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SUMMARY

Recommender Systems assist the user by suggesting items to be consumed based on
the user’s history. The topic of diversity in recommendation gained momentum in re-
cent years as additional criterion besides recommendation accuracy, to improve user
satisfaction. Accuracy and diversity in recommender systems coexist in a delicate trade-
off due to the complexity in capturing user tastes through a limited amount of interac-
tions. Graphs have been employed for recommendation, given their ability to efficiently
represent user-item interactions. Graph convolutions, as learning over graphs tools,
have reached state-of-the-art accuracy on recommender system benchmarks. However,
the potential of graph convolutions to improve the accuracy-diversity trade-off is unex-
plored. Here, we develop a model that learns from a nearest neighbor and a furthest
neighbor graph via a joint convolutional model to establish a novel accuracy-diversity
trade-off for recommender systems. In detail, the nearest neighbor graph connects en-
tities (users or items) based on their similarities and is responsible for improving accu-
racy, while the furthest neighbor graph connects entities based on their dissimilarities
and is responsible for diversifying recommendations. The information between the two
convolutional modules is balanced already in the training phase through a regularizer
inspired by multi-kernel learning. Numerical experiments on three benchmark datasets
showed the joint convolutional model can improve substantially the catalog coverage or
the diversity among recommended items; or boost both by a lesser amount. We com-
pared our model against state-of-the-art accuracy-oriented algorithms, showing diver-
sity gains up to seven times by trading as little as 1% in accuracy. We also compared the
joint model against algorithms proposing a different accuracy-diversity trade-off, evi-
dencing our model achieves better accuracy while preserving a wide diversity range. Our
findings highlight that the joint convolutional model offers a balance in each setting that
is difficult to be achieved with a single model.
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1
INTRODUCTION

The development of web services granted access to an unprecedented amount of data
which users cannot surf in its entirety, contributing to the ascent of Recommender Sys-
tems (RS) [69]. RS assist users in traversing the catalog by predicting items the user might
like based on past preferences. Typically, designing a RS was an accuracy-oriented task.
The underlying assumption of the most used algorithms (e.g. collaborative filtering [76]
and content filtering [54]) is to match the user preferences to build a recommendation
as accurate as possible. However, in recent years, research steered towards a diversity-
aware recommendation [49, 7, 6], as diversity became crucial for the sake of user in-
terests [35]. On one hand, a highly accurate recommendation is more likely to comply
with user personal taste, but it narrows down the choices to items alike to previously
consumed items (i.e. items from the same category) [62]. On the other hand, diversity
in recommendations brings a wider spectrum of alternatives for the user, and this is to
some extent preferred to improve user satisfaction [23]. Accuracy and diversity coexist
in a delicate trade-off which is critical for the performance of the system, known as the
accuracy-diversity trade-off, dilemma, or balance [96]. Interpreting user’s tastes from
limited interactions (e.g. click, view, like, rating, etc.) makes it very hard to achieve a
solution to the trade-off.

The complexity in modeling user-item relationships is at the basis of the accuracy-
diversity trade-off [98]. A direction to provide a better trade-off is generalizing accuracy-
oriented algorithms, to incorporate also diversity. One example is the nearest neighbor
(NN) collaborative filter, which relies only on similarities to build the recommendation
(similar users like similar items). For instance, [96] extends the vanilla NN collaborative
filter to the antipode side and considers the influence of furthest neighbors (FNs), i.e.,
a subset of the k most dissimilar users w.r.t the target user in terms of preferences. The
assumption here is that recommending items FNs disliked the most could bring more
diversity while preserving an acceptable level of accuracy (the enemy of my enemy is my
friend) [70]. Alternative approaches aiming at trading accuracy with diversity include
re-ranking [97, 6], leveraging side information [38, 66], or merging different models op-
erating with different criteria [96, 98]. We shall review this in detail in Chapter 3.
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2 1. INTRODUCTION

The user-item interactions, at the basis of the trade-off in RS, are efficiently cap-
tured by non-Euclidean data structures such as graphs. Graph-based RS flourished in
recent years. Examples of graph-based approaches are diffusion-based recommenda-
tions [64], random walks [2], and graph neural network-based recommendations [61,
83, 95], to name a few. Moreover, as a result of the joint efforts of signal processing and
machine learning communities, advanced tools are available to leverage information
over irregular domains [65]. The building block in these areas is the graph convolution,
a generalization to graphs of the convolution operation in temporal and spatial signals
processing [27]. Graph convolutions are important in irregular data because they allow
processing and learning in an efficient manner by taking into account the geometry of
these data. Graph convolutional filters enjoy also an equivalent spectral analysis as con-
ventional convolutional filters do. The latter allows characterizing the behavior of the
graph convolutional filters in two domains: in the vertex domain –how users or items
interact with each other– and in the graph spectral domain –how graph spectral compo-
nents are exploited to learn recommendations. In RS, graph convolutions have already
reached state-of-the-art performance in terms of accuracy [37, 61, 95]. However, lit-
erature has only examples of graph convolutions for RS working for accuracy-oriented
purposes, without considering diversity [37, 61]. That is, the exploited interactions are
mainly similarity-based to aid accuracy. For this reason, the potential of graph convo-
lutions for increasing the diversity and improving accuracy-diversity trade-off is unex-
plored. To fill this gap, we propose to use graph convolutions for establishing a novel
accuracy-diversity trade-off for RS. In specific, the research questions this thesis aims to
answer are:

(RQ1) How can we employ graph convolutions to tweak the accuracy-diversity trade-off
for recommender systems?

(RQ2) How can we learn the graph convolutional parameters to model jointly accuracy
and diversity?

(RQ3) How can we explain the accuracy-diversity trade-off achieved by the graph convo-
lutional model in the spectral domain?

To answer these questions, we propose a novel accuracy-diversity trade-off framework
for RS via graph convolutions. The model jointly operates on a NN graph to improve
accuracy and on a FN graph to improve diversity. Each graph can capture user-user or
item-item relationships, allowing to also include the hybrid settings, such as a user-NN
and an item-FN graph. We develop design strategies that estimate the joint model pa-
rameters in view of both accuracy and diversity. These design strategies are versatile to
both rating and ranking frameworks. In the rating case, they optimize the mean square
error between the prediction and the true rating and consider the accuracy-diversity
trade-off as a regularizer. In the ranking case, they optimize the Bayesian personalized
ranking criterion proposed by [67], to account for the final order in the recommendation
list, and the accuracy-diversity trade-off is also considered the regularizer. Finally, we
study the effects of our model in the graph frequency domain. Such analysis helps our
understanding of how graph convolutions are able to filter out irrelevant features and
focus on discriminative aspects in both NN and FN graphs. Our discussion leads to the
following research question:
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(RQ4) How does the proposed accuracy-diversity trade-off model behave in recommender
system datasets?

To address this research question, we conduct extensive numerical experiments on three
real world datasets with increasing sparsity level. We measure the performance of the
proposed model with two accuracy metrics, one for rating and one for ranking, and two
diversity metrics, to inspect diversity at the system and the user level, respectively. We
compare our results against accuracy-optimized state-of-the-art baselines, and against
algorithms proposing a solution to accuracy-diversity trade-off.

By answering the research questions, this thesis provides the following contributions:

1. A new framework in RS by using graph convolutions to provide a wider spectrum of
choices in the accuracy-diversity trade-off. The model aims at improving diversity
without a significant drop in accuracy.

2. Versatile design choices to embed diversity at learning phase via joint optimiza-
tion. The contributions of NN and FN graphs are balanced via a tunable parameter
controlling the trade-off.

3. A graph-spectral analysis of the accuracy-diversity trade-off to explain the inner
mechanisms of the joint convolutional model. The analysis highlights the impor-
tance of multi-hop neighbors in both NN and FN graphs.

4. Analysis of two accuracy-diversity trade-offs: (i) a broader view, by analyzing ag-
gregated diversity, (ii) a narrower inspection, by analyzing individual diversity. Nu-
merical experiments show the more importance is given to NNs (FNs), the higher
is the accuracy (diversity).

The findings of this thesis contributed to the following research article, which we
attach in the end of the thesis.

• Elvin Isufi, Matteo Pocchiari, and Alan Hanjalic, "Accuracy-Diversity Trade-off in
Recommender Systems via Graph Convolutions", submitted to Advances in Graph
Representation Learning for Large-scale Multimedia Analytics (2020).

The remainder of this thesis proceeds as follows. Chapter 2 covers the background
knowledge about RS and graph convolutions, which we will use throughout the thesis.
Chapter 3 discusses relevant literature. Chapter 4 introduces our proposed method and
its spectral analysis. Chapter 5 contains the numerical experiments. Chapter 6 con-
cludes the thesis.

Notation. We use plain letters a or A to denote scalar variables, bold lowercase letters a
to denote vector variables, and bold uppercase letters A to denote matrix variables. The
(i , j )th entry of matrix A is denoted by Ai j or [A]i j and, likewise, the i th entry of vector
a is denoted by ai or [a]i . We will denote sets with calligraphic letters, e.g., A and their
cardinality as |A |. The transpose operator is denoted by >. The two norm of vector a is
denoted by ‖a‖2.
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BACKGROUND

In this chapter, we introduce the required material we will use throughout the rest of
the thesis. The structure of the chapter is the following: Section 2.1 introduces the RS
setting and collaborative filtering; Section 2.2 introduces Graph Signal Processing, the
field that studies how to process information from irregular domains; Section 2.3 shows
how collaborative filtering can be seen in the optic Graph Signal Processing; Section 2.4
concludes the chapter by highlighting the key concepts.

2.1. RECOMMENDER SYSTEMS

2.1.1. SETTING
In the RS setting, we work with a user set U = [u1, . . . ,uU ] with cardinality |U | =U and
an item set I = [i1, . . . , i I ] with cardinality |I | = I . Users interact with items by giving
a rating (often a scalar from one to five). This setting is represented with the user-item
matrix (UIM) X ∈ RU×I , where the rating user u gave to item i is the entry Xui . If user u
did not rate item i , we set Xui = 0. See Table 2.1.

Table 2.1: Example of UIM. Entries with a dash indicate absence of rating, e.g. X34 means user 3 has not a
rating for item 4. The goal of the RS is to predict the missing entries, e.g. predict X34.

A typical scenario in RS sees X having high sparsity. The goal is to use the information
provided in the known ratings to predict the missing values in the UIM. I.e., if Xui = 0, the
output of the recommendation is the prediction X̂ui . We obtain a matrix X̂ containing the
predictions for all possible user-item pairs (u, i ) ∈ U ×I . Ultimately, the N the highest
predicted ratings in the u-th row of X̂ will be the N items recommended to user u.

5
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Collaborative filtering with its two variations (user-based and item-based collabora-
tive filtering) is the most used algorithm to leverage information from ratings in X [76, 8].
Regardless of the variation, a notion of similarity is needed. For this thesis, we use the
Pearson correlation coefficient, as it is widely adopted in RS field [37, 29, 79], but other
measures can be employed such as cosine similarity [75] or Jaccard similarity [16].

Considering the user-based scenario, the symmetric user-user similarity matrix B ∈
RU×U contains the Pearson correlation coefficient for all possible user-user pairs. Given
two users u and v , let Suv be the set of items rated by both u and v . Furthermore, let

µu = 1

|Suv |
∑

i∈Suv

Xui (2.1)

be the user u mean; that is, the average rating that user u gives to items i ∈ Suv . The
Pearson correlation coefficient Buv between users u and v is

Buv =
∑

i∈Suv (Xui −µu)(Xvi −µv )√∑
i∈Suv (Xui −µu)2 ∑

i∈Suv (Xvi −µv )2
. (2.2)

The scalar Buv measures the similarity between two users u and v , based on the sub-
sample of items they both interact. The denominator normalizes the correlations, as
Buv ∈ [−1,1] for all (u, v) ∈ U . In other words, if users u and v have similar ratings for
common items (high ratings to the same items, low ratings to the same items) the corre-
lation will be close to one; discordant ratings (user u gives a high rating to item i while
user v gave a low rating to the this item) give correlation close to negative one.

Likewise, in the item scenario we can assess item similarities with analogous reason-
ing. The symmetric item-item similarity matrix C ∈ RI×I contains the Pearson correla-
tion measured among all item-item pairs. Given two items i and j , let Ti j be the set of
users that have rated both i and j . Let also

µi = 1

|Ti j |
∑

u∈Ti j

Xui (2.3)

be the item i mean, namely, the average rating given to item i by the users that have also
interacted with item j . The correlation coefficient Ci j between two items i and j is

Ci j =
∑

u∈Ti j
(Xui −µi )(Xu j −µ j )√∑

u∈Ti j
(Xui −µi )2 ∑

u∈Ti j
(Xu j −µ j )2

. (2.4)

We shall see how to use B and C in user-based and item-based scenarios to predict rat-
ings of the target user u.

2.1.2. NEAREST NEIGHBOR COLLABORATIVE FILTERING
In user-based nearest neighbor (NN) collaborative filtering, the rationale is that similar
users share similar tastes [76]. Once the similarity is assessed for all users, the predicted
rating X̂ui uses only neighbors with the highest correlation coefficient (hence, the NN in
the name); see Fig. 2.1(a). Let Nui be the set of |Nui | users which are most similar to u
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(a) Example of user-based collaborative filtering. (b) Example of item-based collaborative filtering.

Figure 2.1: Examples of collaborative filtering variations. In both cases, we consider user 3 to be the target
user. (a) First, similarity between users is assessed and only the most similar users are kept. In our case, user 2.
Then, we look at items consumed by user 2 to build the recommendation. In this case item 2 is recommended.
(b) First, we compute the similarity between items consumed by target user and the other items, based on the
ratings the community provided. Finally, we find the most similar item to recommend. In this case item 3.

(the entries of the u-th row of B with the highest value) and rated item i . The predicted
rating for item i is

X̂ui =
∑

v∈Nui
Buv Xvi∑

v∈Nui
Buv

. (2.5)

In item-based collaborative filtering, we work with item similarities to perform the rec-
ommendation; see Fig. 2.1(b). Let N i u the set of |N i u | items which are the most similar
to i (the entries of the i-th row of C with the highest value) and rated by user u. The
predicted rating is

X̂ui =
∑

j∈N i u Ci j Xu j∑
j∈N i u Ci j

. (2.6)

The normalization is present in both NN estimators to reduce the bias of rating patterns
of different users [57]. Some users might be more "tolerant" and give higher ratings,
while some other users more "conservative" and tend to stay on low ratings [44].

Although being the foundation of many recommendation algorithms, NN collabora-
tive filtering considers only the influence of direct neighbors. In the following section, we
shall see how to express rating prediction as an application of graph signal processing.
We will extend the rationale of NN estimators to include multi-hop neighbors’ contribu-
tion, by means of graph convolutional filters acting on similarity graphs (user-similarity
graph or item-similarity graph).

2.2. GRAPH SIGNAL PROCESSING

2.2.1. BASICS
Let G = (V , E ) denote a graph of N vertices (or nodes) V = {v1, ..., vN } and a set of edges
E . Each edge is associated with a weight Wi j > 0 indicating the strength of the relation-
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ship between nodes i and j . If there is no specified direction for the tuples (vi , v j ) ∈ E ,
the graph is undirected. The adjacency matrix W of an undirected weighted graph is an
N ×N symmetric matrix, whose entry Wi j > 0 is the weight of the edge ei , j connecting
nodes i and j .

A graph signal x : V −→R associates to each node a real value; see Fig.2.2. We express
the signal in the vector form x = [x1, x2, . . . , xN ], where entry xi is the signal value at node
vi . As G can represent complex relations between entities in nodal domain, the graph
signal x depicts information on top of such graph. In NN RS, we work with similarity
graphs (user-graph or item-graph) and use the known ratings as a graph signal.

Figure 2.2: A graph signal x. Node j has no value associated with it. Using information of neighboring nodes
we can predict the signal value at node j .

2.2.2. GRAPH CONVOLUTIONAL FILTERS
The information contained in the graph signal x propagates through G by shifting. The
graph shift operator (GSO) is a matrix S ∈RN×N whose sparsity matches the structure of
G [27]. An example of S is the adjacency matrix W of the graph. Another example is the
graph Laplacian matrix. Multiplying the GSO S with the graph signal x diffuses the signal
over G , resulting in the shifting operation

x(1) = Sx (2.7)

which is a vector x(1) = [x(1)
1 , . . . , x(1)

N ]>. Being Ni the set of direct neighbors to node i , the
signal value at node i after the shift is

x(1)
i = ∑

j∈Ni

Si j x j . (2.8)

In words, the signal value x(1)
i at node i is the linear combination of the signal values

of its neighbors. We highlight shifting acts locally: a node i does not need to know the
values of the nodes that are not immediate neighbors. This has computational benefits
for operation (2.8), which is of order O (|E |); i.e., on the order of the edges.

By applying the GSO up to k times, we can reach up to k-hop neighborhoods. The
output of the recursive relation x(k) = Sk x = SS(k−1)x = Sx(k−1) is another graph signal
where the influence of the k-hop neighborhoods are considered. Put differently, the
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value x(k)
i contains information stored in nodes that are k-hops away from i . The com-

putational complexity to obtain x(k) is of order O (k|E |). Fig. 2.3 depicts multiple shifts.

(a) Original graph signal x (b) Signal after one shift x(1) = Sx (c) Signal after two shifts x(2) = Sx(1)

Figure 2.3: Example of the shifting a signal on a directed graph. The original graph signal has nonzero values
only at nodes A and B, as we notice from (a). After shifting, the result is x(1) in (b). The value that was previously
stored in node A now is in node B. Likewise the value that was previously in node B now is in its one-hop
neighbors, C and E. By shifting x(1), we obtain the two-hops shifted signal x(2) in (c). Nodes C and E perceive
the influence of their two-hops neighbor node A. Similarly nodes D and F perceive the influence of their two-
hops neighbor B.

The notion of shift operator relates to graph convolutional filters. A graph convolu-
tional filter is a matrix H(S) ∈RN×N , written as a polynomial of the shift operator S as

H(S) = h0I+h1S+h2S2 + . . .+hK SK =
K∑

k=0
hk Sk (2.9)

where K is the filter order. Filtering a graph signal x means performing the matrix mul-
tiplication between a graph convolutional filter H(S) and the signal itself. The output x̂
is

x̂ = H(S)x =
K∑

k=0
hk Sk x. (2.10)

The filter coefficients (or parameters) h = [h0,h1, . . . ,hK ]> weight the information com-
ing from different resolutions x,Sx, . . . ,SK x. The filter parameters in h define the behav-
ior of the filter. Parameters can be learned in a data-driven fashion, by optimization of a
loss function defined for the system. This procedure is called filter design and will play a
central role in how we approach the recommendation problem in Sections 4.2 and 4.3.
For detailed properties of graph filters refer to [73].

The advantages of employing a graph convolutional filter are: (i) a limited number of
parameters (i.e. K +1 parameters to describe a filter of order K ), which reduces the load
of the learning phase; and (ii) high interpretability of the output x̂, as the filter coeffi-
cients h1, . . . ,hK explain the importance of different neighborhoods. On the other hand,
graph filters lack in expressivity, as they are the result of linear combinations of matrices.
The limit in expressivity led to the graph convolutional neural networks, which introduce
nonlinearity.

2.2.3. GRAPH CONVOLUTIONAL NEURAL NETWORKS
Graph convolutional filters are the building block for graph convolutional neural net-
works (GCNNs) [1]. To build a GCNN with the graph convolutional filter in (2.10), we
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Figure 2.4: Structure of a GCNN. Each layer is composed by a bank of graph convolutional filters followed by
a nonlinearity. The final convolutional features are aggregated with a shared fully connected layer (to reduce
the number of parameters w.r.t a pure fully connected layer fashion).

consider the composition of a set of L layers. The first layer `= 1 comprises a bank of F1

filters H f
1 (S) each defined by coefficients {h f

1k }k . Each of these filters outputs graph sig-

nals u f
1 = H f

1 (S)x, which are subsequently passed through a pointwise nonlinearity σ(·)
to produce a collection of F1 features x f

1 that constitute the output of layer `= 1, i.e.,

x f
1 =σ

[
u f

1

]
=σ

[
H f

1 (S)x
]
=σ

[ K∑
k=0

h f
1k Sk x

]
for f = 1, . . . ,F1. (2.11)

At subsequent intermediate layers ` = 2, . . . ,L − 1, the output features {xg
`

}g of the pre-

vious layer `− 1 become inputs to a bank of F`F`−1 convolutional filters H f g
`

(S) with

coefficients {h f g
`k }k each of which produces the output features u f g

`
= H f g

`
(S)xg

`−1. To
avoid exponential growth, the filter bank outputs obtained from a common input fea-
ture xg

`−1 are aggregated and the result is passed through a nonlinearity σ(·) to produce

the F` output features x f
`

of layer `, i.e.,

x f
`
=σ

[ F∑
g=1

u f g
`

]
=σ

[ F∑
g=1

H f g
`

(S)xg
`−1

]
=σ

[ F∑
g=1

K∑
k=0

h f g
`k Sk xg

`−1

]
for f = 1, . . . ,F`. (2.12)

The operation in (2.12) is the propagation rule for a generic layer ` of the GCNN and

it is repeated until the last layer ` = L which collection of FL features x1
L , . . . ,xF`

L forms
the GCNN output. These final convolutional features are then passed through a shared

multi-layer perceptron per node to map the FL features per node n, [x1
Ln ; . . . ; xF`

Ln] into
the final output x̂; see Figure 2.4.

In essence, the GCNN is a map Φ(·) that takes as input a graph signal x, a GSO S

describing a graph G , and a set of parameters H = {h f g
`k } for all layers `, orders k, feature

pairs ( f , g ), and final multi-layer perceptron. This map produces the output

Φ(x;S;H ) := x̂. (2.13)

The GCNN inherits the numerical benefits of graph convolutions. Denoting by F =
max`F` the maximum number of features for all layers, the number of parameters defin-
ing the GCNN is of order O (F 2K L) while its computational complexity amounts to O (F 2K L|E |).
The GCNN parameters are again learned in a data-driven way by minimizing a loss func-
tion. We stress the relevance of this characteristic for its importance in Section 4.2 and
4.3.
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(a) Slow variation graph signal. (b) High variation signal

Figure 2.5: Example of (a) low variation graph signal and (b) high variation graph signal.

Lastly, we remark the linear graph convolutional filter [cf. (2.10)] is a particular GCNN
map Φ(·) [cf. (2.13)] limited to the linear space and composed of a single filter. For the
rest of this thesis, we use notation Φ(·) to generalize between the graph convolutional
filters and the GCNN, since both can be employed to perform rating prediction. We shall
see the application of such tools to NN collaborative filtering and its extension to multi-
hop neighbors.

