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Abstract
Since every flight ends in a landing and every landing is a potential crash, deceleration during
landing is one of the most critical flying maneuvers. Here we implement a recently-discovered
insect visual-guided landing strategy in which the divergence of optical flow is regulated in a
step-wise fashion onboard a quadrotor for the task of visual servoing. This approach was shown to
be a powerful tool for understanding challenges encountered by visually-guided flying systems. We
found that landing on a relatively small target requires mitigation of the noise with adaptive
low-pass filtering, while compensation for the delays introduced by this filter requires open-loop
forward accelerations to switch from divergence setpoint. Both implemented solutions are
consistent with insect physiological properties. Our study evaluates the challenges of visual-based
navigation for flying insects. It highlights the benefits and feasibility of the switching divergence
strategy that allows for faster and safer landings in the context of robotics.

1. Introduction

Since every flight ends in a landing and every land-
ing is a potential crash, deceleration during landing
is one of the most critical flying maneuvers. Insects,
renowned as masters of flight, capable of performing
more than 1000 landings per hour [1], rely heavily
on vision to control their deceleration [2–10]. Studies
in various species of insects [3, 4] reveal that insects
begin to decelerate towards their target as soon as
visual control becomes feasible—when the change in
the visual size of the target exceeds the spatial resolu-
tion limit of the insect.

How exactly do insects regulate their decelera-
tion? Upon analysis of honeybee mean landing traces
averaged across multiple repeats in windless condi-
tions, Baird et al [3] proposed a highly influential the-
ory that insects land by keeping the expansion rate of
the target’s image (also known as the divergence of
optical flow) constant. Since this divergence describes
the ratio between approaching speed and distance
to the target, by keeping it constant, a honeybee
gradually decreases its velocity upon a decrease in

distance. Although some studies confirmed this the-
ory for other species, such as bumblebees [5, 10],
experiments with headwind [10] and fruit flies [4]
suggested that divergence does not remain constant
during landing.

Goyal et al [5–7] provided key insights by ana-
lyzing individual landing traces of honeybees and
bumblebees, rather than relying on mean landing
traces. Their findings revealed that both species reg-
ulate divergence during landing in a stepwise fash-
ion (figure 1). Notably, this effect disappears when
mean landing traces, as analyzed in [3], are used.
Although analyzing individual landing traces helps to
gain insights, the proposed landing strategy merely
describes the observed trajectory. It does not neces-
sarily function as a control law, which is shaped
by real-world constraints. To fully understand the
challenges insects face during landing, it is essen-
tial to implement an insect navigation pipeline that
accounts for real-world limitations.

For such a task, robots serve as excellent model
‘organisms’, because they enable real-world testing
of concepts derived from animal observations while
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Figure 1. Quadrotor flight tests starting from varying initial
positions using our visual servoing algorithm inspired by
new landing behavior observed in bees [7]. The flow
divergence set-point is step-wise increased when
approaching the artificial hive, enabling faster landings. The
step input response of the divergence signal is achieved
through an open-loop control input to the motors of the
quadrotor. All methods are tested on the Parrot Bebop
robotic platform using the Paparazzi autopilot software.
The computer vision and control software modules run
on-board.

ensuring interpretability and full control over the
system [11, 12], which is often a problem in the fields
of system and computational biology [13]. Numerous
studies have gained significant insights into the nature
of the tasks faced by flying insects and their cor-
responding solutions by studying flapping wing and
quadrotor drones [11, 14–25]. Specifically, for the
case of landing strategies, the naive robotic imple-
mentation (i.e. with constant control gain) of con-
stant divergence deceleration revealed that sensing
and actuation delays led to instabilities in the con-
trol loop close to the landing surface [26, 27]. These
instabilities led to oscillations in divergence and the
agent’s position and resulted in a crash [26, 27].
Therefore, to ensure stability, the flying agent needs
to regulate its control gain upon approach [26, 27].

