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BLIND CALIBRATION FOR ACOUSTIC VECTOR SENSOR ARRAYS
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Graciano Carrillo Pousa ‡ and Geert Leus †

† Delft University of Technology, Delft, The Netherlands
‡ Microflown Technologies, 6824 BV Arnhem, The Netherlands

ABSTRACT

In this paper, we present a calibration algorithm for acoustic vector
sensors arranged in a uniform linear array configuration. To do so,
we do not use a calibrator source, instead we leverage the Toeplitz
blocks present in the data covariance matrix. We develop linear es-
timators for estimating sensor gains and phases. Further, we discuss
the differences of the presented blind calibration approach for acous-
tic vector sensor arrays in comparison with the approach for acoustic
pressure sensor arrays. In order to validate the proposed blind cali-
bration algorithm, simulation results for direction-of-arrival (DOA)
estimation with an uncalibrated and calibrated uniform linear array
based on minimum variance distortion less response and multiple
signal classification algorithms are presented. The calibration per-
formance is analyzed using the Cramér-Rao lower bound of the DOA
estimates.

Index Terms— Acoustic vector sensor, direction-of-arrival es-
timation, gain estimation, phase estimation, self calibration.

1. INTRODUCTION

Direction-of-arrival (DOA) estimation of outdoor acoustic sources
using a network of passive sensors is crucial for ground surveil-
lance [1] and target tracking [2]. Traditionally, microphone/acoustic
pressure sensor (APS) arrays are deployed for such tasks. How-
ever, with the advances in the sensor technology, transducers that
are capable of measuring vector quantities such as particle velocity
are becoming practically feasible [3–5]. An acoustic vector sensor
(AVS) is one such device that can measure both acoustic pressure
and particle velocity at a given spatial location [6,7]. It comprises of
an omni-directional microphone and two (or three) particle velocity
transducers each aligned along the coordinate axes either in R

2 (or
R

3) [5]. An array of AVSs has several advantages compared to an
equivalent aperture APS array [6, 8].

For DOA estimation using spatially distributed AVS or APS ar-
rays, many advanced algorithms that yield highly accurate estimates
are developed, such as minimum variance distortionless response
(MVDR) beamformer [9] and subspace-based methods like multi-
ple signal classification (MUSIC) [10]. However, these algorithms
are highly sensitive to sensor position errors, bearing errors, and
other modeling parameters such as relative gain and phase varia-
tions within as well as among sensors. Although with proper care
while building the array the positional and bearing errors can be
minimized, modeling parameters usually vary with time and envi-
ronmental conditions. Therefore, the array has to be calibrated from

This work is part of the ASPIRE project (project 14926 within the STW
OTP programme), which is financed by the Netherlands Organization for
Scientific Research (NWO).

time to time. In this paper, we focus on gain and phase calibration
of AVS arrays.

Currently, sophisticated calibration techniques are employed to
correct for the gain and phase mismatch between the pressure and
particle velocity channels [11, 12], e.g., using a calibrator source in
a controlled environment. The data acquisition electronics (e.g., os-
cillator and amplifier) of the AVS drifts over period of time and it
requires recalibration. Also, the lack of orthogonality between the
channels of the particle velocity transducers contribute to the gain
and phase mismatch. This means that a calibrator source has to be
deployed in the field or the AVSs in the array have to be brought
back to the calibration room. To avoid such complications, we ex-
plore calibrator-source-free or blind calibration techniques for AVS
arrays arranged in a uniform linear array (ULA) configuration. The
presented approach is inspired by the blind calibration method for
APS ULA presented in [13], wherein the Toeplitz structure in the
covariance matrix was utilized. An extension of this approach to any
arbitrary array configuration was presented in [15]. Even though the
covariance matrix of the AVS ULA is not Toeplitz, it has Toeplitz
blocks. Due to which, the AVS array cannot be treated as an APS
array with a larger aperture for calibration. We exploit the struc-
ture in the Covariance matrix to create a linear system of equations
to estimate the unknown gain and phase uncertainties. Also, we will
discuss the differences between the calibration algorithm for AVS ar-
rays and APS arrays, which is a rather well-studied problem. Once
the gain and phase uncertainties are corrected for, any standard DOA
estimation technique can be employed.

2. SYSTEM MODEL

Consider a ULA of M AVSs. Each AVS consists of three elements
(one pressure and two particle velocity transducers), which we de-
note with the subscripts P , X , and Y throughout this paper. With the
notation, AM for M ∈ {P ,X ,Y}, we mean AP , AX , and AY ,
respectively.