2.2.4. SPECTRAL INTERPRETATION
Beside nodal domain, we can study graph convolutional filters in the spectral (or fre-
quency) domain, to gain more insights about the filters’ behavior. To discuss the no-
tion of frequency for graph signals, we introduce the concept of Fourier transform in
directed graphs [74]. Assuming the GSO S is diagonalizable, it admits the eigendecom-
position S = UΛU−1 with eigenvector matrix U = [u1, . . . ,uN ] and complex eigenvalues
Λ= diag(λ1, . . . ,λN ). Then, the graph Fourier transform (GFT) of a graph signal x is

x̃ = U−1x. (2.14)

I.e., it is the projection of x onto the shift operator eigenspace. The i th GFT coefficient
x̃i of x̃ quantifies the contribution of the i th eigenvector ui to expressing the variabil-
ity of signal x over the graph. The latter is analogous to the discrete Fourier or cosine
transform for temporal or spatial signals if the graph is particularized to a directed line
or to a rectangular grid, respectively. In this analogy, the complex eigenvalues λn ∈Λ are
referred to as the graph frequencies [73, 80]. The inverse transform is x = Ux̃. To mea-
sure the graph signal variability, we follow [72] and order the graph frequencies λi based
on their distance from the maximum eigenvalue λmax(S). This ordering is based on the
notion of total variation (TV), which for the eigenpair (λn ,un) is defined as

TV(un) =
∣∣∣1− λn

λmax(S)

∣∣∣‖un‖1 (2.15)

where ‖ · ‖1 is the `1-norm. The closer eigenvalue λi is to the maximum eigenvalue
λmax(S), the smoother is the corresponding eigenvector ui over the graph (i.e., values
on neighboring nodes are similar). If signal x changes little over the graph, the corre-
sponding GFT x̃ has nonzero entries mostly in entries x̃i which index corresponds to a
low graph frequencyλi →λmax(S) (low TV); see Figure 2.5(a). Contrarily, if signal x varies
substantially in nodes sharing an edge, the GFT x̃ has nonzero values also in those en-
tries x̃i which index corresponds to a high graph frequency λi À λmax(S) (high TV); see
Figure 2.5(a). Refer to [72, 65] for further detail.



2

12 2. BACKGROUND

Figure 2.6: Two graph signals with different total variation in their nodal (Top) and frequency (Bottom) domain
representation, on a sample graph of 50 nodes. (Left) In a slow-varying graph signal x, if nodes i and j share an
edge, graph values xi and x j are close to each other; in spectral domain, it means low frequency components
are the most contributing ones. (Right) In a high-varying graph signal x, adjacent nodes i and j have discordant
graph signal values xi and x j ; in spectral domain, this translates to high frequency components being the most
contributing ones.

With this analogy in place, we substitute the eigendecomposition S = UΛU−1 into
the graph convolutional filter (2.10) and obtain the filter input-output relationship in
the spectral domain

˜̂x =
K∑

k=0
hkΛ

k x̃ := H(Λ)x̃ (2.16)

where ˜̂x = U−1x̂ is the GFT of the output and H(Λ) = ∑K
k=0 hkΛ

k contains the filter fre-
quency response on the main diagonal. Relation (2.16) shows in first place graph convo-
lutional filters respect the convolutional theorem as they act in the spectral domain as a
pointwise multiplication between the filter transfer function H(Λ) and the input GFT x̃.
Therefore, analyzing the diagonal of H(Λ) shows how the graph convolutional filter acts
on the input signal x to build x̂.

We remark any graph convolutional filter can be subject to spectral analysis. The
concepts about spectral domain introduced here will be employed in Section 4.4. We
will study the characteristics of plain graph convolutional filters and filters from GCNNs
to gain insights about the way recommendation is carried out, with particular regard to
the accuracy-diversity balance.

2.3. NEAREST NEIGHBORS AS GRAPH CONVOLUTIONS
The notions presented in the previous section are valid for any graph G . Here we transfer
the knowledge to recommender systems. We introduce the user-similarity graph and we
explain how the columns of X can be seen as signals acting on top of such graph. The
same is valid for the item-similarity graph and the rows of X.
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2.3.1. USER-BASED SCENARIO

Consider the symmetric user-user similarity matrix B ∈ RU×U , whose entries Buv are
computed as in (2.2). We use matrix B as the adjacency matrix of an undirected graph
Gu = {U ,Eu}, where each user u ∈U is a node and two users u and v are connected with
an edge euv ∈ Eu if Buv 6= 0. From Gu , we can to construct a similarity graph for each item
i ∈ I , whose adjacency matrix will be denoted with Bi . This is done by taking into ac-
count that some users might not have interacted with item i . Hence, the graph topology
depends on the specific item i .

Consider a specific item i and let Ti ⊆U be the set of users who interacted with item
i . The item-i specific user-similarity matrix Bi is obtained from B as:

1. Treat undirected edges as bidirectional edges.

2. Remove the edges starting from users who did not rate item i . Given two users u
and v , where user v did not rate item i (v 6∈Ti ) and user u rated it (u ∈Ti ), remove
the edge evu . That is, set Bvu to zero. Keep edge euv , that is, do not modify Buv

since user v has relevant information about item i for user v .

3. Keep only the k most similar users. Given a user u, keep only the k most similar
users, i.e. the k highest entries of u-th row of B.

4. Normalize the weights to guarantee a normalization factor as in (2.5).

Fig. 2.7 illustrates the first three steps.
While working with item i , we introduce xi ∈ RU as graph signal containing the rat-

ings of all the users to item i . It coincides with the i -th column of the UIM X. Since
not every user rated item i , graph signal xi is sparse by constitution. We use GSP tools,
namely the graph convolutional filter [cf.(2.10)] and GCNN [cf.(2.13)], to propagate the
information contained in xi throughout Bi . The goal is to get x̂i ∈ RU which stores the
predictions for all the users about item i .

A straightforward approach is to shift xi to direct neighbors, employing the adjacency
matrix Bi as GSO. In other words, we implement user-based NN collaborative filtering
[cf.(2.5)] as one-hop shifting of the graph signal xi . The prediction x̂i is obtained as

x̂i = Bi xi (2.17)

where only the influence of the most positively correlated users is examined. Equation
(2.17) and NN user-based collaborative filtering [cf. (2.5)] yield the same result.

We can generalize to higher resolutions by exploiting the properties of graph convo-
lutional filters. We design a filter H(Bi ) of order K to include contribution of users that
are at most K -hops away. The predicted ratings are

x̂i = H(Bi )xi =
K∑

k=1
hk Bk

i xi , (2.18)

where we account for positive correlations among users that are at most K -hops away1.
In words, Bi xi is a weighted average of the ratings produced by one-hop neighboring

1The term for k = 0, S0x = x, does not contribute to predicting ratings [37]. Hence, considering a filter order K ,
we have K +1 filter coefficients h = [0,h1, . . . ,hK ].
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(a) (b)

(c) (d)

Figure 2.7: Procedure to obtain Bi from B. In (a) we have the starting user similarity graph Gu , whose structure
matches B. In (b) we consider item i with its corresponding graph signal xi and treat each edge as bidirectional.
Users 1 and 4 rated item i , while users 2 and 3 did not. In (c) we remove the edges starting from users who
did not rate item i , thus edges starting from users 2 and 3. In (d) we keep only the k most similar users for
the prediction. The figure depicts the case k = 1. This is item i -specific user-similarity graph with adjacency
matrix Bi , which will be the GSO of the specific user graph for item i .

users, B2
i xi is a weighted average accounting for the influence of two-hop neighboring

users, and, in general, BK
i xi is aware of interactions happening among users in the K -

hop neighborhood. Each information Bi xi , . . . ,BK
i xi is weighted in a different way via

the filter coefficients h1, . . . ,hK .
Finally, in the same way we generalized from graph convolutional filters to GCNNs,

we can predict x̂i with a GCNN. The GCNN learns a mapΦ(xi ,Bi ,H ) depending on the
item i -specific signal xi , the GSO Bi , and a set of parameters H . Thus, the prediction x̂i

is given by

x̂i =Φ(xi ,Bi ,H ). (2.19)

Either we use graph convolutional filter [cf. (2.18)] or GCNN [cf. (2.19)], by repeating this
process for all i ∈ I we complete the original UIM X. The resulting matrix is X̂ ∈ RU×I

where the entry X̂ui contains the rating prediction of item i based on similarities user u
shares with other users. From this point on, we shall generalize the user-based predic-
tion with the mapping Φ(xi ,Bi ,H ), recalling GCNNs (nonlinear models) are a natural
generalization of graph convolutional filters (linear models). We specify the model em-
ployed when discussing the parameter learning phase in Sections 4.2 and 4.3.

2.3.2. ITEM-BASED SCENARIO
Item-based recommendation follows the same principles of the user-based scenario,
though we work now with the item-similarity graph and a different signal. In details,
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consider the symmetric item-item similarity matrix C ∈ RI×I computed as in (2.4). It
can be seen as the adjacency graph of the item-similarity graph Gi = {I ,Ei }, where each
node is an item, and two items i and j are connected with an edge ei j ∈ Ei if Ci j 6= 0.

We build user u-specific item-similarity graphs for all u ∈ U , whose adjacency ma-
trices Cu are extracted from C with the same procedure presented in 2.3.1. Consider the
set Tu ⊆U containing all the items rated by user u. We get Cu from C as:

1. Treat undirected edges as bidirectional edges.

2. Remove the edges starting from items who have not been rated by user u. Given
two items i and j , where user u did not rate item i (i 6∈ Tu) and rated item j ( j ∈
Tu), remove the edge ei j and keep edge e j i .

3. Keep only the k most similar items. Given an item i , keep only the k most similar
items, i.e. the k highest entries of i -th row of C.

4. Normalize the weights to guarantee a normalization factor as in (2.6).

Then, we consider the graph signal xu ∈RI , collecting the ratings user u gave to all items.
Signal xu coincides with the u-th row of X. Employing Cu as GSO, we can express the
item-based NN collaborative filtering [cf.(2.6)] as one-hop shifting of xu :

x̂u = Cu xu . (2.20)

The natural generalization is to consider multi-hop neighboring items, using a graph
convolutional filter H(Cu). The prediction becomes

x̂u = H(Cu)xu =
K∑

k=1
hk Ck

u xu , (2.21)

where the influence of items that are K -hops away is embedded in the prediction. Fi-
nally, the GCNN in the item-based scenario uses a map Φ(xu ,Cu ,H ) depending on the
graph signal xu , the GSO Cu and a set of learnable parameters H . The prediction with
GCNNs is

x̂u =Φ(xu ,Cu ,H ). (2.22)

For the rest of this thesis, we will refer to item-based models (either linear [cf.(2.21)] or
nonlinear [cf.(2.22)]) with the general map Φ(xu ,Cu ,H ), exploiting again the relation
between graph convolutional filters and GCNNs.

For the sake of generalization, we consider notation Φ(x,S,H ), which denotes a
model (either graph convolutional filter or GCNN) working with a graph signal x, a GSO
S and a set of parameters H . If we work in a user-based scenario, we will set x = xi and
S = Bi ; similarly, if we work in an item-based scenario will set x = xu and S = Cu . This
choice will be helpful when working with optimization problems on multiple graphs in
Sections 4.2 and 4.3.
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2.4. CONCLUSION
This Section summarizes the content covered in this Chapter. In Section 2.1 we pre-
sented the principles of RS and the basic NN estimator, which works with similarities
between users or items. Then, in Section 2.2 we saw the tools at the base of graph sig-
nal processing, namely shifting, graph convolutional filters, and the most general case
with GCNNs. More insights about filters can be analyzed in the spectral domain via GFT.
Finally, in Section 2.3 we explained how all these concepts can be applied to perform
rating prediction in the recommendation problem. The user graph and the item graph
are supports where NN collaborative filtering can be translated as shifting of specific
graph signals, where only most similar direct neighbors are considered. Graph convolu-
tional filters and GCNNs offer a way to account for multi-hop contributions from similar
neighbors in a linear and nonlinear manner, respectively.
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RELATED WORKS

This chapter discusses the relevant literature about diversity in RS and graph signal pro-
cessing techniques to perform recommendation. We will use the concepts touched in
Chapter 2 to present the literature. The chapter is organized as follows: Section 3.1
discusses the importance of diversity in RS and the metrics to measure it; Section 3.2
highlights the solutions for the accuracy-diversity dilemma; Section 3.3 presents works
employing graph convolutional filters in RS, both in linear and nonlinear setups; Section
3.4 highlights the knowledge gap.

3.1. DIVERSITY IN RS
Diversity and User Satisfaction. The importance of aspects beyond accuracy in RS gained
momentum in recent years, as evidenced by the large number of publications addressing
diversity [87]. Not always an accurate recommendation is synonym of user satisfaction,
as low diversity discourages a further use of the system [99] or limits the number of ex-
posed items, resulting in the so-called filter bubble [62, 59, 31, 68]. Diversity has a direct
impact on user experience, as shown in several works. One of the first studies in this
direction is [35], which investigated how different users perceive diversity. Authors in
[84] took a step forward and performed a study with focus on different personality traits:
users prone to new experiences prefer a more diversified recommendation. The authors
in [10] continued along this path, by giving control to the user to choose the amount of
diversity in the recommendation and studied the perceived satisfaction. Authors in [23]
asked feedback not only on diversity, but also on other aspects of recommendation, such
as novelty, accuracy, satisfaction, and level of personalization: their work highlighted the
positive correlation between user satisfaction and diversity. These works prove diversity
to be a crucial asset in RS. They also highlight the existence of a tradeoff between accu-
racy and diversity, which we will discuss in the following. For a broader view on diversity
in RS, refer to [49].

Diversity Metrics. Having clear the benefits of diversity, a metric to quantify the diver-
sity within a RS is needed. The first to tackle this problem is [14], by defining diversity

17
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as the opposite of similarity. Also [50, 17] adopt this view. Later, metrics from docu-
ment information retrieval have been adapted in RS. One of the first works following this
rationale is [21], which sees diversity as a part of calculating normalized discounted cu-
mulative gain (NDCG). They capture novelty, ambiguity, redundancy, and diversity all in
one metric. This idea is extended by [86], which accounts for the user’s requirements.
The flaw in these metrics is the attempt of casting multiple aspects into a single num-
ber. We would rather have multiple diversity-related metrics where we capture different
extents of diversity. For instance, we can study diversity at the system level. Metrics
looking at item popularity distribution help the cause of quantifying diversity at the sys-
tem level. A diverse recommendation is a recommendation able to leverage more items
from the long-tail, in other words, less popular items. The authors of [25] use the Gini
coefficient as a measure of diversity. Also authors in [3] employ the Gini coefficient, and
extend the analysis by introducing the Entropy diversity, and Herfindahl diversity, to an-
alyze whether recommendations are concentrated on few popular items or are equally
spread. The authors show these dispersion metrics are highly correlated between them,
thus working only with one of them, e.g. entropy-diversity, is sufficient to get insight-
ful measurements. Another system-level metric is the aggregate diversity, often referred
to as catalog coverage [4, 3, 5, 63, 82, 34]. It counts the number of items leveraged by
the system throughout the recommendations to all the users. Coupled with the entropy-
diversity, it gives a snapshot of the catalog’s portion covered by the system. However,
even if used as a standalone metric without the entropy-diversity, it is a good indicator
of system diversity.

Diversity at user-level is also crucial. Individual diversity measures the average dis-
similarity in a recommendation list [14, 97, 99]. Computing the dissimilarity is however
domain dependent, as requires additional metadata to estimate the difference between
two items. Authors in [87] propose a domain agnostic solution, which embeds also rel-
evancy and novelty in the computation. The result is again an all-in-one metric, which
might fail in capturing a single aspect. To overcome the domain dependency, we will
measure dissimilarity between two items as the Euclidean distance between their latent
features vectors as in [85]. We will explain the implementation details in Section 5.1.

3.2. ACCURACY-DIVERSITY TRADEOFF IN RS
Many works in literature faced the accuracy-diversity tradeoff. A popular direction to
tweak this trade-off is by two-step approaches, in which a re-ranking is applied to a re-
trieved list for boosting diversity [97, 7]. The work in [6] re-ranks items based on the rat-
ing variance in the neighborhood of a node, while [3] proposes re-ranking approaches
to cover a larger portion of the catalog. Among the same lines, [32, 24] diversify items to
improve coverage in a user-personalized manner. The authors of [39], instead, propose
a new metric to quantify diversity within a list and develop an optimization algorithm to
improve it. Works in this category rely heavily on the provided list, therefore, it is diffi-
cult to attribute to which extent the accuracy-diversity trade-off is due to the re-ranking
method or due to the issues present in the lists.

A second category of works leverages side information such as metadata or context
to improve diversity with a single algorithm. The work in [38] builds a dissimilarity item-
item matrix from item features and accounts for the latter in a learning-to-rank frame-
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work. Also the work in [28] uses item features to provide a single accuracy-diversity de-
sign method in a matrix completion framework. Differently, [66] leverages context and
evaluates different pre-filtering, post-filtering, and modeling schemes in terms of accu-
racy and diversity. Worth noticing that also some re-ranking approaches leverage item
features. Our method instead shows that it is possible to balance accuracy with diversity
without relying on side-information in both a learning-to-rate and a learning-to-rank
frameworks.

A third category of works, tweaks conventional accuracy-oriented algorithms to im-
prove diversity. Authors in [53] investigate approaches to build user similarities that
avoid the influence of high-degree users. The rationale behind these strategies is to re-
duce the bias induced by popular objects or high-degree users. The latter changes the di-
rection of random walk collaborative filtering which is corroborated heuristically to im-
prove diversity. Also [26] changes the way user similarities are calculated to improve di-
versity in user-based collaborative filtering. The work in [93] follows up on [38] and reg-
ularizes the learning-to-rank objective function to improve diversity. In our view, the lat-
ter may be problematic as it overloads the regularizer with an additional objective. That
is, since the primarily goal of the regularizer is to generalize the model to unseen data,
leveraging it also to improve diversity leads to a triple accuracy-diversity-generalization
trade-off, which becomes challenging to handle; and likely one of the three objectives
will be treated as byproduct. Differently, [70, 71] connect users based on their dissim-
ilarities and propose the so-called furthest neighbor collaborative filtering –contrarily
to the conventional nearest neighbor collaborative filtering. By using information from
neighbors that a user disagrees with, these works show it is possible to improve diver-
sity without substantially affecting accuracy. Yet, the degree to which the FN affect the
accuracy-diversity trade-off remains little investigated. We shall leverage both the NNs
and the FNs to provide an accuracy-diversity trade-off.

Working with the inner-working mechanisms or the hyperparameters of a single model
to bias the output towards diversity remains definitively a choice. But a single model will
often suffer to capture the complex relationships in highly-sparse RS data. This fourth
category of works overcomes the latter by working with a mixture of models, also referred
to as joint, hybrid, or ensemble models. The latter have improved descriptive power to
balance the accuracy-diversity tradeoff at expenses of a higher complexity, which in or-
der of magnitude remains the same. The work in [96] works with a joint collaborative
filtering algorithm that leverages the influence of both similar and dissimilar users. To
compute the dissimilarity, it counts the items two users have consumed individually but
not jointly. The predicted rating of the similar and dissimilar users are merged into a
final score and the influence of each group is controlled by a scalar. In our view, the way
the dissimilarity is computed ignores that users may have consumed the same item but
rated it differently. Also building dissimilarities based on non-consumed items ignores
that a user may also like an item the other user has consumed individually. Our approach
accounts for the rating when building the dissimilarity between users. The authors of
[98] follow a similar strategy as [96] and mix a heat spreading with a random walk to pro-
vide an accuracy-diversity trade-off. A probabilistic model is further proposed in [42].
The latter considers the order in which items are consumed and proposes a joint model,
which on one branch maximizes accuracy (e.g., precision) while on the other diversity
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(e.g., specification). Differently, we train the whole model jointly.

3.3. GRAPH CONVOLUTIONAL FILTERS FOR RECOMMENDATION
Recent studies showed the importance of graphs in recommender systems due to their
ability of capturing information hidden in the data structure [20, 81, 94]. Graph-based
recommender systems first build a graph to represent the data and then employ tools to
tailor recommendation [78]. Advances in graph signal processing proved to be crucial
for this task, by translating ratings into graph signals.

Linear Models. The first work to perform recommendation by means of graph signal
processing tools is [11], which designs a RS via non-negative matrix factorization using
graph TV [cf.(2.15)] as regularization parameter. This choice is proved to be more ben-
eficial to accuracy compared to using Tikhonov regularization as in [15]. Later, graph
convolutional filters entered the recommendation scene in [56]. The authors focus on
similarity graphs and introduce diffusion filtering, where they consider signal propaga-
tion through the graph as a heat diffusion process. They show accuracy can be improved
by applying diffusion filtering on similarity graphs prior to calculating cosine similarity.
Authors in [37] continue with graph filters and show the NN collaborative filter is a graph
convolutional filter of order one w.r.t. the NN graph adjacency matrix [73]. This work also
showed higher order graph convolutional filters (therefore, higher-order neighbor infor-
mation) improve rating prediction, as we discussed in Section 2.3. Also the work in [18]
uses the same graph convolutions as [37] –although building from a different standpoint
and named differently, from a technical perspective the two approaches are identical–
but trains them for ranking rather than rating. These approaches are limited to linear
transformations, neglecting nonlinear solutions which may capture complex relation-
ships among entities involved.

Nonlinear Models. The authors of [61] extract spatial features from similarity graphs
by means of graph convolutional filters. Then, they feed such features into a recurrent
neural network to complete the UIM. Later, authors in [12] use a graph convolutional
encoder followed by a bylinear decoder to predict recommended items in the form of
labeled edges in the user-item bipartite graph. The user-item bipartite graph is also the
starting point in [83], where the authors deployed a GCNN with filters of order one on an
augmented graph comprising the user-item bipartite interaction graph and also user-
user and item-item proximal graphs. The work in [92] learns also from the user-item
interaction bipartite graph through an order one GCNN but the propagation rule is aug-
mented to promote message passing from similar items. Authors in [95] combine ran-
dom walks with graph convolutions and develop a scalable framework to billion node
graphs.