Here, we implemented the ‘switching’ divergence
strategy discovered by Goyal et al [5–7] to mimic
bumblebees landing into the nest by landing the
drone into the box (0.6× 0.6× 0.6 m3) through a
frontal window (figures 1, 13). It is important, that
in contrast to many other studies on visual-guided
drone landing [21, 25, 27–34], where landing was

done on large flat surfaces, the landing surface in our
experiments was relatively small. This required much
higher control precision. In the robotics field, this
type of task is called visual servoing and considered to
be much more challenging than simply landing [35–
37]. Yet, this is precisely the type of landing insects
do. Therefore, this approach brought us closer to the
real-world challenges faced by insects.

We encountered three major algorithmic (i.e. rel-
evant for any flying system) challenges in implement-
ing a ‘switching’ divergence strategy for visual servo-
ing. First, we observed a dramatic increase in noise in
the divergence signal upon increase in distance to the
target, originating from the increase in noise in the
estimate of the target visual size (figure 8). Secondly,
we found that proportional-integral-derivative (PID)
control of the divergence switch led to oscillations in
the divergence signal upon a set-point switch, slow-
ing down system response. Thirdly, we encountered
the previously described issue of oscillations near
the target surface. We addressed these problems by
using solutions consistent with the known capabilit-
ies of insect control and visual systems: adaptive tem-
poral filtering to combat noise [38], open-loop for-
ward accelerations to counteract delays and oscilla-
tions upon a set-point switch [9], and a decrease in
control gain upon approaching the target to prevent
oscillations near the surface [39].

To summarize, our study shed light on the chal-
lenges insects and other flying agents encounter dur-
ing visually-guided landings and demonstrated how
these challenges can be addressed with bioinspired
solutions.

2. Framework: visual-based landings of a
quadrotor

To investigate visual-based servoing, we focused on
the task of landing. Our experiments, conducted
indoors with a quadrotor (Parrot Bebop), mimicked
the landing of a honeybee in its hive (figure 2). For
this, we placed an artificial ‘hive’ in the testing area.
The ‘hive’ consisted of a box with a front window,
with both its interior and exterior painted orange to
improve detectability (figure 2).

The quadrotor was equipped with the Paparazzi
autopilot software (figure 3) and a standard set of
sensors, including a wide-angle front camera and an
IMU. In addition, the position and orientation of the
drone were continuously tracked using a motion cap-
ture system (OptiTrack). OptiTrack transmitted sig-
nals in real-time via Ethernet to a computer ground
station, which was connected to the quadrotor via
WiFi. OptiTrack’s position measurements were used
only to evaluate flight performance. Attitude meas-
urements were used to improve the IMU readings
with a Kalman filter (see below). Although attitude
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Figure 2. In (a), the experimental test setup is shown. The
quadrotor has to land in the orange-painted box through
the front window. The top is open, allowing light to hit the
inside of the box. (b) Shows an image from the camera. The
pixels detected as orange are highlighted, and a green
cross-hair marks the center of the box.

Figure 3. The modules of the autopilot software. The
computer vision algorithm processes the images from the
front camera of the Parrot Bebop. This calculates the center
of the hive in image coordinates Cy and Cz and the
divergence ϑ. From these observations, the visual servoing
module determines reference values for thrust, pitch angle,
and roll angle (T∗, θ∗, ϕ∗). The INDI attitude control
module computes the required motor velocities with
feedback from the on-board IMU and the OptiTrack
system.

measurements streamlined testing, they were not
required for the visual servoing controller.

The images were collected with a spatial resol-
ution of 400× 400 pixels, at an average frame rate
of 11.4 Hz, and fed to the onboard computer vis-
ion module. There, the orange box was detected and
two subsequent images were compared to estimate
optical flow divergence (see below for the details),
which was fed to the control module. The control
module consisted of outer and inner loops (see below
for details). The outer loop controlled the position via
PID control, while the inner loop controlled the drone
attitude.

2.1. Visual servoing controller
Below, we discuss the functioning of the visual servo-
ing controller.

Consider the situation shown in figure 4. The pos-
ition of the quadrotor ξ is given in the inertial ref-
erence frame (XI,YI,ZI), which has its origin fixed
at the center of the ‘hive’. The attitude (ϕ,θ,ψ) of
the quadrotor defines the rotation of the body frame
(Xb,Yb,Zb) with respect to the inertial frame.