Let us denote the unknown gain and phase parameters as ψ ∈
R

3M and φ ∈ C
3M , respectively, where these vectors have compo-

nents related to the transducers in the array, i.e.,

ψ =
[
ψ

T
P ,ψ

T
X ,ψ

T
Y

]T
, and φ =

[
φ

T
P ,φ

T
X ,φ

T
Y

]T
,

with length-M vectors ψM = [ψM,1 . . . ψM,M ]T and φM =
[ejφM,1 . . . ejφM,M ]T denoting the gain and phase vectors related
to the type-M transducer in the array.

Assume that there are D far-field narrowband uncorrelated
sources with wavenumber k = 2π/λ impinging on the array from
azimuth angles θ = [θ1 θ2 . . . θD]T ∈ R

D×1. The received signal

3544978-1-5386-4658-8/18/$31.00 ©2018 IEEE ICASSP 2018

Authorized licensed use limited to: TU Delft Library. Downloaded on September 02,2021 at 11:24:15 UTC from IEEE Xplore.  Restrictions apply. 



can be collected in r(t) ∈ C
3M×1 and is given by

r(t) = diag (ψ) diag (φ) [A(θ) s(t) + n(t)] , (1)

where s(t) = [s1(t) s2(t) · · · sD(t)]T ∈ C
D is the source sig-

nal vector, n(t) is the noise vector, and A(θ) = [a(θ1) a(θ2) · · ·
a(θD)] ∈ C

3M×D is the array manifold matrix. The dth column of
A(θ) is given by the corresponding length-3M AVS array steering
vector

a(θd) = [aT
P (θd) cos(θd)a

T
P(θd) sin(θd)a

T
P(θd)]

T ,

= [aT
P (θd) a

T
X (θd) a

T
Y(θd)]

T ,

with

aP(θd) =
[
1 ejklcos(θd) . . . ejk(M−1)lcos(θd)

]T
∈ C

M×1,

being the equivalent APS array steering vector. Here, l is the inter-
element spacing.

In this work, we assume that s(t) and n(t) are uncorre-
lated, and that they are realizations of an independent and iden-
tically distributed (i.i.d.) complex Gaussian process with zero
mean and unknown covariance matrix Rs = E

{
s(t)sH(t)

}
and

Rn = E
{
n(t)nH(t)

}
, respectively. Without loss of generality,

we assume that Rs is a diagonal matrix with unknown entries (i.e.,
sources are uncorrelated) and Rn = σ2

nI (i.e., we absorb the factor
that models the noise difference between the pressure and velocity
channels [16] in the calibration parameters).

The data covariance matrix R = E
{
r(t)rH(t)

}
∈ C

3M×3M

can be written as

R = diag (ψ) diag (φ)Q diag(φ∗)diag (ψ) , (2)

where (·)∗ denotes complex conjugation and Q = A(θ)RsA
H(θ)+

Rn. The covariance matrices Q and R comprises blocks of matrices
as

R =




RPP RPX RPY

RXP RXX RXY

RYP RYX RYY



 ; Q =




QPP QPX QPY

QXP QXX QXY

QYP QYX QYY



 ,

where

RMN = diag(ψM)diag(φM)QMN diag(φ∗
N )diag(ψN ); (3)

QMN =
D∑

d=1

[Rs]dd aM(θd)a
H
N (θd) + σ2

nI, (4)

for M,N ∈ {P ,X ,Y} are each Toeplitz.
In practice, the true covariance matrix is not available and we

have to use a sample covariance matrix, which is evaluated from a
finite number of time snapshots, N , as

R̂ =
1

N

N∑

t=1

r(t)rH(t). (5)

For the sake of brevity, henceforth we simply use R instead of R̂.
In what follows, we present linear estimators for ψ and φ by taking
into account the structure of the covariance matrix.

3. ESTIMATION OF SENSOR GAINS

In this section, we derive a least-squares estimator for ψ. To do so,
we process each subblock of the data covariance matrix separately
to build a linear system of equations in ψ. From (3), we have

|[RMN ]ij | = |[QMN ]ij |ψM,iψN ,j , ∀i, j = 1, 2, . . .M, (6)

where |·| denotes the modulus. Since the subblock QMN is Toeplitz,
we have, for all i− j = k − l, the following relation

log

(
|[RMN ]ij |

|[RMN ]kl|

)
= log(ψM,i) + log(ψN ,j) (7)

− log(ψM,k)− log(ψN ,l).