Knowledge graph is another graph type widely employed in RS to boost the recom-
mendation with additional information [89]. The first to use GCNN methods to leverage
information from the knowledge graph is [88], which uses a GCNN to generate high order
embeddings to capture structural proximity among entities. This idea is further analyzed
in [88], which regularizes the loss function by a smoothness prior to enforce similar user
scores in adjacent items. Authors in [91] add an attention mechanism to the pipeline,
learning embeddings that are aware of the importance of neighbors.



3.4. DISCUSSION

3

21

All in all, these works show the large potential of graph convolutions and GCNNs
to change the RS landscape. However, all approaches mainly focus on accuracy while
ignoring diversity along with the respective trade-off. This thesis, instead, shows how to
use graph convolutions and GCNNs for establishing an accuracy-diversity trade-off in
both a rating and a ranking setup.

3.4. DISCUSSION
Although difficult to sum up all the literature in RS, diversity and graph convolutions, we
highlighted the most important works to help the reader understanding the state-of-the-
art. We started in Section 3.1 with an overview of diversity in RS and its importance in
the design phase; in Section 3.2, we discussed the accuracy-diversity trade-off intrinsic
of RS and some of relevant literature offering a better balance; finally in Section 3.3, we
presented the works proposing linear and nonlinear solutions with graph convolutional
filters in RS.

The goal of this thesis is to build and analyze graph convolutional methods that ex-
plore both strong positive and negative correlations between users and items to allow
trading between recommendation accuracy and diversity. Our rationale is that, if graph
convolutions are employed to capture hidden relationships between entities connected
based on their similarity, their learning will be skewed towards an accuracy-oriented
map, ultimately, undermining diversity. Our approach consists of deploying two differ-
ent graph convolutions over two different graphs: one graph built from the strong sim-
ilarities between entities and another graph build from strong dissimilarities between
entities. The similarity-based graph will capture the influence of similar entities to build
recommendations, while the dissimilarity graph will capture the influence of dissimi-
lar entities to include that information that cannot be described by similarity connec-
tions. Together, they increase the descriptive power of graph convolutional methods
to represent the data. However, the information coming from dissimilar connections
needs to be accounted properly to affect recommendation accuracy as little as possi-
ble. We tackle this issue in two ways: first, we balance the information provided by the
two graphs through a tuneable parameters, which serves also as our handle to establish
an accuracy-diversity trade-off; second, we train jointly the ensemble of graph convolu-
tional methods deployed over the two graphs w.r.t. an accuracy-oriented metric. This
latter aspect is critical to learn representations that enrich recommendation accuracy
with information coming from dissimilar connections.





4
METHODS

In this chapter we present our proposed approach, where we perform rating prediction
employing a similarity graph and a dissimilarity graph. Contrarily to accuracy-centered
systems, we learn parameters via joint optimization of two graph convolutional filters,
one for each graph. With this approach we embed diversity already in learning. We di-
vide this chapter as follows: Section 4.1 introduces the notion of dissimilarity graph as
diversity source; then, we discuss joint rating optimization of filters in a rating oriented
and a ranking oriented fashion in Sections 4.2 and 4.3, respectively; in Section 4.4 we
show the bandlimitedness of the graph convolutional filters we use in linear and nonlin-
ear models; finally, Section 4.5 concludes the chapter by highlighting the key aspects of
our approach.

4.1. LEVERAGING NEGATIVE CORRELATIONS
We work with a NN similarity-graph Gs = {V ,Es} [cf. Sec. 2.3.1; Fig. 2.7] and a FN dissimilarity-
graph Gd = {V ,Ed}. The dissimilarity graph is built by following the opposite principles of
NNs, i.e., connecting each entity to its top-n̄ most negatively related ones. To illustrate
the latter, consider C captures item-item correlations while vector xu contains the rat-
ings of user u to all items. The user-specific dissimilarity graph has the adjacency matrix
C̄u obtained from C by:

1. Removing any edge starting from an item not rated by user u.

2. Keeping for each item i the n̄ most negatively connected items.

3. Normalizing the resulting matrix to make C̄u right stochastic.

In other words, defining N i u as the set containing the n̄ most dissimilar items to i rated
by user u, entry (i , j ) of C̄u is

[C̄u]i j =
{

Ci j
/∑

j ′∈N i u
Ci j ′ if j ∈N i u

0 if j ∉N i u
. (4.1)
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X X̂

Gs;Φ(·;Ss;Hs)

Gd;Φ(·;Sd;Hd)

X̂s

X̂d

1− α

α

+

similarity graph

dissimilarity graph

Figure 4.1: Rating prediction with similar and dissimilar Graphs. We construct a NN graph Gs capturing sim-
ilarities between entities; and a FN graph Gd capturing dissimilarities between entities. On each graph, we
run a graph convolutional module Φ(·) with respective parameter set H(·) [cf. (2.10), (2.13)]. The estimated
outputs are combined through a parameter α to obtain the final joint estimate X̂.

Table 4.1: Combinations between the similarity-graph Gs and the dissimilarity-graph Gd.

Dissimilar Gd

User Item
User User-user (UU) User-item (UI)

Si
m

il
ar

G
s

Item Item-user (IU) Item-item (II)

The normalization step is identical to the NN approach and ensures a similar magnitude
of signal shifting [cf.(2.7)] on both NN and FN graphs. This normalization implies the
entries of C̄u are positive, i.e., a larger value indicates a stronger dissimilarity. In the
considered datasets, positive correlations go up to 1.0 while the negative correlations
down to −0.2.

On each graph Gs and Gd we have a convolutional moduleΦs(x;Ss;Hs) andΦd(x;Sd;Hd),
outputting an estimate of the user-item matrix X̂s and X̂d, respectively. We combine the
two outputs in the joint estimate

X̂ = (1−α)X̂s +αX̂d (4.2)

where scalar α ∈]0,1[ balances the influence of the similar and dissimilar connections;
see Figure 4.1. Each graph Gs or Gd can be a user or an item graph and the graph convo-
lutional modules Φ(·) can be linear [cf. (2.10)] or nonlinear [cf. (2.13)]. This framework
yields eights combinations to investigate the trade-off. We limit ourselves to situations
where the graph convolutional modules are the same on both graphs and focus on the
four combinations in Table 4.1. To ease exposition, we shall discuss the theoretical meth-
ods with the hybrid combination user NN graph (i.e., Gs,u with adjacency matrix Bi for
item i ) and item FN graph (i.e., Gd,i with adjacency matrix C̄u for user u). This setting
implies we predict rating X̂ui by learning, on one side, from the coupling (Gs,u,xi ), and,
on the other side, from the coupling (Gd,i,xu).

Joint models like the one we consider are popular beyond the RecSys literature. The
works in [36, 77] consider two different shift operators of the same graph to model sig-
nal diffusion with graph convolutional filters [cf. (2.10)]. This strategy is subsequently
extended to GCNNs in [22]. Instead, [19, 40] exploit different relationships between data
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to build GCNNs. The common motivation in all these works is that a model based on a
single graph (often capturing similarities between nodes [58]) or a single shift operator is
insufficient to represent the underlying relationships. Therefore, we argue a joint model
capturing different interactions helps representing better the data. A model based only
on NNs fails giving importance to items that differ from the main trend. FNs account
for this information and aid diversity. However, the information from FNs should be ac-
counted for properly during training to keep the accuracy at the desired level. We detail
this aspect in the upcoming two sections.

4.2. LEARNING FOR RATING
In this section, we estimate the joint model parameters w.r.t. the mean squared error
(MSE) criterion. Analyzing the MSE quantifies also the trade-off for all items in the
dataset (unbiasing the results from the user preferences in the list)1. The MSE also pro-
vides insights into the role played by the FNs. To this end, consider a training set of user-
item pairs T = {(u, i )} for the available ratings in X. Consider also the user-similarity
graph Gs,u, the item-dissimilarity graph Gd,i, and their respective graph convolutions
Φs(xi ;Bi ;Hs) and Φd(xu ; C̄u ;Hd). We estimate parameters Hs and Hd by solving the
regularized problem

minimize
Hs,Hd

1

µ
MSE(u,i )∈T

(
Φs(xi ;Bi ;Hs)+Φd(xu ; C̄u ;Hd);XT

)
+ 1

2

(‖Hs‖2
2

1−α + ‖Hd‖2
2

α

)
subject to 0 <α< 1

(4.3)
where MSE(u,i )∈T

(·; ·) measures the fitting error w.r.t. the available ratings XT , while the
second term acts as an accuracy-diversity regularizer2.

Scalar α controls the information flow from the NN and the FN graph. For α→ 0,
we have ‖Hd‖2

2/αÀ‖Hs‖2
2/(1−α), therefore, problem (4.3) forces parameters Hd to a

smaller norm rather than using them to fit the data. Hence, this setting mainly leverages
information from the similar graph Φs(·), ultimately, reducing the ensemble to a single
NN graph convolutional model. For α→ 1, we have the opposite case ‖Hs‖2

2/(1−α) À
‖Hd‖2

2/α, which implies the information from the similar graph plays little role in fit-
ting since parameters Hs are forced towards zero. Hence, problem (4.3) mainly exploits
information from FNs to reduce the MSE. Intermediate values of α closer to zero than
to one lead to models where most information is leveraged from the NNs to keep the
MSE low, while some information is taken from FNs to add diversity. We refer to α as the
trade-off parameter. Scalar µ balances the fitting error with the overall regularization
and allows generalizing the model to unseen data.

4.2.1. GRAPH CONVOLUTIONAL FILTER

Recall the graph convolutional filter in (2.10) and consider graphs Gs,u and Gd,i can have
different number of nodes. To account for this technicality in the design phase, we

1We shall see that often methods trained with the MSE perform better in the list w.r.t. trained for ranking.
2In (4.3), we allowed ourselves a slight abuse of notation and indicated with ‖H(·)‖2

2 the `2−norm squared of
the vector containing the coefficients in set H(·).
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first transform the filters into a more manageable form. The filter output on the user-
similarity graph Bi can be written as

Φs(xi ;Bi ;hs) =
K∑

k=0
hs,k Bk

i xi := Bs,i hs (4.4)

where the U × (K +1) matrix Bs,i = [B0
i xi , . . . ,BKs

i xi ] contains the shifted ratings of item i

over graph Bi and vector hs = [hs,0, . . . ,hs,Ks ]> the parameters. The uth row of Bs,i is the
1×(K +1) vector [Bs,i ]u: containing the shifted ratings of user u for item i . We then stack
the |T | row vectors [Bs,i ]u: for all pairs (u, i ) ∈T in

Ms =
[

. . . ; [Bs,i ]u:; [Bs, j ]u:; . . . ; [Bs,k ]v :; [Bs,l ]v :; . . .
] ∈R|T |×(K+1).

The τth row of Ms corresponds to the τth (u, i ) tuple. Denoting by xT = vec(XT ) the
|T |×1 vector of available ratings, we can write the filter output for all training samples
as x̂s,T = Mshs. Likewise, we can write the filter output over the item-dissimilarity graph
C̄u as

Φd(xu ; C̄u ;hd) =
K∑

k=0
hd ,k C̄k

u xu := C̄d,u hd (4.5)

where matrix C̄d,u = [C̄0
u xu , . . . , C̄Kd

u xu] ∈ RI×(K+1) collects the shifted ratings of user u
w.r.t. graph C̄u and vector hd = [hd ,0, . . . ,hd ,K ]> the filter parameters. Then, we construct
the |T |×(K +1) matrix Md by collecting the rows [C̄d,u]i : for all (u, i ) ∈T so that to write
x̂d,T = Mdhd.

With these in place, the design problem (4.3) particularizes to

minimize
hs,hd

1

2µ

∥∥xT −Mshs −Mdhd
∥∥2

2 +
1

2

(‖hs‖2
2

1−α + ‖hd‖2
2

α

)
subject to 0 <α< 1

. (4.6)

which is a regularized-least squares problem in the filter coefficients hs and hd. The
closed-form solution for (4.6) can be found by setting the gradient to zero, i.e.,

− 1

µ
M>

s

(
xT −Mshs −Mdhd

)+ 1

1−αhs = 0 (4.7a)

− 1

µ
M>

d

(
xT −Mshs −Mdhd

)+ 1

α
hd = 0 (4.7b)

or equivalently solving the linear system of equations

1

µ

[
M>

s xT

M>
d xT

]
=

[
M>

s Ms − 1
1−α I M>

s Md

M>
d Ms M>

d Md − 1
α I

][
hs

hd

]
. (4.8)

If the matrix inversion in (4.8) is ill-conditioned, we can always solve (4.6) with of-the-
shelf iterative methods. The above procedure leads to an optimal balance between the
information coming from the NNs and the FNs.
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4.2.2. GRAPH CONVOLUTIONAL NEURAL NETWORK

We now consider modelsΦs(xi ;Bi ;Hs) andΦd(xu ; C̄u ;Hd) are GCNNs running respec-
tively over graphs Bi and C̄u . Particularizing (4.3) to this setting implies solving

minimize
Hs,Hd

1

2µ

∑
(u,i )∈T

∣∣∣Xui −
[
Φs(xi ;Bi ;Hs)

]
u
−

[
Φd(xu ; C̄u ;Hd)

]
i

∣∣∣2
+ 1

2

(‖Hs‖2
2

1−α + ‖Hd‖2
2

α

)
subject to 0 <α< 1

(4.9)
where [Φs(xi ;Bi ;Hs)]u is the user-similarity GCNN output for user u and [Φd(xu ; C̄u ;Hd)]i

is the item-dissimilarity GCNN output for item i . Problem (4.9) preserves the trade-offs
of the general version (4.3), but it is non-convex and little can be said about its global
optimality. However, because of the compositional form of the GCNN, we can estimate
paramters Hs and Hd via standard backpropagation since the graph convolutional fil-
ters are linear operators in the respective parameters [30]. The following remark is in
order.

Remark 1 In (4.9), we considered the accuracy-diversity parameter α only in the regu-
larizer and not also in the fitting part as in (4.2). We found that including the latter to the
MSE term leads to a more conservative solution towards diversity. We have consistently
seen that keepingα only in the regularizer allows for a better trade-off. Furthermore, the
regulariser in (4.9) does not need be rational inα, but can be in any form as long as it bal-
ances the NNs with the FNs. An alternative isΩ(Hs;Hd;α) = 1

2

(
α‖Hs‖2

2+(1−α)‖Hd‖2
2

)
.

4.3. LEARNING FOR RANKING
This section designs the joint model for ranking. We considered the Bayesian person-
alized ranking (BPR), which is a state-of-the-art learn-to-ranking framework [67]. BPR
considers the rating difference a user u has given to two items i and j . Let symbol
i Âu j indicate user u rated item i more than item j and augment the training set as
T ⊆ U ×I ×I to contain triplets of the form T = {(u, i , j )|i Âu j }. For each available
tuple (u, i ) we created four triplets {(u, i , j )} j such that Xui > Xu j following [67]. Subse-
quently, the estimated ratings for tuples (u, i ) and (u, j ) are respectively

X̂ui
(
Hs,Hd

)= [
Φs(xi ;Bi ;Hs)

]
u + [

Φd(xu ; C̄u ;Hd)
]

i

X̂u j
(
Hs,Hd

)= [
Φs(x j ;B j ;Hs)

]
u + [

Φd(xu ; C̄u ;Hd)
]

j

(4.10)

and the utility function is

X̂ui j
(
Hs,Hd

)= X̂ui
(
Hs,Hd

)− X̂u j
(
Hs,Hd

)
(4.11)

which expresses the rating difference as a parametric relationship between user u, item
i , and item j . The utility function is used to estimate parameters Hs,Hd by maximizing
the likelihood

p(i Âu j |Hs,Hd) :=σ
(

X̂ui j
(
Hs,Hd

))= (
1+e−X̂ui j (Hs,Hd)

)−1
(4.12)
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where σ(x) = (1+ e−x )−1 is the logistic sigmoid function [67]. By applying the natural
logarithm (monotonic increasing) to (4.12) and regularizing it, we can estimate the joint
convolutional model parameters by solving the regularized optimization problem

minimize
Hs,Hd

− 1

µ

∑
(u,i , j )∈T

lnσ
(
X̂ui j Hs,Hd

)+α‖Hs‖2
2 + (1−α)‖Hd‖2

2

subject to 0 <α< 1

. (4.13)

Differently from (4.2), the regularizer in (4.13) is linear in α. We opted for this choice
because the linear was more robust to µ. Nevertheless, the regulariser in (4.13) respects
the same trend as that in (4.2): forα→ 0, NNs are mainly used for fitting sinceα‖Hs‖2

2 →
0; vice-versa, for α→ 1 the FNs are mainly used for fitting since (1−α)‖Hd‖2

2 → 0.

4.3.1. GRAPH CONVOLUTIONAL FILTER
Particularizing the convolutional models to filters [cf. (2.10)], (4.10) becomes

X̂ui
(
Hs,Hd

)= [
Bs,i

]
u:hs +

[
C̄d,u

]
i :hd

X̂u j
(
Hs,Hd

)= [
Bs, j

]
u:hs +

[
C̄d,u

]
j :hd

(4.14)

where
[
Bs,i

]
u: is the uth row of the similar user-NN graph matrix Bs,i [cf. (4.4)] and[

C̄d,u
]

i : is the i th row of the dissimilar item-FN graph matrix C̄d,u [cf. (4.5)]. Substituting
(4.14) into (4.13) leads to

minimize
hs,hd

− 1

µ

∑
(u,i , j )∈T

lnσ
(
X̂ui j

(
hs,hd

)+ (
α‖hs‖2

2 + (1−α)‖hd‖2
2

)
subject to X̂ui j

(
hs,hd

)= ([
Bs,i

]
u:hs +

[
C̄d,u

]
i :hd

)− ([
Bs, j

]
u:hs +

[
C̄d,u

]
j :hd

)
0 <α< 1

. (4.15)

Function − lnσ(X̂ui j
(
hs,hd)) is convex since it involves a log-sum-exp of an affine func-

tion [13]. Consequently, problem (4.15) is convex in hs and hd. Convexity guarantees
we can find a minimizer for (4.15) but not a closed-form solution. In fact, finding an
analytical solution for logistic fitting problems is notoriously difficult except for partic-
ular instances [52]. However, we can get the optimal parameters for (4.15) through the
stochastic gradient descent updates

hs ← hs + γ

µ

[
e−X̂ui j

(
hs,hd

)
σ

(
X̂ui j

(
hs,hd

))([
Bs,i

]>
u − [

Bs, j
]>

u

)−2αhs

]
(4.16a)

hd ← hd +
γ

µ

[
e−X̂ui j

(
hs,hd

)
σ

(
X̂ui j

(
hs,hd

))([
C̄d,u

]>
i − [

C̄d,u
]>

j

)−2(1−α)hd

]
(4.16b)

where γ is the stepsize. These optimal parameters guarantee the best learning-to-rank
solution for any balance between the NNs and FNs (α) and between fitting and general-
ization (µ).

4.3.2. GRAPH CONVOLUTIONAL NEURAL NETWORK

When Φs(xi ;Bi ;Hs) and Φd(xu ; C̄u ;Hd) are GCNNs, the BPR optimization problem is
that in (4.13). Because of the nonlinearity, it is difficult to establish if a global minimum
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exists and we should seek for a satisfactory local minima. Since cost (4.13) is differen-
tiable w.r.t. Hs and Hd, we can achieve this local minima through conventional back-
propagation.

Either estimated for rating or ranking, the coefficients of the joint model dictate the
filter behavior (either directly or within the GCNN layers) on the NN and FN graphs.
Besides analyzing the filter behavior in the node domain (as multi-hop rating aggrega-
tion) and in the respective cost functions (as accuracy-diversity trade-off), we can also
get insight on the trade-off by analyzing the graph convolutional modules in the graph
spectral domain [65]. We discuss this aspect next.

4.4. SPECTRAL EXPLANATION
In this section we use the concepts discussed in Section 2.2.4 to study the spectral be-
havior of the graph convolutional filters in our model. We start with plain graph convo-
lutional filters [cf. (2.10)] and show they act as bandstop filters [37]. Consequently, we
run the same analysis on filters employed in GCNNs, and highlight they follow the same
spectral behavior.

4.4.1. GRAPH CONVOLUTIONAL FILTERS

Recall the joint model with a user-similarity filter H(Bi ) = ∑K
k=0 hs,k Bk

i xi [cf. (4.4)] and

an item-dissimilarity filter H(C̄u) =∑K
k=0 hd ,k C̄k

u xu [cf. (4.5)]. By substituting the respec-
tive eigendecompositions Bi = Us,iΛs,i U−1

s,i and C̄u = Ūd,uΛ̄d,u Ū−1
d,u we can write the esti-

mates in the graph frequency domain as

˜̂xi =
K∑

k=0
hs,kΛ

k
s,i x̃i and ˜̂xu =

K∑
k=0

hd,kΛ̄
k
d,u x̃u . (4.17)

In (4.17), ˜̂xi and ˜̂xu are the GFT of the filter output on the similar and dissimilar graphs,

respectively; likewise, H(Λs,i ) :=∑K
k=0 hs,kΛ

k
s,i and H(Λ̄d,u) :=∑K

k=0 hd,kΛ̄
k
d,u are the filter

responses of H(Bi ) and H(C̄u). To estimate the responses, we first get the filter coeffi-
cients from (4.6) (rating design) or (4.13) (ranking design) and order the eigenvalues λn,i

(resp. λn,u) of each Bi (resp. C̄u) as per the total variation in (2.15). Subsequently, for
each Bi (resp. C̄u) we record the transfer functions {H(Λs,i )}i (resp. {H(Λ̄d,u)}u) and av-
erage them across all items I (resp. users U ) to get a single transfer functions over the
user-similarity graph (resp. item-dissimilarity graph). The transfer functions are shown
in Figure 4.2 for different values of α.

In all cases, we observe a band-stop behavior since more than 90% of the middle
graph frequencies are zero. The latter corroborates the behavior of the vanilla NN graph
filter and that of the graph convolutional filters operating on the similarity graph [37].
This is because all models operate over NN-based (or FN-based) graphs which have a
clustered structure; hence, they induce a low-rank representation. Another behavior
inherited from NN/FN graphs is that filters preserve the extreme low and high graph
frequencies. Low graph frequencies are signals with a small total variation, while high
graph frequencies are signals with a high total variation.

• In the user-similarity graph, low graph frequencies represent signals where similar
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(c)

(a) (b)
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Figure 4.2: Frequency responses of the graph convolutional filters over a user-similarity and an item-
dissimilarity graph. The horizontal axis is the graph frequency index, while the vertical axis is the estimated
frequency response. (Top) Filters designed w.r.t. the mean squared error criterion in (4.6). (Bottom) Filters
designed w.r.t. the Bayesian personalized ranking criterion in (4.13). (a-c) Frequency response of the user-
similarity graph filter H(Λs,i ). (b-d) Frequency response of the item-dissimilarity graph filter H(Λ̄d,u ).

users tend to give similar ratings. This part provides the global trend of preferences
among similar users that is leveraged to predict ratings. The high graph frequen-
cies represent discordant ratings between similar users for a particular item and
can be seen as a primitive source for diversity.