The quadrotor uses a single camera that points
forward in the Xb direction, which is assumed to be
located at the center of gravity of the MAV. Figure 4
shows the plane of the image with the coordinates of
the center of the hive defined as Cy and Cz, and the
optical flow divergence ϑ that occurs when approach-
ing the hive, given by:

ϑ=− v

d
(1)

where d is the Euclidean distance to the ‘hive’, and v
is its time derivative. Note that during the landing v
is negative. Therefore, the minus sign is included to
make the divergence positive when approaching the
hive.

With reference frames being defined, we can
examine the quadrotor’s control system. A quadro-
tor is an under-actuated system, which can be viewed
as two connected subsystems. We can design a con-
trol law with inner and outer loops. The outer loop
controls the position ξ of the quadrotor by rotating
the thrust vector. The inner loop handles the attitude
through the angular velocity of the four propellers.

For the outer loop controller, we examine the pos-
ition dynamics of a quadrotor, keeping the yaw angle
ψ fixed:

ξ̈ =

00
g

+
1

m

cosϕ sinθ− sinϕ
cosϕcosθ

T+
1

m
F
(
ξ̇,w

)
(2)

where g is the gravitational acceleration, m is the
mass, T is the total thrust force, and F is the aerody-
namic force, which is a function of velocity and wind
w. The following control law can be used to find the
desired valuesµ for ξ̈with feedback from the camera:

µx = kpx ∗ (ϑ∗ −ϑ)+ kix ∗
ˆ

(ϑ∗ −ϑ) (3)

µy = kpy ∗Cy + kdy ∗
d

dt

(
Cy

)
+ kiy ∗

ˆ (
Cy

)
(4)

µz = kpz ∗Cz + kdz ∗
d

dt
(Cz)+ kiz ∗

ˆ
(Cz)+ g (5)

where kp, ki, kd are the proportional, integral, and
derivative gains, ϑ∗ is the divergence set-point, and
the reference values for the centroid are set to zero. In
this way, the centroid of the hive in terms of Cy and
Cz is used to center the quadrotor on the ‘hive’, while
the divergence ϑ regulates the forward acceleration.

The reference values of attitude θ∗,ϕ∗ and thrust
T∗ can be determined with equation (2):

T∗ =
√
µ2x +µ2y +µ2z ∗m (6)
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Figure 4.MAV body, inertial and image reference frames. The origin of the inertial reference frame is fixed to the center of the
artificial hive.

Figure 5. Block diagram of the control loops, showing the connection between the subsystems.

θ∗ = arctan

(
µx

µz

)
(7)

ϕ∗ = arcsin
(mµy

T

)
. (8)

The set-points for attitude and thrust are fed into
an inner control loop, which calculates the motor
velocities of the four propellers through incremental
non-linear dynamic inversion (INDI). Here, we used
an implementation developed in [40].

The complete control systemwith inner and outer
loops is summarized in figure 5. This controller can-
not be implemented directly since the non-linear sys-
tem dynamics require online adaptation of all con-
troller gains in equation (3) [26]. These gains must
be proportional to the Euclidean distance to the hive
d. The proposed solution to this problem is described
in subsection 4.3.

As the quadrotor nears the hive during landing,
it gets so close that visual cues become undetectable,
causing a loss of control feedback. To land, a pre-
programmed landing procedure is initiated at a spe-
cific visual size of the hive. This maneuver takes 1 s
and starts with a forward acceleration. This is fol-
lowed by a descent, after which the motors are shut
down.

3. Analysis of benefits of step-wise
divergence regulation

When divergence is kept constant, the distance to the
target exponentially decays over time, as described by
the equation:

d= d0e
−ϑ∗t (9)

which is plotted in figure 6 (red). The switch-
ing strategy is a series of such exponential decays
(figure 6, green). The same exponential decay also
describes the change in speed over time (figure 6, dot-
ted lines).