This is because, for all i − j = k − l, |[RMN ]ij | and |[RMN ]kl|
lie along the same diagonal and due to the Toeplitz structure of the
subblock QMN , those terms are eliminated resulting in an equation
corresponding to the unknown gains. However, when only a finite
number of snapshots are available, (7) is not consistent. Now, we can
collect the measurements {log(|[RMN ]ij |)−log(|[RMN ]kl|),∀i−
j = k − l} in the vector gMN , and repeat the same procedure for
all the subblocks in R.

Taking all the non-redundant relations within the diagonal sub-
blocks RPP ,RXX , and RYY , we get a total of kz1 = 3

∑M

i=2 0.5 i(i−
1) equations, while taking the upper-diagonal subblocks along the
RPX ,RPY , and RXY , we get kz2 = 3(

∑M

i=2 0.5i(i − 1) +∑M−1
i=2 0.5i(i − 1)) equations. In total, we have kz = kz1 + kz2

equations, which can be compactly written as





gPP

gXX

gYY

gPX

gPY

gXY




=





H1 0 0

0 H1 0

0 0 H1

H2 H3 0

H2 0 H3

0 H2 H3








ψ̃P

ψ̃X

ψ̃Y



 ⇔ g = Hψ̃, (8)

where H ∈ R
kz×3M and ψ̃M = [log(ψM,1) . . . log(ψM,M )]T

for M ∈ {P ,X ,Y} are each of length M .
The rows of H1 have one of the following forms [13]:

1. [. . . 0 2 0 . . . 0 − 2 0 . . .] when i = j and k = l. All the
elements in this row are zero except for a 2 and -2 at the ith
and kth positions, respectively.

2. [. . . 0 1 0 . . . 0 − 1 0 . . .] when i 6= j and j = k. All the
elements in this row are zero except for a 1 and -1 at the ith
and lth positions, respectively.

3. [. . . 0 1 0 . . . 0 1 0 . . . 0 − 1 0 . . . 0 − 1 0 . . .] when i, j, k
and l are distinct. All the elements in this row are zero ex-
cept for 1, 1, -1 and -1 at the ith, jth, kth, and lth positions,
respectively.

The rows of H2 and H3 have one of the following forms:

1. All the elements in the rows of H2 are zero except for a 1 and
-1 at the ith and kth positions, respectively, and they will be
of the form [. . . 0 1 0 . . . 0 − 1 0 . . .].

2. All the elements in the rows of H3 are zero except for a 1 and
-1 at the jth and lth positions, respectively, and they will be
of the form [. . . 0 1 0 . . . 0 − 1 0 . . .].

It is easy to see that the matrices H1, H2, and H3 each have
the all-one vector 1 in its nullspace. This means that, H has
3M − 3 nonzero singular values with the vectors

[
1T 0T 0T

]T
,
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[
0T 1T 0T

]T
,
[
0T 0T 1T

]T
in its nullspace. Equations corre-

sponding to the cross correlations between P ,X , andY transducers,
do not improve the rank of the system, but the additional equations
generated from the cross blocks of R might be useful to improve the
estimates when only a finite number of snapshots are available.

As the matrix H is not full column rank, one reference AVS
with known gain is needed to uniquely determine the unknown gains.
In other words, we can estimate the sensor gains ψ̃M, for M ∈
{P ,X ,Y}, up to an arbitrary multiplicative factor. To do so, let us
include the known reference gains to obtain





gPP

gXX

gYY

gPX

gPY

gXY

0





=





H1 0 0

0 H1 0

0 0 H1

H2 H3 0

H2 0 H3

0 H2 H3

eT
1 0 0

0 eT
1 0

0 0 eT
1








ψ̃P

ψ̃X

ψ̃Y



 ⇔ g̃ = H̃ψ̃, (9)

where e1 is the first column of the identity matrix of size M ×M .
Here, we pick, without loss of generality, the 1st AVS as the refer-
ence. Then, the sensor gains can be computed using least squares
as

̂̃
ψ = (H̃T

H̃)−1
H̃

T
g̃.

