

This presentation

What is Municipal Solid Waste?

Why do we need to manage it?

How can we model Municipal Solid Waste?

What kind of reactions take place?

What kind of tools do we need?

Why do we need to manage it?

Why do we need to manage it?

Gas emissions

Leachate emissions

Why do we need to manage it?

Gas emissions

Leachate emissions

Why do we need to manage it?

Gas emissions

Leachate emissions

Why do we need to manage it?

What do we need to know?

1. The remaining emission potential

Groundwater

- 1. The remaining emission potential
- 2. The environmental impact (for now and in the future)

Groundwater

- 1. The remaining emission potential
- 2. The environmental impact (for now and in the future)
- 3. Optimization of leachate treatment
- 4. Optimization of biogas extraction

- 1. The remaining emission potential
- 2. The environmental impact (for now and in the future)
- 3. Optimization of leachate treatment
- 4. Optimization of biogas extraction
- 5. Stimulation of potential reduction

What do we know?

What do we know?

Our modelling approach

Previous research indicates two fields dominating emissions

Our modelling approach

Previous research indicates two fields dominating emissions

Transport: Water flow in porous media, unsaturated, Richards equation, preferential flow, convection, dispersion, diffusion, multiphase system, reactive (kinetics & equilibrium)

Our modelling approach

Previous research indicates two fields dominating emissions

Transport: Water flow in porous media, unsaturated, Richards equation, preferential flow, convection, dispersion, diffusion, multiphase system, reactive (kinetics & equilibrium)

Bio(geo)chemistry: (An)aerobic degradation of organics, redox reactions, dissolution/precipitation of minerals, metal/salt leaching, gas production, multicomponent system, reactive (kinetics & equilibrium)

Our approach

Our approach

The biochemical sub-model

Immobile water pocket

Shredded Municipal Solid Waste (R. Valencia 2009)

The biochemical sub-model

Shredded Municipal Solid Waste (R. Valencia 2009)

Numerical model

The biochemical sub-model

White box:

Too many processes & parameters to consider. System becomes redundant, too uncertain.

The biochemical sub-model

White box:

Too many processes & parameters to consider. System becomes redundant, too uncertain.

Black box:

Too little information to model complete set of emission parameters accurate.

The biochemical sub-model

White box:

Too many processes & parameters to consider. System becomes redundant, too uncertain.

Black box:

Too little information to model complete set of emission parameters accurate.

The biochemical grey model

Where to simplify the model?

Model only the slow dominant reactions

The biochemical grey model

Where to simplify the model?

Model only the slow dominant reactions

- 1. Hydrolysis and Methanogenesis kinetics
- 2. Mass transport kinetics neglected

The biochemical grey model

Where to simplify the model?

Model only the slow dominant reactions

- 1. Hydrolysis and Methanogenesis kinetics
- 2. Mass transport kinetics neglected

INCLUDING

Accurate calculation of chemical and physical equilibrium

The biochemical grey model

Lumped hydrolysis

(pH and VFA inhibition)

 $CxHyOzNi + H2O \rightarrow VFA + NH3 + X + CO2$

The biochemical grey model

Lumped hydrolysis (pH and VFA inhibition) $CxHyOzNi + H2O \rightarrow VFA + NH3 + X + CO2$

Methanogenesis (pH and NH3 inhibition)

 $VFA + NH3 \rightarrow CH4 + CO2 + X$

The biochemical grey model

Lumped hydrolysis (pH and VFA inhibition) $CxHyOzNi + H2O \rightarrow VFA + NH3 + X + CO2$

Methanogenesis (pH and NH3 inhibition) $VFA + NH3 \rightarrow CH4 + CO2 + X$

3. Chemical speciation/precipitation/dissolution Ca + CO3 ↔ CaCO3 Compound speciations → pH

The biochemical grey model

Lumped hydrolysis (pH and VFA inhibition) CxHyOzNi + H2O → VFA + NH3 + X + CO2

Methanogenesis (pH and NH3 inhibition)

 $VFA + NH3 \rightarrow CH4 + CO2 + X$

3. Chemical speciation/precipitation/dissolution

Compound speciations → pH

Ca + CO3 ↔ CaCO3

Phase equilibrium 4. $C(s) \leftrightarrow C(aq) \leftrightarrow C(q)$

The biochemical grey model

Implementation

Estimate and collect all parameters in a matrix in Spreadsheet

The biochemical grey model

Implementation

Estimate and collect all parameters in a matrix in Spreadsheet

Import Import Import I

Solve kinetics (mass balances) in MATLAB

The biochemical grey model

Implementation

Estimate and collect all parameters in a matrix in Spreadsheet

Import Im

Solve kinetics (mass balances) in MATLAB

Solve chemical equilibrium in ORCHESTRA (at every time step)

The biochemical grey model

Implementation

Estimate and collect all parameters in a matrix in Spreadsheet

Import Import Import Import I

Solve kinetics (mass balances) in MATLAB

Solve chemical equilibrium in ORCHESTRA (at every time step)

Output _ Output _ Output _

The biochemical grey model

The biochemical grey model

Parameter/process check with DREAM

Model parameters

- 1. Initial conditions (experiment)
- 2. Parameters (literature)

k(hyd) pHi(hyd)

VFAi µmax

Ks pHi(hyd)

NH3i Cxi

The biochemical grey model

Parameter/process check with DREAM

Model parameters

- 1. Initial conditions (experiment)
- 2. Parameters (literature)

k(hyd) pHi(hyd)

VFAi µmax

Ks pHi(hyd)

NH3i Cxi

DREAM

- 1. Optimizes parameters according to information in data by SLS
- 2. Calculates density distributions and correlation with Bayesian statistics
- 3. Parameters (optimized)

k(hyd) pHi(hyd) VFAi µmax

Ks pHi(hyd) NH3i Cxi

The biochemical grey model

Parameter/process check with DREAM

Model parameters

- 1. Initial conditions (experiment)
- 2. Parameters (literature)

DREAM

- 1. Optimizes parameters according to information in data by SLS
- 2. Calculates density distributions and correlation with Bayesian statistics
- 3. Parameters (optimized)

k(hyd)	pHi(hyd)	VFAi	µmax
Ks	pHi(hyd)	NH3i	Cxi

The biochemical grey model (logarithmic scales)

Conclusion & Outlook

Lab, Column & Pilot scale experiments

Conclusion & Outlook

Lab, Column & Pilot scale experiments

Extend model for other cases like;

SO4 oxidation, recirculation, aeration, Anammox, humic acids, mass transfer limitation, slow hydrolyzing substrates....

Conclusion & Outlook

Lab, Column & Pilot scale experiments

Extend model for other cases like;

SO4 oxidation, recirculation, aeration, Anammox, humic acids, mass transfer limitation, slow hydrolyzing substrates....

> Use modelled pH to predict metal/salt complexation

Conclusion & Outlook

Lab, Column & Pilot scale experiments

Extend model for other cases like:

SO4 oxidation, recirculation, aeration, Anammox, humic acids, mass transfer limitation, slow hydrolyzing substrates....

Couple models to hydrological model Use modelled pH to predict metal/salt complexation

Conclusion & Outlook

Test different scenarios

- 1. Irrigation/Recirculation
- 2. Aeration
- 3. 1 & 2 intermittent
- 4. 1 & 2 continuous
- 5. Nothing

Create grey model per case

Combine

Questions