• In the item-dissimilarity graph, the spectral behavior is the same but the impli-
cations are different. Low frequencies represent ratings with small difference in
dissimilar neighboring items; implying, a user u gave similar ratings to items that
are dissimilar between them. These low frequencies may also be because users
rate negatively a subset a dissimilar items and positively another subset of dis-
similar items. The high pass components represent ratings changing significantly
between neighboring dissimilar items; e.g., one of the two dissimilar items shar-
ing an edge is rated positively while the other negatively. This part will in turn
contribute towards keeping high the recommendation accuracy while relying on
strongly negative correlations between items.

These insights show the joint linear model eliminates irrelevant features (band-stop
behavior), smoothes out positive and negative ratings (low frequencies), and preserves
discriminative features to aid diversity (high frequencies). This phenomenon is observed
for different values ofα (importance on the similarity vs. dissimilarity graph) and design
criteria (MSE [cf. (4.6)] vs. BPR [cf. (4.15)]). The frequency response changes less with
α in the MSE (lines differ by 10−3) than in BPR design. This might be because the MSE
focuses on the average rating prediction error for all items (preferred or not), while the
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BPR prioritises a subset of most preferred items. In BPR, we also observed a stronger
band-stop behavior for α→ 1 meaning the joint model focuses even more on extreme
frequencies to predict ratings. This suggests the model relies on the average trend on
both graphs (lower frequencies) and focuses explicitly on highly dissimilar values in ad-
jacent nodes (higher frequencies).

We can also understand the joint model behavior by inspecting parameters hs and
hd. For rating, the parameters vary little with α (e.g., 10−2), while there is a more insight-
ful behavior in ranking design which we discuss next. For the similar filters, we have
hs,α=0.1 = [0,1.867,−0.371,−0.288]> and hs,α=0.9 = [0,10.601,−0.012,0.065]>. This indi-
cates that the more information we force from the dissimilar FN into the joint model
(i.e., α = 0.9), the more the latter relies on the one-hop similar NN; i.e., the gap in the
coefficients increases by one order of magnitude. The latter is also reflected in the wider
band-stop filter behavior. For the dissimilar filters, we have hd,α=0.1 = [0,−0.849,1.105]>
and hd,α=0.9 = [0,−0.474,1.549]>. The information from the two-hop FN neighbors has
a double importance compared with the one-hop FN neighbors. These weights are be-
cause we design the coefficient w.r.t an accuracy-oriented metric for a few relevant items.
That is, in Gd,i the one-hop FN neighbors i and j are highly dissimilar while the two-hop
FN neighbors i and k are less dissimilar since they do not share an edge. Consequently,
the two-hop FN neighbor k brings in less dissimilar information than the one-hop FN
neighbor j , which aids ranking accuracy. At the same time, the information from the
two-hop FN neighbors is more diverse than the information obtained from the two-hop
NNs. The joint model compensates the degraded accuracy coming from the FN by in-
creasing the importance of its one-hop NN.

4.4.2. GRAPH CONVOLUTIONAL NEURAL NETWORKS
We now analyze the graph frequency response of the convolutional filters in the joint
GCNN model [cf.(2.12)]. Figure 4.3 illustrates the latter for a one-layer GCNN with F = 2
filters over each graph. We observe again the strong band-stop behavior. In the NN
graph, the stopped band is narrower than in the FN graph, and it is narrower if the GCNN
is learned w.r.t. rating than ranking. The band-stop behavior and the increased focus on
the extreme low and high graph frequencies suggest the GCNN leverages the information
on the similar and dissimilar graph in a similar way as the linear counterpart. We refer
to the previous section to avoid repetition.

4.5. CONCLUSION
This chapter introduced our proposed approach to tackle the accuracy-diversity dilemma
via graph convolutions. In Section 4.1 we described the dissimilarity graph and its role in
recommendation; in Sections 4.2 and 4.3 we discussed the joint optimization problem
from a rating and ranking perspective, respectively, in linear and nonlinear scenarios.
We performed in-depth analysis of optimality in linear optimization in both cases. Fi-
nally, in Section 4.4, we studied the model in the graph-frequency domain, with insights
about the recommendation mechanisms.
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Figure 4.3: Frequency responses of the bank of F = 2 graph convolutional filters of a one layer GCNN [cf. (2.11)]
run over a user similarity graph and an item dissimilarity graph. The z-axis is the frequency response which is
cropped to improved visibility. The other two axis are the graph frequency index and the filter number. (Top)
Filters designed w.r.t. the mean squared error criterion in (4.6). (Bottom) Filters designed w.r.t. the Bayesian
personalized ranking criterion in (4.13). (Left) Filters on the user similarity graph. (Right) Filters on the item
dissimilarity graph.
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NUMERICAL EXPERIMENTS

This chapter presents the numerical experiments we carried out for our research. Sec-
tion 5.1 discusses the experimental setting, with the metrics and baseline methods em-
ployed; Section 5.2 studies the optimal parameter for the similarity scenario; Section 5.3
presents the results of our model against state-of-the-art accuracy-oriented algorithms
and methods proposing a different accuracy-diversity trade-off; Section 5.4 concludes
the chapter.

5.1. EXPERIMENTAL SETTING
We test our method on three datasets (MovieLens100k [33], Douban [55] and Flixster
[41]) following the same experimental settings as in [61]: that is, for MovieLens100k we
use 80% of the ratings as training and the rest for testing; for the other two datasets we
use a submatrix of 3000 users and 3000 items, from which we consider 90% of the avail-
able ratings for training and the rest for testing. We carry out experiments extensively on
Movielens100k to gain insights about our proposed method, while we use Douban and
Flixster to corroborate the results on datasets with different sparsity. Table 5.1 shows
detailed statistics about the datasets’ structure.

We perform tests using the four combinations for Gs and G we showed in table 4.1.
For each of the four combinations, we test the linear and the nonlinear model; finally, we
learn parameters via ranking or rating optimization. Thus, we have 16 configurations of
support, model and loss function to test on each dataset: e.g. UU linear optimized by rat-
ing, or IU nonlinear optimized by ranking. We considered a simple GCNN architecture
composed of a single hidden layer with two parallel filters. We trained the GCNN using
the ADAM optimizer with the default parameters [46] and sought different learning rates
γ and fitting-regularizer parameter µ.

To avoid exponential growth of hyperparameter testing in different accuracy-diversity
setups, we proceeded with the following rationale. First, we perform an extensive param-
eter analysis in the MovieLens100k data set, since this dataset is common in the two most
similar graph convolutional works [37, 61]. We then use the remaining two data sets to

33
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Table 5.1: Features of the considered datasets.

Data set Users Items Ratings Sparsity
MovieLens100k 943 1,682 100,000 6.3 ×10−2

Douban 3,000 3,000 136,891 1.5 ×10−2

Flixster 3,000 3,000 26,173 2.9 ×10−3

corroborate the accuracy-diversity trade-off trends our joint model impose. Second, we
chose the hyper-parameters of the similarity graph (number of nearest neighbor, filter
order, and length of the recommendation list) from the linear graph convolutional filter
optimized for rating [cf. (4.6)], which is the method proposed in [37]. Besides being a
faster design method to seek for different parameters, this strategy allowed evaluating
the accuracy-diversity trade-off by using information solely from the similarity graph.
Finally, we kept fixed these parameters for the similarity graph and evaluated different
combinations on the dissimilarity graph.

5.1.1. BASELINES
To further acquire knowledge about where in the spectrum of RS our method fits, we
compare its performance against four methods which rely only on similarities to gener-
ate the recommendation:

• kNN: as shown in Sections (2.3.1) and (2.3.2), the kNN collaborative filtering can be
seen as a graph convolutional filter operating on the similarity graph; we compare
against user-based NN and item-based NN via graph convolution operating on Gs.

• LR-MC [60]: low rank matrix completion fills the missing entries by seeking a low
rank matrix which satisfies constraints imposed by the similarities between users
and between items.

• MCGNN [61]: recommendation is seen as an iterative two steps procedure where
similarity based features are extracted using a GNN and propagated using a recur-
rent neural network to complete the matrix.

• MF-BPR [67]: the standard matrix factorization [47] technique for recommender
systems optimized for ranking via BPR [67].

5.1.2. METRICS
We measure the performance of our method with several metrics for ranking, rating and
diversity to have a complete overview of the algorithm’s behavior.1 Denote the test set
by Ts and the recommendation list of length k for user u.
Rating. For rating, we use the root mean square error (RMSE) between the mean cen-
tered true rating Xui and mean centered predicted rating X̂ui ∈ Ts for the tuple (u, i ).

1We have also evaluated the models with different metrics including: the mean absolute value (MAE), a sur-
rogate of the RMSE for rating; precision and recall @k, which are ranking-oriented metrics for accuracy; and
entropy diversity [3], which measures the ability of the model to recommend also items in the long-tail. We
have observed these metrics respect in general the same accuracy-diversity trade-off trend and have omitted
them for clarity of exposition.
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The RMSE is defined as:

RMSE =
√∑

(u,i )∈Ts |X̂ui −Xui |2
|Ts |

. (5.1)

A lower value of RMSE indicates a better fit; hence, a better performance.

Ranking. For ranking we use the normalized discounted cumulative gain @ k (NDCG@k),
which keeps into account item relevance. Denote by Iuk = {iu1, · · · , iuk } the set of k items
predicted with the highest rating for user u, i.e., X̂uiu1 ≥ X̂uiu2 ≥ . . . ≥ X̂uiuk . To define the
NDCG, we first first define the discounted cumulative gain (DCG) for which we consider
the true ratings Xui := reli (called also the relevance for item i ) of the items i ∈ Iuk or-
dered w.r.t. the predicted order in Iuk , i.e., rel1 ≥ rel2 ≥ . . . ≥ relk . Then, the DCG for user
u in a list of length k is defined as

DCGu@k =
k∑

i=1

reli

log2(i +1)
. (5.2)

The DCGu@k accounts for the ordering of the true values in the predicted list Iuk . This
ordering can at most be the ideal one Xuiu1 = X̂uiu1 ≥ Xuiu2 = X̂uiu2 ≥ . . . ≥ Xuiuk = X̂uiuk ,
i.e., when the algorithm orders the items in the predicted list Iuk following the true or-
der of preference for user u. In this instance, we refer to it as the ideal DCG for user u
(i DCGu@k). Then, the NDCG@k for the a list k over all users U is defined as

NDCG@k = 1

|U |
∑

u∈U

DCGu@k

i DCGu@k
. (5.3)

That is the sum over all users of the respective normalized DCGsu w.r.t. the ideal ones. A
high value of NDCG@k indicates a better recommendation in the list of order k; hence,
a better performance [43].

Diversity. For diversity we use two metrics proposed in the literature: the aggregated
diversity @ k (AD@k) [34], and the individual diversity @ k (ID@k) [97, 99]. The aggregated
diversity AD@k measures the fraction of items I the algorithm includes in the union of
all recommendation lists Iuk . That is,

AD@k = 1

|I |
|U |⋃
u=1

Iuk . (5.4)

A higher aggregated diversity indicates the algorithm recommended a larger portion of
the items present in the catalog, consequently, a better performance.

The individual diversity for a list of length k (ID@k) measures the average diversity
within the recommendation lists of all users. That is, for d(i , j ) being a distance metric
of two items i and j quantifying their dissimilarity, the individual diversity is computed
as

ID@k = 1

|U |
∑

u∈U

2

k(k −1)

∑
(i , j )∈Iuk ,i 6= j

d(i , j ) (5.5)

where the internal sum computes the individual diversity of the list Iuk of user u and
the external sum averages across all users. A higher individual diversity indicates the
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average recommendation lists is more diverse. Notice the individual diversity requires
computing a distance between items (often done based on their features). To use these
metric also in featureless items, we followed [48] and computed the Euclidean distance
based on first seven SVD latent features for items i and j .

We highlight a high individual diversity does not imply a high aggregated diversity
and viceversa [3, 90]. For instance, an algorithm can recommend a set of k items diverse
items to all users, implying a high individual diversity but a poor aggregated diversity. Or,
an algorithm can cover all very alike items in the data set implying the high aggregated
diversity, but a poor individual diversity.

5.2. PARAMETER ANALYSIS ON SIMILARITY GRAPH
We analyze the settings where the similarity graph is user-based and item-based [cf.
Sections 2.3.1 and 2.3.2]. For each graph, we evaluate different nearest neighbors n ∈
{5,10, . . . ,40}, filter orders K ∈ {1,2,3}, and list length k ∈ {10,20, . . . ,100}.

5.2.1. NN AND SIMILAR FILTER ORDER
We first analyzed combinations between different NN and filter orders. We fixed the
length of the list to k = 10 which is a common choice in the literature [3, 99, 90, 45, 63].
Figure 5.2 shows the RMSE, the AD@10, and the ID@10 for both scenarios. The NNs
play a critical role in the accuracy-diversity trade-off. Increasing the number of NN re-
duces the RMSE (i.e., improves accuracy) but it degrades both diversity metrics. This is
because each entity connects with more similar entities whose combined effect smooth-
ness ratings. For almost all NN, there is always a K > 1 that improves both accuracy and
diversity of the vanilla NN [cf.(2.5)-(2.6)]. The latter further highlights the importance of
multi-hop neighbors. The behavior of filter order K corroborates also the observation
in [37] that higher-order neighbors improve more in the user-based scenario than in the
item-based one. From these results, we choose the combination that achieves the lowest
RMSE. For the user-based scenario, we have: 30−NN, K = 3, RMSE= 0.96, AD@10 = 0.15,
and ID@10 = 0.02. For the item-based scenario, we have: 35−NN, K = 2, RMSE= 0.96,
AD@10 = 0.48, and ID@10 = 0.02.

5.2.2. LENGTH RECOMMENDATION LIST
In Figure 5.2, we show the effect the recommendation list has on trade-off NDCG-AD,
and NDCG-ID. A longer recommendation list improves diversity, but reduces accuracy.
This is rather expected because in a longer list chances to include different items in-
crease. At the same time, a longer list makes more challenging to identify the correct
item order; hence, reducing the the NDCG.

Comparing the user NN with the item NN approach, we see little difference in terms
of NDCG, while a larger one in terms of AD and ID.

- User NN achieves a lower AD but a higher ID. This implies the algorithm priori-
tises a few relevant items in the catalog but diversifies the list of each user, respec-
tively. In our opinion, this is because the user NN has a narrow view of all items
in the catalog as it explores user-similarities. The model fails to account for the
broad range of items (each item is treated individually) and prioritises the popular
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Figure 5.1: RMSE, AD@10, and ID@10 for different filter orders K (vertical axis) and nearest neighbors (hori-
zontal axis). (Top) User-based graph convolutional filter [cf. (2.18)]. (Bottom) Item-based graph convolutional
filter [cf. (2.21)]. Increasing the NN improves the RMSE but reduces diversity. The filter orders K > 1 shows the
vanilla NN K −1 [cf.(2.5)-(2.6)] can be improved by multi-hop neighbors. Results are scaled in the range [0,1]
to improve visibility.
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Figure 5.2: RMSE, NDCG@k, AD@k and ID@k as recommendation set’s size k varies. We see the NDCGk
reduces for lists more than 20 items while diversity increases.

choices, which are different between them. The plateau the user NN reaches for
relatively low ID further corroborates the latter.

- Item NN achieves instead a higher AD but a lower ID. I.e., the model covers a larger
portion of the catalog (recommends different items to different users) but to a
specific user it recommends similar items. Item NN is less user-centric since it
leverages item similarities and ignores the influence of other similar users. Con-
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sequently, the model has a broader view of the items to build recommendations;
this explains an AD that is up to four times higher than the user NN. Nevertheless,
since each user is treated individually less importance is given to diversifying items
within the list. To some extent, we can see this model as as highly personalizing
the user list because different items are recommended to different users but these
items are highly similar within them.

Lastly, we see the user NN and the item NN, optimized for rating performs worse in
terms of list-oriented metrics compared with their vanilla counterparts [cf. (2.5)-(2.6)].
This is because the RMSE treats equally the fitting to all entries in the user-item matrix,
ultimately, ignoring the item priority in the recommendation lists. Therefore, we rec-
ommend learning the graph convolutional filter coefficients w.r.t. the RMSE only if the
goal is to complete the matrix rather than building a short recommendation list. I.e.,
identifying both preferred and non-preferred items from users.

Based on these results, we set the list length to k = 20 since this value achieves the
highest NDCG for both the user NN and the item NN. While a longer list can be an op-
tion to improve diversity, it is not user-satisfactory to search within it. The proposed joint
model improves diversity without increasing the list length. We have seen this improve-
ment also in a list of length k = 10.

As result of our analysis, for the NN graph, we set the parameters as: (i ) user-scenario
with 30−NN, filter order K = 3, list length k = 10; (i i ) item-scenario with 30−NN, filter
order K = 2, list length k = 20.

5.3. ACCURACY-DIVERSITY TRADE-OFF ANALYSIS

5.3.1. ACCURACY-DIVERSITY TRADE-OFF FOR RATING

We first study the trade-off when the joint models are trained for rating [cf. Sec. 4.2].
For the NN module, we used the parameters derived in the previous Section. For the FN
module, we fixed the number of neighbors to the arbitrary common value 40, evaluated
different filter orders K ∈ {1,2,3}, and show the best results.

Figure 5.3 shows the results for the combinations in Table 4.1 as a function of α ∈
[0.1,0.9]. As we increase the influence of FNs (α→ 1), the RMSE increases. The linear fil-
ters are more robust to α than the GCNN. We attribute the latter to the convexity of their
design problem. Increasing α increases diversity, while the AD and ID exhibit opposite
behavior. Values of α up to 0.5 offer a good trade-off as the RMSE remains unaffected
but diversity increases substantially.

To further quantify the trade-off, we allow the RMSE to deteriorate by at most 3%
w.r.t. the NN setup [cf. 5.2] and pick a value of α that respects such constraint. Table 5.2
compares the different models. For a user NN graph, the joint models (i.e., UU and UI)
boost substantially one diversity metric. We believe this is because models build only
on user-NN graphs are conservative to both diversity metrics [cf. Fig. 5.2], therefore, the
margin for improvement is larger. Contrarily, for an item NN graph, the joint models (i.e.,
IU and II) are conservative and improve by little both diversity metrics. We also highlight
the case of II-GCNN which improves the RMSE and AD while keeping the same ID.
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Figure 5.3: RMSE, AD@20, and ID@20 as a function of the accuracy-diversity parameter α for models opti-
mized for rating. As more information from the dissimilar connections is included, the RMSE deteriorates but
diversity improves. The RMSE of the GCNN is more sensitive to α as its hyperparamters are not tuned.

Table 5.2: RMSE, AD@20 and ID@20 for different models optimized for rating. In brackets we show the change
in percentage of the proposed joint models w.r.t. the NN counterpart.

RMSE AD@20 ID@20

User Linear
User NN 0.96 0.19 0.02
UU filter 0.98 (+2.1%) 0.15 (-21.5%) 0.17 (+750%)
UI filter 0.98 (+2.1%) 0.53 (+178%) 0.14 (+600%)

User GCNN
User GCNN 1.03 0.02 0.15
UU GCNN 1.05 (+1.9%) 0.12 (+500%) 0.10 (-33.3%)
UI GCNN 1.06 (+2.9%) 0.04 (+100%) 0.14 (-6.7%)

Item Linear
Item NN 0.96 0.65 0.03
II filter 0.98 (+2.1%) 0.62 (-4.6%) 0.03 (0%)
IU filter 0.98 (+2.1%) 0.60 (-7.7%) 0.03 (0%)

Item GCNN
Item GCNN 0.97 0.29 0.22

II GCNN 0.95 (−2.1%) 0.31 (+6.9%) 0.22 (0%)
IU GCNN 0.98 (+1%) 0.45 (+55.2%) 0.23 (+4.6%)

5.3.2. ACCURACY-DIVERSITY TRADE-OFF FOR RANKING
With the same setting of the last section, we now evaluate the trade-off when the joint
models are optimized for ranking [cf. Sec 4.3]. These results are shown in Figure 5.4. A
higher importance to FNs (α→ 1) reduces the NDCG@20 but improves diversity. Both
the filter and the GCNN are less sensitive to α when designed for ranking. While for the
filter we may still attribute this robustness to the optimality of the design problem, the
results for the GCNN suggest the BPR leverages better the information from FNs. Note
also the filter on the UI combination pays little in NDCG but gains substantially in AD
and ID.

To further quantify these results, in Table 5.3 we show the diversity gain when reduc-
ing the NDCG by at most 3%. We note that it is often sufficient to deteriorate the NDCG
by 1% and gain substantially in diversity. Bigger diversity improvements are achieved
when one of the two graphs is item-based. Lastly, we notice the joint GCNN models
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Figure 5.4: NDCG@20, AD@20 and ID@20 as a function of the accuracy-diversity parameter α for ranking-
optimized when models. As more information from FNs is included, the NDCG@20 deteriorates but diversity
improves. The NDCG is less sensitive to α compared with the RMSE for both the joint graph convolutional
filter and GCNN.

Table 5.3: NDCG@20, AD@20 and ID@20 for the models working on the NN graph and for the joint models
optimized for ranking. In brackets we show the change in percentage of the proposed joint model w.r.t. the NN
graph counterpart.

NDCG@20 AD@20 ID@20

User Linear
User NN 0.84 0.19 0.02
UU filter 0.83 (-1.2%) 0.07 (-63.1%) 0.01 (-50%)
UI filter 0.83 (-1.2%) 0.65 (+242%) 0.16 (+700%)

User GCNN
User GCNN 0.84 0.10 0.12
UU GCNN 0.82 (-2.4%) 0.15 (+50%) 0.08 (-33.3%)
UI GCNN 0.83 (-1.2%) 0.11 (+10%) 0.07 (-41.6%)

Item Linear
Item NN 0.83 0.65 0.03
II filter 0.82 (-1.2%) 0.70 (+7.7%) 0.18 (+500%)
IU filter 0.83 (0%) 0.41 (-36.9%) 0.20 (+566%)

Item GCNN
Item GCNN 0.83 0.40 0.02

II GCNN 0.83 (0%) 0.46 (+15%) 0.02 (0%)
IU GCNN 0.83 (0%) 0.47 (+17.5%) 0.03 (+50%)

gain less in diversity compared with linear filters. The GCNN can be further improved by
tuning its parameters.