4. ESTIMATION OF SENSOR PHASES

After computing the sensor gains, in order to estimate the elements
of φ, we again process each subblock of R separately. From (3), we
have

angle([RMN ]ij) = angle([QMN ]ij) + φM,i − φN ,j , (10)

for i, j = 1, . . . ,M . Here, angle(·) denotes the phase. Using the
fact that each subblock QMN is Toeplitz, we obtain the relation

angle([RMN ]ij)− angle([RMN ]kl) = φM,i − φN ,j

− φM,k + φN ,l, (11)

for all i − j = k − l. We can now collect the measurements
{angle([RMN ]ij)− angle([RMN ]kl),∀i− j = k− l} in a vector
pMN , and repeat the same procedure for all the subblocks in R.

Taking all the nonredundant relations within the diagonal sub-
blocks RPP ,RXX , and RYY , we get kp1 = 3

∑M−1
i=2 0.5i(i −

1) equations while taking the upper-diagonal subblocks along the
RPX ,RPY , and RXY , we get a total of kp2 = 3(

∑M

i=2 0.5i(i −

1) +
∑M−1

i=2 0.5i(i − 1)) equations that are of the form as in (11).
In total, we have kp = kp1 + kp2 equations of the form





pPP

pXX

pYY

pPX

pPY

pXY




=





G1 0 0

0 G1 0

0 0 G1

H2 −H3 0

H2 0 −H3

0 H2 −H3








φ̃P

φ̃X

φ̃Y



 ⇔ p = Gφ̃, (12)

where G ∈ R
kp×3M and φ̃M = [φM,1 . . . φM,M ]T for M ∈

{P ,X ,Y} are each of length M .
The rows of G1 have one of the following forms:

1. [. . . 0 1 0 . . . 0 − 2 0 . . . 0 1 0 . . .] when i 6= j and j = k.
All the elements in this row are zero except for a 1,-2 and 1 at
the ith, j(= k)th, and the lth positions, respectively.

2. [. . . 0 1 0 . . . 0 − 1 0 . . . 0 − 1 0 . . . 0 1 0 . . .] when i, j, k
and l are distinct. All the elements in this row are zero ex-
cept for 1, -1, -1, and 1 at the ith, jth, kth and lth positions,
respectively.

The matrix G1 has M − 2 nonzero singular values and there
are two M × 1 vectors, namely, [1 1 . . . 1]T and [1 2 . . . M ]T

in its nullspace. However, G has 3M − 4 nonzero singular val-
ues with four 3M × 1 vectors in its nullspace. Those include[
1T 0T 0T

]T
,
[
0T 1T 0T

]T
,
[
0T 0T 1T

]T
, and

[
tT tT tT

]T
,

where t = [1 2 3 . . . M ]T . By exploiting the cross correlations be-
tween P ,X , andY channels, we gain rank, i.e, the rank is increased
to 3M − 4 from 3M − 6. This is the main advantage of jointly
performing the phase calibration for all the transducer types in the
AVS array.

To solve (12), when P ,X , andY channels are processed inde-
pendently (i.e., without considering the equations related to the cross
correlations between the channels), we would require two reference
AVSs. In contrast, by considering entire G, we need only one refer-
ence AVS and an additional phase reference (it could be any trans-
ducer type), as its rank is 3M − 4. Those known phase references
are included as additional equations to obtain





pPP

pXX

pYY

pPX

pPY

pXY

0





=





G1 0 0

0 G1 0

0 0 G1

H2 −H3 0

H2 0 −H3

0 H2 −H3

eT
1 0 0

0 eT
1 0

0 0 eT
1

eT
2 0 0








φ̃P

φ̃X

φ̃Y



 ⇔ p̃ = G̃φ̃, (13)

where e1 and e2 are, respectively, the first and second columns of
the identity matrix of size M ×M . Then, the sensor phases can be
computed using least squares as

̂̃
φ = (G̃T

G̃)−1
G̃

T
p̃.

5. SIMULATIONS

In this section, we present numerical simulations to illustrate the de-
veloped theory. We consider an array consisting of six AVSs ar-
ranged in an ULA configuration with an inter-element spacing of
λ/2. Further, the first AVS is considered as a reference with its
channels having a nominal gain of 1 and a nominal phase to be 0.
For solving (13), it is considered that the pressure channel of the first
and second AVS as phase reference. We assume five equal-powered
sources at DOAs θ = [−35◦, 68◦, 79◦,−128◦, 137◦]T .