One trivial benefit of the switching strategy is that
it allows for a faster landing. Landing with constant
divergence leads to deceleration (figure 6(A), red dot-
ted line). An increase in divergence set-point leads to
an increase in speed (green dotted line). By defini-
tion, an increase in speed will make the landing faster
(figure 6(A)). However, the same faster landing can
be achieved with simply a higher initial divergence
set-point. Therefore, simply faster landing upon a
switch to a higher divergence emphasizes not the

4
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Figure 6. Comparison of the ‘constant’ (red traces) versus
‘switching’ (green traces) ϑ∗ strategies. The time at which a
distance of 0.1 m from the hive is reached is marked by the
circles. The ϑ is switched halfway at a distance of 2 m. In
(a), ϑ∗ is set to 0.3 in the constant strategy and is switched
from 0.3 to 0.6 in the variable strategy. In (b) ϑ is switched
from 0.2 to 0.4.

benefit of switching, but the benefit of higher diver-
gence (though note that real-world systems have lim-
itedmaximal speed and hence limitedmaximal diver-
gence for a given distance).

To isolate the effect of switching from the effect of
simply higher divergence, we analytically compared
the performance of switching and constant diver-
gence strategies while keeping the divergence aver-
aged over the flown distance equal. Our analysis,
detailed in appendix A, shows that given sufficient
flying distance, the switching strategy would lead
to a shorter landing time than the constant diver-
gence strategy (figure 6(B)). Effectively, the switching
strategy allows the drone to land faster using a smaller
maximal speed, which makes flight safer in cluttered
environments (figure 6, dotted line).

4. Optical flow based navigation:
challenges and solutions

To estimate divergence, we use the change in size of
the ‘hive’ in two consecutive camera frames. To sim-
plify the computations, we neglect perspective effects.
Therefore, the ‘hive’ is assumed to have the same
square shape from any viewing direction. Then, we
get the situation shown in figure 7. Let the number
of pixels occupied by the ‘hive’ be Q. With a square
shape, this can be converted to the length in pixels

Figure 7. A schematic view of the apparent divergence of
the artificial hive when flying from a position at distance d0
to d1. The bottom diagram shows the pinhole camera
model for both positions.

with P=
√
Q
2 . Assuming the pinhole camera model

and defining v= ḋ, the divergence can be computed
with:

lim
t→0

(ϑ(t)) = lim
t→0

(
ḋ
d

)
= lim

t→0

(
P1 − P0
∆t

)
1
P0

=
dP
dt

1
P0

.

(10)

There are three major difficulties in divergence
estimation and divergence-based navigation: noise,
delays, and oscillations. Below, we discuss each of
these problems and describe our solutions to them.

4.1. Noise in divergence estimate depends on the
target visual size
The raw divergence estimates contain noise. There
are many reasons for this: lens chromatic aberra-
tions, thermal noise in the camera, fluctuations in
image acquisition rate, etc. Most importantly, estima-
tion of divergence requires a calculation of derivative,
which is an inherently noisy operation as it amplifies
high-frequency signal components, which usually are
noisy.

Now, the amplitude of the noise is higher when
far away from the target. An intuitive reason for this
is as follows. When measuring the size of the box, the
noise will manifest itself as an error in the pixel count.
When far from the box, the box occupies only a few
image pixels. Hence, even small errors in the pixel
estimates would have a large effect on the divergence
measurement. In contrast, when the drone is close to
the box, the box occupies a large portion of the image,
such that any error in pixel count has a very small
effect on the divergence.

To illustrate our point and propose a solution, we
performed the following experiment (figure 8). The

5
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Figure 8. Noise in divergence measurement depends on the visual size of the target. A. Dependence of the absolute error on the
target visual size. Dots—mean absolute error within a bin, errors bars—standard deviation of absolute error within a bin. B.
Dependence of the relative error in divergence estimation on the target visual size. Dots—mean relative error within a bin, error
bars—standard error of the mean within a bin.

drone was approaching the ‘hive’ while being con-
trolled by the OptiTrack system to disentangle drone
control behavior fromdivergencemeasurements. The
drone was following a sine wave modulation of the
pitch angle, that provided forward acceleration.

We measured noise in the divergence estimate
as an error between the divergence estimate and
ground truth. The ground truth divergence was avail-
able from the OptiTrack measurements following
equation (1). To assess the dependence of absolute

6
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Figure 9. Adaptive filtering efficiently denoise divergence signals. (A) Comparison of performance of static and adaptive filters
when approaching the target. (B) Performance of adaptive filter when approaching the target. (C) Comparison of time constants
of adaptive (green) and static (blue and purple) filters. (D) Summary statistics of performance of different filters.

error, we binned measured box sizes in logarithmic
bins and calculated the mean absolute error (MAE)
and its standard deviation for each of the bins
(figure 8). As was suggested above, the MAE of the
divergence estimate as well as the standard deviation
of this error gradually decreases with an increase in
the number of pixels.