5.3.3. COMPARISONS WITH ACCURACY-ORIENTED MODELS
In this section, we analyze how the trade-offs of the joint models compare with those
achieved by five accuracy-oriented alternatives including state-of-the-art user NN filter
[cf. (2.18)], item NN filter [cf. (2.21)], and the multi-graph convolutional neural network
(MGCNN) [41]; but also the conventional methods of low-rank matrix completion (LR-
MC) [60] and matrix factorization optimized w.r.t. BPR (MF-BPR) [67]. Save the last, the
first four are designed for rating. We first compare the models in MovieLens100k dataset
and then in Douban and Flixster. We consider only the UI combination.
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Figure 5.5: RMSE and NDCG@20 as a function of the AD@20 and ID@20 for the joint models on the UI graph
combinations and for five baselines on the MovieLens100k. The joint models are optimized for ranking. By
changing α the propsoed models impose a different trade-off than the baselines, often overcoming them.

MovieLens100k. Figure 5.5 contrasts the RMSE and NDCG@20 with the diversity met-
rics the AD@20 (left) and ID@20 (right) for α ∈ [0.1,0.9]. The accuracy of GCNN is more
sensitive to α than the other models. The GCNN gives also more importance to diversity
within the list (ID) rather than covering the catalog (AD). This indicates a few items are
recommended by the GCNN but are different between them. Contrarily, the joint lin-
ear filters are more robust to accuracy losses, gain in AD, but pay in ID. Contrasting the
proposed approaches with the other alternatives, we observe:

- Rating-optimzied models (MGCNN, user NN filter, item NN filter, and LR-MC)
achieve a lower RMSE but face problems in AD. The item NN filter achieves a rea-
sonable AD but its ID is very low. The MGCNN over-fits the RMSE by prioritising a
few popular items to all users as shown by the low AD and high ID. The joint linear
filter can substantially improve the AD by paying little in RMSE, while the GCNN
requires additional tuning. The improved AD comes often at expenses of ID; yet
values of α ≈ 0.3 offer a good balance between the two. We can further improve
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the ID with the IU combination [cf. Fig. 5.3].

- The ranking-optimized method (BPR-MF) achieves a high NDCG but still lower
than the rating-design user NN filter. This high accuracy is again linked to filling
the list with a small group of different items. The joint models optimized for rank-
ing overcome this limitation by making the list slightly more similar (lowering ID)
but increasing the catalog coverage (improving AD). This strategy keeps the NDCG
high.

Overall, we conclude that a high accuracy from the NNs is tied with an increase of list
diversity (ID) but also with a scarce catalog coverage (AD). The proposed joint models
can keep a reasonable accuracy while contributing to a higher diversity.

Douban & Flixster. We now compare the different models in two datasets containing
fewer interactions compared with MovieLens100k; see Table 5.1. The sparsity of these
datasets brings additional challenges when evaluating the NDCG@k. For a list of length
20 there is only one test user for Fixster and none for Douban. To have statistically mean-
ingful results, we measured the NDCG for a list of length k = 5, which leads 1,373 test
users for Douban and 126 for Fixster. However, to have a unified diversity comparison
with the MovieLens100k dataset, we computed the diversity for a list of length 20.

In Table 5.4, we show the performance for Douban and Fixster datasets, respectively.
For our models we report the extreme values α = 0.1 and α = 0.9 and an hand-picked
value of α. As α increases, the joint models lose in accuracy but gain in diversity. We
see again the sensitivity of GCNNs to α for which the RMSE may also reach unaccept-
able values. The joint models optimized for ranking can always provide a better NDCG
w.r.t. MF-BPR while offering a higher diversity. In general, the best trade-off by the joint
models is achieved by the GCNN designed for rating and filters designed for ranking.

Table 5.4: Performance comparison in Douban and Flixster dataset. We show the RMSE for methods trained for
rating and the NDCG@5 for methods trained for ranking. For the intermediate value of α, we show in brackets
the difference in percentage compared with the best value of competing alternatives.

α RMSE NDCG@5 AD@20 ID@20 α RMSE NDCG@5 AD@20 ID@20

MCGNN - 0.80 - 0.03 0.12 - 0.93 - 0.08 0.07

LR-MC - 1.39 - 0.80 0.04 - 3.17 - 0.45 0.09

MF-BPR - - 0.75 0.78 0.05 - - 0.72 0.50 0.10

User NN - 0.76 - 0.52 0.04 - 1.04 - 0.58 0.06

Item NN - 0.80 - 0.99 0.05 - 1.12 - 0.33 0.03

0.1 0.76 - 0.51 0.04 0.1 1.04 - 0.58 0.06

0.6 0.84 (+5%) - 0.75 (-24%) 0.05 (-58%) 0.6 1.05 (+13%) - 0.69 (+19%) 0.06 (-33%)

0.9 0.92 - 0.96 0.05 0.9 1.06 - 0.71 0.06

0.1 0.83 - 0.49 0.10 0.1 1.46 - 0.60 0.10

0.3 0.85 (+6%) - 0.44 (-56%) 0.12 (0%) 0.4 1.46 (+57%) - 0.56 (-3%) 0.11 (+22%)

0.9 3.31 - 0.63 0.11 0.9 2.84 - 0.48 0.12

0.1 - 0.80 0.44 0.15 0.1 - 0.75 0.34 0.14

0.4 - 0.80 (+7%) 0.48 (-38%) 0.12 (+140%) 0.3 - 0.75 (+4%) 0.35 (-30%) 0.13 (+30%)

0.9 - 0.77 0.77 0.07 0.9 - 0.74 0.36 0.13

0.1 - 0.80 0.47 0.13 0.1 - 0.74 0.30 0.13

0.4 - 0.80 (+7%) 0.90 (+15%) 0.05 (0%) 0.6 - 0.74 (+3%) 0.35 (-30%) 0.13 (+30%)

0.9 - 0.76 0.91 0.05 0.9 - 0.73 0.36 0.13
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Figure 5.6: Comparison of joint UI filter optimized for ranking [cf. (4.15)] with the hybrid approaches from [96]
and [98]. We also show the vanilla user-FN and item-FN for reference. The proposed approach pays the less in
terms of NDCG while offering different diversity gains.

5.3.4. COMPARISON WITH ACCURACY-DIVERSITY ALGORITHMS

In this final section, we compare the joint UI linear model with two hybrid alternatives
that propose a similar trade-off [96, 98]. The hybrid approach in [96] mixes a user-based
vanilla NN with a user-based vanilla FN. FNs are computed based on the number of
items consumed separately and only FNs are multiplied by a single scalar α ∈ [−1.4,0.5].
The hybrid approach in [98] merges a heat diffusion with a random walk to balance ac-
curacy with diversity over item-item graphs. This approach controls the influence of
each model similarly to our method through a scalar α ∈ [0,1]. Both works predict the
probability of an item being consumed by a user rather than the rating. Therefore, we
compare the accuracy w.r.t. the NDCG.

In Figure 5.6, we show the trade-offs of the different methods for all three datasets.
We also show two vanilla FN collaborative filters for reference. We see the proposed
joint model achieves consistently the highest NDCG while offering a margin to improve
accuracy. This behavior is better highlighted in MovieLens100K dataset for which the
method hyperparameters have been chosen. We attribute the latter to the fact that the
joint model learns its parameters to improve ranking accuracy rather than being a simple
fusion of two separate entities. The hybrid strategy from [98] focuses entirely on the
catalog coverage as can be seen by the high AD. This strategy heavily affects both the
NDCG and ID for which this approach performs the worst. The hybrid strategy from [96]
offers a trade-off in both diversity metrics but the role of the two graphs depends largely
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on the dataset sparsity. In Flixster, for instance, we see this strategy offers little trade-off
as the performance for all values of α but −1.4 is the same. To some extent this trend is
also present in our joint model, yet it has more control on diversity while retaining the
highest NDCG.

5.4. DISCUSSION
The accuracy-diversity trade-off represents a crucial factor for personalizing recommen-
dations. However, balancing this trade-off is challenging because of the complex and ir-
regular user-item relationships. Graphs have a proven history as core mathematical tools
for representing such data and graph convolutional RecSys algorithms have reached
state-of-the-art accuracy. This thesis used graph convolutions to establish an accuracy-
diversity trade-off for RecSys. The proposed approach exploits jointly the information
from the nearest neighbors and the furthest neighbors in both a learning-to-rate and
learning-to-rank setting. Our findings proved that graph convolutions, in both the lin-
ear graph filtering or nonlinear graph convolutional neural network form, can effec-
tively learn from the nearest and the furthest neighbors to establish two trade-offs: i) an
accuracy-to-coverage trade-off, in which accuracy is traded to recommend niche items;
and ii) an accuracy-to-individual diversity trade-off, in which accuracy is traded to im-
prove the diversity in the list.

We formulated a joint learning problem that accounts for the accuracy-diversity trade-
off. When the graph convolutional model is composed only of linear filters, we proved
the learning problem is convex and provided solutions for it. The latter is in accordance
with the learning-to-rate design performed only on nearest neighbors [37]. The con-
vexity of the learning problem renders the linear model more robust to hyperparameter
choice in different datasets, while the nonlinear model required careful tuning.

The performance of the joint graph convolutional method confirms our hypothesis
that information from nearest neighbors aids recommendation accuracy while informa-
tion from furthest neighbors aids diversity. This finding is also in line with the results
obtained with the nearest neighbor collaborative filtering or the furthest neighbor col-
laborative filtering [96, 70]. The proposed method can trade accuracy to improve sub-
stantially one diversity criteria or improve both by a lesser amount. The latter is also a
behavior observed in literature; i.e., the aggregated and individual diversity are opposed
to each other [3].

Contrasting the joint model with state-of-the-art graph convolutional RecSys meth-
ods, we showed a diversity improvement by up to seven times while paying around 1%
in accuracy. We also found the joint GCNN model combining an item nearest neighbor
graph and an item furthest neighbor graph improved accuracy and both diversity met-
rics. Contrasting the joint model with other accuracy-diversity trade-off approaches, we
showed the proposed models retains the highest accuracy while improving diversity.



6
CONCLUSION

This Chapter concludes the thesis. In Section 6.1 we give a summary of the thesis; in
Section 6.2 we answer each research question discussed in Chapter 1; in Section 6.3 we
indicate possible directions for future research. Finally, in Section 6.4 we highlight broad
impacts of our research.

6.1. SUMMARY
In this thesis, we proposed a new accuracy-diversity trade-off framework for RS using
graph convolutions.

In Chapter 1, we introduced the topic and prepared the ground with motivation and
research questions. In Chapter 2, we reviewed background knowledge useful for the the-
sis. We started with RS and their rationale. Later, we discussed the basics of graphs
signal processing, particularly about graph convolutions, GCNNs, and their graph spec-
tral interpretation. Consequently, we saw how to perform recommendation employing
graph convolutions. This is done by leveraging information only from positively cor-
related neighbors, resulting in an accuracy-oriented model. In Chapter 3, we reviewed
the relevant literature regarding diversity and its trade-off with accuracy, together with
relevant works employing graph convolutions for recommendation.

In Chapter 4, we presented our approach. Our framework balances accuracy and di-
versity in RS employing graph convolutions. We learn two parametric maps, one on a
NN graph, regarded as accuracy source, and the other on a FN graph, regarded as diver-
sity source. We exploited the flexibility of graph convolutions to: (i) design filters with
a parameter α controlling the influence of each source; (ii) learn models optimized for
rating or ranking; and (iii) work with linear and nonlinear models (GCNNs). We studied
the graph frequency response of the filters involved in our models, to gain insights not
directly visible in nodal domain.

In Chapter 5, we evaluated our proposed models with numerical experiments on
three real world datasets. We measured the accuracy with rating (RMSE), ranking (NDCG@k),
and diversity (AD@k and ID@k) metrics, to assess the accuracy-trade-off. We compared
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our models with state-of-the-art accuracy-oriented methods and with algorithms propos-
ing solutions to the accuracy-diversity dilemma. Results evidenced exploiting negative
correlations contributed to increasing diversity in one of its two forms (e.g. user NN and
user FN) or in both AD and ID at the same time (e.g. user NN and item FN). Values of
α ≈ 0.3 showed the most promising results for the trade-off, with an accuracy drop al-
ways lower than 3% and a gain in diversity up to 750% w.r.t. methods working only with
NN.

6.2. ANSWER TO RESEARCH QUESTIONS
In this Section, we recall the research questions posed in Chapter 1 and answer each of
them with the findings of this thesis.

(RQ1) How can we employ graph convolutions to tweak the accuracy-diversity trade-off
for Recommender Systems?

(RQ2) How can we learn the graph convolutional parameters to model jointly accuracy
and diversity?

To address these research questions, in Chapter 4 [cf. Section 4.1] we proposed a new
graph convolution-based framework in RS for a novel accuracy-diversity tradeoff. Be-
sides learning from a NN graph responsible for accuracy, we introduced a FN graph to
account for diversity already at learning phase. We build a graph convolutional filter on
top of each graph to predict missing ratings, while jointly leveraging information from
both graphs. This requirement led to filter design choices to balance the two graphs via
parameter α. Exploiting graph convolutional filters’ properties, we designed parameter
learning as optimization of a loss function [cf. Sections 4.2 and 4.3].

We discussed rating and ranking optimization, both in linear and nonlinear scenar-
ios. In both rating and ranking optimization, we articulated about the optimality of the
defined loss functions: (i) in rating, the loss function is a regularized-least squares con-
vex problem, thus guaranteeing a closed-form solution; (ii) in ranking, the loss function
is still convex but a closed-form solution is difficult to find, due to the logistic nature of
the problem. We found the optimal parameters via stochastic gradient descent updates.
In both rating and ranking optimization, the regularizer is α-aware, to learn parameters
according to the importance of NN and FN graphs, respectively.

(RQ3) How can we explain the accuracy-diversity trade-off achieved by the graph convo-
lutional model in the spectral domain?

To answer this research question, in Chapter 4 [cf. Section 4.4] we studied the graph fre-
quency response of graph convolutional filters employed in our model. We chose the
model based on user-NN and item-FN. We evidenced a bandstop behavior for filters
based on similarities, corroborating the findings of [37]. The same behavior is present
also in filters based on dissimilarities. This indicates the joint model focused on low
frequency features, corresponding to features common to highly (dis)similar neighbors,
and high frequency features, corresponding to features common to (dis)similar neigh-
bors with discordant ratings. We also gave an analysis of the importance of each neigh-
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borhood by looking at the learned filter coefficients. Direct neighbors are most impor-
tant in the NN graph, while in the FN graph more relevance is given to two-hops neigh-
bors. We argued this is because direct neighbors in the NN graph are the most reliable
for accuracy, and two-hops neighbors in the FN graphs provide a wider variety of choices
for recommendation while keeping a reasonable accuracy.

(RQ4) How does the proposed accuracy-diversity trade-off model behave in Recommender
System datasets?

To provide an answer to this research question, in Chapter 5 we tested the performance
of our model on three real world datasets with increasing sparsity. Our model showed the
dependency on α, i.e. when more weight is given to NNs (FNs), accuracy (diversity) is
high while diversity (accuracy) is low. Numerical experiments highlighted our model can
significantly boost either one of the two diversities, or increase both by a lesser amount.
We compared our model against state-of-the-art accuracy-oriented models, showing
diversity-agnostic models tend to overfit to popular items to achieve higher accuracy
but paying in diversity. Our models spanned a wide range of choices, with the user NN
item FN model being able to increase both AD and ID without affecting substantially
accuracy. Finally, we tested user NN item FN model against two algorithms proposing a
different accuracy-diversity trade-off. Our model achieved the highest ranking accuracy,
as we learned the optimal parameters, while the two algorithms represent hybrid models
working without optimization.

6.3. FUTURE WORK
To the best of our knowledge, this is the first work proposing graph convolutions to solve
the accuracy-diversity trade-off in recommender systems. As such, there are aspects re-
quiring additional analysis. In this section, we lay down possible directions for future
research.

COMBINATION OF LINEAR AND NONLINEAR MODELS
In our analysis, we did not mix linear models with nonlinear models. Nevertheless,
the flexibility offered by graph convolutions would allow to combine the two. For in-
stance consider problems (4.3) and (4.13). We only accounted the parametric maps
Φs(xi ;Bi ;Hs) andΦd(xu ; C̄u ;Hd) to be either two graph convolutional filters or two GC-
NNs. One possibility is to employ a graph convolutional filter on similarity graph Gs and
a GCNN on dissimilarity graph Gd, or vice-versa. Such configuration might offer deeper
insights into the impact of singular components in different scenarios. E.g., consider
rating optimization; linear models perform better in AD than in ID, while the opposite
is true for nonlinear models. Ideally, we could design a linear map on Gs and a GCNN
on Gd, and vice-versa, depending on which type of diversity is more important for the
application.

NEAREST-FURTHEST COMBINATION
Properties of graph convolutions allowed us to work on two separate graphs (user and
item graphs) at the same time. This contributed to four possible combinations, as ex-
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plained in Section 4.1 [cf. Table4.1]. The current results are not exhaustive to decide
which nearest-furthest graph combination is the most suitable for a specific accuracy
and diversity criteria. The most promising models seem to be the ones working on user-
NN and item-FN. A possible direction in this regard could be a study of the spectral prop-
erties of NN and FN graphs, similar to what we performed in Section 4.4. In detail, our
model learned the parameter in a joint fashion by leveraging both graphs. However, it
could be interesting to study the characteristics of NN and FN graphs in a standalone
manner and analyze whether the behavior is the same in a joint model. In this way, we
could draw conclusions on the role of users and items in the recommendation.

EXPLAINABILITY
In Section 4.4, we conducted a spectral analysis of the filters in linear and nonlinear
models. The results of this analysis gave us interesting insights about recommendation
when diversity is involved, e.g. the importance of direct and indirect neighbors in the
two graphs, and the bandlimited nature of the filters. However, it is still needed to iden-
tify the link between the different spectral components and the items included in the
recommendation lists. For instance, a direction for future research could be a categor-
ical study of recommended items concerning the spectral frequencies. That is, analyze
the categories of items in the recommendation lists to find a link between the spectral
components and the category which are recommended the most. This could potentially
shed light on the meaning behind the features our models focus on, i.e. what is the asso-
ciation between low/high frequency components in the spectral domain and the cate-
gory of a recommended item. By doing so, we could design filters able to target a specific
category of items while only looking at the frequency components.

6.4. BROAD IMPACTS
Graph convolutions are a powerful tool for learning over graphs. Their versatility allowed
us to define a joint model combining information from nearest and furthest neighbors,
to achieve a novel accuracy-diversity trade-off. Diversity boosting can be employed to
escape the so-called filter bubble [51], the effect for which a user is exposed to the same
category of information in a network, e.g. items in a catalog or news in a social net-
work. Our model can be a viable solution to burst the filter bubble in social networks,
where users tend to surround themselves with users sharing akin ideologies, resulting
in a stagnation of ideas. By leveraging information jointly from similar and dissimilar
users, social networks could adapt their feed providing a more diverse view to users.

More broadly, our research can be extended to the field of network information spread-
ing. We highlighted the importance of indirect neighbors for accuracy, corroborating
the result of [37]. At the same time, we showed furthest neighbors to be beneficial for
the sake of diversity. With these results in place, we could rethink the way information
spreads within a network. Graph convolutions can be employed for information spread-
ing processes, to provide also a spectral analysis which could aid explainability of such
phenomena. One example could be fake news, characterized by a trade-off between the
accuracy of the news and the intent of the news provider [9]. Our research could pave
the road for more involved scenarios in the fake news field.
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Abstract

Graph convolutions, in both their linear and neural network forms, have

reached state-of-the-art accuracy on recommender system (RecSys) benchmarks.

However, recommendation accuracy is tied with diversity in a delicate trade-off

and the potential of graph convolutions to improve the latter is unexplored.

Here, we develop a model that learns joint convolutional representations from

a nearest neighbor and a furthest neighbor graph to establish a novel accuracy-

diversity trade-off for recommender systems. The nearest neighbor graph con-

nects entities (users or items) based on their similarities and is responsible for

improving accuracy, while the furthest neighbor graph connects entities based

on their dissimilarities and is responsible for diversifying recommendations. The

information between the two convolutional modules is balanced already in the

training phase through a regularizer inspired by multi-kernel learning. We eval-

uate the joint convolutional model on three benchmark datasets with different

degrees of sparsity. The proposed method can either trade accuracy to improve

substantially the catalog coverage or the diversity within the list; or improve

both by a lesser amount. Compared with accuracy-oriented graph convolutional

approaches, the proposed model shows diversity gains up to seven times by trad-

ing as little as 1% in accuracy. Compared with alternative accuracy-diversity

trade-off solutions, the joint graph convolutional model retains the highest accu-

racy while offering a handle to increase diversity. To our knowledge, this is the
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first work proposing an accuracy-diversity trade-off with graph convolutions and

opens the doors to learning over graphs approaches for improving such trade-off.

Keywords: Accuracy-diversity, collaborative filtering, graph filters, graph

convolutional neural networks, graph signal processing.

1. Introduction

Despite accuracy is still the most dominant criterion guiding the design and

evaluation of recommender systems (RecSys), numerous studies have shown that

recommendation diversity –decreasing the similarity of the items in the recom-

mended item list– significantly improves user satisfaction [1, 2, 3]. However,5

accuracy and diversity do not always go hand in hand and the development of

a recommender system to consider both criteria typically requires dealing with

an accuracy-diversity trade-off, a.k.a. balance or dilemma [4, 5].

The thin balance between accuracy and diversity is tied with the complexity

and irregularity of the user-item relationships. Dealing with this complexity and10

irregularity has produced creative adaptations of existing RecSys paradigms,

such as modifying accuracy-oriented algorithms into diversity-oriented counter-

parts [6, 7]. As an example, the nearest neighbor (NN) collaborative filter-

ing connects entities (users, items) based on pairwise similarities and leverages

these connections to interpolate the missing values from proximal entities. To15

secure accuracy for the target user, the system learns from the preferences of

the most similar (nearest) neighboring entities. However, this typically leads to

low recommendation diversity, as the NNs are too similar to the target user.

In the search for a better accuracy-diversity trade-off, [7] proposed to look at

the furthest neighbors (FNs) instead, i.e., a subset of k users that are most20

dissimilar to the target-user in terms of preferences. The assumption here is

that recommending items FNs disliked most could bring more diversity while

preserving an acceptable level of accuracy. Other RecSys algorithms focusing on

improving diversity by connecting entitites based on their dissimilarity include

[8, 9]. Alternative approaches aiming at trading accuracy with diversity include25
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re-ranking [10, 11], leveraging side information [12, 13], or merging different

models operating with different criteria [8, 9].

