (many browsers put one frame per page.), bookmarking (the bookmarked
page will be a different one depending where the focus is at the time of the
bookmark’s creation) or interaction with other software like screen readers or
hardware like a Braille terminal. Also navigation can be made difficult because the
functioning of the “forward” and “back” buttons is affected by frames as well. Badly
implemented “nesting” frames can even render a page completely useless. These
navigation problems also affect crawlers that try to index the site for a search
machine. Also, there are also still browsers around, that don’t support frames. All this
has led to a dislike of frames among the wider internet “population”. They are today
regarded bad style and “old hat”.

Additionally to all this they also complicate a proper path analysis since there is no
way to tell whether a given frame offers content, navigational elements or pure
decoration, say, a fancy title. So instead of a clear path like this:

index –> products –> product1 –> contact -> email_form

you might end up with a path like this one:

menu –> top –> index –> menu –> top –> products –> product_footer –>
menu –> top –> product1 –> product_footer –> menu –> top –> contact -
> menu -> top -> email_form

 Thus, used on a page structure that employs frames the software would have to be
adapted individually to each frame that is used and does not contain path-relevant
content.

Another problem, not for the path analysis but for it’s use by a human, are content
management systems (CMS) and their automatically generated page names, that leave
you with a path like

1/1 –> 16/7 -> 16/12 -> 8/1 -> 2/4

Here the generated path is valid but does not allow any conclusion as to the site’s
actual content. There are several ways for solving this, such as configuring the content
management system to use descriptive page names or mapping the individual page
names to a more meaningful “translation” within the program.

A last factor that should be considered are people who deliberately hide their
identity when online, be it for privacy reasons or on a certain purpose. Measures like
e. g. using an anonymizing HTTP proxy or forging a browser’s user-agent signature
can effectively hide a user’s identity from web server logs. Other measures like
setting cookies or using java scripts to track a visitor can also be evaded easily. It
should also be kept in mind, that tracking techniques, when used too aggressively, can
also have a deterring effect since nobody likes to by “spied” upon. It needs to be
decided individually which tracking techniques are adequate and what conclusions
can be drawn from the number of visitors evading them.

144 M. Reichle, P. Perner, and K.-D. Althoff

8 Conclusion and Outlook

Our objective is, to find a way to present the vast but incomprehensible data that are
provided by a web server’s log file in a clear and concise way, but without reducing
it’s informational value or making any kind of data inaccessible. In order to achieve
this, the interface was designed to be simple and flexible because a one-size-fits-all
approach is not feasible in this application. There can be only little prediction as to a
user’s intention. He or she might just want to get a quick overview or – in the
opposite – trace a specific user’s behavior, thus a good log analysis software needs to
meet all these requirements.

 We have described our work on web server log data preparation. Our intension
was to develop a flexible software tool that meets the requirements posed by the
dynamic nature in structure and content of a web log file. Therefore we developed an
architecture for the system that is similar to a knowledge-based system comprised of a
inference engine and a knowledge base. The knowledge base contains information
about the parsing criteria and the set up of the filters. These information can be easily
changed or up-dated by hand or semi-automatically. We have also point out the
special software development requirements to ensure acceptable run-time
performance. The missing and unknown data problem was described and method to
handle that for log file data. Finally, we presented our first analysis methods. Further
work will be done to develop more intelligent analysis methods such as user profiling,
path analysis and association mining.

References

1. P. Perner and G. Fiss, Intelligent E-marketing with Web Mining, Personalization, and
User-Adpated Interfaces, In: P. Perner (Ed.) Advances in Data Mining, Applications in E-
Commerce, Medicine, and Knowledge Management, lnai 2394, Springer Verlag 2003, p.
37 – 52.

2. Apache HTTP Server Documentation Project: Combined Log Format. http://httpd.
apache.org/docs/1.3/logs.html#combined (accessed Jan 23rd 2006)

3. P. Perner, Einrichtung zur automatischen Ermittlung der Nutzung von Web-Präsentationen
und/oder On-line Verkaufsmodellen, Patent D 198 01 400.7-08

4. Microsoft SQL Server Analysis Services http://www.microsoft.com/sql/technologies/
analysis/default.mspx

5. Clicktracks Software http://www.clicktracks.com/
6. Webtrends Software http://www.webtrends.com
7. Deepmetrix Software http://www.deepmetrix.com
8. Scherbina and S. Kuznetsov, Clustering of Web Session Using Levenshtein Metric, In: P.

Perner (Ed.), Advance in Data Mining, Applications in Image Minnig, Medicine and
Biotechnology, Management, Environmental Control, and Telecommunications, lnai 3275,
Springer Verlag 2004, p. 127-133.