However, when the ‘hive’ started to occupy most
of the camera’s visual field, the absolute error in diver-
gence estimate began to increase again. There are
two main factors contributing to it. First of all, our
assumptions about system optics (negation of per-
spective effect, pinhole camera model) become less
valid closer to the target, leading to an error in diver-
gence estimate. Secondly, closer to the target wemeas-
ure larger divergence signals (figure 9). Naturally,
it leads to a larger absolute error in the divergence
estimate. Yet, plotting relative error in divergence
estimate against target visual size (figure 8), one can
see that relative error consistently goes down.

The dependence of the noise in divergence estim-
ates was often overlooked in other implementations

of the optical-flow-based landings because in major-
ity of studies drone was landing on a large surface [21,
25, 27–34] . As a result, the divergence was calculated
from the entire visual field whereas noise in diver-
gence estimates originates from a small target size.

To mitigate noise in the divergence signal, one
has to low-pass filter this signal, following the
equation (11):

ϑmeasured [t] = αϑraw [t] + (1−α)ϑmeasured [t− 1]
(11)

where α is the ratio between the sampling interval dt
and the filter time constant τ : α= dt

τ

However, since noise decays upon closing the dis-
tance to the target, the requirements for the filter
depend on the drone’s position. Far from the target,
the noise is high and one needs a low-pass filter with
a long time constant. Close to the target, the noise is
low and one needs a low-pass filter with a short time
constant.

To satisfy both requirements, we propose a low-
pass filter with an adaptable time constant that varies
with target size following the equation:

τ =
Clp√
Q

(12)

where Clp is a scaling constant. This approach was
consistent with the phenomenological models of
insect’s visual signal processing [8]. While to the best
of our knowledge, there is no direct evidence of insect
neurons adapting their time constant specifically to

7
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Figure 10. Comparison of our alternating control protocol (green) and the pure PID controller (pink) in tracking the divergence
setpoint (black).

stimulus size, they do exhibit adaptation to contrast
[38]. Contrast adaptation is widely considered to be
a fundamental mechanism underlying more complex
forms of adaptation and has been shown to drive
adaptation to stimulus size in the vertebrate retina
[41, 42]. Therefore, we believe the proposed mechan-
ism to be biologically plausible.

To quantify the advantages of an adaptive filter, we
performed experiments with the drone approaching
the box following the sinewave-modulated pitch law
(total 12 flights, with 3 different sinewave frequen-
cies). We then filtered raw divergence through three
different filters. Adaptive filter (green trace), whose
time constant was gradually changing from≈ 600 ms
to ≈ 100 ms and 2 filters with fixed time constants.
One static filter (constant filter 20, purple line) had
a long time constant (≈ 500 ms), analogous to the
adaptive filter when Q was within the 20th percent-
ile of the color count in a given flight (figure 9(C)).
Another static filter (constant filter 80, blue line) had
a short time constant (≈ 200 ms), analogous to the
adaptive filter when Q was within 80th percentile of
the color count in a given flight (figure 9(C)).

In figure 9(A) we plotted raw measured diver-
gence (gray), ground truth divergence (orange),
divergence estimated with adaptive filter (green),
divergence estimated with constant filter 20 (purple),
and divergence estimated with constant filter 80 (blue
line). From the plot, it is clear that the blue line
contains a lot of noise when the drone is far from
the ‘hive’, while the purple line undershoots true
divergence when the drone is close to the target. In
figure 9(B) we focused on the comparison between
adaptive filter and ground truth optical flow diver-
gence. Figure 9(B) shows that the adaptive filter

closely follows ground truth regardless of whether
it is far or close to the target. Figure 9(D) makes
a quantitative comparison between 3 filter types in
terms of absolute error in divergence estimation. In
each of the flights, the adaptive filter performed bet-
ter than filters with static time constant.

4.2. Delays in the divergence estimate
Long delays introduced by the adaptive filter at large
distances do not allow good system step-response if
change in a divergence set-point is performed by PID
controller. This point is illustrated by the pink trace
in figure 10. The figure shows that after switch in the
divergence set-point, there are decaying oscillations
in the divergence signal and poor tracking of the set-
point value.