The spectral plot of the MVDR and MUSIC algorithm are pre-
sented in Figure 1 and 2. Here, we use a signal-to-noise ratio of 0 dB
with respect to the source signal and the sample covariance matrix
R̂ is formed using N = 1000 snapshots. Further, up to 4 dB and
20◦ (root-mean-square values) of random gain and phase uncertain-
ties with respect to the nominal values, are chosen. For MUSIC,
without gain and phase uncertainties the peaks in the spectrum are in
the direction of the actual sources (as indicated by dash-dotted black
color line and referred to as Ideal). For MVDR without the gain and
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phase uncertainties, the peaks in the spectrum are in the direction of
the actual sources, however, two closely spaced sources at 68◦ and
79◦ are not resolved. When the sensors are not calibrated, it can be
clearly seen that the DOA estimates are poor and the angular spectral
resolution is degraded due to the sensor errors. This plot also shows
that both MVDR and MUSIC are highly sensitive to the sensor er-
rors. By following the procedure discussed in this work to estimate
the sensor errors, which are then compensated during the calibration
step, we can clearly see the improved spectral resolution. It is evi-
dent that the sources located at −35◦,−128◦, 137◦ are well resolved
and with less bias using both MUSIC and MVDR. Further, the MU-
SIC algorithm can even resolve the two closely spaced sources at
68◦ and 79◦.

-150 -100 -50 0 50 100 150
0

0.2

0.4

0.6

0.8

1
Uncalibrated
Ideal
Calibrated
Actual DOAs

Fig. 1. Angular spectrum with, without, and after resolving sen-
sor errors using MUSIC algorithm (here, Ideal refers to the scenario
without calibration errors).

-150 -100 -50 0 50 100 150
0

0.2

0.4

0.6

0.8

1
Uncalibrated
Ideal
Calibrated
Actual DOAs

Fig. 2. Angular spectrum with, without, and after resolving sensor
errors using MVDR.

In order to analyze the performance of the proposed blind cal-
ibration algorithm, the root mean squared error (RMSE) variation
of the DOA estimates using MUSIC and MVDR are considered
for a single source scenario through Monte Carlo experiments for
a fixed gain and phase parameters. Firstly, the RMSE variation of
the DOA estimates corresponding to the uncalibrated and calibrated
AVS ULA are plotted for different SNRs in Fig. 3. Also, the RMSE
variation of the AVS ULA without sensor errors and the Cramér-Rao
lower bound (CRB) are plotted in Fig. 3. For each SNR value, the

0 5 10 15 20
0

0.5

1

1.5

2

2.5

Uncalibrated MUSIC
Uncalibrated MVDR
Ideal - MUSIC
Ideal - MVDR
Calibrated MUSIC
Calibrated MVDR
CRB

Fig. 3. RMSE variation of the DOA estimate for increasing SNR
using AVS ULA under single source scenario withM = 3, θ = 60◦

and N = 300.

102 103 104 105
0

0.5

1

1.5

2

2.5

Uncalibrated - MUSIC
Uncalibrated - MVDR
Ideal - MUSIC
Ideal - MVDR
Calibrated - MUSIC
Calibrated - MVDR
CRB

Fig. 4. RMSE variation of the DOA estimate for increasing number
of time snapshots (N ) using AVS ULA under single source scenario
with M = 3, θ = 60◦ and SNR = 0 dB.

RMSE value is evaluated using 1000 independent trials. It is ob-
served that as the SNR increases, the RMSE of the DOA estimates
for both MUSIC and MVDR of the calibrated ULA approaches to
the ideal AVS ULA and the CRB. However, the RMSE of DOA es-
timates of the uncalibrated ULA does not improve with the SNR.

Finally, in Fig. 4, the RMSE variation of the DOA estimates
using both MUSIC and MVDR for increasing number of snapshots
is shown. Again for evaluating the RMSE values, 1000 Monte Carlo
experiments were performed. A similar observation as in Fig. 3 can
be made, where the calibrated array achieves the CRB as the number
of snapshots increase. In a nut shell, the DOA estimates after the
proposed calibration are asymptotically (with SNR and/or number
of snapshots) efficient as they achieve the CRB.

6. CONCLUDING REMARKS

In this paper, we estimate the sensor errors present in the AVS ULA
by exploiting the structure in the covariance matrix. In particular, we
derived linear estimators for sensor gains and phases. The proposed
calibration algorithm does not require a calibrator source, and be-
ing a blind algorithm, the unknown gains and phases are estimated
relative to a reference sensor. To validate the proposed approach,
simulations performed with MUSIC and MVDR for DOA estima-
tion show a significant improvement after calibration.
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