9. M. Halvey, M.T. Keane, and B. Smyth, Birds of a Feather Surf Together: Using Clustering
Methods to Improve Navigation Prediction from Internet Log Files, In: P. Perner and A.
Imiya (Eds.) Machine Learning and Data Mining in Pattern Recognition, lnai 3587,
Springer Verlag 2005, p. 174-183

 Data Preparation of Web Log Files for Marketing Aspects Analyses 145

10. E. Blanc and P. Giudici, Sequence Rules for Web Clickstream Analysis, In: P. Perner (Ed.)
Advances in Data Mining, Applications in E-Commerce, Medicine, and Knowledge
Management, Springer Verlag, lnai 2394 , 2002 p. 1-14

11. Ahlemeyer-Stubbe, Analyseorientierte Informationssysteme = Data Warehouse, In: P.
Perner (Ed.) Data Mining, Data Warehouse, and Knowledge Management, Proc. Industrial
Conference on Data Mining ICDM, IBaI-Report 2001, ISSN 1431–2360, p. 30-39

12. J. Rech and K.-D. Althoff, Artificial Intelligence and Software Engineering - Status and
Future Trends, Special Issue on Artificial Intelligence and Software Engineering,
Zeitschrift Künstliche Intelligenz (3)2004, p. 5-11

13. R. Meo, P. Luca Lanzi, M. Klemettinen (Eds.), Database Support for Data Mining
Applications: Discovering Knowledge with Inductive Queries, Springer Verlag 2004, lnai
2682

14. R. Meersman, K. Aberer, Th. Dillon (Eds.), Semantic Issues in e-Commerce Systems,
Vol. 111, 2003

15. W3 Schools: HTML URL-encoding Reference. http://www.w3schools.com/tags/
ref_urlencode.asp (accessed Jan 23rd 2006)

Bibliography

[1] Apache Software Foundation. Apache struts. Available from: http://struts.apache.org/
2.1.6/index.html.

[2] Apache Software Foundation. iBATIS. Available from: http://ibatis.apache.org/.

[3] Apache Software Foundation. log4j. Available from: http://logging.apache.org/log4j/.

[4] Apache Software Foundation. Tomcat. Available from: http://tomcat.apache.org/.

[5] Apache Software Foundation. Velocity. Available from: http://velocity.apache.org/.

[6] Codehaus. Xstream. Available from: http://www.xstream.codehaus.org.

[7] Ben Collins-Sussman, Brian W. Fitzpatrick, and C. Michael Pilato. Verion Control with
Subversion. O’Reilly, 2004.

[8] Conversion Rate Experts. Google website optimizer 101 – a quick-start guide to conversion
rate optimization. Available from: http://www.conversion-rate-experts.com/articles/
101-google-website-optimizer-tips/.

[9] The Internet Engineering Task Force. Hypertext transfer protocol – http/1.1 specification
memo. Available from: http://www.ietf.org/rfc/rfc2616.txt.

[10] Apache Software Foundation. Commons logging. Available from: http://commons.apache.
org/logging/.

[11] Google. Google Analytics. Available from: http://www.google.com/analytics/.

[12] Goetz Graefe. Query evaluation techniques for large databases. ACMComputing Surveys,
1993.

[13] Samudra Gupta. Pro Apache Log4j. Apress, 2 edition, 2005.

[14] Steve Holzner. Ant, The Definitive Guide. O’Reilly, 2 edition, 2005.

[15] InfoSoft Global. FusionCharts. Available from: http://www.fusioncharts.com/.

[16] ISO 3166 Maintenance agency (ISO 3166/MA). Iso 3166-1 (2-letter country codes). Available
from: http://www.iso.org/iso/english_country_names_and_code_elements.

[17] json.org. Json - javascript object notation. Available from: http://www.json.org/.

[18] JUnit. JUnit. Available from: http://junit.sourceforge.net/.

[19] Brian Keating. Challenges Involved in Multimaster Replication. Available from: http:
//www.dbspecialists.com/files/presentations/mm_replication.html.

[20] Jon Kleinberg and Éva Tardos. Algorithm Design. Addison-Wesley, 2006.

105

http://struts.apache.org/2.1.6/index.html
http://struts.apache.org/2.1.6/index.html
http://ibatis.apache.org/
http://logging.apache.org/log4j/
http://tomcat.apache.org/
http://velocity.apache.org/
http://www.xstream.codehaus.org
http://www.conversion-rate-experts.com/articles/101-google-website-optimizer-tips/
http://www.conversion-rate-experts.com/articles/101-google-website-optimizer-tips/
http://www.ietf.org/rfc/rfc2616.txt
http://commons.apache.org/logging/
http://commons.apache.org/logging/
http://www.google.com/analytics/
http://www.fusioncharts.com/
http://www.iso.org/iso/english_country_names_and_code_elements
http://www.json.org/
http://junit.sourceforge.net/
http://www.dbspecialists.com/files/presentations/mm_replication.html
http://www.dbspecialists.com/files/presentations/mm_replication.html

[21] Timothy C. Lethbridge and Robert Laganière. Object-Oriented Software Engineering. Mc-
Graw Hill, 2 edition, 2005.

[22] Shibo Li and Patrali Chatterjee. Shopping cart abandonment at retail websites - a multi-stage
model of online shopping behavior. IEEE International Conference on Data Mining, Springer,
2006.

[23] Vincent Massol. JUnit in Action. Manning, 2004.

[24] MaxMind. GeoLite Country. Available from: http://www.maxmind.com/app/
geolitecountry.