To solve this problem of sluggish sensory integ-
ration, we decided to switch between divergence val-
ues by applying open-loop input to forward acceler-
ation µx and only monitor/control divergence after
it settles to a new set-point, with open-loop input
yielding reference values for The open-loop input
yields reference values for θ and T from equation (6).
In figure 11 µx is plotted against time. The input is
designed to increase ϑ quickly for a short time and
then remain constant. ϑ∗ is then set to the current
ϑ, and the controller is switched back to PID control
corresponding with equation (3). Now, the landing is
characterized by two repeating phases: an acceleration
phase to increase divergence and a deceleration phase
to decrease speed while keeping divergence constant,
very similar to how it is suggested to be done in insects
[6]. This process continues until a target value of ϑ∗

is reached. When this happens, the quadrotor keeps
decelerating with PID control.

8
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Figure 11. Divergence switching strategy. The input µx is
plotted against time. During the first 2.5 s, an input is given
without visual feedback. At some point, µx is in equilibrium
with drag, and the quadrotor starts decelerating. After 2.5 s,
the input is determined with PID control. This repeats until
the divergence reaches a target value.

We experimentally evaluated the improvements
in control performance achieved by incorporating
an open-loop acceleration command (figure 10). To
ensure a controlled comparison—where the only
variable was the type of control used—we employed
the following protocol. First, we conducted a flight
using our proposed controller. Then, we applied
recorded setpoint values as control inputs for the PID
controller and compared the performance of both
controllers in tracking the command.

As shown in figure 10, the PID controller resul-
ted in decaying oscillations in divergence and notice-
ably poorer setpoint tracking. To quantify this effect,
we calculated the MAE between the divergence set-
point and the measured divergence for both control
strategies. For the PID controller, the error was com-
puted over the sequence from the moment the meas-
ured divergence reached the setpoint until the next
setpoint change. For the alternating control strategy,
we measured the error between open-loop acceler-
ation command sequences. Our results showed that
incorporating open-loop acceleration reduced the
MAE by an average of 40% (n= 7, p= 0.004, depend-
ent t-test).

4.3. Self-induced oscillations close to target
Previous studies showed that naive optical-flow-
based control during landing leads to self-induced
oscillations in the final phase of the flight [26, 27],
often resulting in a crash. We visualized this prob-
lem in figure 12. Figure 12(A) shows that when the
distance to the target (pink) becomes less than 2 m,
the divergence signal (gray) starts to oscillate around
its set-point (black). The oscillation in the diver-
gence signal leads to oscillations in the drone position

(figure 12(B)). As a result, the drone does not land in
the box but actually hits the box and gets stuck on top
of it. This is evident from the positive, with respect to
box position, coordinate of the drone along the Z axis
in figure 12(B) (cyan).

These self-induced oscillations originate from a
combination of delays in the system and non-linear
dependence of the optical flow divergence on dis-
tance.When the drone is close to the target, even small
changes in distance lead to large changes in diver-
gence. To compensate the system’s PID controller
(equation (3)) has to decrease the velocity. However,
during the sensorimotor delay, the drone moves even
closer. As a result, the controller constantly over-
shoots the desired target leading to oscillations.

To fix it, one needs to decrease P gain in the
divergence PID controller (equation (3))[26, 27].
However, one cannot simply set gain low as the con-
trol policy will not be enforced. Hence, one needs to
regulate divergence based on the drone’s proximity to
the target.

We proposed the following approach to this prob-
lem. At the end of the acceleration phase, the quadro-
tor is in equilibrium with the drag force (figure 11).
At this equilibrium equation (2) becomes:00

g

+
1

m

cosϕ sinθ− sinϕ
cosϕcosθ

T=
1

m
F
(
ξ̇,w

)
. (13)

During the landing, the thrust component in the
XI direction has the greatest influence on ϑ, especially
during the last part of the approach when the quad-
rotor is centered on the hive. At this point θ is small,
ϕ≈ 0 andT≈ g. Then equation (13) can be simplified
to:

θg= Fx
(
ξ̇x,wx

)
. (14)