We believe that in order to obtain sufficient depth in understanding the

accuracy-diversity trade-off, RecSys approaches are needed that can fully cap-

ture the abovementioned complex and irreguar user-item relationships. Graphs30

have proved themselves as excellent tools to develop such approaches [14], which

made graph-based RecSys one of the most rapidly developing areas. Examples of

graph-based RecSys approaches are diffusion-based recommendations [15], ran-

dom walks [16], and graph neural network-based recommendations [17, 18, 19],

to name a few.35

In parallel to the increasing importance of graphs in the RecSys domain, the

signal processing and machine learning communities have developed processing

tools for data over graphs [14, 20]. The quintessential tool in these areas is

the graph convolution. Graph convolutions extend to graphs the operation

of convolution used to process temporal and spatial signals and serve as the40

building block for graph convolutional neural networks (GCNNs) [21]. Graph

convolutions, both in their linear or GCNN form, have been successfully applied

to RecSys reaching state-of-the-art accuracy [19, 22]. Despite the promise, graph

convolutions have only been used to over-fit accuracy, leaving unexplored their

ability to diversify recommendations and, ultimately, improve the accuracy-45

diversity trade-off.

In this work, we explore the potential of graph convolutions to improve the

accuracy-diversity trade-off for recommender systems. We conduct this explo-

ration by developing a novel model composed of two graph convolutional com-

ponents, one providing accuracy-oriented recommendations from a NN graph,50

and one providing diversity-oriented recommendations from a FN graph. Dif-

ferently from current works, we train a single joint model to fit the data, rather

than using two separate models. Our specific contribution in this paper can be

summarized as follows:

i) We propose a novel accuracy-diversity trade-off framework for RecSys via55
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graph convolutions. The model operates on a NN graph to improve ac-

curacy and on a FN graph to improve diversity. Each graph can capture

user-user or item-item relationships, allowing to also include the hybrid

settings, such as a user-NN and an item-FN graph. To the best of our

knowledge, this is the first contribution providing an accuracy-diversity60

trade-off by using these hybrid setups. The proposed model relies only on

the available ratings, which we find important since side information, such

as metadata or context, can be unavailable or could bias the trade-off.

ii) We develop design strategies that estimate the joint model parameters in

view of both accuracy and diversity. These design strategies are versatile65

to both rating and ranking frameworks. When the joint model is composed

of linear graph convolutional filters, we analyze the optimality of the design

problem and provide solutions for it.

iii) We analyze the joint model in the graph-spectral domain to provide an

alternative interpretation of how the proposed approach balances accuracy70

with diversity. The joint model presents a band-stop behavior on both the

NN and the FN graph, and builds recommendations by focusing on the

extremely low and high graph frequencies.

iv) We evaluate two types of trade-offs: i) an accuracy-diversity trade-off w.r.t.

catalog coverage (i.e., aggregated diversity), and ii) an accuracy-diversity75

trade-off w.r.t. list diversity (i.e., individual diversity). The first trade-off

shows the models’ ability to recommend niche items and personalize rec-

ommendations. The second trade-off shows the models’ ability to diversify

items in the list. The proposed models can either trade accuracy to boost

substantially one diversity metric, or improve by a lesser amount.80

The remainder of this paper is organized as follows. Section 2 places our

contribution in the context of current literature. Section 3 reviews NN collabo-

rative filtering from a graph convolutional learning perspective. Section 4 pro-

vides a high-level overview of the proposed approach. Sections 5 and 6 contain

the design strategies for rating and ranking, respectively. Section 7 provides85
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the graph-spectral analysis of the joint models, while Section 8 contains the

numerical results. Section 9 discusses our findings.

2. Related Work

Accuracy-diversity trade-off. Along with the initial work [23], also [24] pro-

motes the accuracy-diversity trade-off as a joint objective for effective RecSys.90

A popular direction to tweak this trade-off is by two-step approaches, in which

re-ranking is applied to a retrieved list to boost diversity [10, 25]. The work

in [11] re-ranks items based on rating variance in the neighborhood of a user,

while [26] uses re-ranking to cover a larger portion of the catalog. Also [27, 28]

diversify items to improve coverage in a user-personalized manner. The work in95

[27] optimizes the recommendation list to improve accuracy and diversity but

reduce item popularity, while uses matching problems to improve coverage while

minimizing the accuracy loss. Instead, [29] proposes a new metric to quantify

diversity within a list and develops an optimization algorithm to improve it.

Methods and algorithms in this category rely heavily on the initial recommen-100

dation list, which makes it difficult to attribute to which extent the improved

trade-off is due to re-ranking or to the properties of the list.

Another category of approaches considers a single algorithm and leverage

side information, such as metadata or context, to improve diversity. The work in

[12] builds an item-item dissimilarity graph from features and uses this graph in105

a learning-to-rank framework. Also the work in [30] uses item features to provide

a single method for matrix completion. Differently, [13] leverages context and

evaluates different pre-filtering, post-filtering, and modeling schemes in terms of

accuracy and diversity. Our approach, instead, balances accuracy with diversity

without relying on side-information in both a learning-to-rate and learning-to-110

rank framework.

A third category of approaches modifies conventional accuracy-oriented al-

gorithms to improve diversity. Authors in [31] build similarities by avoiding the

influence of popular objects or high-degree users on the direction of random
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walk, which is shown heuristically to improve diversity. The work in [6] ad-115

justs the calculation of user similarities in the classic NN approach to improve

diversity. The work in [32] follows up on [12] and uses the regularizer in the

learning-to-rank loss to improve diversity. In our view, the latter overloads the

regularizer with an additional objective. Since the primary goal of the regu-

larizer is to generalize the model to unseen data, leveraging it also to improve120

diversity leads to a triple accuracy-diversity-generalization trade-off, which is

challenging to handle. Likely, one of the three objectives will be treated as

a byproduct, which reduces the possibilities to steer the optimization of the

accuracy-diversity trade-off. Differently, [7, 33] connect users based on their

dissimilarities and propose the so-called furthest neighbor (FN) collaborative125

filtering –contrarily to the vanilla NN collaborative filtering. By using infor-

mation from neighbors that a user disagrees with, this approach was shown to

improve diversity by affecting accuracy by little. Yet, the degree to which FNs

affect the accuracy-diversity trade-off remains insufficiently investigated. In our

approach, we leverage both the NN and the FN in a joint convolutional model130

to better understand this influence.

While changing the inner-working mechanism of a single model can improve

diversity, a single model often lacks the ability to capture the complex rela-

tionships contained in highly-sparse RecSys datasets. A fourth category of ap-

proaches overcomes this issue by working with an ensemble of models, also135

referred to as joint or hybrid models. These models have a higher descriptive

power that can better balance accuracy with diversity at the expense of com-

plexity, which is often of the same order of magnitude. Authors in [8] propose a

joint collaborative filtering algorithm that leverages the influence of both similar

and dissimilar users. The dissimilarity is computed by counting the items two140

users have consumed individually but not jointly. The predicted ratings from

the similar and dissimilar users are merged into a final score and the influence of

each group is controlled by a scalar. The way dissimilarity is computed ignores

the fact that users may have consumed the same item, but rated it differently.

Also, building dissimilarities from non-consumed items ignores the fact that a145
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user may also like an item other users have consumed separately. To avoid the

latter, we account for the ratings when building dissimilarities between entities.

The authors of [9] follow a similar strategy as [8] and mix a heat spreading with

a random walk to provide an accuracy-diversity trade-off. A probabilistic model

to balance accuracy with diversity is further proposed in [34]. The latter con-150

siders the order in which items are consumed and proposes a joint model, which

on one branch maximizes accuracy, while on the other, diversity. In contrast to

this, we train the whole model jointly.

Graph convolutions in RecSys. Graph convolutions have been introduced

to the RecSys domain only recently [35, 17, 36]. The approach proposed in155

[35], subsequently extended to [37], showed the NN collaborative filter is a non-

parametric graph convolutional filter of order one. This work also showed that

higher-orders parametric graph convolutional filters improve rating prediction.

These graph convolutional filters are the basis to form GCNNs [21] and we will

use them to balance accuracy with diversity. The work in [17] merges GCNNs160

with a recurrent neural network to complete the user-item matrix. Instead,

[36] completes the matrix with a variational graph autoencoder, in which graph

convolutions are performed by an order-one graph convolutional filter. The work

in [38] uses the same graph convolution as [37], but uses it in a learning-to-rank

setting. Although starting from different standpoints and naming the method165

differently, the two approaches are identical from a technical perspective. Taken

together, [37] and [38] showed that linear graph convolutions may often suffice

in highly sparse RecSys datasets. We shall corroborate this behavior also in the

accuracy-diversity trade-off setting.

The authors in [18] deployed a GCNN with filters of order one on an aug-170

mented graph comprising the user-item bipartite interaction graph and also

user-user and item-item proximal graphs. The work in [39] also learns from

the user-item bipartite interactions through an order one GCNN, but augments

the propagation rule to promote exchanges from similar items. Authors in [19]

combine random walks with graph convolutions to perform recommendations175
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in large-scale systems containing millions of nodes. Authors in [40] first build a

user-specific knowledge graph and then apply graph neural networks to compute

personalized recommendations. They also regularize the loss to enforce similar

scores in adjacent items. Lastly, GCNNs have been used for location recommen-

dation in [41]. Two GCNNs are run over two graphs, a point-of-interest graph180

and a social relationship graph to identify these points-of-interest for a user.

Altogether, these works show the potential of graph convolutions in chang-

ing the RecSys landscape. However, all approaches focus only on accuracy

and ignore recommendation diversity. In this work, we consider graph convolu-

tions to establish an accuracy-diversity trade-off in both a learning-to-rate and185

learning-to-rank setup.

3. Learning from Similar Nearest Neighbors

Consider a recommender system setting comprising a set of users U =

{1, . . . , U} and a set of items I = {1, . . . , I}. Ratings are collected in the

user-item matrix X ∈ RU×I , in which entry Xui contains the rating of user u to190

item i. Ratings are mean-centered1, so that we can adopt the common conven-

tion Xui = 0 if value (u, i) is missing. The objective is to populate matrix X by

exploiting the relationships between users and items contained in the available

ratings. We capture these relationships through a graph, which is built following

the principles of NN collaborative filtering. This graph is used to predict ratings195

and the k items with the highest predicted rating form the recommendation list.

In user-based NNs, relationships are measured by the Pearson correlation

coefficient. Consider a matrix B ∈ RU×U , in which entry Buv measures the

correlation between users u and v. Matrix B is symmetric and can be seen as

the adjacency matrix of a user-correlation graph Gu = (U , Eu). The vertex set

of Gu is the user set U and the edge set Eu contains an edge (u, v) ∈ Eu only

if Buv 6= 0. Each item i is treated separately and user ratings are collected in

1Mean-centering can be done across users, items, or both. The proposed methods work

with any choice.
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Figure 1: Building an item-specific graph Bi from the global correlation graph B. (a) User

graph B. Nodes represent users and arrows correlations. Ratings to item i are a graph signal

xi shown by vertical bars. (b) Treat each undirected edge as two directed edges. Remove

any directed edge starting from a user who did not rate item i. (c) Keep the n = 1 strongest

incoming edge for each user representing the nearest neighbor. The adjacency matrix of this

graph is Bi.

vector xi ∈ RU (corresponding to the ith column of X). Vector xi can be seen

as a signal on the vertices of Gu, which uth entry [xi]u := Xui is the rating of

user u to item i, or zero otherwise [42]; see Figure 2 (a). Predicting ratings for

item i translates into interpolating the missing values of graph signal xi. These

values are estimated by shifting available ratings to neighboring users. First,

we transform the global graph B to an item-specific graph Bi which contains

only the top-n positively correlated edges per user and normalize their weights;

see Figures 2 (b)-(c). The NN shifted ratings to immediate neighbors can be

written as

x̂i = Bix
i (1)

which holds true because matrix Bi respects the sparsity of the user-graph

adapted to item i.

In item-based NNs, the procedure follows likewise. First, we construct an

item-item correlation matrix C ∈ RI×I in which entry Cij is the Pearson cor-

relation coefficient between items i and j. Matrix C is symmetric and it is the

adjacency matrix of an item-correlation graph Gi = (I, Ei). The vertex set of

Gi matches the item set I and the edge set Ei contains an edge (i, j) ∈ Ei only

if Cij 6= 0. Then, we consider the complementary scenario and treat each user
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u separately. We collect the ratings of user u to all items in the graph signal

xu ∈ RI (corresponding to the uth row of X). Finally, item-based NN inter-

polates the missing values in xu through shifts to neighboring items. Building

a user-specific graph Cu from C, keeping only the top-n positively correlated

edges per item, and normalizing the weights, we predict the ratings as

x̂u = Cuxu. (2)

In either scenario, matrices B, {Bi}i, C, and {Cu}u can be regarded as

instances of a general graph adjacency matrix variable S of a graph G = (V, E)

containing |V| nodes and |E| edges. We denote the available rating signal by x

and the estimated rating signal by x̂ so that we write estimators (1) and (2)

with the unified notation

x̂ = Sx. (3)

As it follows from (3), NN estimators rely only on ratings present in the imme-

diate surrounding of a node. But higher-order neighbors carry information that200

can improve prediction and their information should be accounted for accord-

ingly to avoid destructive interference. Graph convolutional filters have proven

themselves to be the tool for capturing effectively multi-resolution neighbor

information when learning over graphs [14], including recent success in multi-

resolution NN collaborative filtering [37, 17]. We detail in the sequel the graph205

convolutional filter and the respective GCNN extension.

3.1. Nearest Neighbor Graph Convolutional Filters

Estimator (3) accounts for the immediate neighbors to predict ratings. Sim-

ilarly, we can account for the two-hop neighbors via the second-order shift S2x.

Writing S2x = S(Sx) shows the second-order shift builds a NN estimator S(·)
on the previous one Sx. We can also consider neighbors up to K-hops away as

SKx = S(SK−1x). To balance the information coming from the different res-

olutions Sx,S2x, . . . ,SKx, we consider a set of parameters h = [h0, . . . , hK ]>

10



and build the Kth order NN predictor

x̂ =

K∑
k=0

hkS
kx := H(S)x (4)

where H(S) =
∑K
k=0 hkS

k is referred to as graph convolutional filter of order

K [14, 42]2. The ratings x̂ in (4) are built as a shift-and-sum of the available

ratings x. Particularizing G to Gu, (4) becomes a graph convolutional filter

estimator over the user NN graph with estimated ratings for item i

x̂i =

K∑
k=0

hkB
k
i x

i := H(Bi)x
i. (5)

Particularizing G to Gi, (4) becomes a graph convolutional filter over the item

NN graph with estimated ratings for user u

x̂u =

K∑
k=0

hkC
k
uxu := H(Cu)xu. (6)

Particularizing the order to K = 1 and the coefficients to h0 = 0 and h1 = 1,

(5) and (6) become respectively the vanilla NN collaborative filters (1) and (2);

i.e., vanilla NN collaborative filters are graph convolutional filters of order one.210

Graph convolutional filters are defined by the K + 1 parameters h. Further,

since the shift operator matrix S matches the NN structure, it is sparse, there-

fore, obtaining the output x̂ in (4) amounts to a complexity of order O(|E|K).

These properties are important to deal with scarcity of data and scalability.

3.2. Nearest Neighbor Graph Convolutional Neural Networks215

Besides numerical efficiency, graph convolutional filters have high mathe-

matical tractability and are the building block for graph convolutional neural

networks [21]. To build a GCNN with the filter in (4), consider the composition

2The term k = 0, S0x = x, does not contribute to predicting ratings. We kept it in (4) since

this term plays a role in GCNN in Section 3.2. Particularizing the graph to the directed cycle

and the signal to a periodic discrete signal, operation (4) reduces to the temporal convolution

operation.
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of a set of L layers. The first layer ` = 1 comprises a bank of F1 filters Hf
1 (S)

each defined by coefficients {hf1k}k. Each of these filters outputs graph signals

uf1 = Hf
1 (S)x, which are subsequently passed through a pointwise nonlinearity

σ(·) to produce a collection of F1 features xf1 that constitute the output of layer

` = 1, i.e.,

xf1 = σ

[
uf1

]
= σ

[
Hf

1 (S)x

]
= σ

[
K∑
k=0

hf1kS
kx

]
for f = 1, . . . , F1. (7)

At subsequent intermediate layers ` = 2, . . . , L − 1, the output features {xg`}g
of the previous layer ` − 1 become inputs to a bank of F`F`−1 convolutional

filters Hfg
` (S) each of which outputs the features ufg` = Hfg

` (S)xg`−1. The filter

outputs obtained from a common input xg`−1 are aggregated and the result is

passed through a nonlinearity σ(·) to produce the F` output features

xf` = σ

[
F∑
g=1

ufg`

]
= σ

[
F∑
g=1

Hfg
` (S)xg`−1

]
= σ

[
F∑
g=1

K∑
k=0

hfg`kSkxg`−1

]
for f = 1, . . . , F`.

(8)

Operation (8) is the propagation rule of a generic layer ` of the GCNN, which

final outputs are the FL features x1
L, . . . ,x

FL

L . These final convolutional features

are passed through a shared multi-layer perceptron per node to map the FL

features per node n, [x1Ln; . . . ;xFL

Ln], into the output estimate x̂n.

The GCNN can be seen as a map Φ(·) that takes as input a graph signal

rating x, an entity-specific graph S, and a set of parameters H = {hfg`k } for all

layers `, orders k, and feature pairs (f, g). This map produces the estimate

Φ(x; S;H) := x̂. (9)

The GCNN leverages the coupling between the rating and the NN graph in the220

input layer to learn higher-order representations in the intermediate layers. This

coupling is captured by the bank filters as per (4). Consequently, the GCNN

inherits the numerical benefits of the graph convolutional filter. Denoting by

F = max` F` the maximum number of features for all layers, the number of

parameters defining the GCNN is of order O(F 2KL) while its computational225
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complexity amounts to O(F 2KL|E|). The latter are in the same order of magni-

tude as for the graph convolutional filter [cf. (4)], which is the particular GCNN

map Φ(·) [cf. (9)] limited to the linear space. In the remainder of this paper,

we will denote by Φ(·) both the filter and the GCNN and refer to them with

the common terminology graph convolutions.230

4. Accounting for Disimilar Furthest Neighbors

We work with a NN similarity-graph Gs = {V, Es} [cf. Sec. 3; Fig. 2] and a FN

dissimilarity-graph Gd = {V, Ed}. The dissimilarity graph is built by following

the opposite principles of NNs, i.e., connecting each entity to its top-n̄ most

negatively related ones. To illustrate the latter, consider C captures item-item

correlations while vector xu contains the ratings of user u to all items. The

user-specific dissimilarity graph has the adjacency matrix C̄u obtained from C

by: i) removing any edge starting from an item not rated by user u; ii) keeping

for each item i the n̄ most negatively connections; iii) normalizing the resulting

matrix to make C̄u right stochastic. In other words, defining N iu as the set

containing the n̄ most dissimilar items to i rated by user u, entry (i, j) of C̄u is

[C̄u]ij =

 Cij
/∑

j′∈N iu
Cij′ if j ∈ N iu

0 if j /∈ N iu

. (10)

The normalization step is identical to the NN approach and ensures a similar

magnitude of signal shifting [cf.(3)] on both NN and FN graphs. This normal-

ization implies the entries of C̄u are positive, i.e., a larger value indicates a

stronger dissimilarity. In the considered datasets, positive correlations go up to235

1.0 while the negative correlations down to −0.2.

On each graph Gs and Gd we have a convolutional module Φs(x; Ss;Hs)

and Φd(x; Sd;Hd), outputting an estimate of the user-item matrix X̂s and X̂d,

respectively. We combine the two outputs in the joint estimate

X̂ = (1− α)X̂s + αX̂d (11)
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X X̂

Gs;Φ(·;Ss;Hs)

Gd;Φ(·;Sd;Hd)

X̂s

X̂d

1− α

α

+

similarity graph

dissimilarity graph

Figure 2: Rating prediction with similar and dissimilar Graphs. We construct a NN graph Gs
capturing similarities between entities, and a FN graph Gd capturing dissimilarities between

entities. On each graph, we run a graph convolutional module Φ(·) with respective parameter

set H(·) [cf. (4), (9)]. The estimated outputs are combined through a parameter α to obtain

the final joint estimate X̂.

Table 1: Combinations between the similarity-graph Gs and the dissimilarity-graph Gd.

Dissimilar Gd
User Item

User User-user (UU) User-item (UI)

S
im

il
ar
G s

Item Item-user (IU) Item-item (II)

where scalar α ∈]0, 1[ balances the influence of similar and dissimilar connec-

tions; Figure 2. Each graph Gs or Gd can be a user or an item graph and the

graph convolutional modules Φ(·) can be linear [cf. (4)] or nonlinear [cf. (9)].

This framework yields eight combinations to investigate the trade-off. We limit240

ourselves to situations where the graph convolutional modules are the same on

both graphs and focus on the four combinations in Table 1. To ease exposition,

we shall discuss the theoretical methods with the hybrid combination user NN

graph (i.e., Gs,u with adjacency matrix Bi for item i) and item FN graph (i.e.,

Gd,i with adjacency matrix C̄u for user u). This setting implies we predict rat-245

ing X̂ui by learning, on one side, from the coupling (Gs,u,xi), and, on the other

side, from the coupling (Gd,i,xu).

Joint models like the one we consider are popular beyond the RecSys liter-

ature. The works in [43, 44] consider two different shift operators of the same
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graph to model signal diffusion with graph convolutional filters [cf. (4)]. This250

strategy is subsequently extended to GCNNs in [45]. Instead, [46, 47] exploit

different relationships between data to build GCNNs. The common motivation

in all these works is that a model based on a single graph (often capturing

similarities between nodes [48]) or a single shift operator is insufficient to repre-

sent the underlying relationships. Therefore, we argue a joint model capturing255

different interactions helps representing better the data. A model based only

on NNs fails giving importance to items that differ from the main trend. FNs

account for this information and aid diversity. However, the information from

FNs should be accounted for properly during training to keep the accuracy at

the desired level. We detail this aspect in the upcoming two sections.260

5. Learning for Rating

In this section, we estimate the joint model parameters w.r.t. the mean

squared error (MSE) criterion. Analyzing the MSE quantifies also the trade-off

for all items in the dataset (unbiasing the results from the user preferences in

the list)3. The MSE also provides insights into the role played by the FNs.