[25] Mountainminds. EclEmma. Available from: http://www.eclemma.org/.

[26] OASIS. SOA. Available from: www.oasis-open.org/committees/soa-rm/.

[27] PostgreSQL Global Development Group. PostgreSQL. Available from: http://www.
postgresql.org/.

[28] PostgreSQL Global Development Group. PostgreSQL partitioning. Available from: http:
//www.postgresql.org/docs/current/static/ddl-partitioning.html.

[29] Meike Reichle, Petra Perner, and Klaus-Dieter Althoff. Data preparation of web log files for
marketing aspects analyses.

[30] Sun Microsystems. Java property file. Available from: http://java.sun.com/javase/6/
docs/api/java/util/PropertyResourceBundle.html.

[31] Sun Microsystems. Java SE Desktop Technologies - Java Beans. Available from: http:
//java.sun.com/javase/technologies/desktop/javabeans/index.jsp.

[32] The Eclipse Foundation. Eclipse. Available from: http://www.eclipse.org.

[33] The Prototype Core Team. Prototype javascript framework. Available from: http://www.
prototypejs.org/learn/json.

[34] W3C. Soap version 1.2 primer (second edition). Available from: http://www.w3.org/TR/
2007/REC-soap12-part0-20070427/.

[35] W3Schools. Ajax tutorial. Available from: http://www.w3schools.com/Ajax/.

[36] W3Schools. Introduction to XML. Available from: http://www.w3schools.com/xml/xml_
whatis.asp.

[37] W3Schools. Javascript introduction. Available from: http://www.w3schools.com/js.

[38] Wikipedia. Comma separated values. Available from: http://en.wikipedia.org/wiki/
Comma-separated_values.

106

http://www.maxmind.com/app/geolitecountry
http://www.maxmind.com/app/geolitecountry
http://www.eclemma.org/
www.oasis-open.org/committees/soa-rm/
http://www.postgresql.org/
http://www.postgresql.org/
http://www.postgresql.org/docs/current/static/ddl-partitioning.html
http://www.postgresql.org/docs/current/static/ddl-partitioning.html
http://java.sun.com/javase/6/docs/api/java/util/PropertyResourceBundle.html
http://java.sun.com/javase/6/docs/api/java/util/PropertyResourceBundle.html
http://java.sun.com/javase/technologies/desktop/javabeans/index.jsp
http://java.sun.com/javase/technologies/desktop/javabeans/index.jsp
http://www.eclipse.org
http://www.prototypejs.org/learn/json
http://www.prototypejs.org/learn/json
http://www.w3.org/TR/2007/REC-soap12-part0-20070427/
http://www.w3.org/TR/2007/REC-soap12-part0-20070427/
http://www.w3schools.com/Ajax/
http://www.w3schools.com/xml/xml_whatis.asp
http://www.w3schools.com/xml/xml_whatis.asp
http://www.w3schools.com/js
http://en.wikipedia.org/wiki/Comma-separated_values
http://en.wikipedia.org/wiki/Comma-separated_values

	Abstract
	Preface
	Contents
	Introduction
	Business model of Adyen
	Goals of the project
	Live data feed for merchants
	Data for marketing material
	Form a basis for an article

	What's in place
	Infrastructure
	Skins
	Payment flow
	Log files

	Problem analysis
	Using the log files
	Conversion logging as part of a generic logging framework
	Make conversion log files machine readable
	Gather the conversion log data on a central system
	Manage statistical information on the central system
	Visualise statistical information
	Strategy

	Log the required data
	Iterative development approach
	Design
	Model the payment flow
	Additional information to be logged

	Implementation
	Java logging framework
	Validate the payment sessions
	Struts framework

	Make the logs machine readable
	Analysis of log formats
	CSV
	XML
	Java property file
	Serialised Java objects
	Directly to a web service
	Directly to a database on the local system

	Performance overview of parsing log formats
	Implementation format

	Centralise the log information
	Centralisation strategies
	Periodic transfer of rolling log files
	Database replication

	Design considerations of strategies
	Load balance
	Network capacity
	Security

	Implemented strategy

	Store the log data
	Data storage in a generic logging framework
	Storage design for conversion log information
	Data extension
	Aggregation
	Validation
	Performance enhancement
	Archiving

	Implementation
	Store in memory
	Store in Database
	Performance enhancement
	Archiving

	Visualise the data
	Usage of the conversion statistics
	Design
	Chart templates
	Chart types
	Statistic types
	Filter
	Statistics webpage and XML web service

	Implementation
	Process
	Results
	Extend the user interface
	Performance enhancement

	Software Quality and Testing
	Unit testing
	Code coverage analysis
	Regression testing

	Conclusions
	What data needs to be logged
	In which format is the data logged
	How to Centralise log data
	How to store log data
	How to visualise log data
	Goals
	Live data feed for merchants
	Data for marketing material
	Form a basis for an article

	Recommendations
	Generic scalable logging framework
	A / B testing
	Pattern recognition

	Glossary
	Orientation report
	Data preparation of web log files for marketing aspects analyses
	Bibliography