The equilibrium velocity is only a function of θ,
the drag model, and the wind in the XI direction wx.
The initial velocity before the acceleration can be neg-
lected. As the input to θ and the drag model are equal
in every acceleration phase, the velocity at the end of
the acceleration ˙ξxe only varies with wx. Then, from
equation (1) we get:

ϑe = ce
˙ξxe (wx)

ξxe
(15)

where ce is a constant that depends on the drag
model of the quadrotor that can be determined from
flight test data. With this method, ϑe is only a func-
tion of wind speed and distance to the hive and can,
therefore, be used to schedule the control gains in
equation (3) as follows:

k=
ce
ϑe
. (16)
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Figure 12.MAV landing with increasing ϑ∗ from an initial distance of 6 m. A high gain is maintained in the divergence controller
to show the self-induced oscillations when close to the hive. (a) Shows the raw divergence (gray), ground truth divergence
(orange), divergence set-point (black), filtered divergence (green), and distance to the box (pink). The true divergence (orange
line) is obtained from the OptiTrack measurement system. (b) Shows how the oscillations in divergence lead to oscillations in
drone position along X (dark purple), Y (crimson red) and Z (cyan) axes.

5. Visual servoing with switching strategy

To test the actual performance of visual servoing with
a switching strategy, we initialized a quadrotor at 18
different starting positions (stars, figure 13). From
each position, the drone performed one landing with
trajectories plotted in figure 13(A) (top view) and
figure 13(B) (side view). Figure 13 shows that in all
of the cases the drone was able to land in the box.

Consistent with the autopilot strategy described
in section 2.1, in all of the landing trials drone was
first dealing with its offset along the Z and Y axes
by bringing the ‘hive’ to the center of its visual field
(equation (3)) and then approaching the target along
X axis. During the flight, the divergence set-point was
gradually increased.

We further focused our analysis on the three par-
ticular trajectories, denoted with golden stars. For
these trajectories, we plotted raw (gray), ground
truth (orange), and filtered (green) divergences along
divergence setpoint (black) as a function of distance
to target (figure 13(C)). In all three cases, raw, meas-
ured and ground truth divergences followed the set-
points. The pattern of change in divergence follow-
ing acceleration control is described earlier. Each two-
and-a-half-second divergence was increased follow-
ing the open-loop acceleration before settling on a
new set-point value for the next 2.5 s. Upon reaching
the threshold size value, the landing procedure was
initiated.

At the end of the landing, there was a sharp
increase in the difference between ground truth and
measured divergence. Two factors contribute to this
phenomenon. First of all, closer to the target there
is an increase in noise in Optitrack measurements
since the box blocks the field of view for some of the
Optitrack cameras. Secondly, there is an ambiguity
as to what to consider to be the center of the box.
When calculating divergence from optic track meas-
urements, we assumed the center of the box to be at
the origin of all axes. However, in drone observations,
a lot of signal comes from the back wall of the box.
Although we are talking here about small differences,
around 15–20 cm, they become critical when the box
becomes close to the box. Especially, given the hyper-
bolic dependence between divergence and distance.

6. Conclusions

We implemented bioinspired landing strategy that
alternates between decelerations at constant optical
flow divergence and accelerations to switch between
divergence set-points for visual servoing onboard
a quadrotor (figure 1. Compared to the ‘constant’
divergence strategy, where the agent decelerates with
a single divergence setpoint, the ‘switching’ strategy
offers clear benefits. It allows the agent to adapt
its steering based on visual input. Two cases are
instructive (figure 6): first, switching increases speed,
enabling faster landings with higher average speed

10
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Figure 13.MAV landings from varying initial positions, top-view (a) and side-view (b). The orange lines display the orange box.

(figure 6(A)); second, it allows faster landings while
maintaining lower maximum speed, which is crucial
for safety in cluttered environments with higher col-
lision risks.