To this end, consider a training set of user-item pairs T = {(u, i)} for the

available ratings in X. Consider also the user-similarity graph Gs,u, the item-

dissimilarity graph Gd,i, and their respective graph convolutions Φs(x
i; Bi;Hs)

and Φd(xu; C̄u;Hd). We estimate parameters Hs and Hd by solving the regu-

larized problem

minimize
Hs,Hd

1

µ
MSE(u,i)∈T

(
Φs(x

i; Bi;Hs) + Φd(xu; C̄u;Hd); XT

)
+

1

2

(‖Hs‖22
1− α +

‖Hd‖22
α

)
subject to 0 < α < 1

(12)

3We shall see that often methods trained with the MSE perform better in the list w.r.t.

trained for ranking.
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where MSE(u,i)∈T
(
·; ·
)

measures the fitting error w.r.t. the available ratings

XT , while the second term acts as an accuracy-diversity regularizer4.

Scalar α controls the information flow from the NN and the FN graph. For

α → 0, we have ‖Hd‖22/α � ‖Hs‖22/(1− α), therefore, problem (12) forces pa-265

rameters Hd to a smaller norm rather than using them to fit the data. Hence,

this setting mainly leverages information from the similar graph Φs(·), ulti-

mately, reducing the ensemble to a single NN graph convolutional model. For

α→ 1, we have the opposite case ‖Hs‖22/(1− α)� ‖Hd‖22/α, which implies the

information from the similar graph plays little role in fitting since parameters270

Hs are forced towards zero. Hence, problem (12) mainly exploits information

from FNs to reduce the MSE. Intermediate values of α closer to zero than to

one lead to models where most information is leveraged from the NNs to keep

the MSE low, while some information is taken from FNs to add diversity. We

refer to α as the trade-off parameter. Scalar µ balances the fitting error with275

the overall regularization and allows generalizing the model to unseen data.

5.1. Graph convolutional filter

Recall the graph convolutional filter in (4) and consider graphs Gs,u and

Gd,i can have different number of nodes. To account for this technicality in the

design phase, we first transform the filters into a more manageable form. The

filter output on the user-similarity graph Bi can be written as

Φs(x
i; Bi; hs) =

K∑
k=0

hs,kB
k
i x

i := Bs,ihs (13)

where the U × (K + 1) matrix Bs,i = [B0
ix
i, . . . ,BKs

i xi] contains the shifted

ratings of item i over graph Bi and vector hs = [hs,0, . . . , hs,Ks
]> the parame-

ters. The uth row of Bs,i is the 1× (K+1) vector [Bs,i]u: containing the shifted

ratings of user u for item i. We then stack the |T | row vectors [Bs,i]u: for all

4In (12), we allowed ourselves a slight abuse of notation and indicated with ‖H(·)‖22 the

`2−norm squared of the vector containing the coefficients in set H(·).
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pairs (u, i) ∈ T in

Ms =
[
. . . ; [Bs,i]u:; [Bs,j ]u:; . . . ; [Bs,k]v:; [Bs,l]v:; . . .

]
∈ R|T |×(K+1).

The τth row of Ms corresponds to the τth (u, i) tuple. Denoting by xT =

vec(XT ) the |T | × 1 vector of available ratings, we can write the filter output

for all training samples as x̂s,T = Mshs. Likewise, we can write the filter output

over the item-dissimilarity graph C̄u as

Φd(xu; C̄u; hd) =

K∑
k=0

hd,kC̄
k
uxu := C̄d,uhd (14)

where matrix C̄d,u = [C̄0
uxu, . . . , C̄

Kd
u xu] ∈ RI×(K+1) collects the shifted ratings

of user u w.r.t. graph C̄u and vector hd = [hd,0, . . . , hd,K ]> the filter parameters.

Then, we construct the |T | × (K + 1) matrix Md by collecting the rows [C̄d,u]i:280

for all (u, i) ∈ T so that to write x̂d,T = Mdhd.

With these in place, the design problem (12) particularizes to

minimize
hs,hd

1

2µ

∥∥xT −Mshs −Mdhd

∥∥2
2

+
1

2

(‖hs‖22
1− α +

‖hd‖22
α

)
subject to 0 < α < 1

. (15)

which is a regularized-least squares problem in the filter coefficients hs and hd.

The closed-form solution for (15) can be found by setting the gradient to zero,

i.e.,

− 1

µ
M>

s

(
xT −Mshs −Mdhd

)
+

1

1− αhs = 0 (16a)

− 1

µ
M>

d

(
xT −Mshs −Mdhd

)
+

1

α
hd = 0 (16b)

or equivalently solving the linear system of equations

1

µ

M>
s xT

M>
d xT

 =

M>
s Ms − 1

1−αI M>
s Md

M>
d Ms M>

d Md − 1
αI

hs

hd

 . (17)

If the matrix inversion in (17) is ill-conditioned, we can always solve (15) with

of-the-shelf iterative methods. The above procedure leads to an optimal balance

between the information coming from the NNs and the FNs.
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5.2. Graph convolutional neural network285

We now consider models Φs(x
i; Bi;Hs) and Φd(xu; C̄u;Hd) are GCNNs

running respectively over graphs Bi and C̄u. Particularizing (12) to this setting

implies solving

minimize
Hs,Hd

1

2µ

∑
(u,i)∈T

∣∣∣∣Xui −
[
Φs(x

i; Bi;Hs)

]
u

−
[
Φd(xu; C̄u;Hd)

]
i

∣∣∣∣2 +
1

2

(‖Hs‖22
1− α +

‖Hd‖22
α

)
subject to 0 < α < 1

(18)

where [Φs(x
i; Bi;Hs)]u is the user-similarity GCNN output for user u and

[Φd(xu; C̄u;Hd)]i is the item-dissimilarity GCNN output for item i. Prob-

lem (18) preserves the trade-offs of the general version (12), but it is non-convex

and little can be said about its global optimality. However, because of the com-

positional form of the GCNN, we can estimate parameters Hs and Hd via stan-290

dard backpropagation since the graph convolutional filters are linear operators

in the respective parameters [49]. The following remark is in order.

Remark 1. In (18), we considered the accuracy-diversity parameter α only in

the regularizer and not also in the fitting part as in (11). We found that includ-

ing the latter to the MSE term leads to a more conservative solution towards295

diversity. We have consistently seen that keeping α only in the regularizer al-

lows for a better trade-off. Furthermore, the regulariser in (18) does not need

be rational in α, but can be in any form as long as it balances the NNs with the

FNs. An alternative is Ω(Hs;Hd;α) = 1
2

(
α‖Hs‖22 + (1− α)‖Hd‖22

)
.

6. Learning for Ranking300

This section designs the joint model for ranking. We considered the Bayesian

personalized ranking (BPR), which is a state-of-the-art learn-to-ranking frame-

work [50]. BPR considers the rating difference a user u has given to two items

i and j. Let symbol i �u j indicate user u rated item i more than item j

and augment the training set as T ⊆ U × I × I to contain triples of the form

T = {(u, i, j)|i �u j}. For each available tuple (u, i) we created four triples
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{(u, i, j)}j such that Xui > Xuj following [50]. Subsequently, the estimated

ratings for tuples (u, i) and (u, j) are respectively

X̂ui

(
Hs,Hd

)
=
[
Φs(x

i; Bi;Hs)
]
u

+
[
Φd(xu; C̄u;Hd)

]
i

X̂uj

(
Hs,Hd

)
=
[
Φs(x

j ; Bj ;Hs)
]
u

+
[
Φd(xu; C̄u;Hd)

]
j

(19)

and the utility function is

X̂uij

(
Hs,Hd

)
= X̂ui

(
Hs,Hd

)
− X̂uj

(
Hs,Hd

)
(20)

which expresses the rating difference as a parametric relationship between user

u, item i, and item j. The utility function is used to estimate parameters Hs,Hd

by maximizing the likelihood

p(i �u j|Hs,Hd) := σ

(
X̂uij

(
Hs,Hd

))
=

(
1 + e−X̂uij(Hs,Hd)

)−1
(21)

where σ(x) = (1 + e−x)−1 is the logistic sigmoid function [50]. By applying the

natural logarithm (monotonic increasing) to (21) and regularizing it, we can

estimate the joint convolutional model parameters by solving the regularized

optimization problem

minimize
Hs,Hd

− 1

µ

∑
(u,i,j)∈T

lnσ
(
X̂uijHs,Hd

)
+ α‖Hs‖22 + (1− α)‖Hd‖22

subject to 0 < α < 1

. (22)

Differently from (5), the regularizer in (22) is linear in α. We opted for this

choice because the linear was more robust to µ. Nevertheless, the regulariser in

(22) respects the same trend as that in (5): for α → 0, NNs are mainly used

for fitting since α‖Hs‖22 → 0; vice-versa, for α→ 1 the FNs are mainly used for

fitting since (1− α)‖Hd‖22 → 0.305

6.1. Graph convolutional filter

Particularizing the convolutional models to filters [cf. (4)], (19) becomes

X̂ui

(
Hs,Hd

)
=
[
Bs,i

]
u:

hs +
[
C̄d,u

]
i:
hd

X̂uj

(
Hs,Hd

)
=
[
Bs,j

]
u:

hs +
[
C̄d,u

]
j:

hd

(23)
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where
[
Bs,i

]
u:

is the uth row of the similar user-NN graph matrix Bs,i [cf. (13)]

and
[
C̄d,u

]
i:

is the ith row of the dissimilar item-FN graph matrix C̄d,u [cf.

(14)]. Substituting (23) into (22) leads to

minimize
hs,hd

− 1

µ

∑
(u,i,j)∈T

lnσ
(
X̂uij

(
hs,hd

)
+

(
α‖hs‖22 + (1− α)‖hd‖22

)
subject to X̂uij

(
hs,hd

)
=
([

Bs,i

]
u:

hs +
[
C̄d,u

]
i:
hd

)
−
([

Bs,j

]
u:

hs +
[
C̄d,u

]
j:

hd

)
0 < α < 1

.

(24)

Function − lnσ(X̂uij

(
hs,hd)) is convex since it involves a log-sum-exp of an

affine function [51]. Consequently, problem (24) is convex in hs and hd. Con-

vexity guarantees we can find a minimizer for (24) but not a closed-form solution.

In fact, finding an analytical solution for logistic fitting problems is notoriously

difficult except for particular instances [52]. However, we can get the optimal

parameters for (24) through the stochastic gradient descent updates

hs ← hs +
γ

µ

[
e−X̂uij

(
hs,hd

)
σ
(
X̂uij

(
hs,hd

))([
Bs,i

]>
u
−
[
Bs,j

]>
u

)
− 2αhs

]
(25a)

hd ← hd +
γ

µ

[
e−X̂uij

(
hs,hd

)
σ
(
X̂uij

(
hs,hd

))([
C̄d,u

]>
i
−
[
C̄d,u

]>
j

)
− 2(1− α)hd

]
(25b)

where γ is the stepsize. These optimal parameters guarantee the best learning-

to-rank solution for any balance between the NNs and FNs (α) and between

fitting and generalization (µ).

6.2. Graph convolutional neural network310

When Φs(x
i; Bi;Hs) and Φd(xu; C̄u;Hd) are GCNNs, the BPR optimization

problem is that in (22). Because of the nonlinearity, it is difficult to establish if

a global minimum exists and we should seek for a satisfactory local minimum.

Since cost (22) is differentiable w.r.t. Hs and Hd, we can achieve this local

minimum through conventional backpropagation.315

Either estimated for rating or ranking, the coefficients of the joint model

dictate the filter behavior (either directly or within the GCNN layers) on the
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NN and FN graphs. Besides analyzing the filter behavior in the node domain (as

multi-hop rating aggregation) and in the respective cost functions (as accuracy-

diversity trade-off), we can also get insight on the trade-off by analyzing the320

graph convolutional modules in the graph spectral domain [14]. We discuss this

aspect next.

7. Spectral explanation

We conduct here a spectral analysis of graph convolutions to show they act

as band-stop filters on both NN and FN graphs. First, we recall the concept

of Fourier transform for signals on directed graphs [53]. Assuming the shift

operator S is diagonalizable, we can write S = UΛU−1 with eigenvector matrix

U = [u1, . . . ,uN ] and complex eigenvalues Λ = diag(λ1, . . . , λN ). The graph

Fourier transform (GFT) of signal x is

x̃ = U−1x. (26)

The ith GFT coefficient x̃i of x̃ quantifies the contribution of the ith eigenvector

ui to expressing the variability of x over the graph. The latter is analogous to325

the discrete Fourier transform for temporal or spatial signals. In this analogy,

the complex eigenvalues λi ∈ Λ are referred to as the graph frequencies [54, 42].

The inverse transform is x = Ux̃.

To measure the graph signal variability, we follow [53] and order the graph

frequencies λi based on their distance from the maximum eigenvalue λmax(S).

This ordering is based on the notion of total variation (TV), which for the

eigenpair (λi,ui) is defined as

TV(ui) =

∣∣∣∣1− λi
λmax(S)

∣∣∣∣‖un‖1 (27)

where ‖ · ‖1 is the `1-norm. The closer λi to the maximum eigenvalue λmax(S),

the smoother the corresponding eigenvector ui over the graph (i.e., values on330

neighboring nodes are similar). If signal x changes little (e.g., similar users have

similar ratings), the corresponding GFT x̃ has nonzero entries mostly in entries
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x̃i which index i corresponds to a low graph frequency λi → λmax(S) (low TV).

Contrarily, if signal x varies substantially in connected nodes, the GFT x̃ has

nonzero values also in entries x̃i which index i corresponds to a high graph335

frequency λi � λmax(S) (high TV); refer to [53, 14] for further detail.

With this analogy in place, we substitute the eigendecomposition S = UΛU−1

into the graph convolutional filter (4) and obtain the filter input-output rela-

tionship in the spectral domain

˜̂x =

K∑
k=0

hkΛ
kx̃ := H(Λ)x̃ (28)

where ˜̂x = U−1x̂ is the GFT of the output and H(Λ) =
∑K
k=0 hkΛ

k contains

the filter frequency response on the main diagonal. Relation (28) shows in first

place graph convolutional filters respect the convolutional theorem because they

act as a pointwise multiplication between the filter transfer function H(Λ) and340

the input GFT x̃. Therefore, analyzing H(Λ) shows how the filter processes

the input ratings x to estimate ˜̂x. We evaluate the frequency responses of the

filter and respective GCNN when deployed on the similar NN and the dissimilar

FN graphs for the MovieLens 100K dataset. The latter allows for a direct

comparison with the vanilla NN and the graph convolutional NN filter [37].345

7.1. Graph convolutional filters

Recall the joint model with user-NN filter H(Bi) =
∑K
k=0 hs,kB

k
i x

i [cf.

(13)] and an item-FN filter H(C̄u) =
∑K
k=0 hd,kC̄

k
uxu [cf. (14)]. Substituting

the eigendecompositions Bi = Us,iΛs,iU
−1
s,i and C̄u = Ūd,uΛ̄d,uŪ

−1
d,u, we can

write the outputs in the graph frequency domain respectively as

˜̂xi =

K∑
k=0

hs,kΛ
k
s,ix̃

i and ˜̂xu =

K∑
k=0

hd,kΛ̄
k
d,ux̃u. (29)

In (29), H(Λs,i) :=
∑K
k=0 hs,kΛ

k
s,i and H(Λ̄d,u) :=

∑K
k=0 hd,kΛ̄

k
d,u are the re-

sponses of filters H(Bi) and H(C̄u), respectively. To estimate the responses, we

first get the parameters from (15) for rating or (22) for ranking and order the

eigenvalues λn,i (resp. λn,u) of each Bi (resp. C̄u) as per the total variation in350
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(c)

(a) (b)

(d)

Figure 3: Frequency responses of the graph filters over a user-NN and an item-FN graph. The

horizontal axis is the graph frequency index, while the vertical axis is the estimated frequency

response. (Top) Filters designed w.r.t. the mean squared error criterion in (15). (Bottom)

Filters designed w.r.t. the Bayesian personalized ranking criterion in (22). (a-c) Frequency

response of the user-NN graph filter. (b-d) Frequency response of the item-FN graph filter.

(27). Subsequently, for each Bi (resp. C̄u) we record the frequency responses

{H(Λs,i)}i (resp. {H(Λ̄d,u)}u) and average them across all items I (resp. users

U) to get a single frequency response over the user-NN graph (resp. item-FN

graph). The frequency responses are shown in Figure 3 for different values of α.

In all cases, we observe a band-stop behavior since more than 90% of the355

response in the middle frequencies is zero. The latter corroborates the behavior

of the vanilla and graph convolutional NN filter [37]. Another behavior inherited

from the NN/FN graphs is that filters preserve the extreme low and high graph

frequencies. Low graph frequencies are signals with a small total variation [cf.

(27)], while high graph frequencies are signals with a high total variation.360

- In the user-NN graph, low frequencies represent signals where similar users

give similar ratings. This part is the global trend of preferences among

similar users, which is leveraged to predict ratings. High frequencies rep-

resent discordant ratings between similar users for a particular item and
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can be seen as a primitive source for diversity.365

- In the item-FN graph, the spectral behavior is the same but implications

are different. Low frequencies represent ratings with a small difference in

dissimilar neighboring items; implying, a user u gave similar ratings to

dissimilar items. These low frequencies may also be because users rate

negatively a subset of dissimilar connected items and positively another370

subset of dissimilar connected items. The high pass components represent

ratings changing significantly between neighboring dissimilar items; e.g.,

one of the two dissimilar items sharing an edge is rated positively while the

other negatively. This part contributes towards keeping high the recom-

mendation accuracy while relying on negative correlations between items.375

These insights show the joint linear models eliminate irrelevant features

(band-stop behavior), smooth out ratings (low frequencies), and preserve dis-

criminative features to aid diversity (high frequencies). This phenomenon is

observed for different values of α (importance on NNs vs. FNs) and design cri-

teria (MSE [cf. (15)] vs. BPR [cf. (24)]). The frequency response changes less380

with α in the MSE design (lines differ by 10−3) than in BPR. This might be be-

cause the MSE focuses on the average rating prediction for all items (preferred

or not), while the BPR prioritizes a subset of most preferred items. In BPR, we

also observed a stronger band-stop behavior for α→ 1 meaning the joint model

focuses even more on extreme frequencies to predict ratings. This suggests the385

model relies on the average trend on both graphs (lower frequencies) and on

highly dissimilar values in adjacent entities (higher frequencies).

7.2. Graph convolutional neural networks

We now analyze the frequency response of the filters in the GCNN (8).

Figure 4 illustrates the latter for a one-layer GCNN with F = 2 filters over390

each graph. We observe again the strong band-stop behavior. In the NN graph,

the stopped band is narrower than in the FN graph, and it is narrower if the

GCNN is learned for ranking than rating. The band-stop behavior and the
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Figure 4: Frequency responses of the bank of F = 2 graph convolutional filters of a one-layer

GCNN [cf. (7)] over a user NN graph and an item FN graph. The z-axis is the frequency

response that is cropped to improve visibility. The other two axis are the graph frequency

index and the filter number. (a) and (b) Filters designed w.r.t. the mean squared error [cf.

(15)]. (c) and (d) Filters designed w.r.t. the Bayesian personalized ranking [cf. (22)]. (a) and

(c) Filters on the user NN graph. (b) and (d) Filters on the item FN graph.

Table 2: Features of the considered datasets.

Data set Users Items Ratings Sparsity

MovieLens100k 943 1,682 100,000 6.3 ×10−2

Douban 3,000 3,000 136,891 1.5 ×10−2

Flixster 3,000 3,000 26,173 2.9 ×10−3

increased focus on the extremly low and high graph frequencies suggest the

GCNN leverages the information in a similar way as the linear counterpart. We395

refer to the previous section to avoid repetition. Lastly, we remark the band-

stop behavior is also observed in the vanilla NN [cf. (1)-(2)] and in the linear

graph convolutional NN filter [37].

8. Numerical Experiments

This section corroborates the proposed schemes through experiments with400

three real datasets of different sparsity, namely, MovieLens100k [55], Douban

[56] and Flixster [57]. Table 2 summarizes their features. We evaluate the trade-

offs of the joint models for all combinations in Table 1. We considered both the

linear [cf. (4)] and the nonlinear graph convolutional models [cf. (8)] designed

for rating [cf. (12)] and ranking [cf. (22)], leading to 16 combinations. We405
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Figure 5: RMSE, AD@20 and ID@20 as a function of the accuracy-diversity parameter α for

models optimized for rating. As more information from the dissimilar connections is included,

the RMSE deteriorates but diversity improves. The RMSE of the GCNN is more sensitive to

α as its hyperparameters are not tuned.

considered the same data pre-processing and train-test split as in [17].

We quantified accuracy through the root MSE (RMSE) –the lower the better–

and the normalized discounted cumulative gain @k (NDCG@k) –the higher the

better– and diversity through the aggregated diversity @k (AD@k) and individ-

ual diversity @k (ID@k) –both the higher the better [58, 59, 10]. The RMSE410

measures the fitting error for all ratings, while the NDCG@k accounts also for

the item relevance in a list of length k. The AD@k is a global at-the-dataset

metric and measures the fraction of all items included in all recommendation

lists of length k. The ID@k is a local at-the-user metric and measures the aver-

age diversity in each recommendation list. A high ID@k does not imply a high415

AD@k and vice-versa [26, 60]. Appendix A provides further detail5.

We considered a GCNN architecture composed of a single hidden layer with

5We have also evaluated the models with different metrics including: the mean absolute

value (MAE), a surrogate of the RMSE for rating; precision and recall @k, which are ranking-

oriented metrics for accuracy; and entropy diversity, which measures the models’ ability to

recommend items in the long-tail. We have observed these metrics respect the accuracy-

diversity trade-off we report and have omitted them for conciseness.
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two parallel filters. We trained the GCNN using the ADAM optimizer with

the default parameters [61] and sought different learning rates γ and fitting-

regularizer parameter µ. To limit the search of different hyperparameters, we420

proceeded with the following rationale. First, we performed an extensive pa-

rameter analysis in the MovieLens100k dataset, since this dataset is common

in the two most similar graph convolutional works [17, 37] and in the accuracy-

diversity trade-off works [8, 26, 25]. We then used the best performing setting in

this dataset and corroborated the trade-offs in the remaining two. Second, we425

chose the hyperparameters of the similarity graph (number of nearest neighbor,

filter order, length of the recommendation list) from the linear graph convolu-

tional filter optimized for rating [cf. (15)] [37]. Besides being a faster design

method to seek different parameters, this strategy allowed evaluating also the

accuracy-diversity trade-off of the graph convolutional NN filter. Finally, we430

kept fixed these parameters for the NN graph and evaluated different combina-

tions on the FN graph.