In particular, the issues encountered during the
implementation of the switching strategy (figures 8–
12) stem from fundamental limitations of visual sig-
nals.While oscillations in divergence signal and drone
position near the landing surface (figure 12) have
been previously discussed in the literature [26, 27], we
identified two additional challenges. First, the diver-
gence signal from a landing surface is significantly
corrupted by noise when target has a small visual
size (figure 8). To improve SNR the divergence sig-
nal must be filtered using a low-pass filter with a
slow time constant (≈ 500ms), figure 9). However,
this filtering introduces a secondary issue: it causes
decaying oscillations and sluggish step-response in

divergence signal when the switching in set-point
is done with PID controller (figure to address this,
we employed open-loop forward acceleration as a
method of divergence switching 10.Here, ourmethod
complements an influential theory of sensorimotor
convergence [19, 43]. While this theory suggests that
sensory processing is shaped to align with an agent’s
actuation capabilities, our approach selects control
commands to compensate for the limitations of the
sensory system.

Although our study considers a simplified case of
visual servoing compared to real-world tasks [44–47],
we believe our findings are relevant to broader robot-
ics applications beyond serving as a ‘model organism’
for studying biological theories. Vision-based navig-
ation is a valuable tool that can augment or even
replace other navigational sensors in scenarios where
their signals are unavailable–such as GPS, which

11
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performs poorly indoors or near buildings–or when
payload constraints limit sensor selection [44–46, 48].
Consequently, bioinspired methods for optical flow
sensing [49–53] and vision-guided navigation [11,
46, 54–59] play a crucial role in modern robotics
research, with numerous studies dedicated to landing
using constant divergence [21, 25, 27–34, 60, 61]. Our
results suggest that a switching divergence strategy
can improve landing performance.
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Appendix A

Here we will demonstrate that, in the case of equal
divergence averaged over the flown distance, the
switching strategy leads to a faster landing, given a
sufficient flown distance.

In the constant strategy, we have divergence ϑ0
and flown distance d0, measured in meters. Since
with exponential decay, 0 is never strictly reached, we
assume that landing occurs when the distance to the
target is 0.1 m.

In the switching strategy, the total flown distance
is the same, d0, and the divergence is switched from
ϑ1 to ϑ2:

ϑ2 = αϑ1, (17)

at an arbitrary point where the remaining flying dis-
tance is d2:

d2 = γd0. (18)

Then at the moment of the switch, the drone
covered distance d1:

d1 = (1− γ)d0. (19)

Since we posit equal divergence averaged over-
flown distance, one can express ϑ0 as a function of
ϑ1:

ϑ0 = ϑ1 (1− γ)+αγϑ1, (20)

or:

ϑ0 = ϑ1 (1− γ+αγ) . (21)

Now, the time that it would take for a constant
divergence strategy to reach 0.1 m from the target can
be found in this equation:

0.1= d0e
−ϑ0t0 , (22)

as:

t0 =
ln(10d0)

ϑ1 (1− γ+αγ)
. (23)

For the switching strategy, this time would be
the sum of t1 and t2. t1 can be calculated from the
equation:

γd0 = d0e
−ϑ1t1 , (24)

as:

t1 =
− ln(γ)

ϑ1
. (25)

Similarly, for t2:

0.1= γd0e
−ϑ2t2 , (26)

t2 =
ln(10d0γ)

αϑ1
. (27)

Effectively, we want to prove that:

− ln(γ)

ϑ1
+

ln(10d0γ)

αϑ1
<

ln(10d0)

ϑ1 (1− γ+αγ)
(28)

ln(10d0)−α ln(γ)+ ln(γ)

α
<

ln(10d0)

(1− γ+αγ)
. (29)

Now, let us bring equations to the common denom-
inator and bring all elements with d0 to one side of
the inequality. We will end up with the following
formula:

(1−α)(1− γ+αγ) ln(γ)

< (α− 1+ γ− γα) ln(10d0) . (30)

The resulting inequality can be re-written as:

− 1(α− 1)(1− γ+αγ) ln(γ)

< (α− 1)(1− γ) ln(10d0) . (31)

Now, since α> 1, we can divide both sides by (α -
1). Keeping in mind that since γ < 1, its logarithm is
negative, we can arrive at the following inequality:

(1− γ+αγ) | ln(γ) |< (1− γ) ln(10d0) . (32)

Thus, given sufficient flown distance d0, that can
be calculated for each α and γ switching strategy will
always lead to faster landing while requiring smaller
maximal velocity. Therefore, with this strategy, one
can get both faster and safer landings.
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