8.1. Accuracy-Diversity Trade-off for Rating

We first study the trade-off when the joint models are trained for rating [cf.

Sec. 5]. For the NN module, we used the parameters derived in Appendix B. For435

the FN module, we fixed the number of neighbors to the arbitrary common value

40, evaluated different filter orders K ∈ {1, 2, 3}, and show the best results.

Figure 5 shows the results for the combinations in Table 1 as a function of

α ∈ [0.1, 0.9]. As we increase the influence of FNs (α→ 1), the RMSE increases.

The linear filters are more robust to α than the GCNN. We attribute the latter440

to the convexity of their design problem. Increasing α increases diversity, while

the AD and ID exhibit opposite behavior. Values of α up to 0.5 offer a good

trade-off as the RMSE remains unaffected but diversity increases substantially.

To further quantify the trade-off, we allow the RMSE to deteriorate by at

most 3% w.r.t. the NN setup [cf. Appendix B] and pick a value of α that445

respects such constraint. Table 3 compares the different models. For a user

NN graph, the joint models (i.e., UU and UI) boost substantially one diversity

27



Table 3: RMSE, AD@20 and ID@20 for different models optimized for rating. In brackets we

show the change in percentage of the proposed joint models w.r.t. the NN counterpart.

RMSE AD@20 ID@20

User Linear

User NN 0.96 0.19 0.02

UU filter 0.98 (+2.1%) 0.15 (-21.5%) 0.17 (+750%)

UI filter 0.98 (+2.1%) 0.53 (+178%) 0.14 (+600%)

User GCNN

User GCNN 1.03 0.02 0.15

UU GCNN 1.05 (+1.9%) 0.12 (+500%) 0.10 (-33.3%)

UI GCNN 1.06 (+2.9%) 0.04 (+100%) 0.14 (-6.7%)

Item Linear

Item NN 0.96 0.65 0.03

II filter 0.98 (+2.1%) 0.62 (-4.6%) 0.03 (0%)

IU filter 0.98 (+2.1%) 0.60 (-7.7%) 0.03 (0%)

Item GCNN

Item GCNN 0.97 0.29 0.22

II GCNN 0.95 (−2.1%) 0.31 (+6.9%) 0.22 (0%)

IU GCNN 0.98 (+1%) 0.45 (+55.2%) 0.23 (+4.6%)

metric. We believe this is because models build only on user-NN graphs are

conservative to both diversity metrics [cf. Fig. B.10], therefore, the margin for

improvement is larger. Contrarily, for an item NN graph, the joint models (i.e.,450

IU and II) are conservative and improve by little both diversity metrics. We

also highlight the case of II-GCNN which improves the RMSE and AD while

keeping the same ID.

8.2. Accuracy-Diversity Trade-off for Ranking

With the same setting of the last section, we now evaluate the trade-off when455

the joint models are optimized for ranking [cf. Sec 6]. These results are shown

in Figure 6. A higher importance to FNs (α → 1) reduces the NDCG@20 but

improves diversity. Both the filter and the GCNN are less sensitive to α when

designed for ranking. While for the filter we may still attribute this robustness

to the optimality of the design problem, the results for the GCNN suggest the460

BPR leverages better the information from FNs. Note also the filter on the UI

combination pays little in NDCG but gains substantially in AD and ID.

To further quantify these results, in Table 4 we show the diversity gain
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Figure 6: NDCG@20, AD@20 and ID@20 as a function of the accuracy-diversity parameter

α for ranking-optimized models. As more information from FNs is included, the NDCG@20

deteriorates but diversity improves. The NDCG is less sensitive to α compared with the

RMSE for both the joint graph convolutional filter and GCNN.

when reducing the NDCG by at most 3%. We note that it is often sufficient

to deteriorate the NDCG by 1% and gain substantially in diversity. Bigger465

diversity improvements are achieved when one of the two graphs is item-based.

Lastly, we notice the joint GCNN models gain less in diversity compared with

linear filters. The GCNN can be further improved by tuning its parameters.

8.3. Comparisons with Accuracy-Oriented Models

In this section, we analyze how the trade-offs of the joint models compare470

with those achieved by five accuracy-oriented alternatives including state-of-

the-art user NN filter [cf. (5)], item NN filter [cf. (6)], and the multi-graph

convolutional neural network (MGCNN) [57]; but also the conventional methods

of low-rank matrix completion (LR-MC) [62] and matrix factorization optimized

w.r.t. BPR (MF-BPR) [50]. Save the last, the first four are designed for rating.475

We first compare the models in MovieLens100k dataset and then in Douban

and Flixster. We consider only the UI combination.

MovieLens100k. Figure 7 contrasts the RMSE and NDCG@20 with the di-

versity metrics the AD@20 (left) and ID@20 (right) for α ∈ [0.1, 0.9]. The
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Table 4: NDCG@20, AD@20 and ID@20 for the models working on the NN graph and for

the joint models optimized for ranking. In brackets we show the change in percentage of the

proposed joint model w.r.t. the NN graph counterpart.

NDCG@20 AD@20 ID@20

User Linear

User NN 0.84 0.19 0.02

UU filter 0.83 (-1.2%) 0.07 (-63.1%) 0.01 (-50%)

UI filter 0.83 (-1.2%) 0.65 (+242%) 0.16 (+700%)

User GCNN

User GCNN 0.84 0.10 0.12

UU GCNN 0.82 (-2.4%) 0.15 (+50%) 0.08 (-33.3%)

UI GCNN 0.83 (-1.2%) 0.11 (+10%) 0.07 (-41.6%)

Item Linear

Item NN 0.83 0.65 0.03

II filter 0.82 (-1.2%) 0.70 (+7.7%) 0.18 (+500%)

IU filter 0.83 (0%) 0.41 (-36.9%) 0.20 (+566%)

Item GCNN

Item GCNN 0.83 0.40 0.02

II GCNN 0.83 (0%) 0.46 (+15%) 0.02 (0%)

IU GCNN 0.83 (0%) 0.47 (+17.5%) 0.03 (+50%)

accuracy of GCNN is more sensitive to α than the other models. The GCNN480

gives also more importance to diversity within the list (ID) rather than covering

the catalog (AD). This indicates a few items are recommended by the GCNN

but are different between them. Contrarily, the joint linear filters are more ro-

bust to accuracy losses, gain in AD, but pay in ID. Contrasting the proposed

approaches with the other alternatives, we observe:485

- Rating-optimized models (MGCNN, user NN filter, item NN filter, and

LR-MC) achieve a lower RMSE but face problems in AD. The item NN

filter achieves a reasonable AD but its ID is very low. The MGCNN over-

fits the RMSE by prioritizing a few popular items to all users as shown by

the low AD and high ID. The joint linear filter can substantially improve490

the AD by paying little in RMSE, while the GCNN requires additional

tuning. The improved AD comes often at expenses of ID, yet values of

α ≈ 0.3 offer a good balance between the two. We can further improve

the ID with the IU combination [cf. Fig. 5].
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Figure 7: RMSE and NDCG@20 as a function of the AD@20 and ID@20 for the joint models

on the UI graph combinations and for five baselines on the MovieLens100k. The joint models

are optimized for ranking. By changing α the propsoed models impose a different trade-off

than the baselines, often overcoming them.

- The ranking-optimized method (BPR-MF) achieves a high NDCG but still495

lower than the rating-design user NN filter. This high accuracy is again

linked to filling the list with a small group of different items. The joint

models optimized for ranking overcome this limitation by making the list

slightly more similar (lowering ID) but increasing the catalog coverage

(improving AD). This strategy keeps the NDCG high.500

Overall, we conclude that a high accuracy from the NNs is tied with an increase

of list diversity (ID) but also with a scarce catalog coverage (AD). The proposed

joint models can keep a reasonable accuracy while contributing to a higher
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diversity.

Douban & Flixster. We now compare the different models in two datasets505

containing fewer interactions compared with MovieLens100k; see Table 2. The

sparsity of these datasets brings additional challenges when evaluating the NDCG@k.

For a list of length 20 there is only one test user for Fixster and none for Douban.

To have statistically meaningful results, we measured the NDCG for a list of

length k = 5, which leads 1, 373 test users for Douban and 126 for Fixster. How-510

ever, to have a unified diversity comparison with the MovieLens100k dataset,

we computed the diversity for a list of length 20.

In Table 5, we show the performance for Douban and Fixster datasets, re-

spectively. For our models, we report the extreme values α = 0.1 and α = 0.9

and a hand-picked value of α. As α increases, the joint models lose in accuracy515

but gain in diversity. We see again the sensitivity of GCNNs to α for which

the RMSE may also reach unacceptable values. The joint models optimized for

ranking can always provide a better NDCG w.r.t. MF-BPR while offering a

higher diversity. In general, the best trade-off by the joint models is achieved

by the GCNN designed for rating and filters designed for ranking.520

Table 5: Performance comparison in Douban and Flixster dataset. We show the RMSE

for methods trained for rating and the NDCG@5 for methods trained for ranking. For the

intermediate value of α, we show in brackets the difference in percentage compared with the

best value of competing alternatives.

α RMSE NDCG@5 AD@20 ID@20 α RMSE NDCG@5 AD@20 ID@20

MCGNN - 0.80 - 0.03 0.12 - 0.93 - 0.08 0.07

LR-MC - 1.39 - 0.80 0.04 - 3.17 - 0.45 0.09

MF-BPR - - 0.75 0.78 0.05 - - 0.72 0.50 0.10

User NN - 0.76 - 0.52 0.04 - 1.04 - 0.58 0.06

Item NN - 0.80 - 0.99 0.05 - 1.12 - 0.33 0.03

0.1 0.76 - 0.51 0.04 0.1 1.04 - 0.58 0.06

0.6 0.84 (+5%) - 0.75 (-24%) 0.05 (-58%) 0.6 1.05 (+13%) - 0.69 (+19%) 0.06 (-33%)

0.9 0.92 - 0.96 0.05 0.9 1.06 - 0.71 0.06

0.1 0.83 - 0.49 0.10 0.1 1.46 - 0.60 0.10

0.3 0.85 (+6%) - 0.44 (-56%) 0.12 (0%) 0.4 1.46 (+57%) - 0.56 (-3%) 0.11 (+22%)

0.9 3.31 - 0.63 0.11 0.9 2.84 - 0.48 0.12

0.1 - 0.80 0.44 0.15 0.1 - 0.75 0.34 0.14

0.4 - 0.80 (+7%) 0.48 (-38%) 0.12 (+140%) 0.3 - 0.75 (+4%) 0.35 (-30%) 0.13 (+30%)

0.9 - 0.77 0.77 0.07 0.9 - 0.74 0.36 0.13

0.1 - 0.80 0.47 0.13 0.1 - 0.74 0.30 0.13

0.4 - 0.80 (+7%) 0.90 (+15%) 0.05 (0%) 0.6 - 0.74 (+3%) 0.35 (-30%) 0.13 (+30%)

0.9 - 0.76 0.91 0.05 0.9 - 0.73 0.36 0.13
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Figure 8: Comparison of joint UI filter optimized for ranking [cf. (24)] with the hybrid ap-

proaches from [8] and [9]. We also show the vanilla user-FN and item-FN for reference. The

proposed approach pays the less in terms of NDCG while offering different diversity gains.

8.4. Comparison with Accuracy-Diversity Algorithms

In this final section, we compare the joint UI linear model with two hybrid

alternatives that propose a similar trade-off [8, 9]. The hybrid approach in [8]

mixes a user-based vanilla NN with a user-based vanilla FN. FNs are computed

based on the number of items consumed separately and only FNs are multiplied525

by a single scalar α ∈ [−1.4, 0.5]. The hybrid approach in [9] merges a heat

diffusion with a random walk to balance accuracy with diversity over item-item

graphs. This approach controls the influence of each model similarly to our

method through a scalar α ∈ [0, 1]. Both works predict the probability of an

item being consumed by a user rather than the rating. Therefore, we compare530

the accuracy w.r.t. the NDCG.

In Figure 8, we show the trade-offs of the different methods for all three

datasets. We also show two vanilla FN collaborative filters for reference. We

see the proposed joint model achieves consistently the highest NDCG while
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offering a margin to improve accuracy. This behavior is better highlighted535

in MovieLens100K dataset for which the method hyperparameters have been

chosen. We attribute the latter to the fact that the joint model learns its

parameters to improve ranking accuracy rather than being a simple fusion of

two separate entities. The hybrid strategy from [9] focuses entirely on the

catalog coverage as can be seen by the high AD. This strategy heavily affects540

both the NDCG and ID for which this approach performs the worst. The hybrid

strategy from [8] offers a trade-off in both diversity metrics but the role of the

two graphs depends largely on the dataset sparsity. In Flixster, for instance, we

see this strategy offers little trade-off as the performance for all values of α but

−1.4 is the same. To some extent, this trend is also present in our joint model,545

yet it has more control over diversity while retaining the highest NDCG.

9. Discussion

The accuracy-diversity trade-off represents a crucial factor for improving

user satisfaction when personalizing recommendations. However, achieving the

‘right’ trade-off is challenging, not only because of its subjective aspects that550

are difficult to quantify, but also because of the complex and irregular user-item

relationships that influence both accuracy and diversity. This paper focused on

the latter and investigated the potential of graphs that have a proven history as

core mathematical tools for representing such data. More specifically, it focused

on graph convolutions as the means of dealing with the data complexity and555

irregularity and to achieve an effective accuracy-diversity trade-off for recom-

mender systems. The overall conclusion of this paper is that graph convolutions

have large potential to learn an accuracy-diversity trade-off from the ratings in

user-item matrix without relying on side information. Results in three datasets

showed graph convolutions attained the highest accuracy while improving di-560

versity compared with other alternatives operating in a similar setting.

The proposed approach relies on information from the nearest and the fur-

thest neighbors in both a learning-to-rate and learning-to-rank setting. We
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analyzed how this information is leveraged during parameter design and from

a graph spectral domain perspective. We formulated a learning problem that565

accounts for the trade-off through a regularizer term. When the graph convolu-

tional model is composed only of linear filters, we proved the learning problem is

convex and provided solutions for it. Convexity rendered the linear model more

robust to hyperparameter choice, while the nonlinear model required careful

tuning. In the graph spectral domain, we showed graph convolutions operate570

as bandstop filters in both the nearest neighbor and in the furthest neighbors

graphs. This analysis concluded the joint model exploits the general agree-

ment about preferring or not an item but also complete disagreements between

connected nearest and furthest neighbors.

We developed an accuracy-to-coverage trade-off, in which accuracy is traded575

to recommend niche items; and an accuracy-to-individual diversity trade-off, in

which accuracy is traded to improve the diversity in the list. The joint convo-

lutional model offers a balance in each setting that is difficult to be achieved

with a single model. Comparisons with the nearest neighbor accuracy oriented

approaches –including state-of-the-art graph convolutional RecSys methods but580

also vanilla and graph convolutional nearest neighbor collaborative filtering–

showed a diversity improvement by up to seven times while paying about 1% in

accuracy. Comparisons with the vanilla furthest neighbor collaborative filtering

showed consistently a higher accuracy because of the information from the near-

est neighbors. The trend in these findings is in line with that in [8, 7]. Overall,585

we have seen graph convolutions can trade accuracy to improve substantially

one diversity criteria or improve both by a lesser amount.

The current manuscript has also open aspects. One main question we left

unaddressed is why nonlinear GCNN models do not outperform the linear coun-

terparts. Although we have seen a GCNN case that improves accuracy and both590

diversity metrics, most of the results suggested the joint model should be less

complex, the sparser the dataset. This is not entirely surprising as shown also in

[37, 38]. Second, the current results are not exhaustive to decide which nearest-

furthest neighbor graph combination is the most suitable for a specific accuracy
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and diversity criteria. This aspect is certainly relevant, but it is beyond the595

scope of this paper. Lastly, more research is needed toward explainability. The

graph spectral analysis helps in this regard but research is still needed to iden-

tify the link between the different spectral components and the items included

in the recommendation lists. Nonetheless, to the best of our knowledge this is

the first work showcasing the potential of graph convolutions to establish an600

accuracy-diversity trade-off for recommender systems.

Appendix A. Metrics

Denote the test set by Ts and the length of recommendation list by k.

RMSE. For Xui being the true value and X̂ui the estimated rating for tuple

(u, i) ∈ Ts, the RMSE is defined as

RMSE =

√∑
(u,i)∈Ts |X̂ui −Xui|2

|Ts|
. (A.1)

A lower value of RMSE indicates a better fit; hence, a better performance.

NDCG@k. Denote by Iuk = {iu1, · · · , iuk} the set of k items predicted with

the highest ratings for user u, i.e., X̂uiu1
≥ X̂uiu2

≥ . . . ≥ X̂uiuk
. We first define

the discounted cumulative gain (DCG) for which we consider the true ratings

Xui := reli (called also the relevance for item i) for items i ∈ Iuk ordered w.r.t.

the predicted order in Iuk, i.e., rel1 ≥ rel2 ≥ . . . ≥ relk. The DCG for user u in

a list of length k is defined as

DCGu@k =

k∑
i=1

reli
log2(i+ 1)

. (A.2)

The DCGu@k accounts for the ordering of the true values in the predicted list

Iuk. This ordering can at most be the ideal one Xuiu1 = X̂uiu1 ≥ Xuiu2 =

X̂uiu2
≥ . . . ≥ Xuiuk

= X̂uiuk
, i.e., when the algorithm orders the items in the

predicted list Iuk following the true order. In this instance, we refer to it as the

ideal DCG for user u (iDCGu@k). Then, the NDCG@k for the a list k over all
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users U is defined as

NDCG@k =
1

|U|
∑
u∈U

DCGu@k

iDCGu@k
. (A.3)

A high value of NDCG@k indicates a better recommendation in the list of order605

k; hence, a better performance.

Aggregated diversity. The aggregated diversity measures the fraction of

items I included in the union of all the recommendation lists Iuk, i.e.,

AD@k =
1

|I|

|U|⋃
u=1

Iuk. (A.4)

A higher aggregated diversity indicates the algorithm recommends a larger por-

tion of the items present in the catalog, consequently, a better performance.

Individual diversity. The individual diversity for a list of length k (ID@k)

measures the average diversity within the recommendation lists of all users. For

d(i, j) being a distance metric of two items i and j quantifying their dissimilarity,

the individual diversity is computed as

ID@k =
1

|U|
∑
u∈U

2

k(k − 1)

∑
(i,j)∈Iuk,i6=j

d(i, j) (A.5)

where the inner sum computes the individual diversity for the list Iuk of user u

and the outer sum averages across all users. A higher ID indicates the average610

recommendation list is more diverse. Notice the ID requires computing a dis-

tance between items (often based on item features). To use this metric also in

featureless items, we followed [63] and computed the Euclidean distance based

on the first seven SVD latent features for items i and j.

Appendix B. Parameter Analysis on Similarity Graph615

We here analyze the performance of the user-NN and item-NN graphs [cf.

Section 3]. For each graph, we evaluated different nearest neighbors n ∈ {5, 10, . . . , 40},
filter orders K ∈ {1, 2, 3}, and list length k ∈ {10, 20, . . . , 100}.

NN and filter order. We first analyzed combinations between different NN

and filter orders. We fixed the length of the list to k = 10 which is a common620
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Figure B.9: RMSE, AD@10, and ID@10 for different filter orders K (vertical axis) and nearest

neighbors (horizontal axis). (Top) User-based graph convolutional filter [cf. (5)]. (Bottom)

Item-based graph convolutional filter [cf. (6)]. Increasing the NN improves the RMSE but

reduces diversity. The filter orders K > 1 shows the vanilla NN K − 1 [cf.(1)-(2)] can be

improved by multi-hop neighbors. Results are scaled in the range [0, 1] to improve visibility.

choice in the literature [26, 59, 60, 64, 65]. Figure B.10 shows the RMSE,

the AD@10, and the ID@10 for both scenarios. The number of NNs plays a

role in the trade-off. More NNs reduce the RMSE but degrade both diversity

metrics. This is because each entity gets connected with more similar entities

whose combined effect smoothness ratings. For almost all NNs, there is always625

an order K > 1 that improves both accuracy and diversity of the vanilla NN

[cf.(1)-(2)].

From these results, we choose the combination that achieves the lowest

RMSE. For the user-based scenario, we have: 30−NN, K = 3, RMSE= 0.955,

AD@10 = 0.150, and ID@10 = 0.017. For the item-based scenario, we have:630

35−NN, K = 2, RMSE= 0.958, AD@10 = 0.482, and ID@10 = 0.017.

Length recommendation list. In Figure B.10, we show the effect the rec-

ommendation list has on trade-off NDCG@k-AD@k, and NDCG@k-ID@k. A

longer list improves diversity, but reduces accuracy. This is rather expected

because chances to include different items increase in a longer list. At the same635

time, a longer list makes more challenging identifying the correct order; hence,

reducing the NDCG@k.
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Figure B.10: RMSE, NDCG@k, AD@k and ID@k as recommendation set’s size k varies. We

see the NDCGk reduces for lists more than 20 items while diversity increases.

Comparing the user NN with the item NN, we see little difference in terms

of NDCG, while there is more different in AD and ID.

- User NN achieves a lower AD but a higher ID. This implies the algorithm640

prioritizes a few relevant items in the catalog but diversifies the list of

each user, respectively. In our opinion, this is because the user NN has

a narrow view of all items in the catalog as it explores user-similarities.

The model fails to account for the broad range of items (each item is

treated individually) and prioritizes popular choices, which are different645

between them. The plateau the user NN reaches for relatively low ID

further corroborates the latter.

- Item NN achieves a higher AD but a lower ID. I.e., the model covers

a larger portion of the catalog (recommends different items to different

users) but, to a specific user, it recommends similar items. Item NN is less650

user-centric since it leverages item similarities and ignores the influence

of other similar users. Consequently, the model has a broader view on

items to build recommendations; this explains an AD that is up to four
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times higher compared with the user NN. Nevertheless, since each user is

treated individually less importance is given to diversifying items within655

the list. We can see this model as highly personalizing the user list because

different items are recommended to different users but these items are

highly similar.

Based on these results, we set the list length to k = 20 since this value

achieves the highest NDCG for both the user NN and the item NN. While a660

longer list can be an option to improve diversity, it is not user-satisfactory to

search within it.
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